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Abstract

Changes in climate are influencing the distribution and abundance of the world’s biota, with significant consequences

for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and but-

terflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover,

effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population

dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population

change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded,

80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid

increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of

moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current popula-

tion trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that

the per capita rates of change of moth species were more frequently associated negatively than positively with climate

change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of

microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not gener-

ally strong predictors of current population change or associations with climate change variables. However, 60% of

moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associ-

ated negatively with climate change variables in time-series models, suggesting that such species may be particularly

vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than

expected, and their populations appear buffered at present from potential deleterious effects of climate change by

other ecological forces.
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Introduction

Global climate change is altering the distribution, abun-

dance, and population dynamics of species on earth

(Parmesan, 2006; Maclean & Wilson, 2011; Cornulier

et al., 2013). In combination with land use change, cli-

mate change represents a significant threat to biological

diversity worldwide (Parmesan & Yohe, 2003; Thomas

et al., 2004a; Forister et al., 2010) with potential conse-

quences for many ecosystem processes (Cardinale et al.,

2006; Ball et al., 2008; Kurz et al., 2008). Understanding

which species are most at risk from climate change, and

which are not, has therefore become a matter of some

urgency (Walther et al., 2002; Parry et al., 2007).

Among the many species affected by climate change,

several authors have raised particular concerns about

changes in the distribution and abundance of insects

(Forister et al., 2011; Wilson & Maclean, 2011; Fox,

2013). For example, densities of the green oak tortrix,

Tortrix viridana, began declining markedly in Wytham

Woods, England, during the 1950s and 1960s (Hunter

et al., 1997). Similarly, long-term monitoring at Rotham-

stead Research began registering declines in the diver-

sity and abundance of moths during the 1950s

(Woiwod & Gould, 2008), which have continued since

(Conrad et al., 2004, 2006). Changes in the flight phenol-

ogy of moths (Woiwod, 1997) and in the latitudinal
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distributions of butterflies (Parmesan et al., 1999) have

both been associated with climate change, and insects

may be declining at a faster rate than are some other

taxa (Thomas et al., 2004b; Thomas, 2005).

At the same time, other studies have described cli-

mate-related increases in the local abundance of insects,

some of which are important pests of production sys-

tems (Gregory et al., 2009). For example, a recent out-

break of mountain pine beetle in British Columbia,

Canada, has been an order of magnitude greater in both

extent and severity than any previous outbreak (Kurz

et al., 2008). In Europe, outbreaks of Ips typographus are

expected to increase along with the increasing variabil-

ity in temperature and precipitation that climate mod-

els predict (Kausrud et al., 2012). Likewise, climate

change is creating a significant challenge to insect pest

management in Finland (Hakala et al., 2011) and

increasing defoliator outbreaks in the Patagonian

Andes (Paritsis & Veblen, 2011). Given the direct posi-

tive effects of temperature on the performance of some

insect herbivores (Bale et al., 2002), we might expect cli-

mate change to increase the abundance of at least some

insect species (Kozlov et al., 2013).

It therefore seems probable that, in any single loca-

tion, some insect species will respond positively to cli-

mate change while others will respond negatively

(Groenendijk & Ellis, 2011; Pateman et al., 2012). Stud-

ies that have compared responses to climate change in

diverse insect assemblages remain relatively rare and

restricted to a few geographic locations (Conrad et al.,

2004; Fox, 2013). Limitations in the availability of data

remain a key issue for analyzing diverse insect commu-

nities over appropriate timescales to infer the effects of

climate change (Woiwod, 1997; Kocsis & Hufnagel,

2011). Simple correlations between organism abun-

dance and time can be misleading because systematic

changes in abundance can be caused by a wide variety

of processes in addition to climatic factors, including

disturbance, habitat loss, and ecological succession

(Odum, 1953; Bishop, 2002; Brower et al., 2012). Untan-

gling the effects of climatic factors from other drivers of

systematic population change requires long datasets

suitable for multivariate time-series modeling (Forch-

hammer et al., 1998; Price & Hunter, 2005). Yet such

studies are crucial because of the important role that

insects play as agricultural pests (Hunter, 1994), pollin-

ators (Tylianakis, 2013), food sources for vertebrates

(Speight et al., 2008), and drivers of ecosystem pro-

cesses (Hunter et al., 2012); they are the ‘little things

that run the world’ (Wilson, 1987).

Studying population trends within large assemblages

of species is particularly useful, in part because we may

identify any shared ecological or life-history character-

istics that are the ultimate causes of population declines

or increases under climate change (Koh et al., 2004;

Brook et al., 2008). Moths and butterflies are ecologi-

cally diverse and well-studied, which makes them an

ideal group with which to investigate associations

between life history and population responses to cli-

mate change (Mattila et al., 2009, 2011). Previous work

has associated habitat specificity (Kadlec et al., 2009),

narrow feeding niches, restricted resource distribution,

poor dispersal abilities, and short flight periods with

vulnerability to climate change (Kotiaho et al., 2005;

Franzen & Johannesson, 2007). In other work, increases

in abundance have been observed in macrolepidoptera

whose larvae feed on lichens and conifers, while spe-

cies associated with shrubs and grasses have exhibited

declining trends; hibernating stage and flight period

also contributed to the observed variation (Conrad

et al., 2004). However, in most of these studies (except

for Kadlec et al., 2009) it is challenging to separate spe-

cies’ responses to climatic change from their responses

to potentially confounding changes in the environment.

Here, we consider the effects of climate change on an

assemblage of moth species in a subarctic forest at

V€arri€o Strict Nature Reserve, in Finnish Lapland. Stud-

ies of the effects of climate change at high latitudes are

particularly important because climatic change appears

disproportionately rapid toward the poles (Walther

et al., 2002; Parry et al., 2007). Our main goal was to

provide a comprehensive view of changes in moth

abundance, both negative and positive, that may result

from climate change. We were particularly interested in

comparing simple changes in moth abundance over

time with time-series models that estimate the effects of

climate variables on moth per capita rates of change.

The former describe how moth abundances are chang-

ing while the latter attempts to untangle potential

effects of climate on those changes.

We used 32 years of continuous light-trapping data to

explore (i) which among the common species of Lepi-

doptera demonstrated directional trends in abundance

between 1978 and 2009; (ii) associations between moth

per capita population growth rates and climatic change;

and (iii) which life-history and demographic character-

istics of moth species are associated with the direction

and strength of their responses to recent climatic

change.

Materials and methods

Study area and climate data

V€arri€o Strict Nature Reserve (V€arri€on luonnonpuisto) is

located in Eastern Lapland, Finland (67°44′N, 29°37′E). The
reserve lies 250 km north of the Arctic Circle and 6 km from

the Finnish-Russian border. There are no settlements close by,

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1723–1737
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and the nearest major road is located 100 km from the reserve;

thus, the natural ecosystems remain practically undisturbed.

The area is snow free approximately from the end of May to

mid-October; the average temperature during January (the

coldest month) is �11.4 °C and during July (the warmest

month) +13 °C. Annual precipitation averages 595 mm. A per-

iod of continuous daylight lasts from 30 May to 14 July.

The Finnish Meteorological Institute has been operating

synoptic climate measurements at V€arri€o Subarctic Research

Station since 1971 as a part of a national network of weather

observation. The first complete measurement year was 1975.

In addition to manual measurements conducted twice each

day by the permanent staff, an automatic weather station was

installed in the 1990’s. The station is located at 360 m a.s.l.; the

closest light trap is only few tens of meters away from the

weather station. The daily mean temperatures for 1975–2011

are available at: http://www.helsinki.fi/metsatieteet/varrio/

tutkimus/weather1971.html.

To characterize trends in climate over the period of data col-

lection, we collated climate data into four seasonal periods;

spring (mid-March to mid-May), summer (mid-May to mid-

July), fall (mid-July to mid-October) and winter (mid-October

to mid-March). We then generated three climate variables for

each of these seasons; average daily maximum temperature,

average daily minimum temperature, and average daily pre-

cipitation. We also included average annual snow depth as an

additional yearly measure. Uninterrupted climate data were

available for all 32 years (1978–2009) during which moths

were sampled. In order to assess patterns of climatic change,

we used Pearson correlation coefficients to examine relation-

ships between our climate measures and sample year.

Study sites and sampling protocol

The project, aimed at long-term monitoring of subarctic moth

fauna, was designed and initiated by EP, and 11 light traps

have been in operation at V€arri€o since 1978. They cover an

area of about 1300 9 300 m, within which altitude ranges

from 340 to 470 m a.s.l. (for a map, consult Pulliainen & It€a-

mies (1988)).Three traps were established in an old-growth

Scots pine (Pinus sylvestris) forest, three traps in a ravine of

spruce (Picea abies) dominated mixed forest, three traps in a

mountain birch (Betula pubescens ssp. czerepanovii) forest on the

northern slope of V€arri€otunturi fell, and two traps on the tree-

less summit of this fell. Pulliainen & It€amies (1988) provide a

list of vascular plants recorded in the immediate vicinity of

each trap at the beginning of the study.

Trap construction followed Jalas (1960). Traps were

equipped with 500 W blended light lamps, and were switched

on between 20:00 and 08:00 hours each night from approxi-

mately mid-May to mid-October. Catches were collected each

morning, stored in a freezer, and moths were identified at the

University of Oulu by JI. Identifications were generally based

on external characters. However, for specimens in poor condi-

tion and for those groups like Coleophoridae and Nepticuli-

dae that include externally similar species, moth genitalia

were always examined. The voucher specimens are deposited

in the Zoological museum of the University of Oulu.

Moth data

Over the 32 years of sampling, moth catches totaled 388 779

individuals from 456 species. Nomenclature of moths follows

Fauna Europaea (Karsholt et al., 2012). Species records from

all traps were summed for a single annual value per species.

Hence, data reported (Table S1) are the numbers of individu-

als per species per year per 11 traps. We fully appreciate that

our data reflect measures of abundance and activity of the spe-

cies that we collected, rather than their population densities in

the strict sense. However, most of our analyses are concerned

with temporal changes in moth abundance among years, and

we assume that differences in trapping efficiency among spe-

cies are constant over time. For the sake of brevity, we some-

times use the term ‘density’ in the following text (e.g., in the

term ‘density-dependent’).

Many of the 456 moth species that we captured occurred in

low abundance. We have therefore restricted our analyses to

the 80 species that averaged at least eight individuals per year

over the 32 years of sampling, which minimizes multiple con-

secutive years of zero catches. The total catch of these 80 spe-

cies amounted 378 429 individuals, i.e. 97.3% of all specimens

collected. Of the 80 species that we analyzed in detail, 25 were

macrolepidoptera (belonging to families Lasiocampidae, Geo-

metridae and Noctuidae; consult Tables S1 and S2; Table 1 for

the list) and 55 were microlepidoptera (all remaining families).

While these categories are largely historical in nature, rather

than taxonomic or ecological, they continue to be used in pub-

lications in this field; we include them here for ease of compar-

ison with other studies. Annual catches were transformed

loge(x + 1) prior to analysis of population trends and time-ser-

ies models. Species in which there was a significant positive

correlation between abundances two years apart were consid-

ered hemivoltine and analyzed separately from univoltine

species. In the time-series analysis of hemivoltine species

(below), counts in even years were analyzed separately from

counts in odd years (Redfern & Hunter, 2005; Kozlov et al.,

2010). The final analyses were conducted on 65 univoltine

species and 15 hemivoltine species.

Time-series analysis of moth populations

First, we calculated Pearson’s correlation coefficients between

annual abundance and study year for each moth species.

Based on the significance of these relationships in a two-tailed

test (P < 0.05 for significance), we assigned each species into

one of three population trends: stationary (no significant

trend), increasing or decreasing over time.

We then used time-series analysis (Royama, 1992) to esti-

mate the effects of density dependence and climatic variables

on moth population dynamics (Forchhammer et al., 1998).

Nonstationary time-series were detrended prior to the analy-

sis (Hunter et al., 1997). As in previous work (Redfern & Hun-

ter, 2005; Kozlov et al., 2010), we compared statistical models

that associated moth per capita rates of change with prior

moth abundance and climatic variables. Per capita rate of

change is a useful metric for studies of population dynamics

because it integrates both direct and indirect effects of

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1723–1737
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ecological variables on population change (Hunter et al.,

1997). Models were of the form:

Rt ¼ Xt � Xt�1

¼ a1Xt�1 þ a2Xt�2 þ :::aDXt�D þ b1Ct�1 þ b2Ct�2 þ :::bDCt�D

where R is per capita rate of increase at a given time,

t, X = loge of moth abundance, the a’s are the strength of the

density-dependent effects on various time lags (D), and the

b’s are the strength of a number of different climatic factors

(C) acting on various time lags (Price & Hunter, 2005). All of

the climatic variables described under Climate Data (above)

were tested for inclusion in time-series models. We used the

corrected Akaike’s information criterion (AICc) to select

among competing models (Forchhammer et al., 1998) using a

forward stepping procedure. The AICc values provide a mea-

sure of parsimony by which to choose models with the maxi-

mum information gain for the minimum number of model

variables. Forward stepping means models began with only

an intercept, and that additional terms were added only if

they significantly increased explanatory power under AICc. In

addition, new variables were not permitted to enter models if

their covariance with previously entered variables exceeded

0.5. In all cases, the maximum time lag investigated in our

models was 3 years, i.e. the maximum lag for which ecological

meaning can be easily inferred (Royama, 1992). Because of the

well-established autocorrelation between per capita rates of

increase and abundance at time t, the statistical significance of

rapid density dependence was estimated independently using

a randomization technique (Pollard et al., 1987). Final model

parameters, including the intrinsic rate of increase, Rmax, and

the strengths of density dependence, were estimated by maxi-

mum likelihood (Redfern & Hunter, 2005).

Associations between moth life-history traits and
temporal trends

Life-history characteristics of moth species (listed in Table S2)

were obtained from numerous publications on Lepidoptera,

including high-standard determination guides and compre-

hensive revisions of separate taxa, and from consultations

with specialists. Two points in our classification of life-history

traits deserve special attention. First, only moth species whose

larvae started feeding in autumn and then continued feeding

the following spring were considered as hibernating in the lar-

val stage. Second, we established the borderline between early

pupating and late pupating moths based on leaf expansion

and aging. In the majority of woody plants and shrubs in our

study area, leaf expansion starts in the last week of May to

early June and ceases by late June to early July. Only moth

species that completed larval development by this time were

considered as pupating early in the season.

We used categorical data modeling (Proc Catmod, SAS 9.2

for Windows) to compare the frequencies of current popula-

tion trajectories (stationary, increasing or decreasing) among

moths grouped by categorical life-history traits (Table S2). In

each case, we compared our data with the null hypothesis of

equal frequency of population trends among life-history

groups (larval diet, pupation strategy, etc.). In addition, based

on the results of time-series models (above) we repeated this

analysis, but using the frequencies of population trajectories

predicted under climate change (as opposed to current popu-

lation trajectories). Predicted trajectories were assessed from

the direction of significant correlations between moth per cap-

ita rates of increase and climate change variables in the time-

series models. We used general linear models (Proc GLM, SAS

9.2 for Windows) to compare wing lengths (Table S2) of moths

categorized both by current population trajectory and trajecto-

ries predicted under climate change. Finally, we also used

general linear models to compare the demographic traits esti-

mated from time-series models (Rmax, average abundance and

strength of density dependence) among moths grouped by

their current and predicted population trajectories.

Results

Climatic change

Between 1978 and 2009, the mean and median annual

temperatures at the V€arri€o station were �0.51 °C and

�0.70 °C, respectively. Average annual temperatures

increased during this period by 1.96 °C, i.e. 0.06

°C yr�1. Six of the 13 climate variables that we selected

for our study were correlated significantly and posi-

tively with study year (Fig. 1; Table S3). Average daily

maximum temperatures in spring, fall, and winter all

increased over time. Likewise, average daily minimum

temperatures in fall and winter increased over time.

Finally, winter precipitation increased during the

course of the study period. In addition, spring precipi-

tation (increasing over time) and annual snow depth

(decreasing over time) exhibited marginally nonsignifi-

cant correlations with sample year (Table S3). Hereaf-

ter, we refer to the climate variables that varied

systematically with year as ‘climate change variables.’

Maximum and minimum temperatures within each

season during the study period were strongly corre-

lated with one another (r values ranged from 0.90 to

0.95, n = 32 years, P < 0.0001 in all cases). Because

maximum and minimum temperatures can have very

different effects on insect physiology and responses to

climate (Dennis & Sparks, 2007; Speight et al., 2008),

both were included in the variable set for potential

inclusion in time-series models (below). However, we

never allowed maximum and minimum temperatures

during the same season to enter the same time-series

model because of their strong covariance.

Temporal trends in moth abundance

Among the 65 univoltine moth species, 38 exhibited

stationary abundances, 21 were increasing over time

and 6 were decreasing. Moth species with increasing
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abundances were therefore over three times more com-

mon than were those with decreasing abundances.

Among the 15 hemivoltine moth species, 8 exhibited

stationary abundances, 5 were increasing over time and

2 were decreasing. Overall, 26 moth species (33%)

showed evidence of population increases while eight

species (10%) showed evidence of population decreases

(Table 1), with significantly more species increasing

than decreasing (v2 = 9.53, df = 1, P < 0.01).

Results of time-series analysis

Time-series models explained an average of 53.1% of

variation in moth per capita rates of increase, with final

models including from one to five variables each

(median = 2 variables per model) (Table 1). Fourteen

of 65 univoltine moth species (21.54%) showed evi-

dence of delayed density dependence (time lag t�2),

whereas only one out of 15 hemivoltine species (6.67%)

showed evidence of delayed density dependence.

Delayed density dependence was 6 times more com-

mon within macrolepidoptera than within microlepi-

doptera (42% and 7% of species, respectively; v2 = 12.1,

df = 1, P = 0.0005). All remaining moth species sho-

wed evidence of rapid density dependence. No species

exhibited lags in density dependence greater than t�2

and there were no significant delayed (t�2 or longer)

effects of climate variables on moth per capita rates of

increase.

Despite the relatively high frequency of moth spe-

cies that were increasing in abundance over the study

period, moth per capita rates of change were often

associated negatively with the climate variables that

were changing systematically over time (Table 1). For

example, the per capita rates of change of fully 35%

of microlepidoptera were associated negatively with

climate change variables (Fig. 2). In contrast, the per

capita rates of change of 16% of microlepidoptera

were positively associated with climate change vari-

ables, and 9% of species exhibited mixed results

(models contained both positive and negative associa-

tions with climate change variables). In comparison

with microlepidoptera, macrolepidoptera exhibited far

fewer associations between per capita rates of change

and climate change variables. Rates of change of 64%

of macrolepidoptera species were unaffected by cli-

mate change variables.

Summaries of associations between climate variables

and moth per capita rates of increase are provided in

Fig. 3a (microlepidoptera) and Fig. 3b (macrolepidop-

tera). Among the microlepidoptera, the most common

associations are frequent negative correlations between

fall and winter temperatures and moth per capita rates

of increase. Notably, 16% of species retain positive

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1 Climate variables that underwent systematic change during 32 years of study in a subarctic forest in Finnish Lapland. Data rep-

resent average daily values of (a) spring maximum temperature, (b) fall minimum temperature, (c) fall maximum temperature, (d) win-

ter minimum temperature, (e) winter maximum temperature, and (f) winter precipitation. Statistical information on the regressions is

provided in Table S3.
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correlations between per capita rates of change and

‘study year’ after effects of climate have been included

in models, suggesting that additional ecological factors

that are changing systematically over time may be

contributing to systematic changes in moth population

growth rates.

Among the macrolepidoptera, there were frequent

correlations between summer temperature and moth

per capita rates of change (Fig. 3b). However, summer

temperature is not among the climate variables that

show systematic change over time at our study site. In

contrast, macrolepidoptera may be affected negatively

by declining snow depth. While the decline in snow

depth over time is marginally nonsignificant, 20% of

macrolepidoptera species in our study have per capita

rates of change that are positively correlated with snow

depth (Fig. 3b) and may therefore suffer under climate

change if snow depth declines.

Associations between temporal dynamics and life-history
traits

We found no associations between the life-history traits

of moths (as described in Table S2) and their current

population trajectories (Table 2). Likewise, moth life-

history traits were generally unrelated to the predicted

responses of their per capita rates of change to climate

change variables (Table 2). However, the per capita

rates of change of moths whose larvae fed on resources

other than living vascular plants (e.g., litter, lichen, etc.)

were much more likely to be associated negatively with

climate change variables than were those of moths

whose larvae fed on living vascular plants (v2 = 8.41,

df = 3, P = 0.038, Fig. 4).

We found no associations between the demographic

traits of moths in our study and their current temporal

trajectories in abundance (stationary, increasing

or decreasing)(Rmax: F2,87 = 0.44, P = 0.644; Average

Abundance: F2,87 = 0.65, P = 0.523; Strength of Density

Dependence: F2,87 = 1.25, P = 0.291). Likewise, we

found no associations between their predicted responses

to climate change variables and their demographic traits

(Rmax: F3,86 = 0.52, P = 0.669; Average Abundance:

F3,86 = 0.51, P = 0.676; Strength of Density Dependence:

F3,86 = 2.33, P = 0.080).

(a)

(b)

Fig. 3 Frequencies (percent) of (a) microlepidoptera and (b)

macrolepidoptera species that show positive, negative, or no

associations between their per capita rates of change and cli-

mate variables in a subarctic forest in Finnish Lapland. Data

reflect associations in time-series models of 32 years of popula-

tion change (Table 1). Data are provided separately for average

daily minimum (min) and maximum (max) temperatures in

spring because only spring maximum temperatures were

increasing systematically over time.

Fig. 2 Frequencies (percent) of macrolepidoptera (hatched bars)

and microlepidotera (solid bars) species exhibiting positive,

negative, or mixed associations between their per capita rates of

change and climate change variables. Data are for 80 species of

Lepidoptera sampled over 32 years in a subarctic forest in Finn-

ish Lapland.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1723–1737

MOTH POPULATIONS UNDER CLIMATE CHANGE 1731



Discussion

Despite strong evidence of population declines in Lepi-

doptera reported in most other studies (Hunter et al.,

1997; Woiwod & Gould, 2008; Fox, 2013), we observed

more cases of population increase (33% of moth spe-

cies) than of population decrease (10% of moth species)

at V€arri€o in Finnish Lapland. Moreover, at our study

site, the populations of fully 57% of moth species

were stationary over the 32 years of study. That the

populations of 90% of moth species are either stable or

increasing is perhaps surprising, given concerns about

negative ecological effects of climate change at high lat-

itudes or high elevations (Parmesan, 2006; Parry et al.,

2007). Climate appears to be changing rapidly at V€arri€o,

with significant increases in spring, fall, and winter

temperatures, and in winter precipitation (Fig. 1),

providing ample potential for ecological effects on

organisms and their populations.

It is possible, of course, that climate change has either

neutral or beneficial effects on northern latitude Lepi-

doptera (Fox, 2013). Range expansion and increased

abundance of species with more typically southern dis-

tributions may add to the species pool and abundance

of moths at northern latitudes (Warren et al., 2001).

Such effects have been observed in northern parts of

the UK (Conrad et al., 2006; Salama et al., 2007; More-

croft et al., 2009). Warmer temperatures may allow Lep-

idoptera to encounter and use plant species that were

previously unavailable to them, so further facilitating

range expansion (Pateman et al., 2012). In addition, the

growing season in northern Europe has increased by as

much as 3.6 days per decade during the last 50 years

(Walther et al., 2002), increasing the productivity of

high-latitude environments (Xu et al., 2013) and allow-

ing southern species to complete their development in

more northern regions (Bale et al., 2002).

However, our data do not suggest that climate

change per se has had a positive influence on a majority

of moth populations at V€arri€o. Rather, the per capita

growth rates of moths were more often associated nega-

tively (26% of species) than positively (11% of species)

with climate change variables (Table 1). An additional

8% of species had per capita rates of change associated

Table 2 Statistical associations between life-history traits

and moth population trajectories sampled over 32 years in a

subarctic forest in Finnish Lapland. Life-history traits and

population trends are provided for each moth species in Table

S2 and Table 1, respectively. Current trends refer to observed

population trajectories (stationary, increasing or decreasing),

whereas Expectations refer to associations (none, positive,

negative, mixed) between moth per capita rates of change and

climate change variables in time-series models. Significant

associations are provided in bold

Trait Current trends Expectations

Pupation time

Chi-Sqd 1.05 0.5901

df 2 3

P-value 0.59 0.902

Overwintering stage

Chi-Sqd 3.64 0.54

df 4 6

P-value 0.456 0.997

Larval food

Chi-Sqd 0.85 8.41

df 2 3

P-value 0.653 0.038

Feeding guild

Chi-Sqd 3.66 4.77

df 6 9

P-value 0.723 0.854

Host plant life form

Chi-Sqd 1.88 4.71

df 4 6

P-value 0.758 0.582

Dietary breadth

Chi-Sqd 1.42 1.84

df 4 6

P-value 0.841 0.933

Pupation site

Chi-Sqd 5.15 6.19

df 4 6

P-value 0.272 0.402

Wing span

F-Value 0.65 2.42

df 2,80 3,79

P-value 0.523 0.072

Fig. 4 Frequencies (percent) of Lepidoptera species that show

positive, negative, or mixed associations between their per cap-

ita rates of change and climate change variables in a subarctic

forest in Finnish Lapland. Larval host plants are categorized as

either living vascular plants (hatched bars) or other food sources

(litter, lichen, etc.) (solid bars). Moth abundances were esti-

mated over 32 years by light trapping.
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positively with some climate change variables but neg-

atively with others, providing mixed expectations for

population trends. The per capita growth rates of 55%

of moth species were unrelated to climate change

variables (Table 1). Unfortunately, in this analysis, we

cannot distinguish between direct effects of climate

on moths and indirect effects mediated by factors such

as changes in natural enemies, host plants, or other

factors.

We had expected that life-history or demographic

traits might provide clues to understanding variation in

moth population dynamics under climate change.

However, we found no compelling evidence that these

traits were associated meaningfully with current popu-

lation trends, or those expected under climate change

(Table 2). Overall, the per capita rates of change of

microlepidoptera were more likely to be associated

negatively with climate change variables than were

those of macrolepidoptera (Fig. 2). Given that we found

no association between wing length and climate change

variables (Table 2), this difference cannot be explained

based on size alone. However, we are unaware of any

consistent ecological differences between these groups

of moths that might explain their differential associa-

tions with climate change variables.

We also noted that the per capita rates of change of

moths whose larvae feed on litter, lichen, and mosses

(i.e. on resources other than living vascular plants)

were much more likely to be associated negatively with

climate change variables than were those of moths

whose larvae feed on living vascular plants (Fig. 4).

Recent increases in grazing pressure by reindeer are

causing substantial reductions in the availability of

ground vegetation and lichen in the forests of Finnish

Lapland (Den Herder et al., 2003; Suominen et al.,

2003), and may be responsible for negative associations

between some moth species and climate change vari-

ables. This pattern supports the recent suggestion that

litter and lichen feeding species, which remain rela-

tively understudied in comparison to foliar-feeding

Lepidoptera, merit increased attention from ecologists

(Kozlov et al., 2010).

In previous studies, habitat specificity, limited dis-

persal, and host plant specificity have been associated

frequently with population declines in butterflies, bee-

tles, and hover flies (Sullivan et al., 2000; Warren et al.,

2001; Kotze & O’hara, 2003; Koh et al., 2004; Kotiaho

et al., 2005; Mattila et al., 2011; Stefanescu et al., 2011;

Slade et al., 2013). For example, the specificity of larvae

for host plants, overwintering stage, and flight period

length are all significant predictors of distribution

change and extinction risk in geometrid moths in Fin-

land (Mattila et al., 2008). However, single traits may

not always be the best predictors of insect responses to

climate change (Mattila et al., 2006), particularly if those

traits interact with each other in complex ways (Mattila

et al., 2009). In addition to our study, others have been

unable to find compelling links between insect life-

history traits and population trajectories of Lepidop-

tera. For example, life-history traits correlate only

weakly with population trends of butterflies in the Cali-

fornia central valley (Forister et al., 2011) and of subarc-

tic moths in other parts of Finland (Kozlov et al., 2010).

Apparently, life-history traits are not always a strong

predictor of responses to climate change or land use

change in Lepidoptera.

Overall, populations of moths at V€arri€o are perform-

ing much better than might be expected given the high

frequency of negative associations between moth per

capita rates of change and climate change variables. We

can investigate this further by comparing, species by

species, current moth population trends with those

expected from time-series models (see column labeled

“Difference” in Table 1). We found that 43% of moth

populations were performing better than might be

expected from the relationships between their per capita

rates of change and climate change variables; 17% of

moth populations were performing worse than expected

and 40% ofmoths were performing as expected.

We interpret these data to suggest that a high propor-

tion of moth species at V€arri€o are responding primarily

to ecological variables that are not immediately

associated with climate change variables. Although our

time-series models were commonly quite predictive,

explaining an average of 53.1% of moth per capita rate

of change (Table 1), many unmeasured ecological fac-

tors are probably contributing to population growth

rates and current population trends. Time-series mod-

els are generally not mechanistic, relying upon correla-

tions between demographic rates and measured

variables (Royama, 1992; Boggs & Inouye, 2012). How-

ever, they have proven very useful in assessing species

responses to climate change (Kausrud et al., 2012; Yan

et al., 2013) and associations between climatic variables

and population dynamics (Forchhammer et al., 1998;

Price & Hunter, 2005). Simultaneously, time-series

models of insects have also established the importance

of other ecological factors, including effects of natural

enemies and competition for limiting resources (Hunter

et al., 1997; Hunter, 1998; Redfern & Hunter, 2005) on

per capita rates of increase. Data were not available to

explore the potential effects of these additional factors

on moth dynamics at V€arri€o.

Understanding the underlying mechanisms by which

climate drivers influence population growth rates is

important for our ability to predict the population tra-

jectories of species under climate change (Benton et al.,

2006; Boggs & Inouye, 2012), especially when climate
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drivers have both direct and indirect effects on organ-

ism performance (Sibly & Hone, 2002; White, 2008;

Hansen et al., 2013). For example, snow melt date has

multiple effects on the population dynamics of the

montane butterfly Speyeria mormonica, with both direct

effects on the butterflies and additional indirect effects

mediated by other members of the community (Boggs

& Inouye, 2012). In addition, insect population growth

may be related more to variation in weather patterns

than to general trends of increase or decrease in tem-

perature or precipitation. For example, increasing vari-

ability in precipitation promotes extinction of the

checkerspot butterfly, Euphydryas editha bayensis

(Mclaughlin et al., 2002). Similarly, Rocky Mountain

populations of the butterfly Parnassius smintheus res-

pond negatively to extremes of warm or cold weather

during winter rather than to average warming or cool-

ing trends (Roland & Matter, 2012). Variation in climate

can also affect negatively the natural enemies of insect

herbivores, potentially releasing herbivore populations

from regulation and causing increases in herbivore

abundance (Stireman et al., 2005).

However, a key result from our work is that dynamic

ecological variables that appear unrelated to climate

change may mask more subtle effects of climate change

on the performance of organisms. For example, eight of

our study species have increased in abundance over the

last three decades during which time their per capita

rates of increase were associated negatively with climate

change variables (Table 1). In some sense, this may be

good news, because negative impacts of climate change

can be over-ridden by other ecological forces. However,

it also means that simple temporal changes in popula-

tion abundance cannot always be used to estimate

effects of climate change on the dynamics of organisms.

While our study shows that the populations of most

moth species at V€arri€o are either stable or increasing, a

majority of studies of moth populations have reported

recent declines in abundance. The strong evidence for

systematic and widespread declines in UK moth popu-

lations has been reviewed recently (Fox, 2013). Both

intensive studies at Rothamsted, UK (Woiwod & Gou-

ld, 2008) and extensive studies throughout a network of

UK sites (Conrad et al., 2004, 2006) provide compelling

evidence of moth population declines at local and

regional scales. Overall, about 66% of 337 species ana-

lyzes showed significant population declines between

1968 and 2002 (Conrad et al., 2006). However, some

moth species showed increases in abundance over the

same period, particularly in northern areas (Conrad

et al., 2004). Likewise, among the dramatic and perva-

sive declines in moth populations in the Netherlands,

some species are increasing strongly (Groenendijk &

Ellis, 2011). Similarly, the butterfly fauna in the central

valley of California is undergoing more rapid popula-

tion decline at lower elevation than at higher elevation,

where some populations are actually increasing

(Forister et al., 2011). Yet northern latitudes are not free

from declines in Lepidoptera. Historical records sug-

gest declines in the distributions of geometrid and noc-

tuid moths in Finland (Mattila et al., 2006, 2008) and

high extinction rates of moths in Sweden (Franzen &

Johannesson, 2007).

There seems little doubt that habitat loss, habitat

fragmentation, and climate change have all contributed

to declines in the populations of some Lepidoptera

(Warren et al., 2001; Fox, 2013). For populations at the

northern edge of their climatic range, climate warming

may facilitate population growth and range expansion

(Bale et al., 2002), whereas habitat loss and overgrazing

by ungulates may oppose such changes (Den Herder

et al., 2003; Suominen et al., 2003). The overall effects on

species assemblages would therefore reflect the balance

of these opposing forces. At least for some butterfly

species in the UK, negative effects of habitat loss appear

to outweigh any beneficial effects of climate change on

range expansion (Warren et al., 2001). Similarly, in

northeastern Spain and Andorra, declines in butterfly

populations may be more closely associated with habi-

tat modification than with climate change (Stefanescu

et al., 2011). Likewise, low elevation populations of but-

terflies in the central valley of California may be declin-

ing because of changes in land use and host plant

availability rather than effects of climate change (Foris-

ter et al., 2011). However, warming trends appear to be

shifting species ranges up in elevation (Forister et al.,

2010), generating increases in both species richness and

abundance at higher elevation. In combination, these

and other studies illustrate that changes in habitat and

climate interact strongly to influence the diversity and

dynamics of Lepidoptera assemblages (Morecroft et al.,

2009; Forister et al., 2010, 2011; Fox, 2013).

While range limitation can impose serious constraints

on high-latitude populations under climate change (Par-

mesan, 1996, 2006; Parmesan et al., 1999), some other

studies in northern latitudes are consistent with our

findings. For example, a study of 42 moth species at the

Kevo Subarctic Research Station in Finland reported that

72% of species exhibited stationary time series while

14% were increasing and 14% were decreasing (Kozlov

et al., 2010). While there was no attempt in that study to

associate population dynamics with climate change

variables, there was no evidence to support systematic

declines in moth abundance during recent decades.

In summary, our data provide an interesting puzzle.

Overall, moth populations at V€arri€o are largely stable

or increasing, yet the climate is clearly changing and

climate change variables are more often associated
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negatively than positively with moth per capita rates

of increase. These patterns suggest that some other

ecological factor(s) may be over-riding any potentially

deleterious effects of climate change on moth popula-

tion trends. In time-series models, estimates of per cap-

ita rates of change integrate the effects of multiple

direct and indirect effects on population change, high-

lighting the need for future mechanistic studies of the

trends reported here. Because of the isolated nature of

our field site in V€arri€o, which is 250 km north of the

Arctic Circle and 100 km from the nearest major road,

anthropogenic changes in land use are essentially zero.

What other factors may compensate for the potential

negative impacts of increasing temperature and

precipitation on moth populations that we observed in

time-series models? One possibility is that natural suc-

cessional processes in the plant community are favor-

ing stability or increases in the populations of a

majority of moth species. Such effects would have to

be over and above any effects of plants on moths that

are driven by climate change variables, which we

already account for in our time-series models.

Although we have not monitored plant succession

quantitatively over this period, qualitative observa-

tions suggest increases in tree and shrub density at the

expense of herbs (JI, unpublished data). Likewise, rates

of tree growth, the altitude of the tree line, and plant

phenology have all changed at V€arri€o during the last

30 years (JB, unpublished data). Our data collection

occurred at a single research site, which limits our abil-

ity to generalize or to associate the dynamical patterns

that we observed at V€arri€o with spatial variation in

ecological factors such as plant successional stage.

Whether driven by changes in the plant community, or

by other ecological factors, our data illustrate that

potentially negative impacts of climate change on

Finnish subarctic moths at V€arri€o appear buffered, at

least for now, by other ecological forces.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Counts of moths each year from a sub arctic forest in Finnish Lapland. Data represent the totals of individuals caught per
year from 11 light traps. Please request the authors’ permission before downloading or using these data, as they are still being used
for research purposes.
Table S2. Summary of life-history traits of abundant moths trapped in V€arri€o Strict Nature Reserve, northern Finland, between
1978 and 2009.
Table S3. Correlation statistics (r = correlation coefficient with study year, P-value = probability) providing evidence of systematic
climate change between 1978 and 2009 in a subarctic forest in Finnish Lapland. Significant correlations are in bold while marginal
correlations are underlined.
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