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I. INTRODUCTION

When the option pricing problem is of several dimensions, for example, basket options, determin-
istic methods such as finite difference are almost intractable; because the complexity increases
exponentially with the dimension and one almost inevitably needs to use Monte Carlo simulations.
Moreover, many problems in finance, for example, pricing in incomplete markets and portfolio
optimization, lead to fully nonlinear PDEs. Only very recently there has been some significant
development in numerically solving these nonlinear PDEs using Monte Carlo methods, see, for
examplpe, [1–6]. When the control problem also contains a stopper, for example, in determining
the super hedging price of an American option, see [7], or solving controller-and-stopper games,
see [8], the nonlinear PDEs have free boundaries.

For solving linear PDEs with free boundaries, that is, in the problem of American options,
Longstaff–Shwartz [9], introduced a stochastic method in which American options are approx-
imated by Bermudan options and least squares approximation is used for doing the backward
induction. The major feature in [9] is the tractability of the implementation for the scheme pro-
posed in terms of the CPU time in high dimensional problems. The most important feature of
this model that facilitates the speed is that the number of paths simulated is fixed. Simulating
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the paths correspond to introducing a stochastic mesh for the space dimension and the Bermudan
approximation to American options correspond to time discretization. Stochastic mesh makes
sure that more important points in the state space are used in the computation of the value func-
tion, an important feature which increases the speed of convergence. So essentially, this algorithm
can be thought of as an explicit finite difference scheme with stochastic mesh. One can in fact
prove the convergence rate of the entire “stochastic” explicit finite difference scheme, see [10]
for a survey of these results and some improvements to the original methodology of Longstaff–
Shwartz.

For semilinear free boundary problems, a similar stochastic scheme is given through reflected
backward stochastic differential equations in [4] and rate of convergence is derived to be h1/4

assuming uniform ellipticity for the problem where h is the mesh size of the time discretizaton.
Here, the number of paths, N, that one needs to simulate, increases with decreasing h and needs
to be chosen in a certain way, see, for example, (3.16). This is similar to what we have in classical
explicit finite difference schemes. To achieve stability, when we decrease the mesh size for time,
we need to decrease the mesh size for the space variable to keep the ratio of time step over space
step squared in a certain range. As we discussed above, the Monte Carlo simulation creates a
stochastic mesh. The first result in this direction is due to [4]. Later [3] improved the result of [4]
by removing the uniform ellipticity condition. Moreover, they improve the rate of convergence to
h1/2 by assuming more regularity on the obstacle function.

In this article, we generalize the Longstaff–Schwartz methodology for numerically solving
a large class of fully nonlinear free boundary problems. We extend the idea in [5] to present a
stochastic scheme for fully nonlinear Cauchy problems with obstacle. As described in Remark
3.11, our scheme is stochastic, that is, the outcome is a random variable which converges to the
true solution pathwise. The convergence of our scheme follows from the methodology of [11],
and the results of [5]. For the convenience of the reader, we sketch the convergence argument in
Section III B. Under a concavity assumption on the nonlinearity and regularity of the coefficients,
we obtain a rate of convergence using Krylov’s method of shaking coefficients together with the
switching system approximation as in [12], where a rate of approximation is obtained for clas-
sical finite difference schemes for elliptic problems with free boundaries. In [13], Cafarelli and
Souganidis provide a rate of convergence without a concavity assumption on the nonlinearity but
they consider elliptic problems with nonlinearity that depends only on the Hessian.

Appendix A is provided to establish the comparison, existence, and regularity results for a
parabolic switching system with free boundary which is needed to provide the estimations in
the rate of convergence proof. This appendix generalizes the result of [14] for parabolic obstacle
problems to parabolic switching systems with obstacle. Also, it can be considered as the parabolic
version of [12] where they study elliptic switching systems with obstacle. Appendix B contains
a proof of the technical Lemma 3.9.

The rest of the article is organized as follows: In Section II, we present the stochastic numerical
scheme. In Section III, we present the main results, the convergence rate, and its proof. Section IV
is devoted to some numerical results illustrating our theoretical findings. The appendix is devoted
to the analysis of nonlinear switching systems with obstacles, which is an essential ingredient in
the proof of our main result and some technical proofs.

Notation. For scalars a, b ∈ R, we write a ∧ b := min{a, b}, and a ∨ b := max{a, b}. By
M(n, d), we denote the collection of all n × d matrices with real entries. The collection of all
symmetric matrices of size d is denoted Sd , and its subset of nonnegative symmetric matrices is
denoted by S+

d . For a matrix A ∈ M(n, d), we denote by AT its transpose. For A, B ∈ M(n, d),
we denote A · B := Tr [ATB]. In particular, for d = 1, A and B are vectors of R

n and A · B
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904 BAYRAKTAR AND FAHIM

reduces to the Euclidean scalar product. For a suitably smooth function ϕ on QT := (0, T ] × R
d ,

we define

|ϕ|∞ := sup
(t ,x)∈QT

|ϕ(t , x)|and |ϕ|1 := |ϕ|∞ + sup
QT ×QT
x �=x′ ,t �=t ′

|ϕ(t , x) − ϕ(t ′, x ′)|
|x − x ′| + |t − t ′| 1

2

.

Finally, by Et ,x we mean the conditional expectation given Xt = x for a prespecified diffusion
process X.

II. DISCRETIZATION

We consider the obstacle problem

min
{−LXv − F

(·, v, Dv, D2v
)

, v − g
} = 0, on [0, T ) × R

d , (2.1)

v = g, on {T } × R
d , (2.2)

where

LXϕ := ∂ϕ

∂t
+ μ · Dϕ + 1

2
a · D2ϕ,

and

F : (t , x, r , p, γ ) ∈ R+ × O × R × R
d × Sd �→ F(x, r , p, γ ) ∈ R,

is a nonlinear map, μ and σ are maps from R+ ×O to R
d and M(d, d), respectively, a := σσ T, g :

[0, T ) × R
d → R. We consider an R

d-valued Brownian motion W on a filtered probability space
(�, F ,F, P), where the filtration F = {Ft}t∈[0,T ] satisfies the usual conditions, and F0 is trivial.
For a positive integer n, let h := T /n, ti = ih, i = 0, . . . , n, and consider the one step Euler
discretization

X̂
t ,x
h := x + μ(t , x)h + σ(t , x)(Wt+h − Wt), (2.3)

of the diffusion X corresponding to the linear operator LX. Then, the Euler discretization of the
process X is defined by:

X̂ti+1 := X̂
ti ,X̂ti
h .

We suggest the following approximation of the value function v

vh(T , x) := g(T , x)and vh(ti , x) := max{Th[vh](ti , x), g(ti , x)}forany x ∈ R
d , (2.4)

where for a given test function ψ : R+ × R
d → R, we denote

Th[ψ](t , x) := Et ,x

[
ψ(t + h, X̂t+h)

]
+ hF (·, Dhψ) (t , x), (2.5)

Dhψ(ti , x) = Et ,x

[
ψ(t + h, X̂t+h)Hh

]
, (2.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where Hh = (Hh
0 , Hh

1 , Hh
2 )

T
and

Hh
0 = 1, Hh

1 = (
σ T

)−1 Wh

h
, Hh

2 = (
σ T

)−1 WhW
T
h − hId

h2
σ−1,

provided σ is invertible. Notice that (2.6) comes from

Et ,x[ψ(N)N ] = Et ,x[Dψ(N)]andEt ,x[ψ(N)(N 2 − 1)] = Et ,x[D2ψ(N)], (2.7)

where N is a standard Gaussian random variable. The details can be found in Lemma 2.1 of [5].

III. ASYMPTOTICS OF THE DISCRETE-TIME APPROXIMATION

In this section, we present the convergence and the rate of convergence result for the scheme
introduced in (2.4), and the assumptions needed for these results.

A. The Main Results

The proof of the convergence follows the general methodology of Barles and Souganidis [11],
and requires that the nonlinear PDE (2.1) satisfies the comparison principle in viscosity sense.

We recall that an upper-semicontinuous (resp. lower-semicontinuous) function v (resp. v̄)
on [0, T ] × R

d , is called a viscosity subsolution (resp. supersolution) of (2.1) if for any
(t , x) ∈ [0, T ] × R

d and any smooth function ϕ satisfying

0 = (v − ϕ)(t , x) = max
[0,T ]×Rd

(v − ϕ)

(
resp .0 = (v̄ − ϕ)(t , x) = min

[0,T ]×Rd
(v̄ − ψ)

)
,

we have:

• if t < T

min
{−LXϕ − F(·, Dϕ), ϕ − g

}
(t , x) ≤ (resp . ≥) 0,

• if t = T , (v − g)(T , x) ≤ 0 (resp. (v̄ − g)(T , x) ≥ 0).

Remark 3.1. Note that the above definition is not symmetric for subsolution and supersolutions.
More precisely, for a subsolution, we need to have either

−LXϕ − F(·, Dϕ) ≤ 0 or ϕ − g ≤ 0.

However, for a supersolutions, we need to have both

−LXϕ − F(·, Dϕ) ≥ 0 and ϕ − g ≥ 0.

Definition 3.2. We say that (2.1) has comparison for bounded functions if for any bounded
upper semicontinuous subsolution v and any bounded lower semicontinuous supersolution v̄ on
[0, T ) × R

d , satisfying v(T , ·) ≤ v̄(T , ·), we have v ≤ v̄.

We denote by Fr , Fp, and Fγ , the partial gradients of F with respect to r, p, and γ , respectively.
We also denote by F −

γ the pseudo-inverse of the nonnegative symmetric matrix Fγ .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Assumption F.

i. The nonlinearity F is Lipschitz-continuous with respect to (x, r , p, γ ) uniformly in t, and
|F(·, ·, 0, 0, 0)|∞ < K for some positive constant K;

ii. is invertible and |μ|1 + |σ |1 < ∞
iii. F is elliptic and dominated by the diffusion of the linear operator LX, that is,

a−1 · ∇γ F ≤ 1 on R
d × R × R

d × Sd ; (3.1)

iv. Fp ∈ Image (Fγ ) and |F T
p F −

γ Fp|∞ < K;
V. Fr − 1

4F
T
p F −

γ Fp ≥ 0.

Remark 3.3. Assumption F(v) is made for the sake of simplicity of the presentation. It implies
the monotonicity of the above scheme. If this assumption is not made, one can carry out the
analysis in [5, Remark 3.13, Theorem 3.12, and Lemma 3.19] and approximate the solution of
the nonmonotone scheme with the solution of an appropriate monotone scheme.

Theorem 3.4 (Convergence). Suppose that Assumption F holds. Also, assume that the fully
nonlinear PDE (2.1) has comparison for bounded functions. Then, for every bounded function
g Lipschitz on x and 1

2 -Hölder on t, there exists a bounded function v such that νh → ν locally
uniformly. Moreover, v is the unique bounded viscosity solution of problem (2.1)–(2.2).

By imposing the following stronger assumption, we are able to derive a rate of convergence
for the fully nonlinear PDE.

Assumption HJB.
The nonlinearity F satisfies Assumption F (ii)–(v), and is of the Hamilton–Jacobi–Bellman

type:

1

2
a · γ + b · p + F(t , x, r , p, γ ) = inf

α∈A
{Lα(t , x, r , p, γ )},

Lα(t , x, r , p, γ ) := 1

2
T r[σασ αT(t , x)γ ] + bα(t , x)p + cα(t , x)r + f α(t , x),

where functions σα , bα , cα and f α satisfy:

sup
α∈A

(|σα|1 + |bα|1 + |cα|1 + |f α|1) < ∞.

Assumption HJB+.
The nonlinearity F satisfies HJB, and for any δ > 0, there exists a finite set {αi}Mδ

i=1 such that
for any α ∈ A

inf
1≤i≤Mδ

|σα − σαi |∞ + |bα − bαi |∞ + |cα − cαi |∞ + |f α − f αi |∞ ≤ δ.

Remark 3.5. Assumption HJB+ is satisfied if A is a compact separable topological space and

σα(·), bα(·), cα(·), and f α(·) are continuous maps from A to C
1
2 ,1

b , the space of bounded maps
which are Lipschitz in x and 1

2 -Hölder in t.
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Theorem 3.6 (Rate of Convergence). Assume that the boundary condition g is bounded Lip-
schitz on x and 1

2 -Hölder on t. Then, there is a constant C > 0 such that:

i. under Assumption HJB, we have v − vh ≤ Ch1/4,
ii. under the stronger condition HJB+, we also have −Ch1/10 ≤ v − vh.

It is worth mentioning that in the finite difference literature, the rate of convergence is usually
stated in terms of the discretization in the space variable, that is, |�x|, and the time step, that is,
|�t | equals |�x|2. In our context, the stochastic numerical scheme (2.4) is only discretized in
time with time step h. Therefore, the rates of convergence in Theorem 3.6 corresponds to the rates
|�x|1/2 and |�x|1/5, respectively.

B. Proof of the Convergence Result

The proof Theorem 3.4, similar to the proof of Theorem 3.6 (i) of [5], is based on the result of
[11] which requires the scheme to be consistent, monotone, and stable. To be consistence with
the notation in [11], we define

Sh(t , x, r , φ) := min{h−1(r − Th[φ](t , x)), r − g(t , x)},

and then write the scheme (2.4) as Sv(t , x, vh(t , x), vh) = 0. Notice that by the discussions in
[15] and in Section III of [16], the consistency and monotonicity for the scheme (2.4) for obstacle
problem follows from the consistency and monotonicity of the scheme without obstacle provided
by Lemmas 3.11 and 3.12 of [5]. More precisely, we have

i. Consistency: Let ϕ be a smooth function with bounded derivatives. Then, for all (t , x) ∈
[0, T ] × R

d :

lim
(t ′ , x′) → (t , x)

(h, c) → (0, 0)

t ′ + h ≤ T

Sh(t
′, x ′, c + φ(t ′, x ′), c + φ)

= min{− (
LXϕ + F(·, ϕ, Dϕ, D2ϕ)

)
, ϕ − g}(t , x). (3.2)

ii. Monotonicity: Let ϕ, ψ : [0, T ] × R
d → R be two bounded functions. Then:

ϕ ≤ ψ ⇒ Sh(t , x, r , ϕ) ≥ Sh(t , x, r , ψ). (3.3)

Conversely, one can show the stability of the scheme (2.4) in the following Lemma. Throughout
this section, Assumption of the Theorem 3.4 are enforced.

Lemma 3.7. The family (vh)h defined by (2.4) is bounded, uniformly in h

Proof. Let Ci = |vh(ti , ·)|∞. By the argument in the proof of Lemma 3.14 in [5],
|Th[vh](ti , ·)|∞ ≤ Ci+1(1 + Ch) + Ch where C > 0 depends only on constant K in assumption
F. Therefore,

Ci ≤ max{|g|∞, Ci+1(1 + Ch) + Ch} ≤ max{Ci+1, |g|∞}(1 + Ch) + Ch.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



908 BAYRAKTAR AND FAHIM

Using a backward induction, one could obtain that Ci ≤ |g|∞eCT + eCT

C
for some constant C

independent of h.

The monotonicity, consistency, and stability of the scheme result to the following Lemma.

Lemma 3.8. Let us define

v∗(t , x) := lim
(δ,h)→(0,0)

inf{vh(t , y) : |x − y| + |s − t | ≤ δ, s ∈ {0, h, · · · } ∩ [0, T ]},

v∗(t , x) := lim
(δ,h)→(0,0)

sup{vh(t , y) : |x − y| + |s − t | ≤ δ, s ∈ {0, h, · · · } ∩ [0, T ]}.

Then, v∗ and v∗ are, respectively, a viscosity supersolution and a viscosity subsolution of
(2.1)–(2.2).

Observe that thanks to Lemma 3.7, v∗ and v∗ are well-defined and bounded functions and we
readily have v∗ ≤ v∗. Moreover, functions v∗ and v∗ are, respectively, lower semicontinuous and
upper semicontinuous. Therefore, by the comparison principle for (2.1)–(2.2) and Lemma 3.8, it
follows that v∗ = v∗ and the function v := v∗ = v∗ is a viscosity solution of (2.1)–(2.2) which
completes the proof of Theorem 3.4. In addition, uniqueness in the class of bounded functions is
a consequence of comparison principle for the problem.

Proof of Lemma 3.8. We show that v∗ and v∗ are subsolution and supersolution at any
arbitrary point (t0, x0) ∈ [0, T ] × R

d . We split the proof into the following steps.

Step 1 (t0 < T). In this case, we only establish the supersolution property of v∗. The subso-
lution property of v∗ follows from the same line of arguments. Let φ be a smooth function
such that

0 = min
[0,T ]×Rd

(v∗ − φ) = (v∗ − φ)(t0, x0).

As function v∗ is bounded, by modifying φ outside a neighborhood of (t0, x0), one
can assume that the (t0, x0) is a global strict minimum point. Notice that only the local
property of the function φ matters in the definition of viscosity solution. Therefore, there
exists a sequence {(tn, xn)}, such that (tn, xn) → (t0, x0), vhn(tn, xn) → v∗(t0, x0), ξn :=
min(vhn − φ) = (vhn − φ)(tn, xn) → 0, and (tn, xn) is a global minimum of vhn − φ.
(Obtaining this sequence is a standard technique in viscosity solution literature. For more
details see [11] and the references therein.)

Therefore, vhn ≥ φ + ξn. By the monotonicity of the scheme, (3.3), we have

Sh(tn, xn, vhn(tn, xn), v
hn) ≤ Sh(tn, xn, φ(tn, xn) + ξn, φ + ξn).

Therefore, by the definition of vh in (2.4),

0 ≤ Sh(tn, xn, φ(tn, xn) + ξn, φ + ξn).

We divide both sides by hn . Letting n → ∞ and using (3.2) we obtain:

0 ≤ min{− (
LXϕ + F(·, ϕ, Dϕ, D2ϕ)

)
, ϕ − g}(t0, x0).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Step 2 (Supersolution property when t0 = T ). Observe that since g ≤ vh, we have

g(T , x0) ≤ liminf
(h,t ′ ,x′)→(0,T ,x0)

vh(t ′, x ′) = v∗(T , x0),

which completes the proof of the supersolution argument at terminal time.
Step 3 (Subsolution property when t0 = T). Observe that by the definition of vh and v∗,
we readily have v∗ ≥ g. To complete the subsolution argument, we have to show that
v∗(T , ·) = g(T , ·). It is sufficient to show that

Lemma 3.9. For all x ∈ R
d and i = 0, · · · , n, we have

|vh(ti , x) − g(T , x)| ≤ C
√

T − ti .

The proof of Lemma 3.9 is similar to Lemma 4.2 [17] or Lemma 3.17 in [5]. For the conve-
nience of the reader, we adjust the proof for free boundary problems. However, because the proof
is technical and not related to the main result of the article, we prefer to present it in Appendix B.

C. Derivation of the Rate of Convergence

The proof of Theorem 3.6 is based on Barles and Jakobsen [18], which uses switching systems
approximation and the Krylov method of shaking coefficients [19–22]. This has been adapted to
classical finite difference schemes for elliptic obstacle (free boundary) problems in [12]. To use
the method, we need to introduce a comparison principle for the scheme which we will undertake
next.

Proposition 3.10. Let Assumption F hold and set β := |Fr |∞. Consider two arbitrary bounded
functions ϕ and ψ satisfying:

min
{
h−1 (ϕ − Th[ϕ]) , ϕ − g

} ≤ g1 and min
{
h−1 (ψ − Th[ψ]) , ψ − g

} ≥ g2 (3.4)

for some bounded functions g1 and g2. Then, for every i = 0, . . . , n:

(ϕ − ψ)(ti , x) ≤ eβ(T −ti )
(|(ϕ − ψ)+(T , ·)|∞ + (1 + T − ti)|(g1 − g2)

+|∞
)

. (3.5)

Proof. This follows from Lemma 2.4 of [14] where it is provided for general monotone
schemes for obstacle problems.

Proof of Theorem 3.6 (i). Under Assumption HJB, we can build a bounded subsolution vε

of the nonlinear PDE, by the method of shaking coefficients, see [18], [12], [22], and the references
therein. More precisely, consider the following equations

min

{
−LXv − inf

0<s<ε2,|y|<ε

F
(
t − s, x + y, v, Dv, D2v

)
, v − g

}
= 0, on [0, T ) × R

d , (3.6)

v = g, on {T } × R
d . (3.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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By Theorem A.6, there exists a unique bounded solution vε to (3.6)–(3.7). Because
inf0<s<ε2,|y|<εF ≤ F , vε is a subsolution to (2.1)–(2.2) at all (t , x) ∈ [0, T ] × R

d and by The-
orem A.4 (continuous dependence for Hamilton-Jacobi-Bellman equations), vε approximates v
uniformly, that is, there exists a positive constant C such that v − Cε ≤ vε ≤ v.

Let ρ(t , x) be a C∞ nonnegative function supported in {(t , x) : t ∈ [0, 1], |x| ≤ 1} with unit
mass, and define

wε(t , x) := vε ∗ ρεwhere ρε(t , x) := 1

εd+2
ρ

(
t

ε2
,
x

ε

)
. (3.8)

It follows that |wε − v| ≤ Cε. From the concavity of the nonlinearity F, and Lemma A.3
in [23], wε ∈ C∞, wε is a classical subsolution of (2.1) on U := {(t , x)|g(t − s, x + y) <

vε(t − s, x + y); foranys ∈ [0, ε2)and|y| < ε}.1 Moreover, by Theorem A.7, vε is Lipschitz in x
and 1/2-Hölder continuous in t. Thus, by Theorem 2.1 in [21],

|∂β0
t Dβwε| ≤ Cε1−2β0−|β|1 for any (β0, β) ∈ N × N

d\{0}, (3.9)

where |β|1 := ∑d

i=1 βi , and C > 0 is some constant. As a consequence of the consistency of Th,
see Lemma 3.22 of [5], we know that

Rh[wε](t , x) := wε(t , x) − Th[wε](t , x)

h
+ LXwε(t , x) + F(·, wε, Dwε, D2wε)(t , x) ≤ Chε−3.

From this estimate together with the subsolution property of wε, we see that wε ≤ Th[wε] +
Ch2ε−3 holds true on U. In addition, by the regularity properties of g, one can see that wε ≤ g+Cε

on [0, T ] × R
d\U . Therefore,

min

{
wε(t , x) − Th[wε](t , x)

h
, wε − g

}
≤ C1(ε + ε−3h).

Then, it follows from Proposition 3.10 that

wε − vh ≤ C|(wε − vh)(T , ·)|∞ + C1(ε + hε−3) ≤ C(ε + hε−3). (3.10)

Therefore, v−vh ≤ v−wε +wε −vh ≤ C(ε+hε−3). Minimizing the right-hand side estimate
over ε > 0, we obtain v − vh ≤ Ch1/4.

Proof of Theorem 3.6 (ii). To prove the lower bound on the rate of convergence, we will use
Assumption HJB+ and build a switching system approximation to the solution of the nonlinear
obstacle problem (2.1)–(2.2). This proof method has been used for Cauchy problems of [18]
and [5]. For obstacle problems, this method is used in the elliptic case by [12] for the classical
finite difference schemes. We apply this methodology for parabolic obstacle problems to prove
the lower bound for the convergence rate of our stochastic finite difference scheme. We split the
proof into the following steps:

1. Approximating the solution to (2.1)–(2.2) by a switching system, which relies on Theorem
A.4, the continuous dependence result for switching systems with obstacle.

1 This heuristically follows from F
(·, ·, vε , Dvε , D2vε

) ∗ ρε(t , x) ≤ F
(
t , x, wε , Dwε , D2wε

)
.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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2. Building an almost everywhere smooth supersolution to (2.1)–(2.2) using the mollification
of the solution to the switching system.

3. Using Proposition 3.10, the comparison principle for the scheme, to bound the difference
of the supersolution obtained in Step 2 and the approximate solution obtained from the
scheme.

Step 1. Consider the following switching system:

min

{
max

{
−vε,i

t + sup
0<s<ε2,|y|<ε

Lαi vε,i (· − s, · + y), vε,i − M(i)vε

}
, vε,i − g

}
(t , x) = 0,

(3.11)

vε,i (T , ·) = g(T , ·), (3.12)

where vε = (vε,i )
M

i=1, M(i)vε = minj :j �=i{vε,j + k}, k is a nonnegative constant, αi’s, for
i = 1, · · · , M , are as in assumption HJB+, and Lαi ϕ := 1

2 Tr [aαi (t , x)D2ϕ]+bαi (t , x)Dϕ+
cαi (t , x)ϕ + f αi (t , x).

The above system of equations approximates (2.1)–(2.2). Intuitively speaking, Assump-
tion HJB+ introduces a set of approximating controls {αi}Mδ

i=1 in A. In the corresponding
optimization problem, the maximum cost of restricting controls to the set {αi}Mδ

i=1 is propor-
tional to δ. In addition, the above switching system imposes a switching cost of k between
controls in the finite set {αi}Mδ

i=1. If k goes to zero, then all functions vε,i in the solution of
problem (3.11)–(3.12) converges to the function vε, the solution of the problem without
switching cost, that is, (3.6)–(3.7). Conversely, we have already seen that vε approximates
function v, the solution of (2.1)–(2.2).

More rigorously, by Theorem A.6 the viscosity solution
(
vε,i

)M

i=1
to (3.11)–(3.12) exists

and by Theorem A.7 is Lipschitz continuous on x and 1
2 -Hölder continuous on t. Moreover,

by using Assumption HJB+, Theorem A.4 and Remark A.2, one can approximate the solu-
tion to (2.1)–(2.2) by the solution to (3.11)–(3.12), see Theorem 3.4 in [12] and the proof
of Theorem 2.3 of [18] for more details. More precisely by setting δ = ε, there exists a
positive constant C such that

|v − vε,i |∞ ≤ C(ε + k
1
3 ).

Step 2. Let v(i)
ε := vε,i ∗ ρε, where {ρε} is as in (3.8). As in Lemma 4.2 of [12] and Lemma

3.4 of [18] for ε ≤ (
12supi |v(i)

ε |1
)−1

k, for i0 ∈ argmin iv
(i)
ε (t , x), the function v

(i0)
ε is a

supersolution to

−LXv(i0)
ε (t , x) − F

(
t , x, v(i0)

ε , Dv(i0)
ε , D2v(i0)

ε

) ≥ 0. (3.13)

Moreover, for any (t , x) ∈ [0, T ) × R
d , we have v

(i0)
ε (t , x) < v(i)

ε (t , x) + k. Therefore,
for all i we have

(wε − v)(t , x) = (v(i0)
ε − v)(t , x) ≤ (v(i0)

ε − v(i)
ε )(t , x) + (v(i)

ε − v)(t , x) ≤ k + C(ε + k
1
3 ).

Choosing k = C1ε with C1 = 12supi |v(i)
ε |1, one can write

(wε − v)(t , x) ≤ Cε
1
3 . (3.14)
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Step 3. By the definition of wε, for any (t , x) and i0 ∈ argmin iv
(i)
ε (t , x), we have

wε(t , x) = v
(i0)
ε (t , x) and wε ≤ v

(i0)
ε elsewhere. Therefore, Th[wε](t , x) ≤ Th[v(i0)

ε ].
Moreover, as (3.9) is satisfied by v

(i0)
ε , by Lemma 3.22 of [5], one can conclude that

Rh[v(i0)
ε ](t , x) := v

(i0)
ε (t , x) − Th[v(i0)

ε ](t , x)

h
+ LXv(i0)

ε (t , x)

+ F(t , x, v(i0)
ε , Dv(i0)

ε , D2v(i0)
ε ) ≥ −Chε−3.

Therefore, due to (3.13), wε(t ,x)−Th[wε ](t ,x)

h
≥ −Chε−3 holds true. By Proposition 3.10,

one can get

(vh − wε)(t , x) ≤ Chε−3. (3.15)

Now, (3.14) and (3.15) yield

(vh − v)(t , x) ≤ C(ε
1
3 + ε−3h).

By minimizing on ε > 0, the desired lower bound is obtained.

Remark 3.11 (Stochastic scheme). Scheme (2.4) produces a deterministic approximate solu-
tion. However, in practice, we approximate the expectations in (2.5) based on a randomly generated
set of sample paths of the process X̂. As a result, the approximate solution is not deterministic
anymore. By following the line of argument in Section IV of [5], one can show the almost sure
convergence of this stochastic approximate solution and even provide the same rate of convergence
in Lp(�, P).

More precisely, assume that E is approximated by ÊN where N denotes the number of
sample paths. Suppose that for some p ≥ 1, there exist constants Cb, λ, ν > 0 such that
||ÊN [R] − E[R]||p ≤ Cbh

−λN−ν for a suitable class of random variables R bounded by b. By
replacing E with ÊN in the scheme (2.4), one obtains a stochastic approximate solution v̂h

N . Then,
if we choose N = Nh which is chosen to satisfy limh→0N

ν
hhλ+2 = ∞, then under assumptions of

Theorem 3.4

v̂h
Nh

(·, ω) → v locally uniformly,

for almost every ω where v is the unique viscosity solution of (2.1)–(2.2). In addition, if

lim
h→0

Nν
hhλ+ 21

10 > 0, (3.16)

we have that ||v − v̂h
Nh

||p ≤ Ch1/10, under the assumptions of Theorem 3.6.

IV. NUMERICAL RESULTS

A. Risk Neutral Pricing of Geometric American Put Option

We consider a geometric American put option on three risky assets each of which follows
a Black–Scholes dynamics under risk neutral probability measure. The payoff of the option
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is given by (K − ξ(T ))+ where K and T are, respectively, the strike price and maturity and
ξ(t) := ∏3

i=1 Si(t), where

dS(t) = diag (S(t))(rdt + diag (�) · dW(t).

Here, S(t) = (Si(t))
3
i=1 is the vector of asset prices, W(t) = (Wi(t))

3
i=1 is a three-dimensional

(3D) Brownian motion, r is the risk free interest rate, and � = (σi)
3
i=1 where σi is the volatility

of the ith asset.
The price of this option at time t and for asset price vector s = (s1, s2, s3) is given by

v(t , s) := supE
[
e−r(τ−t)(K − ξ(τ ))+|S(t) = s

]
(4.1)

where the supremum is over all stopping times τ ∈ [t , T ] adapted to the filtration generated by
the 3D Brownian motion and E is the risk neutral expectation. It is well-known that function v
satisfies the following differential equation

0 = min

{
−∂tv − 1

2

3∑
i=1

s2
i σ

2
i ∂si si

v − r

3∑
i=1

si∂si
v + rv, v − g

}

v(T , s) = g(s).

where g(s) = (K − ∏3
i=1 si)+. We treat this linear equation as a fully nonlinear one by

separating the linear second-order operator into two parts. More precisely, for some σ 2
0 , we

choose the linear and nonlinear parts to be LXφ := σ2
0
2

∑3
i=1 s2

i σ
2
i ∂si si

φ + r
∑3

i=1 si∂si
φ and

F(·, ·, rφ, Dφ, D2φ) = 1−σ2
0

2

∑3
i=1 s2

i σ
2
i ∂si si

φ, respectively. This leads to the choice of diffusion
X(t) := (Xi(t))

3
i=1

dX(t) = σ0diag (X(t))diag (σ ) · dW(t)

for the approximation scheme (2.4). Conversely, the approximation of the second-order derivatives
in (2.6) is given by

x2
i ∂xixi

v(t , x) ≈ 1 − σ 2
0

2σ 2
0

E

[
v(t + h, x + σ0diag (x)diag (σ ) · W(h))

Wi(h)2 − h

h2

]
,

where x = (xi)
3
i=1. For the numerical implementation, we choose the continuous-time interest

rate r = 0.03, volatility of all assets σi = 0.1, T = 1, K = 8, and we evaluate the option at time
t = 0 at s = (2, 2, 2). The reference value for option price is obtained by applying the binomial
tree algorithm to the one-dimensional (1D) optimal stopping problem

v(t , s) := sup
τ

E

[
e−r(τ−t)ξ(T )|ξ(T ) =

3∏
i=1

si

]
.

on the diffusion ξt := ∏3
i=1 Si(t) satisfying

dξ(t) = ξ(t)(3rdt + σdBt) with σ :=
(

3∑
i=1

σ 2
i

) 1
2
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TABLE I. The simulation results for geometric American put option regarded as a nonlinear problem.

N Time σ 2
0 = 0.9 σ 2

0 = 1

5 92 0.301173 0.326258
10 234 0.309001 0.334205
15 360 0.312642 0.337974
20 499 0.314978 0.340397
40 1050 0.320354 0.347909
50 1325 0.322115 0.346041
# of sample paths = 6 million, N = # of time steps, Time = time of the algorithm in seconds.

where Bt is a 1D Brownian motion. The binomial tree algorithm stabilizes to the value 0.338778
for more than 20,000 time steps. The numerical result as well as the run time of the algorithm2 is
provided in Table I for two different choices for σ0. Here, we used projection method described in
[10] with 85 locally linear basis functions with compact support. Notice that σ 2

0 = 1 corresponds
to the Longstaff–Schwartz algorithm and for σ 2

0 = 0.9, the inequality (3.1) is satisfied. In Fig. 1,
the red graph is the ratio of error for two consecutive time steps plotted against the ratio of the
time steps, whereas the green graph is the theoretical rate of convergence; that is, 1

4 . Because
of the analysis in [5, Section 3.4], one expects to have a higher the rate of convergence for the
scheme on the linear equations. Therefore, the simulated red plot must lie below the theoretical
green plot. Conversely, due to error of approximation of expectations in the scheme, the rate of
convergence 1

2 will never be obtained in practice.

B. Indifference Pricing of Geometric American Put Option

We consider a geometric put option on two nontradable risky assets with Black–Scholes dynamics
given by S(t) := (S1(t), S1(t))

dSi(t) = S(t)(μidt + σidWi(t)),

where W(t) = (W1(t), W2(t)) is a two-dimensional (2D) Brownian motion, and μi and σi are the
drift and the volatility of the ith asset for i = 1, 2, respectively. We assume that there is a portfolio
made of a tradable asset with Black–Scholes dynamics and money market with r = 0 interest rate
which satisfies

dXθ
t = θt (μ0dt + σ0dB(t)),

where θ is the amount of money in risky asset, B(t) is a one dimensional Brownian motion,
and μ0 and σ0 are drift and volatility of the tradable asset, respectively. Here we assume that
dWi(t) · dB(t) = ρidt for i = 1, 2. The indifference pricing with exponential utility leads to the
controller-stopper problem below

v(t , x, s1, s2) := sup
τ ,θ

E

[
−exp

(
−γ

(
Xθ(τ) +

(
K −

2∏
i=1

Si(τ )

)
+

))
|X(t) = x, Si(t) = si , i = 1, 2

]
.

(4.2)

2 Dual core i5 2.5 GHz, 4 GB of RAM
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FIG. 1. Rate of convergence analysis: •: ratio of the error, that is, | vh1 −v

vh2 −v
|, �: (h1/h2)

1
2 , and �: (h1/h2)

1
4

(vertical axis) versus h1/h2 (horizontal axis). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

which satisfies the fully nonlinear obstacle problem below:

min

{
−∂v

∂t
+ (μvx + ∑2

i=1 σ0ρiσisi∂xsi
v)

2

2σ 2
0 ∂xxv

− LSv, v − g

}
= 0

v(T , x, s1, s2) = −exp(−γ (x + (K − ∏2
i=1 si)+))

where γ > 0 is a constant and g(t , x, s1, s2) = −exp(− μ2
0

2σ2
0
(T − t) − γ (x + (K − ∏2

i=1 si)+)), K

is the strike price and LS = ∑2
i=1 siμi∂si

+ 1
2

∑2
i=1 siσ

2
i ∂si si

. To solve the above free boundary
problem using scheme (2.4), we choose the linear and nonlinear parts as follow:

Lφ = LSφ + 1

2
ε2∂xxφ

F (·, Dφ) = − (μφx + ∑2
i=1 σ0ρiσisi∂xsi

φ)
2

2σ 2
0 ∂xxφ

− 1

2
ε2∂xxφ.

Thus, the appropriate diffusion to be used inside (2.4) is

dX̄ = εdB̄(t),

dS(t) = diag (S(t))(μdt + diag (�) · dW(t),

where μ = (μ1, μ2), � = (σ1, σ2), and B̄(t) is a 1D Brownian motion independent of W (t).
To find a reference value for the solution, we follow the same idea as in Section IV A. Since

ξt := ∏2
i=1 Si(t) satisfies

dξ(t) = ξ(t)(μdt + σdBt)with μ :=
2∑

i=1

μi , σ :=
(

2∑
i=1

σ 2
i

) 1
2

,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE II. M = # of sample paths in million, N = # of time steps, Time = time of the algorithm
on -dimensional problem in seconds, v̂ and û value obtained by scheme (2.4) for the 3D problem (4.2)
and the 2D problem with the same value function.

N M Time v̂(0, 1, 1, 1) û(0, 1, 1)

5 2 34 −0.341675 −0.349489
10 1 36 −0.303425 −0.352110

2 76 −0.356332 −0.351678
20 2 180 −0.356126 −0.351659

3 273 −0.351659 −0.356126
4 372 −0.348773 −0.350201

30 3 422 −0.353311 −0.353088
40 4 696 −0.322095 −0.361026
Notice that v(0, 1, 1, 1) = u(0, 1, 1).

we have v(t , x, s1, s2) = u(t , x,
∏2

i=1 si) where the function u is the solution of the 2D
controller-stopper problem

u(t , x, s) = sup
τ ,θ

E
[−exp(−γ (Xθ(τ ) + (K − ξ(τ ))+))|X(t) = x, ξ(t) = s

]
. (4.3)

Neither function v nor u have closed form solutions, but we expect that if the scheme con-
verges numerically, it approximates the function u more accurately because of the reduction in
the dimension. This is because the number of sample paths and time steps for a 2D problem
for u can be chosen larger than the 3D problem for v. Therefore, to examine the convergence
of scheme, we compare the approximation of these functions by the scheme (2.4). We set
K = 1, γ = 1, T = 1, ε = 0.05, X(0) = 1, ρi = 0.1, μ0 = σ0 = μi = σi = 0.1, and
Si(0) = 1 for i = 1, 2.

The result of the simulation is summarized in Table II. In Fig. 2, we establish the convergence
analysis for the nonlinear problem by using the approximations in Table II with the largest number
of sample paths for each time step.

FIG. 2. Rate of convergence analysis: •: ratio of the error, that is, | vh1 −ûh1

vh2 −ûh2
|, �: (h1/h2)

1
2 , and �: (h1/h2)

1
4

(vertical axis) versus k = h1/h2 (horizontal axis). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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APPENDIX A: A SWITCHING SYSTEM WITH AN OBSTACLE

In this section, we will provide some results needed in the Section III C. In particular, we present
a continuous dependence result for the switching system with obstacle and as a corollary a com-
parison result, which provides the uniqueness of the solution. Then, the existence and regularity
of the solutions to the switching systems are provided.

Consider the following system of PDEs for v = (v(i))
M

i=1:

min
{
max

{−v(i)
t − Fi(·, v(i), Dv(i), D2v(i)), v(i) − M(i)v

}
, v(i) − g

} = 0, for i = 1, · · · , M;

v(i)(T , ·) = g(T , ·).
(A.1)

We also need to consider a variant of Eq. (A.1) as follows:

min
{

max
{
−v(i)

t − F̂i(·, v(i), Dv(i), D2v(i)), v(i) − M(i)v
}

, v(i) − ĝ
}

= 0, for i = 1, · · · , M;

v(i)(T , ·) = ĝ(T , ·).
(A.2)

Assumption HJB-S.
We assume that in (A.1) and (A.2)

Fi(·, v(i), Dv(i), D2v(i)) = inf
α∈Ai

Li,αv(i) and F̂i(·, v(i), Dv(i), D2v(i)) = inf
α∈Ai

L̂i,αv(i), (A.3)

M(i)v = minj :j �=i{vj + k}, k is a nonnegative constant, and

Li,αϕ(x) := 1

2
Tr [aα

i (t , x)D2ϕ] + bα
i (t , x)Dϕ + cα

i (t , x)ϕ + f α
i (t , x),

L̂i,αϕ(x) := 1

2
Tr [âα

i (t , x)D2ϕ] + b̂α
i (t , x)Dϕ + ĉα

i (t , x)ϕ + f̂ α
i (t , x).

Moreover,

L := |g|1 + |ĝ|1 + sup
α∈∪

i
Ai

(
|σα|1 + |bα|1 + |cα|1 + |f α|1 + |σ̂ α|1 + |b̂α|1 + |ĉα|1 + |f̂ α|1

)
< ∞,

and for all α ∈ ∪
i
Ai , we have cα

i , ĉα
i ≤ −1.

Remark A.1. cα
i , ĉα

i ≤ −1 in Assumption HJB-S is only to make the proofs simpler and is not
a loss of generality. This can be seen by applying the change of variable v(i) → eC(T −t)v(i) in Eqs.
(A.1) and (A.2) for C large enough.

Remark A.2. For the sake of simplicity in Assumption HJB-S, we only included the non-
linearities of infimum type. However, all the results of this appendix still hold if we assume
that
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Fi(·, v(i), Dv(i), D2v(i)) = inf
α∈Ai

sup
β∈Bi

Li,α,β and F̂i(·, v(i), Dv(i), D2v(i)) = inf
α∈Ai

sup
β∈Bi

L̂i,α,β ,

|g|1 + |ĝ|1 + sup
α ∈ ∪

i
Ai

β ∈ ∪
i
Bi

(
|σα,β

i |1 + |bα,β
i |1 + |cα,β

i |1 + |f α,β
i |1 + |σ̂ α,β

i |1 + |b̂α,β
i |1 + |ĉα,β

i |1 + |f̂ α,β
i |1

)
< ∞, (A.4)

and for all α ∈ ∪
i
Ai and β ∈ ∪

i
Bi , we have c

α,β
i , ĉα

i ≤ −1. This remark is also valid if we change

the order of inf and sup in (4).

Lemma A.3. Let u = (u(i))i and v = (v(i))i be, respectively, the upper semicontinuous subso-
lution and the lower semicontinuous supersolution of (A.1) and (A.2), and assume that ϕ(t , x, y)

is a smooth function bounded from below. Define

ψ(i)(t , x, y) ≡ u(i)(t , x) − v(i)(t , y) − ϕ(t , x, y),

J1 :=
{
j |∃(t ′, x ′, y ′) : sup

i,t ,x,y
ψ(i)(t , x, y) = ψ(j)(t ′, x ′, y ′)

}
,

J2(t , x) := {
j |u(j)(t , x) ≤ g(t , x)

}
.

Suppose that there exists an (i ′
0, t0, x0, y0) such that sup

i,t ,x,y
ψ(i)(t , x, y) = ψ(i′0)(t0, x0, y0) and

J1 ∩ J2(t0, x0) = Ø. Then, there exists an i0 such that ψ(i0)(t0, x0, y0) = ψ(i′0)(t0, x0, y0) and

v(i0)(t0, y0) < M(i0)v(t0, y0). (A.5)

Moreover, if in a neighborhood of (t0, x0, y0) there are some continuous functions h0(t , x, y) >

0, h(t , x) and ĥ(t , y) such that

D2ϕ(t , x, y) ≤ h0(t , x, y)

(
I −I

−I I

)
+
(

h(t , x) 0
0 ĥ(t , y)

)
,

then, there are a, b ∈ R and X, Y ∈ Sd
+ such that

a − b = ϕt(t0, x0, y0), (A.6)(
X 0
0 −Y

)
≤ 2h0(t0, x0, y0)

(
I −I

−I I

)
+
(

h(t0, x0) 0
0 ĥ(t0, y0)

)
, (A.7)

−a − inf
α∈Ai0

{
1

2
Tr [aα

i0
(t0, x0)X] + bα

i0
(t0, x0)Dxϕ(t0, x0, y0)

+cα
i0
(t0, x0)u

(i0)(t0, x0) + f α
i0
(t0, x0)

}
≤ 0, (A.8)

−b − inf
α∈Ai0

{
1

2
Tr [âα

i0
(t0, y0)Y ] + b̂α

i0
(t0, y0)(−Dyϕ(t0, x0, y0))

+ĉα
i0
(t0, y0)v

(i0)(t0, y0) + f̂ α
i0
(t0, y0)

}
≥ 0. (A.9)
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Proof. The first part of the proof is similar to those of Lemma A.2 of [24], Lemma A.1 of
[12]. The second part follows as a result of Theorem 2.2 of [25].

The following theorem on continuous dependence is used in Section Proof of Theorem 3.6 (ii)
(ii) and in the regularity result, Theorem A.7 below. Intuitively speaking, continuous dependence
result asserts that a slight change in the coefficients of (A.1) changes the solution only slightly.

Theorem A.4 (Continuous dependence). Let HJB-S hold. Suppose that u = (u(i))i and
v = (v(i))i are a bounded upper semicontinuous subsolution of (A.1) and a bounded lower
semicontinuous supersolution of (A.2), respectively. Then, for any i = 1, · · · , N ,

u(i) − v(i) ≤ B := Cmaxj {|(g − ĝ)(·, ·)|∞
+T sup

α

{
|f j ,α − f̂ j ,α|∞ + (|u|∞ ∨ |v|∞)|cj ,α − ĉj ,α|∞

}

+√
T sup

α

{
|σ j ,α − σ̂ j ,α|∞ + |bj ,α − b̂j ,α|∞

}}
.

Proof. Let ϕ(t , x, y) = eλ(T −t) θ

2 |x − y|2 + eλ(T −t) ε

2 (|x|2 + |y|2) and define

D := sup
t ,i,x,y

{
u(i)(t , x) − v(i)(t , y) − ϕ(t , x, y) − ε

t

}
,

where ε, ε > 0 are arbitrary constants and constants λ, θ > 0 will be determined later in the proof.
We will show that D is bounded by a constant B(ε, ε, θ) which is bounded by B mentioned in the
theorem as (ε, ε) → (0, 0) and θ is set appropriately. Then, it would follow that

u(i)(t , x) − v(i)(t , x) ≤ D + ε

t
+ eλ(T −t) 2ε|x|2

2
≤ B(ε, ε, θ) + ε

t
+ eλ(T −t) 2ε|x|2

2
.

Sending ε, ε → 0, one would then obtain

u(i)(t , x) − v(i)(t , x) ≤ B, for t > 0.

Note that the above inequality is also valid for t = 0 by considering [−δ, T ] as the time interval
and by changing T to T + δ.

Define

ψ(i)(t , x, y) = u(i)(t , x) − v(i)(t , y) − ϕ(t , x, y) − σ(T − t)

2T
− ε

t
,

where σ = D − σT with σT = sup
i,x,y

{
u(i)(T , x) − v(i)(T , y) − ϕ(T , x, y) − ε

T

}+
. Let

D := sup
i,t ,x,y

ψ(i)(t , x, y). (A.10)

Since u(i) and v(i) are bounded, we have D < ∞. Conversely, by semicontinuity of u(i) and v(i),
one can conclude that the supremum in the definition of D is attained at some point (i0, t0, x0, y0).
In other words, J1 �= Ø (see Lemma A.3 for the definition of J1).
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If σ ≤ 0, then D ≤ σT . Since

σT ≤ |g − ĝ|∞ + sup
x,y

{|g|1|x − y| − ϕ(T , x, y)} − ε

T

≤ |g − ĝ|∞ + sup
x,y

{|g|1|x − y| − θ

2
|x − y|2} ≤ |g − ĝ|∞ + |g|21

2θ
,

one can conclude that D ≤ |g − ĝ|∞ + |g|21
2θ

. Therefore, we may assume that σ > 0. From the
definition of D, we have t0 > 0. Conversely, σ > 0 implies t0 < T . Because if t0 = T , then
σT ≥ D which implies

σT ≥ D − σ

2
≥ σT + σ

2
> σT

which is a contradiction. So, we have 0 < t0 < T . We continue the proof by considering two
different cases.

Case 1. J1 ∩J2(t0, x0) �= Ø. The supremum in (A.10) is attained at some point (i0, t0, x0, y0)

with u(i)(t0, x0) ≤ g(t0, x0) and v(i)(t0, y0) ≥ ĝ(t0, y0). Therefore,

D ≤ g(t0, x0) − ĝ(t0, y0) − ϕ(t0, x0, y0) − σ (T − t0)

2T
− ε

t0

≤ |g − ĝ|∞ + |g|1|x0 − y0| − θ

2
|x0 − y0|2 ≤ |g − ĝ|∞ + |g|21

2θ
.

Conversely, since D ≤ D+ σ

2 ≤ D+ 1
2 (D−σT ) ≤ D+ 1

2D, we have D ≤ 2|g−ĝ|∞+ |g|21
θ

.
Case 2. J1 ∩J2(t0, x0) = Ø. In this case, (A.5) is satisfied and by Lemma A.3 and the same
line of argument as Theorem A.1 in [14] the result is provided. For the convenience of the
reader, we present a sketch of the proof.

By subtracting (A.9) from (A.8), we have

λφ(t0, x0, y0) + D − σT

2T
+ ε

t2
0

− inf
α∈Ai0

{1

2
(Tr [aα

i0
(t0, x0)X] − Tr [âα

i0
(t0, y0)Y ])

−bα
i0
(t0, x0)Dxϕ(t0, x0, y0) − b̂α

i0
(t0, y0)Dyϕ(t0, x0, y0)

−cα
i0
(t0, x0)(u

(i0)(t0, x0) − v(i0)(t0, y0))

−(cα
i0
(t0, x0) − ĉα

i0
(t0, y0))v

(i0)(t0, y0)

−f α
i0
(t0, x0) − f̂ α

i0
(t0, y0)} ≤ 0

Now, using cα
i0

≤ −1 and u(i0)(t0, x0) − v(i0)(t0, y0) ≥ D ≥ 1
2D > 0 together with

(A.6)-(A.7), one can obtain the following bound for D

D ≤ CT (θsup
α

{
|σ j ,α − σ̂ j ,α|2∞ + |bj ,α − b̂j ,α|2∞

}
+sup

α

{
|f j ,α − f̂ j ,α|∞ + (|u|∞ ∨ |v|∞)|cj ,α − ĉj ,α|∞

}
+ σT ) + C1|x0 − y0|2 − λφ(t0, x0, y0),
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where C1 is the constant depending only on L in Assumption HJB-S. After we choose
λ ≥ C1 in the above and maximize the right-hand side with respect to θ , the proof is
complete.

The following result is a straightforward consequence of Theorem A.4, and will be used to
establish the existence and the regularity of the solution to (A.1).

Corollary A.5. Assume that HJB-S holds. Suppose that u = (u(i))i and v = (v(i))i are,
respectively, a bounded upper semicontinuous subsolution and a bounded lower semicontinuous
supersolution of (A.1). Then, for any i = 1, · · · , N , u(i) ≤ v(i)

Theorem A.6 (Existence). Assume that HJB-S holds. Then, there exists a unique continuous
viscosity solution in the class of bounded functions to (1)

Proof. We follow Perron’s method (see e.g., Section IV of [25]). Observe that by Assumption
HJB-S, u = −K and v̄ = K are, respectively, subsolution and supersolution of (A.1) for a suit-
able choice of positive constant K. Define v(i)(t , x) := sup{u(i)(t , x) ; u is a subsolution to (A.1)}
and

v(i)∗(t , x) := lim
δ→0

sup{v(i)(s, y) : |x − y| + |s − t | ≤ δ, s ∈ [0, T ]},

and

v(i)
∗ (t , x) := lim

δ→0
inf{v(i)(s, y) : |x − y| + |s − t | ≤ δ, s ∈ [0, T ]}.

It is straight forward that −K ≤ v(i)
∗ ≤ v(i)∗ ≤ K . We want to show that (v(i)∗)M

i=1 and (v(i)
∗ )

M

i=1
are, respectively, a subsolution and a supersolution to (A.1) which by comparison, Corollary A.5,
yields the desired result.

Step 1: Subsolution property of v(i)∗. We start by showing that (U , · · · , U) with

U(t , x) := aε(T − t) + g(T , z) + |g|1
(
T − t + |x − z|2 + ε

) 1
2

is a supersolution to (A.1) for a suitable positive constant aε. Observe that since

U(t , x) − g(t , x) ≥ g(T , z) − g(t , x) + |g|1
(
T − t + |x − z|2 + ε

) 1
2 ≥ 0,

we have that U(t , x) ≥ g(t , x), and in particular, U(T , x) ≥ g(T , x). Conversely,
by simple calculations, one can show that, for an appropriate choice of aε, we have
−Ut − inf

α∈Ai
Li,αU ≥ 0.

Therefore, by comparison, Corollary A.5, for any subsolution u, u ≤ U which implies
v(i)∗ ≤ U ; specially v(i)∗(T , x) ≤ U(T , x). Sending ε → 0 and setting x = z, v(i)∗(T , x) ≤
g(T , x).

Now, for fixed i, we suppose t < T and ϕ is a test function such that

0 = max[0,T ]×Rd {v(i)∗ − ϕ} = (v(i)∗ − ϕ)(t , x).
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It follows from the definition of v(i)∗ that there exists a sequence {(un, tn, xn)}n with
tn < T such that un is a subsolution to (A.1), (tn, xn) → (t , x), u(i)

n (tn, xn) → v(i)∗(t , x),
and (tn, xn) is the global strict maximum of u(i)

n − ϕ. Let δn := max[0,T ]×Rd {u(i)
n − ϕ}. By

the subsolution property of un , we have

min

{
max

{
−ϕt − inf

α∈Ai
Li,α(ϕ + δn), u

(i)
n − M(i)un

}
, ϕ + δn − g

}
(tn, xn) ≤ 0.

Because M(i)un ≤ M(i)v∗, by sending n → ∞,

min

{
max

{
−ϕt − inf

α∈Ai
Li,αϕ, v(i)∗ − M(i)v∗

}
, v(i)∗ − g

}
(t , x) ≤ 0.

Step 2: Supersolution property of v(i)
∗ . Since (g, · · · , g) is a subsolution to (A.1), v(i)

∗ (t , x) ≥
g(t , x). In particular, v(i)

∗ (T , x) ≥ g(T , x). Therefore, we only need to show that

max

{
−(v(i)

∗ )
t
− inf

α∈Ai
Li,αv(i)

∗ , v(i)
∗ − M(i)v∗

}
≥ 0, (A.11)

on [0, T ) × R
d in the viscosity sense. We will prove (A.11) by a contradiction

argument. Assume that there are a test function ϕ and (i, t , x) with t < T such
that (t , x) is the global strict minimum of v(i)

∗ − ϕ and (v(i)
∗ − ϕ)(t , x) = 0 but

max

{
−ϕt − inf

α∈Ai
Li,αϕ, ϕ − M(i)v∗

}
(t , x) < 0. Then, by continuity of ϕ and the equa-

tion and lower semicontinuity of v∗, one can find ε > 0 and δ > 0 small enough, such that
for |x − y| + |s − t | < δ we have that ϕ + ε < v(i)

∗ and that

max

{
−(ϕ + ε)t − inf

α∈Ai
Li,α(ϕ + ε), (ϕ + ε) − M(i)v∗

}
(s, y) < 0. (A.12)

Define

w(j)(s, y) :=
{

max{ϕ + ε, v(j)∗}(s, y), j = i and |x − y| + |s − t | < δ;

v(j)∗(s, y), otherwise .

Since v∗ is a subsolution to (A.1) and by (A.11), one can show that w is a subsolution
to (A.1). By the definition of v(i)

∗ , we must have v(i)
∗ ≥ w(i), which contradicts the fact that

w(i)(t , x) = ϕ(t , x) + ε < v(i)
∗ (t , x) for |x − y| + |s − t | < δ.

Theorem A.7 (Regularity). Assume that HJB-S holds. Let (u(i))
M

i=1 be the solution to (A.1). Then,
(u(i))

M

i=1 is Lipschitz continuous with respect to x and 1
2 -Hölder continuous with respect to t on

R
d × [0, T ]

Proof. Lipschitz continuity with respect to x: For fixed y ∈ R
d , v(i)(x) = u(i)(t , x +y) is the

solution of a switching system obtained from (A.1) by replacing Li,α with

Li,α,yϕ(x) := 1

2
Tr [aα

i (t , x + y)D2ϕ] + bα
i (t , x + y)Dϕ + cα

i (t , x + y)ϕ + f α
i (t , x + y),
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with the terminal condition given by v(i)(T , x) = g(T , x+y). By Theorem A.4, there is a positive
constant C such that

sup
t ,x

|u(i)(t , x) − u(i)(t , x + y)| = sup
t ,x

|u(i)(t , x) − v(i)(t , x)| ≤ C|y|.

1
2 -Hölder continuity with respect to t: For t < s, define ū = (ū(i))

M

i=1 to be the solution to

max
{
−ū

(i)
t − Fi(·, ū(i), Dū(i), D2ū(i)), ū(i) − M(i)ū

}
= 0, for i = 1, · · · , M;

ū(i)(s, ·) = u(i)(s, ·).
Since ū is a subsolution of (1) on [0, s] × R

d with terminal condition u(i)(s, ·), by comparison
result, Corollary A.5, we have ū(i) ≤ u(i). Therefore, u(i)(t , x)−u(i)(s, x) ≥ ū(i)(t , x)− ū(i)(s, x).
By Theorem A.1 of [18], ū(i) is 1

2 -Hölder continuous in t which provides

u(i)(t , x) − u(i)(s, x) ≥ −C
√

s − t .

Now, for fixed y ∈ R
d , define

ψ(i)(t , x) := λL

2
eA(s−t)

(|x − y|2 + B(s − t)
) + L

λ
+ B(s − t) + g(s, y),

where A, B, and λ are positive constants which will be given later and L is the same as in Assump-
tion HJB-S. We will show that for an appropriate choice of A and B, (ψ(i))

M

i=1 is a supersolution
of (1) with terminal condition g(s, x). Then, comparison, Corollary A.5, would then imply that
u(i) ≤ ψ(i). Therefore,

u(i)(t , y) − u(i)(s, y) ≤ ψ(i)(t , y) − g(s, y) ≤ λL

2
eA(s−t)B(s − t) + L

λ
+ B(s − t).

By setting λ = 1√
s−t

, we have u(i)(t , y)−u(i)(s, y) ≤ C
√

s − t , where C is a positive constant.
Therefore, it remains to show that for A and B large enough, we have

min

{
max

{
−ψ(i)

t − inf
α∈Ai

Li,αψ(i), ψ(i) − M(i)ψ(i)

}
, ψ(i) − g

}
≥ 0,

on [0, s] × R
d . Since ψ(i) − M(i)ψ(i) < 0, one needs to show that

−ψ(i)
t − inf

α∈Ai
Li,αψ(i) ≥ 0and ψ(i) − g ≥ 0.

Observe that if B ≥ 1, by the regularity assumption on g, we have

ψ(i)(t , x) − g(t , x) ≥ L

2

(
λ|x − y|2 + λ(s − t) + 2

λ

)
+ g(s, y) − g(t , x) ≥ 0.

Conversely,

−ψ(i)
t − inf

α∈Ai
Li,αψ(i) = sup

α∈Ai

{Lλ

2
eA(s−t)(A|x − y|2 + AB(s − t) + B

−1

2
Tr [aα,i] − bα,i · (x − y)) + B − cα,iψ(i) − f α,i}

≥ Lλ

2
eA(s−t)

(
A|x − y|2 − L|x − y| + LB − L

2

)
+ B − CL.
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By choosing A and B large enough, the right hand side in the above inequality is positive which
completes the argument.

APPENDIX B: PROOF OF LEMMA 3.9

If vh(ti , x) = g(ti , x) holds true, then as function g is 1
2 -Hölder continuous on t, the proof

is done. So, we assume that vh(ti , x) > g(ti , x). We introduce the discrete stopping time
τ̂ := min{tj |j ≥ i, vh(tj , X̂tj

) = g(tj , X̂tj
)}. Observe that ti < τ̂ .

Step 1. Let θ be such that F(tj , X̂x
tj

, Dhv
h(tj , Xx

tj
)) − F(tj , X̂x

tj
, 0, 0, 0) = ∇F(tj , X̂x

tj
, θ) ·

Dhv
h(tj , Xx

tj
)) For all j = i, · · · , n − 1, on the event {tj < τ̂ } one can write

vh(tj , x) = Etj ,x[vh(tj+1, X̂x
tj+1

)Pj+1] + hFj ,

where Fj = F(tj , X̂x
tj

, 0, 0, 0), �Wj+1 = Wtj+1 − Wtj
, Pj+1 = 1 − αj + √

hβj · �Wj+1 +
h−1αj ·�Wj+1�WT

j+1, and αj := Fγ · a−1(tj , X̂x
tj

, θ) < 1 and βj := Fp ·σ−1(tj , X̂x
tj

, θ) are
Ftj+1 -measurable. We can rewrite the above equality in the following form.

vh(tj , x)1{tj <τ̂ } = Etj ,x[vh(tj+1, X̂x
tj+1

)Pj+11{tj+1<τ̂ } + g(τ̂ , X̂x
τ̂ )Pj+11{tj+1=τ̂ }] + h1{tj <τ̂ }Fj

(B.1)

Notice that the first term in the right hand side of (1) is zero if {tj ≥ τ̂ }. We define
Qj := ∏j

k=i+1 Pk with Qi := 1 and Vj := vh(tj , X̂x
tj
)Qj1{tj <τ̂ }. Observe that Qj is a

discrete martingale with respect to {Wtj
}n

j=i
. Multiplying (B.1) by Qj , one can write

Vj = Etj ,x[Vj+1 + g(τ̂ , X̂x
τ̂ )Qj+11{tj+1=τ̂ }] + h1{tj <τ̂ }QjFj .

By summing the above equality over j = i, · · · , n − 1 and taking expectation Eti ,x , we
have

vh(ti , x) = Vi = Eti ,x

[
Vn +

n−1∑
j=i

g(τ̂ , X̂x
τ̂ )Qj+11{tj+1=τ̂ } + h

n−1∑
j=i

1{tj <τ̂ }QjFj

]

= Eti ,x

[
n−1∑
j=i

g(τ̂ , X̂x
τ̂ )Qj+11{tj+1=τ̂ } + h

n−1∑
j=i

1{tj <τ̂ }QjFj

]
.

Observe that here we used Vn = 0 by the definition of τ̂ . Thus, we can write

vh(ti , x) − g(ti , x) = Eti ,x

[
(g(τ̂ , X̂x

τ̂ ) − g(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ } + h

n−1∑
j=i

1{tj <τ̂ }QjFj

]
,

(B.2)

where in the above we used optional stopping theorem for Eti ,x[∑n−1
j=i Qj+11{tj+1=τ̂ }] = 1.

Our goal is to show that the right-hand side of (B.2) is bounded by C
√

T − ti . First observe
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that by Assumption F(i), Fj is bounded. Then, because Qj is a positive martingale, we
bounded the second term in (2) by C(T − ti):

∣∣∣∣∣Eti ,x

[
h

n−1∑
j=i

1{tj <τ̂ }QjFj

]∣∣∣∣∣ ≤ Ch

n−1∑
j=i

Eti ,x[Qj ] ≤ C(T − ti).

We continue by bounding the other term in (B.2) in the next step.

Step 2. To bound Eti ,x

[
(g(τ̂ , X̂x

τ̂
) − g(ti , x))

∑n−1
j=i Qj+11{tj+1=τ̂ }

]
, we want to apply Itô

formula on g(τ̂ , X̂x
τ̂
) − g(ti , x). But, because g is not a C2 function, we first approximate g

by a smooth function uniformly, that is, |g − gε|∞ ≤ Cε. This can be done by gε := g ∗ ρε

where {ρε}ε is a family of mollifiers. Because g is Lipschitz on x and 1
2 -Hölder on t, we

have

|∂tgε|∞ ≤ ε−1, |Dgε|∞ ≤ C, and |D2gε|∞ ≤ ε−1. (B.3)

Therefore, we write

g(τ̂ , X̂x
τ̂ ) − g(ti , x) = (gε(τ̂ , X̂x

τ̂ ) − gε(ti , x))

+ (g(τ̂ , X̂x
τ̂ ) − gε(τ̂ , X̂x

τ̂ )) + (gε(ti , x) − g(ti , x)).

Observe that since |gε − g|∞ ≤ Cε, one has

∣∣∣∣∣Eti ,x

[
(gε(τ̂ , X̂x

τ̂ ) − g(τ̂ , X̂x
τ̂ ))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]∣∣∣∣∣ ≤ Cε,

∣∣∣∣∣Eti ,x

[
(gε(ti , x) − g(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]∣∣∣∣∣ ≤ Cε. (B.4)

In the following steps, we find a bound onEti ,x

[
(gε(τ̂ , X̂x

τ̂
) − gε(ti , x))

∑n−1
j=i Qj+11{tj+1=τ̂ }

]
in terms of T − ti and ε.
Step 3. We apply Itô formula on gε(τ̂ , X̂x

τ̂
) − gε(ti , x):

gε(τ̂ , X̂x
τ̂ ) − gε(ti , x) =

∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs ,

where LX̂ is the infinitesimal generator for the processe X̂. Thus,

Eti ,x

[
(gε(τ̂ , X̂x

τ̂ ) − gε(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]

=
n−1∑
j=i

Eti ,x

[(∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs

)
Qj+11{tj+1=τ̂ }

]
. (B.5)
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We proceed by calculating the term in the above summation for j = n − 1.

Eti ,x

[(∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]

= Eti ,x

[(∫ tn

ti

LX̂gε(s, X̂x
s )ds +

∫ tn

ti

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]

= Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]

+Eti ,x

[(∫ tn

tn−1

LX̂gε(s, X̂x
s )ds +

∫ tn

tn−1

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]
(B.6)

We first bound the second term in the right-hand side in the next step.
Step 4. Since Qtn−1 and 1{tn=τ̂ } are Ftn−1 measurable, the second term in the right-hand side
can be written as

Eti ,x

[(∫ tn

tn−1

LX̂gε(s, X̂x
s )ds +

∫ tn

tn−1

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]

= Eti ,x

[
Qn−11{tn=τ̂ }Etn−1

[(∫ tn

tn−1

LX̂gε(s, X̂x
s )ds +

∫ tn

tn−1

Dgε(s, X̂x
s ) · dWs

)
Pn

]]
,

where Etj
[·] = E[·|Ftj

]. Notice that we can write Pn = 1 +h
1
2 βn−1 · ∫ tn

tn−1
dWs +h−1αn−1 ·∫ tn

tn−1
(Ws − Wtn−1)dW T

s . Thus, one can calculate

Etn−1

[(∫ tn

tn−1
LX̂gε(s, X̂x

s )ds + ∫ tn

tn−1
Dgε(s, X̂x

s ) · dWs

)
Pn

]
using Itô isometry and the fact

that the expected value of stochastic integrals is zero:

Etn−1

[(∫ tn

tn−1

LX̂gε(s, X̂x
s )ds +

∫ tn

tn−1

Dgε(s, X̂x
s ) · dWs

)
Pn

]

= Etn−1

[∫ tn

tn−1

LX̂gε(s, X̂x
s )ds + h

1
2 βn−1 ·

∫ tn

tn−1

Dgε(s, X̂x
s )ds

+h−1

∫ tn

tn−1

αn−1Dgε(s, X̂x
s ) · Wsds

]

Because of (B.4), the first two term in the above are bounded by C(h + h

ε
). The third

term can be calculated by using (2.6)

Etn−1

[∫ tn

tn−1

αn−1Dgε(s, X̂x
s ) · Wsds

]
=

∫ tn

tn−1

αn−1Etn−1[Dgε(s, X̂x
s ) · Ws]ds
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By (2.7), we have Etn−1[Dgε(s, X̂x
s )Ws] = sEtn−1[D2gε(s, X̂x

s )] which is bounded by
C s

ε
. Thus,

∣∣∣∣∣Etn−1

[∫ tn

tn−1

αn−1Dgε(s, X̂x
s ) · Wsds

]∣∣∣∣∣ = C

ε

∫ tn

tn−1

sds = Ch2

2ε
.

Therefore,

Etn−1

[(∫ tn

tn−1

LX̂gε(s, X̂x
s )ds +

∫ tn

tn−1

Dgε(s, X̂x
s ) · dWs

)
Pn

]
≤ Ch(1 + ε−1).

Step 5. Because {Qj }n

j=i
is a martingale and 1{tn=τ̂ } is Ftn−1 -measurable, one can write the

first term in the right-hand side of (B.6) as

Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
Qn1{tn=τ̂ }

]

= Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
1{tn=τ̂ }Etn−1[Qn]

]

= Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
Qn−11{tn=τ̂ }

]
,

Thus, from (B.5) we have

∣∣∣∣∣Eti ,x

[
(gε(τ̂ , X̂x

τ̂ ) − gε(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]∣∣∣∣∣ ≤ Ch(1 + 1

ε
)

+
∣∣∣∣∣

n−2∑
j=i

Eti ,x

[(∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs

)
Qj+11{tj+1=τ̂ }

]

+Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
Qn−11{tn=τ̂ }

]∣∣∣∣
= Ch(1 + 1

ε
) +

∣∣∣∣∣
n−3∑
j=i

Eti ,x

[(∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs

)
Qj+11{tj+1=τ̂ }

]

+Eti ,x

[(∫ tn−1

ti

LX̂gε(s, X̂x
s )ds +

∫ tn−1

ti

Dgε(s, X̂x
s ) · dWs

)
Qn−11{tn−1≤τ̂ }

]∣∣∣∣ .

By repeating the argument in Step 3 and Step 4 inductively over k = n − 1, · · · , i + 1,
one can write the above as
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[
(gε(τ̂ , X̂x

τ̂ ) − gε(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]∣∣∣∣∣ ≤ C(n − k)h(1 + 1

ε
)

+
∣∣∣∣∣

k−2∑
j=i

Eti ,x

[(∫ τ̂

ti

LX̂gε(s, X̂x
s )ds +

∫ τ̂

ti

Dgε(s, X̂x
s ) · dWs

)
Qj+11{tj+1=τ̂ }

]

+Eti ,x

[(∫ tk

ti

LX̂gε(s, X̂x
s )ds +

∫ tk

ti

Dgε(s, X̂x
s ) · dWs

)
Qk1{tk≤τ̂ }

]∣∣∣∣ .

Specially for k = i + 1 (the term containing
∑k−2

j=i disappears), we have

∣∣∣∣∣Eti ,x

[
(gε(τ̂ , X̂x

τ̂ ) − gε(ti , x))

n−1∑
j=i

Qj+11{tj+1=τ̂ }

]∣∣∣∣∣ ≤ C(n − i − 1)h(1 + 1

ε
)

+Eti ,x

[(∫ ti+1

ti

LX̂gε(s, X̂x
s )ds +

∫ ti+1

ti

Dgε(s, X̂x
s ) · dWs

)
Qi+11{ti+1≤τ̂ }

]∣∣∣∣
≤ C(n − i)h(1 + 1

ε
) = C(T − ti)(1 + ε−1).

Step 6. By using (B.4) and the bound found in Step 5 in (B.2), one has

|vh(ti , x) − g(ti , x)| ≤ C(ε + T − ti

ε
+ T − ti).

By choosing ε = √
T − ti , we conclude that

|vh(ti , x) − g(ti , x)| ≤ C
√

T − ti .

Then, the result follows from x-Lipschitz continuity and t- 1
2 -Hölder continuity of g.

The authors are grateful to Xavier Warin and anonymous referees for their helpful comments and
suggestions.
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