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Abstract 

Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for 

motive force. These multiple energy sources make prediction of PHEV energy consumption 

challenging and also complicate evaluation of their environmental impacts. This thesis 

introduces a novel PHEV energy consumption modeling approach and compares it to a 

second approach from the literature, each using actual trip patterns from the 2009 National 

Household Travel Survey (NHTS). The first approach applies distance-dependent fuel 

efficiency and on-road electricity consumption rates based on naturalistic or real world, 

driving information to determine gasoline and electricity consumption. The second uses 

consumption rates derived in accordance with government certification testing. Both 

approaches are applied in the context of a location-specific case study that focuses on the 

state of Michigan. The two PHEV models show agreement in electricity demand due to 

vehicle charging, gasoline consumption, and life cycle environmental impacts for this case 

study. The naturalistic drive cycle approach is explored as a means of extending location-

specific driving data to supplement existing PHEV impact assessments methods. 
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CHAPTER 1 

Introduction 

1.1 Rationale and description of research  

Determining the environmental impacts of plug-in hybrid electric vehicles (PHEV) 

requires accurate prediction of vehicle energy consumption. PHEV fuel and electricity usage 

rates are sensitive to both driving distance and drive cycle, making it important to consider 

real-world conditions (Patil et al., 2009; R. B. Carlson et al., 2009). This study details a 

PHEV energy consumption prediction method that approximates driving behavior by 

applying naturalistic, or real-world, drive cycles to each trip in the vehicle’s travel pattern. 

Travel patterns describe daily vehicle trip profiles in terms of distance, time, and 

location. Drive cycles describe driving intensity or the nature of acceleration events during 

the course of a trip. In the case of PHEVs, travel patterns often dictate when battery charging 

occurs because charging may only be allowed at certain locations (Kelly et al., 2012; 

Peterson et al., 2011; Weiller, 2011). Battery charging influences the number of vehicle miles 

powered by grid electricity. Driving intensity determines the power demanded of the 

powertrain and directly affects vehicle energy consumption.  

 The Environmental Protection Agency (EPA) conducted vehicle testing using the city 

(UDDS) and the highway (HWFET) drive cycles until model year 2008, when drive cycles 

representing aggressive driving (US06), air-conditioner use (SC03), and cold temperature 

driving (cold FTP), were added to the test procedure to improve fuel economy prediction 

(EPA, 2012). For model years 2008-2011, vehicle manufacturers had two options for 

calculating fuel economies considered representative of real-world conditions. The first uses 

actual test data from the five EPA drive cycles to calculate adjusted city and highway fuel 

economy values. The second uses “mpg-based” formulas, equations 1 and 2, based on an 

industry-average for a particular group of vehicle models (EPA, 2012). 

EPA adjusted city fuel economy = 1/(0.003259 + 1.1805/UDDS) (1) 

 

EPA adjusted highway fuel economy = 1/(0.001376 + 1.3466/HWFET) (2) 
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 The EPA applies a 43% city / 57% highway harmonic average to account for a shift in 

actual driving behavior (EPA, 2012), but the analysis of PHEVs remains challenging (Duoba 

et al., 2009; Silva et al., 2009) due to their dual operating modes: charge depleting (CD) or 

charge sustaining (CS). In CD mode, the power-split PHEV consumes both battery electricity 

and gasoline for propulsion. In CS mode, the vehicle consumes only gasoline (electricity is 

used, but not grid electricity, in CS mode the PHEV operates as a HEV). Depending on 

vehicle design and control strategy, a PHEV may operate in CD mode until the battery’s 

energy state-of-charge (eSOC) is depleted to a predetermined level, or the CS and CD modes 

may be blended. 

1.2 Review of previous work  

Efforts to standardize a reporting procedure that combines CD and CS modes (SAE, 

2010) typically rely on a utility factor (UF). UF refers to the estimated fraction of driving 

powered by electricity in a PHEV. Previous analyses utilize the UF to determine PHEV 

energy consumption but recognize that many factors impact its accuracy (Weiller, 2011; 

Elgowainy et al., 2010; EPRI, 2007). Several complications in estimating electrically driven 

miles with UF include variations in driving conditions, driver characteristics, vehicle 

configuration and control strategy (Elgowainy et al., 2010; EPRI, 2007).  

 Naturalistic drive cycles are synthesized by applying stochastic processes to extracted 

real-world driving information and then validating them. This study uses driving information 

collected in Southeast Michigan. The representativeness of the synthetic naturalistic drive 

cycles is validated (Lee & Filipi, 2010), and the method applied to PHEV analyses (Lee et al., 

2011a; Patil et al., 2009; Patil et al., 2010), but the cycles are independent of vehicle type. 

Details of the synthesis and validation process are in Appendix 1 and Lee et al. (2011b).  

 This thesis offers a novel approach to PHEV energy consumption characterization 

through a method that does not rely on a utility factor or adjustments to federal test cycles. 

We track vehicle travel patterns from National Household Travel Survey data (NHTS, 2009) 

and charging information on a per-trip basis, similar to previous studies (Kelly et al., 2012; 

Peterson et al., 2011; Weiller, 2011), but deviate from previous work by measuring vehicle 

energy consumption for every NHTS trip based on the distance dependency of fuel economy, 

and on-road electricity consumption exhibited by synthetic naturalistic drive cycles. When 

applied in PHEV performance testing, the synthetic drive cycles elicit higher peak power 

results relative to those obtained using a sequence of standard test cycles (Patil et al., 2009; 
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Patil et al., 2010). When based on relevant drive cycle data and travel survey information, the 

naturalistic drive cycle method demonstrated here offers a supplement to current PHEV 

impact prediction approaches, and corroborates those results. 

1.3 Organization of this thesis  

The remainder of this thesis is organized as follows. Chapter 2 describes the method 

developed including the attributes of the vehicle energy consumption models. Chapter 2 also 

describes the input parameters to the simulation used in the environmental assessment. 

Chapter 3 describes the life cycle component of energy usage in the analysis and presents the 

results obtained. In chapter 4, these results are discussed, and conclusions are drawn. 

Appendices 3 and 4 describe the basis for choosing the values used in the naturalistic drive 

cycle and life cycle assessment portions of the analysis, respectively. 

The research presented in this thesis has already been published in the following 

journal article: Marshall, B.M., J.C., Kelly, T.-K.Lee, G.A.Keoleian, Z. Filipi, 

“Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles 

and vehicle travel patterns: A Michigan case study”  Energy Policy (2013) 58: 358 – 370. 
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CHAPTER 2 

Methodology 

2.1 Method overview 

This analysis compares two midsize class PHEV energy consumption modeling methods. 

Both models use 2009 NHTS trip data to determine vehicle travel patterns. The specific 

NHTS data that the models use are the day of the week, a vehicle identifier, the start and end 

times for each trip, and the trip distance and destination. PHEVs are charged once daily upon 

arrival at home. The simulation steps through each trip in the NHTS travel day 

chronologically. When a trip is begun, electricity and gasoline are consumed at a rate based 

on the PHEV energy consumption model in simulation. An iterative process is used to 

guarantee that battery eSOC is the same at the beginning and end of a travel day. This 

approach is taken to prevent overstating the electrically driven miles due to the limitation of a 

single day of NHTS driving data per vehicle, and follows the procedure used for battery 

eSOC accounting in Kelly et al. (2012). That study suggests a variance of 7% in aggregate 

vehicle UF between assuming a fully charged battery, and ensuring the battery eSOC is equal 

at the beginning and ending of the day. Battery eSOC and gallons of gasoline consumed are 

calculated at the end of each trip and recorded for use with the next vehicle trip.  

 

2.2 Vehicle energy consumption models  

 The two PHEV energy consumption models analyzed are based on a power-split 

PHEV design configuration simulated in Powertrain System Analysis Toolkit (PSAT) 

modeling software with the default vehicle control selected. The power-split architecture 

divides engine power between the vehicle’s electrical and mechanical drive systems 

depending on the driving situation and control strategy. A conventional vehicle (CV) 

platform with performance similar to the PHEV is developed for energy consumption 

comparison. Parameters for the CV and PHEV energy consumption models analyzed are 

listed in Appendix 2 along with values for two PHEV models from the literature (Elgowainy 

et al., 2010) which are included as reference points for the vehicle efficiency adjustment to 

follow. Fuel economy values for the PHEV and CV models are reported in miles per gallon 

gasoline-equivalent (mpge) (EPA, 2011). Fuel consumption is reported in gallons per 100 

miles (gal/100mi) and electricity consumption in kilowatt-hours per mile (kWh/mile). 
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2.3 Average vehicle efficiency method (PHEVAVG)  

 The first PHEV energy consumption model, denoted PHEVAVG, is characterized by 

the average fuel economy during operation in CS mode, the average fuel economy during 

operation in CD mode and the average per-mile electricity consumption on the road in CD 

mode. The PHEVAVG model is in one of four states at all times: parked and not charging, 

parked and charging, driving in CS mode, or driving in blended (engine and electric motor) 

CD mode. When driving, the PHEVAVG model operates in the blended CD mode until the 

usable battery is depleted. It then switches to CS mode until vehicle recharging occurs.  

 Calculation of the PHEVAVG fuel economy in CS mode begins with setting the battery 

eSOC to the lower limit and simulating the vehicle in PSAT under city and highway federal 

test cycles. The unadjusted fuel economies are 53.63 mpge (UDDS) and 54.17 mpge 

(HWFET). Applying the EPA harmonic average yields the composite-unadjusted CS fuel 

economy, 53.94 mpge (1.86 gal/100mi). Using the EPA “mpg-based” formulas (equations 1 

and 2), adjusted city and highway fuel economies are 39.57 mpge and 38.11 mpge. The 

composite-adjusted (ADJ) fuel economy for the PHEVAVG in CS mode is 38.72 mpge (2.58 

gal/100mi), a 0.73 gal/100mi increase in fuel consumption over the unadjusted composite 

value.  

 City and highway fuel economies in CD mode are generated by setting the battery 

eSOC to the upper limit and allowing the vehicle to run under the test cycles in blended 

mode, resulting in 495.98 mpge (UDDS) and 362.19 mpge (HWFET), which are consistent 

with findings from an Argonne National Laboratory (ANL) study using a similar vehicle 

(Elgowainy et al., 2010). The unadjusted composite CD mode fuel economy using the EPA 

harmonic average is 409.71 mpge. On-road electricity consumption values are determined by 

setting the battery eSOC to its upper limit and allowing only the electric components (battery 

and motor) to propel the vehicle, resulting in 0.219 kWh/mile (UDDS) and 0.230 kWh/mile 

(HWFET). The unadjusted composite electricity consumption rate, 0.225 kWh/mile, is the 

arithmetic average of the two test cycle results. 

 Because the power-split design that the PHEVAVG is based on blends engine and 

motor operation, actual on-road fuel and electricity consumption is dependent on many 

factors including the aggressiveness of the drive cycle, vehicle control, and the power rating 

of the vehicle’s components (Elgowainy et al., 2010; Duoba  et al., 2009). In a life cycle 

analysis of PHEVs, ANL follows the EPA “mpg-based” method for fuel economy adjustment 

in CS mode operation. For blended CD mode operation in the power-split PHEV design, the 
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ANL study suggests that many adjustments to fuel and electricity consumption are possible 

due to the above factors (Elgowainy et al., 2010).  

 We examine the adjustment methods adopted by ANL for two PHEV designs to aid in 

developing a CD mode fuel and electricity consumption adjustment approach for the 

PHEVAVG simulation. The first ANL model we consider is a power-split PHEV design with 

20 miles of all-electric range (AER), described in Appendix 2, and designated PHEV20. 

Although the PHEV20 is only 119kg lighter than the PHEVAVG, its electric drive components 

are significantly smaller than those of the PHEVAVG. This relatively undersized electric drive 

suggests that the PHEV20 will be more likely to use additional gasoline to meet the demand 

of real-world conditions than the PHEVAVG design. The second ANL PHEV design we 

consider is a series PHEV with a 40-mile AER, designated PHEV40, also described in 

Appendix 2. The series PHEV design mechanically decouples the engine from the wheels but 

requires a larger drive motor and battery to maintain performance (Freyermuth et al., 2008).  

 Figure 1, adapted from the ANL study, shows the fuel and electricity consumption for 

ANL’s PHEV20 operating in a blended CD mode, and their method for adjusting 

consumption to be representative of real world conditions. It also presents a proposed 

adjustment method for the PHEVAVG model that will make it more consistent with real world 

operation. To simplify the explanation, we present the PHEVAVG and PHEV20 models as 

having the same unadjusted, blended CD mode operating point with regard to fuel and 

electricity consumption, this is only to illustrate the process. In the figure, ANL dictates that 

the PHEV20 model receives no electricity consumption adjustment. ANL assumes that real-

world driving conditions increase CD mode fuel consumption for the PHEV20 by the amount 

calculated using the “mpg-based” formulae equations 1 and 2 (arrow a-A). The ANL series 

PHEV40 does have an adjustment to its electricity consumption. That vehicle model has a 

relatively large battery and electric motor capacity that can meet the additional loads typical 

of real-world driving, with ancillary power provided by the engine. ANL applies a 42.8% 

increase to the CD mode electricity consumption of the series PHEV40 model (Elgowainy et 

al., 2010). 
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Figure 1. On-road adjustment of blended CD mode operation in the PHEVAVG energy consumption model. The 

PHEVAVG CD mode adjustment method is illustrated with CD mode adjustment of two PHEV models from the 

literature (Elgowainy et al., 2010)*. The diagram is adapted from Elgowainy et al. (2010) and Duoba et al. 

(2009). Adjustments are not shown to scale. 

 The ANL study assumed no increase in electricity consumption for their power split 

PHEV adjustment because their motor (65.7kW) was relatively small compared to their 

engine (59.8kW). In this study, the motor (110 kW) is much larger than the engine (62 kW) 

so the adjusted energy consumption is assumed to draw significant power from the motor. 

We adjust electricity consumption of the PHEVAVG upward 25% from its unadjusted level 

(arrow c-C). The result is 0.281 kWh/mile for the adjusted PHEVAVG. Similarly, because of 

the larger motor, the PHEVAVG CD mode fuel consumption adjustment will be less than the 

full PHEVAVG CS mode fuel consumption adjustment. Instead of adjusting the CD mode fuel 

consumption upward by the full CS mode adjustment amount (arrow a-A), we adjust it 

upward by 80% of that amount (arrow b-B) (0.58 gal/100mi, in this case). This value is added 

to the unadjusted-composite PHEVAVG CD mode fuel consumption (0.24 gal/100mi) to arrive 

at the adjusted composite value, 0.83 gal/100mi. This corresponds to a PHEVAVG CD mode 

fuel economy of 121 mpge, which is used in the PHEV energy consumption model 

comparison and life cycle analysis. 



15 
 
 

Table 5. Summary of estimated energy consumption for PHEVAVG.  

 

 

 

 

 

 

 

 

 

2.4 Naturalistic drive cycles method (PHEVNDC) 

 The second energy consumption model, PHEVNDC, uses fuel economy and on-road 

electricity consumption rates generated in PSAT through the application of synthetic 

naturalistic drive cycles to the power-split PHEV with parameters shown in Appendix 2. 

Similar to the PHEVAVG, the PHEVNDC model operates in one of four states: parked and not 

charging, parked and charging, driving in CS mode, or driving in blended CD mode. The 

PHEVNDC drives in blended CD mode until the usable battery is depleted. PHEVNDC then 

switches to CS mode until vehicle recharging occurs.  

 The naturalistic drive cycle data used in this study exist for ten trip distances ranging 

from 4.88 miles to 40.97 miles for fuel economy values, and 4.88 miles to 35.03 miles for on-

road electricity consumption rates, according to the synthesis process and the extracted real-

world data (Lee et al., 2011b). The estimated CS mode fuel economy for the PHEVNDC model 

is shown as a function of trip distance in Figure 2 and compared to the PHEVAVG value. 

PHEVNDC fuel economy values for trip distances lower than the range of synthetic drive cycle 

data are calculated based on a linear fit to the data and an estimated endpoint of 52.5 mpge 

(1.90 gal/100mi) at zero miles. Fuel economy for longer trips is calculated according to a 

logarithmic fit to the data that levels off to 32.5 mpge (3.07 gal/100mi) at 1440 miles. We 

observe lower fuel efficiency at longer distances due to the higher cruising speed and more 

aggressive acceleration events under real-world driving. The PSAT-based PHEV model is 

optimized for fuel efficiency under relatively mild and moderate driving conditions, 

represented by federal certification cycles. The higher aggressiveness of the long distance 

driving patterns causes significant fuel efficiency losses because the PHEV is operating 

beyond its fuel efficient performance points. 

CS mode CD mode 

Unadjusted mpge  gal/100mi mpge  gal/100mi kWh/mile 

PHEVAVG (UDDS) 53.6 1.86 495.98 0.20 0.219 

PHEVAVG (HWFET) 54.2 1.85 362.19 0.28 0.230 

PHEVAVG (US06) 36.6 2.74 59.11 1.69 0.333 

PHEVAVG composite 53.9 1.86 409.2 0.24 0.225 

      

CS mode CD mode 

Adjusted mpge gal/100mi mpge gal/100mi kWh/mile 

PHEVAVG composite 

(ADJ) 
38.7 2.58 121 0.83 0.281 
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 PSAT-generated on-road electricity consumption rate values for CD mode operation 

of the PHEVNDC model are shown in Figure 3 compared to the PHEVAVG value. The on-road 

electricity consumption rate is approximated at 0.220 kWh/mile for zero miles and the data is 

linearly extrapolated for longer trip distances. Estimated fuel consumption in CD mode 

operation of the PHEVNDC model is shown in Figure 4 and compared to the PHEVAVG value. 

PHEVNDC fuel consumption value at zero miles is approximated at 0.43 gal/100mi (230.0 

mpge). CD mode fuel consumption is assumed to logarithmically approach 1.43 gal/100mi 

(70.0 mpge) at 1440 miles. 

 

 
Figure 2. PHEVAVG and PHEVNDC estimated fuel economies during CS mode operation. PHEVNDC 

values are generated through the application of synthetic naturalistic drive cycles. Both energy 

consumption models are based on the PSAT power-split PHEV model parameters in Appendix 2. 
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Figure 3. PHEVAVG and PHEVNDC estimated on-road electricity consumption rates during CD mode operation. 

PHEVNDC values are generated through the application of synthetic naturalistic drive cycles. Both energy 

consumption models are based on the PSAT power-split PHEV model parameters in Appendix 2. 

 
Figure 4. PHEVAVG and PHEVNDC estimated fuel consumption during CD mode operation. PHEVNDC values are 

generated through the application of synthetic naturalistic drive cycles. Both energy consumption models are 

based on the PSAT power-split PHEV model parameters in Appendix 2. 

 

2.5 Conventional vehicle models (CVAVG and CVNDC) 

 Measuring conventional vehicle (CV) impacts relative to the PHEV requires an 

energy consumption model comparable to the one used for the PHEV. The PSAT CV model 

is developed by starting with a two-wheel drive vehicle platform with the same resistance 

coefficients and frontal area as the PHEV models. See Appendix 2 for CV model parameters. 

The CV mass is adjusted downward 150kg from the PHEV mass to account for the absence 

of the battery and electric drive components. The engine is sized at 128 kW to produce the 

same 0.0 to 60.0 mph time as the PHEV (8.9 seconds). The CV model is simulated according 

to the PHEVAVG and PHEVNDC energy consumption estimation methods. CVAVG corresponds 

to the PHEVAVG method that develops average consumption rates from federal test cycles. 

CVNDC corresponds to the PHEVNDC method that uses naturalistic drive cycle inputs to 

estimate energy consumption. The CVAVG calculation begins with PSAT-generated city and 
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highway fuel economies of 26.77 mpge (UDDS) and 41.42 mpge (HWFET). The composite-

adjusted (ADJ) fuel economy for the CVAVG is derived following the same procedure as the 

PHEVAVG fuel economy. Error! Reference source not found. lists both unadjusted and 

adjusted CVAVG fuel economies for the city (UDDS) and highway (HWFET) test cycles and 

the composite values. The estimated CS mode fuel consumption for the CVNDC model is 

shown as a function of trip distance in Figure 5 and compared to the PHEVAVG value.  

Table 2. Summary of estimated energy consumption for CVAVG   

 

 

 

 

 
Figure 5. CVAVG and CVNDC estimated fuel consumption. CVNDC values are generated through the application of 

synthetic naturalistic drive cycles. Both energy consumption models are based on the PSAT CV model 

parameters in Appendix 2. 

 

2.6 PHEV environmental impact assessment 

The PHEV and CV energy consumption models are evaluated for total fuel cycle energy, 

greenhouse gas, and criteria air pollutant impacts following a method from previous work on 

PHEV deployment in Michigan (Keoleian et al., 2011).  

Figure 6 shows a high-level diagram of the simulation used in the analysis. To aid in the 

examination of the different vehicle energy consumption models, this study: (1) constrains 

PHEV fleet infiltration to ten percent of on-road midsize class vehicle totals in Michigan 

(2009); (2) analyzes each vehicle model (PHEVAVG, PHEVNDC, CVAVG, or CVNDC) 

separately; (3) eliminates NHTS data with anomalously high single vehicle travel days 

(>1440 miles); (4) considers a single PHEV charging scenario (at-home only, charge upon 

Unadjusted mpge  gal/100mi Adjusted mpge gal/100mi 

CVAVG (UDDS) 26.8 3.73 CVAVG (UDDS) 21.1 4.73 

CVAVG 

(HWFET) 
41.4 2.41 CVAVG (HWFET) 29.5 3.39 
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arrival); and (5) models 2009 Michigan electricity generation assets assuming zero electricity 

is imported from outside the state during the simulation period.  

 

 

Figure 6. Schematic of the simulation used in the PHEV environmental impact assessment. PECM and MEFEM 

are independent models in the simulation. 

The PHEV Energy Consumption Model (PECM) is used to determine PHEV fleet 

average electricity use, and PHEV and CV fleet average gasoline use. The Michigan 

Electricity, Fleet and Emissions Model (MEFEM) characterizes the Michigan electricity grid 

and simulates the dispatch operation of generation assets on an hourly basis. The impact on 

hourly electricity demand and system emissions from the PHEV demand is evaluated from 

the outputs of MEFEM. PECM groups NHTS trip data by vehicle to track on-road energy 

consumption and battery charging, then aggregates the charging profile and gasoline 

consumption for all vehicles and normalizes the total using statistical weights provided in the 

NHTS. This provides a representative hourly charging pattern for the PHEVs. The process is 

repeated for each day of the week, and daily profiles are then combined to create a charging 

profile for the PHEV energy consumption model under test. Figure 7 shows the one-week 

charging profile for the PHEVNDC and PHEVAVG models. MEFEM replicates weekly 

charging profiles over the course of a year assuming that there are no seasonal changes in 

driving patterns.  The charging profile approximates the aggregate charging behavior of the 

fleet of PHEVs in Michigan when multiplied by the number of on-road midsize vehicles.  
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Figure 7. Normalized hourly charging pattern for the test fleet of PHEVAVG and PHEVNDC energy consumption 

models. Vehicle charging occurs at-home only, upon arrival. 

Within MEFEM, Michigan power plants are based on those reported in the EPA’s 

Emissions and Generation Resource Integrated Database (eGRID) 2005 database (EPA, 

2012). Once the total electric demand is quantified and all plants are defined, plants are 

dispatched to serve the hourly load. Any deficit is assumed to be met from outside the state as 

imported energy. This is modeled as an additional plant with its own emissions factors 

equivalent to the average rate for the Midwest Independent System Operator (MISO) region. 

The simulation uses a dispatch order of generating assets based on their cost of generation. 

Cost is calculated for each power plant, and the plants are sorted from least to most expensive 

to generate electricity. The dispatch model determines the power output of every power plant 

for every hour, which is used to determine total electrical system emissions. The model has 

been verified by comparison with real data suggesting an aggregate underestimation of SOx 

(~10%), an overestimation of CO2 (~7%), and no consistent variance in NOx. Model details 

are available in Keoleian et al. (2011). 

MEFEM provides energy use and emissions estimates due to vehicle fuel 

consumption and electricity generation. The model tracks total fuel cycle (TFC), or well-to-

wheels, energy, greenhouse gases, and criteria pollutants. Total fuel cycle energy includes 

extraction, processing and transportation of fuels as well as the energy embodied in the fuel 

used to propel the vehicle, whether that energy comes from gasoline combustion in the 

engine, or from electricity stored in the battery and converted in the vehicle motors. MEFEM 

applies upstream energy factors from SimaPro software, using the U.S. Life Cycle Inventory 

(USLCI) database (NREL, 2009). Appendix 3 discusses assumptions made in USLCI and 
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SimaPro-based estimates. Equations 3 and 4 outline the life cycle components of energy 

usage for the PHEV and CV energy consumption models using a high heating value (HHV) 

for gasoline and vehicle production (Samaras & Meisterling, 2008) and battery production 

(Sullivan & Gaines, 2012) energy estimates from the literature. 

Life cycle components of PHEV energy use = 

vehicle production energy + battery production energy +  

electricity used to charge battery +  

(PHEV gasoline combustion and gasoline upstream energies)*HHV of gasoline 

(3) 

 

Life cycle components of CV energy use = 

vehicle production energy +  

(CV gasoline energy + gasoline upstream energy)*HHV of gasoline 

(4) 

The fuel cycle emissions from electricity generation are comprised of both 

combustion emissions and upstream emissions. Combustion refers to the emissions released 

when the fuel is burned, while upstream refers to the emissions released while mining, 

drilling, refining the fuel, and transporting the fuel from the extraction site to point of 

combustion.  Upstream emissions factors for electricity are from the USLCI via SimaPro 

software. Combustion emissions factors associated with the generation of electricity are from 

two sources: eGRID and USLCI. Upstream and combustion emissions factor used are listed 

in Appendix 3.  

Emissions from vehicular gasoline consumption are also comprised of both 

combustion and upstream emissions. The emission factors for both combustion and upstream 

activities used in this model are taken from the Greenhouse gases, Regulated Emissions and 

Energy use in Transportation (GREET) 1.8c model (Wang, 2009). The total fuel cycle energy 

factors for gasoline are also derived from GREET 1.8c using the default inputs. 

To calculate emissions, MEFEM applies the combustion and upstream emissions 

factors to the energy generation output of each dispatched power plant. It applies plant 

specific emissions factors for fuel combustion from eGRID and national average emissions 

factors from USLCI for the upstream emissions of each fuel type to the electricity generated 

for each power plant at each hour. The outputs are the annual and hourly upstream and 

combustion emissions for each power plant. Equations 5 and 6 outline the life cycle 

components of greenhouse gas emissions (kg CO2e) for the PHEV and CV energy 

consumption models using vehicle production (Samaras & Meisterling, 2008) and battery 

production (Sullivan & Gaines, 2012) emissions estimates from the literature. 
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Life cycle components of PHEV emissions = 

vehicle production emissions + battery production emissions +  

(electricity generation and upstream emissions) +  

(PHEV gasoline combustion and gasoline upstream emissions)  

(5) 

 

Life cycle components of CV emissions = 

vehicle production energy +  

(CV gasoline combustion and gasoline upstream emissions) 

(6) 

This study tracks life cycle energy and emissions using a marginal allocation method. 

Marginal allocation compares the energy or emissions from a baseline Michigan electricity 

demand scenario with no PHEVs to that of a scenario with PHEV fuel and electricity demand 

added to that baseline. The difference is allocated to PHEVs. The effect of this allocation 

method is that the total fuel cycle energy and life cycle emissions of only the additional 

electricity that had to be used to provide power for charging are assigned to PHEVs 

(Keoleian et al., 2011).  
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CHAPTER 3 

 

Results 

 

3.1 Life cycle energy use  

Total fuel cycle, or use-phase, components for the PHEVNDC and PHEVAVG consumption 

methods are presented in Table 6 along with the CV results. TFC energy calculations use 

national average energy factors applied to each 2009 Michigan power plant’s combustion or 

generation, added to the combustion energy, to give the plant’s total fuel cycle energy 

consumption. See Appendix 3 for details. The PHEVNDC energy consumption method 

indicates 11.3% less fuel cycle energy use per mile and 1.4% more electrically driven miles 

relative to the average efficiency method. This result follows from a PHEVNDC model that is 

more efficient in fuel economy than the PHEVAVG for all NHTS trip distances (

 

Figure 2), and more efficient in on-road electricity consumption for all distances less than 

approximately 30 miles (Figure 3). The CVNDC and CVAVG models show a similar difference 

in fuel cycle energy use per mile. The CVNDC is more fuel-efficient than the CVAVG model for 

all NHTS trip distances greater than approximately 4 miles (Figure 5). 
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Table 6. Total fuel cycle (use phase) components of energy for PHEV and CV consumption models. 

 
Marginal  

Electricity 

(MJ) 

Gas (gal) 

Gas 

Upstream 

(gal) 

NHTS miles  
TFC energy 

use  

per mile 

(MJ/mi) Electric Gasoline 

PHEVAV

G  

2.15E+1

0 
1.70E+08 4.91E+07 

5.38E+0

9 
4.86E+09 4.87 

PHEVND

C 

2.01E+1

0 
1.45E+08 4.18E+07 

5.45E+0

9 
4.79E+09 4.32 

% Diff. -6.6% -14.9% -14.9% 1.4% -1.5% -11.3% 

CVAVG 0 4.06E+09 1.17E+09 0 1.02E+11 6.61 

CVNDC 0 3.23E+09 9.32E+08 0 1.02E+11 5.25 

% Diff. 0% -20.6% -20.6% 0% 0% -20.6% 

Full life cycle energy impacts include battery and vehicle production as well as fuel cycle 

components. Battery production energy for both PHEV models are based on a 190 kg Li-ion 

battery (Appendix 2) using data from Sullivan and Gaines (2012). Vehicle production energy 

use for all models are based on Samaras and Meisterling (2008).  Figure 8 compares the 

PHEVNDC and PHEVAVG and associated CV models on life cycle energy impacts in MJ/mile 

and adds a life cycle energy estimate for a CV model from Elgowainy et al. (2010) for 

reference. PHEVAVG impacts are shown for the composite-adjusted (ADJ) values and the 

three standard test cycle efficiencies listed in Table 5. PHEVNDC is 11.3% lower in life cycle 

energy use per mile than the PHEVAVG (ADJ) and 24.3% lower than the PHEVAVG (US06) 

aggressive driving estimate. PHEVNDC is 24.0% and 19.7% higher than the PHEVAVG city 

(UDDS) and highway (HWFET) test cycle estimates, respectively. CVNDC is 20.6% lower 

than the CVAVG model in life cycle energy use. The higher estimated fuel efficiency of the 

CVNDC model relative to the CVAVG model for all NHTS trip distances (Figure 5) indicates 

the reason for the difference in TFC energy use among the CV models.  
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Figure 8. Per-mile life cycle energy impacts for PHEV consumption models using the naturalistic drive cycle 

method and the average efficiency method. The average method is calculated with EPA ADJ values and three 

standard test cycle values. CV impacts for each method are also shown. PHEV energy use is based on the 2009 

Michigan electricity grid. 

 

3.2 Life cycle emissions 

To assess the impact of the PHEV models on greenhouse gas (GHG) emissions, three GHGs 

are tracked: Carbon Dioxide (CO2), Methane (CH4), and Nitrous Oxide (N2O). The PHEV 

and CV results are presented in CO2 equivalents (CO2e) per mile using global warming 

potentials as defined by the IPCC Fourth Assessment Report (IPCC, 2007). Table 7 lists the 

components of total fuel cycle, or use-phase, greenhouse gas emissions for the PHEV and CV 

naturalistic drive cycle models relative to the corresponding average efficiency model. 

Table 7. Total fuel cycle (use phase) components of greenhouse gas emissions for PHEV and CV energy 

consumption models. 

 
Electricity 

Generation 

(kg CO2e) 

Electricity 

Upstream 

(kg CO2e) 

Gasoline 

Combustion 

(kg CO2e) 

Gasoline 

Upstream 

(kg CO2e) 

NHTS miles  GHG 

emissions 
per mile 

(kgCO2e/mi) Electric Gasoline 

PHEVAV

G 
1.83E+09 1.65E+08 1.52E+09 

3.86E+0

8 

5.38E+0

9 
4.86E+09 0.38 

PHEVND

C 
1.71E+09 1.54E+08 1.29E+09 

3.28E+0

8 

5.45E+0

9 
4.79E+09 0.34 

% Diff. -6.6% -6.6% -14.9% -14.9% 1.4% -1.5% -10.6% 

CVAVG 0 0 3.89E+10 
9.22E+0

9 
0 1.02E+11 0.44 

CVNDC 0 0 2.88E+10 
7.32E+0

9 
0 1.02E+11 0.35 

% Diff. 0% 0% -20.6% -20.6% 0% 0% -20.6% 

 As is the case with energy use, the fuel cycle emissions component is the largest 

contributor to life cycle emissions. One important factor in the levels of GHG emissions due 
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to PHEVs is the energy source of electricity production. Samaras and Meisterling estimate 

295 gCO2e/mile life cycle GHG emissions when using a PHEV model with energy 

consumption parameters similar to the PHEVAVG (HWFET) model. They model a 2008 U.S. 

average grid scenario with a GHG intensity for electricity of 670 gCO2e/kWh (Samaras & 

Meisterling, 2008). The PHEVAVG (HWFET) life cycle emissions in the current study are 354 

gCO2e/mile when charging from a 2009 Michigan grid that is 66% coal-fired generation, with 

a life cycle GHG intensity of 793 gCO2e/kWh (using eGRID 2009 Michigan power plants, a 

5.82% Eastern T&D loss, and GREET 2012 upstream emission factors). A comparison of 

results from this study and results from the Samaras and Meisterling study (US average grid) 

shows that, for a similar vehicle, per-mile GHG emissions increase by 20% when the GHG 

intensity of the grid increased by 18.3%.  Within the fuel cycle emissions estimate are the 

GHGs due to the upstream production and generation of electricity. The simulated Michigan 

grid (793 gCO2e/kWh) emissions from electricity-related fuel cycle components are 195 

gCO2e/mile. By comparison, EPRI (2007) estimates 175 gCO2e/mile for a projected 2010 

“Old Coal” electrical grid with a carbon intensity of 575 gCO2e/kWh. 

 Figure 9 shows that driving behavior is also an important factor in life cycle GHG 

emissions. The PHEVNDC estimate for life cycle GHG emissions (413 gCO2e/mile) is 8.9% 

lower than the PHEVAVG (ADJ) estimate (454 gCO2e/mile). The PHEVAVG models using city 

(UDDS) and highway (HWFET) estimated consumption rates have life cycle GHG impacts 

per mile 20.5% and 16.6% below the PHEVNDC emissions, respectively. Under the aggressive 

driving schedule (US06), the PHEVAVG model estimate is 22.5% higher than the PHEVNDC 

estimate.  

 The per-mile GHG emissions from the two ANL PHEV models (PHEV20 and 

PHEV40), examined in the adjustment procedure above, are also shown in Figure 9 using an 

electrical grid scenario comparable to the 2009 Michigan grid. Elgowainy et al. (2010) 

simulate a 2015 Illinois electrical grid dominated by coal-fired power plants (67% of 

capacity) as one of the scenarios with the PHEV20 and PHEV40 models. The 2009 Michigan 

grid had 66% generation from coal-fired power plants (eGRID, 2012). Controlling for grid 

intensity, we see a marked increase in per-mile GHG emissions from the PHEVNDC and 

PHEVAVG models relative to the ANL PHEV models. The ANL CV model shows close 

agreement to the PHEVNDC in per-mile GHG emissions. 
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Figure 9. Per-mile life cycle GHG emissions for PHEV consumption models using the naturalistic drive cycle 

method and the average efficiency method. The average method is calculated with EPA-adjusted values and 

three standard test cycle values. CV impacts for each method are also shown. Two PHEVs and a CV model 

from the literature are compared (Elgowainy et al., 2010). PHEV emissions are based on the 2009 Michigan 

electricity grid. 

 

 Implications to Michigan air quality involve the examination of other atmospheric 

emissions beyond GHGs. MEFEM calculates the emissions for five common air pollutants, 

defined as criteria pollutants by the EPA and regulated under the Clean Air Act as follows: 

Carbon Monoxide (CO), Nitrogen Oxides (NOX), Particulate Matter (PM10), Ozone (which is 

created at ground-level via chemical reaction between NOX and volatile organic compounds, 

VOCs), and Sulfur Dioxide (SOX). Figure 10 summarizes the per-mile criteria pollutant 

emissions for both consumption models and vehicle types.  
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Figure 10. Fuel cycle criteria pollutant emissions per mile for PHEV and CV energy consumption models using 

the naturalistic drive cycle method and the average efficiency (ADJ) method. PHEV emissions are based on the 

2009 Michigan electricity grid.  

 

 Previous studies have attempted to quantify the various externality costs associated 

with the above criteria pollutant emissions. Michalek et al. (2011) report pollutant valuations 

for a ‘high damages’ case based on urban areas. Thomas (2009) calculates an average for the 

five pollutants based on previous reports of urban air pollution costs. In both studies, sulfur 

dioxide (SO2), the SOX component of greatest concern, is used as the indicator for the larger 

sulfur oxides group. Cost valuations associated with rural air pollution are typically 10% of 

urban pollution costs (Thomas, 2009). Table 8 implies SO2 and PM10 are the most critical 

pollutants from a cost standpoint. When these costs are combined with the emissions profiles 

in Figure 10, the importance of the source of electricity is emphasized. In the Michigan grid 

case, a 10% PHEV fleet infiltration suggests significant impacts due to these two pollutants. 

 

Table 8. Urban air pollution costs per metric ton (2010 dollars) 

 VOC PM10 CO NOX SO2 

Michalek et al. (2011) $14,615 $23,416 $2,154 $8,375 $37,065 

Thomas (2009) $8123 $39,841 $1,814 $14,382 $23,658 
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CHAPTER 4 

Discussion and Conclusions 

 

4.1 Extension of the model 

With the potential for widespread adoption of PHEVs in the future, policy makers will need 

access to accurate vehicle energy consumption data as well as energy and GHG intensity of 

regional grids to make informed decisions concerning the environmental impacts of future 

fleets. Synthetic naturalistic drive cycles provide a means of characterizing vehicle energy 

consumption by applying distance-dependent efficiencies to a vehicle’s travel patterns. The 

potential of this approach to accurately predict PHEV vehicle energy consumption and 

therefore the environmental impacts of future PHEV fleets relies on location-specific 

considerations. Drive cycle measurements relevant to a particular region must be the basis for 

synthesis of drive cycles used in energy consumption analysis in that region. Travel survey 

data that capture actual household travel patterns in the region of interest are also required for 

the proposed method to accurately predict vehicle energy consumption. Knowledge of likely 

regional PHEV fleet penetration rates over time assists in accurate prediction of aggregate 

impacts. 

 The naturalistic drive cycles in this study are synthesized from driving data acquired 

in the Southeast Michigan area consisting of a mix of urban, suburban, and highway driving 

that can represent US Midwestern driving, but are not representative of driving patterns 

throughout the nation (Lee, et al., 2011). The 2009 NHTS dataset consists of a single day of 

travel information from households in various locations across the nation.  This presents two 

constraints in replicating representative travel patterns for the Michigan-based study. The first 

constraint is the lack of multi-day travel information for individual households in the survey 

data. The second constraint is the study’s substitution of national-based travel pattern 

information in the absence of a Michigan-based driving survey. These two limitations 

notwithstanding, the proposed methodology provides a foundation for enhancing the 

prediction of plug-in vehicle impacts. The synthetic naturalistic drive cycle approach can be 

extended to any region where location-specific driving cycle measurement data exist, and 

travel patterns are known via travel survey or other method. Candidate locations are 

increasing in number as new travel survey techniques and mature technologies such as global 

positioning systems (GPS) are used to obtain large sets of real-world drive cycles and travel 

patterns specific to a metropolitan area or similarly defined region (Gonder et al., 2007).  
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Related to the accuracy in characterizing local and regional travel patterns is the 

accurate characterization of vehicle charging patterns. A single charging scenario (at-home 

only, upon arrival) is assumed for the purpose of this analysis but a study using the same 

NHTS dataset and charging model developed scenarios to investigate the effects of battery 

size, charging location, charging rate, time of charging, and demographic variables to see 

how driver and household characteristics influence consumption patterns (Kelly et al., 2012). 

Those results are readily integrated with the proposed method to provide sensitivity analyses 

that could increase the accuracy of spatial and temporal battery charging estimation and thus 

PHEV energy consumption prediction.   

PHEV market penetration rates are not independent of regional electrical grids. With 

a ten percent infiltration of PHEVAVG (ADJ) vehicles into the Michigan 2009 midsize vehicle 

fleet, the MEFEM model used in this study accommodates the additional 2.41E+10 MJ 

(6.69E+06 MWh) of marginal demand using existing 2009 Michigan grid assets with no 

electricity crossing state boundaries. Although the introduction of PHEVs at this volume is 

made without necessitating increases to Michigan’s generating capacity, the possibility of 

PHEV infiltration in other locations where reserve margins for generation capacity may not 

be met highlights the importance of accurate characterization of PHEV energy consumption. 

4.2 An alternative to existing methods 

The synthetic naturalistic driving cycle methodology demonstrated in this study is an 

alternative to federal cycle testing procedures that currently form the basis for prediction of 

aggregate PHEV impacts.  When enhanced through location-specific driving cycle 

measurement and travel survey information, PHEV assessment using the synthetic 

naturalistic drive cycles method offers a complementary environmental impact prediction to 

support current methods, and corroborates the EPAs current predications of PHEV impacts. 
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APPENDIX 1: NATURALISTIC DRIVING CYCLE SYNTHESIS PROCEDURE  

The synthesized naturalistic driving cycles are the representative cycles at each driving 

distance, not directly measured cycles. The synthesized cycles are constructed using the 

driving characteristics extracted from real-world driving data in Southeast Michigan collected 

by the University of Michigan Transportation Research Institute (UMTRI) by Field 

Operational Test (FOT) (LeBlanc et al., 2006). A total of 830 days 4409 trips were used for 

extracting the real-world driving patterns. The data include driving information sufficient for 

representing real-world driving patterns with respect to trip distance. Generalized real-world 

driving patterns include both local trips and free-way trips. Driving patterns are different with 

respect to driving distances. Thus, a driving distance based categorization is used to 

synthesize Southeast Michigan Urban/Suburban Driving Cycles in this paper (Lee et al., 

2011).  

 The overall procedure is illustrated in Figure 11. The stochastic process combined 

with subsequent assessment procedures can construct driving cycles with verified 

representativeness. Initially, naturalistic driving cycles for the extraction of real-world driving 

information are selected within each concerning segment. Driving information is extracted in 

a form of velocity and acceleration matrices. The matrices relate current velocity and 

acceleration to future information. Every current state is mapped to the states in the next time 

step (i.e., future time step) one-to-one. A Markov Chain uses the information to synthesize 

the cycles.  
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Figure 11. Naturalistic driving cycle synthesis procedure using Markov chain and statistical criteria (Lee et al., 

2011). 

 In the synthesis procedure, a discrete-time Markov chain is used. This is a sequence of 

random variables X1, X2, X3, ... with the Markov property expressed as:  

 (7) 

The set of possible values that the random variables Xn can take is the state space of the 

chain. The conditional probabilities,                    , are transition probabilities. 

The probability used in the synthesis procedure is time-independent (or time-homogeneous). 

The sum of all probabilities leaving a state must satisfy: 
 

∑   

 

 

  ∑      

 

 

            (8) 

 To satisfy the Markov property in equation 7 such that future states depend only on 

the present states, an adequate number of states should be chosen. The required states are 

selected by investigating the simplified vehicle dynamics equation. Vehicle dynamics can be 

expressed by velocity and acceleration, and they are chosen as the states for the Markov 

chain. The transition probability matrix (TPM) is then generated in the form of a two 

dimensional matrix. The velocity and acceleration are discretized with the number of M and 

N, respectively. The conditional probability is expressed as:  

 (9) 
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where i and p=1,2,…,M,  j and q=1,2,…,N, and the overall TPM structure is shown in Figure 

12. 

 
Figure 12. Illustration of the procedure to extract transition probability matrix (TPM) from real-world driving 

data 

 The driving distance distribution is regressed to find a smoothed probability density 

function (pdf) with the purpose of dividing driving data into several segments with the same 

probability depending on driving distance. Then, the driving cycle data are divided into ten 

segments having the same probability on the cumulative density function (cdf). A 

representative driving distance in each segment is selected as the mean value of the segment 

range. The selected one-way trip distances range from 4.78 to 40.71 miles (Lee et al., 2011) 

 The representativeness of synthesized cycles is verified by investigating statistically 

significant criteria. The statistical criteria are determined through generalized linear 

regression analysis as briefly described in Lee et al. (2011). Initially, a total number of 27 

possible explanatory variables are identified and categorized into velocity related, 

acceleration related, driving-time and distance-related, and event related variables. Through 

the assessment of the inter-relationship between two variables, one is eliminated. Then, 16 

variables remain as initial explanatory variables for the regression analysis. Generalized 

linear regression analysis is used to find the least number of significant variables. The 

analysis includes three assessment steps including a t-test, normal probability plots of the 

residuals, and histograms of the residuals. The least significant variables are eliminated one 

by one, given t-test results that indicate the ability of the reduced equation to represent the 

response variable with sufficient accuracy. The regression quality is subsequently assessed 
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through normal probability plots of the residuals and histograms of the residuals. The final 

regression equations use statistically significant variables to establish bases for subsequent 

assessments of the representativeness of synthesized driving cycles. The significant 

explanatory variables are:  

(1) Standard deviation of velocity (mph), 

(2) Mean positive acceleration (m/s
2
), 

(3) Standard deviation of acceleration (m/s
2
), 

(4) Percentage of driving time under positive acc. (%), 

(5) Percentage of driving time under negative acc. (%), 

(6) Mean positive velocity (mph), 

(7) Percentage of idle time (%), 

(8) Number of stops/mile (1/mile). 
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APPENDIX 2: VEHICLE MODEL PARAMETERS  

Vehicle Parameter PHEVAVG and PHEVNDC 

Series PHEV40, 

2015 medium case 

(Elgowainy et al., 2010) 

Power-split PHEV20, 

2015 medium case 

(Elgowainy et al., 2010) 
CVAVG and CVNDC 

Architecture Power-split series/parallel Series Power-split series/parallel 2-wheel drive conventional 

Vehicle Weight (kg) 1715  1792 1596 1565 

Engine (kW) 62.0  70.7 59.8 128.0  

Motor-generator 1 (kW) 110.0  (Rahman et al., 2011) 119.0 65.7  

Motor-generator 2 (kW) 55.0 (Rahman et al., 2011) 68.6 34.6  

Battery Type Li-ion (Matthe et al., 2011) Li-ion Li-ion  

Usable Battery Energy (kWh) 8.0 (Matthe et al., 2011) 9.4 4.1  

Battery Power (kW) >115 (Matthe et al., 2011) 144 53  

Battery Weight (kg) 190.0 (Matthe et al., 2011)    

AER (miles) ~35  40 20  

Drag Coefficient, Cd 0.28  0.28  0.28 0.28 

Frontal Area (m2) ~2.16  2.18 2.18 ~2.16  

Accessory Load (W) 200 230 230 200 

0-60 mph Time (sec.) 8.9 ~9.0 ~9.0 8.9 

Rolling Resistance 0.0088 0.0075 0.0075 0.0088 

Final Drive Ratio    4.438 
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APPENDIX 3: TOTAL FUEL CYCLE METRICS 

The outputs of the MEFEM model are life cycle emissions and energy use for both vehicle 

liquid fuel consumption and electricity generation. The model tracks criteria pollutants: CO, 

NOX, PM10, SOX and VOCs, and greenhouse gases: CO2, CH4, and N2O. It aggregates GHGs 

using Global Warming Potentials identified by the IPCC (IPCC, 2007). It also tracks total 

fuel cycle, or use-phase, energy for stationary and mobile energy generation sources. 

MEFEM applies emissions factors (kg/kWh of electricity or kg/gal of fuel) or an upstream 

energy factor (MJ/MMBtu of fuel input for electricity or MJ/gal of fuel) to the energy 

produced from each Michigan power plant and its heat rate, or to the gallons of gasoline 

consumed, to determine the total fuel cycle energy usage and emissions. Emissions factors 

are separated into both their upstream and combustion components so that they may be 

tracked separately. The manufacturing of plants is not included in the total fuel cycle 

accounting for electricity production. Battery manufacturing (Sullivan & Gaines, 2012) and 

vehicle manufacturing (Samaras & Meisterling, 2008) are added to account for full life cycle 

emissions and energy impacts. 

 

Emissions Factors 

The total emissions from electricity generation are comprised of both combustion emissions 

and upstream emissions. Combustion refers to the emissions released when the fuel is burned, 

while upstream refers to the emissions released while mining, drilling, refining the fuel, and 

transportation of the fuel from the extraction site to point of combustion. Upstream emissions 

factors for electricity are from the USLCI database (NREL, 2009) examined using SimaPro 

software. Each of the eight emissions types were determined in SimaPro by subtracting the 

“electricity, at power plant” process emissions from the sum of all life cycle emissions for 

these processes. The USLCI database does not specify a difference between PM2.5 and PM10, 

so all particulates are assumed to be PM10. Some emissions data was not reported in the same 

categories. For example, sulfur dioxide was reported by some processes as SO2, and some as 

SOX. To compensate, these datasets were summed to get a total for each emission factor. 

Combustion emissions factors associated with the generation of electricity are from two 

sources: eGRID (EPA, 2012) and USLCI. The emission types provided by eGRID are NOX, 

SOX, CO2, CH4, and N2O. These emissions are specific to each generating asset and are thus 

believed to be more representative than using average emissions data. National averages for 

CO, PM10, and VOCs by source fuel type were used from the USLCI database using the same 
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methodology as the upstream emissions because plant specific information was not available. 

It is assumed that national average upstream emissions for sub‐bituminous coal are the same 

as those for bituminous coal. Table 9 shows a list of the eight emission factors used for 2009 

Michigan power plants averaged by fuel type. 

 
Table 9. Average emissions factors (kg/kWh) for 2009 Michigan power plants, by fuel type 

 Sub-

Bituminous 
Coal 

Bituminous 

Coal 
Oil 

Natural 

Gas 
Nuclear Biomass 

Landfil

l Gas 

CO 0.30 0.30 3.74 0.49 0.01 0.09 0 

NOX 1.58 2.07 12.63 0.49 0.07 1.19 0.81 

PM10 0.78 0.78 0.16 0.05 0.06 0.04 0 

VOC 6.90 6.90 2.42 5.68 0.23 0.30 0 

SOX 3.57 5.33 94.68 6.04 0.23 1.54 0 

CO2 1009.05 958.96 4033.69 551.85 10.84 163.99 0.01 

CH4 1.84 1.84 1.22 3.31 0.03 0.31 0 

N2O 0.02 0.02 0.06 0.00 0.00 0.04 0 

GHGs 1060.05 1009.75 4082.60 635.11 11.54 185.21 0.01 

 

 The total fuel cycle emissions from vehicular gasoline consumption are also 

comprised of both combustion and upstream emissions. The gasoline emission factors for 

both combustion and upstream activities used in this model are taken directly from 

GREET1.8c (Wang, 2009) and shown in Table 10. Similarly, total fuel cycle energy factors 

for gasoline are derived from GREET1.8c using the default inputs. These factors are recorded 

in MJ/gal consumed. Vehicle manufacturing emissions and energy are not included in the 

total fuel cycle calculation but are included in life cycle emissions and energy accounting 

(Sullivan & Gaines, 2012; Samaras & Meisterling, 2008). 

 
Table 10 Emission factors for one gallon of gasoline for both upstream and combustion processes. 

 CO(g) NOX(g) PM10 (g) SOX 

(g) 

VOC 

(g) 

CO2 

(kg) 

CH4 

(g) 

N2O 

(g) 

GHG 

(kg) 

Combustion 87.6 3.30 0.679 0.140 4.21 8.82 0.351 0.281 8.92 

Upstream 1.62 5.45 1.26 2.738 3.14 1.94 12.5 0.131 2.27 

 

Emissions Calculation 

To calculate total emissions from electricity generation, MEFEM applies the combustion and 

upstream emissions factors to the energy generation output from the electricity dispatch 

algorithm. MEFEM generates emissions for each power plant using eGRID emissions factors 

(for NOX, SO2, CO2, CH4, and N2O), its fuel type, and the amount of energy usage 

representing hourly electricity generation for the entire simulation year. It applies the eGRID 

and national average emissions factors for each fuel type, both upstream and combustion, to 
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the electricity generated for each power plant at each hour. The outputs are the annual and 

hourly upstream and combustion emissions for each power plant. 

 

Total Fuel Cycle Energy Factors 

The factors for total fuel cycle energy were determined in SimaPro, using the USLCI 

database and Eco‐Indicator 95 reporting methods. These factors include upstream energy 

from all coal, natural gas, crude oil, and uranium ore used in the entire fuel cycle of each 

power plant type. This upstream energy total was translated into a ratio of upstream energy 

(EUPS) to either combustion energy (ECOMB) or generation energy (EGEN). This ratio represents 

the national average for a total fuel cycle energy factor for each plant type. This factor, 

multiplied by a power plant’s combustion or generation and added to the combustion energy 

gives that plant’s total fuel cycle energy consumption. Wind, water and landfill gas 

generation are assumed to consume zero MJ of total fuel cycle energy, as facility 

manufacturing energy is not included in this model. Table 11 shows the upstream factors. 

Biomass and nuclear plants are based on generation energy, while fossil fuel plants are based 

on combustion energy. 

Table 11. Upstream factors for 2009 Michigan power plants 

 Coal Natural Gas Oil Biomass Nuclear 

EUPS / ECOMB 0.0217 0.05 0.027 N/A N/A 

EUPS / EGEN N/A N/A N/A 0.0492 0.0207 

 
 

 

 

 
 


