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ABSTRACT

Aim Understanding the conditions that promote biological invasions is a criti-

cal step to developing successful management strategies. However, the level of

invasion is affected by complex interactions among environmental factors that

might change across habitats and regions making broad generalizations unin-

formative for management. We aimed to quantify the context-dependent asso-

ciation of climate and human activity at landscape scale (i.e. disturbance and

propagule pressure) with the level of plant invasion at local scale across differ-

ent stages of invasion, habitat types and bioclimatic regions.

Location Mainland Spain.

Methods Based on an extensive database of vegetation plots (~50,000), we

used hierarchical Bayesian models to test how climate and human activity at a

landscape scale (i.e. land-cover variables) are associated with establishment (i.e.

presence) and dominance (i.e. relative species richness and abundance in

invaded plots) of non-native plants across nine habitat types and three

bioclimatic regions.

Results The association of climate with establishment and dominance of non-

native plants varied depending on habitat type but not bioclimatic region.

These associations also varied depending on the stage of invasion under consid-

eration. Establishment of non-native species was more likely close to the coast,

while their dominance increased in wet and warm continental areas. Human

activity variables were associated with establishment and dominance similarly

across bioclimatic regions. Non-native species establishment and abundance

peaked in human-altered landscapes. Different habitats showed different sus-

ceptibilities to establishment versus dominance by non-native species (e.g.

woodlands had medium levels of establishment, but very low dominance).

Main conclusions This study highlights how complex interactions among cli-

mate, human activity and habitats can determine patterns of invasions across

broad landscapes. Successful management of plant invasions will depend on

understanding these context-dependent effects across habitats at the different

stages of the invasion process.

Keywords

Bayesian, biological invasions, establishment, hierarchical, level of invasion,

propagule pressure, stages of invasion.

INTRODUCTION

Biological invasions pose a major threat to the native biota

and ecosystem functioning (Vil�a et al., 2011). Thus, preven-

tion and management of invasions are critical for the conser-

vation of natural and semi-natural ecosystems. Successful

management of biological invasions relies on understand-

ing the mechanisms behind the invasion process. Recent
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conceptual models have suggested that invasions are affected

by multiple interacting factors, including abiotic conditions,

human activity, and habitat type, which may act at different

scales and stages of invasion (Catford et al., 2009; Milbau

et al., 2009). Such complexity hampers our ability to disen-

tangle the mechanisms underlying invasions and thus the

forecasting of future invasions. Climatic effects on invasion

are perhaps the most commonly studied within abiotic fac-

tors. This approach can be successful at large scales to the

extent that climatic patterns shape the macroenvironmental

conditions determining species distribution from continental

to regional scales (Pearson & Dawson, 2003; Milbau et al.,

2009). Human activity can also clearly affect patterns of

invasion (Ib�a~nez et al., 2009a; Vil�a & Ib�a~nez, 2011;

Gonz�alez-Moreno et al., 2013b). For example, human land-

covers types such as built-up areas or crops are highly associ-

ated with plant invasions due to the increased propagule

pressure and disturbance that benefit non-natives establish-

ment (Ohlem€uller et al., 2006; Gass�o et al., 2009; Gavier-

Pizarro et al., 2010). In addition, the level of plant invasion

has also been shown to vary among habitat types at a local

scale (Vil�a et al., 2007; Ib�a~nez et al., 2009a) with anthropo-

genic, mesic, and nutrient-rich habitats being more invaded

than natural, dry and nutrient-poor habitats (Chytr�y et al.,

2008b). These differences among habitats, partly explained

by biotic interactions and human influence at a local scale,

highlight the paramount importance of habitat type for

influencing invasions on top of the combined effects of cli-

mate and human activity at larger spatial scales.

The effects of climate, human activity and habitat type on

plant invasions are likely interactive rather than additive, fur-

ther complicating efforts to understand the relative impor-

tance of different drivers of invasion (Catford et al., 2009;

Jim�enez-Valverde et al., 2011). Patterns of invasion appear

highly idiosyncratic when different habitat types are mod-

elled separately (Gassó et al., 2012). For example, identical

climates may result in a different level of invasion depending

on the habitat type and bioclimatic region (i.e. biogeographi-

cal region sensu EEA, 2008) (Ib�a~nez et al., 2009b). In addi-

tion, the effects of human activity, derived from land-cover

variables, may also vary across bioclimatic regions. For exam-

ple, regions often have distinct landscape compositions as a

result of the interaction of human activities and their cli-

matic drivers. In regions with a predominance of agricultural

land and dispersed human settlements, crops may be the

most important source of non-native propagules. In contrast,

in highly urbanized regions, ornamental plants may be the

source of most non-native plants, while crops could help to

buffer the spread of these species into natural habitats

(Gonz�alez-Moreno et al., 2013b). Given these complex inter-

actions, a comprehensive understanding of the invasion pro-

cess is critical and may even require new analytical

approaches that account for those interactions.

Ecological theory and conceptual models of invasions also

suggest that the relative importance of climate, human activ-

ity and habitat type shaping invasions will depend on the

stage of the invasion process under consideration (Catford

et al., 2009; Leung et al., 2012). For example, initial estab-

lishment of a single species may be driven by propagule pres-

sure from the neighbouring landscape (i.e. human activity),

while subsequent dominance may be more dependent on the

existence of suitable climatic and local conditions (i.e. habitat

type) for plant and population growth (Catford et al., 2009;

Leung et al., 2012). The framework of invasion stages for

single species can also be applied to groups of non-native

species invading plant communities (Catford et al., 2011;

Polce et al., 2011). Following the initial establishment of a

particular non-native species within a community, this spe-

cies might increase in abundance at the time that new non-

native species are establishing and becoming abundant (i.e.

increase in non-native species richness and abundance,

respectively). Developing a better understanding of how the

combination of climatic conditions, human activity and hab-

itat characteristics affects both the establishment and domi-

nance of non-native species in the community will be critical

to inform more targeted management actions (Polce et al.,

2011; Leung et al., 2012).

In this study, we used an extensive database of vegetation

plots (~50,000) and hierarchical Bayesian statistical models

to investigate how climate, human activity and habitat type

interact to explain local patterns of non-native species estab-

lishment (i.e. presence) and dominance (i.e. richness and

abundance) across mainland Spain. We used data on native

and non-native plant species presence and abundance as

proxy of invasion success (Catford et al., 2012). Specifically,

we asked the following questions: (1) Does the relationship

between climate and plant invasions vary across bioclimatic

regions and habitats? (2) Does the association of human

activity (in terms of land-cover variables) with plant inva-

sions depend on the regional bioclimatic context? and finally,

(3) Do these associations and the relative importance of cli-

matic conditions and human activity depend on the metric

of invasion (presence, richness and abundance of non-

natives, as surrogates of the invasion stages establishment

and dominance)? To answer these questions, we compared

the results of two modelling approaches: a hierarchical model

(context-dependent) that nested the effects of climate across

bioclimatic regions and habitat types and allowed variation

of human activity variables along bioclimatic regions and a

classical non-hierarchical model (non-context-dependent)

that included the different driving variables in an additive

and independent fashion. Finally, we discuss the benefits of

hierarchical models to investigate current determinants of

the level of plant invasion and the potential to identify the

current and future incidence of plant invasions.

METHODS

Plant species dataset

To quantify plant invasions across mainland Spain, we used

data from the Information System of Iberian and Macaronesian
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Vegetation (SIVIM) (Font et al., 2012; see Appendix S1 for

database characteristics). We gathered 53,345 relev�es (plots,

hereafter) from 1970 to 2011 that had a phytosociological

alliance assignment and location accuracy at least of 10 Km

UTM. Our selection covers most environmental gradients

across mainland Spain and therefore a wide range of plant

communities. A higher density of plots was located in moun-

tain and coastal areas compared to plateau and large valleys

(Fig. 1). According to a survey gap analysis based on multi-

variate environmental similarity surface index (MESS) (Elith

et al., 2010; Rossi, 2012, see code in Appendix S3), the data-

set provided a good coverage of the entire environmental

conditions of the study area with only exception in rare areas

with extremely high precipitation (north-western Spain),

urban development (Madrid) and agriculture cover (Guadal-

quivir basin in southern Spain). Plot size was variable, but

with ranges per habitat type following European standards

(Appendix S1). Despite the long time frame of the dataset,

we found little association between level of invasion and time

of collection (Appendix S1). Furthermore, we did not find

any significant bias in the sampling through time across dif-

ferent habitats, regions or geographical areas.

For each plot, we identified the bioclimatic region (i.e.

Alpine, Atlantic and Mediterranean; Fig. 1, Table 1, details

in Appendix S1) (EEA, 2008) and the habitat type following

a classification based on the Level 1 of the European Nature

Information System of 2007 (EUNIS). We identified the hab-

itat type using a cross-walk table between the phytosociologi-

cal alliance assigned in SIVIM and the most likely EUNIS

habitat type as in Vil�a et al. (2007) and Chytr�y et al.

(2008b): coastal, aquatic (inland surface waters), grasslands,

scrubland including heathlands, woodlands, rocky, ruderal,

agriculture and saline habitats (Appendix S2). This classifica-

tion informs the type of both native community and the

human influence at a local scale. We developed the cross-

walk table using expert knowledge and habitat information

provided by Rivas-Mart�ınez et al. (2002) and Rodwell et al.

(2002). Our expertise on the species composition of the phy-

tosociological alliances guaranties the validity of grouping

them in broad habitat types.

Relaying on the strong association between the number of

introductions and the incidence of invasive species (Catford

et al., 2011, 2012; Polce et al., 2011), we calculated three

widely used metrics in invasion ecology: (1) presence–

absence of non-native species in all plots, (2) relative non-

native species richness in invaded plots, calculated as the

number of non-native species within a plot in relation to the

total number of species and (3) relative non-native abun-

dance in invaded plots calculated as the accumulated per-

centage of non-native vegetation cover divided by the cover

of all species. Only non-natives introduced after 1500 a.c.

were considered. We did not restrict the study to only inva-

sive species as we might have missed species limited to early

stages in the invasion process (Catford et al., 2012). These

different metrics are surrogates for different stages of inva-

sion, with presence representing the establishment stage and

Figure 1 Number of vegetation plots and mean relative non-native species richness at invaded plots per 10-km UTM grid in mainland

Spain.

Table 1 Summary of climate (averages period 1971–2007) and
human activity at landscape-scale characteristics (CORINE land-

cover maps) in different bioclimatic regions in mainland Spain

Alpine Atlantic Mediterranean

Annual precipitation (mm) 965.56 1301.72 552.38

Summer precipitation (mm) 218.42 173.43 70.99

Winter minimum

temperature (°C)

�5.56 1.1 0.77

Temperature seasonality (SD) 6.46 4.85 6.46

Urban cover (%) 1 5.38 7.13

Agriculture cover (%) 3.53 12.12 30.63

Grassland cover (%) 47.72 45.41 29.11

Woodland cover (%) 28.85 29.78 17.12

Land-cover diversity 1.07 1.08 1.26
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richness and abundance indicating a dominance stage (Cat-

ford et al., 2011; Polce et al., 2011). The presence–absence of

any non-native plant would inform about the likely recruit-

ment of at least an individual plant irrespective of its ability

to reproduce and become naturalized. In contrast, an

increase in abundance of the species or the recruitment of

new species would inform about a later phase in the invasion

process where given suitable ecological conditions, non-

native species are expanding and ultimately becoming domi-

nant in the community.

Climate and human activity data

We selected several climatic and land-cover variables (our

proxy for human activity at landscape scale). All variables

selected have been commonly used in plant invasion studies

(description in Appendix S2). The geographical location of

each plot was only known within the 10-km UTM grid. We

therefore characterized the climate and human activity con-

text of each plot at the grid level. We discarded UTM grids

with size lower than 60 km2 or <60% of land (versus ocean)

to ensure comparable values of predictors and to avoid pos-

sible misplacement of plots located at UTM borders.

We obtained climate data from the UNEX Spatial Data

Infrastructure (http://ide.unex.es), which provides average

monthly precipitation, minimum and maximum temperature

at 1-km grid across Spain for the period 1971–2007. From this

dataset, we extracted the following biologically relevant climate

variables per UTM grid using the R-package DISMO: annual

precipitation, summer precipitation (i.e. warmest quarter of

the year), precipitation seasonality (i.e. coefficient of varia-

tion), annual temperature, winter minimum temperature (i.e.

coldest month), summer maximum temperature (i.e. warmest

month) and temperature seasonality (i.e. standard deviation).

We also calculated the distance from each grid cell border to

the coast to reflect a gradient in climate continentality.

Finally, we extracted the following human activity variables

for each grid from the CORINE Land-cover Map (2006):

percentage of urban (including major transport infrastruc-

tures), agriculture, woodland and grasslands land cover and

the Shannon diversity index of these land-cover types (land-

cover diversity, hereafter).

Model development

We modelled initial establishment of non-native species (i.e.

presence data in 53,345 plots) and subsequent dominance

(i.e. richness and abundance data in 8146 invaded plots) to

test whether these different stages are associated with differ-

ent variables (Catford et al., 2011; Polce et al., 2011). For

each of these two stages of invasion, we constructed hierar-

chical generalized linear models (HGLMs) to allow the asso-

ciations with climate to vary among bioclimatic regions and

habitats, and human activity variables to depend on biocli-

matic region. We compared the results of this model struc-

ture with a more traditional approach using non-hierarchical

generalized linear models (GLMs) in which we included all

the sets of variables and models with only habitat, climate or

human activity variables. In contrast to the context-depen-

dent associations considered in the HGLMs, GLMs just test

the independent effects of the variables included. We fit all

models using a Bayesian framework, which is useful for com-

plex models or when sample sizes within subgroups are

highly variable (Clark, 2004; see Appendix S3 for details).

Modelling the presence of non-native species

The presence–absence of non-native species at each plot was

estimated from a Bernoulli distribution with probability of

being present pi:

Ni �BernoulliðpiÞ
LogitðpiÞ ¼ ahabitatðiÞ þ bXi þ egðiÞ

where ahabitat represents the intercept for each habitat type.

Random effects for each UTM grid, g, were estimated from

the same grid level distribution. The matrix of explanatory

variables, Xi, included all the climate and human activity

variables, and their associated coefficients, b, were estimated

using a hierarchical and non-hierarchical approach (Fig. 2).

Figure 2 Model structure that defines the vector of coefficients associated with each climate and human activity predictor (bXi) using

both hierarchical and non-hierarchical approaches. In the hierarchical section, the level region defines the association of each climate

and human activity variable in each bioclimatic region. The level region and habitats represent the vector of coefficients associated with

each combination of climate variables across regions and habitat types.
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Modelling the richness and abundance of non-native species

Non-native species richness at each plot, NNSRi, was mod-

elled using a binomial distribution with parameters TRi, total

species richness, and qi., the probability of being non-native:

NNSRi �BinomialðqiTRiÞ
LogitðqiÞ ¼ ahabitatðiÞ þ bXi þ egðiÞ

To ensure positive values and also improve convergence,

non-native species relative abundance, NNSRAi: NNSAi/TAi,

(non-native species abundance/total vegetation abundance),

was modelled using a log-normal distribution with mean lAi
and variance rA:

NNSRAi � Log-NormalðlAi;r2
AÞ

lAi ¼ ahabitatðiÞ þ bXi þ egðiÞ

The habitat-related intercepts, ahabitat, the vector of coeffi-

cients associated with climate and human activity variables,

b, and the plot level random effects, eg, were modelled fol-

lowing the same approach described above.

Variable selection

We tested the collinearity among the predictors using pair-

wise Pearson’s correlation tests (Appendix S2). First, we

selected variables that had a pairwise correlation lower than

0.75 in both datasets (i.e. in all plots and in invaded plots).

Among the variables with correlations >0.75, we selected

those with the strongest ecological meaning and explanatory

power. This process resulted in the following climate vari-

ables: annual precipitation, summer precipitation, winter

minimum temperature, temperature seasonality and distance

to the coast. Human activity variables were not highly corre-

lated, and thus we included them all. All variables were stan-

dardized by subtracting the mean (centred) and dividing by

the standard deviation (standardized) to improve model con-

vergence and aid interpretation of coefficient estimates (Gel-

man & Hill, 2007).

Model comparison and validation

We implemented four non-hierarchical (GLM) models: (1)

only climate variables, (2) only human activity variables, (3)

only habitat type and (4) all variables (i.e. full model). We

compared these models with the hierarchical model

(HGLM), which included all variables but allowed climate

effects to vary among habitats and regions and human activ-

ity effects among regions. We used the deviance information

criteria (DIC) to compare the performance of the models

(Spiegelhalter et al., 2002). First, we compared the perfor-

mance of the five models to identify the best-fit model.

Then, we compared the first three models to quantify the

relative importance of climate variables, human activity

variables and habitat type on the presence, richness and

abundance of non-natives. Finally, we compared the relation-

ships estimated using the HGLM with those of the GLMs to

test for the importance and differences of context-dependent

relationships versus independent ones.

Preliminary analyses using the Moran’s Index did not detect

significant spatial autocorrelation in the models’ residuals at

any distance bigger than 10 km (I < 0.1). Therefore, we pro-

ceeded without modelling spatial random effects. It is possible

that there is spatial autocorrelation in patterns of invasion

within 10-km grid cells, but we could not test this because we

lacked more precise information for plots location.

We randomly set apart 20% of total plots for model vali-

dation and calibrated the models with the remaining 80%.

Goodness-of-fit of the validation data was calculated using

the sum of squares errors (SSE, predicted–observed) for each

model. Models that minimized this value were considered to

fit better the data. For the presence model, we also calculated

the area under the curve (AUC), a widely used method to

evaluate presence–absence data models (Jim�enez-Valverde

et al., 2011). Models with AUC > 0.5 discriminate the pres-

ences and absences better than chance.

Final models were run in OpenBUGS 3.2.1 (Lunn et al.,

2009). Models were run until convergence of the parameters

was ensured (~50,000 iterations), after which posterior distri-

butions of the parameters were calculated from 100,000 iter-

ations (code of the models in Appendix S3).

RESULTS

Model comparison

The hierarchical model (HGLM) considering all context-

dependent effects performed better than all classical non-

hierarchical models (GLMs) across all metrics according to

DIC values (i.e. smallest DIC value, Table 2). Differences

were greater for the presence of non-native species than for

richness or abundance. Validation of the models with inde-

pendent data yielded similar model rankings, except for rich-

ness (Table 2).

Models including the three groups of variables together

(i.e. climate, human activity and habitat type) performed

better than models considering only a group of variables for

all non-native plant metrics (Table 2). The difference in DIC

between climate and human activity models was rather low

in comparison to the difference with the habitat model for

all metrics. Validation of the models with independent data

yielded similar results.

The association of climate, human activity and

habitat type with non-native plant metrics

The two types of models, GLMs and HGLM, provided differ-

ent insights about the association of non-native plant metrics

with climate, human activity and habitat type. The hierarchi-

cal model tested regional and habitat-dependent association

of these variables with non-native plant metrics, whereas the

classical non-hierarchical model estimated their association

724 Diversity and Distributions, 20, 720–731, ª 2014 John Wiley & Sons Ltd
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independently. In the following subsections, we compare the

results for both types of models.

Association of climate with non-native plant metrics

Considering independent effects (i.e. non-hierarchical

model), the significance of the climate predictors varied

between the presence of non-native species and the richness

and abundance of non-native species models (Fig. 3). Pres-

ence of non-native species was positively correlated to sum-

mer precipitation and proximity to the coast (Fig. 3). In

contrast, both richness and abundance were positively associ-

ated with high annual precipitation and negatively with sum-

mer precipitation (Fig. 3). Furthermore, richness was also

positively associated with temperature seasonality and winter

minimum temperature (Fig. 3).

Although the independent effects of some climate variables

on non-native plant metrics were not significant (Fig. 3), the

hierarchical analyses revealed significant associations within

specific habitat types (Table 3, Appendix S2 – Table S8–S10).

For instance, the effect of annual precipitation on presence

was different among habitat types: in grasslands, rocky and

agriculture habitats, presence was associated with low annual

precipitation, whereas in coastal, scrubland, woodland and

ruderal habitats, it was associated with high annual precipita-

tion (Table 3). These habitat-specific associations were more

prevalent with presence than with richness or abundance of

non-native species (Table 3).

The effect of climate across regions was very consistent for

non-native plant metrics within each habitat type (Table 3).

We only found divergence in the association of summer pre-

cipitation with presence, which was positive in the Mediter-

ranean region for most habitats and highly variable in the

Alpine and Atlantic regions (Table 3, Appendix S2 Table S8).

Association of human activity with non-native plant metrics

Considering independent associations (i.e. non-hierarchical

model), the presence of non-native species was positively

associated with agriculture and urban land cover and nega-

tively with woodland land cover (Fig. 3). The pattern was

different for richness and abundance of non-native species,

which were negatively associated only with grassland land

cover (Fig. 3). Richness also showed a negative association

with land-cover diversity.

For human activity variables, we hypothesized that their

association with non-native plant metrics would vary region-

ally. We found that most associations were in fact only sig-

nificant in the Mediterranean region (Fig. 4). For instance,

presence of non-native species was only associated with

urban land cover and land-cover diversity in the Mediterra-

nean region.

Non-native plant metrics across habitat types

Presence, richness and abundance of non-natives were signif-

icantly different among habitat types in the non-hierarchical

model (Fig. 3, Appendix S2 – Table S6). Agriculture and

ruderal habitats had the highest presence, richness and abun-

dance of non-native species, whereas scrublands had the low-

est. Differences among several habitats varied depending on

the non-native plant metric under consideration (Fig. 3). For

instance, woodlands showed medium presence values of

non-native species, but very low richness and abundance;

Table 2 Comparison of models used to explain presence, relative richness and abundance of non-native plant species at invaded plots

in mainland Spain using habitat type, climate and human activity variables. Best indicators for each plant invasion metric are shown in

bold

Model DIC

Calibration Validation

DIF pD AUC SSE AUC SSE

Presence All hierarchical 30150 0.00 1059 0.82 4254.61 0.78 1147.83

All non-hierarchical 30830 0.02 1038 0.81 4379.33 0.77 1169.46

Habitat 30940 0.03 1147 0.82 4367.25 0.77 1170.76

Climate 33200 0.10 1150 0.78 4753.87 0.71 1263.78

Human activity 33260 0.10 1174 0.78 4753.92 0.71 1261.99

Richness All hierarchical 16660 0.00 297.6 4804.64 1077.34

All non-hierarchical 16670 0.00 280.4 4839.52 1064.28

Habitat 16780 0.01 382.5 4596.59 1091.85

Human activity 17100 0.03 381.9 4988.25 1094.51

Climate 17110 0.03 399.2 4962.87 1098.45

Abundance All hierarchical �20100 0.00 494.9 116.64 28.55

All non-hierarchical �20000 0.00 439.3 120.92 28.99

Habitat �19980 0.01 456.5 121.24 29.04

Human activity �19510 0.03 446.6 129.67 30.93

Climate �19510 0.03 466.4 130.43 31.31

DIC, deviance information criteria; DIF, increment in relative DIC compared to best model; pD, effective number of parameters; AUC, area

under the curve; SSE, sum of square errors.
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aquatic habitats had medium presence and abundance values,

but rather high richness. These trends were similar for the

hierarchical model (Appendix S2: Fig. S2 and Table S7).

DISCUSSION

Conceptual models to explain invasion success have pointed

to the combination of having enough propagules and a suit-

able environment, biotic and abiotic (Chytr�y et al., 2008a;

Catford et al., 2009). In our work, climate was used to esti-

mate abiotic suitability (Thuiller et al., 2005), human activity

at a landscape scale was used as a proxy for propagule avail-

ability (Chytr�y et al., 2008a; Gonz�alez-Moreno et al., 2013b),

and habitat type represented both characteristics of the

native community and the human influence at a local scale

(Chytr�y et al., 2008a). Among these variables, we found hab-

itat type to be the single most important factor associated

with invasion. Furthermore, these factors are likely interac-

tive rather than additive and might act at different spatial

scales and stages (Catford et al., 2009; Milbau et al., 2009;

Jim�enez-Valverde et al., 2011). However, few empirical stud-

ies have quantified these complex patterns (Gass�o et al.,

2012). Here, we have explored how a hierarchical modelling

approach can quantify the context-dependent association of

these variables with the presence and abundance of non-

native plants (i.e. our proxy for plant invasion). We found

that the associations of climate and human activity with

non-natives patterns were mainly dependent on the habitat

type, but not on the bioclimatic region. Furthermore, non-

native plant metrics across habitats varied depending on the

metric of invasion. As the different metrics could be consid-

ered surrogates for different stages of invasion, our results

reinforce that different stages might be controlled by differ-

ent factors (Catford et al., 2009; Polce et al., 2011).

Climate and plant invasions

At large scales, climate is the most important abiotic aspect

shaping non-native species distribution (Thuiller et al., 2005;

Broennimann et al., 2007). In our study, non-native species

were more likely to be present in areas with high summer

precipitation and close to the coast (i.e. the Atlantic part of

the study area), reflecting higher presence in mesic areas

without extreme seasonality (Polce et al., 2011). Presence of

non-natives in coastal areas could also be enhanced by the

increased propagule pressure associated with higher human

influence in these regions (Gass�o et al., 2009; Gonz�alez-

Moreno et al., 2013b). Still, we already accounted by human

activity by adding the land-cover variables and considered

distance to the coast as a good proxy for low seasonality. In

contrast, higher richness and abundance of non-natives was

associated with higher climate seasonality, but also with

higher wet and warm conditions. Thus, although it is more

likely to find at least one non-native species close to the

Figure 3 Posterior means (with credible

intervals) of the independent mean

coefficients for habitat, climate and

human activity variables in the non-

hierarchical models for the presence of

non-native species and their relative

richness and abundance at invaded plots

in mainland Spain. Filled dots indicate

that the 95% credible interval around the

parameter mean values did not include

zero. To facilitate comparison, habitat

coefficients are centred around the mean

of all habitat coefficients.
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coast, wet areas towards the interior are also hubs for non-

native species diversity and abundance.

Climate variables that were not significantly associated

with non-native plant metrics independently (i.e. non-hierar-

chical model) were found to be important in specific habitats

(i.e. hierarchical model). Climatic effects on plant invasions

are mediated by the ecological characteristics of different

habitats such as biotic resistance or abiotic constraints. For

instance, we found higher presence of non-native species

with low annual precipitation in grasslands, rocky and agri-

culture habitats, whereas the opposite trend was relevant in

coastal, scrubland, woodlands and ruderal habitats. In con-

trast to more open habitats, an increase in annual precipita-

tion might counteract the competition for water in woody

habitats and the excess of salinity in coastal habitats.

Although the mechanisms underlying these interactions

require further research, our results suggest that considering

habitat-dependent effects seems fundamental to understand

and predict plant invasions (Gass�o et al., 2012).

There was high consistency in the associations of climate

variables with all non-native plant metrics across bioclimatic

regions. Within specific habitat types, only the association of

summer precipitation with presence showed divergences for

coastal and scrubland habitats. In the humid Atlantic region,

presence was enhanced in relative drier environments (lower

summer precipitation), whereas in the drier Mediterranean

region, we found the opposite trend. This finding agrees with

plant invasion being enhanced in mesic conditions (i.e. inter-

mediate temperature and moisture levels) (Polce et al., 2011).

Human activity and plant invasions

Besides suitable climatic conditions, plant invasions are facil-

itated by increasing disturbance levels and propagule pressure

of non-native species from regional to landscape scales. Such

patterns are highly associated with human land covers (i.e.

agriculture or urban), while natural areas (i.e. higher grass-

land and woodland cover) might act as a buffer to plant

invasions (Ohlem€uller et al., 2006; Carboni et al., 2010). We

found the same pattern for all non-native plant metrics:

invasive plants were negatively associated with natural areas

and positively associated with human-altered areas. Unlike

other studies (e.g. Pino et al., 2005; Marini et al., 2009;

Gonz�alez-Moreno et al., 2013b), we found a negative associa-

tion of land-cover diversity and non-native richness. Diverse

landscapes usually enhance local non-native species richness

by increasing variability of ecological conditions; however, if

the number of land covers characterized is low, land-cover

diversity could show the pattern of the most predominant

land-cover type (i.e. agriculture land cover).

As for the relationships with climate variables, we also

found that the relationships between invasion and human

activity were highly consistent spatially, exhibiting similar

relationships across bioclimatic regions. In fact, we found

that human activity variables were only significant in the

Mediterranean region probably due to its higher human

alteration and disproportionate number of plots (five times

more samples in the Mediterranean than in the Atlantic).

Considering the high consistency found for climate and

Figure 4 Posterior means (with credible

intervals) of the coefficients for human

activity variables across bioclimatic

regions in the hierarchical models for the

presence of non-native species and their

relative richness and abundance at

invaded plots in mainland Spain. Filled

dots indicate that the 95% credible

interval around the parameter mean

values did not include zero.
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human activity effects across bioclimatic regions, we suggest

that broad patterns of plant invasion could be feasibly

extrapolated among neighbouring regions.

Habitat types and plant invasions

Following previous studies, anthropogenic habitats (i.e. agri-

culture and ruderal) yielded the highest values of non-natives

metrics and natural habitats the lowest values (i.e. scrubland)

(Vil�a et al., 2007; Chytr�y et al., 2008b). Nevertheless, for sev-

eral habitats there were some discrepancies. For instance,

woodlands showed high non-native species presence, but

extremely low richness and abundance. The few shade-toler-

ant non-native species that could overcome the limitation of

light availability in woodlands are very likely to survive even

if it is in low numbers (Martin et al., 2009). However, the

species able to invade woodlands are generally rare or might

be still in an incipient phase of expansion (Martin et al.,

2009; Gonz�alez-Moreno et al., 2013a), reflecting low local

richness and abundance. Thus, further research should con-

firm if the potential differences between the presence and

abundance of non-native plants are mediated by their differ-

ent traits in relation to the habitat they invade or by the

stage of the invasion process.

Analysis of multispecies invasion

Several metrics have been proposed to quantify the level of

plant invasions such as the richness or abundance of non-

native species (Catford et al., 2012). We have found different

patterns of climate, human activity and habitat type associa-

tions with each metric, suggesting that different variables con-

trol the overall presence and abundance of non-native species,

our proxies for establishment and dominance during multispe-

cies invasions (Catford et al., 2011; Polce et al., 2011). We

expected higher importance of human activity at a landscape

scale (i.e. proxy for propagule pressure) than climate (i.e.

defining suitable abiotic conditions) in the establishment stage.

Nevertheless, both groups of variables showed similar impor-

tance for predicting the establishment and dominance of non-

native species. Further studies could explore whether these

patterns are also similar in other stages of the invasion process

such as transport or expansion (Blackburn & Duncan, 2001;

Leung et al., 2012) or consider the human activity predictors

at a finer scale (Gonz�alez-Moreno et al., 2013b).

Modelling strategies to understand the context-

dependence of invasions

Our model results have shown how a hierarchical approach

better reflects plant invasions than non-hierarchical models.

Although proven a powerful modelling strategy (Pearson

et al., 2004; Diez & Pulliam, 2007; Vicente et al., 2011), hier-

archical modelling has been rarely used to model biological

invasions (Ib�a~nez et al., 2009a, 2014; Diez et al., 2012). Hier-

archical modelling can accommodate the frequently proposed

issue of considering the invasion process across spatial scales

(Collingham et al., 2000; Pearson & Dawson, 2003; Milbau

et al., 2009). Climate, topography and human activity at

regional level might drive invasion variability at large scales

while local variability may be determined by changes in bio-

tic interactions, disturbance or microclimate which are highly

associated with habitat type (Milbau et al., 2009).

Hierarchical models can also be used to test the consistency

in the associations of plant invasions and environmental vari-

ables. Context-dependent associations are usually assessed by

calibrating the same model with different datasets (Broenni-

mann et al., 2007; Gass�o et al., 2012). This modelling strategy

is problematic when the number of categories is large due to

the increasing number of parameters to estimate, the unbal-

anced number of samples per category and the difficulty to

interpret differences. Hierarchical models can partially solve

these problems, especially when the data have a nested struc-

ture and when partial pooling of information across groups is

likely to be helpful. Because these are common characteristics

of ecological studies, hierarchical approaches may be widely

useful for quantifying context-dependent patterns of invasion

and developing predictions of invasion risk.

Concluding remarks

It is important to consider the stage of the invasion process

when managing new introductions (Simberloff, 2009). Areas

with high establishment probability might not be the ones

with higher dominance of non-native species (Catford et al.,

2011). These invasion hotspots regarding establishment

might be colonized by only a few widespread species, but

not highly abundant because of environmental constraints.

Screening non-native species presence together with richness

and abundance provides a simple method to anticipate suc-

cessful plant invasions and not only potential establishment.

Although future patterns of invasions will not necessarily

mirror past invasions, given our stage of knowledge, the

information we can obtain from past invasions is our best

bet on how future invasions may develop. Given this

information, hierarchical models can help management of

plant invasions through a better accountability of context-

dependent effects (i.e. the interactions between climate

suitability, human activity and the conditions of the local

habitat). The outputs from these models might be used to

develop invasion risk scenarios within particular habitats and

bioclimatic regions, delivering more detailed information to

prevent future invasions.
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