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Abstract in response to the subduction of the young Shikoku Basin of the Philippine Sea Plate, arc
magmas erupted in SW Japan throughout the late Cenozoic. Many magma types are present including
ocean island basalt (OIB), shoshonite (SHO), arc-type alkali basalt (AB), typical subalkalic arc basalt (SAB),
high-Mg andesite (HMA), and adakite (ADK). OIB erupted since the Japan Sea back-arc basin opened,
whereas subsequent arc magmas accompanied subduction of the Shikoku Basin. However, there the
origin of the magmas in relation to hot subduction is debated. Using new major and trace element and
Sr-Nd-Pb-Hf isotope analyses of 324 lava samples from seven Quaternary volcanoes, we investigated the
genetic conditions of the magma suites using a geochemical mass balance model, Arc Basalt Simulator
version 4 (ABS4), that uses these data to solve for the parameters such as pressure/temperature of slab
dehydration/melting and slab flux fraction, pressure, and temperature of mantle melting. The calculations
suggest that those magmas originated from slab melts that induced flux melting of mantle peridotite. The
suites differ mostly in the mass fraction of slab-melt flux, increasing from SHO through AB, SAB, HMA, to
ADK. The pressure and temperature of mantle melting decreases in the same order. The suites differ sec-
ondarily in the ratio of altered oceanic crust to sediment in the source of the slab melt. The atypical suites
associated with hot subduction result from unusually large mass fractions of slab melt and unusually cool
mantle temperatures.

1. Introduction

The origin of arc magmas remains a central research subject because of its fundamental role in element
redistributions in the Earth. This process contributes to the formation of continental crust and element recy-
cling back into the mantle as key components of the Earth’s geochemical cycles [Gill, 1981; Kelemen et al.,
2013; Tatsumi and Eggins, 1995; Tatsumi et al., 2008a]. The sources and processes of arc magmatism vary in
part because the geophysical conditions differ considerably between subduction systems [Syracuse et al.,
2010; van Keken et al., 2011].

Among subduction zones worldwide, the late Cenozoic Southwest (SW) Japan arc is an extreme hot end-
member having been formed as a result of subducting the young Shikoku Basin of the Philippine Sea Plate
[Kimura et al., 2005a; Peacock and Wang, 1999; Syracuse et al., 2010]. Magma compositions in hot arcs differ
remarkably from those in cold subduction systems, such as the NE Japan or Izu arcs, where low-K tholeiitic to
medium and high-K calc-alkaline magmas are dominant [Kimura et al., 2009, 2010; Tatsumi et al., 2008b; Toll-
strup et al., 2010]. In the SW Japan arc, ocean island-type basalt (OIB), arc-type alkali basalt (AB) and shoshonite
(SHO), typical subalkalic arc basalt (SAB), high-Mg andesites (HMA), and adakite (ADK) all occur in close prox-
imity [lwamori, 1991; Kakubuchi et al., 2000; Kimura et al., 2005a; Morris, 1995; Tatsumi and Koyaguchi, 1989;
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Tatsumi and Hanyu, 2003]. This occurrence of multiple magma types is a common feature of hot subduction
zones such as Cascadia (OIB, HMA, adakitic dacite) [Leeman et al., 2005; Streck et al., 2007], Baja California (tran-
sitional mafic lavas between alkali basalt and HMA (bajaites), and adakitic dacite) [Calmus et al., 2003], and
Central Mexico (OIB and adakitic dacite) [Straub et al., 2008, 2011]. However, the occurrence of almost all the
magma suites, excluding only low-K tholeiite, makes the SW Japan arc unique.

Many models have been proposed for magma genesis in the SW Japan arc. The models include an enriched
lithospheric mantle origin of OIB [Hoang and Uto, 2003; Kakubuchi et al., 2000], aqueous fluid-fluxed mantle
melting for AB [lwamori, 1991, 1992], carbonaceous melt-fluxed melting for Miocene OIB [Tatsumi et al., 1999],
hydrous shallow mantle melting with residual phlogopite for SHO [Tatsumi and Koyaguchi, 1989], slab melt-
fluxed mantle melting for HMA [Kimura et al., 2005a; Shimoda et al., 1998; Tatsumi and Hanyu, 2003], slab melt-
ing for ADK [Feineman et al., 2013; Kimura et al., 2005a; Morris, 1995], remelting of solidified andesite for ADK
[Tamura et al.,, 2003], and deep garnet fractionation of hydrous basalt for ADK [Zellmer et al., 2012].

These models have been based on limited geochemical data sets. In this paper, we present thorough ana-
lytical results for 324 lava samples from seven Quaternary eruption centers that are representative of almost
all the magma suites erupted in SW Japan during the Quaternary. We then quantitatively reexamine the
proposed models based on the new data set. For this, we use a new version of a forward geochemical mass
balance model, Arc Basalt Simulator version 4 (ABS4). The first author (JIK) and coworkers have been devel-
oping the ABS model for a decade. The previous version, ABS version 3 (ABS3), has been applied success-
fully to the low-K tholeiite and medium-K calc-alkaline basalts of the cold NE Japan and North Izu
subduction zones [Kimura et al., 2009, 2010], low-Ca boninite and high-Mg ADK in the infant Izu-Bonin-
Mariana (IBM) arc [Li et al., 2013], and calc-alkaline basalts of the Southern Volcanic Zone of Chile [Jacques
et al., 2013] We summarize the improvements in the ABS4 model in Appendix.

2. Rock Suites

We first introduce the seven rock suites and four subsuites that are examined in this paper. These are OIB
(containing OIBL and OIBH), SAB, SHO, AB (containing ABL and ABH), HMA, ADK, and AA. The geochemical
criteria for discriminating between the suites are discussed in section 6.

1. OIB: Ocean island basalt-type alkali basalt occurs at the Kannabe and Abu monogenetic volcano clusters
(Figure 1). All Quaternary basalts at the Kannabe Volcano Group [Furuyama et al., 1993b] are OIB, whereas
only some in the Abu Monogenetic Volcano Group are [Kakubuchi et al., 2000]. OIB at Kannabe is divided
into OIBL and OIBH based on Sr isotope ratios that are lower in OIBL than OIBH.

2. SAB: Medium-K subalkalic arc basalt and their differentiates also occur in the Abu Monogenetic Volcano
Group (Figure 1).

3. SHO: Shoshonitic basalt (absarokite) also occurs in the Abu Monogenetic Volcano Group, at Katamata
[Tatsumi and Koyaguchi, 1989] (Figure 1).

4. AB: Arc-type alkali basalt occurs at the Yokota monogenetic volcano [Fujibayashi et al., 1989] (Figure 1)
(included in Daisen by Tamura et al. [2000]). AB is divided into ABL and ABH on the basis of Sr isotope ratios
that are lower in ABL than ABH. These two subtypes are the equivalents of the high-Nd and low-Nd isotope
groups of Nagao et al. [1990].

5. HMA: This is the first report of high-Mg andesite at Kasayama and Nagasawadai in the Abu Monogenetic
Volcano Group (Figure 1) [Kakubuchi et al., 2000]. We compare them to the Middle Miocene Setouchi HMA
(~13 Ma) [Tatsumi and Hanyu, 2003].

6. ADK: Adakite [Kimura et al., 2005a; Morris, 1995] occurs at the Aonoyama monogenetic volcanoes [Fur-
uyama et al.,, 2002] (hereafter Aono), and at Daisen volcano and the Hiruzen Volcano Group [Tsukui et al.,
1985] (hereafter collectively called Daisen). We refer to them as Aono ADK and Daisen ADK, respectively
(Figure 1).

7. AA: Aphyric andesite possessing adakite affinities occur at Daisen Volcano [Tsukui et al., 1985].

For completeness, supporting information 2 includes analytical results for a few other locations (e.g., Kur-
ayoshi) and minor rock suites (e.g., Setouchi SAB) that are not discussed in this paper.
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Figure 1. Tectonic setting and distribution of the late Cenozoic volcanoes in the SW Japan arc. (a) The Quaternary volcanic arc develops in
response to the subduction of the Shikoku Basin of the Philippine Sea Plate slab in the SW Japan arc. (b) The Quaternary volcanoes consist
of basalt monogenetic volcano clusters and adakitic dacite eruption centers. Eruption centers of the Miocene Setouch high-Mg andesites
are also shown. The Quaternary volcanic centers are subparallel to the seismic-aseismic transition of the Shikoku Basin plate slab. The
aseismic slab can be traced tomographically to 370 km deep beneath the Japan Sea as shown by short-dashed lines [Zhao et al., 2012].
Slab tear windows are also imaged (see shaded areas in Figure 1b). Also shown are regions of low-frequency tremors above the slab
beneath Shikoku [Obara, 2002]. Lines A and B are positions of cross sections shown in Figure 17. Seismicity contours are from Nakajima
and Hasegawa [2007]. Basement granitoid distribution is from Kagami et al. [1992].
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3. Geological Setting and Arc Evolution

3.1. Basement Terranes and Late Cenozoic Tectonic Development

The SW Japan arc is located along the eastern continental margin of the Eurasia Plate beneath which the
Shikoku Basin of the Philippine Sea Plate is subducting [Kimura et al., 2005a] (Figure 1a). The basement of
the arc consists of subparallel Permian to early Cenozoic accretionary prism sedimentary rocks [Maruyama
et al., 2009]. Large volumes of granitoids intruded the basement terranes during the late Cretaceous to early
Oligocene (120-30 Ma) (Figure 1b). They are classified into the Ryoke, San-Yo, and San-In zones based on
their Sr-Nd isotope geochemistry. The Ryoke and the San-Yo Zone granitoids have enriched sources
whereas the San-In Zone granitoids have more depleted sources [Ikawa et al., 1999; Imaoka et al., 2011; Ish-
ioka and lizumi, 2003; Kagami and Imaoka, 2008; Kagami et al., 1988, 1992, 2000; Kimura et al., 2005a; Matsu-
moto et al., 1994; Resanov et al., 1994; Takagi and Kagami, 1995; Yuge et al., 1998; Yuhara et al., 1998, 2003]
(Figure 2). Cooling ages in the San-Yo and San-In Zones are 70-45 Ma, and in the San-In Zone are 40-30 Ma
[Imaoka et al., 2011].

The youngest plutonic activity is regarded as a precursor to the opening of the Japan Sea. There was associ-
ated volcanic activity at 27-17 Ma [Kimura et al., 2005a; Miyake, 1994; Uto et al., 1994]. These lavas are
mostly rift-related alkalic to tholeiitic basalt [Pouclet et al., 1995], but there are also small amounts of ADK
and HMA in the northeast and central Japan rear arc that have been interpreted as the result of melting the
Pacific Plate slab during back-arc rifting [Sato et al., 2013; Yamamoto and Hoang, 2009].

3.2. Volcanic Activity and Tectonics in the Middle Miocene to Pliocene

Volcanism in the current SW Japan arc started in the Middle Miocene (~15 Ma) as a result of subduction of
the Philippine Sea Plate beneath SW Japan for the first time due to opening of the Japan Sea back-arc basin
[Kimura et al., 2005a; Tamaki et al., 1992]. The opening first formed rift systems in the back-arc basin starting
~27 Ma and then caused rapid clockwise rotation of SW Japan at ~15 Ma [Torii et al., 1986]. This tectonic
event resulted in alignment of the basement terranes and the Ryoke to San-In Zone granitoids parallel to
the present-day Nankai Trough [Kimura et al., 2005a] (see Figures 1a and 1b).

The Shikoku Basin formed during 27-15 Ma as a back-arc basin behind the IBM arc on the northeastern
margin of the Philippine Sea Plate. The Shikoku Basin spreading ridge was probably orthogonal to the SW
Japan arc just prior to subduction reinitiation. The full width of the young Shikoku Basin seafloor (0-12 Myr
old at the time of subduction reinitiation) subducted beneath SW Japan arc after ~15 Ma [Kimura et al.,
2005a; Okino et al., 1994; Seno and Maruyama, 1984]. The paleogeography just prior to the subduction is
uncertain. Kimura et al. [2005a] suggested that the spreading ridge of the Shikoku Basin was in front of the
central SW Japan arc and the IBM arc was in front of central Japan. In contrast, Mahoney et al. [2011] pro-
posed that the IBM arc was in front of central SW Japan at that time.

Subduction of the young Shikoku Basin induced subduction-related volcanism parallel to the present-day
Nankai Trough in the fore and intraarc regions for over 1500 km [Kimura et al., 2005a, 2003b; Tatsumi and
Hanyu, 2003] (Figure 1b). The earlier back-arc rift volcanism was gradually replaced by arc volcanism [Kimura
et al., 2005a]. Setouchi HMA activity occurred almost simultaneously with subduction reinitiation at ~13 Ma
about 250 km from the plate boundary [Tatsumi et al., 2008b] (Figures 1a and 1b). Felsic magmatism
occurred even closer to the trench at 15-13 Ma. These are thought to be crustal melts formed by the heat
from HMA and enriched (E-) MORB-type basalts from the Shikoku Basin spreading ridge [Kimura et al.,
2005a; Shinjoe, 19971].

Subsequently, both OIB and AB erupted in the San-Yo and the San-In Zones during 9-5 Ma [Kimura et al.,
20054, 2003b] (Figure 1b) [see details in Kimura et al., 20053, Figures 2 and 3], while OIB tholeiite to alkali
basalts remained active in the Japan Sea [Kimura et al., 2005a; Yamada et al., 2013]. Magmatism changed
from OIB to AB in the Pliocene [Kimura et al., 2005a], ADK appeared at Wakurayama in Matsue at ~5.0 Ma
[Sato et al., 2011], and HMA (Chausuyama on the NW slope of Daisen, not shown in Figure 1) and SAB
(Daisen) also erupted at that time [Kimura et al., 2003b] (Figure 3). The progressive increase of arc-type mag-
matism continued into the Quaternary after ~3 Ma, as discussed in the following section (Figure 3).

3.3. Tectonic Setting and Volcanic Activity in the Quaternary
The present-day tectonic setting of the SW Japan arc is summarized as follows. The Shikoku Basin (27-15
Myr old) is subducting northwestward at ~4 cm/yr at an oblique angle to the Nankai Trough trench axis
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Figure 2. (a) Spatial distribution and (b) Sr and Nd isotope composition of basement granitoids in comparison to the late Cenozoic lavas. Basement granitoid zones (San-In, San-Yo, and
Ryoke zones) from Kagami et al. [1992]. The San-In zone granitoids have more radiogenic Nd and unradiogenic Sr in comparison to those in the San-Yo and Ryoke zone granitoids when
compared at the same longitude. The Quaternary lavas have less radiogenic Sr and more radiogenic Nd than in the basement granitoids. References for isotope data for the basement
granitoids and Cenozoic lavas are listed in the text. Crustal thickness in km is from Katsumata [2010]. The range in isotope ratios in Figures 2b and 2c show the variability at the locations
shown in Figure 2a.

(Figure 1a). The extinct spreading ridge of the Shikoku Basin is currently located offshore between Shikoku
and the Kii Peninsula (Figure 1a) [Nakajima and Hasegawa, 2007]. The subducted slab is in contact with the
arc crust beneath Shikoku and the Kii Peninsula to a depth of ~30 km (Figure 2a) [Katsumata, 2010].
Low-frequency tremor occurs near the triple junction of the crust-slab-mantle (Figure 1b) [Obara, 2002]. The
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type alkalic basalt (AB) subalkalic basalt (SAB) (in red), and adakite (ADK) (in blue) started (0.015-0.005 Ma) [Furuyama
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between Aono and Daisen at 1-2 Ma, basalt eruptions stopped. Radiometric ages are
from Kimura et al. [2003b]. 2005a] (Figure 3). AB occurs at

Yokota (2.3-1.0 Ma) with erup-
tion of ABL at 2.3-1.1 Ma, and ABH more recently (1.4-1.0 Ma) [Kimura et al., 2003b] (Figure 3). ADK erupted
almost continuously at Daisen from 1.0 to 0.017 Ma, and AA occurred twice at ~1.0 and ~0.5 Ma [Kimura
et al., 2003b] (Figure 3). ADK was also active at Aono from 1.3 to 0.2 Ma [Furuyama et al., 2002]. The Abu
Monogenetic Volcano Group (2.0-0.005 Ma) [Kakubuchi et al., 2000] showed complex activity. OIB erupted
at ~1.8 Ma and after ~0.3 Ma, SAB erupted at ~0.4-0.2 Ma, SHO erupted at ~0.2 Ma, and HMA erupted at
0.2-0.005 Ma [Kakubuchi et al., 2000] (Figure 3). The geochemistry of Tottori SAB, Kurayoshi AB/SAB, Menga-
meyama AB, Kawamoto AB, and Sambe, Matsue, and Ooe-Takayama ADK are not discussed in this paper
but their ages and spatial distributions are shown in Figure 3 as a summary from Kimura et al. [2005a,
2003b].

OIB continued to erupt in the Quaternary but only at the western (Abu) and eastern (Kannabe) tips of the
arc. OIB also erupted on Oki Island in the Japan Sea at ~0.4 Ma (Figure 3) [Kimura et al., 2005a; Yamauchi
et al.,, 2009]. These OIB centers are located above the slab tear windows (Figure 1b) [Zhao et al., 2012].
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In contrast, all the arc-type centers (AB, SAB, SHO, HMA, and ADK/AA) currently overlie the subducting Shi-
koku Basin (Figures 1b). The overall temporal changes show that AB and SAB first replaced OIB in the central
part of the arc at 3.0-1.7 Ma and were followed by ADK/AA after 1.7 Ma. AB is absent where ADK/AA occurs
(e.g., Yokota AB versus Daisen ADK/AA, and Kawamoto/Mengameyama AB versus Ooe-Takayama/Sambe
ADK in Figure 3).

4, Samples and Methods

We analyzed 324 lava samples from the Kannabe, Yokota, and Abu clusters for OIB, AB, SAB, SHO, and HMA,
and from Daisen and Aono for ADK/AA. All samples were analyzed for major and trace elements by X-ray
fluorescence spectrometry (XRF), and 129 samples were analyzed for additional trace elements by induc-
tively coupled plasma mass spectrometry (ICP-MS). Selected samples were analyzed for Sr (129), Nd (123),
Hf (63), and Pb (64) isotopes by thermal ionization mass spectrometry (TIMS) for Sr and Nd, and by multicol-
lector ICP-MS (MC-ICP-MS) for Hf and Pb. Representative data are given in supporting information 1 and
complete analyses including ages are given in supporting information 2.

4.1. Sample Petrography

OIB and AB lavas are olivine—clinopyroxene and olivine+clinopyroxene basalts, with occasional plagioclase
phenocrysts in Kannabe OIB [Furuyama et al., 1993b], Yokota AB [Fujibayashi et al., 1989; Nagao et al., 1990;
Tamura et al., 2000], and Abu AB [Kakubuchi et al., 2000]. The Yokota AB were called Daisen basalts by
Tamura et al. [2000] but we use the original rock unit name [Nagao et al., 1990]. Most olivines are euhedral
to skeletal in shape. Groundmass phlogopite occurs in some olivine basalt lavas from Yokota [Fujibayashi

et al,, 1989] and tiny mantle xenoliths occur in the Uenodai dike (supporting information 1) at Yokota. No
hydrous minerals or mantle xenoliths were found in OIB at Kannabe [Furuyama et al., 1993a]. SHO (absaro-
kite) with phlogopite and olivine phenocrysts occurs at Fusumayama (supporting information 1) at Abu
[Tatsumi and Koyaguchi, 1989]. SAB basalts to andesites from Abu have pyroxene and plagioclase phenoc-
rysts but no hydrous minerals. ADK from Daisen and high-silica ADK lavas from Aono have up to 30% plagi-
oclase and hornblende phenocrysts with trace amounts of biotite, pyroxenes, and iron-titanium oxides
[Kakubuchi et al., 2000; Kimura et al., 2005b; Tamura et al., 2003; Tsukui et al., 1985]. AA at Daisen and some
low-silica ADK at Aono have <5% plagioclase and pyroxene phenocrysts with iron-titanium oxi-

des * hornblende in the groundmass [Furuyama et al., 2002; Kimura et al., 2005b; Tamura et al., 2003]. There
is a clear difference in phenocryst abundance between AA and ADK at Daisen, but a gradation at Aono.

4.2. Analytical Methods

Lava samples were broken into 1-2 cm chips with an iron hammer and subsequently crushed in an iron
pestle down to 3-4 mm size. The crushed chips were sonicated in deionized water and dried at 110°C for
>12 h. The dried samples were pulverized in an agate mortar for 40 min. The sample powder was ignited at
1000°C for 2 h to measure loss on ignition and to oxidize the iron.

Glass disks were prepared using a Tokyo Kagaku NT-2000 high-frequency bead sampler and a 2:1 flux:sam-
ple ratio. The glass disks were analyzed using a Rigaku RIX-2000 XRF spectrometer [Kimura and Yamada,
1996].

For trace element analysis, exactly 0.1 g of the same powders was digested in acid for OIB, AB, SHO, SAB,
and HMA samples [Kimura et al., 2001], and by alkali fusion after acid digestion for ADK and AA samples
[Roser et al., 2000]. The alkali fusion ensured dissolution of zircon crystals in the felsic rocks. Sample solu-
tions were diluted 50,000 times and analyzed using a Thermo ELEMENTAL VG PQ-3 ICP-MS with a standard
addition technique [Kimura et al., 1995]. XRF and ICPMS results for Rb, Nb, and Y agree to within 10%. Only
ICP-MS results are plotted on multielement plots, whereas XRF data are used when available for major ele-
ment versus trace element binary plots in order to show greater data coverage.

About 0.1g of sample powder was digested in an open beaker for Sr-Nd-Hf isotope analysis. Conventional

cation-exchange column methods were used for Sr and REE separation, followed by HIBA separation of Nd
from other REE [lizumi et al., 1999]. An additional two-column separation method was used for Hf purifica-
tion [Brichert-Toft et al., 1997]. Pb samples were digested in HF and Pb was separated using a single anion

column [Kimura et al., 2003a]. A Finnigan MAT262 TIMS was used for Sr and Nd isotope analyses [lizumi

et al,, 1999]. During the analytical period, &Sr/2Sr = 0.710250 = 0.000030 for NIST SRM987, and
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"3>Nd/"**Nd = 0.51187 = 0.000020 for La Jolla. A Thermo ELEMENTAL Plasma 54 MC-ICP-MS was used for
Pb and Hf isotope analyses [Kimura et al., 2006, 2010]. A Tl spike was used for Pb isotope fractionation cor-
rection. Measured isotopic ratios by MC-ICP-MS were normalized to '"®Hf/'”Hf = 0.282160 for JMC475
[Stevenson and Patchett, 1990], and to *°Pb/***Pb = 16.9416, >*’Pb/***Pb = 15.4998, ***Pb/***Pb = 36.7249
for NIST SRM981 [Baker et al., 2004]. For details of the analytical methods, see the references. All the analyti-
cal data, including results for rock standard JA-2 which is a Setouchi HMA, are given in supporting informa-
tion 2.

5. Results

Below we describe the major, trace, and isotopic compositions of each rock suite in the SW Japan arc. The
data are grouped by suite in the tables, and each suite has a separate color in the figures. All OIBs are pur-
ple, all HMAs are green, all ADK and AA are blue. Western centers are squares; eastern are circles.

5.1. OIB (Kannabe and Abu)

5.1.1. Major Elements

OIB basalts have 1.5-3.3 wt. % TiO, which correlates negatively with MgO (not shown). In both respects,

this differs from all other suites. SiO, contents range from 46 to 53 wt. % (Figure 4a) with total alkali con-
tents of 2.9-7.1 wt. % so that OIB are classified as alkali basalt in a total alkali-silica (TAS) diagram (Figure

4b). K,0 contents vary from medium-K to high-K (Figure 4c). MgO is generally higher (4-10 wt. %) at Abu
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Figure 4. Major element compositions of lavas from the SW Japan arc organized by suites that are discussed throughout this paper. See
sections 3 and 6 for the definitions of magma types. The same symbol is used for each suite throughout this paper.
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Figure 5. Diagrams for discriminating (a) between high-silica (High-Si) and low-silica (Low-Si) adakite [Martin et al., 2005], and (b) between
adakite (above dark line) and Andesite-Dacite-Rhyolite (ADR) (gray field) [Defant and Drummond, 1990]. The yellow Bajaite field in Figures
5a and 5b is from Calmus et al. [2003].

than Kannabe (4-7 wt. %) (Figure 4a). There are two OIB subtypes at Kannabe-OIBL and OIBH, based on Sr
isotopic compositions (see section 5.1.3). However, there is no systematic difference between subtypes in
major elements, including TiO.,.

5.1.2. Trace Elements

Nb contents are higher (18-48 ppm) in OIB than in all other suites (Figure 5a). OIB shows no negative
troughs in Nb-Ta in a primitive mantle-normalized multielement plot (Figure 6) [Sun and McDonough, 1989].
Some Ce/Pb ratios are as high as in normal OIB and MORB (~27) but are usually lower and range down to
10. Consequently, OIB sometimes shows negative Pb troughs in multielement plots (Figure 6) rather than
the nil or positive spikes in other suites. This feature is common in OIB worldwide [Sun and McDonough,
1989; Willbold and Stracke, 2006]. However, Ba and Sr are more enriched in SW Japan OIB than in oceanic
OIB (Figures 5a and 5¢) [Sun and McDonough, 1989; Willbold and Stracke, 2006]. This enrichment pattern is
similar to that of Quaternary OIB in the even deeper rear arc of North China and is thought to originate
from recycling Pacific Plate slab sediment [Kuritani et al., 2011] or from enriched subcontinental mantle
lithosphere [Pouclet et al., 1995]. The trace element patterns are the same for OIBL and OIBH. OIB from Abu
have more HREE depletion than from Kannabe (Figure 6a).

5.1.3. Isotopes

We distinguish two OIB subtypes on the basis of Sr isotopes. The OIBL subtype is the more common, occur-
ring at both Kannabe and Abu. The OIBH subtype has higher Sr isotope ratios, lower (more enriched) Nd
and Hf isotope ratios, and higher Pb isotope ratios (Figure 7). OIBH is also more enriched in trace elements
(Figure 6).

The isotopic compositions of crustal granitoids are far more enriched than in OIBL and their compositional
range overlaps OIBH in Sr-Nd (Figure 7a). Therefore, crustal assimilation is possible for OIBH. In order to test
this, we plot all isotope compositions against SiO, (Figure 8). OIB does not show any correlations between
isotope ratios and SiO,, indicating no effect of crustal assimilation during fractionation.

5.2. Arc-Type Alkali-Basalt (AB) (Yokota)

5.2.1. Major Elements

AB are alkali basalts like OIB in a total alkali-silica (TAS) diagram (Figure 4b) but they lack the high Ti and Nb
contents of OIB. That is, they are arc-type alkali basalts. They are the most common arc-type basalts in SW
Japan. Most have higher MgO (up to 11.8 wt. %) than in OIB at a given SiO, (Figure 4a). There is no differ-
ence in major elements between the two isotopically different subtypes of AB discussed in section 5.2.3
(ABL versus ABH). K contents are mostly medium-K to high-K (Figure 4c), and a few ABL lavas plot in the
shoshonite field.
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Sun and McDonough [1989]. Bajaite fields are from Calmus et al. [2003].

5.2.2. Trace Elements

Nb in AB is <25 ppm, lower than in OIB (Figure 5a). The compositional range of AB on Sr/Y-Y plots almost
exactly overlaps the field of “bajaite,” a silica-rich alkali basalt to high-Mg basaltic andesite occurring in Baja
California [Calmus et al., 2003] (Figure 5b). This is also true in major elements as shown by SiO,-MgO, SiO,-
total alkalis, and SiO,-K,O plots (Figures 4a—4c). However, Yokota AB is poorer in silica and thus best classi-
fied as alkali basalt to distinguish them from HMA.

AB lavas are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) relative
to Nb-Ta and heavy(H) REEs (Figure 6a). Strong enrichments are shown in Ba, U, Th, LREEs, and especially Sr
(2000-3000 ppm) [Nagao et al., 1990]. Pb is also enriched, apart from a few samples with nil or even nega-
tive Pb anomalies (Figure 6b). Zr and Hf show nil (typically in ABH) to strongly positive (typically in ABL)
anomalies. The latter are uncommon in arc basalts [Pearce et al., 1999; Tollstrup and Gill, 2005] (Figure 6b).
The incompatible trace element characteristics are comparable to those in bajaite [Calmus et al., 2003] (Fig-
ure 6b). Some ABH have higher (Ba, Th, La)/Yb ratios than those in ABL (Figure 6b). They are from Uenodai
where small mantle xenoliths occur [Fujibayashi et al., 1989] (supporting informations 1 and 2). Other ABH
lavas totally overlap ABL.

5.2.3. Isotopes

As with OIB, we distinguish two AB subtypes on the basis of Sr isotopes—Ilower in ABL, and more radiogenic
in ABH (see Figures 7 and 8). They form separate arrays in Sr-Nd isotope plots (Figure 7a). Pb isotopes also
are more radiogenic in ABH than in ABL but the two subtypes form a common linear array in all Pb isotope
plots (Figures 7c and 7d). In contrast, their Nd-Hf isotopes almost overlap.

Although there are no strong differences in major and trace elements between ABL and ABH (Figures 6
and 7), we examine the subgroups separately in the following sections because of their systematic differ-
ence in Sr and Pb isotopes. The Uenodai AB is geochemically extreme and could not be modeled by the
scheme used in this paper. We thus will not discuss it further.
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5.3. Shoshonite (SHO) (Abu)

5.3.1. Major Elements

SHO at Abu is absarokite [Tatsumi and Koyaguchi, 1989] with MgO as high as 9.5 wt. % at SiO, = 47-52 wt.
%, and K,0 = 3.5-4.5 wt. % (Figures 4a—4c). The major element composition of SHO is also within the range

of bajaite (Figures 4a-4c) [Calmus et al., 2003].

5.3.2. Trace Elements
SHO has low Nb (<12 ppm) and high Sr/Y, within the range of bajaite [Calmus et al., 2003] (Figures 5a and

5b). Abu SHO clearly possesses arc signatures with very strong Nb-Ta depletions, and enrichments of Rb, Ba,
K, Pb, and Sr (Figures 6a and 6¢). Zr-Hf shows strong positive enrichments that are, together with Daisen
ADK, the most prominent among lavas in the SW Japan arc.

5.3.3. Isotopes
Abu SHO has a narrow range of Sr-Nd-Hf-Pb isotopes that are the most depleted among the examined

magmas (Figure 7), matched only by the depleted end of Aono ADK (Figures 7a-7c). Abu and Aono are
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Figure 8. SiO, versus Sr-Nd-Hf-Pb isotope plots. Most of lavas have constant or random isotope compositions over the silica range indicating minimal crustal contamination. Aono ADK
and Daisen AA/ADK show clear positive slopes for Pb isotopes, and Daisen shows negative slopes for Nd and Hf and a positive slope for Sr, indicating crustal assimilation during differen-
tiation. Shade bars on the right of each plot show the isotopic composition of the basement granitoids. Large open circles are estimated primary magma compositions and dotted lines
show possible mixing trends. The isotopic composition of the source peridotite (orange stars and boxes) is an average from the most common OIB type. AOC and SED are estimates for
altered oceanic crust and sediment compositions. See details in the text.

relatively close to each other (Figure 1b) and their eruption ages overlap (~0.2 Ma; Figure 3), but their major
and trace element geochemistry are totally different (Figures 4 and 6).

5.4. Subalkalic Arc Basalt (SAB) (Abu)

5.4.1. Major Elements

SAB basalts and differentiates have the most ordinary arc compositions but they are relatively uncommon
in the SW Japan arc. They occur at Abu along with SHO and OIB (Figure 3) and at Tottori and Kurayoshi for
which no new data are given in this paper. SAB basalts have lower total alkalis than in the other magma
suites and form a linear array from basalt to dacite within the subalkaline TAS field (Figures 4a and 4c). TiO,
is <1.5 wt. % (supporting information 2). K,O contents also are lower than those in AB/OIB and are classified
as medium-K (Figure 4c).

5.4.2. Trace Elements

SAB lavas have Nb-Ta troughs in multielement plots (Figure 5b) and their andesites to dacites have
low Sr/Y ratios that lie in the nonadakite ordinary andesite-dacite-rhyolite (ADR) field of Defant and
Drummond [1990] (Figure 5b). LILEs and REEs are somewhat similar to those in AB but there are
weaker positive spikes in Sr and Pb in SAB (Figure 5a). SAB have nil to negative Zr-Hf troughs which
is also different from AB.
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5.4.3. Isotopes

SAB has Sr and Nd isotopes that are almost as depleted as in SHO and Aono ADK (Figure 7a), whereas Hf
isotope ratios are distinctively lower (Figure 7b). In contrast, Pb isotope ratios show a wide variation extend-
ing from Abu OIB to less radiogenic values (Figures 7c and 7d). In addition, although Sr and Nd isotopic
compositions are confined to a narrow range for most SAB basalts, one basalt and two andesite-dacites
have extremely radiogenic Sr and Pb (Figure 8). These samples are strongly contaminated by crustal materi-
als and are not discussed further.

5.5. High-Magnesium Andesite (HMA) (Abu and Setouchi)

5.5.1. Major Elements

We will first discuss the HMA in the Quaternary SW Japan arc at the Nagasawadai, Nabeyama, and
Kasayama centers in the Abu Monogenetic Volcano Group, and then compare them to the well-known
Setouchi HMA [Tatsumi, 2006] (Figure 1 and supporting information 2). The major element compositions of
Abu HMA, including SiO,, MgO, K;0, and total alkalis, are within the field of Setouchi HMA (Figure 4a) [Tat-
sumi and Hanyu, 2003] (see locations in Figure 3). The bajaite field overlaps for some elements but total
alkalis are distinctively lower for Setouchi and Abu HMA. That is why we classify the Abu andesites as HMA.
Both the Abu and Setouchi HMA are geochemically more similar to high-Mg andesite from the Aleutians
[Yogodzinski et al., 1995, 2001] than to boninite [Ishizuka et al., 2006; Li et al., 2013].

Abu HMA has MgO = 4-7 wt. % at SiO, = 53-60 wt. % which is not as high as the 6-11 wt. % of Setouchi
HMA (Figure 4a). However, the MgO range of Abu HMA is clearly higher than that in Abu SAB (Figure 3a).
TiO, is low in Setouchi HMA (0.4-0.7 wt. %) [Tatsumi and Hanyu, 2003], whereas TiO, is bimodal in Abu
HMA: lower (0.7-0.8 wt. %) at Nagasawadai and Nabeyama, and higher (1.5-1.6 wt. %) at Kasayama (sup-
porting information 2). The low-Ti HMA also have lower Fe, Ca, and Na, but higher Al, and are more like
Setouchi (supporting information 2).

5.5.2. Trace Elements

The trace element composition of low-Ti Abu HMA is almost identical to Setouchi HMA with low Cr, Nb, Sr/
Y, and LREEs, and high Pb and U (supporting information 2; Figures 5a, 5b, and 6d). The only differences are
higher Sr and lower Rb in Abu HMA (Figure 6d). The overall similarities indicate that Abu HMA is the Quater-
nary equivalent of the Miocene Setouchi HMA.

Abu HMA has quite different incompatible element patterns from coexisting SAB (Figure 6d) with deeper
Nb-Ta troughs and more depleted LREE. K, Pb, Sr, and Li are strongly enriched relative to REE. Zr-Hf is
slightly enriched in HMA in contrast to SAB (Figure 6d). These geochemical features also differ from the
other SW Japan suites including AB and SHO (Figure 6).

5.5.3. Isotopes

There are no differences in isotopic compositions between low-Ti and high-Ti Abu HMA and they have a
narrow compositional range in all isotopes (Figures 7 and 8). Abu HMA is more depleted than Setouchi
HMA for all isotopes and is slightly more enriched than Abu SAB (Figure 7).

5.6. Adakite (ADK/AA) (Aono and Daisen)

5.6.1. Major Elements

Daisen adakites include a more abundant porphyritic variety usually with >63% SiO, (ADK) and a less com-
mon aphyric variety (AA) with <5% phenocrysts and lower SiO, [Kimura et al., 2003b; Tamura et al., 2003].
The two groups have similar compositions despite different texture. In contrast, Aono adakites range in
SiO, from 54 to 65 wt. % and have a more gradational range from less phyric lower-SiO, to mostly porphy-
ritic higher-SiO, lavas. The Aono adakites have higher K,0 but are otherwise similar in major element com-
position to Daisen ADK (Figure 4). The major element compositions of all ADK and AA are within the
definition of adakite by Defant and Drummond [1990] and Morris [1995]. The two ADK centers are separated
spatially by about 200 km (Figure 1b) but erupted quite similar lavas at about the same time (Figure 3).

5.6.2. Trace Elements

All ADK/AA lavas have Nb < 18 ppm (Figure 5a). The higher-Si samples lie within the adakite field on the Sr/
Y-Y (Figure 5b) and La/Yb-Yb (not shown) discrimination diagrams of Defant and Drummond [1990],
whereas some lower-Si aphyric samples have higher Y. The higher-Si adakite overlaps the silicic bajaite field
of Calmus et al. [2003].
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Aono ADK has a wide compositional range in incompatible trace elements with subparallel patterns in a
multielement diagram (Figure 6e) but most elements do not correlate with SiO, (see, for example, the scat-
ter in the SiO, versus K,O plot; Figure 4b). In contrast, Daisen AA and ADK each has a narrow compositional
range that is distinct from the other and from Aono's. Daisen AA is more enriched in most incompatible
trace elements than ADK despite having lower SiO; (Figure 6f). Aono has a positive Ba spike and lower Th/
U. Daisen ADK has a positive Zr-Hf spike that is smaller at Aono and almost nil in Daisen AA (Figures 6e and
6f). All ADK/AA are depleted in Nb-Ta and highly enriched in LREEs with prominent positive K, Pb, Sr, and Li
spikes (Figures 6e and 6f).

5.6.3. Isotopes

Aono ADK has depleted Sr-Nd isotopes and a vertical trend indicating binary mixing (Figure 7a). Daisen ADK
and two Daisen AA are more enriched and overlap the depleted end of the Setouchi HMA field (Figure 7a).
Nd isotopic compositions of Daisen ADK widely vary for their narrow Sr isotopic compositions, forming a
vertical array similar to Aono ADK (Figure 7a). Hf isotopic compositions show the same depletion-enrichment
relationship as Nd between Aono ADK, Daisen AA/ADK, and Setouchi HMA (Figure 7b).

Pb isotopes in Daisen AA/ADK and Aono ADK define steep, linear, and separate binary mixing arrays from
the lower bound of the SW Japan compositional field toward an extremely radiogenic composition (Figures
7c¢ and 7d). Daisen AA overlaps the less radiogenic half of the Daisen ADK array (Figures 7c and 7d). The
Daisen and Aono arrays appear to converge at the radiogenic end at 2°°Pb/2**Pb ~ 18.4. In both groups, Pb
becomes more radiogenic with increasing SiO, (Figure 8d). This feature is not prominent in any other iso-
topic or trace element ratio.

6. Discussion

The felsic ADK/AA, andesitic HMA, and basaltic OIB/SHOSAB/AB in the Quaternary SW Japan collectively
form a quite distinctive magma association including high-Nb basalt [Defant and Drummond, 1990; Kay,
1980] (OIB/SAB), bajaite [Calmus et al., 2003] (AB/HMA) [Yogodzinski et al., 1995], HMA, and adakite [Defant
and Drummond, 1990] (ADK/AA). Some of these coexist elsewhere but SW Japan is the only place where
they all occur together.

All of these rock suites are associated with hot subduction zones involving subduction of an actively spread-
ing ridge (Central Mexican Volcanic Field) [Defant and Drummond, 1990], or a young oceanic plate (Cascadia
and Baja California) [Calmus et al., 2003; Defant and Drummond, 1990], or a slab tear (West Aleutians to Kam-
chatka [Yogodzinski et al., 2001], Panama [Gazel et al., 2011]). The SW Japan arc involves the last two [Kimura
et al,, 2005a; Zhao et al., 2012].

Because of this association with hot subduction, slab melting has been invoked to explain the origin
of most of these rock suites, particularly HMA and ADK [Kimura et al., 2005a, 2005b; Morris, 1995; Tat-
sumi and Hanyu, 2003]. However, there are alternative explanations such as remelting the young
crustal roots of a volcano [Tamura et al., 2003], deep fractionation of hydrous basalt magma [Macpher-
son et al., 2006; Zellmer et al., 2012], or remelting lower crust in the garnet amphibolite facies [Castillo,
2006; Moyen, 2009]. Therefore, thorough examination of the genetic models is necessary. In the follow-
ing sections, we will discuss the genetic relationships among all the lava suites using our comprehen-
sive geochemical data set. OIB shows large isotopic variations with no arc signatures. We use these
variations to define the characteristics of the local mantle unaffected by subduction components.
Because our focus in this paper is the genesis of the arc-type magma suites, we leave discussion of
the origin of OIB to another paper.

We will first discuss crustal assimilation, fractional crystallization, and primary magma compositions for each
magma suite. We then estimate the source mantle and slab compositions, and finally discuss slab-mantle
processes operating beneath the SW Japan arc. We propose a quantitative interpretation using our revised
petrological/geochemical forward model: the Arc Basalt Simulator version 4 (ABS4).

6.1. Crustal Assimilation

We first examine the bulk rock and hornblende mineral chemistry of ADK because AA/ADK show the clear-
est evidence of crustal assimilation (see above section 5.6). We estimate the crustal melt composition and
then evaluate its presence in the other magma suites (HMA/OIB/AB/SHO/SAB).
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6.1.1. Crustal Assimilation in Daisen ADK

Daisen ADK/AA have been interpreted previously as products of mixing between melts of preexisting solidi-
fied andesite and differentiates of mantle-derived basalt [Tamura et al., 2003]. Daisen AA was regarded as
the heat source for crustal remelting and as the differentiate of mantle-derived basalt [Tamura et al., 2003].
This hypothesis can be tested using Yokota ABL/ABH as the parental basalt because AB shares many trace
element features in common with ADK, the two volcanoes are located near each other (Figure 1b), and they
erupted at about the same time (Figure 3). However, Daisen AA cannot be a differentiate of Yokota ABL or
ABH because Nd-Hf isotope ratios of AA are higher than those in ABL/ABH (Figure 8).

The Pb isotopes in Daisen AA/ADK form a mixing array in which the radiogenic end-member has higher
SiO, and is similar isotopically to local San-In granitoids (Figures 7¢c, 7d, and 8d). The same is also true for Sr-
Nd-Hf isotopes. This indicates that the felsic component in Daisen ADK is from the older basement rather
than from a contemporaneous adakitic pluton that differentiated from mantle basalt, and it is also evidence
against subcrustal differentiation.

Crustal assimilation in Daisen ADK is supported by detailed study of its characteristic hornblende phenoc-
rysts. A typical example was analyzed by EPMA and LA-ICP-MS and the results are presented in supporting
information 3 and Figure 9. Our analytical methods for EPMA and LA-ICP-MS have been reported elsewhere
[Tatsumi et al., 2008b]. The crystal has a Mg-rich core [Mg# = Mg/(ZFe+Mg) (molar ratio) = 0.76-0.60] man-
tled by a thick Mg-poor rim (Figure 9b). That is, the hornblende also is normally zoned. The Al,O3 content is
also higher in the core than rim (Figures 9a and 10c). The core is irregular in shape although the overall crys-
tal is almost euhedral, indicating resorption of the core and later overgrowth of the rim (Figure 9a). The
trace element composition of the hornblende varies widely, from cores poor in REE, Th, and U, to rims with
higher concentrations. Sr is the opposite, resulting in a high Sr/Y ratio in the core (40) and low in the rim
(<5) (Figure 9a).

In order to examine the composition of the melt from which the hornblende core and rim crystallized, we
calculated melt compositions using the average hornblende partition coefficients of Pilet et al. [2011]. In
order to obtain fine adjustments, we modified partition coefficients for several elements (see Figure 9e,
D(Hb)) that are within the range of the compiled values [Pilet et al., 2011]. The resulting melt compositions
are shown in Figure 9f. The melt composition that crystallized the Mg-rich core closely approximates the
ADK bulk rock composition. In contrast, the Mg-poor rim crystallized from a very different melt with ele-
vated U, Th, and HREE, and depleted Sr (Figure 9f).

This surprised us because the rim is almost euhedral in shape yet it is not in equilibrium with the bulk
magma. However, it is highly oxidized, not completely euhedral, and has some embayments (Figure 9a).
Our interpretation is that the core crystallized from ADK and later mixed with a more felsic melt, resulting
first in a resorption boundary, and then in growth of the rim. Finally, it became oxidized and partially
decomposed during decompression and eruption. The hornblende crystal clearly shows that both low

Mg + Sr melts and high Mg + Sr melts were present beneath Daisen. Most of the mass of the system is like
the high Mg + Sr melt. The Sr-poor melt had high Th, U, and REE contents and could be formed by melting
pelitic or granitic basement rocks.

Based on the correlations between bulk rock SiO, and isotope ratios (Figure 8) and the hornblende data
(Figure 9), we conclude that the porphyritic Daisen adakites (ADK) include a mixing component derived
from crustal assimilation. This component was a felsic melt characterized by high Si, Na, REE, Th, and U, but
low Mg and Sr, and radiogenic Pb and Sr. It mixed with a more mafic component that had a typical adakitic
signature that we interpret as being subcrustal in origin. The least phyric samples (AA) are the least conta-
minated isotopically (Figure 8). Crustal assimilation diluted rather than caused the adakitic signature. Inter-
nal mixing as proposed by Tamura et al. [2003] is not supported by our data.

6.1.2. Crustal Assimilation in Aono ADK

Aono ADK has a similar Pb-isotope mixing array (Figure 8d). Crystal poor low-silica samples and more por-
phyritic silica-rich ADK at Aono share similar petrographic features as in Daisen AA/ADK. However, in con-
trast to the Pb isotopes, Sr-Nd-Hf isotope compositions at Aono are almost identical over a wide silica range
(Figures 8a-8c). Many incompatible trace element ratios including Ce/Pb, (La,Th,Nb)/Yb, La/Nb, and Ba/Th
also are quite uniform at Aono but variable due to mixing at Daisen (not shown but see supporting informa-
tion 2). Thus, the crustal assimilation indicated by Pb isotopes for Aono adakites had much less effect on
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Figure 9. Chemical zoning of a hornblende crystal in Daisen ADK lava. The colors in Figure 9a show Al contents. (a—d) Sr/Y, Mg#, and
Al,O3 are all higher in the core than in the thick overgrowth rim. Multielement plots are normalized to the primitive mantle of Sun and
McDonough [1989]. Estimated melt compositions in Figure 9f use the partition coefficients shown by red dots in Figure 9e. They are the
same as the P11 coefficients in Pilet et al. [2011] except for a few elements, shown by open black circles, for which we adopted slightly dif-
ferent values that lie between the minimum and maximum range of measured hornblende partition coefficients that are shown by Min
and Max, respectively [LaTourrette et al., 1995; Tiepolo et al., 2007, 2000a, 2000b; Rollinson, 1993]. The calculated composition of melt from
which the hornblende core crystallized is adakitic.
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Figure 10. Model calculation results of high-pressure fractional crystallization (FC) and assimilation fractional crystallization (AFC) including garnet. The assumed parent basalt is assumed
to be the average of Yokota Basalts. Daughters are from averages of Daisen aphyric andesite (AA) and Daisen (ADK) adakite lavas. Mineral compositions are measured values for plagio-
clase and amphibole crystals in Daisen adakite and olivine crystals from Yokota Basalt, whereas those for garnet and clinopyroxene are from experiments by Miintener et al. [2001] and
Alonso-Perez et al. [2009] at ~1 GPa for basalt and andesite, respectively. Experimental mineral and glass data are also shown with large and small symbols for the basalt and andesite,
respectively. (a and c) Examples of major element mass balances for FC and AFC, respectively. The crustal melt composition used for AFC is calculated using the amphibole rim composi-
tion in a Daisen ADK lava (Figure 9). Calculated results by least square mass balance are also shown in squares; details are given in supporting information 4. Using the FC and AFC major
element mass balance, trace element compositions are calculated based on the partition coefficients given in supporting information 4. Although fractional crystallization can produce
similar spikes and troughs as in the Daisen adakites, it underpredicts the observed high concentration of elements more incompatible than Y, and does not explain the differences in
trace element ratios between Yokota AB and Daisen ADK. AFC results in a better fit for many of the more incompatible elements, but a worse fit for the critical HREE.

other elements than at Daisen. Alternatively, the San-Yo granitoids beneath Aono (Figure 2a) could be simi-
lar isotopically to the Aono adakites (e.g., Nd isotope shown in Figure 2c) in contrast to the larger contrast
between the San-In granitoids and Daisen adakites.

6.1.3. Crustal Melt Origin of Low-Silica AA/ADK?

We have shown that a common felsic crustal melt with radiogenic Pb is present in both adakite centers
even though they are more than 200 km apart (Figure 1b). Although we attribute the unradiogenic end of
the Pb isotopic mixing arrays in Figures 7 and 8 to subcrustal processes, others have argued that adakite
originates in the lower crust [e.g., Moyen, 2009]. The maximum thickness of the crust beneath SW Japan is
~35 km [Katsumata, 2010] (Figure 2) which means that garnet would be a residual mineral during lower
crustal melting [Alonso-Perez et al., 2009; Beard and Lofgren, 1991; Johannes and Holtz, 1996; Muntener et al.,
2001] and could be responsible for the adakitic characteristics of the melt.

However, the isotopic composition of the basement granitoids rules out this possibility (Figure 2). Although
the Sr and Nd isotope ratios of basement granitoids, AA, and low-silica ADK overlap, the isotopically
depleted and more adakitic mixing components are more depleted than the basement granitoids (Figures
2b and 2c) and, therefore, cannot be derived from them. Consequently, we will seek to explain the
depleted, more adakitic end-member by subcrustal processes.
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6.1.4. Crustal Assimilation in HMA, OIB, AB, SHO, and SAB

HMA has a narrow range of Nd, Hf, and Pb isotope compositions that do not vary with SiO, (Figure 8). The
exception is Sr for which there is a negative correlation with SiO,. Setouchi HMA has more radiogenic Sr,
less radiogenic Nd, and similar Hf and Pb isotope compositions than Abu HMA. However, the differences do
not correlate with SiO, or other differentiation indices. Thus, there is not yet any firm evidence of crustal
assimilation in HMA.

Kannabe OIB has a wide variation in Sr isotope composition that we refer to as OIBH (high) to OIBL. How-
ever, this variation does not correlate with SiO,, MgO, or other differentiation indices (Figure 8). Apart from
the most mafic sample (HG-25), this is also true for Abu OIBs that are similar isotopically to Kannabe OIBL.
Therefore, we attribute the isotopic diversity of OIB to the mantle.

ABL and ABH at Yokota have different trends in SiO,-isotope ratio plots (Figure 8). ABL shows an increase in
Sr isotope ratio with increasing SiO, (Figure 8a) but other isotopes scatter widely (Figures 8b-8d). Similarly
ABH has a positive correlation between Hf isotopes and SiO, but other isotopes scatter widely (Figure 8).
Consequently, there is no clear evidence of crustal assimilation in either AB group.

SHO has almost constant isotopic compositions within a narrow SiO, range. Its positive correlation between
Nd and Hf isotopes (Figure 7b) is unrelated to SiO, and seems to be, instead, from the mantle.

SAB has clear negative correlations between SiO, and Sr and Pb isotopes, and crude positive correlations
with Nd and Hf isotopes (Figure 8). However, these trends do not point toward the crustal granitoids, pre-
cluding assimilation of such crust as the explanation for the correlations in SAB. The low-silica end of the
isotopic trends of SAB falls within the Abu OIB field, whereas the high-silica end points toward low-Si Aono
ADK for all isotopes except Pb (Figure 8). Earlier (section 6.1.2), we interpreted low-Si Aono ADK as largely
free of crustal contamination, so we draw the same conclusion for SAB.

6.2. Primary Magma Compositions

Because our forward models involve comparison to primary magmas, the effects of fractional crystallization
need to be examined. Deep fractionation of garnet has been suggested for ADK [Zellmer et al., 2012], and
fractionation of olivine has been examined for Yokota AB [Tamura et al., 2000]. Therefore, in this section we
will examine the effects of fractional crystallization and estimate primary magma compositions for all the
magma suites. Fractionation corrected representative primary basalts are listed in supporting information 5
for OIB/SHO/AB/SAB and representative primary magma compositions are listed in supporting information
6 for all magma suites.

6.2.1. Fractional Crystallization and Primary AA/ADK

Having already shown that Daisen ADK is derived from AA by crustal assimilation (section 6.1.1), we now
explore whether the AA is derived from primary basalt by deep fractionation of amphibole and garnet [Mac-
pherson et al., 2006; Zellmer et al., 2012]. To test this, we again examine the relationship between Yokota AB
and Daisen AA/ADK because Yokota AB are the most plausible mafic parents based on their trace element
characteristics and their close association in space and time.

First, as we showed in section 6.1.1, the isotope geochemistry precludes closed system fractionation.
Although the isotopic trends of Yokota ABH on SiO, versus Nd-Hf-Pb isotope plots appear to point to
Daisen AA (Figures 8b-8d), 8Sr/%%Sr does not (Figure 8a). The situation is worse for Yokota ABL; none of the
isotopic trends for Yokota AB point to Daisen AA.

Second, we tested garnet fractionation even though no garnet is present. We assumed the average compo-
sition of ABL and ABH as the parents, and the average compositions of Daisen AA and ADK as the daugh-
ters, and performed mass balance calculations in order to examine the effect of fractional crystallization.
Because we have shown the need for crustal assimilation in ADK, we also examined assimilation plus frac-
tional crystallization (AFC) using the estimated trace element composition of crustal melt from hornblende
rims (section 6.1.1). The calculation results are shown in supporting information 4 and Figure 10. For details
of the mass balance calculations see Appendix A. The fractionation scheme that best explains the major ele-
ment trends (e.g., Figures 10a and 10c) requires about 78% fractionation with amph:gar proportions ~4:1.
However, this scheme results in a mismatch for most trace elements (e.g., see Figures 10b and 10d and
Appendix A for details). Therefore, neither trace elements nor isotopes are consistent with the garnet-
fractionation hypothesis.
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Based on our discussion of crustal contamination in section 6.1, the adakites with the lowest silica and least
radiogenic Pb should be the least contaminated and therefore the best estimate of parental magma. Such
samples have a narrow compositional range for trace elements at Daisen AA/ADK but a wide range at
Aono. Consequently, we used the average trace element concentrations and the most depleted isotopes to
calculate the primary magma target composition for Aono ADK and Daisen AA and ADK (supporting infor-
mation 6).

6.2.2. Fractional Crystallization and Primary HMA

Setouchi HMA has been rigorously studied with the conclusion that they are partial melts of the subducted
Shikoku Basin that later equilibrated with overlying mantle wedge peridotite [Shimoda et al., 1998; Tatsumi
and Hanyu, 2003]. The low-Ti Abu HMA are similar to Setouchi HMA in terms of major and trace element
compositions (section 5.5). Their high Mg-Ni-Cr contents are clearly distinct from the other Quaternary
magma suites. They may have equilibrated with the mantle and could be primary magmas [Tatsumi and
Hanyu, 2003; Tsuchiya et al., 2005; Yogodzinski et al., 1995].

Because their narrow compositional range makes it difficult to constrain fractional crystallization processes,
we use their average composition as the primary melt (supporting information 6). We used the reference
standard JA-2 as the primary melt composition for Setouchi HMA because it is so comprehensively analyzed
and is almost an average composition of Setouchi HMA (supporting information 6). For Abu we used the
average isotopic and major and trace element composition as the primary magma. The major and trace ele-
ment, and isotopic composition of primary Abu and Setouchi HMA that we will use for model calculations
are given in supporting information 6.

6.2.3. Fractionation Crystallization and Primary OIB, SHO, AB, and SAB

Estimating a primary basalt composition is not easy because of uncertainties in both the fractionating min-
eral phases and the source mantle composition. It is particularly difficult for arc basalts that may be prod-
ucts of (1) hydrous peridotite melting [Grove et al., 2006; Katz et al., 2003], (2) open system flux melting of
variably depleted peridotite, or (3) melting of pyroxenite [Kelemen et al., 1998; Straub et al., 2008, 2011], and
(4) subsequent crystal fractionation with variable water contents at various depths [Almeev et al., 2013a,
2013b].

Because of the likelihood of flux melting, applying petrogenetic grids based on dry peridotite experiments
[Herzberg, 2011; Herzberg and Asimow, 2008] would introduce errors in the back calculations to primary
magmas. Consequently, we corrected for crystal fractionation by assuming that (1) H,O contents of the SW
Japan primary basalts are <2% [Zellmer et al., 2012] and (2) mantle melting is deeper than 2 GPa. We apply
>2 GPa cotectics from both peridotite and pyroxenite sources using CMAS plots [Herzberg, 2011]. Details of
the model and the model calculations are given in Appendix B and the results are shown in Figure 11.

Back calculations begin with representative MgO-rich parental basalts from Kannabe and Abu OIB, Yokota
ABL/ABH, and Abu SAB/SHO. Both the original parental and calculated primary compositions are listed in
supporting informations 1 and 5, respectively. We added 0-16 wt. % clinopyroxene and 7-26 wt. % olivine.
The sum (17-36 wt. %) is almost equal to the amount of olivine addition required to reach equilibrium with
Fogo as an alternate indicator of primary melts equilibrated with the mantle [Herzberg and Asimow, 2008].
Although the difference has little effect on the trace element composition of primary melts it is important
for the major elements. We will use the CMAS plot to examine slab and mantle melts in later sections, so
use of the same scheme for all primary magma estimates is convenient (see section 6.5.5).

Most of the primary basalts plot in the pyroxenite field of Herzberg and Asimow [2008] in Figure 11a, which
is also true for many more ordinary arc basalts. This could reflect pyroxene-rich sources resulting from the
addition of slab-derived silicic melt to the mantle wedge [Kogiso et al., 2004]. However, it is more likely a
result of expanding the olivine volume by addition of H,O [Kushiro, 1969]. Our estimated primary melt com-
positions lie in the peridotite field of the CMAS plot in the pressure range 2.0-3.2 GPa (Figures 11b and
11¢), and rear the 2-3 GPa garnet lherzorite multiple saturation points of Grove et al. [2013] and Till et al.
[2012a] (Appendix B2 and Figure A1). The composition of melts from ol+opx+cpx-saturated experiments
with natural peridotites at 2-3 GPa from the LEPR database of Hirschmann et al. [2008] lie near the same
peridotite cotectics (see shaded areas in Figures 11b and 11c¢). These indications of derivation from a peri-
dotite source support our use of ABS4 which was designed for peridotite melting. The 2-3 GPa pressures
indicate a relatively deep source for the SW Japan basalts. Two SAB samples plot in the pyroxenite field, to
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Figure 11. Estimates of primary magma compositions for parental basalts (not adakites or HMA) that are given in supporting information
1. (a) The blue peridotite field and green maximum CaO for melts of pyroxenite and (b) the 3-7 GPa cotectics and dark blue thermal divide
are from Herzberg [2011]. Solid symbols show the result of adding variable amounts of clinopyroxene to the parental compositions. The
actual amount of clinopyroxene is given in supporting information 5, and the effect of the addition is illustrated by the arrow for 10%. (b
and c¢)Then, the clinopyroxene fractionation-corrected compositions were adjusted by adding equilibrated olivine until the magma com-
positions reached the pressure in the CaTs-Ol-Qz diagram that is indicated by its location in the Py(A)-Di(CS)-En(MS) of Herzberg [2011].
The final composition (i.e., the last open symbol on each olivine-addition line) is the primary melt composition for that sample (see sup-
porting information 5). The gray field in Figures 11b and 11c show the composition of melts from melting experiments of peridotite at 2-3
GPa from the LEPR database of Hirschmann et al. [2008]. The validity of our models is confirmed by the agreement between our primary
melt compositions and the experimental melt compositions.

the right of the thermal divide in Figures 11b and 11¢, and farthest from the multiple saturation points of
Till et al. [2012a] in Figure A1, reflecting their more silica-rich source compositions relative to AB. This will be
discussed in section 6.5.5.

Our back calculations for the trace element concentrations in these primary melts used clinopyroxene parti-
tion coefficients from Wood and Blundy [1997] and Pilet et al., [2011], and olivine partition coefficients from
Bédard [2005]. Our estimated primary magma compositions for OIB, AB, SHO, and SAB are given in support-
ing information 6.

6.3. Target Magma Composition for ABS4

In light of the differentiation processes in each rock suite as discussed above, we now need to choose one
primary melt composition as the target to explain by subcrustal processes using ABS4. Supporting informa-
tion 6 compiles the major and trace element compositions of all the possible primary melts, and the trace
element compositions are shown in Figures 12a-12i. We used the average for each suite as our target. We
also used the average isotopic compositions in all cases in which the isotopic compositions scatter widely
and without correlation against SiO,. However, when there is crustal assimilation (i.e., a correlation between
isotopic composition and SiO, as in Daisen ADK), we chose compositions at the silica-poor end of the trends
(Figure 8). This criterion applies to all isotopes for SHO and SAB and some isotopes for ABL/ABH. Our target
isotope compositions are given in supporting information 6 and shown by circles in Figure 8.

6.4. Compositions of Mantle and Slab Source Materials for ABS4

We concluded above that the parental magmas for all suites are derived from the mantle or slab or both
rather than the crust. Our next task is to estimate the slab and mantle processes that generate the target
composition for each suite. To do this, we need to assume compositions of the mantle and the slab beneath
SW Japan. New acronyms (e.g., PERID, MwP) in this and following sections refer to parameters in our ABS4
models and are defined in Table A1.

KIMURA ET AL.

©2014. American Geophysical Union. All Rights Reserved. 710



@AG U Geochemistry, Geophysics, Geosystems

1000

100

10

Sample / Primitive mantle

1
1000

100

Sample / Primitive mantle

1
1000

Sample / Primitive mantle

A

—a— Abu_SHO
Avg
—Min
Max

b

—=— Yokota_ABH
Avg

——Min

——Max

—a— Yokota_ABL

Al
%,

Z

—=m— Setouchi_HMA

g —=— Aono_ADK
Avg
——NMin
Max

—a— Daisen_AA
Avg
—Min
Max

eme
T N T T N B R A B A B B B RN A

—=— Daisen_ADK

1
Rb Th Nb. K Ce Pr Nd Zr Eu Tb Y

Er
Ba U Ta La Pb Sr Sm Hf Gd Dy Ho T

E T E T
£ ) PM (SM89) Pl —e— AOC (K03 avg)
H H -X(AOC)swj
2 S : A ——Min (K03) 4
E P : \ —— Max (K03)
i ——PM-6 :\ /o\
ET ——PM-8 \7 EVY \A/ pha oAy = 22 ¥~ =
E —« PM-10 E 5
r —— Tanabe mst (avg) r \ /\ M
B e S e e e e E —— Tanabe sst (max) \/ v \/
P Tanabe sst (min) [
o S | —=— Tanabe sst (avg) L
FESEZ X(SED)swj
r Element Element r Element
i et b g i 1 Y Y T TR T T A
Rb Tl C(E Pr_Nd Zr Eu Y Er Yb R% Th Nl%_ K Ce Pr Nd Zr Eu Tb E R Th Nbh_ K P Nd Zr Eu Tb_ Y Er Yb
Ba U a La b Sr Sm Hf Gd y Ho Tm Lu a La Pb Sr Sm Hf Gd Dy Ho T u U Ta La b Sr Sm Hf Gd Dy Ho Tm Lu

10.1002/2013GC005132

Figure 12. (a-i) Primary magma compositions calculated using ABS4, and comparison to nine target primary magma compositions. The thick lines with filled square symbols are the tar-
get magmas from supporting information 6. The thick lines without symbols are the average of calculated parent magmas from supporting information 6. The thin gray lines show the 2
sigma range of satisfactory matches, also from supporting information 6. All values are normalized to the primitive mantle composition of Sun and McDonough [1989]. The compositions
of source materials are shown in Figures 12j-12I: PM (SM89) is the primitive mantle of Sun and McDonough [1989]; PM-2 to PM-10 shows residues after extracting 2-10% MORB melt

from PM; AOC (K03) is the average and 1 sigma the range of altered oceanic crust compositions from ODP Site 1149 [Kelley et al., 2003]; Tanabe sst and mst are the average composition
of turbidite sandstone and mudstone of the Tanabe Group from Roser et al. [2000]; and X(AOC)swj and X(SED)swj show the altered oceanic crust and sediment compositions assumed in

this paper.
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6.4.1. Mantle Wedge Composition

Although SW Japan OIB is more enriched in Ba and Sr than oceanic OIB, it is the least affected by the slab
component. Therefore, we chose the average isotopic compositions of Kannabe OIBL and Abu OIB for the
mantle wedge because they are the most common OIB types. Their compositions are shown in the orange
rectangles in Figure 8, and our chosen compositions are shown in Figures 7 and 8 by orange stars. They are
similar to those used by Tatsumi and Hanyu [2003] which they deduced from Miocene Setouchi SAB.

Because the trace element composition of the mantle wedge also is difficult to determine, we considered
global estimates for depleted [Workman and Hart, 2005] and primitive mantle [Sun and McDonough, 1989]
for PERID, including its base just above the slab (MwP). Because SW Japan OIB has a trace element composi-
tion similar to oceanic OIB [Sun and McDonough, 1989], we used primitive mantle concentrations for the
mantle wedge as in our earlier papers [Kimura and Stern, 2008]. Depletion from these values is a free vari-
able in our models (see examples in Figure 12j).

6.4.2. Slab Sediment Composition

For the trace element composition of the sediment input, we used the average composition of turbidite
sediment in a Miocene fore-arc basin in SW Japan (~16 Ma) [Roser et al., 2000]. This is reasonable because
these Miocene turbidites are the immediate source of the trench fill sediments in the modern Nankai
Trough and were reworked from the same sources that have fed the Nankai Trough throughout the Neo-
gene and, therefore, would have been in the trench at 13-14 Ma when the plate now beneath the volcanic
arc was at the trench [Kimura et al., 2005a]. Because the isotopic compositions of the Miocene turbidites
have not been measured, we used average values for the current Nankai Trough sediments [Shimoda et al.,
1998; Tatsumi et al., 2008b] (supporting information 7).

6.4.3. Slab Altered Oceanic Crust (AOC) Composition

For AOC trace element concentrations, we assumed the weighted average composition of altered MORB in
ODRP Site 1149 [Chauvel et al., 2009; Hauff et al., 2003; Kelley et al., 2003] (Figure 12I). We assumed that the
isotopic composition of AOC is the same as the most depleted Shikoku Basin basalts [Hickey-Vargas, 1998],
apart from more radiogenic Sr derived from seawater alteration for which we used the average value for
Site 1149 AOC [Hauff et al., 2003]. All the slab compositions are given in supporting information 7.

6.4.4. Slab Dike/Gabbro/Peridotite Compositions

Oceanic lithosphere has dike, gabbro, and peridotite layers beneath AOC. We assume that the slab perido-
tite (SIbP) has the trace element composition of depleted MORB source mantle (DMM) [Workman and Hart,
2005] because the mantle beneath the Shikoku Basin is depleted [Hickey-Vargas, 1998]. We assume that the
isotopic composition of SIbP is the same as for AOC except for Sr for which we used the most depleted
value of Shikoku Basin basalts [Hickey-Vargas, 1998].

The trace element composition of dikes is assumed to be the same as for normal (N)-MORB [Pearce and Parkin-
son, 1993] because they are quenched N-MORB [Hickey-Vargas, 1998] and not much affected by sea water alter-
ation [Staudigel et al., 1996]. The composition of the gabbro layer is assumed to be 0.5 times N-MORB assuming
that it is olivine, clinopyroxene, and plagioclase accumulated from MORB based on the high and homogeneous
seismic velocity of oceanic lower crustal Layer 3 (Vp ~7 km/s) [Wilson, 1989]. The isotopic compositions for gab-
bro/dike are as same as for slab peridotite [Hickey-Vargas, 1998] (supporting information 7).

6.5. Forward Models Using Arc Basalt Simulator Version 4 (ABS4)

6.5.1. ABS4 Overview

ABS4 is a geochemical mass balance model for arc magma genesis including calculations of slab dehydra-
tion/melting and fluid/melt-fluxed melting of peridotite using thermodynamically [Connolly and Kerrick,
1987; Connolly and Petrini, 2002; Ghiorso et al., 2002] and experimentally [Hermann and Spandler, 2008; Katz
et al., 2003; Schmidt et al., 2004; Skora and Blundy, 2010] tuned petrogenetic grids for both prograde meta-
morphism and melting of the slab, and fluid/melt-fluxed melting of peridotite in the mantle wedge [Kimura
et al,, 2010]. Details of ABS4 and the differences from ABS3 are given in Appendix C. A brief summary is
given below. The acronyms used in ABS4 are summarized in Table A1 and defined below. A representative
ABS4 Excel spreadsheet is available in supporting information 8 dynamic content.

ABS4 makes the following assumptions that are keyed to specific Worksheets in the ABS program (support-
ing information 8). (1) All layers of the oceanic crust and the first 10 km of underlying slab mantle are fully
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hydrated as assumed by van Keken et al. [2011]. From bottom to top, these layers are the slab mantle (SIbP),
lower and upper gabbro (LGAB/UGAB), dike (DIKE), lower and upper basalt (LBAS/UBAS = AOC), sediment
(SED), and the basal mantle wedge peridotite that is mechanically coupled to the slab (MwP). The modal
composition of each layer during the prograde metamorphism is calculated using Perple_X [Connolly and
Kerrick, 1987; Connolly and Petrini, 2002] for the subsolidus, and our parameterization of experimental results
for supersolidus regions [Kimura et al., 2010]. This information can be found in ABS4 Worksheet Slb_Mode.
(2) Each slab layer acts as a sponge that receives all the fluids/melts lost from the layer beneath and releases
reactants to the layer above. This reaction is controlled by the degree of dehydration or partial melting of
each slab unit and is similar to chromatographic reactions (see Figure A2). This information can be found in
ABS4 Worksheet SDMS4.0. (3) Element partitioning during slab dehydration and melting is calculated using
temperature-dependent partition coefficients where known (D(Cpx) and D(Gar) [Kessel et al., 2005], D(Opx)
and D(Amp) [Kimura et al., 2010]), and fixed partition coefficients otherwise (e.g., for phlogopite, phengite,
zoisite, chlorite, etc.) [Feineman et al., 2007; Green and Adam, 2002]. The resulting bulk partition coefficient
of each layer at each depth for the appropriate P-T path can be found in rows 290-498 of ABS4 Worksheet
SDMS4.0. (4) The thermal model for each layer from Syracuse et al. [2010] and van Keken et al. [2011], modi-
fied slightly according to P. E. van Keken (personal communication, 2012) is applicable. This information can
be found in ABS4 Worksheet Slb_PT(PvK2011). (4) The solidi, percent melting, and residual mineral percen-
tages for SED and AOC from Hermann and Spandler [2008], Schmidt et al. [2004], and Skora and Blundy
[2012] are applicable, and the water-saturated and dehydration solidi of AOC and SED are the same
(~700°C and ~770°C at 3 GPa, respectively). This information can be found in ABS4 Worksheet SIb_Mode.
(5) Fluids or melts from the AOC, SED, and MwP layers at their appropriate depth mix in proportions defined
by the user and are added to the overlying mantle to cause flux melting. (6) The primary arc magmas are
derived from melting of mantle wedge PERID by fluxing with the mixed slab fluid/melt. The flux melting
model of Ozawa [2001] and Ozawa and Shimizu [1995] is applicable. This information can be found in ABS4
Worksheets OSM and IOSM. (7) The fixed D(OI), D(Cpx), D(Opx), and D(Gar) trace element partition coeffi-
cients from Green et al. [2000] apply to hydrous mantle melting. (8) The solidi and percent melting are calcu-
lated using the experimentally determined parameterization of Katz et al. [2003], and residual mineral
percentages for PERID and the effects of flux melting are calculated using the thermodynamic model of
PMELTS [Ghiorso et al., 2002]. This information can be found in ABS4 Worksheets Peri_Mode, MJ_pMELTS,
and Katz+.

The slab P-T path is one of the most important predefined parameters. In general, ABS4 assumes the geody-
namic model of Syracuse et al. [2010] and van Keken et al. [2011] but they did not give a slab temperature
profile the arc for Nankai. Instead, we used values provided by P. E. van Keken (personal communication,
2012) that are given for each of the eight slab layers in Worksheet SIb_PT(PvK2011).

ABS4 is a forward model that calculates a primary magma composition from slab and mantle sources based
on nine intensive and extensive petrological parameters (see Appendix C). These parameters can be varied
by the user and the resulting calculated magma composition compared to a target magma that is based on
observations. Incompatible trace element, Sr-Nd-Hf-Pb isotope, and major element compositions are used
in the comparison. A Monte Carlo calculation is used to make a quantitative comparison in order to avoid
artificial correlations between the parameters. Successful results are those in which calculated and observed
compositions agree to within user-defined limits (supporting information 8).

Representative successful ABS4 calculation results for major, trace, and isotope compositions, and the corre-
sponding intensive/extensive parameters for slab and mantle melting, are listed in supporting information
6 and shown in Figures 12a-12i for incompatible trace elements. We modeled target primary magma com-
positions for Abu SHO, Yokota ABH/ABL, Abu SAB, Abu HMA, Setouchi HMA, Aono ADK, and Daisen AA/ADK
that are given in supporting information 6 but we did not model OIB because ABS4 is particularly designed
for arc magmas.

6.5.2. ABS4 Results: Incompatible Trace Elements

We start each model by fitting the incompatible trace element concentrations. The matches for each target
primary magma in supporting information 6 are averages and one standard deviation for approximately
100 satisfactory models per target in which agreement between the forward calculation and the target
composition lies within the limits that are given in Appendices C7 and C8. The range of satisfactory results
is shown by the minimum and maximum lines in Figure 12 that bracket the 2 sigma deviation spread of
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satisfactory results. As shown in this diagram, Rb, Ba, Th, U, K, and Pb concentrations in otherwise successful
matches are often too high. Sr generally agrees except for high values for Setouchi HMA. The overestimate
of these elements probably reflects unrealistic compositions and mineralogies for the SED and AOC compo-
nents, or inaccurate partition coefficients for these elements.

Twenty incompatible trace elements excluding those listed above are given high priority in fitting calcula-
tions [Kimura et al., 2009, 2010]. Among them, the highest priority is given to REEs (see Appendices C7 and
(C8), because their abundances and patterns constrain many important parameters such as the mass fraction
of slab flux, source mantle depletion, and the degree and depth of mantle melting.

Residual accessory phases in the slab may exercise important controls on trace elements in slab-derived flu-
ids and melts [Hermann and Rubatto, 2009]. Perple_X solutions include modes of phengite and rutile in SED
and AOC. For them, we use fixed partition coefficients from Ayers et al. [1997] and Green et al. [2000]. In
addition, the garnet and clinopyroxene partition coefficients of Kessel et al. [2005] already include the effects
of some residual rutile in their experiments. The calculated HFSE concentrations can be refined in ABS4 by
modifying the amount of rutile in the residual SED and AOC (supporting information 8 ABS4 CONTROL_PA-
NEL Worksheet Cell L19). For the models in this paper, successful matches of HFSE concentrations and
HFSE/REE ratios typically required up to 1% more rutile than calculated using Perple_X. Even so, Zr-Hf and
Nb-Ta abundances are matched only to within 25-40% in our models (Figure 12). Other potentially impor-
tant accessory minerals during slab dehydration and melting include zircon, allanite, monazite, and apatite.
ABS4 allows the user to specify the mode of zircon and allanite in the slab residue, but we have not used
that capability for the models in this paper.

6.5.3. ABS4 Results: Sr-Nd-Hf-Pb Isotopes

The ABS4 calculation results for isotopes are shown in Figure 13 by open symbols with error bars indicating
averages with 2 sigma deviations. The target primary magma compositions are almost always matched
within those errors, except for Sr-Nd-Hf isotopes in Setouchi HMA. This shows that the ABS4 results success-
fully keep internal consistency between Sr-Nd-Hf =Pb element abundances and Sr-Nd-Hf-Pb isotopes, which
is often a problem for forward models.

Overall, the successful results show mixing between SED, AOC, and PERID source components. However,
complex geochemical mixing processes are assumed in ABS4 (see Appendix C). The assumptions that most
affect isotope ratios include (1) reactions between fluids/melts and overlying layers in the slab, (2) effects of
fracture versus porous flow of liquids in the slab, (3) mixing of slab fluid/melt from SED/AOC/MwP sources,
and (4) open system fluid/melt fluxed-mantle melting controlled by the mass fraction of flux and the degree
of mantle melting. Because the resulting mixing lines between SED/AOC/PERID sources are not simple
hyperbolae in isotope ratio diagrams as in most other models, mixing lines are not shown in Figure 13.
However, isotopically enriched slab components are dominated by SED, whereas depleted slab components
are mostly from AOC (see Figure 7). The SW Japan PERID component lies between SED and AOC, so that the
contribution of PERID is not prominent in isotopic variations.

6.5.4. ABS4 Results: Major Elements

The major element composition of primary melts calculated using ABS3.1 was discussed by Li et al. [2013]
for low-Ca boninite and high-Mg adakite in the IBM arc. The magmatic SiO, content is fundamentally impor-
tant in discriminating between silica undersaturated (strongly alkaline) versus oversaturated (subalkaline)
basalts, and estimating the corresponding depth of mantle melting [Kushiro, 1973]. The high SiO, of HMA
and ADK may be caused by slab melt-fluxed melting of mantle peridotite [Kelemen et al., 1998] or H,O-
fluxed melting [Umino and Kushiro, 1989]. Trace element mass balances alone cannot distinguish between
these alternatives. Therefore, we used the SiO, content of target primary melts as an additional filter. ABS3
and ABS4 calculate the major element composition of open system mantle melting using the pMELTS algo-
rithm [see Appendix C and Kimura et al., 2010]. Although such calculations have large uncertainties, they
can still provide a useful guideline.

The major element results for each target composition are shown in Figure 14 with mean values and 2
sigma error bars. The results almost reproduce the major element compositions of primary magmas. In
addition to SiO, MgO and Fe,05 contents for SHO/AB/SAB/HMA/AA/ADK are reproduced to within 2-4 wt.
% (Figure 14a). Calculated Al,O5 contents are systematically high, whereas CaO are systematically low. This
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Figure 13. Comparison between the isotope compositions of target (solid symbols) and calculated magmas using ABS4. The ABS4 results
are averages (open symbols) with 2 sigma standard deviations (error bars).

reflects uncertainties in our assumed slab melt composition (shown by a yellow star in Figure 14) and in the
PMELTS calculations [Kimura et al., 2010].

6.5.5. ABS4 Results: Phase Relations of the Primary Melt

The major element compositions of the calculated primary melts are discussed next using CMAS plots (Ol-
CaTs-Qz projected from Di: Figure 15). As noted in section 6.2.3 (Figure 11), the primary basalt compositions
of SHO/AB/SAB all plot near the 2-3 GPa peridotite cotectics (Figures 15a—15d). ABS4 results plot on lines
that emanate from the slab melt composition (yellow star in Figure 15), pass through the model results, and
extend to pure mantle melts at an appropriate pressure. This indicates that, after filtering on SiO,, ABS4
results show the expected mixing between a slab-derived felsic melt and basalt melts from PERID.

The target and calculated primary AA/ADK melt compositions plot close to the slab melt composition and
near the high-silica end of the silica-rich pyroxenite cotectic (Liquid (L) + Qz + Cpx + Gt) of Herzberg [2011].
This suggests that AA/ADK is a melt of quartz-eclogite in the garnet stability field that later reacted with
mantle peridotite (Figures 15g-15i).

Abu and Setouchi HMA plot between the quartz-eclogite (slab) melt and basalt melts from PERID (Figures
15e and 15f). The apparent basalt melt components for HMA and AA/ADK point to lower pressure cotectics
(<2 GPa) in contrast to deeper equilibration for the basaltic suites (2.5-3 GPa). This is consistent with ABS4
estimates for mantle melting depths as will be discussed in section 6.6.3.

6.5.6. ABS4 Results: Residual Mantle Mineralogy
The residual mantle mineralogy calculated by ABS4 for each suite [see Appendix C and Kimura et al., 2010,
for the method] is shown in Figure 16. In all cases, the residue lies between the source PERID (DMM)
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Figure 14. Comparison of the major element compositions between the target (solid symbols) and calculated magmas using ABS4. ABS4
results are averages (open symbols) with 2 sigma standard deviations (error bars). Agreement is better for SiO,, MgO, and FeO than for
Al,05 and Ca0. H,0 compositions are predictions from ABS4. See discussion in the text about H,O in primary magmas.

composition and the Opx apex (the amount of garnet is not shown). This indicates that the residual mantle
mineralogy is largely controlled by reactions between peridotite and a silicic slab melt. Increases in SiO, in
PERID result in Opx-rich residua due to consumption of olivine and clinopyroxene in a peritectic reaction
[Kelemen et al., 1998], and the reactions are somehow reproduced by ABS4 using the pMELTS algorithm.
ABS4 calculations for fluid-fluxed mantle melting at 1-3 GPa exemplified by the North Izu frontal arc are
also shown for comparison (see DMM 1.0 GPa-3.0 GPa results in Figure 16).
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Figure 15. CaTs-Ol-Qz plot (a-i) comparing the target primary melt composition (solid colored circles) to primary melt compositions calcu-
lated using ABS4 (small blue open circles), the source PERID from Workman and Hart [2005] (solid orange star), and an average slab melt
(solid yellow star) from Moyen [2009] and Moyen and Stevens [2006]. The rainbow colored thin lines show peridotite cotectics at 3-7 GPa
from Herzberg [2011]. The thick blue line within the L + Qq + Cpx + Gt field shows the silica-rich pyroxenite cotectic from Herzberg [2011]
The vertical line labeled TD is a thermal divide, also from Herzberg [2011].

The calculated residual mineralogy for SW Japan magmas overlaps the field of mantle xenoliths from
Shiveluch volcano (Figure 16). The xenoliths were considered to be examples of melt fluxed mantle by
Bryant et al. [2007]. In contrast, mantle xenoliths from the NE Japan arc [Abe and Arai, 2005] mostly
overlap the residue from fluid-fluxed melting. Therefore, ABS4 calculations reproduce quite well the
expected residual mantle mineralogy for slab melt-fluxed mantle melting beneath the SW Japan hot
subduction zone.
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lated by ABS4. ABS4 calculations for the DMM source without slab flux at 1.0-3.0 GPa and ADK; as discussed in section
0-30% partial melting are also shown for comparison by thick colored lines. Modal com- 6.5.5. The apparent Ol-free pyrox-
positions of supra-subduction zone mantle xenoliths from Shiveluch volcano (red open enite Iithology inferred from Fig-
stars surrounding the purple field) [Bryant et al., 2007] and those from Oki Island (red

filled hexagons and light blue field) [Abe and Arai, 2005] are also shown for comparison. ure 15 does not reflect the

source mantle for SW Japan.
Instead, an Opx-rich residue is expected during production of HMA and AA/ADK, similar to the mantle xeno-
liths from Setouchi HMA [Tsuchiya et al., 2005].

6.6. Intensive-Extensive Parameters of Magma Genesis

As shown in the preceding section, the primary magma calculated using ABS4 can reasonably well repro-
duce the incompatible trace elements, Sr-Nd-Hf-Pb isotopes, major element compositions, and residual
mantle mineralogy during genesis of SHO, ABL/ABH, SAB, HMA, and AA/ADK. We will now explore the
implied conditions of slab and mantle melting.

ABS4 uses nine intensive/extensive variables including: (1) the depth of melt release from the slab [Slab P];
(2) the extent of liquid focusing in the slab [%R slab] related to diffuse versus channel flow; (3) the fraction
of slab flux from AOC [Fliq(AOCQ)], SED [Fliq(SED)], and MwP [Fliq(DMM)]; (4) mantle melting pressure [P]; (5)
mantle melting temperature [T]; (6) the mass fraction of slab flux added to the mantle [Fslb liq.%]; (7)
degree of mantle melting [F]; and (9) the extent of depletion of the mantle source prior to melting
[%MORBext.]. Average results and standard deviations for these parameters are included in supporting
information 6, and ~20 successful results for each suite are shown graphically in Figure 17. We show results
that cover the range of the variables listed above drawn from the Monte Carlo random fittings.

6.6.1. Depth of Slab Melt Release [Slb P], Slab Liquid Fraction [Fliq(AOC/SED/DMM)], and Focusing of
Slab Melt [%R slab]

We assumed the P-T paths for eight slab layers Nankai from P. E. van Keken (personal communication,
2012). This model predicts melting of both AOC and SED deeper than ~80 km (~2.5 GPa) under water-
saturated conditions (supporting information 8, ABS4 [SIb_Mode] Worksheet). We used the water-saturated
solidi because we assume saturation of bound water during prograde metamorphism in each layer. The
necessary water is supplied from the lower layer. This type of melting is termed “flush melting” by Skora
and Blundy [2010]. Calculated degrees of melting of both the AOC and SED layers vary from 32 to 37%.

All successful models for the SW Japan arc require slab melting. However, melting degrees and the compo-
sition of the slab melt do not change significantly between 2.5 and 6.0 GPa because the P-T path of the slab
is subparallel to the solidus [Syracuse et al., 2010; van Keken et al., 2011] (also see [Slb_Mode] Worksheet of
ABS4 in supporting information 8). Consequently, ABS4 models are successful for a wide range of pressures
(3.7-5.0 GPa) of slab melting (see supporting information 6). In contrast, colder arcs may involve only fluid-
fluxed melting beneath the volcanic front and slab melts only beneath rear arc volcanoes [e.g., [zu: Hoch-
staedter et al., 2001; Kimura et al., 2010].

A flux component from the base of the mantle wedge overlying the slab (MwP: [Flig(DMM)]) is not neces-
sary in SW Japan in contrast to its fundamental importance in modern Izu [Kimura et al., 2010] and for the
low-Ca boninite early in Izu arc history [Li et al., 2013]. None of the successful ABS4 models for SW Japan
required this layer mainly because of the steep REE patterns in the primary magmas combined with low
degrees of mantle melting. The slab fluxes are only melts of AOC [Fliq(AOC)] and SED [Fliq(SED)].
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Consequently, the coupled flow that transports the lowermost mantle wedge “sponge” downward seems to
be much diminished above hot slabs.

The [%R slb] parameter reflects the focusing of slab liquids as they move into higher layers (see Appendix C
and Figure A2). The isotopic composition of the final slab liquid is especially sensitive to this parameter. Suc-
cessful results for SW Japan generally have small [%R slb] values (25-50%) (supporting information 6) that
we interpret as reflecting porous flow through the slab. Only Aono ADK requires higher values (~120%).

6.6.2. Mantle Depletion Prior to Melting [%MORB ext.]

Mantle more depleted than the Primitive Mantle of [Sun and McDonough, 1989] is required for most of the
SW Japan suites. This is calculated in ABS4 as the residue from bulk partial melting of peridotite using the
parameter [%MORB ext.]. Predepletions of 1-3% were required for most of the magma suites, but 5-9% for
Daisen AA/ADK and ~7% for Yokota ABH (supporting information 6).

A 4 wt. % melt extraction is not enough to form DMM from PM, which requires ~10 wt. % [Workman and
Hart, 2005]. Consequently, the SW Japan mantle has trace element concentrations similar to an E-MORB
source. This is more enriched than in NE Japan and Izu where forward models require PERID to be 1-5%
more depleted than DMM [Hochstaedter et al., 2001; Kimura and Yoshida, 2006; Kimura et al., 2010]. The
more fertile mantle in SW Japan is consistent with its inferred greater isotopic enrichment (Figure 7) [Hoang
and Uto, 2003; Kimura and Stern, 2008].

6.6.3. Mantle Melting Pressure [P] and Temperature [T]

Figure 17a shows the P-T conditions for mantle melting in the successful models for each magma suite.
They result mostly from fitting the REE patterns and SiO,. There is a crude positive correlation between P-T
within the basaltic suites in the range 2.2-2.5 GPa and 1300-1390°C. SHO equilibrated at the highest P-T
conditions (P = 2.2-2.5 GPa, T = 1360-1390°C), and SAB and ABL/ABH at slightly lower T = 1280-1350°C at
similar P. In contrast, HMA equilibrated at lower P = 1.6-2.2 GPa and T = 1190-1300°C, and Aono and
Daisen AA/ADK at the lowest P = 2.0-2.3 GPa and T = 1200-1260°C. The higher pressure origin for SHO and
AB are consistent with their silica-deficient compositions. Estimated pressures >2 GPa are consistent with
residual garnet in the sources (supporting information 6) and their HREE-depleted patterns (Figure 12). In all
cases, the final depth of melt equilibration with the mantle lies between the top of the slab and base of the
crust, but there is no spatial pattern.

Iwamori [1992] concluded that AB equilibrated with mantle peridotite at 1.65-1.90 GPa, 1320-1340°C
(Figure 17) with H,0 =0.5-1.5 wt. % and CO, =0.5-1.0 wt. % in the primary melts. The major element
composition of AB used in his experiments is similar to that of the ABL/ABH primary magmas in this
study (supporting information 5). The estimated temperature range is similar in the two studies despite
their very different constraints, although his estimated pressure and H,O contents are slightly lower
(Figure 14e).

HMA and AA/ADK appear to originate at shallower depths than the basaltic suites. Most, although not all,
AA/ADK and HMA require a little residual garnet in their mantle source (supporting information 6).
Intermediate-silica magma can be in equilibrium with garnet peridotite as shallow as 1 GPa [Alonso-Perez
et al., 2009], which is consistent with the ABS4 results.

6.6.4. Degree of Mantle Melting [F] and the Mass Fraction of Slab-Melt Flux [Fslb liq.]

Figure 17b shows the inferred degree of mantle melting [F] as a function of the mass fraction of slab-melt
flux [Fslb lig.] for the successful ABS4 models. The slope (dF/dflux) gives the productivity of flux melting. The
suites define three distinct trends for SHO/AB/SAB, HMA, and AA/ADK, respectively. We draw three main
conclusions from these relationships.

First, the degree of mantle melting is proportional to the slab-melt flux. This is petrologically reasonable
because the slab-derived melts contain H,0, and the addition of H,O increases the degree of mantle melt-
ing at a given P-T [e.g., Hirschmann et al., 2008; Kelley et al., 2010].

Second, mantle melting productivity is greatest (the dF/dflux slope is steepest) for SHO/AB/SAB, intermedi-
ate for HMA, and lowest for AA/ADK decreasing from Aono ADK, to Daisen AA, to Daisen ADK (Figure 17a).
We attribute the different slopes to differences in mantle temperature such that a fixed amount of flux
results in the most mantle melting when the temperature is highest (for SHO/AB/SAB), and the least mantle
melting when the temperature is lowest (for Daisen ADK).
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Third, all dF/dflux slopes for SW Japan basalts are shallower than inferred by similar ABS models for the
North Izu rear arc [Kimura et al., 2010] (Figure 17b). We attribute the relatively low degree of mantle melting
beneath the SW Japan arc to low water in the slab flux in this hot subduction zone, and we attribute the
low productivity of mantle melting in the unusual HMA and ADK suites to unusually low temperatures of
melting.

We explore this idea further using Figure 17c which is similar to those in Kelley et al. [2010] and related
papers about water contents and melting in other arcs and back arcs. This comparison is possible because
ABS4 calculates H,O contents in the fluxed peridotite source [H,O in PERID] that is analogous to C, in Kelley
et al. [2010] despite very different methods and assumptions in the two studies. H,O in PERID has a crude
positive correlation with degree of mantle melting [F] (Figure 17c) as is typical of subduction environments
but not ocean ridges [Kelley et al., 2010]. Hydrous experiments also show that melt productivity defined as
dF/dT decreases with the addition of H,O to mantle peridotite [Gaetani and Grove, 1998; Till et al., 2012b]. In
addition, the different slopes between SW Japan suites are the same in Figures 17b and 17¢, and the most
distinctive suites (HMA and ADK) have shallower slopes than anything in the Mariana Arc or Trough.

Our SHO suite plots on ABS4’s T= 1350°C, P = 2.0 GPa isotherm (which is consistent with our estimate for
the SHO mantle melting conditions; see Figure 17a) just as do basalts from the Mariana Trough and Pagan
Island of Kelley et al. [2010]. This indicates that the hottest mantle beneath SW Japan is similar to that
beneath the Mariana Trough and parts of the Mariana Arc, but with less H,O (Figure 17¢). AB/SAB share the
same T ~ 1300°C isotherm with Guguan and Agrigan from the Marianas, again with less H,O. AA/ADK and
HMA are on T= 1200-1250°C isotherm, more Sarigan-like but with lower H,O. The comparisons indicate
that the SW Japan mantle has a wider range in temperature as well as less H,O and, therefore, lower F than
in the Mariana arc and back arc, supporting our conclusion above from Figure 17b. The dF/dH,0 slope for
each suite is controlled by the local mantle temperature [T] but the overall lower [F] reflects drier mantle in
SW Japan.

The degree of mantle melting [F] is small in SW Japan (Figure 17¢) but slab melt production is twice or
more the mantle melt production and the d(F+Fslb lig.)/dH,0 slopes of all rock suite almost overlap each
other on T= 1350°C isotherm (Figure 17d). Consequently, melt productivity estimates that are based only
on major and trace element compositions or H,O contents of basalts will be too low in hot subduction
zones. Because ABS4 deals with [F] and [Fslb lig.] separately, we can see that SW Japan is characterized by
high melt production from the slab due to the hot subduction.

Note that if the slab flux is water rich (e.g., at the N. Izu volcanic front) [Kimura et al., 2010] it mostly dissolves
in the mantle melt. Therefore, [F] is almost equal to [F] + [Fslb lig.]. However, if the slab flux is water-poor
melt (e.g., at the N. Izu rear arc [Kimura et al., 2010] and in SW Japan), then the total magma production
should be close to [F] + [Fslb lig.].

6.6.5. H,0 in the Magmas

The H,0 contents of the most mafic Abu SAB and Yokota AB at ~1 GPa were estimated by Zellmer et al.
[2012] to be 1.5-2.5 wt. % (Yokota is called Daisen by Zellmer et al. [2012]), and to be 0.5-1.5 wt. % at ~2.0
GPa by Iwamori [1992]. Our estimates are 0.5-2.5 wt. % (Figure 17e), almost consistent with these other
thermodynamic and experimental approaches. The values are similar to those for basalts in the N. Izu rear
arc (0.9-1.3 wt. %) [Kimura et al., 2010] despite lower degrees of mantle melting in SW Japan (F = 1-4 %)
than in N. Izu (2-15%), which is consistent with a drier slab flux in SW Japan (see discussions in above sec-
tion 6.6.4).

ABS4 predicts that HMA magma has relatively high H,O = 3.0-5.5 wt. % (Figure 17e) at [T] = 1190-1280°C
and [P] = 1.6-2.2 GPa (Figure 17a). Experiments show that H,O-undersaturated HMA melts with 5-8 wt. %
H,0 equilibrate with harzburgite to Iherzolite residues at T= 1100-1280°C and P = ~1 GPa [Tatsumi and
Eggins, 1995]. Therefore, the ABS4 parameters are reasonable for mantle melting reactions with a lherzorite
residue (Figure 15).

The high calculated water content in Daisen AA/ADK and Aono ADK (3-5.5 wt. %) is consistent with the
occurrence of hornblende in these lavas. All ADK lavas contain hornblende crystals which crystallized from
adakite melts (see sections 5.1 and 6.1.1) and hornblende is a phase in andesite-dacite melts with >5 wt.
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% H,0 [Almeev et al., 2013a, 2013b; Grove and Kinzler, 1986; Merzbacher and Eggler, 1984; Sisson and Grove,
1993].

6.6.6. Slab Flux Sources [Fliq(SED)], [Flig(AOC)]

Three separate slab liquid fractions are calculated in ABS4: [Fliq(SED)], [Flig(AOCQ)], and [Flig(DMM)]. For the
P-T path in and just above the slab in the Nankai subduction zone, [Fliq(SED)] and [Fliq(AOC)] are hydrous
silicate melts in the pressure range 2.8-6.0 GPa, whereas [Flig(DMM)] is a hydrous fluid (supporting informa-
tion 8). [Flig(DMM)] is not discussed further for reasons given in section 6.6.1. Figure 17f shows the relation-
ship between the SED:AOC proportion in the slab source and the water content of the resulting slab melt.
H,O contents increase with increasing [Fliq(SED)] in ABS4 because H,0 from deeper AOC layers accumu-
lates in the overlying sediment layer.

Successful ABS4 models require the highest proportion of AOC in the slab source for Abu SHO (0.79-0.95
AOC mass fraction), followed by Aono ADK (0.60-0.80 AOC). Models for Abu SAB, Abu HMA, Yokota ABL/
ABH, and Daisen AA/ADK need more sediment in the slab source (0.60-0.90 SED), and Setouchi HMA needs
the most (0.98 SED). These source proportions mostly reflect the isotopic composition of the magmas.
Setouchi HMA has the most enriched isotopic composition, whereas Abu SHO has the most depleted (see
Figures 7 and 14). Slab melt mobility [%R slb] also affects isotopic mixing, but this parameter is relatively
uniform in our models.

A large role for subducted sediment in the origin of Setouch HMA in the Miocene has been proposed before
[Shimoda et al., 1998; Tatsumi and Hanyu, 2003] and is confirmed in our model. However, our results show a
previously unrecognized spatial relationship in the Quaternary SW Japan arc. Abu SHO and Aono ADK in
the west are derived more from AOC requiring deeper melting in the slab, whereas Yokota AB and Daisen
AA/ADK in the east and Abu HMA and SAB are more from the overlying sediment. This pattern may reflect
subduction of the Kyushu-Palau Ridge (KPR) beneath Abu-Aono (Figure 1a). The northern KPR includes iso-
topically and trace elementally depleted tonalitic middle crust [Haraguchi et al., 2003; Ishizuka et al., 2011]
and this could account for greater AOC melt production during subduction of the western margin of the
Shikoku Basin (see Figure 1a).

6.7. Petrological Summary: Controlling Factors of Arc Magma Genesis

ABS4 models show how various magma suites can form from the same slab and mantle with different
intensive/extensive petrogenetic parameters. The key factors for arc magma genesis beneath SW Japan are
summarized as follows.

The first-order control on the diversity of the magma suites in SW Japan is the variation in the mass fraction
of slab flux added to the mantle. As shown in Figure 17b, the slab flux is largest for AA/ADK (3.5-15 wt. % of
mantle mass), intermediate for HMA (1.5-10 wt. %), and lowest for SHO/AB/SAB (0.5-4 wt. %) that are the
most like ordinary arc magmas. The amount of slab flux controls the degree of partial melting of the mantle
because the addition of water and solutes reduces the mantle solidus (Figure 17c). Although mantle tem-
perature also controls the degree of melting of the mantle (Figure 17a) and compensates to some extent
for the increase in degree of mantle melting by large slab flux additions (Figures 17b-17d), the mass frac-
tion of slab flux has the most fundamental control on magma type.

Mantle melting is deepest for SHO/AB/SAB, intermediate for Abu HMA, and shallowest for AA/ADK (Figure
17a). Small amounts of slab melt react immediately with the ambient mantle at a greater depth to form
SHO/AB/SAB. The melting temperature is higher for these suites because the pressure is greater, and less
water and silica are added to the mantle by less flux. In contrast, when there is a large mass fraction of slab
flux, it can reach shallower depths because of its buoyancy and because it reacts less with surrounding
mantle due to the higher liquid/rock ratio [Tsuchiya et al., 2005]. The lower mantle melting temperature in
AA/ADK also reflects the lower temperature of the slab melt which cools the mantle wedge.

The second-order control of the geochemical variation between suites is the proportion of sediment versus
AOC in the slab melt source. The sediment component is most prominent in Setouchi HMA, followed by
Abu SAB, Abu HMA, Yokota ABL/ABH, and Daisen AA/ADK, with the least in Aono ADK and Abu SHO (Figure
17f). This proportion affects H,O contents in the peridotite and primary magma (Figure 17f) and is a func-
tion of the isotopic composition of the magma suite (Figures 7 and 14). The proportion of slab melt from
AOC is greatest where the extinct spreading center (the Palau Kyushu Ridge) is subducting (section 6.6.7).
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6.8. Subarc Processes Beneath Hot Subduction Zones
We next compare the intensive/extensive variables in our ABS4 models to seismic tomography results in
order to examine the relationships between geochemistry and geophysics.

6.8.1. Mantle Tomography and Seismicity

Using the latest estimates of the Moho and the surface of the Philippine Sea Plate depths [Katsumata, 2010;
Nakajima and Hasegawa, 2007; Zhao et al., 2012] (Figure 2a), we present two new crust-mantle cross sec-
tions (Lines A and B in Figure 1b). The corresponding Vp/Vs velocity structures are shown in Figure 18 which
also includes dehydration/melting profiles from ABS4 for five representative slab layers (MwP, SED,

UBAS = AOC, LGAB, SIbP) using the geodynamic model of Syracuse et al. [2010] and van Keken et al. [2011]
modified slightly by P. E. van Keken (personal communication, 2011).

Key features of Figure 18 include the following. The subduction angle of the slab is shallow (10-30°). Slab
seismicity extends to ~80 km and is most frequent at ~40-50 km [Nakajima and Hasegawa, 2007]. The
deeper slab is aseismic but is imaged by tomography to extend to >270 km at a steeper angle (>50°)
[Zhao et al., 2012]. Low-frequency tremor occurs between 35 and 40 km [Katsumata and Kamaya, 2003;
Obara, 2002], roughly corresponds to the location of the slab-mantle-crust triple junction and is associated
with a high Vp/Vs region in the uppermost slab. The wedge mantle beneath the fore arc always has high
Vp/Vs (Figure 18c).

6.8.2. Slab Dehydration and Melting

The Perple_X-based petrogenetic grids used in ABS4 (supporting information 8) provide the water release
and melting profiles of the slab in the Nankai Subduction Zone that are shown in Figures 18a and 18b. Two
loci of fluid release from the slab are predicted. The first at depths shallower than 80 km is gradual and cor-
responds to the breakdown of serpentine minerals in MwP/SIbP and the breakdown of zoisite in SED/AOC/
GAB (the blueschist to hydrous eclogite transformation). This results in high Vp/Vs in the corner of the man-
tle wedge that is a distinctive characteristic of SW Japan and other hot subduction zones [Hyndman and
Peacock, 2003; Nakajima and Hasegawa, 2007]. The second at 80-90 km corresponds to the breakdown of
chlorite in MwP/SIbP and amphibole and lawsonite in SED/AOC/GAB (the hydrous eclogite to dry eclogite
transformation) [Hacker et al., 2003; Kita et al., 2006; Omori et al., 2009]. It reflects slab melting with total
breakdown of most hydrous minerals in all slab layers resulting in an almost anhydrous residual slab apart
from phengite in metasediment (Figures 18a and 18b).

The released fluids hydrate the overlying mantle wedge and form high Vp/Vs serpentinized mantle beneath
the fore arc (Figures 18c and 18d). Hot springs occur in the SW Japan fore-arc and intraarc regions, many of
which have mantle-type He/*He isotope ratios [Sano et al,, 2009]. This may reflect interaction between
slab-derived fluids and mantle wedge peridotite that scavenges *He from the mantle [Sano et al., 2009]. Ser-
pentinized mantle and high *He/*He hot springs also characterize the fore arc of the Cascadia hot subduc-
tion system [Hyndman and Peacock, 2003]. These features reflect the shallow dehydration of the slab. In
contrast, there are few hot springs in the NE Japan fore arc and none of them has mantle-type *He/*He iso-
tope ratios. Neither is there evidence of extensive serpentine in the fore-arc mantle based on seismic veloc-
ities there [Tsuji et al., 2008].

ABS4 also predicts slab melting after transformation to dry eclogite at ~80 km (Figure 18b). The onset of
melting in ABS4 corresponds to the seismic-aseismic transition of the slab at 2.6 GPa (~85 km) and 670°C
(Figures 18c and 18d). This correlation has been pointed out before and has been interpreted as evidence
of slab melting beneath SW Japan [Kimura et al., 2005a; Morris, 1995; Peacock and Wang, 1999]. Our combi-
nation of seismic observations and ABS4 models confirm that 20-35% of slab melting is followed by near-
vertical ascent of the melt (Figures 18c and 18d).

6.8.3. Mantle Convection

If there is extensive shallow dehydration of the slab in hot subduction zones, why is not there magmatism
closer to the trench? The answer may be a lower mantle temperature in the fore arc. We infer that the
wedge mantle beneath the SW Japan fore arc is too thin to yield much melt, the mechanical coupling at
the slab-mantle interface beneath the fore arc is too weak to drag down the overriding mantle peridotite,
and these two conditions limit how far hot mantle can advect from the rear arc toward the trench. In effect,
the shallow subduction angle, the hot and buoyant slab [van Keken et al., 2002], and the weak wet mantle
beneath fore arc [Katayama et al., 2012] prevent hot mantle from going closer to the plate boundary. HMA
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Figure 18. Depths of slab and mantle melting calculated by ABS4 compared to the Vp/Vs structure of the SW Japan arc from Nakajima
and Hasegawa [2007] updated for this paper. The location of the slab is from Nakajima and Hasegawa [2007] for its seismic portion, and
from Zhao et al. [2012] for its aseismic portion. (a) Dehydration profile of slab layers. (b) Slab fluid and melt fractions (in wt. %) calculated
along the Nankai thermal profile assuming the dynamic model of Syracuse et al. [2010]. (c and d) The depth of melting in both the slab
and overlying mantle in our models. A different color is used for each magma suite. The locations of the two cross sections are shown as

Lines A and B in Figure 1. The depth of slab melting in our model coincides with the aseismic portion of the slab.
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and ADK come from the coldest mantle with, therefore, the lowest mantle melting productivity. Ironically,
the most distinctive magmas of the hottest subduction zones come from the coldest mantle.

ABS4 predicts that the slab will melt at 85-160 km (Figures 18c and 18d) and that final equilibration during
flux melting of the mantle will occur at 60-80 km (Figures 18c and 18d). The OIB suites in SW Japan equili-
brated with garnet peridotite at >70 km (section 6.2.3) and are isotopically similar over 200 km between
OIBL at Kannabe and OIB at Abu. Therefore, the mantle at >70 km should be well-mixed asthenosphere
rather than lithosphere (see 1200°C isotherm in Figures 18c and 18d). Convection could be passively
induced by coupling to the slab deeper than ~80 km [van Keken et al., 2002], or actively induced by the
buoyancy of slab melts [Behn et al., 2011]. This is beyond the scope of this paper and should be examined
by geophysical observations or geodynamic models.

6.9. Key Factors of Arc Magma Genesis: Hot Versus Cold Arcs

The hot subduction system in SW Japan is a global end-member and, therefore, a key to understanding the
origin of arc magma suites globally including calc-alkaline basalt, shoshonite, high-Mg andesite, and ada-
kite, alone and in combinations [Feineman et al., 2013; Kimura et al., 2005a; Morris, 1995; Peacock and Wang,
1999; Tatsumi and Hanyu, 2003]. Alternative views have been proposed for the origin of adakite in SW Japan
[Zellmer et al., 2012], but our more comprehensive data set and integrative models support the traditional
explanation that emphasizes a large role for slab melting rather than adakite origin from the lithospheric
mantle or lower crust. However [Zellmer et al., 2012], estimate of lower water contents in basalts from hot
SW Japan (1.5-2.5 wt. %) than in colder Kyushu volcanic front basalts (3.5-6.0 wt. %) is consistent with our
models that estimate 5-8 wt. % H,0 in basalts from the cold N. Izu volcanic front [Kimura et al., 2010] versus
1.5-2.5 wt. % in AB/SHO/SAB from hot SW Japan which is similar to that in rear arc basalts from N. Izu.

Although models like ABS that use the geodynamic models of Syracuse et al. [2010] and van Keken et al.
[2011] predict slab melting in most arcs (e.g., N. Izu rear arc) [Kimura et al., 2010], the erupted magmas usu-
ally are only medium-K to high-K subalkalic arc basalt (SAB) and lack the diversity found in the SW Japan
arc. SAB in SW Japan is similar to the medium to high-K rear arc SAB in colder subduction zones like N. Izu.
SHO also occur in atypical environments in cold subduction zones such as the Quaternary shoshonites in
the northern Mariana arc [Sun et al., 1998]. SHO and SAB magmas are both characterized by a relatively low
slab-melt flux and by mantle melting in the garnet peridotite stability field (Figures 17a and 17b). This,
therefore, is the norm for arcs globally, as shown by the similarity between melting relationships for SW
Japan SHO/SAB and basalts at the Mariana volcanic front in Figure 17c.

High degrees of mantle melting characterizes the volcanic front of colder subduction zones. This is attribut-
able to the large H,0 flux from the slab at the hydrous to dry-eclogite transformation, as suggested by
ABS3 analyses for N. Izu [Kimura et al., 2010]. In contrast, the H,0-poor slab melts dominate beneath the hot
SW Japan arc instead of H,O-rich fluids, and there is less mantle convection beneath the arc (section 6.8.3).
This combination of dry flux and cold mantle is the reason for the lower magma productivity in SW Japan
[Kimura et al., 2005a] than in colder subduction zones such as NE Japan.

The presence or absence of particular magma suite(s) and their relative amounts primarily depend on the
thermal structure of the slab and the mantle wedge. If slabs were hotter in ancient subduction zones (e.g.,
in the Archean), then slab melting and larger volumes of HMA/ADK would result and contribute to conti-
nent formation [Defant and Drummond, 1990; Martin et al., 2005]. Processing of low-K tholeiitic basalt within
the crust would account for the development of continental crust later in Earth’s history [Tatsumi et al.,
2008a]. Contrasting magma types between cold and hot subduction zones can be a probe to identify which
process was dominant in an arc at any particular place and time in Earth history.

7. Summary

We have newly analyzed 324 Quaternary lavas of SHO, AB, SAB, HMA, AA, and ADK suites from SW Japan
and used the geochemical data to investigate the source conditions and materials for magma genesis. We
used an improved geochemical mass balance model, ABS4, for the investigation. Our results indicate that
all the magma suites can be generated beneath the crust from the same mantle and slab sources by slab
melt-fluxed mantle melting that is induced by subduction of the hot Shikoku Basin. Fundamental
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controlling factors of the heterogeneous magma genesis are (1) the mass fraction of slab melt, (2) the rela-
tive proportion of AOC and SED sources in the slab, and (3) the P-T conditions of mantle melting.

The basaltic SHO/SAB/AB suites were derived from the deepest and hottest mantle with the addition of
0.5-4% slab-melt flux, which is within the range of arcs globally. In contrast, the more unusual HMA and
ADK suites originated from shallower and cooler mantle with the addition of 1.5-10% and 3.5-15% slab-
melt flux, respectively. The higher slab melt fractions result in more Si-rich parental magmas. The total melt
production (slab plus mantle melting) is surprisingly similar for all suites relative to the water content of the
mantle because the degree of interaction between the mantle and slab melt decreases as the mass fraction
of slab melt increases. The most distinctive magma suites of hot subduction zones come from atypically
cold mantle.

Other key conclusions about the hot SW Japan subduction zone are as follows. The percent of slab melting
is high (32-37%) but the percent of mantle melting is low (<5%). The mantle is less depleted than beneath
NE Japan and Izu despite lying in front of the Japan Sea back-arc basin. The amount of melted AOC versus
sediment from the slab is greatest above the site of subducting an extinct spreading ridge, the Palau
Kyushu Ridge. Unlike colder arcs, there is no need to invoke melting of the base of the mantle wedge, per-
haps because its coupling to the slab is too weak. We predict relatively low water contents of 0.5-2.5 wt.%
in the primitive parental magmas of the basaltic suites, versus 3-6 wt. % for the HMA and adakite suites.

Our results are internally consistent with the major and trace element and Sr-Nd-Hf-Pb isotopic composition
of the least crustally contaminated parental magmas. Our results are specific about the slab and mantle
source compositions, slab dehydration and melting conditions, and the residual slab and mantle mineral-
ogy. These in turn are consistent with seismic tomography images and seismic profiles for the SW Japan
arc. The results show that the ABS4 petrogenetic model is a powerful tool for constraining the geochemical
and geophysical processes occurring beneath arcs.

Appendix A: Deep Fractional Crystallization for AA/ADK

Supporting information 4 gives details about the mass balance calculations to test whether Yokota
basalt can differentiate to Daisen adakite via high pressure closed (FC) or open system (AFC) processes.
Because there are no garnet crystals in either Yokota AB or Daisen AA/ADK, we used garnet composi-
tions from experiments at ~1 GPa for basalt and andesite [Alonso-Perez et al., 2009; Muntener et al.,
2001]. The basalt composition used by Muntener et al. [2001] and the andesite compositions used by
Alonso-Perez et al. [2009] are similar to Yokota AB and Daisen AAs/ADK (supporting information 4 and
Figures 10a and 11c).

The experimental mineral compositions are plotted on CaO-SiO, and Al,03-SiO, diagrams together with the
melt, olivine, and clinopyroxene compositions from Yokota AB and melt, orthopyroxene, hornblende, and
plagioclase compositions from Daisen AA/ADK (Figures 10a and 11c). The observed mineral compositions in
the natural lavas agree well with the experimental run products. The experimental garnet composition (Fig-
ures 10a and 11¢), clinopyroxene, olivine, hornblende, and plagioclase compositions used for the calcula-
tions are given in supporting information 4 and shown by stars in Figure 10.

The mass balance calculations converged with r* = 0.999 for AA when Gar = —0.140, Amp = —0.530,

Plag = —0.023, Ol = +0.043, Cpx = +0.055, and for ADK when Gar = —0.176, Amp = —0.592,

Plag = —0.036, Ol = +0.066, Cpx = +0.052 (supporting information 4 and Figure 10a). Fractionation of large
amounts of garnet and amphibole are accompanied by the subtraction of a few percent plagioclase and
addition of a few percent clinopyroxene and olivine. Petrologically, the mass balance is consistent with sim-
ple fractional crystallization plus some internal mixing between the fractionated and parent basalts [AImeev
et al.,, 2013a; Sakuyama, 1984].

We also tested an alternative model including assimilation of a crustal melt. The major element composition
of the crustal melt was assumed to be the average from the sediment melting experiments compiled by
Kimura and Yoshida [2006] (supporting information 4 and Figures 10a and 11c). The results showed that the
calculations converge with r* = 0.999 for AA when Gar = —0.073, Amp = —0.297, Plag = +0.107, Crustal
melt = +0.267, and for ADK when Gar = —0.026, Amp = —0.144, Plag = +0.136, Crustal melt = +0.494
(supporting information 4 and Figure 10c). The mass balance result requires about half as much crustal melt

KIMURA ET AL.

©2014. American Geophysical Union. All Rights Reserved. 726



@AG U Geochemistry, Geophysics, Geosystems 10.1002/2013GC005132

addition as crystallization for AA and even more for ADK, plus addition of plagioclase together with subtrac-
tion of amphibole and trace garnet. This is also petrologically feasible if crustal melting remobilized plagio-
clase and added it to the daughter magma.

The two mass balance calculations appear to be feasible for major elements. In the next step, we calculated
trace element compositions for the two models using appropriate partition coefficients. D(Gar) was calcu-
lated using the Draper and van Westrenen [2007] model with the Py52 garnet major element composition of
Alonso-Perez et al. [2009], the average Yokota AB composition, P = 1.0 GPa, and T = 1200°C. D(Cpx) was cal-
culated using the Wood and Blundy [1997] model and the same conditions. D(Amp) was basically from Pilet
et al. [2011] with modifications as shown in Figure 9. D(Plag) was calculated using the Bindeman [2007] and
Bindeman et al. [1998] model for Ans, and T= 1100°C. The trace element composition of the crustal melt
was estimated from the hornblende rims in a Daisen ADK (see Figure 9 and supporting information 3). All
the melt and mineral compositions are listed in supporting information 4.

The calculated trace elements results agree poorly despite good matches for the major elements. The frac-
tional crystallization model resulted in strong depletions and a good match in HREE but greater enrich-
ments than observed in all other elements (supporting information 4 and Figure 10b).

The assimilation fractional crystallization model also failed because the fractionation of hornblende and gar-
net was compensated by the addition of crustal melt and plagioclase that resulted in almost no change in
trace element abundances (Figure 10d). Large amounts of crustal contaminants for the adakitic andesite
source are also not feasible because the least radiogenic AA/ADK has less radiogenic Pb than any of the
Yokota ABs (Figure 8d).

Appendix B: Primary Basalt Estimates for SHO, AB, and SAB

B1. Fractionation Correction

For each of these basaltic suites, we first estimated several parental basalt compositions as summarized in
section 6. These are given in supporting information 5. However, because these have only 4.6-10 wt. %
MgO, whereas ABS models primary mantle melts, it is necessary to correct the parental basalts for crystal
fractionation. This is notoriously difficult because the fractionating mineral assemblage depends heavily on
bulk composition and especially water contents. In the case of SW Japan basalts (including Yokota AB and
Abu SAB), H,0 contents estimated using the olivine-plagioclase geohygrometer are <2 wt. % at 1 GPa and
lower than in northern Kyushu volcanic front basalts (~5 wt. % at 1 GPa) [Zellmer et al., 2012]. The estimated
H,O contents are noticeably lower than in the low-K to medium-K basalts in other arcs [e.g., Plank et al.,
2013]. Therefore, for simplicity we assumed dry conditions for estimating fractional crystallization
corrections.

A pyroxenite source is possible [Straub et al., 2008]. Phase relationships for deep peridotite and pyroxenite
melting have been examined by Herzberg [2011] who formulated peridotite and pyroxenite cotectics in
CMAS plots of CaTs-OI-Qz (from Di) and Py(A)-Di(CS)-En(MS) (from OI). This allows us to calculate the
amount of olivine that needs to be added to form a primary basalt. CMAS plots are especially useful for esti-
mating the residual mantle mineralogy for both peridotite and pyroxenite lithologies in the garnet stability
field (>2 GPa). This is appropriate for the sources of alkaline OIB/AB/SHO in which residual garnet is sug-
gested by the depleted HREE patterns (Figure 6). SAB in Abu is subalkaline but also has a residual garnet sig-
nature (Figure 6) and is intermediate between OIB and arc magma. Therefore, we used the same back-
calculation procedure for all the basalt suite magmas.

Clinopyroxene is the most ubiquitous phenocryst in most of the basalt suite lavas. The effect of clinopyrox-
ene fractionation can be examined using CaO/Al,Os versus MgO plots [Sisson et al., 2009]. Most of the OIB/
AB/SAB suite lavas show a monotonous decrease in CaO/Al,03 when MgO is <7 wt. % (not shown, see sup-
porting information 2), indicating clinopyroxene fractionation. Therefore, we added equilibrated clinopyrox-
ene stepwise to each parental basalt until the MgO content reached 7 wt. % (the black arrow in Figure 11a).
This required the addition of up to 16% clinopyroxene. The equilibrated clinopyroxene compositions were
calculated using the method in Appendix of Wood and Blundy [19971.

Then, the clinopyroxene fractionation-corrected compositions were adjusted by adding equilibrated olivine
until the magma compositions reached the cotectic in the CaTs-OI-Qz diagram (Figure 11b) at the pressure
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Figure A1. Pseudo-ternary projections showing the results of an experimentally calibrated method for calculating the multiple saturation
points for plagioclase (blue stars), spinel (green x’s), and garnet (purple +'s) lherzolite sources at various pressures from 2 to 5 GPa [Grove
et al,, 2013; Till et al., 2012a]. We use the relatively primary magma IWT-5 to calculate the multiple saturation points. (a—c) Fractionation
uncorrected OIB, ABH, ABL, SAB, and SHO compositions (supporting information 1). (d-f) Fractionation corrected compositions (supporting
information 5). Also shown are trends of clinopyroxene (green filled circles: cpx) and olivine (blue filled circles: ol) addition for up to 10 wt.
% and 20 wt. %, respectively. Orange stars connected to a black line with tick marks show mixing between mantle melts and slab melt
(orange star) in wt. % slab melt. The slab melt composition is from Moyen and Stevens [2006].
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that is indicated by its location in the Py(A)-Di(CS)-En(MS) plot of Herzberg [2011] (Figure 11c). The open
symbols in Figures 11a and 12b show this olivine addition in 1 wt. % increments. (The mantle equilibration
pressure can be estimated using the Py(A)-Di(CS)-En(MS) plot (Figure 11c) because it is unaffected by Ol
composition.) The equilibrated olivine compositions are calculated using the PLIMELT2 package [Herzberg
and Asimow, 2008] which was linked with the CMAS back calculations.

Note that the total amount of clinopyroxene and olivine added to the basalts is almost identical with that
by the PLIMELT?2 olivine maximum fractionation model [Herzberg and Asimow, 2008]. The calculated incom-
patible trace element compositions are almost identical by the two methods. Therefore, the difference in
back-calculation approach has little effect on ABS4 results.

B2. Evaluation of the Correction Method

We tested the validity of our fractionation correction calculations using modeled phase equilibria for plagio-
clase (PI), spinel (Sp), and garnet (Gt) Iherzolite [Grove et al., 2013; Till et al., 2012a]. Figure A1 shows the
pseudo-ternary plots of fractionation uncorrected and corrected basalt compositions for ABH, ABL, SAB, and
SHO from supporting informations 1 and 5. We used the relatively primitive IWT-5 sample (MgO = 10.10 wt.
%) to calculate the multiple saturation points for each lithology at various pressures. We also calculated
trends of 10% clinopyroxene fractionation and 20% olivine fractionation using the same scheme noted
above. The fractionation-uncorrected samples plot around the plagioclase to spinel Iherzorite fields with
wide scatter.

In contrast, the fractionation-corrected ABH, ABL, and SAB compositions plot more tightly around the 2-3
GPa garnet lherzolite multiple saturation points in the Plag-Cpx-Ol (Qz) pseudo-ternary system (Figure A1d),
as does the SHO composition at 5 GPa. These show coherent results with CaTs-OI-Qz plots in Figure 11b
apart from SHO that has extremely high alkalis and may not be from a typical lherzolite source [Tatsumi and
Koyaguchi, 1989]. Extremely enriched K reduces Plag component in the pseudo-ternary plot. Thus, the erro-
neously high P given by the plot would originate from this.

The corrected compositions are systematically offset from the garnet Iherzorite multiple saturation points
toward Qz apex on both OI-Cpx-Qz(Plag) and OI-Plag-Qz(Cpx) plots (Figures A1c and A1d). Mixing with ~20
wt. % of slab melt (represented by averaged experimental slab AOC-SED melt compositions [Kimura et al.,
2010; Moyen, 2009]) explains the shifts in both the pseudo-ternary systems. Note that the Plag-Cpx-0l(Qz)
plot less affected by the slab melt mixing because it is projected from Qtz. Mixing with the slab melt (Fig-
ures Ale and ATf) is supported by our ABS4 models as discussed in section 6.5.5.

The agreement between our fractionation corrected compositions and the garnet Iherzolite multiple satura-
tion points of Grove et al. [2013] and Till et al. [2012a] indicates that our fractionation correction method is
reasonable. Errors in the multiple saturation points are about 10% in the pseudo-ternary spaces for garnet
Iherzolite [Grove et al., 2013] (see 10% additions for olivine and cpx in Figure A1 as an example of scale).
Therefore, the scatter in the corrected SW Japan primary basalt compositions is almost within error (Figure
A1d). Errors from the fractionation correction will propagate in the ABS4 mass balance calculations and thus
the calculated intensive and extensive parameters. Our models accept a 20% mismatch of REE abundances
between calculated and observed target compositions. Therefore, a 10% error in fractionation correction
has little effect on our method [see details for ABS4 in Appendix C and Kimura et al., 2010].

Appendix C: ABS 4 Model

The first ABS model was applied to the cold NE Japan arc so that it considered only slab dehydration fol-
lowed by fluid-fluxed mantle melting (ABS2) [Kimura et al., 2009]. The option of slab dehydration melting
were added later and applied to the cold North Izu subduction zone (ABS3) [Kimura et al., 2010]. The addi-
tional option of water-saturated slab melting was added in ABS3.1 [Kimura, 2012] and applied to a low-Ca
boninite and a high-Mg adakite in the infant IBM arc [Li et al., 2013].

We have now developed ABS4 to better model processes applicable to all subduction zones, and to investi-
gate a wider compositional range of arc magmas including HMA and ADK. The outline of the calculation
scheme and improvements in the ABS4 model are briefly described below. An Excel spreadsheet, ARC_BA-
SALT_SIMULATOR_ver.4.00.xIsm is available in supporting information 8 in a zipped folder of the dynamic
content.
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Table A1. Acronyms Used in ABS4

PERID Mantle wedge peridotite

MwP Mantle wedge base peridotite regarded as a part of slab

SED Sediment layer in slab

AOC Altered oceanic crust layer in slab

UBAS(= AOCQ) Upper basalt layer in slab. The equivalent of altered oceanic crust in ABS3
LBAS Lower basalt layer in slab

DIKE Dike layer in slab

UGAB Upper gabbro layer in slab

LGAB Lower gabbro layer in slab

SlbP Peridotite layer in slab

[Slab P(GPa)] Pressure of slab

[Slab T(C)] Temperature of slab

[Fliq(SED)] Slab liquid fraction from SED

[Flig(AOQ)] Slab liquid fraction from AOC

[Flig(DMM)] Slab liquid fraction from mantle wedge base peridotite

[%R slab] Reaction factor of slab liquid in the slab. More diffused flow when small
[n(PERID)] Zone refining reaction factor [not used in this study, see Kimura et al., 2009]
[%MORBext.] PERID predepletion factor expressed by wt. % MORB melt extracted
[P1(GPa) Mantle wedge PERID pressure

[T1(C) Mantle wedge PERID temperature

[FI(PERID) Degree of melting of PERID

[Fslb liq.%] Fraction of slab liquid in PERID at wt. % fraction of mantle mass

[5%] Beta factor in open system melting of Ozawa and Shimizu [1995] shown by wt. % of mantle mass

A word of caution is appropriate. ABS4 is complicated because arc magma genesis is complicated. Forward
modeling requires a current-best-guess about many processes and parameters, and thousands of papers
provide suigeneric forward models to explain certain element or isotope compositions of arc magma out-
puts by varying certain inputs or melting processes. ABS4 provides the user with many such state-of-art
quantitative tools covering most but not all of the key processes and variables. Each tool involves choices,
and they are explained below. By making ABS4 freely available, it is our hope that it is a step toward a “com-
munity arc magma genesis model” like those used to explore another complex system, climate change.

C1. Source Materials and Subduction Slab Structure

Source materials for subduction zone magmas used in the ABS4 model are: slab materials from bottom to
top including slab peridotite beneath subducting oceanic crust (SIbP); lower and upper gabbro (oceanic
layer 3: LGAB and UGAB); dikes (oceanic layer 2: DIKE); two basalt layers (LBAS/UBAS); sediments (SED); the
metasomatized base of the overlying mantle wedge (MwP); and the overlying mantle wedge itself (PERID)
(see also Table A1). We and others refer to oceanic layers 2 and 3 together as Altered Oceanic Crust (AOC).
ABS2/3 used a single P-T path profile at the slab surface for to calculate the prograde metamorphic reac-
tions of AOC, SED, and MwP [Kimura et al., 2009]. Because of the significant thermal gradient across the sub-
ducted oceanic plate, P-T paths at the surface and at the Moho depth of the subducted plate greatly differ
[van Keken et al., 2011]. Therefore, ABS4 calculates these metamorphic reactions along separate P-T paths
for eight layers (SIbP, LGAB, UGAB, DIKE, LBAS, UBAS, SED, and MwP) using the self-consistent geodynamic
model for 56 subduction zones from [Syracuse et al., 2010; van Keken et al., 2011]. This approach captures
and integrates the effects of dehydration in the lower layers but melting closer to the slab surface. That is, it
can add slab fluids to slab melts.

C2. Slab Dehydration/Melting Model

The composition of fluids or melts that are released from each layer during prograde metamorphism along
its P-T path are calculated in all versions of ABS using the residual mineralogy and partition coefficients
between the minerals and melts or fluids. The subsolidus metamorphic mineral assemblage for each layer
was calculated using the Perple_X ver. 7 thermodynamic model [Connolly and Kerrick, 1987; Connolly and
Petrini, 2002]. The super-solidus regions are based on the water-saturated and undersatured experimental
results for AOC and SED of Hermann and Spandler [2008], Schmidt et al. [2004], and Skora and Blundy [2010].
ABS4 uses the same solidi for both SED and AOC, but different percent melting in P-T space based on the
experimental results. Fixed major element compositions of slab SED (pelagic sediment), AOC (MORB basalt),
and MwP (depleted MORB source mantle: DMM) were used for Perple_X calculations as also done by Hacker
[2008]. The same AOC composition was used for UBAS, LBAS, DIKE, UGAB, and LGAB. The resulting mineral
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modes are similar for basalt and gabbro [Hacker, 2008]. The troctolite composition used for mafic gabbro by
Hacker [2008] is not considered. The same petrogenetic grid was used for both SIbP and MwP.

C3. Element Partitioning in the Slab

The maximum bound water in the slab layers was also calculated using Perple_X. Melt fractions above the
solidi were based on the experimental studies cited above. Using this information, the program calculates
the mass fraction of fluid or melt released from each slab layer along its P-T path. See examples of the repre-
sentative pseudo-sections for AOC/SED/MwP in Appendix of Kimura et al. [2010]. The grids and graphical
indications of the slab mineralogy and dehydration/melting profiles are in the [Slb_Mode] Worksheet in the
ABS4 Excel spreadsheet (supporting information 8).

Partition coefficients used for to calculate the chemical composition of the released slab fluids/melts and
residual solids in the slab layers are the same with those used in Kimura et al. [2010]. They are temperature
dependent Ds for D(Cpx), D(Opx), D(Amp), and D(Gar), and fixed Ds for other minerals. The partition coeffi-
cients are in ABS4 Worksheet [SDMS4.0].

C4. Element Behavior in the Slab

In previous ABS versions, interaction between slab liquids and overlying slab layers was only considered for
the MwpP layer [Kimura et al., 2009]. With the increased number of slab layers from three (ABS2/3) to eight
(ABS4), there is more interaction within a 1-D vertical column. In ABS4, all the dehydration/melting reactions
are treated as incremental batch calculations [Shaw, 2000] as shown in Figure A2.

With the calculations, the fraction of melt or dehydrated fluid in any cell (area in P-T space) is treated as F,
and the additional fluid or melt fraction that is lost from the underlying cell in the 1-D column (F,.,) is incre-
mentally added to the overlying cell. Precipitation of minerals or increase in F due to the additional liquids
is not considered either in the phase changes of the solids or changes in F in the cells. However, the compo-
sition of the liquid and solid in each cell changes because of the addition, which results in considerable
change in both trace element abundances and isotopic compositions. Isotopic compositions are calculated
using a computational solution that calculates isotopic abundances based on the isotope ratios. H,O is
treated as an incompatible element using D(H,0) = D(Ce) = 0.01 [Plank et al., 2009]. This is also applied to
slab melting and H,O contents in the slab melts are calculated by XH,0/Xslab melt.

The interaction between ascending slab liquids and their surroundings depends not only on the degree of
dehydration or melting, but also the nature of fluid flow (porous flow or fracture flow: [Bebout, 20071). The
differences in flow type cause different degrees of element redistribution [lwamori, 1992]. We model this by
using the [%R slab] factor to modify the F parameter in the batch dehydration/melting/reaction calculations
(see supporting information 8). This factor alters all F used in the calculation matrix as [F’x,] = [Fx,] X [%R
slab]/100. It can be varied from 0 (no slab liquid movement) to several hundred. When [%R slab] = 100, F, 4
values equal those determined by the petrogenetic grids. That is, all liquid released from one cell moves to
the one above it. When [%R slab] < 100, F,, is smaller which results in a more effective extraction of ele-
ments from the solids. This simulates a reactive porous flow regime. The reverse is true for [%R slab] > 100
that simulates fracture flow. This especially affects isotope ratios because it enhances or dilutes differences
between source materials (see supporting information). Therefore, the match for isotope ratios can be
improved without much change in element concentrations just by varying the [%R slab] factor. Different
[%R slab] factor can be applied to the different slab layers, but we applied the same [%R slab] factor to all
layers in this paper.

C5. Slab Fluid/Melt Composition

The calculated element concentrations and isotopic compositions of the resulting slab liquid (fluid or melt
or both) are taken separately from the top three layers of UBAS (=AOC), SED, and MwP and then mixed
together in proportions defined by the user (Figure A2c). Mixing may occur in a mélange zone at the inter-
face between slab and mantle [Bebout, 20071, or higher in the mantle wedge.

Cé6. Slab Liquid-Mantle Peridotite Reaction

The incompatible trace element and isotopic compositions in the mixed slab liquid is the “flux” for open sys-
tem melting of the mantle wedge peridotite (PERID). The open system melting calculation model of Ozawa
[2001] and Ozawa and Shimizu [1995] was used along with mantle mineral modes calculated using pMELTS
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Figure A2. Calculation scheme of (a) ABS4 model with the detailed calculation matrix between slab solids and liquids by (b) incremental batch dehydration/melting/reactions. Note that
only a shallow depth range (0.5 and 0.6 GPa) is shown in Figure A2b. See details in Appendix C.
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[Ghiorso et al., 2002] as parameterized for ABS3/4 [Kimura et al., 2010]. The effect of water on the degree of
partial melting at a given P-T-XH,O is from Katz et al. [2003].

ABS4 assumes that all the water in the slab fluid/melt is added to the solid mantle to affect the degree of
melting of mantle PERID [F]. The relationship between the slab flux [Fslb liq.] and [F] is dealt by the open
system melting equation. When the flux is mostly water (i.e., “fluid”), [F] is close to the total melt production.
However, when the flux is hydrous silicate melt, the total melt production is [F] + [Fslb lig.] (see section
6.6.4). In reality, the total melt production should vary between [F] and ([F] + [Fslb lig.]) due to the solubility
of H,0 from the slab flux in the primary arc magma. The combined melt mass is not calculated directly in
ABS4 but the combination is used to calculate the residual slab mantle mineralogy and the major element
composition of the primary magma.

ABS4 also treats the extent of depletion of mantle wedge PERID prior to flux melting. This is the user-
defined variable [%MORBext.] in the CONTROL_PANEL worksheet (supporting information 8). It is internally
consistent for trace elements and isotopes but not for major elements. Mantle mineralogy is considered by
reducing cpx in PERID [Kimura et al., 2010].

C7. Calculation Parameters and Fitting Strategy

After the target primary magma composition, and the starting compositions of SIbP, AOC, SED, MwP, and
PERID are chosen, then the variables of (1) slab flux focusing [%Rslab], (2) flux release depth [Slab P], (3) flux
fractions of [Fliq(AOC) - Fliq(SED) - Flig(DMM)], (4) mantle melting pressure [P], (5) mantle melting tempera-
ture [T], (6) slab flux fraction [Fslb liq.%], and (7) PERID depletion [%MORBext.] can be explored simultane-
ously by using the forward fitting calculations to match the full combination of major, trace, and isotope
compositions of the target magma [Kimura et al., 2010] (see [CONTROL_PANEL] worksheet in supporting
information 8).

Another new feature of ABS4 is the use of Monte Carlo calculations to minimize the calculation time for suc-
cessful matches. Fitting windows can be adjusted by [% difference] limits from the target magma composi-
tions for LREE, MREE, HREE, Zr-Hf, Nb-Ta, Th, U, Rb, Ba, K, Pb, and Sr. Maximum-minimum value windows
also can be set for the calculated SiO, and Sr-Nd-Hf-Pb isotope compositions. The fitting windows can
reflect analytical uncertainty or the observed variance within the suite of rocks being modeled. A typical
example is given in the [CONTROL_PANEL] worksheet in supporting information 8. For example, a “success-
ful match” in this paper means that the composition of the forward-calculated melt agrees with the target
composition to within 10-15% for REE and within 3 wt. % for SiO,, Sr-Nd-Hf isotopes agree better than =1
per mil, and Pb isotopes agree better than =3 per mil. Use of random number calculations can also prevent
pitfalls of artificial correlation derived from petrogenetic constraints.

C8. Errors in the Calculations of Major Elements and Residual Mantle Mineralogy

ABS3 and ABS4 assume a fixed major element composition of the slab melt using an average melt composi-
tion from hydrous MORB and sediment melting experiments [Kimura and Yoshida, 2006; Moyen and Stevens,
2006] (see yellow stars in Figure 14 for the composition). A certain amount of slab melt ([Fslb lig.] up to 30
wt. % of the PERID) with fixed composition is then added to mantle PERID which also has a fixed major ele-
ment composition represented by DMM of Workman and Hart [2005]. The melt composition and residual
mantle mineralogy from the modified PERID composition is calculated using pMELTS [Ghiorso et al., 2002].
The results were parameterized by Kimura et al. [2010] and are given in the [Peri_Mode] and [MJ_pMELTS]
worksheets (supporting information 8). After the user specifies the P and T conditions of mantle melting,
the degree of melting [F], major element composition of melt, and residual mantle mineralogy are calcu-
lated (see [CONTROL_PANEL] of ABS4 in supporting information 8).

The simplifying assumptions of constant slab melt and initial mantle major element compositions limit the

application of ABS3/4 for major elements. Even so, the estimates by ABS4 basically reproduce the observed
major element variation in the SW Japan magmas. This helps to constrain the conditions of magma genesis
as noted in the main text (Figure 14).

Systematic errors in calculated trace elements and isotopes depend largely on the assumed (1) mineral
modes in the slab layers and mantle peridotite, (2) partition coefficients, and (3) SED and AOC source com-
positions. Mass balance fittings are largely controlled by REEs and HFSEs but large errors are always
observed in LILEs in this paper (see the text). We attribute the discrepancy to the three factors above.
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