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Abstract Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with
collisionless bow shocks. They are typically formed when the normal component of the motional
(convective) electric field points toward the embedded current sheet on at least one of its sides. The core
region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field.
In this paper, we report observations of possible HFA-like events at Mercury identified over a course of two
planetary years. Using data from the orbital phase of the MESSENGER mission, we identify a representative
ensemble of active current sheets magnetically connected to Mercury’s bow shock. We show that some of
these events exhibit magnetic and particle signatures of HFAs similar to those observed at other planets,
and present their key physical characteristics. Our analysis suggests that Mercury’s bow shock does not only
mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration
and heating as predicted by previous numerical simulations. Together with earlier observations of HFA
activity at Earth, Venus, Mars, and Saturn, our results confirm that hot flow anomalies could be a common
property of planetary bow shocks and show that the characteristic size of these events is controlled by the
bow shock standoff distance and/or local solar wind conditions.

1. Introduction

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [Solomon et
al., 2001] provides a deep insight into the structure and dynamics of various plasma regions surrounding
Mercury. The data reveal a rather active plasma environment which is in many respects unique within
our solar system. The magnetosphere of Mercury has been intensively studied in the context of tail and
magnetopause reconnection, magnetic flux transport, ultralow-frequency (ULF) waves and oscillations,
propagating dipolarization fronts, and other phenomena [see, e.g., Anderson et al., 2008; Slavin et al., 2008,
2009a, 2009c; Boardsen et al., 2009; Slavin et al., 2010; Sundberg et al., 2010, 2012]. It has been shown that the
local interplanetary medium surrounding the planet exhibits turbulent variability over both magnetohydro-
dynamic (MHD) and kinetic plasma scales [Korth et al., 2010; Uritsky et al., 2011]. This broadband variability
should have a significant impact on the Hermean magnetosphere and its response to the solar wind driver.

The present paper focuses on dynamic discontinuities in the Hermean foreshock associated with kinetically
active current sheets exhibiting magnetic signatures of hot flow anomalies (HFAs) [Schwartz et al., 1985;
Thomsen et al., 1986]. Using the first 180 days of MESSENGER operation after its orbital insertion, we identify
a set of interplanetary current sheets magnetically connected to the bow shock. We investigate the influ-
ence of these events on magnetic field variability in the adjacent plasma regions in the form of ULF waves in
quasi-parallel shock configurations. In the absence of reliable particle measurements, final classification of
the detected current sheets as HFAs is not possible. This uncertainty is likely to be resolved by the upcoming
BepiComlombo mission [see, e.g., Milillo et al., 2005, and references therein].

The paper is organized as follows. In section 2, we present a concise review of HFA observations in planetary
bow shocks and summarize magnetic and kinetic signatures of HFA events. Section 3 describes the method-
ology of our study. Section 4 reports case studies of several candidate HFA events and several examples of
active helio current sheets not interacting with Mercury’s bow shock. Section 5 reports statistical properties
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Figure 1. Schematic trajectories of solar wind ions reflected from
the bow shock surface into a heliospheric current sheet, with the
convection electric field directed away and toward the current sheet.
In the former case, the ions gyrate away from the sheet and quickly
escape from the contact region; in the latter case, the reflected
particles gyrate toward the current sheet and move along it giving
rise to a particle beam counterstreaming with the solar wind.

of the observed events including their location,
geometry, duration, relative occurrence rates, and
other characteristics. Section 6 summarizes the
obtained results.

2. Hot Flow Anomalies in Planetary
Foreshocks

Collisionless planetary bow shocks do not only
mediate the flow of supersonic plasma but also
provide conditions for particle acceleration and
heating. They can energize, decelerate, and deflect
solar wind plasma allowing it to flow through the
magnetosheath and around the magnetosphere
[Omidi and Sibeck, 2007]. For certain shock geome-
tries, the inflowing solar wind plasma can partly
return to the upstream region. The interaction
between this counterstreaming particle popula-

tion and the inflowing plasma leads to various plasma instabilities and waves which may effectively energize
ions and electrons [Eastwood et al., 2005].

For steady solar wind conditions, the large-scale phenomenology of the foreshock can be organized by
the angle 𝜃B∶BS between the upstream magnetic field and the bow shock normal, with the quasi-parallel
geometry (𝜃B∶BS < 40◦) producing the most extended and dynamic foreshock system populated by back-
streaming ions. Changes in the interplanetary magnetic field direction give rise to a variety of small-scale
and/or transient foreshock phenomena.

HFAs represent a subset of solar wind discontinuities (rotational or tangential) interacting with the bow
shock [Schwartz et al., 1985; Thomsen et al., 1986; Schwartz et al., 2000; Billingham et al., 2011]. They are
formed when the normal component of motional electric field points toward the embedded current sheet
on at least one of its sides [Schwartz et al., 2000]. The core regions of HFAs typically contain hot and highly
deflected ion flows often described by nearly Maxwellian and isotropic particle distributions and rather low
and turbulent magnetic fields. The direction of bulk plasma flows in HFAs can differ significantly from that of
the ambient solar wind plasma.

The change in the flow velocity in the interior of HFAs relative to the ambient foreshock region is caused
by the reflection of solar wind particles from the bow shock. As demonstrated by test particle and hybrid
simulations [Burgess, 1989; Thomas et al., 1991], the behavior of the reflected ions depends on the motional
electric field orientation (see Figure 1). When the convection electric field points away from the sheet, the
ions also move away from the current sheet. Once they encounter the bow shock again, they leave the inter-
action region. In the opposite case, when the convection electric field is directed toward the current sheet,
the reflected particles gyrate toward the current sheet on both sides. The returning reflected particles con-
verge on the sheet and results in an ion beam which counterstreams with the ambient solar wind plasma.
This process leads to a formation of HFAs if several additional conditions are met.

Since the interaction process, channeling the ions along the current sheet, occurs on the gyration scale of
the reflected particles, it is essential that the thickness of the current sheet is comparable with this scale: for
thicker current sheets, the trapping effect can be too weak to create a deflected particle flow. In addition,
the speed of the transit of the HFA-bow shock intersection must be sufficiently low for the ions to be chan-
neled along the shock [Schwartz et al., 2000]. Global electromagnetic hybrid simulations show that HFAs
are only formed during the interaction of a solar wind discontinuity with the quasi-parallel side of the bow
shock [Omidi and Sibeck, 2007]. The absence of HFAs on the perpendicular side is due to the inability of the
reflected ions to escape into the solar wind, as is required by the gyrokinetic mechanism described above.

A prolonged interaction with a quasi-parallel bow shock leads to the development of a flux of suprathermal
ions within the core region of HFA events [Schwartz et al., 2006]. The energy of the relative streaming of the
reflected particle beam with the ambient solar wind flow is converted into thermal energy in various ways;
see, e.g., Zhang et al. [2010] and references therein.
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The heated plasma expands against the surrounding medium, leading to a low density and magnetic field
strength core with compressed regions on both sides of the cavity [Thomsen et al., 1988; Zhang et al., 2010].
Outside the hot core region there are compressed plasma regions consisting of shocked solar wind plasma
driven by the expansion of the heated plasma.

The hot central region of fully developed HFAs typically shows isotropic, near-Maxwellian velocity distri-
butions for both ions and electrons. The thermalized interiors of the HFAs are likely to be due to the beam
instability [Tjulin et al., 2008] and indicate a strong coupling between various ion components, which is still
not quite understood. Transient stages of HFA thermalization can be accompanied by the electromagnetic
right-hand resonant ion beam instabilities and lower hybrid waves which are the likely source of electron
heating inside the HFAs [Zhang et al., 2013]. While the electron content of the HFAs is energetically less
important, it can carry a critical piece of information about the heating mechanism acting in the core of the
current sheet. Recent multispacecraft observations [Hasegawa et al., 2012] suggest the possibility of mag-
netic reconnection within the magnetosheath part of HFAs. If such reconnection does take place it may play
a significant part in the acceleration of HFA electrons.

The central region of an HFA is often quite noisy, with a mixture of intervals of depressed and enhanced
B-field indicating a presence of embedded current sheets.

The first observations of HFAs near Earth were reported by Schwartz et al. [1985] and Thomsen et al. [1986]
based on the data from the Active Magnetospheric Particle Tracer Explorers and the International Sun - Earth
Explorer missions. Subsequent studies have shown that HFA events, also known as hot diamagnetic cavi-
ties [Thomsen et al., 1986], appear systematically in the terrestrial foreshock, with the average occurrence
rate of about three events per day [Schwartz et al., 2000]. They typically last for a few minutes and have spa-
tial scales of the order of one Earth’s radius. HFAs can generate considerable perturbations of the dynamic
pressure in the upstream solar wind [Sibeck et al., 1999; Eastwood et al., 2008] and induce significant magne-
tospheric response, including displacement of the nominal magnetopause position accompanied by auroral
brightening [Sibeck et al., 1999], riddling of peripheral boundary layers [Savin et al., 2012], transient ULF
geomagnetic pulsations [Eastwood et al., 2011], and other effects.

HFA activity has also been detected at several other planets. Mars Global Surveyor observed a HFA-like
hot diamagnetic cavity upstream of the Martian foreshock [Øieroset et al., 2001]. More recently, HFAs were
found at Saturn’s bow shock based on Cassini data [Masters et al., 2008b, 2009]. Magnetic signatures of HFA
events at Venus were first reported by Slavin et al. [2009b] using MESSENGER magnetometer data. The pres-
ence of HFAs at Venus was later confirmed by magnetic, electron, and ion observations from Venus Express
[Collinson et al., 2012].

No HFA-like events at Mercury have been reported until now, owing to technical limitations of available
particle detectors onboard Mariner 10 and MESSENGER preventing unambiguous identification of hot coun-
terstreaming ions. In this study, we attempt to overcome this limitation by conducting an in-depth analysis
of magnetic field geometry and turbulence associated with candidate HFA events upstream of the Her-
mean bow shock. Some of these events show signatures of HFA-like active current sheets similar to those on
other planets.

3. Data and Methods
3.1. MESSENGER’s Orbit and Data
We investigated the first 180 days of the MESSENGER orbital operations (24 March to 19 September 2011)
corresponding to two Mercury years. During this time, MESSENGER followed a highly elliptical orbit (periap-
sis ∼200 km, apoapsis ∼15,193 km, inclination 82.5◦) enabling observations of a significant part of Mercury’s
foreshock both in the dawn and dusk sectors.

The magnetic field data were obtained from the MAG magnetometer [Anderson et al., 2007]. The three mag-
netic field components were measured with a three-axis, ring-core fluxgate detector at a typical sampling
period Δt = 50 ms. MAG data were used to locate interplanetary active current sheets connected with
the Hermean bow shock, characterize their dynamics and geometry in terms of previous HFA studies, and
identify likely instances of HFA events.

We also used the data from the Fast Imaging Plasma Spectrometer (FIPS) [Andrews et al., 2007] whenever
the particle observations were available. The ion plasma instrument FIPS onboard MESSENGER measures
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Figure 2. (a) Illustration of the threshold-based detection of an HFA event in the Hermean foreshock. (b) Spatial structure of the event.
See text for details.

ions in the energy per charge range of 50 eV/q to 20 keV/q and in the mass per charge range of 1 amu/q to
40 amu/q. The FIPS spectral data used in this study were averaged over the angular field of view of 1.4 Ω, of
which 0.4 Ω is obscured by the solar array panels, spacecraft body, and heat shield [Raines et al., 2011], so
angular distribution information is not yet available for this data type. The sunshade mounted on the space-
craft body nominally blocks observation of the centroid of the solar wind ion velocity space distributions
by FIPS. The most limiting factor in identifying HFA signatures in FIPS observations, however, is the time res-
olution. The time required for FIPS to complete an energy scan is 64 s or 8 s, depending on the instrument
operational mode.

Since the FIPS count rates are a function of plasma drift velocity, temperature, and orientation, these data
were interpreted with caution. We used FIPS observations to look for the presence of ions with energies
atypical of the expected solar wind, leaving a more rigorous quantitative analysis for future studies.

The Mercury Solar Orbital (MSO) coordinate system is used for all vector quantities, with XMSO directed from
the center of the planet toward the Sun, ZMSO being perpendicular to Mercury’s orbital plane and pointing
toward the north celestial pole, and YMSO completing the right-handed system.

3.2. Initial Event Detection
The relatively low time resolution and the obscured field of view reduces the ability of FIPS instrument to
provide information on transient localized plasma processes near Mercury. In view of this, our event detec-
tion was based on MAG data. The core regions of HFAs usually contain intervals of considerable magnetic
depression due to the high particle pressure exerted by the hot ions. We used this signature as the starting
point of our search for Mercury’s HFAs, followed by the analysis of more subtle features including current
sheet geometry and detailed B-field variation, reinforced by the analysis of available particle data.

Figure 2 illustrates our event detection criteria and the associated time intervals. The hot core region of the
event shown with a yellow rectangle is embedded in a cooler plasma medium which is encountered before
and after the event. These encounters are labeled as the presector (blue rectangle) and the postsector
(green rectangle), correspondingly. The red magnetic shoulders surrounding the core region are indicative
of terrestrial HFA events and are a signature of plasma compression caused by an expansion of the core HFA
region. Such magnetic shoulders can be seen in a protoform in some of the Mercury events reported here,
although we were unable to find any Mercury events with fully developed compression edges.

The intervals of the depressed magnetic field were identified using the smoothed magnetic field B̂

B̂(ti) =
1
w

i+w∕2−1∑
k=i−w∕2

B(tk) (1)

subjected to the threshold condition

B̂(t) < Bth, (2)
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where w is the size of the moving window in time step units. In the presence of fast fluctuations (timescale
𝜏 ≪ wΔt), the smoothed signal B̂(t) enables more reliable detection of threshold crossings compared to
the raw magnetic signal [Pulkkinen et al., 2006a, 2006b]. Low-frequency fluctuations with 𝜏 ≥ wΔt require
additional attention since they can cause B̂ to cross the threshold more than once during the same event.
Such fluctuations are commonly observed in the core HFA region where their amplitude can reach the field
strength in the surrounding plasma [see, e.g., Paschmann et al., 1988]. To properly attribute multiple Bth

crossings due to such fluctuations to a single magnetic depression event, we merged together transient
magnetic decreases separated by a time gap 𝛿tg of less than 30 s, with the initial smoothing interval of 1 s
(w = 20).

After a depressed B-field event is detected, we identified three main time intervals corresponding to the
observations in the core region of the event (t ∈ [t′

0
, t′′

0
]) as well as in its presector (t ∈ [t′

1
, t′′

1
]) and the

postsector (t ∈ [t′
2
, t′′

2
]). The boundaries of the three intervals were calculated as follows (see also Figure 2):

t′
0
= min{t|B̂(t) < Bth} (3)

t′′
0
= max{t|B̂(t) < Bth} (4)

t′
1
= t′

0
− 𝛿te1 − 𝛿tpre (5)

t′′
1
= t′

0
− 𝛿te1 (6)

t′
2
= t′′

0
+ 𝛿te2 (7)

t′′
2
= t′′

0
+ 𝛿te2 + 𝛿tpost. (8)

Here Bth is the detection threshold, 𝛿tpre (𝛿tpost) is the duration of the presector (postsector), and 𝛿te1 and
𝛿te2 are the sizes of the edge regions flanking the core region from either side [Schwartz, 1995]. The default
values 𝛿tpre = 𝛿tpost = 30 s and 𝛿te1 = 𝛿te2 = 10 s were used for the automatic identification of the three
regions in the entire set of the detected events. The region boundaries of the events showing clear magnetic
signatures of active current sheets were then readjusted by manually taking into account a particular shape
of the B-field variation. The locations of the events were evaluated based on the average MSO position of
the core region; the event duration T was calculated from the time boundaries of this region:

T = t′′
0
− t′

0
. (9)

3.3. Magnetic Geometry
For each magnetic field depression event, we computed the current sheet normal as the cross product
between magnetic field before and after the event:

𝐧CS = ±𝐁1 × 𝐁2, (10)

in which 𝐁1 and 𝐁2 are the average magnetic field vectors in the presector and postsector, correspondingly.
The sign ambiguity was resolved by requiring 𝐧CS ⋅ 𝐕SW < 0, as appropriate for HFA studies [Schwartz et al.,
2000]. The solar wind velocity 𝐕SW was assumed to be strictly antisunward and hence parallel to the XMSO axis.
We also determined the shortest (projection) distance dBS from the core region of the event to the model
bow shock surface describing the average position of Mercury’s bow shock for a solar wind fast mode Mach
number ∼3 [Slavin et al., 2009a]. The same model was used to calculate the local bow shock normal 𝐧BS

attached to the projection point.

As stated above, a key HFA formation condition is that the solar wind convection (motional) electric field
𝐄 = −𝐕SW × 𝐁 points into the underlying discontinuity on at least one side (see Figure 2, right). This
condition was verified by computing the angles 𝜃E1∶CS and 𝜃E2∶CS between the current sheet normal and
the average electric field in the presector and postsector, respectively. We also computed the angle 𝜃B1∶B2

between the magnetic vectors 𝐁1 and 𝐁2, the angles 𝜃B1∶BS and 𝜃B2∶BS created by these vectors with the local
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bow shock normal 𝐧BS, the angle 𝜃CS∶BS between 𝐧CS and 𝐧BS, and the angles 𝜃SW∶CS and 𝜃SW∶BS between the
solar wind flow direction and each of the two normals.

The magnitude of the magnetic depression events was measured by two parameters—the normalized field
jump across the current sheet [Schwartz et al., 2000],

ΔB12 =
|B1 − B2|

max(B1, B2)
, (11)

and the maximum normalized amplitude of the field decrease in the core region,

ΔB0 =
B12max − B0min

max(B1, B2)
, (12)

in which B12max is the largest B-field magnitude observed in both presector and postsector and B0min is the
smallest field inside the core region.

To quantify the efficiency of the current sheet-bow shock interaction, we estimated the ratio between
the transit velocity of the event, Vtr, and the local gyrovelocity of solar wind protons, Vg [Schwartz et al.,
1983, 2000]:

|||||
Vtr

Vg

|||||1,2

=
cos(𝜃SW∶CS)

2 cos(𝜃SW∶CS) sin(𝜃B1,2∶CS) sin(𝜃CS∶BS)
, (13)

where indexes 1 and 2 apply to presector and postsector as usual.

The parameters listed above were used to select candidate HFA events from the automatically detected set
of magnetic field depression events satisfying the threshold condition (2). Final selection of the HFA-like
events involved manual validation focused on the detailed shape of the magnetic field variation before,
during, and after the event, statistical properties of kinetic-scale magnetic field fluctuations indicative of an
ion heating, and ion energy spectra.

3.4. Fluctuation Analysis
To investigate statistical properties of magnetic field fluctuations associated with the magnetic depression
events, we used the method of higher-order structure function (SF) generalized by Uritsky et al. [2011] for
the case of strongly nonstationary signals. Using this tool, we compared magnetic turbulence inside and
outside the detected events and evaluated the ion crossover scale separating fluid-like and kinetic-like
modes of behavior of solar wind plasma [Schekochihin et al., 2007; Sahraoui et al., 2009; Uritsky et al., 2010].

The time-domain higher-order SF is defined as

Sq(𝜏) = ⟨|𝛿B𝜏 |q⟩ , (14)

in which 𝛿B𝜏 are the differences of the studied turbulent field B measured at time lag 𝜏 , ⟨⋅⟩ denotes aver-
aging over all pairs of points separated by this lag, and q is the order. The SF exponents 𝜁q estimated
from the scaling ansatz Sq(𝜏) ∝ 𝜏𝜁q provide a detailed description of the turbulent regime under study.
The second-order SF S2(𝜏) plays a special role in statistical mechanics of turbulent media as a proxy to
the band-integrated wave number Fourier spectrum [Biskamp, 2003]. The power law exponent 𝛽 of the
spectrum is related to the SF exponent through 𝜁2 = 𝛽 − 1 under the assumption of linear space-
time coupling.

Our previous analysis of MESSENGER MAG data using this approach has shown that the Hermean magne-
tosphere, as well as the surrounding region, are affected by non-MHD effects introduced by finite sizes of
cyclotron orbits of the constituting ion species [Uritsky et al., 2011]. Kinetic-scale magnetic fluctuations seem
to play a significant role in Mercury’s magnetosphere up to the largest resolvable timescale dictated by the
signal nonstationarity.

In order to study transient and/or spatially inhomogeneous solar wind fluctuations, we computed local SF
estimates made within a sliding window of width W . For each sliding window position, we computed a set of
temporal SFs according to equation (14), with q = 2 and 𝜏 < W∕2. The time-dependent shape of the result-
ing two-dimensional windowed structure function S2(𝜏, t) was represented as a second-order time-period
scalogram 𝜁2(𝜏, t):

𝜁2(𝜏, t) =
𝜕 log

[
1

W−𝜏+1

∑t+W∕2−𝜏
t′=t−W∕2

|||B̃(t′) − B̃(t′ + 𝜏)|||
2]

𝜕 log 𝜏
. (15)
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Here B̃(t′) = B(t′)−𝜙(t, t′,Δ) is the locally detrended magnetic signal, with 𝜙 being the quadratic polynomial
fit to B over the windowed time interval t′ ∈ [t − W∕2, t + W∕2], 𝜏 is the timescale, and t is the running time
variable given by the central position of the sliding window. We used quadratic detrending as the simplest
way to compensate for the nonstationary trends reflecting spatial inhomogeneity of the traversed plasma
structures. Following the approach proposed by Matthaeus and Goldstein [1982], the stationarity of the sig-
nal was verified based on the ergodic theorem for weakly stationary random processes [Monin and Yaglom,
1975]. The partial derivative in the above equation is evaluated from the local least squares linear regression
slope of the S2(𝜏) dependence in the log-log coordinates for each sliding window.

The continuous SF scalogram technique defined by equation (15) is essentially different from the widely
used wavelet-based or Fourier transform-based dynamic spectrogram techniques [see, e.g., Alexandrova et
al., 2006; Boardsen et al., 2009] as it allows analysis of temporal variations of the scaling structure of magnetic
fluctuations rather than their spectral amplitudes. As shown in the next section, the SF scalogram provides
evidence for drastically different turbulent plasma environments inside and outside the HFA events. In the
absence of relevant particle data, this piece of information turns out to be particularly useful.

Using the SF scalogram analysis, we measured the largest temporal scale 𝜏i at which the power law slope of
locally estimated SF is consistent with ion-kinetic 𝜁2 values, typically in the range 1.3–1.5 depending on the
underlying dispersive wave mode (usually kinetic Alfvén waves or whistler branches with secondary lower
hybrid activity) and the turbulence type (i.e., weak or strong); see, e.g., Yordanova et al. [2008], Eastwood et
al. [2009], and Sahraoui et al. [2009]. Compressional corrections further increase the kinetic-scale exponents
[Alexandrova et al., 2008]. For practical purposes, it is sufficient to use a simplified condition 𝜁2 ≈ 1 to identify
𝜏i [Uritsky et al., 2011].

If the Taylor frozen-in flow condition was fulfilled, the ion scale 𝜏i could be used to evaluate the gyroradius
𝜌i and the temperature Ti of the leading ion species [Uritsky et al., 2011]. However, the applicability of the
Taylor hypothesis to HFAs is questionable since the bulk flow speed in these regions can be quite small.
Under this condition, no accurate inferences about ion distribution temperature or heating can be made
about the interiors of candidate HFAs. For this reason, we do not attempt to estimate ion temperature based
on the fluctuation analysis and will interpret the timescale 𝜏i as a stochastic parameter.

4. Case Studies

In this section, we present a subset of magnetic field depression events exhibiting magnetic and kinetic
signatures consistent with HFA behavior, as compared to several events associated with passages of helio
current sheets (HCSs). All the events were initially detected automatically, after which the boundaries of
their presector, postsector, and core sector were adjusted manually to better match their magnetic field
profiles not captured by the default definitions. The parameters of the studied HFA-like and non-HFA-like
HCSs events are summarized in Tables 1 and 2, correspondingly.

4.1. HFA-Like Events
Ten HFA-like events were identified during the studied 180 day period. Below we provide detailed portraits
of four of these events for which FIPS spectra were available.

Event 1 (Figure 3, left) occurred on 16 April 2011 just outside of the bow shock boundary, close to the
noon-midnight meridian plane. The event was centered at about 19:00:22 UT and characterized by a normal
motional electric field component pointed toward the current sheet in the postsector only (𝜃E2∶CS = 151◦).
Both leading and trailing edges of the event showed mild magnetic field enhancements, with the trail-
ing edge lasting twice as long compared to the leading edge (respectively, ∼3 and ∼7 s, or ∼1400 and
3200 km at a nominal solar wind speed of 450 km/s). The more pronounced trailing edge may reflect a more
favorable E-field orientation on that side [Thomsen et al., 1993]. The described features coexist with an irreg-
ular ULF oscillation which precludes their more accurate analysis. The event shows a small B-field rotation
angle 𝜃B1∶B2 of ∼20◦ and a quasi-parallel magnetic field alignment relative to the local bow shock normal.
It is accompanied by a transient reversible change in the 𝜃B∶BS angle. The core region of the event shows
significantly reduced B-field magnitude (ΔB0∼1.1) lasting for about 20 s and a noticeably sharper trailing
wall consistent with stronger plasma compression expected on the side exposed to the inwardly directed
motional electric field. The normal magnetic field is close to 0, stays fairly constant inside the core region,
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Table 1. Parameters of HFA-Like Events

Event 1 2 3 4 5 6 7 8 9 10

mm/dd 04/16 04/16 04/20 04/21 05/04 05/04 05/07 08/13 08/13 08/13
(t′0 + t′′0 )

2
19:00:20 19:09:10 04:50:44 03:52:52 06:08:30 18:26:42 04:46:02 04:28:04 04:29:12 02:22:48

XMSO −0.96 −0.86 1.58 2.20 −0.24 −0.26 −1.29 −3.08 −3.09 −2.13

YMSO 0.12 −0.01 −1.97 −3.55 −3.78 −3.47 −4.45 −2.42 −2.43 −1.23

ZMSO −4.50 −4.73 0.42 −1.77 −1.04 −0.58 −3.98 −5.70 −5.69 −6.65

dBS −0.56 −0.80 −0.50 −2.21 −0.52 −0.19 −1.60 −0.90 −0.88 −1.86

𝜃B1∶B2 18 158 44 81 63 73 2 36 50 32

𝜃E1∶CS 155 37 46 43 52 66 27 74 67 84

𝜃E2∶CS 151 148 108 109 103 152 24 143 142 125

𝜃B1∶BS 159 88 160 136 41 52 69 54 34 40

𝜃B2∶BS 174 94 154 141 22 21 70 25 79 72

𝜃CS∶BS 94 8 90 88 96 96 24 111 112 99

𝜃SW∶CS 112 119 120 130 134 114 98 110 115 123

ΔB12 0.20 0.05 0.41 0.13 0.08 0.09 0.15 0.08 0.15 0.09

ΔB0 1.09 0.77 2.06 0.48 1.02 1.07 0.62 0.37 0.37 0.28

Δt, s 20 21 18 12 10 6 287 17 13 4

|Vtr∕Vg|1 0.98 2.87 0.92 0.64 0.86 0.42 0.35 0.48 0.86 0.88

|Vtr∕Vg|2 3.83 2.88 0.71 0.71 1.46 0.89 0.35 0.90 0.50 0.60

and is 3–5 times lower than the tangential B-field both in the core and in the surrounding plasma environ-
ment, an indication of a nearly perpendicular shock [Paschmann et al., 1988]. The jump in the tangential field
BT by a factor of ∼2.5 at the inner wall of the trailing edge implies a jump in the plasma density as required
for such shocks.

The core of event 1 shows a very clear and well-localized enhancement of kinetic-scale magnetic turbulence
(Figure 3, eighth panel on the left), with the ion-kinetic crossover marked by the yellow color in the cho-
sen color coding rising up to 𝜏i ∼2 s during the event. The kinetic crossover is not resolved by the MAG

Table 2. Parameters of Non-HFA Events

Event 11 12 13 14 15 16 17 18 19

mm/dd 04/11 04/13 04/21 04/21 05/06 05/11 07/13 07/27 08/13
(t′0 + t′′0 )

2
19:12:18 11:30:20 03:13:34 20:29:00 17:25:30 04:11:09 00:46:29 23:24:28 01:12:30

XMSO −0.06 3.02 2.30 −0.55 −1.04 −2.20 2.91 −0.67 −1.37

YMSO −0.74 −2.74 −3.92 −0.40 −4.41 −3.76 −2.87 0.56 −0.40

ZMSO −5.66 −5.81 −2.88 −5.49 −2.94 −5.27 −2.08 −5.04 −6.50

dBS −2.07 −4.54 −2.89 −1.62 −1.18 −1.57 −2.47 −1.20 −2.02

𝜃B1∶B2 116 97 170 108 139 123 141 23 38

𝜃E1∶CS 58 26 68 16 53 69 25 19 85

𝜃E2∶CS 153 141 104 144 114 115 157 20 145

𝜃B1∶BS 131 106 81 139 44 23 57 97 65

𝜃B2∶BS 29 52 93 109 98 100 85 91 100

𝜃CS∶BS 67 39 31 105 67 83 105 17 65

𝜃SW∶CS 115 114 138 106 142 153 112 109 112

ΔB12 0.15 0.13 0.52 0.09 0.15 0.26 0.03 0.10 0.42

ΔB0 0.48 0.21 0.88 0.70 0.57 0.36 0.98 0.24 0.54

Δt, s 14 31 10 18 18 9 24 3 23

|Vtr∕Vg|1 0.56 0.50 1.03 0.39 1.12 2.25 0.30 0.99 0.45

|Vtr∕Vg|2 0.83 0.60 1.02 0.27 0.79 0.92 0.25 0.98 0.42
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Figure 3. Magnetic and turbulent signatures of two hot flow anomaly events observed on (left) 16 April 2011 and (right) 20 April 2011. (first panel) Large-scale variations of the
B-field magnitude B, with the black vertical line marking the timing of the event. Zoomed-in plots of the (second panel) Bx , (third panel) By , and (fourth panel) Bz MSO magnetic field
components; (fifth panel) the B-field magnitude B; (sixth panel) the tangential (BT ) and normal (BN) magnetic field components in the current sheet coordinate system determined
using equation (10); (seventh panel) the angle 𝜃E∶CS (black line) between the motional E-field and the current sheet normal, the cone angle 𝜃B (red line) between the magnetic field and
the antisunward direction, and the angle 𝜃B∶BS (blue dotted line) between the magnetic field and the bow shock normal; (eighth panel) the SF scalogram showing temporal evolution
of the second-order structure function exponent 𝜁2 estimated at different temporal scales 𝜏 . The 𝜁2 color coding is the same for all the scalogram plots presented in this paper. Red
dashed vertical lines show the boundaries of the core region, and black solid lines mark the presector and postsector of the event.

instrument in the ambient plasma region, suggesting that 𝜏i was increased by at least a factor of 10 in the
core of this current sheet. The observed change implies a proportional increase of the proton gyroradius
which cannot be explained by the much more modest drop of the average field magnitude during the
event, unless it was accompanied by a plasma heating.

FIPS spectra show clear particle energization associated with this event. The FIPS spectra were averaged
over the instrument’s angular field of view. During the presented observation interval, the FIPS E∕q range
was set to 0.046–13.60 keV/q, and the scan time was 64 s. The color-coded plot in Figure 4 (top) shows the
energy versus time spectrogram of the averaged differential proton flux during event 1. There is noticeable
increase in the ion energy both preceding and following this active current sheet, with the strongest
energization roughly consistent with the position of the core region of the event. Although the low time
resolution of FIPS data prevents a more detailed analysis of the structure of this event, it is sufficient for con-
cluding that a hotter ion population may be present. The arrival directions measured by FIPS are consistent
with the appearance of a beam-like flow, although the statistics are too limited to be analyzed quantitatively.
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Figure 4. (top) Combined plots of FIPS and MAG observations of the hot flow anomaly event 1 shown in Figure 3 (left). The
core region of the event is marked with red vertical lines. (bottom) Left-hand polarized 3–4 Hz wave activity after the event. The
right-hand plot is given in field-aligned coordinates, where B1 is the direction of the mean field over the plotted interval, and B2

and B3 are the transverse components, with the corresponding unit vectors 𝐧𝟏 = [−0.85, 0.51, 0.13], 𝐧𝟐 = [0.52, 0.85, 0.00], and
𝐧𝟑 = [−0.11, 0.066,−0.99].

The angle between the motional electric field and the current sheet stayed almost constant in the presec-
tor of event 1 (Figure 3, left). It began to show transient departures from the original value of ∼150◦ in the
postsector of the event with the motional field being almost parallel to the current sheet plane on several
brief occasions. These rotations had an irregular recurrence period of ∼7−15 s and could be an indication of
unstable plasma conditions which could produce the strong ULF wave oscillations seen a few seconds after
the event. These low-frequency waves had a period of ∼10 s (0.1 Hz), wave amplitude of ∼5−10 nT, a low
level of coherence, and a predominant left-hand polarization. A comparison of the minimum variance direc-
tion and the field-aligned direction suggests a wave normal angle of ∼10−15◦. A second high-frequency
pulsation, around 3–4 Hz, was present simultaneously. These waves were also left-hand circularly polarized
(Figure 4, bottom) and were observed from the edge of the core region until ∼19:07 UT. The wave intensity
was varying on short timescales and had a behavior similar to that of the electromagnetic ion-cyclotron
waves. As the magnetic field in this region is nearly parallel with the bow shock normal, the wave excita-
tion may be driven by backstreaming ions from the bow shock, possibly involving macroscopic current
sheet corrugations and instabilities [Uritsky et al., 2001, 2002; Liu et al., 2011; Liang et al., 2010, 2011], along
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Figure 5. Combined plots of FIPS and MAG observations of the hot flow anomaly event 3 shown in Figure 3 (right). The core region of
the event is marked with red vertical lines.

with escaping hot ions from the HFA, which is consistent with the hot ion population observed over the
wave interval.

Event 3 (Figure 3, right) was observed at 04:50:30–04:51:00 UT on 20 April 2011. This event had properly ori-
ented motional electric fields pointing toward the current sheet on both sides of the event. The event shows
a fairly large difference in the B-field magnitude in the presector and postsector described by ΔB12 ∼0.4
making it an almost certain tangential discontinuity (TD) [Neugebauer et al., 1984]. The magnetic field under-
goes several rapid directional changes inside the core region revealing multiple embedded current sheets.
A significant normal magnetic field component associated with these changes signals an arbitrary orien-
tation of the small-scale current sheets relative to the main current sheet. The finest temporal scale of the
embedded discontinuities is of the order of a tenth of a second which translates into the spatial scale of
∼40–50 km for typical solar wind conditions. These structures have a kinetic origin and could be supported
by several distinct ion populations, deflected at different angles by the bow shock boundary. The intermit-
tent structure of the discussed event resembles short large-amplitude magnetic structures (SLAMS) which
are commonly observed at a quasi-parallel terrestrial bow shock [Schwartz et al., 1992] and recently in the
foreshock of Venus [Collinson et al., 2012]. The structure of event 3 is similar to SLAMS embedded within a
boundary with regions of considerable heating and deceleration. The timescale, polarization parameters,
and other characteristics of SLAMS observed at Earth are suggestive of their growth out of ULF wave packets
[Schwartz et al., 1992] which are commonly found in HFA cavities. The wavefield of less evolved HFAs can be
quite complex [Tjulin et al., 2008]. Event 3 is likely to belong to this category because of its location near the
subsolar point suggesting a recent initial interaction with the Hermean bow shock. All other HFA-like events
considered in this section were located further downstream and therefore had more time to develop, which
may explain their less turbulent core region environment.

The core region of event 3 has well-developed edges with sharp field gradients indicative of strong plasma
compression. In the wake of the event, there is a coherent oscillatory activity with a frequency of about
2 Hz which is ∼10 times higher than the local proton gyrofrequency. The mechanism of this postsector
wave activity which we saw in several other Hermean active current sheets remains to be understood. The
SF scalogram shows a dramatic increase of the ion crossover scale in the core region of the event, up to
∼2 s near the inner side of the trailing edge, which may indicate the presence of a local ion heating. The
scalogram also suggests that the heated and presumably strongly deflected core particle population “leaks”
through the trailing edge into the portion of the postsector adjacent to the event. If this leakage does
take place, it can play an important part in the excitation of a plasma instability underlying the 2 Hz wave
oscillation in this sector.

During event 3, FIPS operated in its fast scanning mode ensuring an 8 s time resolution. At this sampling
time, it is possible to match the heated plasma region with the magnetic signature of the current sheet
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Figure 6. HFA-like events observed on (left) 4 May 2011 and (right) 7 May 2011.

(Figure 5). The presented FIPS spectrogram indicates a substantial plasma heating. In can be seen that the
event is associated with a broadened range of energies (∼100 eV to 10 keV) taking place in the core region
and at the trailing current sheet.

Event 5 (Figure 6, left) was observed on 4 May 2012 during two subsequent MESSENGER orbits. The event
was centered at 06:08:30 UT. Its location is fairly close to the equatorial plane in the dawn foreshock region
with a quasi-parallel magnetic field geometry (𝜃B∶BS ∼20−50◦). The event shows classical compression signa-
tures at the leading and trailing edges consistent with the convection E-field pointed inward on either side
of the current sheets. It also shows pronounced transient heating signature in the SF scalogram coinciding
with the core regions of the events and a significant magnetic field rotation angle of 60–70◦.

Event 5 shows a considerable variation of the magnetic field magnitude in the core region characterized by
a temporal scale of ∼2 s and an estimated size of ∼900 km. According to the SF scalogram, the core region
temperature inside event 5 rises. Overall, event 5 is in a qualitative agreement with the observations of HFAs
at Earth’s quasi-parallel bow shock.

Event 7 was observed on 7 May 2011 between about 04:43:40 and 04:48:30 (Figure 6, right). It has the
longest duration among the detected HFA-like events, with the core region passage lasting for almost 5 min.
The “toward” motional electric field is observed in the presector which also features a small but distinct
compression edge. The plasma content of the core region is significantly nonuniform. According to the fluc-
tuation scalogram, the leading edge is rather sharp and is associated with a transition from a high-frequency
spiky noise (possibly of electrostatic origin [Singh et al., 2007]) outside the event to a cross-scale turbu-
lent cascade observed inside. At the trailing edge, the scaling structure of magnetic fluctuations changes
in reverse order, but the time of this transition is not well defined. Irregular variations of the fluid-kinetic
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Figure 7. Combined plots of FIPS and MAG observations of the HFA-like event 7 shown in Figure 6 (right column). The core region of
the event is marked with red vertical lines.

crossover seen inside the core region confirm the presence of multiple hot plasma layers separated by a sub-
stantially cooler plasma. The hottest ion population was likely to be present near the trailing edge where 𝜏i

reaches 1.0–2.0 s suggesting a significant increase in the ion Larmor radius.

Some of the magnetic field depressions inside the core region of event 7 are associated with considerable
changes in the magnetic field orientation signaling small-scale current sheets. One such embedded struc-
ture was encountered at 04:46:30. It was accompanied by an abrupt 50◦ change of the 𝜃B angle. Another
rotation for an even larger ∼75◦ angle was detected at about 04:47:00. These compact current-carrying
structures can be sites of separate heating events. Some of the local minima in the B-field magnitude are
matched by substantial decreases of the normal component hinting at tangential discontinuities. The
mutual arrangement of the embedded current sheets does not show stable periodicity and is likely to be
shaped by MHD turbulence.

Event 7 is characterized by a weak connection to the bow shock both before and after the core region, with
𝜃B1∶BS ≈ 𝜃B2∶BS ∼70◦, and is located relatively far from the nominal bow shock boundary (dBS ∼1.6RM). The
magnetic field rotation between the presector and postsector is unremarkable. Assuming that the hot core
region is passively advected with the nominal solar wind speed and taking into account the angle 𝜃SW∶CS

between the solar wind flow and the current sheet, the thickness of this HFA is about 7 RM. The velocity ratio
|Vtr∕Vg| is estimated to be ∼0.35 before and after the event, implying that the transit speed was sufficiently
slow for the ions to be transported along the shock. The long interaction time could help the development
of this event in the quasi-perpendicular bow shock geometry untypical for HFAs.

Ion energization during event 7 is confirmed by FIPS measurements (Figure 7). The most energetic ion pop-
ulation was encountered close to the center of the core region, between 04:46:10 and 04:47:25. The heated
plasma extends beyond the trailing event edge into the postsector, in agreement with the washed-out
trailing edge position on the SF scalogram as discussed above.

Event 8 was observed on 13 August 2011 (Figure 8), with the core region center at ∼04:28:00. It features
favorable orientation of the motional E-field at both sides of the current sheet. The postsector shows a
somewhat better magnetic connection with the bow shock compared to the presector. The SF scalogram
demonstrates a clear-cut fluctuation signature of ion temperature enhancement similar to that seen in
other Hermean HFAs. The compression shoulders are missing. Based on this, event 8 could be classified as a
proto-HFA event rather than a fully developed HFA.

The FIPS energy spectrogram of event 8 (Figure 9) is much like that of event 3. The spectrogram was
obtained in the fast scanning mode and demonstrates a wide range of ion energies ranging from 100 eV to
about 2 keV. This behavior is atypical for the solar wind and is consistent with the presence of a local plasma
heating. The hotter postsector of event 8 is in an agreement with the asymmetric shape of the turbulence
scalogram predicting a larger ion-kinetic scale in that sector compared to the presector.
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Figure 8. HFA-like event observed on 13 August 2011.

4.2. Non-HFA Active Current Sheets
Our algorithm has detected nine HCS events which show no clear signatures of HFA activity. Table 2 provides
a summary of physical and geometric characteristics of these events. These non-HFA current sheets failed
to develop HFA signatures by the time of their encounter with MESSENGER despite the proper (toward)

Figure 9. Combined plots of FIPS and MAG observations of the HFA-like event 8 shown in Figure 8. The core region of the event is
marked with red vertical lines.
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orientation of the presector and postsector convection electric fields and a significant B-field depression in
the middle.

The non-HFA events presented in Table 2 have no compressed leading or trailing edges characteristic of
HFAs. They feature a large-scale reorganization of the field geometry across the current sheet. The direc-
tional E-field change across these current sheets is likely to represent a large-scale solar wind structure
rather than a local plasma kinetics and is more indicative of freely propagating helio current sheet than
of kinetically active current sheet interacting with the bow shock. All non-HFA helio current sheets were
observed at a larger distance from the model bow shock compared to all but one HFAs on our list. The
majority of the HCS events featured quasi-perpendicular magnetic field orientation relative to the local bow
shock normal. These current sheets were likely to be magnetically disconnected from the bow shock, which
prevented their evolution into HFAs.

Compared to HFA-like events, the current sheets presented in this subsection are described by a larger
B-field rotation angle accompanied by a smaller relative change of the field magnitude indicative of rota-
tional discontinuities [see Schwartz et al., 2000, and references therein]. The fluctuation signatures of HCS
events are also substantially different from those observed for the HFA events. In helio current sheets, the
increase of the ion-kinetic crossover at the center of the sheet tends to be less dramatic compared to HFAs
and in some HCS events is completely missing. When the ion scale does increase, the enhancement is not
well localized.

Events 14 and 15 provide illustrative examples of such delocalized turbulent behavior.

Event 14 detected on 14 April 2011 at ∼20:29:00 (Figure 10, left) reveals the presence of ion-kinetic
crossover (at 𝜏i ∼0.3−0.4 s) both long before and after the current sheet crossing, the type of behavior that
HFA events usually do not show. There is a rather short transient increase of the ion scale value to about 1.2 s
after which the scalogram returns to its background state. A more consistent increase of 𝜏i is observed dur-
ing the passage of the trailing edge of event 14, with the upper range of ion-kinetic scaling reaching 2 s. The
blue color-coded gap which is present in the postsector scalogram reveals a distorted shape of the structure
function at the intermediate scales. The non–power law scaling associated with this gap could be a mani-
festation of a strong coherent oscillation inside the core region and the postsector of the event. Polarization
parameters of the oscillation are consistent with an obliquely propagating electromagnetic ion-cyclotron
wave which could be excited by a two-stream instability caused by reflected solar wind ions.

Event 15 observed on 6 May 2011 at around 17:25:30 (Figure 10, right) demonstrates turbulent signatures
of a minor ion heating at the leading edge, according to the shape of the SF scalogram. A similar transient
temperature increase took place in the middle of the presector of this HCS event showing that the heating
was not limited to the interior of the current sheet. The 𝜏i enhancement during this event is more evident
than that during event 14, but its spatial domain is poorly defined.

Both non-HFA events were associated with long-term changes of angular parameters 𝜃B∶BS, 𝜃E∶CS, and 𝜃B

showing that these helio current sheets were formed at the interfaces of two large-scale plasma domains
with distinct magnetic configurations [Burlaga et al., 1977]. This differs from the HFA-like events consid-
ered in the previous section which were characterized by transient changes of the angles emphasizing
the localized nature of the observed rotations likely to be associated with heating and deflection of
particle beams.

The rest of the HCS events identified by our code (see Table 2) feature similar sets of signatures which are
distinct from those accompanying HFA-like events.

5. Statistical Survey
5.1. Event Locations
Figure 11 presents MSO positions of all the detected events classified into several groups. Black dots
(n =1337) show automatically detected magnetic depression events satisfying the condition (2) with
Bth=5 nT. Yellow crosses (n = 100) show filtered events which, in addition to the threshold condition, met a
set of criteria making them candidate HFAs. These events had the correct (toward) orientation of the
motional electric field on at least one side (𝜃E1∶CS ∈ [20, 70] and/or 𝜃E2∶CS ∈ [110, 160]), the duration T of
the core region between 10 and 100 s, and the distance dBS to the model bow shock lying between −0.5 and
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Figure 10. Examples of non-HFA-like heliospheric current sheets in an upstream foreshock region.

3.0 RM, with the negative (positive) dBS values corresponding to the event positions inside (outside) of the
model bow shock boundary.

Red symbols of different pattern designate the subset of the 10 manually selected HFA-like events dis-
cussed in detail in the previous section. These events exhibit more reliable magnetic signatures of hot flow
anomalies verified using a visual inspection and manual postprocessing. The manually selected events
demonstrate identifiable compression edges on one or both sides of the event, a nearly perpendicular
mutual orientation of 𝐧CS and 𝐧BS normals, and a consistently reduced core region B-field ensuring ΔB0 > 0.5.
As discussed earlier in the text, the fluctuation signatures of these events are suggestive of an ongoing ion
heating not expected for foreshock cavities.

Blue symbols are used for the set of nine non-HFA HCS events listed in Table 2 which mimic the geometry
and large-scale magnetic signatures of the HFAs but lack the compressed edges and turbulent signatures of
kinetically active current sheets providing local plasma heating.

The first two planetary years of MESSENGER orbital operation covered a substantial portion of the dawn
and dusk portions of the Hermean foreshock. The occurrence probability of all types of detected events is
systematically higher in the dawn sector, which is in an agreement with terrestrial studies. It is known that
on average, the dawn foreshock has a quasi-parallel magnetic field orientation allowing the reflected ions to
be channeled onto the discontinuity. The postmidnight region characterized by large cone angles between
the helio current sheets and the antisunward direction is of particular interest as it provides enough time
for the kinetic processes to develop [Schwartz et al., 2000]. A similar region at Earth is a preferred location of
HFAs and a variety of other intermittent foreshock phenomena [Tsurutani and Stone, 1985].
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Figure 11. Occurrence locations of the detected events. See text for details.

The automatically detected population of magnetic depression events at Mercury shown by black dots in
Figure 11 may include a wide scope of activity not limited to that associated with HFA events, in particular
density holes (subminute events sharing many properties of early stage HFAs) [Parks et al., 2006; Wilber et al.,
2008], foreshock cavities (transient decreases of magnetic field strength and thermal ion density bounded
by HFA-like edges of enhanced B-field) [Billingham et al., 2008], and SLAMS growing out of the ULF wavefield
and featuring nonconvective electric fields at the edges [Schwartz et al., 1992]. In its turn, the filtered subset
of events (yellow crosses) may, in principle, contain a fraction of HFA or proto-HFA events, although their
HFA-like properties cannot be established with certainty. The requirement of the inwardly directed motional
electric field on one or both sides removes from our statistics most of the density holes which tend to show
an opposite (outward) E-field orientation. The prolonged duration of the filtered events is not characteristic,
albeit not impossible, for the SLAMS events observed in the terrestrial foreshock [Schwartz et al., 1992].

As has been already noted, most of the manually validated HFA-like current sheets (except for event 1) are
located just outside of the nominal bow shock boundary (Figure 11; see also Table 1), while HCS events are
observed systematically farther upstream. At Earth, hot flow anomalies are also formed when an interplan-
etary discontinuity with convergent motional electric field comes into direct contact with a quasi-parallel
bow shock (within ±20% from the model bow shock scaled by the observed solar wind dynamic pressure
[Paschmann et al., 1988]). HFA passages are known to induce a magnetosheath response [Safrankova et al.,
2000; Sibeck et al., 1999] allowing the magnetopause to move outward ∼5 planetary radii beyond its nomi-
nal position [Sibeck et al., 1999] and causing significant effects in polar magnetosphere [see, e.g., Eastwood

et al., 2011]. Considering the proximity of the events observed here to the bow shock boundary, one can
expect that these events play an equally important role in Mercury’s magnetosphere.
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Figure 12. (a–f ) Statistical analysis of active current sheets in the Hermean foreshock; see Figure 11 for symbol notations.

5.2. Event Parameters
Figure 12 presents several types of ensemble-based statistics of the detected events.

Figure 12a shows the dependence between the presector and postsector E-field angle with the current
sheet normal; Figure 12b demonstrates a similar dependence for the bow shock normal angles with the
magnetic field. Figures 12a and 12b use the same symbol notation as in Figure 11.

It can be seen that the majority of the unfiltered magnetic field depression events lie near the diagonal line
𝜃E1∶CS = 𝜃E2∶CS corresponding to a constant motional electric field direction across the current sheet. For
𝜃E1∶CS < 90◦, the electric field is pointed toward the current sheet in the presector, which causes the solar
wind ions that are reflected by the bow shock immediately before the event to gyrate toward the current
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sheet. The condition 𝜃E2∶CS > 90◦ ensures similar behavior of the reflected particles at the trailing edge of
the event. When the convection E-field points toward the discontinuity on both sides, the trajectories of
the reflected ions from either side converge on the sheet and become channeled along it; see, e.g., Burgess
[1989] and Schwartz [1995]. This configuration leading to the most efficient particle heating corresponds to
the upper left corner of the plot. Eight out of 10 events with definite magnetic signatures of HFA-like current
sheets are located in this quadrant.

Figure 12b reveals no systematic tendency for the bow shock to become more quasi-perpendicular after
the passage of automatically detected active current sheets. This tendency characterizes the behavior of
Earth’s bow shock before and after HFA events [Schwartz et al., 2000]. Most of the HFA-like events validated
manually, especially events 1, 5, 6, and 8, seem to violate this rule making the trailing edge bow shock
more quasi-parallel. It remains to be understood whether these exceptions represent a distinct physical
environment upstream of Mercury’s bow shock or are caused by a statistical uncertainty.

The probability distributions of the angles between the presector and postsector magnetic field shown in
Figure 12c demonstrate significant differences. The automatically detected events, filtered and nonfiltered,
have a strong peak near 𝜃B1∶B2 ∼0 consistent with the fact that motional electric field remains unchanged
across most of these events (since 𝐕SW is kept constant). The manually selected HFA events show a sys-
tematically stronger B-field rotation peaking at 30–90◦ which is in a good agreement with the statistics
of terrestrial HFAs showing a maximum occurrence rate at 40–90◦ [Schwartz et al., 2000]. This is also con-
sistent with the scattering of the discontinuity angles describing interplanetary tangential discontinuities
found at 0.46 to 0.5 AU [Lepping and Behannon, 1986]. The population of HCS events shows an even stronger
magnetic rotation with the maximum occurrence rate at 90–150◦.

The distribution of the normalized change ΔB12 of the field magnitude across the current sheets presented
in Figure 12e provides some additional insight into the nature of the underlying interplanetary discontinu-
ities. For a “clean” TD, ΔB12 is expected to be greater than 0.2, while smaller values correspond to mixed cases
of either rotational or tangential discontinuity, depending on the normal magnetic field component. The
ΔB12 histogram makes it clear that more than a half of the automatically detected HFA-like events belong
to the second (mixed) category. A similar fraction of hot flow anomalies at Earth [Schwartz et al., 2000] have
this property. Considering that over 60% of the “mixed” cases may in fact also represent TDs [Neugebauer et
al., 1984], the total number of tangential discontinuities in our database should dominate. This is important
because our calculations of the current sheet normal is based on the assumption that the current sheets are
TDs with a near-zero normal magnetic field component. This assumption is broadly used in single-spacecraft
HFA studies. A more accurate identification of 𝐧BS would require a minimum variance analysis through the
current sheet which cannot be implemented in the presence of the embedded HFAs.

The probability distribution of 𝜃CS∶BS angles is biased toward large acute angles corresponding to perpen-
dicular orientation of the current sheets relative to the local bow shock. It is similar to the corresponding
distribution of terrestrial HFA events (compare with Schwartz et al. [2000, Figure 10]). The 𝜃CS∶BS angle needs
to be close to 90◦ in order to keep transit velocity Vtr sufficiently small to promote HFA formation. At Earth,
about 80% of the HFAs have acute 𝜃CS∶BS angles greater than 60◦. Our analysis also yields a significant frac-
tion (∼65%) of such events at Mercury. These events had an appropriate spatial orientation with respect to
the bow shock which could contribute to their successful development into HFAs. This scenario is supported
by the shape of the histogram of the normalized transit velocity |||Vtr∕Vg

||| which was constructed by putting
together presector and postsector measurements (Figure 12f ). The histogram shows a prevailing occurrence
rate (above 70%) of smaller-than-one velocity ratios, even though most of the events were observed away
from the subsolar point providing optimal current sheet-bow shock intersection conditions. The manually
validated HFA-like magnetic depression events have the highest occurrence frequency of smaller-than-unity
velocity ratios among the studied groups of events.

5.3. Comparison With Other Planets
It is of interest to compare the estimated sizes of typical and extreme HFA-like events at Mercury with the
corresponding sizes of HFA events reported for Earth and Saturn.

To derive characteristic linear sizes of Hermean events, we multiplied the duration of the core region of
each event by the nominal solar wind velocity of 450 km/s and applied the correction factor cos(𝜃SW∶CS)
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Figure 13. Typical and extreme linear sizes of HFA-like magnetic
depression events at Mercury as compared to the sizes of the
HFA events at Venus, Earth, Mars, and Saturn, as a function of the
heliocentric distance. Overplotted are the average subsolar bow
shock standoff distance RSS for each planet and the predicted
solar wind ion inertial length di and ion gyroradius 𝜌i based in
the statistical model by kohnlein [1996].

accounting for the 𝐧CS misalignment with the
solar wind flow. Event 7 whose duration was by an
order of magnitude longer than the duration of
other events was excluded from the statistics and
treated separately.

The typical size of terrestrial HFAs were taken from
the global statistical survey conducted by Facsko et al.
[2009] using their Alfven speed method.

As an example of an extreme terrestrial HFA
we choose an event reported by Safrankova
et al. [2012] based on multispacecraft observations.
This event had a rather significant size and caused a
considerable magnetosphere deformation.

The typical size of HFA events at Saturn was
evaluated using the data reported by Masters
et al. [2009]; the largest event described in
their paper was considered as an extreme
event. The Kronian HFA sizes were evaluated
for a nominal solar wind velocity of 450 km/s
taking into account spatial orientation of the
current sheets.

HFA events have been also observed at Venus and
Mars. The size of the obstacles introduced by these
planets to the solar wind flow is much smaller than
that of the Earth’s magnetosphere and essentially rep-
resents the size of the ionospheres of these planets
[Hasegawa et al., 2012]. For the purpose of our com-
parison, sizes of HFAs at Venus were taken from the
studies by Collinson et al. [2012, 2013] while Martian
HFA event scales were adopted from Øieroset et al.

[2001], with the largest HFA sizes found at both planets interpreted as “extreme”.

Figure 13 presents the event sizes at the five planets organized by the heliocentric distance. To
our knowledge, the cross-planetary HFA comparison shown in this figure is conducted for the
first time. Also plotted are characteristic subsolar bow shock standoff distances RSS reported by
Winslow et al. [2013] (Mercury), Slavin et al. [1984] (Venus), Slavin and Holzer [1981] and Russell [2013]
(Earth), Slavin et al. [1984] (Mars), and Masters et al. [2008a] (Saturn), as well as predicted values of
the solar wind ion inertial length di and ion gyroradius 𝜌i obtained using the empirical model by
kohnlein [1996].

As can be seen, the size of a typical HFA tends to increase with the size of the planetary bow shock, with
the largest (Kronian) events formed at the least curved bow shock boundary. The increase of the ion scales
describing an expanding solar wind can contribute to the observed dependence. More research is needed
to identify the leading control parameter of the observed dependence.

6. Discussion and Conclusions

We have presented first documented observations of HFA-like magnetic depression events at Mercury.
Using magnetic and particle data from MESSENGER collected over a course of two planetary years, we iden-
tified a representative ensemble of active current sheets magnetically connected to Mercury’s bow shock.
Some of these events exhibit magnetic and particle signatures of hot flow anomalies. A broader subset of
the detected magnetic depression events is likely to include a variety of plasma disturbances not limited to
HFAs, such as the disturbances associated with density holes, foreshock cavities, and SLAMS.
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Table 3. Checklist of Key Observational Signatures of HFA Events at Mercury

Signature Present or Not Instrument(s)

Presence of interplanetary current sheet Y MAG, FIPS

Connection to the bow shock Y MAG

Motional electric field orientation enabling particle trapping Y MAG

Hot central region Y FIPS, MAG

Decrease and/or deflected flow velocity ? ?

Compressed leading or trailing edges N MAG

Enhanced low-frequency magnetic fluctuations in the core region Y MAG

Size of a few planetary radii Y MAG, FIPS

Formation of a bulge on the bow shock surface ? ?

Our classification of current sheets as HFAs is based on an investigation of the current sheet geometry
involving all of the commonly used aspects such as the direction of the motional electric field, the bow
shock location, the orientation of the current sheet and bow shock normals relative to the solar wind
flow, and a number of additional tests. Four of the reported HFA events showed unambiguous signa-
tures of ion energization documented by FIPS dynamic spectra confirming the presence of heated plasma
inside and around the current sheets. Although accurate FIPS measurements have limited time resolution
and angular coverage, they provided a key piece of evidence by revealing hot plasma populations at the
expected locations.

HFA events at Mercury are accompanied by a systematic change in the magnetic turbulence spectrum pre-
dicted for a locally energized solar wind plasma. Our previous study [Uritsky et al., 2011] has shown that the
Hermean magnetosphere and the surrounding region are affected by non-MHD effects introduced by finite
sizes of cyclotron orbits of the constituting ion species. These results have demonstrated that plasma fluc-
tuations at this planet are largely controlled by finite Larmor radius effects. The heating process associated
with HFA-like active current sheets explored in the present paper are an important manifestation of such
behavior at Mercury.

On one occasion, we detected signatures of a ULF wave packet in a quasi-parallel shock configuration which
was likely to be triggered by an HFA event. Such upstream large-amplitude waves may propagate deep into
Mercury’s magnetosphere causing secondary instabilities in various plasma regions. They can also reach the
surface through the thin atmosphere not protected by a conducting ionosphere.

The occurrence rate of HFA-like events at Mercury is systematically higher in the dawn sector compared to
the dusk sector. On average, the dawn foreshock has a quasi-parallel magnetic field orientation allowing the
reflected ions to be channeled onto the discontinuity. A similar region at Earth is a preferred location of HFAs
and a variety of other intermittent foreshock phenomena [Tsurutani and Stone, 1985]. The postmidnight
region characterized by large cone angles between the helio current sheets and the antisunward direction
is of particular interest as it provides enough time for the kinetic processes to develop. Most of our man-
ually validated active current sheets were encountered just outside of the nominal bow shock boundary.
Because of their proximity to the bow shock boundary, such events can play an important role in Mercury’s
magnetosphere. Terrestrial HFAs passages are known to induce a significant magnetosheath response
[Safrankova et al., 2000; Sibeck et al., 1999] allowing the magnetopause to move outward ∼5 planetary radii
beyond its nominal position and perturbing the magnetosphere [see, e.g., Eastwood et al., 2011]. It would
be important to verify in future studies whether similar global HFA-induced phenomena occur at Mercury.
As an indirect manifestation of such behavior, there is a slight tendency for the bow shock to become more
quasi-perpendicular after the passage of HFA-like events, which is also in line with the behavior of Earth’s
bow shock before and after HFAs [Schwartz et al., 2000].

The characteristic linear size of HFA-like events at Mercury is noticeably smaller than that on other planets.
When combined with previously reported HFA sizes at Earth and at Saturn, our measurements show that the
size of planetary HFAs grows linearly with planetary radius. The observed dependence could reflect the bow
shock geometry. An alternative explanation takes into account the fact that the size of the compared planets
is proportional to their distance from the Sun. The increase in the heliocentric distance leads to larger ion
scales in the expanding solar wind controlling the thickness of helio current sheets and hence the size of
the HFAs.
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Schwartz et al. [2000] have provided a concise summary of main observational features of HFA events
in the Earth’s bow shock which could be used to draw a rigorous conclusion about the nature of similar
events at Mercury addressed by our study. These signatures are listed in Table 3 in the context of
MESSENGER observations.

It can be seen that many of the essential HFA properties have been positively identified. The HFA-like events
studied here occurred within interplanetary current sheets. In each case, there was a time when the current
sheet was magnetically connected to the bow shock as evidenced by the time evolution of the 𝜃B∶BS angle.
In most cases, motional electric field observed on both sides of this current sheet had a significant “toward”
component enabling trapping and acceleration of the reflected ions. FIPS measurements have shown that
plasma population in the core of these events tends to be significantly hotter than that in the surrounding
regions. This observation is consistent with the increase in the ion crossover frequency in the core regions
obtained from the turbulent spectra of magnetic fluctuations. On several occasions, the low-frequency com-
ponent of magnetic fluctuations was significantly enhanced revealing a rich inner structure of the events.
MAG measurements have also confirmed the proximity of the events to the bow shock, with the size of the
events comparable with the size of the obstacle as expected.

Some of the HFA signatures have not been observed. Due the obstructed field of view of the plasma spec-
trometer, it has been impossible to identify the centroid of the velocity distribution function in the core of
the events as compared to the ambient solar wind. For this reason, we were unable to verify the presence of
a deflected or decelerated plasma flow characteristic of terrestrial HFAs. A single-spacecraft measurement
could not provide reliable information on local deformation of the bow shock shape, and so the existence
of bow shock bulges caused by HFA events at Mercury remains to be verified. The lack of well-developed
leading and trailing edges confirmed by MAG may indicate that the rate of the plasma expansion in the core
region was too slow to form noticeable shock waves at the flanks.

In summary, we have demonstrated that Mercury’s bow shock contains HFA-like events similar to those
observed at other planets. The conducted quantitative analysis suggests that Mercury’s bow shock pro-
vides conditions for local particle acceleration and heating as predicted by previous numerical simulations.
Together with earlier observations of HFA activity at other planets, our results indicate that hot flow anoma-
lies could be a common property of planetary bow shocks. However, since some essential attributes of HFA
events have not been found, most importantly the deflected plasma flow and the compressed edges of the
core region, it remains to be seen whether the observed events are fully developed HFAs or they should
be classified as “proto HFAs” during an early stage of development [Zhang et al., 2010]. The upcoming
BepiColombo mission [Milillo et al., 2005] will likely be able to answer this question.
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