
The 70-kDa heat shock protein (Hsp70) chaperone system: linking ATP turnover 
and complex formation to protein homeostasis 

 
by 
 

Andrea Dooley Thompson 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Chemical Biology) 

in The University of Michigan 
2012 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctoral Committee: 
 

Associate Professor Jason Edward Gestwicki, Chair 
Professor Henry L. Paulson 
Professor John J. Tesmer 
Assistant Professor Zaneta Nikolovska-Coleska 
Assistant Professor Georgios Skiniotis 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Dedication 
 
To my teachers and mentors, past and present, 

for your patience and 
helping me to realize there is always more to learn. 

And to my family, 
thank you for bringing so much joy, support, 

and perspective into my life 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



iii 
 

Acknowledgements 
 
I would like to begin by thanking my advisor, Professor Jason E. Gestwicki. He has 

taught me a great deal about science, leadership, and patience. He has allowed me to 

make mistakes and learn from them, encouraged me to have an active role in defining and 

driving my project, and is generous with his time and advice.  I couldn’t have asked for a 

better learning environment, than the one Jason has provided for me and for that I am 

truly grateful. I would also like to thank all the members of the Gestwicki lab, both past 

and present. You all continue to inspire me with your passion for science, exceptional 

work ethic, and vibrant personalities. I would especially like to thank Lyra and Ashley, 

whom made me feel very welcome in lab. You both have unending energy and taught me 

the true meaning of high-throughput. Also, Srikanth, Paul, and Chris helped me to adjust 

to graduate school and made coming to lab every day a joy. More recently, Jenny, 

Victoria, and Sharan have breathed new energy into the lab and have kept this aging 

graduate student young at heart. I would also like to thank Matt and Yoshi, whose calm 

approach to science kept me grounded as we grew up in the Gestwicki lab together. I 

would like to thank Leah and Ashley for your grammar expertise which aided in many 

writing endeavors. I would also like to thank Leah for her willingness to discuss literature 

and broad concepts within the field of science, I have learned a great deal from our 

discussions. Many thanks to Anne for coming to Michigan even after having me as your 

host, and joining the Gestwicki lab. You have been a joy to work with and I very much 

appreciate your assistance with the peptide microarrays. I would also like to thank 



iv 
 

Tomoko, Atta, Xiaokai, Katie, Sussi, and Gladis. You all were sources of wisdom and 

experience and I have a learned a great deal from you all. Finally, I would like to thank 

the undergraduates I had the pleasure of working with; Fanchen Bao, Gelareh Abulwerdi, 

and Brinae Bain. I likely learned more from you than you did from me and it was a great 

honor to work with each of you.  

 

I have had the great pleasure to collaborate with a number of exceptional scientists 

including; Matthew Scaglione, Prof. Paulson, Prof. Jinwal, Prof. Dickey, Min Su, Prof. 

Skiniotis, and John Prensner. You all were generous with your time and talents and 

helped to educate me in variety of techniques. I am very greatly for the opportunity to 

work with you all. I would also like to acknowledge my committee for providing useful 

insights into my project and helping me develop as a scientist.  

 

On a more personal note I would also like to thank the people who gave me my first 

opportunities to explore science as a field and a career starting with a few high school 

teachers, Mr. Kopp and Mr. Boatz, who both opened my eyes to the many opportunities 

within science. Many thanks to Dr. Chokyua Rah, Dr. Alex Rich, and Dr. Yuan-Ping 

Pang, whom all allowed me to work in their laboratories as an undergraduate. From each 

of them I was exposed to different aspects of science and gained real life experience in 

the lab. Further, their passion for their work made me realize that a career in science is 

really a career in intellect, discovery, and adventure. I wouldn’t be here today if they 

hadn’t taken an interest in my development as an undergraduate. There are many more 

educators that have helped me along the way, to all of which I am forever grateful. 



 

v 
 

Finally, my family has provided a constant source of support, love, and joy in my life. 

My parents and sisters have always supported me. Their unshakable certainty in my 

abilities has given me the confidence needed to preserve through any challenge. 

Everything I have done is made possible through this strong foundation of support. 

Further, my husband Eric and daughter Ava are a source of joy, love, and support in my 

life daily. It is easy to stay positive through the ups and downs of graduate school when I 

can return home to you both every night and share your laughter and love. We truly are a 

team and I couldn’t have done this without you.  



 

vi 
 

Preface 
 

 
This dissertation is a compilation of both published and unpublished work on 

understanding the functionality of ATP hydrolysis and protein complexes within the heat 

shock protein 70 (Hsp70) chaperone system. Chapter 1 is primarily based on a review 

article in preparation for submission to ACS Chemical Biology that provides an overview 

of ways nature modulates protein complexes within the cell. It also highlights ways 

chemical biologist might be able to leverage these strategies to exert more control over a 

broad range of protein-protein interactions. Chapter 2 is derived from a manuscript where 

we explored the relationship of ATPase rate and the molecular chaperone activities of 

Hsp70. This citation is “Mutagenesis Reveals the Complex Relationships between 

ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 

(Hsp70/DnaK)” 2010 Journal of Biological Chemistry. 285; 21282-21291. Chapter 3 

stems from a manuscript that investigates the oligomeric forms of Hsp70. In this work we 

characterized the presence, architecture, and functionality of Hsp70 oligomers and gained 

insight into another layer of regulation within the Hsp70 chaperone system. The citation 

for this paper is “Visualization and functional analysis of the oligomeric states of 

Escherichia coli heat shock protein 70 (Hsp70/DnaK).” 2012 Cell Stress and 

Chaperones. 17:313-327 doi: 10.1007/s12192-011-0307-1. The original publication is 

available at www.springerlink.com. Chapter 4 is based on our recent work where we 

http://www.springerlink.com/�
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aimed to define a pathway by which the Hsp70 chaperone system could target a given 

substrate, tau (MAPT), for degradation. By using a small molecule tool we were able to 

transiently induce the degradation of tau and uncover discrete changes in protein complex 

formation which target tau for degradation. A manuscript describing the results of this 

work is in preparation. Finally, Chapter 5 presents our conclusions and future directions.
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ABSTRACT 
 

 
 
The 70-kDa heat shock protein (Hsp70) is a molecular chaperone that binds unfolded 

proteins and directs them towards a number of divergent pathways, including folding, 

trafficking, and degradation. This delicate balance is critical for normal protein 

homeostasis and becomes disrupted in a variety of diseases, including neurodegenerative 

disorders. However, it isn’t yet clear what factors direct Hsp70-bound substrates to adopt 

a given fate. 

Hsp70 is a two-domain protein capable of ATP hydrolysis, substrate binding, and the 

formation of discrete multi-protein complexes. In this thesis, we aimed to characterize the 

effect of these different variables on substrate fate. First, using a series of point mutants 

in the prokaryotic Hsp70, DnaK, we discovered that the ATPase rate is not directly 

related to molecular chaperone activities, such as protection from heat stress or refolding 

of denatured model substrates. To further probe how ATP hydrolysis may influence 

chaperone structure and function, we explored how nucleotide state regulates the 

oligomerization of DnaK. This work showed that ADP-bound DnaK formed small 

oligomers that retained some chaperone functions, such as substrate binding. However, 

these oligomers had reduced refolding activity and they were poorly stimulated by the co-

chaperone, DnaJ. These studies suggest that oligomerization might be an important step 

in Hsp70 chaperone cycling. Finally, we explored how chaperones, including Hsp70, 

change in their association with the pathologically-relevant substrate, tau (MAPT), during 
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an acute, small molecule-induced switch to a degradation fate. We hypothesized that this 

system would, for the first time, provide insight into the early events associated with a 

change in protein fate. These studies suggested a rapid switch from an Hsp70-bound 

complex to an Hsp90-bound complex during tau degradation. Further, Hsp70 and Hsp90 

seemed to compete for binding to similar regions of tau, suggesting that competition 

between these chaperones might control tau fate. Taken together these studies improve 

our understanding of the factors that link Hsp70 to the various fates of its substrates. 

These studies also suggest previously unanticipated therapeutic strategies to rebalance 

protein homeostasis.  
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Chapter 1 

Fine-tuning multi-protein complexes using small molecules. 
 

1.1 Abstract 

Multi-protein complexes such as the transcriptional machinery, signaling hubs, and 

protein folding machines are typically comprised of at least one enzyme combined with 

multiple non-enzymes. Often, the components of these complexes are incorporated in a 

combinatorial manner, in which the ultimate composition of the system helps dictate the 

type, location, or duration of cellular activities [1-4]. For example, while the molecular 

chaperone Hsp70 enzymatically hydrolyzes ATP it also interacts with three distinct 

classes of co-chaperones and countless substrate proteins. Thus, although drugs and 

chemical probes have traditionally targeted enzymatic functions, many emerging 

strategies call for the modulation of protein-protein interactions (PPI) to control the 

assembly and disassembly of protein complexes [5-7]. However, the challenges of 

targeting PPIs have been well documented and the diversity of PPIs makes a “one-size-

fits-all” solution highly unlikely. These hurdles are particularly daunting for PPIs that 

encompass large buried surface areas and those with weak affinities. This chapter 

discusses lessons from natural systems, in which allostery and other mechanisms are used 

to overcome the challenge of regulating the most difficult PPIs. These systems may 

provide a blueprint for identifying small molecules that target challenging PPIs and 

modulate molecular decision-making within multi-protein systems. Finally, how these 
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concepts impact the development of small molecule modulators for the Hsp70 chaperone 

system is highlighted.  

 

1.2 Introduction  

Protein-protein interactions (PPIs) form the backbone of nearly every facet of cellular 

function, as illustrated by proteome-wide maps composed of thousands of these contacts 

[8, 9]. PPI networks are composed of both stable, high affinity contacts and weaker, 

transient interactions. These weak contacts enable modularity by allowing individual 

components to serve multiple functions, often by using and re-using the same interfaces. 

At the core of these networks are a series of multi-protein complexes dedicated to major 

cellular tasks, including systems involved in transcription, translation, trafficking, energy 

production, protein folding, cytokinesis, and signaling. These multi-protein complexes 

are typically composed of at least one enzyme, such as an ATPase, and a series of non-

enzymatic factors, such as scaffolding proteins (Figure 1.1). These non-enzyme partners 

associate either stably or transiently with the complex and help fine-tune activity, 

subcellular location, and/or selectivity. One traditional goal of drug discovery and 

chemical biology has been to develop compounds that inhibit the enzyme components of 

multi-protein complexes [10]. This approach has been fruitful, producing many of the 

most widely used research reagents and drugs. Yet, PPIs within multi-protein complexes 

may provide an even greater number of opportunities, especially because there is a 

growing appreciation of the potential of PPIs as drug targets [11, 12]. 
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1.2.1 Small molecule modulators of PPIs  

Although the goal of inhibiting PPIs with small molecules has been recognized for some 

time, these interactions have been historically challenging to interrupt [10, 13, 14]. 

Indeed, the majority of PPIs have often been broadly classified as “undruggable” and 

among the estimated 650,000 PPIs, far less than 0.01% have been targeted with inhibitors 

[10, 14-16]. Yet there a number of recent success stories, produced by both academic and 

industrial groups, which highlight that PPIs are not uniformly insurmountable targets [17-

19]. A theme in those examples is that a wide range of methodologies and approaches can 

ultimately be fruitful. Building on these past successes, future efforts to target PPIs 

moving forward may be aided by understanding the diverse strategies nature employs to 

modulate PPIs. To support this more optimistic view of PPI modulators, this chapter 

highlights several representative examples of successful PPI inhibitor programs and 

discusses potential ways of accelerating their discovery in the future. In particular, this 

chapter focuses on the most challenging PPIs that are central to many areas of biology yet 

remain the most difficult to target with small molecules. 

 

1.2.2 The architecture of multi-protein complexes 

Given the central role of multi-protein complexes in biology, perturbing the assembly 

and/or disassembly of these structures has the potential to uncover important insights into 

their function. In this discussion, a multi-protein complex is defined as a system of 

proteins that assemble, either permanently or transiently, to perform specific tasks in the 

cell. Most multi-protein complexes contain at least one enzyme and they typically have 

multiple non-enzyme components. The role of the non-enzymes is often to provide a 
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scaffolding function, linking proteins together or controlling subcellular localization, as 

seen in GPCR recycling (Figure 1.1) [20]. Also, the PPIs between the enzyme and non-

enzyme can sometimes tune the biochemistry of the enzyme, enhancing Km or kcat, as 

seen in the Ras GTPase cycle or the Hsp70 ATPase system (Figure 1.1) [3, 21]. Finally, 

the protein surfaces used to form PPIs might be shared by multiple components, such that 

subunits compete for binding. In this way, complexes can be combinatorially assembled. 

This combinatorial assembly is present within the Hsp70 system (Figure 1.1). As another 

prime example, BAF-type chromatin remodeling complexes undergo subunit exchange 

during the transition from a pluripotent stem cell into a neuron progenitor cell and finally 

into a fully differentiated neuron (Figure 1.1) [22, 23]. In these systems, one appreciates 

why solely targeting the enzyme component might not be the most informative approach. 
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Rather, inhibiting (or even promoting) specific PPIs could be of great value for 

understanding a wide range of essential cellular processes.  

 

1.2.3 Structural and energetic considerations in targeting PPIs 

In contrast to protein-ligand interfaces (PLIs), such as those between enzymes and their 

substrates [13, 24],  PPIs are larger and flatter [25] (Figure 1.2A), with an average surface 

area of 1940 +/- 760 Å2. Sometimes, a disproportionate amount of the binding free 

energy (∆G) is found within specific residues, termed “hotspots” [26]. Other times, ∆G is 

distributed over a larger surface area or in a few regions separated by large distances. 

Consistent with their wide distribution of contact areas, PPIs exhibit a wide range of 

affinity values, with examples of pM dissociation constants in more stable complexes and 

mM values in transient complexes (Figure 1.2) [27-43]. The scope of this diversity is 

postulated to be even wider than currently appreciated, given the underrepresentation in 

the Protein Data Bank (PDB) of transient, low affinity, and membrane associated PPIs 

[29, 44].  

 

1.2.4 Small molecules mainly target high affinity, small surface area PPIs.  

To date, the PPIs characterized by high affinities and small surface areas (e.g. most 

similar to PLIs) have proven to be the most amenable to targeting with small molecules. 

Often, structure-based approaches have proven successful. For example, pioneering work 

has been performed on SMAC mimetics (Figure 1.2A) and inhibitors of p53-MDM2 [18, 

19, 45-47]. These targets are characterized by binding sites composed of a short peptide 

interacting with a deep pocket, as in the SMAC interaction with IAPs (Figure 1.2A), or a 
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single α-helix interacting with a well-defined cleft, as in p53-MDM2. To explore how 

general these characteristic are for all known PPI inhibitors, the 2P2IDB and TIMBAL 

databases were queried to sort known PPI inhibitors based on the surface areas and 

affinities of their targets. It was found that PPIs with smaller surface areas (less than 

<1,800 Å2) and relatively high affinity (less than 1 µM) are targeted by 68% of reported 

small molecules (Figure 1.2D) [18, 19]. In contrast, only 10% bind to large surface area 

PPIs with high affinity binding (Figure 1.2D). One potential explanation for this 

preference is that concise, high affinity PPIs rely on binding pockets that are best “fit” by 

low molecular mass (<500 Da) compounds and these compounds are most common in 

drug discovery libraries [10, 13, 14, 48]. Also, it is relatively straightforward to envision 

how competitive inhibitors could block these interactions because the ∆G is contributed 

by a handful (typically less than 5) of tightly clustered residues [17, 49].  

 

1.2.5 Challenges in target low affinity and/or large surface area PPIs 

What are the specific challenges to circumvent in successfully modulating the “difficult” 

PPIs: those with low affinity and/or large surface area PPIs? Large binding surface areas 

have been particularly difficult to directly (i.e. orthosterically) inhibit with small 

molecules, as the compound must compete with a much larger protein for binding. In 

some cases, “hotspots” can be used to generate potent inhibitors [26, 50, 51]. Still, 

accessing hotspots often requires extensive structural knowledge. Another challenge is 
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that inhibitors of large surface areas tend to have high molecular weights, often not 

conforming to the standard Lipinski’s Rule of 5 (Ro5) [52, 53]. In fact, many successful 

PPI inhibitors deviate from the Ro5 [19], potentially creating challenges with 

pharmacokinetics and oral bioavailability. Another important problem is that many PPIs 

are of low affinity (Figure 1.2D). Structural information on these weak affinity 

interactions is often limited [29, 44]. From a practical perspective, these weak systems 
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are also challenging to study using many typical biophysical methods, such as ITC. These 

challenges have combined to limit the number of successful inhibitors of the most 

challenging PPIs. The next section describes how nature has evolved mechanisms to 

circumvent these issues. 

 

1.3 Lessons from nature 

Biology has long developed natural mechanisms by which it modulates PPIs within the 

cell. Can we as chemical biologists learn some tricks from nature?  Protein complexes 

can be regulated by transcription as well as a variety of regulatory mechanisms which 

control RNA processing and translation. However, this discussion will focus on dynamic 

molecular regulation at the protein level, in which, nature invokes a variety of, at times 

overlapping, mechanisms which include allostery, cellular localization, post-translational 

modifications, and protein dynamics. Herein these strategies are reviewed to highlight 

exciting examples of small molecules that have accessed these natural pathways for the 

modulation of PPIs. By doing so, one gains an appreciation for the properties that govern 

protein complex formation. 

 

1.3.1 Allostery modulates PPIs 

Allostery is one of the most widely used mechanisms to control the assembly and 

disassembly of multi-protein complexes. Allostery is defined as binding at one site which 

regulates a function at a distant site [54, 55]. Classic examples include cooperative 

oxygen binding to hemoglobin or feedback inhibition within metabolic pathways [54]. 

However, allostery is also frequently utilized to regulate protein complex formation [56-
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58]. For example, binding of NotchIC to CSL promotes the binding of Mastermind at a 

site 40 Å away from its binding site to regulate transcriptional activation [59]. In receptor 

biology, allosteric networks often translate extracellular ligand binding into changes in 

PPIs in the cytosol [60-63]. These mechanisms also apply to small molecule binding. In 

an example of this idea, galactose promotes the formation of a stable complex between 

Gal3p and Gal80p, which subsequently activates the transcription of galactose 

metabolizing enzymes in yeast [64].  

 

1.3.2 The advantages of allostery 

The use of allostery to control protein complex formation is not surprising given several 

advantages of this strategy. First, allosteric sites are often distinct from reactive centers in 

enzymes. Thus, the features of these allosteric binding regions are not constrained by 

active site chemistry. Further, in the context of PPIs, targeting allosteric sites can 

sometimes be used to reshape the topology of a PPI even if the small molecule binding 

site is far from the actual interface [65]. Moreover, these allosteric sites, in some cases, 

may be deeper and more amenable to binding than the PPI itself. Finally, orthosteric 

compounds compete for binding at a given interface and, as such, cannot discriminate 

between two different proteins binding at a single interface. Thus, a compound binding 

directly at a PPI would block two possible partners equally. In contrast, the outcome of 

binding to an allosteric regulator can depend on the composition of the complex [66]. 

Thus, allosteric compounds can sometimes differentiate between the effects of different 

proteins at the same interface.  
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1.3.3 Small modulators of PPI leverage allostery 

Natural examples may point the way to synthetic ways of controlling the assembly and 

disassembly of PPIs, especially in systems that are particularly challenging for direct 

inhibition [54]. As such, a very active area of research is currently focused on defining 

interactions between metabolites and proteins [67-69]. These efforts have the potential to 

greatly improve our ability to rationally target PPIs. For example, porphobilinogen 

synthetase (PBGS) regulates its activity via a dynamic equilibrium between two 

alternative and functionally distinct conformations: an active octamer and a low activity 

hexamer. Only the active octamer binds to Mg2+, which enforces the conformational 

change. Appreciating this natural conformation equilibrium and the ability of the 

magnesium ion to influence the system, Lawrence and colleagues identified a small 

molecule, Morphlock 1 (Figure 1.3E), which favors the low activity hexamer by binding 

to an interface only accessible in the conformation unique to hexamer assembly [70, 71]. 

Perhaps similar lessons from nature will be useful in providing paths towards small 

molecules that target the most challenging of PPIs. 

 

Illustrating the advantages of this approach, a number of synthetic molecules with 

allosteric mechanisms have been reported [72-75]. For example, a compound which 

binds the inducible nitric oxide synthase (iNOS) leads to disruption of a distant 

dimerization interface, inactivating the protein by blocking dimer formation [76]. In 

another example, Conn and colleagues have applied allosteric regulators to target G-

protein coupled receptors (GPCRs), finding molecules which activate or inhibit discrete  
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subsets of downstream pathways by changing the PPIs that occur between the GPCRs 

and their effector proteins [77, 78]. Another example is found in the allosteric modulation 

of the Sec61 translocon (Figure 1.3A). The Sec61 translocon is responsible for 
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transporting nascent polypeptides across the ER membrane [79, 80]. As a nascent 

polypeptide is synthesized, a signal sequence in its N-terminus binds directly to the Sec61  

complex [81, 82], which triggers an allosteric conformational change to open the channel 

to the ER.[80] Recently both Besmer and Garrison identified small molecules that 

modulate the Sec61 translocon complex in an interesting way. These compounds, such as 

cotransin (CT), cause a selective decrease in translocation of vascular cell adhesion 

molecule 1 (VCAM1) without affecting the levels of other membrane proteins (Figure 

1.3A) [83, 84]. CT appears to block the interaction between VCAM-1 and Sec61α by 

favoring binding to Sec61β, an unexpected and interesting mechanism that provides 

insight into the biology of the Sec61 complex and its regulation. These examples and 

others illustrate how allostery can be used to impact seemingly intractable PPIs. 

 

1.3.4 Localization 

Protein complex formation can also be regulated by controlling localization of key 

subunits. An example of this form of control is seen in the signaling of the T-cell receptor 

(TCR) complex [85, 86], in which multivalent contacts made during the binding of the 

antigen-MHC complex induces oligomerization to initiate signal transduction. 

Localization regulates PPI guided by three simple principles [86]. First, the probability of 

an interaction between two molecules is a third order function of the distance between 

them, thus localization greatly increases the probability of an interaction between two 

proteins. Secondly, the importance of localization is further amplified in the cell due to 

the high viscosity of the cytosol which limits the rate of diffusion. Finally, bringing 

proteins close together in an organized complex also promotes binding by placing two 
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proteins in favorable orientations. This is often referred to in chemistry as increasing the 

effective molarity.  

 

Given the utility of altering protein localization in modulating PPIs, small molecules may 

be able to modulate PPIs using the same strategy. Perhaps a clear way this could be 

achieved is through the design of multivalent compounds. Yet another way would be via 

an allosteric approach. For example, an Akt kinase inhibitor was shown to activate Akt 

signaling by inducing a conformational change, increasing affinity for 

phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the membrane, thus facilitating 

membrane localization and interaction with priming kinases (Figure 1.3D) [87]. This 

example highlights how taking advantage of natural conformational changes can be used 

to alter localization and complex formation.  

 

1.3.5 Post-translational modifications 

Another widely used mechanism to regulate complex assembly is post-translational 

modifications (PTMs) including phosphorylation, glycosylation, acetylation, 

ubiquitination, neddylation, sumoylation, among others [88]. PTMs occur at many PPI 

interfaces to promote or inhibit binding (e.g. SH2 domain binding to phosphorylated 

tyrosine residues). However, PTMs can also occur far from PPI surfaces, changing 

protein stability, folding, or conformation and regulating complex formation [88]. There 

are several ways small molecules could use PTM-like mechanisms to bring about 

changes in PPIs. One dramatic way is through direct covalent modification by the drug 

itself via the formation of drug-protein adducts. Often the formation of drug-protein 
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adducts is avoided due to warranted concerns regarding the unwanted toxicity that can 

emerge due to lack of specificity and the potential for immunogenicity of the covalent 

drug-protein adduct, among others [89, 90]. However, despite these potential pitfalls, 

several examples of covalent drugs with good toxicity profiles are known, including 

aspirin, proteasome inhibitors, and acetaminophen [89]. Although these classic examples 

are all enzyme inhibitors, similar mechanisms appear to operate at PPIs, such as those 

used by compounds that target the NRF2-KEAP1 complex [91, 92]. Another inventive 

mechanism, by which small molecules can promote PTMs, is exemplified by the 

paradoxical activation observed with a PKCε kinase inhibitor [93]. A K437M mutant of 

PKCε has been shown to be overcome by binding of an ATP active site inhibitor, which 

promotes a conformational change that promotes interaction with and phosphorylation by 

priming kinases, effectively activating this signaling pathway (Figure 1.3B). These 

studies demonstrate how small molecules can promote PTMs (and regulate PPIs) by 

inducing conformational changes.  

 

1.3.6 Protein complex dynamics 

Another “nature-inspired” way to develop PPI modulators may be to alter protein 

dynamics. Like many other cellular processes and signaling pathways, both the ribosome 

and microtubules rely on the dynamic interchange of subunits to function. In 

microtubules, dynamics allow for rapid reorganization, efficient sampling of cellular 

space, and enable mechanical work [94]. For ribosomes, the dynamic nature of EF-Tu 

interaction with the ribosome is essential for recycling key machinery to perform the 

iterative process of amino acid chain elongation [95, 96]. One way dynamics can be 
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regulated is by modulating the affinity of PPIs in either direction. For example, it has 

been shown that altering the affinity of EF-Tu and ribosome interaction inhibits not only 

the dynamics but the ability of the ribosome to function [97, 98]. Thus, in these dynamic 

systems affinities of dynamic PPIs are constrained to ensure they are strong enough to 

form ternary complexes yet weak enough to release the PPI and allow for timely cycling. 

These examples highlight that in modulating PPIs within highly dynamic systems small 

perturbations in protein binding can lead to large changes in cellular function. Thus, 

success is not dependent on the ability to fully inhibit or promote a given PPI but instead 

by perturbations in the dynamic equilibrium of complex formation within biological 

systems of the cell. Widely used therapeutics, such as antibiotics and microtubule 

stabilizing or destabilizing drugs, demonstrate that disrupting dynamics can target even 

structurally large and challenging drug targets such as the ribosome and microtubules 

(Figure 1.3C) [94, 99].  

 

1.4 Identifying compounds that can inhibit/promote complex formation 

 Although the small molecules discussed above are excellent examples of successful 

ways one may fine-tune protein complex formation and biological activity, strategies that 

best facilitate the future discovery of small molecules with similar capabilities are not 

obvious. How can we take these lessons from nature and develop ways of identifying 

compounds that target PPIs? Towards these goals there are a variety of screening 

platforms and assays that can be utilized.  

 

 



16 
 

1.4.1 Techniques for the identification of allosteric modulators of PPIs 

Many of the compounds discussed earlier act allosterically. Thus, techniques that identify 

small molecule allosteric binding sites should have broad utility in the search for PPI 

modulators. One of the first major techniques for finding PPI inhibitors, disulfide 

tethering, which focused PPI inhibitor discovery on hotspot residues using covalent 

coupling [100], also has the potential to focus discovery efforts on allosteric sites. For 

example, disulfide tethering has been utilized to successfully identify a novel allosteric 

inhibitor of caspase-1/7 that traps it in an inactive conformation [101]. Another related 

approach to this problem is fragment based screening (FBS) [102, 103]. FBS searches for 

weak binding (mM) small molecule “fragments” of less than 300 Da, with high ligand 

efficiency. These chemical libraries are screened using techniques sensitive enough to 

measure low-affinity interactions, such as NMR [104]. These initial hits are then 

developed further by either linking or growing fragments to improve affinity and/or 

activity. This method has proven to be particularly powerful for PPIs because it can 

identify unanticipated allosteric and adaptive protein binding sites [105].  Further this 

technique has been applied to find inhibitors of larger PPIs, such as the Bcl-XL/Bcl-2-

BAD/BAX interaction, by linking fragments found to bind distinct subpockets within the 

PPI binding site [106].  

 

Computational approaches offer a complementary approach to predict allosteric binding 

sites suitable for regulating PPIs [13]. Some techniques use “statistical coupling” of 

amino acid residues throughout evolution [107, 108]. This technique is based on the 

theory that if two positions are functionally coupled, their amino acid identities should be 
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constrained through evolution. Other computational methods simulate mutations and map 

structural perturbations, or perform computational alanine scanning [109, 110]. Another 

approach, called anisotropic thermal diffusion, tracks the propagation of kinetic energy 

emanating from a heated target location [111]. Finally, the protein structure can be 

searched using van der Waals probes to identify potential ligand sites in allosteric 

locations [112-115]. This list is not meant to be inclusive but rather to illustrate that 

computational efforts towards this goal have been extensive, suggesting the possibility of 

rationally designing allosteric PPI regulators. For example, the previously mentioned, 

Morphlock-1, was identified through in silico screening of an allosteric site [70].  

 

1.4.2 Techniques which monitor small molecule modulation of protein dynamics 

Small alterations in binding conformational equilibriums can have dramatic effects on 

PPIs dynamics and cellular functions. A technique that may allow one to identify such 

small molecules is Förster resonance energy transfer (FRET), which remains a workhorse 

method to monitor protein dynamics both in vivo and in vitro. This approach has been 

successfully used to identify small molecules which alter a protein’s conformational 

dynamics as well as the dynamics of a PPI [116-118]. Another approach is to employ 

isotopically labeled amino acids and NMR spectroscopy [119] to measure conformational 

changes in the presence of small molecules. An advantage of this approach is that it 

simplifies the NMR spectra, making it suitable for larger proteins. This approach was 

used to study the binding of a small molecule to the thioesterase domain of fatty acid 

synthase (FAS-TE), a protein of therapeutic interest in the treatment of cancer and 

obesity [119]. These spectroscopic methods provide valuable information regarding 
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conformational transitions and are particularly well suited for discovery of PPI inhibitors 

that alter dynamics. The goal in many of these discovery efforts is to screen for 

compounds that shift an ensemble and stabilize specific, active or inactive conformers 

[120]. 

 

1.4.3 High-throughput screening: the continuum from white- to black- box 
screening. 
 
The techniques discussed thus far largely involve biochemically purified proteins, often 

truncated to include only the protein domain of interest. In addition to the techniques 

discussed to identify allosteric small molecules, high-throughput screens which directly 

monitor PPIs such FRET, fluorescence polarization (FP), capillary electrophoresis, and 

flow cytometry are often utilized [74, 121, 122]. A major advantage of these approaches 

is that by targeting a specific PPI, identifying the target and mechanisms of action of 

active small molecules is straightforward. Further, several groups have explored ways of 

adjusting direct binding assays to favor the discovery of allosteric molecule [123, 124], 

such as using high concentrations of an interacting partner to disfavor binding to 

orthosteric sites. 

 

However, in some cases the approaches discussed thus far may miss or overlook small 

molecules with interesting activities. A major advantage of allosteric modulation is the 

ability of small molecules to target PPIs in a context dependent manner, with the 

functional outcome of binding by an allosteric regulator dependent on the composition of 

the protein complex. This concept is illustrated by the substrate specific modulation of 

Sec61 translocon and selective modulation of specific downstream pathways by targeting 
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GPCRs by small molecules highlighted herein [77, 78, 83, 84]. However, analyzing PPI 

domains alone remove a given PPI from its cellular context, including the effector 

proteins and regulatory mechanisms that are central to in vivo function. Further, many of 

the compounds discussed above target PPIs by altering protein localization or the 

dynamics of a given PPI. In the absence of their cellular context, the utility and 

capabilities of these small molecules are not fully realized. For these reasons one may 

wish to go back to the basics to think of ways to effectively carry out functional high 

throughput screens (HTS).  

 

Functional HTS screening strategies usually utilize cell-based or tissue-based assays to 

screen small molecules for a given function. This approach is often referred to as 

chemical genetic screens [125] and allow for the identification of small molecules that 

achieve the desired function by a multitude of different pathways or molecular targets. As 

such, this approach has shown great potential for the identification of molecules capable 

of “fine tuning” protein function and altering complex formation, even among PPIs one 

would not necessarily predicted to be “druggable” targets [83, 84, 126-128]. For example, 

ubistatins, which stabilize cyclin B by blocking ubiquitin PPIs, were identified using 

Xenopus extracts [129]. Further, cellular screens can be specially designed to favor the 

identification of PPI inhibitors or activators by utilizing techniques like chemoproteomic 

profiling which measures drug-induced changes in protein complex formation [130, 131]. 

Finally, although it remains a challenge to perform target identification and analyze 

mechanism for compounds identified using functional HTS, recently emerging 

techniques may have the potential to greatly improve our ability to do so [132, 133]. 
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These approaches include the evaluation of chemical genetic synthetic lethal interactions 

[134], activity based protein profiling technologies, and engineering specificity through 

the coupling of binding site mutations with chemical alterations in the small molecule of 

interest [135]. These techniques may make functional based screens more attractive going 

forward.  

 

Still, despite the utility of in vitro and functional based screens, perhaps there may be a 

middle ground between these very simplified and very complex screening strategies. A 

promising approach towards this goal may be “grey-box” screening, in which multi-

protein complexes are re-constituted in vitro and then an HTS method is used to find 

molecules that impact the biochemical properties of the complex. Whereas in vitro 

binding studies often treat a single protein or PPI as a “white-box” devoid of cellular 

context and functional studies treat the cell as a “black-box” probing a function without 

regard to a specific PPI target, “grey-box” screening attempts to screen a specific PPI 

without removing it from its disease-relevant protein complexes or native regulatory 

mechanisms. For example, in a screen for inhibitors of the p21-activated kinase (Pak1), 

Deacon and colleagues chose to use the full-length protein, including its non-catalytic 

domain, in complex with an activator protein, Cdc42, and a substrate, maltose binding 

protein [136]. By including this full complex, they identified a non-competitive inhibitor 

IPA-3 that binds the autoregulatory non-catalytic domain and blocks activation by Cdc42. 

In another example, the prokaryotic Hsp70 system, composed of DnaK and DnaJ, was 

reconstituted and screened [75]. DnaK is an ATPase that is stimulated by the non-enzyme 

DnaJ. An HTS method using a DnaK-DnaJ mixture identified molecules that blocked 
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ATPase activity by selectively disrupting the weak interactions between these two 

proteins [75, 137, 138]. These examples suggest that “grey-box” screening has the 

potential to identify small molecules enriched in their ability to “fine-tune” complex 

formation.  

 

1.4.4 Lest we forget transient PPIs 

As highlighted, a powerful way to uncover inhibitors of PPIs is to directly measure the 

binding between protein partners and screen for compounds that disrupt this contact. 

However, one of the challenges imposed by difficult PPIs is that most HTS platforms for 

measuring binding affinities are less suitable for the characterization of transient, lower 

affinity interactions [139, 140]. Towards that goal, several methods have proven useful in 

identifying transiently interacting protein partners in cells, including yeast-2-hybrid 

(Y2H) systems, bimolecular fluorescence complementation (BiFC), and in vivo 

crosslinking strategies [141-144]. Although there are caveats to each of these methods, 

their proper implementation provides the ability to measure transient, moderate affinity 

PPIs in cells. In vivo crosslinking using unnatural amino acid mutagenesis has also 

recently been identified as a powerful tool for covalently capturing both high affinity and 

transient, lower affinity protein-protein interactions in yeast [142, 145]. Combined with 

mass spectrometric methods, this technique creates a powerful platform for 

characterizing weak PPIs. Being able to characterize weak PPIs may subsequently allow 

one to screen for, develop, and characterize modulators of these contacts. 
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1.4.5 Towards compound libraries enriched for PPI modulators 

Compounds that target PPIs tend to be higher molecular mass, which is expected based 

on the more complex topology of these interactions [19]. In addition, many successful 

modulators of PPIs are natural products. These observations have led many groups to 

suggest that typical commercial chemical libraries may not be the most appropriate for 

finding PPI modulators, owing to the tendency of these collections to be composed of 

low molecular weight and low complexity molecules. Accordingly, many new methods 

such as DNA encoded combinatorial libraries (DELs), and improved diversity-oriented 

synthesis strategies (DOS) have been developed to produce more complex compounds 

[146-149]. Similarly, secondary structure mimetics [150], aptamers [151], and antibody-

like molecules [152] have been developed in an attempt to better match the topology of 

PPIs. Finally, natural products, metabolites and natural product-like collections are 

finding renewed use as sources of PPI modulators [153, 154]. Unfortunately, these 

concepts have still not been widely adapted by public screening facilities; as of 2010, 

only 1% of the NIH Molecular Libraries Small Molecule Repository was natural product-

like [147]. However, a greater focus on the biology of PPIs may drive the development of 

additional commercial collections that cater to the particular needs of these systems. 

 

1.5 Summary 

PPIs are emerging as promising drug targets and reports of PPI inhibitors have become 

increasing widespread. The next frontier in PPI research is to go beyond the concise, high 

affinity PPIs, which have constituted a majority of the published success stories thus far. 

The next phase is to understand how to target the PPIs with large and complex surface 
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topologies and those with weak, transient contacts. Because these “challenging” PPIs are 

the least amenable to classic orthosteric inhibitors, it seems likely that new strategies will 

be needed. Herein, the varied ways in which the cell naturally regulates and modulates 

PPIs have been discussed. From these observations, the themes of allosteric inhibition 

and PTMs become readily apparent and a few synthetic small molecules have already 

accessed these natural regulatory mechanisms to fine-tune protein complex formation. 

Deployment of new HTS methodologies and carefully designed chemical libraries may 

further accelerate discovery of molecules with activity on these difficult systems. By 

continuing to look to nature for inspiration, chemical biologists have the potential to 

expand the number of “druggable” PPIs.  

 

1.6 Applying lessons to Hsp70: towards a treatment strategy for tauopathies 

Thus far, the varied ways by which the cell regulates and modulates PPIs have been 

discussed. Further, small molecules which have accessed these naturally regulatory 

mechanisms to fine-tune protein complex formation in novel ways have been highlighted. 

Of central importance is the ability of these small molecules modulators of PPIs to 

uncover biological insight into cellular pathways. Through an iterative process of 

identifying novel small molecules and mechanistic studies, chemical biology has the 

potential to understand and control the biology of the cell. The work summarized in this 

thesis illustrates work aimed towards this iterative process within the context of the 

Hsp70 chaperone system and a class of neurodegenerative diseases known as tauopathies.  
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1.6.1 Tauopathies: A class of neurodegenerative disease involving the microtubule 
associated protein tau (MAPT/tau).  
 
The microtubule binding protein tau is a natively unfolded protein that is primarily 

expressed in neurons and binds to microtubules promoting stability and assembly [155-

158]. Intracellular aggregates formed by tau are a characteristic pathologic feature in 

approximately fifteen neurodegenerative disease classified as tauopathies [159-166]. 

Alzheimer’s Disease (AD) is the most common tauopathy and affects more than 5 million 

Americans, incurring a large emotional and financial burden totally more than $148 

billion dollars annually [167]. As our population ages, AD prevalence is expected to rise 

dramatically. Further, there is currently no cure for AD, or any tauopathy for that matter. 

Whereas acetylcholinesterase inhibitors and NMDA antagonists have been approved for 

clinical use, they are only able to mildly slow the rate of cognitive decline in patients 

with AD [168]. Thus, there is a great need for new therapeutic strategies.  

 

The direct pathophysiology which underlies the clinical symptoms within a given 

tauopathy, is not yet fully understood. Yet, a multitude of studies have highlighted that 

the aggregation and accumulation of tau significantly contributes to disease. For example, 

causative mutations within tau have been found in some patients with the tauopathy 

Frontotemporal Dementia with Parkinsonism linked to chromosome 17 [169-171]. These 

mutant forms of tau are more prone to aggregation and can recapitulate disease symptoms 

within mouse models. Finally, and importantly, reductions of tau levels have been shown 

to reverse clinical symptoms in a variety of mouse models for tauopathies, including mice 

genetically designed to exhibit amyloid beta pathology [172-176]. Thus, reductions in tau 



25 
 

levels and clearance of tau from neuronal cells could prove to be a viable therapeutic 

strategy for the treatment of tauopathies.  

 

1.6.2 The Hsp70 chaperone system regulates tau homeostasis   

One proposed method by which tau could be targeted for clearance is through the use of 

molecular chaperones, a natural mechanism within the cell that handles misfolded 

proteins [177, 178]. Genetic over-expression of the molecular chaperone heat shock 

protein 70 (Hsp70) has been shown to be cytoprotective, inhibiting aggregation, and/or 

clearing pathologic aggregates in many cellular and animal models of neurodegenerative 

diseases, including AD [179-188]. In regards to tau, several studies have shown that 

Hsp70 plays a central role in regulating tau clearance [182, 187, 189-194]. Hsp70s can 

facilitate the rebinding of tau to microtubules and have also been implicated in blocking 

tau aggregation and promoting its degradation [182, 187, 195]. Further, studies have 

highlighted the important role Hsp70 co-chaperones play in determining tau fate [196]. 

However, these genetic studies do not clarify the mechanism by which Hsp70 controls 

the cellular fate of client proteins such as tau [3, 197]. Nor do they clarify the role Hsp70 

may play in disease states or how one would go about developing small molecule 

modulators which would alter Hsp70 activity in such a way to achieve a desired cellular 

outcome. Towards these goals, a deeper understanding of the variables within the Hsp70 

chaperone system is required. 
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1.6.3 The molecular chaperone Hsp70.  

Hsp70 is best known for its ability to prevent aggregation and promote refolding of 

partially unfolded proteins [198, 199]. Further, the Hsp70 chaperone system plays a 

central role in the maintenance of cellular protein homeostasis by participating in a 

variety of multi-protein complexes involved in divergent pathways which include 

trafficking, complex remodeling, folding, and degradation (Figure 1.1) [3]. At the center 

of this complex is Hsp70 itself, which is composed of a nucleotide binding domain 

(NBD) and a substrate binding domain (SBD) (Figure 1.4).  

 

Within the NBD, Hsp70 carries out a catalytic ATPase cycle, meanwhile within the SBD 

a wide variety of client proteins interact with Hsp70 via a substrate binding pocket [200]. 

Although it is appreciated that Hsp70 interacts with extended hydrophobic polypeptides, 

this binding pocket is promiscuous and Hsp70 has a multitude of client proteins [34, 

201]. Further, both the ATPase cycle and the chaperone activities of Hsp70 are 
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modulated by interactions with three classes of co-chaperones; J-domain proteins, 

nucleotide exchange factors (NEFs), and tetratricopeptide repeat (TPR) domain proteins 

[Figure 1.4]. In humans, approximately 40 J-domain proteins and 13 NEFs can modulate 

the catalytic ATPase cycle of Hsp70. J-domain proteins stimulate ATP hydrolysis and 

may bind client proteins, delivering them to Hsp70 [202]. Meanwhile, NEFs promote 

release of ADP and subsequent nucleotide exchange [203, 204]. Many J-proteins and 

NEFs are multi-domain proteins and may also play a role in determining client fate via 

outside domains which include ubiquitin-like domains or substrate binding domains [205-

207]. For example, over-expression of NEF BAG1 increases tau levels and inhibits 

proteasomal degradation [192]. Also, a BAG2-mediated ubiquitin-independent 

degradation pathway for tau has been identified [189]. The final class of co-chaperones, 

TPR domain proteins, potentially includes hundreds of TPR domain proteins in the 

human genome which exhibit extensive diversity outside of their conserved TPR domain; 

the two best characterized as Hsp70 co-chaperones are Hop (the Hsp70 Hsp90 organizing 

protein) and CHIP (the Carboxy terminal Heat shock conjugate Interaction Protein) [208-

210]. Hop can simultaneously bind the molecular chaperones Hsp90 and Hsp70 and 

functions to coordinate these two chaperone systems frequently to promote proper 

folding [211, 212]. In contrast to Hop, CHIP is an ubiquitin E3 ligase with an effector 

Ubox domain [213] and functions to ubiquitinate chaperone client proteins and target 

them for degradation [214, 215]. Consistent with this, several groups have shown that 

CHIP mediates the ubiquitination and degradation of tau [187, 190, 191, 193, 194, 216]. 

Thus, Hsp70 is a multi-component system, in which ATP hydrolysis, structural 
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transitions, and multiple PPIs likely contribute in various ways to alter the chaperone 

activities of Hsp70.  

 

1.6.4 “Grey-box” screening uncovers multiple chemical modulators of Hsp70 
chaperone system. 
 
Given the central role Hsp70 plays in protein homeostasis within cells, the Gestwicki lab, 

aims to develop chemical modulators of Hsp70 that can be used to study chaperone 

biology and understand the potential of Hsp70 as a therapeutic target. Yet, in developing 

chemical modulators to Hsp70, the field has faced many of the challenges discussed 

within this chapter. Indeed, as highlighted in Figure 1.1, this system consists of a 

combinatorial assembly of co-chaperones, thought to dictate client fate [3]. These PPIs 

cover a range of physicochemical space as discussed in Figure 1.2. Which PPI surface 

should be targeted to achieve a desired therapeutic outcome, or how to gain selectivity for 

one co-chaperone over another which bind at overlapping sites is not yet clear. Thus, to 

develop the first generation of Hsp70 small molecule probes, former members of the 

Gestwicki lab have utilized a “grey-box” screening approach. Previous work utilized a J-

protein to stimulate the ATPase rate of Hsp70 and screen for compounds which either 

inhibited or stimulated this J-stimulated ATPase activity of Hsp70 [75, 137, 138, 217]. 

This approach resulted in several different small molecules which could be utilized to 

gain an improved mechanistic understanding of the Hsp70 chaperone system. The 

compounds identified included myricetin; a flavonoid which allosterically inhibits J-

protein binding to Hsp70 [75]. Further, methylene blue (MB) was found to alter PTMs on 

Hsp70 via the oxidation of specific cysteine residues [Yoshi Miyata and Jenny Rauch 

unpublished data]. Finally, additional scaffolds including dihydropyrimidines, MKT-077 
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derivatives, and spergualins have been shown to nucleate J-protein binding, stabilize the 

ADP bound state of Hsp70, and function as inhibitors of TPR co-chaperone interactions 

respectively [138, 218] [Matthew Smith unpublished data]. Thus, available Hsp70 

modulators alter Hsp70 activity in a variety of ways. As such, these small molecules may 

be utilized as chemical probes to improve our understanding of the Hsp70 chaperone 

system. Consistent with this idea, it was observed that Hsp70 ATPase inhibitors 

myricetin and MB result in reductions in tau levels, while the ATPase stimulators of the 

dihydropyrimidine class result in accumulation of tau in multiple cellular models [219].  

 

1.7 Future perspectives 

These initial results importantly show that small molecule modulators of Hsp70 are 

capable of targeting tau for clearance. Next, this thesis aims to utilize these chemical 

probes to understand what molecular changes within Hsp70 or Hsp70 multi-protein 

complexes are able to acutely trigger tau for degradation. Further, whether changes in 

ATP turnover or nucleotide state are indicative of changes in central Hsp70 chaperone 

functions will be explored. These studies may be able to not only improve our 

understanding of protein quality control within the Hsp70 chaperone system, but also 

enable future discovery of improved Hsp70 modulators by uncovering novel screening 

strategies or enabling “grey-box” screening utilizing more “disease-relevant” complexes. 

 

In this dissertation some of these key questions are addressed. In Chapter 2, the 

relationship between ATP turnover and Hsp70 chaperone function is evaluated. In 

Chapter 3, the function and architecture of oligomeric Hsp70 which is preferentially 
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formed in the ADP-bound state is explored. In Chapter 4, a chemical tool, MB, is utilized 

to transiently induce tau degradation and monitor changes in protein complex formation 

in response to this acute pro-degradation trigger. Finally, in Chapter 5, the implications of 

these studies are discussed as well as potential future strategies for the improved 

treatment of tauopathies.  

 

Notes 

This work will be in part be submitted as a review to ACS Chemical Biology entitled 

“Fine tuning multi-protein complexes using small molecules.” Andrea D. Thompson, 

Amanda Dugan, Jason E. Gestwicki, and Anna Mapp contributed intellectually to this 

review.  
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Chapter 2 

Mutagenesis reveals that ATPase rates are not predictive of the chaperone activities 
of Escherichia coli heat shock protein 70 (Hsp70/DnaK). 

 
 

2.1 Abstract 

As was described in Chapter 1, the 70-kDa heat shock protein, Hsp70, is a molecular 

chaperone that plays important roles in facilitating protein folding and preventing protein 

aggregation. The Escherichia coli Hsp70, DnaK, is composed of an ATPase domain and 

a substrate-binding domain that binds to unfolded proteins. Nucleotide turnover in DnaK 

appears to allosterically control the affinity for substrates. In addition, DnaK interacts 

with the co-chaperones DnaJ and GrpE, which stimulate ATP hydrolysis and nucleotide 

exchange, respectively. Because this multi-protein system is highly dynamic, it serves as 

an ideal model in which to understand protein-protein interactions and allostery, 

especially in relation to molecular chaperone functions. In this study, mutagenesis 

throughout the nucleotide-binding domain of DnaK was performed to generate a 

collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/ 

µg/ min-1. Next, the correlation between ATPase rate and the ability of DnaK to refold 

denatured luciferase in vitro was examined. Interestingly, these two activities were poorly 

correlated, with several mutants retaining normal refolding activity in the absence of 

significant ATP turnover. Further, the ability of these DnaK mutants to complement 

growth of ∆dnaK E. coli cells under heat shock was probed. It was found that the in vitro 
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molecular chaperone activity of refolding was more predictive of in vivo activity than 

ATPase rate. This study suggests that co-chaperone interactions and other factors are 

more important than ATP turnover in regulating some molecular chaperone activities of 

Hsp70.  

 

2.2 Introduction 

2.2.1 DnaK structure and function 

Escherichia coli DnaK is a member of the highly conserved heat shock protein 70 

(Hsp70) family, and it is involved in a variety of cellular pathways, including protein 

folding, transport, and degradation [1, 2]. As a central player in protein quality control 

and homeostasis, Hsp70 has also been implicated in the pathogenesis of a variety of 

diseases [3-5]. These observations have led to an interest in understanding how the 

various activities of Hsp70 are correlated. One of the main roles of DnaK is to enable the 

folding of nascent or otherwise unfolded proteins [6]. In this role DnaK is thought to limit 

aggregation and facilitate folding by binding to the hydrophobic regions exposed in these 

substrates. Briefly, DnaK, like all the Hsp70 family members, consists of a substrate-

binding domain (SBD) and a nucleotide-binding domain (NBD) connected by a 

hydrophobic linker [7-9]. The NBD of DnaK is further divided into four subdomains as 

follows: IA/IIA, which forms the base, and IB/IIB which form the upper walls of the 

nucleotide binding cleft (Figure 2.1a). The binding of ATP to DnaK results in an “open” 

conformation with low substrate affinity. Upon hydrolysis, the ADP-bound form assumes 

a “closed” conformation that binds substrate with higher affinity [10-16]. Thus, allosteric 
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communication between the two domains is thought to link nucleotide turnover to 

substrate binding and release.  

 

2.2.2 Co-chaperones regulate the ATPase rate and substrate binding of DnaK  

DnaK alone has a low intrinsic ATPase rate, which facilitates regulation by the important 

co-chaperones, DnaJ and GrpE. DnaJ specifically stimulates ATP hydrolysis and thus 

favors high affinity substrate binding [6, 17]. In addition, DnaJ independently binds to 

substrates via C-terminal domains and is thought to help these proteins bind to DnaK [18, 

19]. GrpE, on the other hand, induces nucleotide exchange and leads to substrate release 

[20]. These co-chaperone activities appear to be required for the cellular functions of 

DnaK because deletion of either DnaJ or GrpE causes defects in growth at elevated 

temperatures, similar to what is seen in ∆dnaK strains [4, 21, 22]. Thus, as discussed in 

Chapter 1, this multi-protein system provides a model in which to understand how 

protein-protein interactions and allostery are regulated and how proteins within larger 

complexes work together to make important cellular decisions. 

 

2.2.3 The role of co-chaperones and nucleotide hydrolysis in protein folding 

One of the major chaperone functions of the DnaK-DnaJ-GrpE system appears to be the 

refolding of denatured proteins. Many of the key insights into chaperone function have 

emerged from in vitro studies on the refolding of the model substrate firefly luciferase. 

For example, it was found that DnaK requires DnaJ and GrpE to refold denatured 

luciferase [6]. Importantly for the work described in this Chapter, this experimental 

platform has been used to explore the roles of ATP hydrolysis in controlling substrate 
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folding. For example, this process was found to require multiple cycles of ATP 

hydrolysis [6]. Also, ATPγS blocks refolding, further suggesting an important role for 

nucleotide cycling [23-25]. However, truncated forms of DnaJ, which are able to 

stimulate ATP hydrolysis normally but cannot interact with substrates, are unable to 

stimulate luciferase refolding [26]. Together, these results suggest that ATPase activity is 

necessary but not sufficient to achieve luciferase folding.  

 

2.2.4 Mutations which abolish ATPase activity in DnaK are unable to sustain 
growth at elevated temperatures  
 
The chaperone function of DnaK can also be assayed in vivo by monitoring the ability of 

DnaK mutants to complement growth of ∆dnaK E. coli cells under heat shock (called 

heat shock rescue) [27]. At elevated temperatures, many proteins in E. coli become prone 

to unfolding and aggregation. One of the roles of DnaK is to bind these substrates, 

protecting them from aggregation [3, 28, 29]. Following return to normal temperature, 

DnaK also participates in active refolding [30, 31]. Similar to what was observed in the in 

vitro luciferase refolding experiments, the ATPase activity of DnaK appears to be 

required during heat shock, because active site mutations that abolish nucleotide turnover 

are unable to rescue heat shock [23-25].  

 

2.2.5 The link between DnaK ATPase rate and chaperone functions is not clear  
 
Taken together, these data suggest that ATPase rate may be an important modulator of 

chaperone activities. However, previous studies largely relied on either a single mutation 

of an essential catalytic residue or the use of nucleotide mimics [23-25]. Thus, it remains 
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unknown if changes in the rate of ATP hydrolysis lead to predictable changes in 

chaperone functions, such as luciferase folding and heat shock rescue. This question is 

particularly important when one considers that DnaK and its co-chaperones are highly 

allosteric. However, insights into the relationships between ATP turnover and chaperone 

functions have been complicated by several factors. First, the DnaK chaperone system is 

impacted by a number of variables. For example, several studies have highlighted 

substrate binding kinetics, interdomain communication, and the stimulation of the DnaK 

ATPase rate as important variables for refolding or cellular growth under heat shock [18, 

32-39]. Second, the interdependence of these variables presents important challenges. For 

example, a mutation that disrupts interdomain communication might also interfere with 

substrate binding and DnaJ-mediated ATPase stimulation [40, 41]. Perhaps individual 

point mutations in catalytic residues would not be sufficient to deconvolute this complex 

system. Accordingly, a series of point mutations in the nucleotide-binding domain of 

DnaK was generated to better probe the relationships between ATP turnover, allostery, 

and measurable chaperone functions. Using a battery of biochemical and cell-based 

assays, it was found that ATPase rate does not directly correlate with chaperone 

functions. Rather, this result suggests that co-chaperone interactions and other factors 

may more closely regulate DnaK function.  

 

2.3 Results 

2.3.1 The design of DnaK mutants with varied ATPase rates   

The aim of this study was to assess whether changes in the ATPase rate of DnaK lead to 

predictable changes in chaperone function. Toward this goal available mutational and 
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structural data was employed to select ~30 novel or established mutations in the NBD of 

DnaK [8, 41-44]. Mutating the SBD was avoided to minimize direct disruption of 

substrate binding. Rather, these mutations were specifically designed to impact ATP 

turnover by four potential mechanisms (Figure 2.1b). Known DnaK mutations, E171S 

and T199A, which alter residues in the ATP-binding pocket, made up class I. Class II 

included L177A and I373A, which were predicted to disrupt DnaJ-mediated ATPase 

stimulation based on homology to mutations made in other Hsp70 family members [10, 

40, 41]. Two mutants, V192A and Y193A, which are located near the proposed DnaJ-

binding site, were also included in class II. Class III included K55A and R56A, which are 

known to disrupt binding to GrpE [8, 45], and 10 additional mutants in the IB and IIB 

subdomains that were hypothesized to impact nucleotide exchange, based on their 

proximal location to known nucleotide exchange factor binding sites. Finally, class IV 

mutations included residues around the proposed hinge region (residue 225-230) at the 

IIA/IIB subdomain interface. This region is proposed to undergo an ATP-induced 

structural change [42, 44]. Together, this collection of DnaK mutants was intended to 

provide an analysis of contributions from multiple allosteric pathways.  
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To characterize these mutants, whether the mutants could bind to nucleotide was tested 

by measuring their 

retention on an ATP 

affinity column. All the 

mutants were found to 

retain ATP binding 

activity qualitatively 

similar to that of WT 

DnaK. Next, whether the 

mutants exhibited WT-

like secondary structure 

was confirmed, as 

measured by circular 

dichroism (Appendix 

2.1). Finally, each 

mutant was verified to 

bind luciferase using a 

“holdase” assay. In this 

assay, the ability of 

DnaK to protect 

luciferase from heat 

denaturation was 

measured. It was found that all the mutants were able to limit unfolding; demonstrating 
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that binding to substrates was intact (Appendix 2.2). During these characterization steps, 

three mutations were identified that resulted in unstable variants of DnaK (Appendix 2.3). 

These mutants were removed from further analysis. This design and selection process 

yielded a collection of 29 DnaK mutants for further investigation (Figure 2.1b). 

 

As mentioned above, the ATPase rate of DnaK is stimulated by three main factors as 

follows: DnaJ, GrpE, and substrate. Thus, it was important to measure the ability of these 

factors to stimulate each of the DnaK mutants. Toward this goal, the Km and Vmax values 
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for DnaJ, GrpE, and a model DnaK substrate NRLLLTG was calculated (Table 1 and 

Appendix 2.4). From these experiments, it was found that the mutants varied in their 

responses to these stimuli. Using Km to estimate binding to DnaK, it was found that most 

mutants varied in their affinity for DnaJ by ~10-fold (0.32 to 4 µM). In addition a few  

mutants, such as E217A and L227A, had very weak stimulation, which precluded fitting 

of the curves (Table 2.1 and Appendix 2.4). Similarly, the Km value of GrpE stimulation 

varied over a range of almost 100-fold, with multiple mutants unable to be stimulated. 

Further, maximum stimulation (Vmax) varied by ~ 6-fold for DnaJ, 7-fold for GrpE, and 

6-fold for substrate. Finally, known mutations exhibited the expected activity, confirming 

the results reported previously in the literature [8, 10, 40, 41, 45]. Thus, this collection 

had the desired wide range of Km and Vmax values for co-chaperone and substrate-

mediated ATPase stimulation. Based on these findings, perhaps these mutants could be 

used to probe the correlation between ATPase rate and luciferase folding.  

 

2.3.2 ATPase rate and refolding activity of DnaK mutants are weakly correlated 

One of the functions of DnaK is to refold damaged proteins, and this activity can be 

measured in vitro by luciferase refolding assays. In this experiment, chemically denatured 

firefly luciferase is diluted in the presence of DnaK, ATP, DnaJ, and GrpE. This 

chaperone system gradually restores the misfolded luciferase, and the refolding process 

can be monitored by an increase in luminescence. To directly explore the correlation 

between stimulated ATPase activity and chaperone-mediated refolding, both activities for 

each DnaK mutant at the same concentrations of DnaK, DnaJ, GrpE, luciferase, and ATP 

were recorded (Appendix 2.5). To explore potential correlations in these two activities of 
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DnaK, refolding activity was plotted against ATPase rate for each mutant (Figure 2.2A). 

This analysis revealed poor correlation (R2 = 0.22), between the activities. A closer 

inspection of these results revealed some additional trends. For example, many mutants 

such as T12A, had a higher ATPase rate than WT, but this enhanced turnover did not lead 

to correspondingly higher refolding activity. Furthermore, some mutants, such as R56A, 

had the same ATPase rate as WT but decreased refolding activity. Curiously, there were 

also mutants such as F67L, P90A, F91A, E230Q, D231N, and K263A, which had 

significantly lower ATP hydrolysis rates than WT DnaK, but they retained normal 

luciferase refolding activity. These DnaK mutants were named “decoupling mutants.” 

 

To explore the observation that many of the DnaK mutants had altered rates of intrinsic 

ATPase activity further, the correlations between these values and luciferase refolding 

was also analyzed. Consistent with the previous findings, the intrinsic ATPase rates had 

almost no correlation with luciferase refolding activities (R2 = 0.007; Appendix 2.6). 

Similarly, the ATPase rates of the mutants stimulated by DnaJ alone (i.e. no GrpE or 

substrate) also failed to correlate (R2 = 0.071; Appendix 2.7). Interestingly, when the 

mutants were classified based on their locations, the decoupling mutants clustered on the 

IB and IIB subdomains. Most mutations in the IB and IIB subdomains had normal 

refolding activity regardless of ATPase rate (R2 = 0.04; Figure 2.2C). Correspondingly, 

when only the IA/IIA subdomain mutants were examined, the overall ATPase rates 

became more positively associated with refolding activities (R2 = 0.55; Figure 2.2B).  
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2.3.3 Decoupling mutants of the IB subdomain make DnaK more flexible 

Further analysis revealed that the decoupling mutants in the IB subdomains, F67L, P90A, 

and F91A, were co-localized in a hydrophobic patch adjacent to an adjacent helix and 

loop  (residues: 74-96) (Figure 2.3A). Residues74-96 have been shown to be crucial for 

cooperation with DnaJ and GrpE during both refolding and heat shock rescue [43]. 

Consistent with this important role, residues74-96 are connected to a small helix containing 

K70, a residue that is essential for ATP hydrolysis [46]. Based on this analysis, it was 

hypothesized that mutations to the hydrophobic triad of F67, P90, F91 might destabilize 

residues74-96. In turn, this increased flexibility might disrupt positioning of K70, which 

would explain the low ATPase rates. In support of this hypothesis, it was found that the 

three decoupling mutants were more sensitive to trypsin digestion and, furthermore, that 

they exhibited a different digestion pattern than WT or other IB subdomain mutations 

(Figure 2.3B and Appendix 2.7). This result suggests that, through increased flexibility, 

the IB subdomain decoupling mutants may allow for productive interactions with 

misfolded luciferase without relying on the structural transitions normally linked to ATP 

hydrolysis.  

 

Because residues74-96 were reported to be involved in interactions with DnaJ [43], the 

ability of the decoupling mutants to be stimulated by this co-chaperone was tested, in the 

presence of denatured luciferase. In ATPase assays, the concentration of DnaJ was varied 

and it was found that F67L, P90A, and F91A had increased Km values (2.4, 0.8, and 1.7 

µM respectively) compared to WT (0.3 µM) (Figure 2.3C). Despite these higher Km 

values, the refolding activity of the three mutants in response to DnaJ remained similar to 
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WT (Figure 2.3D). Thus, ATPase rate and refolding activity responded differently to 

DnaJ-mediated stimulation in these mutants, suggesting that these processes are 

separable.  
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2.3.4 IIB subdomain decoupling mutants are located near a hinge region 

Another class of decoupling mutations was interesting because the residues, E230 and 

D231 were located adjacent to each other in the IIB subdomain (Figure 4A). This region 

is at the interface of the IIB and IIA subdomains, where a hinge region (residue 225 to 

230 in DnaK) is thought to rotate the IIB subdomain away from the IB subdomain upon 

ATP hydrolysis (47). This conformational change has been observed in GrpE-bound 

DnaK, and it was previously proposed to be important for nucleotide release [8]. To 

explore the basis for the observed decoupling by mutations E230Q and D231N, the 

stimulation of these mutants by DnaJ and GrpE was measured. In ATPase assays, the 

decoupling mutants E230Q and D231N were tested for their ability to be stimulated by 

DnaJ and GrpE. It was found that the decoupling mutants E230Q and D231N had normal 

responses to DnaJ (Figure 2.4B). However, unlike WT DnaK, the ATPase activities of 

these mutants were not stimulated by GrpE and rather, were significantly inhibited by a 

low concentration of this co-chaperone (~0.1 µM) (Figure 2.4C).  
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2.3.5 Refolding activity of DnaK mutants is more predictive of in vivo function 

Because this collection of 

DnaK mutants had revealed 

that ATPase rate and 

luciferase refolding activity 

were only weakly correlated, 

the next aim of this study was 

to explore which activity, if 

any, would be most predictive 

of a cellular function of DnaK. 

Toward this goal, the ability 

of the DnaK mutants to 

protect against heat shock in 

∆dnaK (DE3) cells was 

explored. E. coli strains 

lacking dnaK (∆dnaK) are 

temperature-sensitive and 

unable to grow after exposure 

to elevated temperature. As 

expected, WT DnaK, 

expressed from an inducible plasmid, could complement growth of ∆dnaK E. coli at 43 

°C (Figure 2.5, Appendix 2.8A). Using the same procedure, each of the DnaK mutants 

were subsequently tested. First, plasmids for each mutant were transformed into ∆dnaK 
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(DE3) E. coli cells, and protein expression was confirmed (Appendix 2.8B). Following 

heat shock at 43°C, the absorbance at 600 nm (A600) was measured, and these results were 

plotted against the ATPase or refolding activity of each mutant (Figure 2.5, A and B). 

From this analysis, a strikingly poor correlation between ATPase rate and heat shock 

rescue (R2 = 0.15) was found. However, refolding activity was relatively better correlated 

(R2=0.40). Interestingly, the decoupling mutants of the IB and IIB subdomains, F67L, 

P90A, F91A, E230Q, and D231N, were able to complement growth at 43°C. This result 

demonstrated for the first time that mutants with a severe deficiency in their ATPase 

activity could rescue heat shock in vivo. Still, it is important to note that luciferase 

refolding was not fully predictive of heat shock rescue. Several mutants, such as L177A 

and R71A, were potent in the refolding assay yet failed to mediate heat shock rescue. 

These results suggest that these relationships are complex, and other factors are likely 

important for heat shock rescue. 

 

2.4 Discussion  

2.4.1 Relationship between ATPase and refolding activity of DnaK 

As an isolated domain, the SBD of DnaK binds to substrate with the same affinity as 

ADP-bound DnaK and can slowly refold luciferase [47]. Thus, one major role of the 

NBD seems to be to power the transition of the SBD between open and closed states, 

which accelerates binding-and-release of substrates and increases refolding activity [10, 

40, 48, 49]. Based on these findings, refolding and ATP turnover are thought to be 

closely linked functions of DnaK. Consistent with this idea, the co-chaperones DnaJ and 

GrpE stimulate both the ATPase rate and refolding activity of DnaK [45, 50, 51]. 
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Previous data have suggested that ATP hydrolysis is necessary but not sufficient for 

luciferase refolding [14, 21, 22, 25]. To explore this finding more deeply, whether the 

ATPase rate of DnaK could predict its luciferase refolding activity was evaluated using a 

series of mutants. In the 29 DnaK mutants tested, it was found that the two activities were 

poorly correlated. This result suggests that additional factors might contribute to 

refolding.  

 

To explore what some of these contributing factors might be, how the mutants were 

stimulated by co-chaperones and substrate was specifically investigated (see Table 2.1 

and Figure 2.2). This analysis showed that mutants unable to refold luciferase, such as 

E171S, T199A, and G228A, were also defective in their ability to be stimulated by DnaJ, 

GrpE, and substrate in the ATPase assay. However, the converse was not necessarily 

true. For example, there were several mutants whose ATPase rate could not be 

stimulated, yet they still had the same refolding activity as WT DnaK. These results 

demonstrated that the relationship between ATPase and luciferase refolding activity is 

complex. More specifically, these results suggested that the ability of DnaK to be 

stimulated by DnaJ, GrpE, or peptide substrate is not necessarily predictive of its activity 

in the refolding assay. This conclusion is illustrated by several mutants in which drastic 

changes in both the Vmax and Km values of DnaJ-mediated ATPase stimulation were 

observed without a significant impact on refolding activity (see Table 2.1 and Figure 2.3). 

Most notably, the IB subdomain decoupling mutants, F67L, P90A, and F91A, exhibited 

WT-like dependence on DnaJ for refolding, but had increased Km values for DnaJ-

mediated stimulation of ATP hydrolysis. This observation suggests that DnaJ might 
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promote ATPase and refolding activities by different mechanisms. In support of this 

model, DnaJ mutants that stimulate the ATPase rate of DnaK, but not its refolding 

activity, have been reported [17, 26, 52-54].  

 

The structure of DnaJ might provide a clue into how these two activities can be separated. 

Residues 1–104 of DnaJ are essential for interactions with the NBD of DnaK. This region 

is composed of the J-domain and a glycine- and phenylalanine- rich region. The C-

terminal half of DnaJ contains two zinc-binding sites and a domain important for binding 

to substrate [18, 19, 26]. Although the 1–104-residue fragment of DnaJ can fully 

stimulate ATP hydrolysis, it cannot stimulate the refolding activity of DnaK [18]. More 

strikingly, Karzai and McMacken [17] found that DnaJ lacking its second zinc-binding 

site had normal affinity for denatured luciferase and actively stimulated ATP hydrolysis 

by DnaK, but this mutant was unable to transfer substrate to DnaK or support luciferase 

refolding. Those previous reports and our studies suggest that a secondary event, perhaps 

substrate presentation, may be important for refolding in the DnaK-DnaJ pair. Perhaps 

the decoupling mutations might interrupt ATPase activity without affecting DnaJ-

mediated substrate presentation. However, this model lacks structural support, and the 

detailed mechanisms await further analysis. It is important to note that other factors may 

also help to account for the lack of correlation between ATPase rate and refolding 

activity. These factors might include substrate-binding kinetics, nucleotide-dependent 

conformational changes, and co-chaperone complex formation [55-58]. 
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2.4.2 Mechanisms of the IB and IIB decoupling mutants  

This study was particularly interested in understanding the mechanisms of the 

“decoupling” mutants, because this is, to our knowledge, the first report of DnaK mutants 

that have greatly decreased ATPase rates but normal refolding activities. Three of the 

decoupling mutants were mapped to a hydrophobic patch on the IB subdomain that 

appears to stabilize residues74–96 and therefore regulate the position of K70, a key residue 

for ATP hydrolysis. These decoupling mutants had low ATPase rates, yet they retained 

both normal refolding activities and the ability to restore growth under heat shock in E. 

coli. We hypothesize that the unusual properties of these mutants might arise from their 

increased flexibility, as measured by trypsin susceptibility. Specifically, this flexibility 

might allow the mutants to sample the open and closed conformational states that 

facilitate refolding. To date, there is no structure of open ATP-bound full-length Hsp70, 

but based on the structure of Hsp110, a member of the Hsp70 superfamily, the α-helical 

lid of the SBD interacts with IA and IB subdomains [59, 60]. Therefore, it is tempting to 

speculate that the same interactions stabilize the open structure in DnaK. Moreover, this 

interaction of the SBD with subdomains IA and IB might create a barrier for switching 

between open and closed conformations. In this model, F67L, P90A, and F91A mutants, 

by destabilizing or otherwise repositioning residues74–96, might reduce the barrier to 

conformational flexibility in the SBD, essentially mimicking the activity normally 

reserved for nucleotide hydrolysis. The net effect of this change might be to partially 

decouple ATP turnover from refolding activities. Further structural investigations of WT 

DnaK and these mutants may provide additional insight. Interestingly, residues74–96 is not 
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present in Gram-positive bacteria. Moreover, the DnaK from Tetragenococcus 

halophilus, a Gram-positive bacterium, has excellent holdase activity, but its refolding 

and ATPase activities are not stimulated by T. halophilus DnaJ or GrpE [61]. 

Furthermore, deletion of these residues from E. coli DnaK renders it unable to cooperate 

with cochaperones in both ATP hydrolysis and luciferase refolding [43]. These results 

further suggest that residues74–96 may play a role in the allosteric regulation of DnaK.  

 

The mutations in the IIB subdomain, E230Q and D231N, also appear to decouple 

ATPase and refolding activities but by a mechanism that is distinct from that used by the 

IB subdomain decoupling mutations. The IIB residues are co-localized at the interface 

between the IIA and IIB subdomains. This interface is proposed to contain a hinge region 

that controls the rotation of the IIB subdomain away from the IB subdomain upon ATP 

hydrolysis [42, 44]. Decoupling mutations, E230Q and D231N, which are located on an 

α-helix adjacent to this flexible hinge, exhibited normal refolding and DnaJ-stimulated 

ATPase activities. However, these mutants had an altered response to GrpE. Specifically, 

GrpE failed to stimulate the ATPase activity of these mutants; moreover, it inhibited 

turnover at concentrations greater than ~0.1 µM. Because GrpE binding also induces 

rotation of the IIB subdomain away from the IB (8), it is possible that E230Q and D231N 

interfere with the proper movement or positioning of the α-helix in response to 

interaction with GrpE. However, this change does not appear to prevent the 

conformational changes required for refolding, because the GrpE-stimulated folding 

activity was unchanged. Together, our findings with both the IB and IIB decoupling 

mutants suggest that alterations in co-chaperone-mediated stimulation of ATP turnover 
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do not uniformly lead to changes in luciferase refolding. Based on published reports, it 

appears that ATP hydrolysis normally regulates structural transitions in DnaK that allow 

sampling of the open and closed conformers [62]. Thus, in some of the decoupling 

mutants, these conformers are likely sampled independent of nucleotide transitions. 

Although ATP hydrolysis is clearly required for WT DnaK to fold luciferase, as shown in 

previous studies with non-hydrolysable nucleotide analogs [6], this enzymatic activity is 

not intrinsically or directly linked to substrate folding. Rather, the relationship between 

these activities may be driven by structural transitions in the two-domain chaperone and 

interactions with the co chaperones DnaJ and GrpE. 

 

2.4.3 Luciferase refolding is more predictive of cellular heat shock rescue than 
ATPase rate 
 
Using this series of DnaK mutants, it was found that luciferase refolding activity was 

more predictive (R2 = 0.40) than ATPase rate (R2 = 0.15) of heat shock rescue. Although 

ATPase rate clearly did not predict heat shock rescue in this system, it might be more 

predictive of other cellular functions of DnaK, such as lambda phage replication. On the 

other hand, a mild correlation between luciferase folding activity and heat shock rescue 

was observed. However, it is important to note that this correlation is not sufficient to 

describe the factors that control the roles of DnaK during heat shock. This model is 

exemplified by the existence of outliers that were fully active in the luciferase-refolding 

assay but showed a decreased ability to rescue growth at 43 °C, such as R71A and 

L177A. Thus, there are likely additional factors that are important for heat shock rescue. 



64 

 

For example, some of the outliers may be caused by the ability of DnaK mutants to work 

in cooperation with other protein quality control systems involved in heat shock rescue.  

 

Together, these results highlight fundamental aspects of the Hsp70 chaperone system. 

Members of the Hsp70 family, including DnaK, have many measurable in vitro activities 

(e.g. ATP turnover, substrate binding, and folding) that could potentially be used to 

understand in vivo functions (e.g. heat shock rescue, anti-apoptotic activity in cancer 

cells, and modulation of protein aggregation) [5, 63]. Yet, it is not readily obvious which 

in vitro activity of Hsp70 is most predictive of a given in vivo function or whether all in 

vivo functions are equally dependent on a given measurable activity. Future work in this 

area may improve our ability to understand the connection between in vitro and in vivo 

functions of Hsp70 and thereby lead to a deeper mechanistic understanding of the Hsp70 

chaperone system. 

 

As will be described in Chapter 4, one in vivo function I was are particularly interested in 

exploring is the ability of the Hsp70 chaperone system to promote the clearance of the 

microtubule associate protein tau (MAPT/tau). It has been shown that clearance of tau in 

a class of neurodegenerative diseases, termed tauopathies, alleviates some of the 

functional deficits associated with disease [64-66]. It has already observed that several 

inhibitors of the ATPase rate of Hsp70 promote the degradation of tau while stimulators 

promote its stabilization [67]. These results suggest that targeting tau for degradation may 

be an in vivo activity of Hsp70 that is regulated by ATPase rate. To further evaluate this 

hypothesis, other members of Gestwicki group, in collaboration with Chad Dickey’s 
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laboratory, are using the results presented in this Chapter to generate corresponding 

mutations in human Hsp70s, tune its ATPase activity and test the effects of these mutants 

on the stability of tau. One goal of these efforts is to guide our chemical screening 

strategies to identify novel Hsp70 modulators.  

 

2.5 Experimental procedures 

2.5.1 Materials 

Reagents were obtained from the following sources: Platinum Pfx DNA polymerase 

(Invitrogen); pMCSG7 plasmid (Midwest Center for Structural Genomics, Bethesda); 

ATP-agarose column (Sigma); NRLLLTG peptide (University of Michigan Peptide 

Core) [11]; luciferase and SteadyGlo Reagent (Promega, Madison, WI); and ∆dnaK E. 

coli cells (a generous gift from Dr. Ursula Jacob). Furthermore, all absorbance (A) and 

luminescence measurements were performed using a SpectraMax M5 (Molecular 

Devices, Sunnyvale, CA). 

 

2.5.2 Plasmids and protein purification 

The E. coli dnaK and grpE genes were amplified by PCR using Platinum Pfx DNA 

polymerase and inserted into the pMCSG7 plasmid through ligation-independent cloning, 

as described previously [68]. The partial overlapping site-directed mutagenesis primers 

for dnaK were designed based on the report of Zheng et al.[69], and mutagenesis of the 

dnak gene was carried out following the user manual for the QuikChange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA). Twenty nine dnaK mutants were made as 

follows: T12A, K55A, R56A, F67L, R71A, D85A, M89A, P90A, F91A, K106A, E171S, 
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L177A, V192A, Y193A, G198A, T199A, I202A, S203A, E217A, G223A, L227A, 

G228A, E230A, E230Q, D231N, D233A, S234A, K263A, and I373A. The wild type 

(WT) His-tagged DnaK and its mutants were expressed in BL21(DE3) cells and first 

purified by batch purification with nickel-nitrilotriacetic acid His-Bind resin (Novagen, 

Darmstadt, Germany) following the user manual. The His tag of eluted DnaK was then 

removed by His-tagged tobacco etch virus protease (1 mM DTT, 4 °C, overnight 

incubation). After adjusting the MgCl2 and KCl concentration to 10mM, the sample was 

further purified by ATP-agarose column using previously established protocols [70]. 

Finally, the remaining cleaved His tag was removed by nickel-nitrilotriacetic acid 

column. The purification of GrpE followed the same strategy except that the ATP-

agarose column was excluded. DnaJ was purified as described previously [70] with the 

exclusion of hydroxyapatite and Q-Sepharose fast-flow column purification steps and the 

addition of a Superdex 200 gel filtration column (GE Healthcare) to remove 

contaminating ATPase activity. Finally, N-terminal His-tagged J-domain 2–108 was 

purified by nickel-nitrilotriacetic acid column as described above without cleaving the 

His tag. All proteins were concentrated and exchanged into 25mM Tris buffer (10mM 

KCl (150mM KCl for DnaJ), 5 mM MgCl2, pH 7.5) and stored at -80 °C until use. 

 

2.5.3 Circular Dichroism 

WT DnaK and mutants were prepared in 10 mM sodium phosphate buffer (100 mM 

sodium fluoride, pH7.4) and spectra collected at 0.1 mg/ml in a 0.1-cm cuvette at room 

temperature. CD spectra were recorded on a Jasco J-715 spectropolarimeter (Jasco, 

Easton, MD) at 1-nm intervals from 190 to 260 nm at a scanning speed of 50 nm/min and 
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a 5.0 nm bandwidth. Each spectrum reported is the average of 15 scans after the 

subtraction of the base-line spectrum (buffer without the addition of DnaK) and 

normalization (millidegree cm2 dmol-1).  

 

2.5.4 ATPase activity 

This procedure was adapted from a previously described protocol [70]. Briefly, samples 

were prepared with the addition of DnaK, DnaJ, GrpE, NR substrate (NRLLLTG), and/or 

denatured luciferase to a total volume of 15 µl in each well. Next, 10 µl of 2.5mM ATP 

was added to start the reaction. The final concentrations were as follows: ATP (1 mM), 

DnaK (0.5 µM), and NR substrate (100 µM), unless otherwise noted. Intrinsic ATPase 

rate was measured with DnaK (0.6 µM) in the absence of co-chaperones or substrate. 

When ATPase rate was tested as a comparison to refolding activity (see Figures 2.2–2.4), 

guanidine hydrochloride-denatured luciferaseat 8 nM and DnaK at 1 µM were used to 

match the conditions described in the luciferase refolding assay (see below). The final 

concentrations of DnaJ, GrpE, are reported for each experiment under “Results.” For 

steady state conditions, samples were incubated at 37 °C for 1–3 h, and then 80 µl of 

malachite green reagent was added to each well, immediately followed by 10 µl of 32% 

(w/v) sodium citrate. Samples were mixed thoroughly and incubated at 37 °C for 15 min. 

Finally, A620 was measured. All experiments were performed in triplicate, and the signal 

from nonspecific ATP hydrolysis in controls lacking DnaK was subtracted. A phosphate 

standard curve (using potassium dibasic phosphate) was generated each day and used to 
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convert the units to pmol of Pi/µg of DnaK/min. Stimulation curves were evaluated by 

fitting the data using a hyperbolic fit with a non-zero intercept; 

y = Vmax*x / (Km +x) + b 

The nonlinear fit was performed using GraphPad Prism version 4.0 for Windows 

(GraphPad Software, San Diego). 

 

2.4.5 Luciferase refolding 

The luciferase refolding activity of DnaK WT and mutants was evaluated as described 

with minor changes [25]. Briefly, denatured firefly luciferase was prepared by beginning 

with a concentrated stock (8.2 µM) of luciferase with 6 M guanidine hydrochloride in 25 

mM HEPES buffer (50 mM potassium acetate, 5 mM DTT, pH 7.2). This stock was 

incubated at room temperature for 1 h and then diluted to 0.2 µM with the same HEPES 

buffer without guanidine hydrochloride. This preparation was used as the stock solution 

for final sample preparation. Enzyme mix (10 µl) containing DnaK, DnaJ, GrpE, and 

denatured firefly luciferase in 39 mM HEPES (170 mM potassium acetate, 1.7 mM 

magnesium acetate, 3 mM DTT, 12 mM creatine phosphate, 50 units/ml creatine kinase, 

pH 7.6) was first added into each well, and then 4 µl of 3.5 mM ATP, dissolved in water, 

was added to start the reaction. The final concentration of DnaK was 1 µM; denatured 

luciferase was 8 nM, and ATP was 1 mM unless otherwise noted. The concentration of 

DnaJ and GrpE is reported for each experiment under “Results.” After 1 h of incubation 

at 37 °C, equilibrium was reached, and 14 µl of 0.5 or 2% (v/v) SteadyGlo reagent in 50 

mM glycine buffer (30mM MgSO4, 10mM ATP, and 4mM DTT, pH 7.8) was added into 
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each well, and the luminescence was measured. For each experiment, the signal from a 

negative control containing everything but DnaK was subtracted. 

 

2.5.6 Holdase activity 

Native luciferase was diluted to 0.032 µM in 50mM HEPES (10mM MgSO4, 300mM 

KCl, 20mM DTT, pH 7.5) and loaded into a 96-well PCR plate (ThermoFisher) (5 

µl/well). Next, 5 µl of 2 µM DnaK was added in triplicate into the wells containing 

luciferase. The reaction mixtures were heated to 39.5 °C for 8 min, and the samples were 

transferred into a 96-well, opaque, white microtiter plate (ThermoFisher). Next, 10 µl of 

0.5% v/v SteadyGlo reagent, as described above, was added to each well, and the 

luminescence was measured. 

 

2.5.7 Partial proteolysis 

The partial proteolysis protocol was adapted from a previously described method [10]. 

Briefly, samples were prepared with 6 µM DnaK in 40mM HEPES buffer (20mM NaCl, 

8 mM MgCl2, 20 mM KCl, 0.3 mM EDTA, pH 8.0) with 1 mM nucleotide (ADP or 

ATP). Additives such as J-domain (residues 2–108, 4-fold molar equivalents) were noted 

when included. Samples were incubated at room temperature for 30 min. Trypsin (Sigma, 

EC 3.4.2.1.4) was added at a 1:4 (trypsin: DnaK) molar ratio to bring the final volume to 

50 µl. Proteolysis was carried out at room temperature for 20 min, unless otherwise 

noted. The reaction was quenched with the addition of 25 µl of SDS loading buffer 

(240mM Tris, 6% (w/v) SDS, 30% (v/v) glycerol, and 16% (v/v) β-mercaptoethanol, 0.6 
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mg/ml bromphenol blue, pH 6.8) and heated to 95 °C for 3 min. Samples were analyzed 

using a 12% SDS-polyacrylamide electrophoresis gel and stained with Coomassie Blue. 

 

2.5.8 Complementation of the heat shock phenotype in a ∆dnaK strain 

Thermosensitive E. coli ∆dnaK (DE3) cells that expressed target genes under the T7 

promoter were generated using λDE3 lysogenization kit (Novagen) based on the reported 

method of Sugimoto et al. [61]. pMCSG7 plasmids containing dnaK WT and mutant 

genes were transformed into ∆dnaK (DE3) E. coli cells, and transformation with an 

empty pMCSG7 vector served as a negative control. For the complementation assay, a 

single colony of each dnaK mutant was inoculated into 5 ml of LB with 50 µg/ml 

ampicillin and grown with shaking overnight at 30 °C. The next day, all the overnight 

cultures were diluted to A600 = 0.055 by LB containing 50 µg/ml ampicillin and 4 µM 

isopropyl 1-thio-β-D-galactopyranoside. From the diluted culture, a 100-µl aliquot was 

loaded onto a transparent 96-well flat bottom plate (Corning Glass) in triplicate. These 

samples were incubated at 43 °C with shaking for 6 h, and the A600 value for each well 

was measured. The expression of DnaK protein in each clone was verified by adding 4 

µM isopropyl 1-thio-β-D-galactopyranoside to the undiluted overnight culture, 

incubating at 37 °C for 5 h, lysing the cultures, normalizing the protein content, and then 

separating proteins by SDS-PAGE. 
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2.6 Appendix 

2.6.1 Circular dichroism (CD) spectra of WT DnaK and mutants. 
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2.6.2 Holdase activity 

  Holdase activity  
  lum.  error 
  x103 stdev 
no DnaK 2.8 0.8 
WT 12.9 0.1 
E171S 11.3 1.0 
V192A 15.0 0.4 
Y193A 13.3 0.8 
T199A 14.8 0.7 
L177A 21.4 0.8 
I373A 17.5 0.8 
T12A 29.3 0.7 
K55A 21.0 1.1 
R56A 25.1 1.3 
F67L 22.1 1.4 
R71A 20.4 2.2 
D85A 17.5 1.4 
M89A 25.4 0.7 
P90A 20.6 1.6 
F91A 21.8 1.5 
K106A 26.1 1.6 
D233A 22.5 1.0 
K263A 18.8 1.1 
G198A 16.2 1.0 
I202A 15.5 1.0 
S203A 16.7 1.1 
E217A 15.8 1.3 
G223A 15.9 0.5 
L227A 17.7 0.4 
G228A 17.4 0.4 
E230Q 13.2 0.8 
E230A 26.3 1.5 
D231N 8.4 0.6 
S234A 7.7 0.8 

All mutants were tested at 1 µM 
Abbreviations are as follows; 
 luminescence (lum.), standard deviation (stdev), and wild type (WT).  
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2.6.3 Some mutations of DnaK create unstable proteins. 
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2.6.4 Co-chaperone mediated stimulation of ATPase turnover in DnaK wild type 
(WT) and mutants.  
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2.6.5 Surface topology plots for the co-chaperone dependence of wild type (WT) 
DnaK’s luciferase refolding activity and ATPase activity.  
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2.6.6 The intrinsic and DnaJ-stimulated ATPase rates of DnaK mutants were not 
well correlated with their luciferase refolding activities.  
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2.6.7 Partial Proteolysis of DnaK IB subdomain mutants.  
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2.6.8 Control experiments for testing the ability of DnaK mutants to complement the 
growth of ∆dnak (DE3) E. coli cells under heat shock.  
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Chapter 3 

Visualization and functional analysis of the oligomeric states of 
Escherichia coli heat shock protein 70 (Hsp70/DnaK). 

 
3.1 Abstract 

For the Escherichia coli Hsp70, DnaK, it is well known that substrate binding is 

allosterically regulated by ATP hydrolysis, which drives conformational changes within 

the interdomain linker and the substrate-binding domain. In addition, a few groups have 

reported that nucleotide state also influences the homo-oligomerization of DnaK. 

However, the architecture of oligomeric DnaK and its roles in the chaperone cycle remain 

undefined. Towards this goal, either monomeric or oligomeric forms of DnaK were 

stabilized using point mutants, nucleotide analogs, and cross-linking. By negative stain 

electron microscopy, an ensemble of monomers, dimers, and other small, defined 

multimers were observed. Interestingly, oligomeric DnaK retained ATPase activity and it 

protected a model substrate from denaturation, but these structures had greatly reduced 

ability to refold substrate and they did not respond to DnaJ stimulation. Finally, it was 

observed that oligomeric DnaK is present in E. coli lysates and that these structures 

become more prevalent when the cells are exposed to heat shock. Together these studies 

suggest that DnaK oligomers are composed of ordered multimers that are functionally 

distinct from monomeric DnaK. Thus, oligomerization of DnaK might be an important 

step in the chaperone cycle by favoring “holdase” activity and minimizing ATP turnover 

during acute heat shock.  
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3.2 Introduction 

3.2.1 Nucleotide regulates substrate binding by Hsp70s. 

As discussed in Chapters 1 and 2, heat shock protein 70 (Hsp70) belongs to a family of 

highly conserved molecular chaperones that plays central roles in protein homeostasis [1-

3]. Hsp70s have been found to be essential in the cellular response to a variety of 

stressors, including heat shock and oxidation [4-6]. In addition, they have been proposed 

as a promising drug target in a variety of diseases including cancer and 

neurodegeneration [7, 8]. Thus, understanding the structure and function of Hsp70 family 

members is expected to enhance our understanding of cellular proteostasis, while also 

advancing our ability to design new disease treatments. 

 

Towards those goals, extensive studies have focused on the prokaryotic Hsp70, DnaK. 

Like other Hsp70s, E. coli DnaK is a 70-kDa chaperone composed of a nucleotide 

binding domain (NBD) and a substrate binding domain (SBD) [9]. The SBD can be 

further subdivided into a beta sandwich domain, responsible for binding substrates, and 

an alpha helical lid that closes over bound substrates [9]. The NBD and SBD are 

connected by a flexible linker and allosterically link substrate binding to nucleotide 

hydrolysis [10]. In the ATP bound state, DnaK (DnaK-ATP) has relatively weak affinity 

for substrates, but, upon ATP hydrolysis, structural changes lead to an increase in 

substrate affinity by lowering the off-rate [11, 12]. Thus, DnaK is believed to carry out its 

molecular chaperone activities by repeatedly binding and releasing substrate proteins, a 

process made possible by coupling substrate affinity to ATP hydrolysis. Whereas DnaK 



86 
 

alone has a very slow intrinsic ATPase rate, as highlighted in Chapter 2, interactions with 

co-chaperones, DnaJ and GrpE, stimulate ATP turnover. Briefly, DnaJ interacts directly 

with DnaK via a conserved J-domain, and this interaction stimulates the hydrolysis of 

ATP [13]. Furthermore, DnaJ is known to bind exposed hydrophobic regions of unfolded 

proteins [14, 15]. Thus, DnaJ both localizes DnaK to substrate proteins and induces ATP 

hydrolysis. Meanwhile, GrpE serves as a nucleotide exchange factor, leading to the 

release of ADP and the re-binding of ATP by DnaK, a process that releases bound 

substrate proteins and completes the ATPase cycle [14].  

 

3.2.2 Nucleotide-dependent structural changes of DnaK 

Defining the structural changes that occur in response to nucleotide cycling is central to 

understanding the molecular mechanisms by which DnaK functions as a chaperone. 

Consistent with this idea, a wide variety of biochemical and biophysical methods have 

been used to characterize the structural and allosteric changes that occur in response to 

nucleotides. Together, these studies support a model in which the motions of the NBD 

and SBD are coupled in the ATP bound state (DnaK-ATP), which destabilizes the 

substrate binding pocket and favors opening of the alpha helical lid [16-19]. Conversely, 

in the ADP bound state (DnaK-ADP), the NBD and the SBD are observed to move 

independently, ordering the substrate binding pocket and closing the lid. These insights 

have benefitted from structural analyses of both isolated domains [20] and two-domain 

structures. For example, the ATP bound form of DnaK has been modeled based on the X-

ray crystal structure of Hsp110, a distant homolog of Hsp70 [21], whereas the two-

domain solution structure of DnaK-ADP in complex with a peptide substrate has been 
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determined by NMR [9]. Together, these structures and others provide insight into the 

key interfaces involved in nucleotide state-driven changes in structure. 

 

3.2.3 Nucleotide-dependent changes in quaternary structure are not fully 
understood  
 
Despite advances in our understanding of the interdomain allostery in DnaK, other 

nucleotide-dependent structural transitions are less clear. For example, multiple groups 

have noted that, while DnaK-ATP is predominantly monomeric, DnaK-ADP is prone to 

self-oligomerization [22, 23]. Furthermore, oligomerization has also been observed in 

human isoforms of Hsp70, suggesting that it is a conserved structural transition [24-27]. 

To date, these studies suggest that ADP favors Hsp70 self-oligomerization in a 

concentration- and temperature-dependent manner in vitro and that this process is 

reversed with the addition of ATP, excess peptide substrate, and some co-chaperones, 

such as GrpE [23, 28, 29]. Finally, oligomeric forms of human Hsp70s may be present in 

cells [24, 26], and in the case of the ER-resident isoform of Hsp70 called BiP, in vivo 

oligomerization has been shown to be a regulated process that is promoted by post-

translational modifications [30]. Yet, it isn’t clear whether oligomers represent ordered 

multimers (i.e. dimers, trimers, etc) or whether they are disordered aggregates. Further, it 

isn’t clear whether the oligomers are inactivated storage forms of the chaperone or 

whether they play a more active role in the chaperone cycle. The answers to these 

questions are important in advancing our understanding of Hsp70 structure and function. 
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3.2.4 Our approach to probing the structure and function of oligomeric DnaK 

We hypothesized that oligomerization of DnaK may result in the formation of distinct, 

higher ordered structures that could have functional relevance in the chaperone cycle. To 

evaluate this idea, electron microscopy (EM), cross-linking, and biochemical 

measurements were utilized to explore the architecture and function of DnaK oligomers. 

Whether these oligomers could be found in cells and if thermal stress could impact their 

formation was also explored. Together, these studies suggest that DnaK is preferentially 

assembled into dimers, trimers, and other small oligomers in response to ADP and that 

these structures are functionally distinct from monomeric DnaK. 

 

3.3 Results 

3.3.1 Self-oligomerization of DnaK is influenced by the nucleotide state  

As mentioned above, several studies have noted that DnaK and other Hsp70 family 

members form multimers [22-26]. As a preface for studies into the architecture and 

function of these assemblies, DnaK was expressed and purified (Appendix 3.1) and 

performed gel filtration studies on the ATP and ADP bound states. Consistent with 

previous reports [23], it was observed that DnaK-ATP was primarily monomeric, while 

DnaK-ADP samples contained higher order oligomers (Figure 3.1A, Appendix 3.1). The 

apparent molecular weights of these peaks (monomers and oligomers ranging from 110 to 

670 kDa) were consistent with previously reported values [23]. Next, to control for any 

effects of intrinsic ATP hydrolysis, the oligomerization of the T199A mutant of DnaK, 

which is unable to hydrolyze ATP, was evaluated (Appendix 3.1, Appendix 3.2) [16]. As 
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expected, DnaK-T199A in the ATP bound state was primarily monomeric by gel 

filtration, supporting the idea that the ATP bound form is largely a monomer.  

To further clarify the size distribution of multimers that could isolate by gel filtration, 

each of the gel filtration fractions was evaluated by both denaturing and native gel 

electrophoresis. As expected, ADP favored oligomerization based on the abundance of 

DnaK bands in earlier fractions (Figure 3.1B). Furthermore, monomer and dimer bands 

were observed, even in early fractions of our DnaK-ADP sample, suggesting that these 

structures are in a dynamic equilibrium, as previously described [23] (Figure 3.1B). 

Notably, a small amount of dimeric DnaK was also observed in the presence of saturating 

concentrations of ATP (Figure 3.1B). Together, these results suggest that DnaK 

reversibly forms oligomers, including dimers, and that this balance is influenced by 

nucleotide.  

 

3.3.2 DnaK oligomerization occurs within cells and is increased in response to heat 
and elevated expression  
 
Having confirmed that DnaK forms oligomers in vitro, next this study aimed to 

understand whether this process could occur within E. coli cells. Towards this goal, E. 

coli cellular lysates were seperated by gel filtration and evaluated fractions by western 

blot analysis for DnaK in both denaturing and native gel electrophoresis. In cells grown 

to mid-log phase at 30°C, bands consistent with the molecular mass of monomeric and 

dimeric forms of DnaK were observed (Figure 3.1C). These results suggest that DnaK 
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homo-oligomerizes in vivo. Next, this study assessed if cellular stresses might impact the 

 

relative abundance of oligomeric DnaK. Consistent with previous findings, the total 

amount of DnaK was significantly elevated in response to heat shock (Appendix 3.3) [5, 

31, 32]. In addition, it was observed that DnaK eluted in earlier fractions under these 

conditions (Figure 3.1C), suggesting that it may also be forming higher ordered 

structures. When these fractions were analyzed by native gel electrophoresis, DnaK was 

found to be assembled into a discrete series of bands with molecular weights consistent 

with the trimeric, dimeric, and monomeric forms (Figure 3.1C). Although it is not yet 

possible to ascribe these changes in oligomerization to a specific mechanism, these 

findings suggest that DnaK forms oligomers in cells under normal growth conditions and 
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that these structures are favored in response to heat stress. Next, we evaluated if this 

response also occurred in cells facing hydrogen peroxide-induced oxidative stress or 

stress arising from the stationary phase of cellular growth. Consistent with previous 

reports [6, 33-35], these stresses elevated total DnaK levels, but, interestingly, they did 

not appreciably alter the extent of oligomerization (Appendix 3.3). This result suggests 

that an increase in DnaK oligomerization is not a general response to cellular stressors. 

Finally, whether increasing the levels of DnaK, in the absence of heat stress, would be 

sufficient to induce oligomerization in cells was tested. To test this idea, DnaK was 

overexpressed, under an inducible promoter, in a Δdnak E. coli strain and found that high 

DnaK levels were sufficient to increase the oligomerization of DnaK (Appendix 3.3), 

suggesting that the amount of oligomeric DnaK within cells is sensitive to its expression 

level. 

 
3.3.3 DnaK oligomerization is dependent on its concentration, substrate, and co-
chaperones  
 
Given the presence of DnaK oligomers within cells, we wanted to better understand the 

requirements for forming these complexes. Previous work has demonstrated that DnaK 

self-oligomerization in the ADP bound state occurs in a concentration dependent manner 

and that ATP, excess peptide substrate, or GrpE led to monomerization [23, 28]. In our 

hands, very similar results were observed (Appendix 3.4). Furthermore, the J-domain of 

DnaJ also led to the monomerization of DnaK-ADP (Appendix 3.4D) [36]. Thus, all the 

components of the active DnaK molecular chaperone cycle (i.e., substrate, J-domain, and 

GrpE) promoted monomerization.  

 



92 
 

3.3.4 Oligomers of DnaK retain ATPase and “holdase” activities but have reduced 
“foldase” activity  
 
These findings lead us to wonder if oligomeric DnaK may represent an enzymatically or 

functionally inactive pool that might be rapidly monomerized by interaction with other 

components of the DnaK chaperone system. However, this model seems to be in conflict 

with the observation of increased oligomerization in response to heat stress (see Figure 

3.1C), a condition that actively requires DnaK for viability [5]. Therefore, this study 

wanted to directly test whether DnaK oligomers have normal or attenuated chaperone 

activities in vitro. The technical challenge in addressing this issue is the dynamic 

equilibrium between monomeric and oligomeric DnaK, which makes it difficult to 

specifically evaluate their individual biochemical properties. To circumvent this problem, 

chemical cross-linking was utilized to stabilize oligomeric DnaK. Because the covalent 

modification of a protein using a chemical cross-linker can sometimes result in 

deleterious effects, it was essential to control for changes attributable to the cross-linking 

reaction. First, DnaK-ATP and DnaK-ADP samples were treated with the quenching 

reagents prior to adding the cross-linker (0.025% gluteraldehyde; see “Experimental 

Procedures” for details). As expected, this treatment left DnaK largely monomeric in both 

the ATP and ADP bound states (Figure 3.2A). Thus, these samples served as controls for 

the buffer conditions and handling steps that occur during the reactions. Next, cross-

linking was performed on both DnaK-ADP and DnaK-ATP samples using 0.025% 

glutaraldehyde for 20 minutes. It was expected that higher order structures might be 

stabilized in both samples but that the ADP sample may be enriched for oligomers. When 

the samples were visualized by gel electrophoresis, bands consistent with oligomers and 

monomer were indeed observed in both ATP and ADP samples, and there was an 
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increase in oligomers (57 ± 5 %) in the presence of ADP as compared to ATP (40 ± 4 %) 

(Figure 3.2A). Oligomers larger than dimers were especially enriched in the ADP sample 

(33 ± 5 % vs. 16 ± 4%). Next, the intrinsic ATP hydrolysis activity of these crude 

mixtures was tested. We reasoned that an inactivated pool of oligomeric DnaK might 

have attenuated ATPase activity, reducing the apparent activity of the mixture. On the 

contrary, it was observed that cross-linked DnaK-ADP had a 1.5-fold faster rate (0.33 

min−1) than the equivalent DnaK-ATP sample (0.22 min−1; Figure 3.2B, Table 3.1). Also, 

the cross-linked DnaK-ATP sample retained an intrinsic ATPase rate similar to the other 

control samples (0.20 and 0.18 min−1). Thus, ADP-promoted oligomers of DnaK appear 

to retain enzymatic activity, and moreover, they may have a slightly higher intrinsic 

ATPase rate.  

 

Alone, DnaK has a low ATPase rate, and it depends on the co-chaperone DnaJ to greatly 

increase its ATPase activity. Furthermore, DnaJ is required for active refolding of 

denatured proteins [14, 37, 38]. Thus, whether the cross-linked, oligomeric DnaK could 

participate in DnaJ-dependent processes was evaluated. By measuring ATPase activity in 

the presence of increasing DnaJ levels, we observed that DnaK oligomers (K-ADP cx) 

had significantly reduced ability to respond to this co-chaperone (Figure 3.2C), with a 
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decrease in the apparent Vmax for DnaJ (19 pmol Pi/µg DnaK/min) (Table 3.1). 

Conversely, the control samples (K-ATP and K-ADP) and the cross-linked DnaK-ATP 

sample (K-ATP cx) had Vmax values (33, 27, and 31 pmol Pi/ µg DnaK/min, 

respectively), similar to unmodified chaperone. Additionally, the DnaK oligomers 

demonstrated a mildly increased apparent Km (0.39 μM), compared to control samples 

(0.20, 0.21, and 0.28 μM respectively). Similar results were seen with samples that were 

further enriched for oligomeric DnaK by gel filtration following cross-linking (Figure 

3.2E and F). Together, these results suggest that oligomeric DnaK is deficient in DnaJ-

mediated ATPase stimulation. It was also probed if the ATPase rate of oligomeric DnaK 

was deficient in stimulation by either peptide substrate or GrpE. In fact, oligomeric DnaK 

had a decreased ability to be stimulated by the NRLLLTG peptide (Appendix 3.5C), but 

no change in its ability to be stimulated by GrpE was observed (Appendix 3.5D).  

 

Based on these results, it was hypothesized that oligomeric DnaK may also be unable to 

refold luciferase from a denatured state because this is a DnaJ-dependent process that is 

commonly termed “foldase” activity [37, 38]. To test this hypothesis, we evaluated 

whether DnaJ could restore active luciferase in combination with either the control or 

cross-linked DnaK samples. The cross-linked DnaK-ADP was found to have a much 

lower refolding activity compared to the controls or cross-linked DnaK-ATP (Figure 

3.2D). Thus, oligomeric DnaK did not respond normally to DnaJ-mediated stimulation of 

either ATPase or luciferase refolding activity.  
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This study next evaluated whether oligomeric DnaK could still bind a substrate protein, 

using the well-studied 

firefly luciferase as a 

model substrate [29, 37]. 

In these studies, 

denatured luciferase was 

immobilized in microtiter 

plates and measured the 

equilibrium binding of 

DnaK using an anti-DnaK 

antibody. In the presence 

of excess ADP, non-

cross-linked DnaK binds 

substrate with an almost 

ten-fold lower apparent 

KD than in the presence 

of ATP (Appendix 3.6), 

consistent with the known 

allosteric link between 

nucleotide state and substrate affinity. However, in our study, an excess of ATP was 

utilized in the assay buffer of all tested samples; thus, pre-incubating DnaK with either 

ATP or ADP during the cross-linking reaction did not greatly affect the apparent affinity 
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(Figure 3.3A, Table 3.1). To our surprise, this method revealed that oligomeric DnaK 

retained full binding to luciferase (Figure 3.3A, Table 3.1), suggesting that oligomeric 

DnaK is able to bind substrate proteins. To confirm this conclusion and test whether 

binding might arise from non-specific interactions that can sometimes be induced by 

cross-linking, we also tested the substrate-binding activity of the truncated nucleotide-

binding domain of DnaK (NBDL). It was found that the untreated NBDL had only a 

weak non-specific binding (apparent KD >3 μM) and that this interaction was not changed 

after cross-linking with 0.025% glutaraldehyde for 20 min (Appendix 3.6). This result 

supports the conclusion that oligomeric DnaK retains its ability to bind substrate proteins 

via its SBD.  

 

To confirm this interaction in a different experimental platform, we evaluated the ability 

of stabilized DnaK oligomers to protect native luciferase from terminal heat denaturation, 

which is a chaperone function that is commonly called “holdase” activity. In this assay, 

native luciferase was exposed to elevated temperatures, a process that is sufficient to heat 

inactivate the enzyme in the absence of chaperone. DnaK is known to limit this terminal 

denaturation, allowing luciferase to spontaneously reactivate when returned to room 

temperature. We found that both cross-linked DnaK-ATP and DnaK-ADP retained full 

“holdase” activity (Figure 3.3B, Table 3.1). Again, cross-linked NBDL was tested under 

the same conditions and found that it lacked this activity (Appendix 3.6). Furthermore, 

the DnaK substrate (NRLLLTG) inhibited the “holdase” activity of both cross-linked 

DnaK-ATP and DnaK-ADP samples (Appendix 3.7). Together, these results suggest that 

oligomeric DnaK retains the ability to bind substrate proteins through its substrate-



98 
 

binding domain. Further, these biochemical findings suggest that oligomeric DnaK 

retains many chaperone functions, including “holdase” ability but that it is functionally 

distinct from monomeric DnaK because it partially loses some J-stimulated functions. 

 

3.3.5 Multimeric DnaK-ADP is visualized by electron microscopy 

In theory, oligomerization of DnaK could result from unfolded monomers being bound as 

substrates, resulting in relatively disordered multimers. Conversely, these structures could 

result from the ordered assembly of intact monomers. To better differentiate between 

these possibilities, DnaK-ADP samples were visualized by electron microscopy (EM) 

(Appendix 3.8). In doing so, we were able to make several important observations. First, 

it was observed that monomeric DnaK was readily visible and its two-domain 

architecture could be resolved, despite its relatively small size (70-kDa). Secondly, 

numerous structures that appeared to be small, oligomeric forms of DnaK were observed 

(Appendix 3.8). Importantly, these oligomeric forms were not disordered aggregates; 

rather, they seemed to represent an ensemble of structurally defined multimers, with sizes 

roughly corresponding to dimers, trimers, and other small oligomers.  

 

To better understand the protein architectures present in the DnaK-ADP samples, 

reference-free alignment and classification of 6,090 particle projections into 150 classes 

was performed (Appendix 3.8). Representative class averages are shown, and these 

clearly demonstrate the presence of monomeric, dimeric, and small multimeric forms of 

DnaK (Figure 3.4B). For reference, a ribbon representation of the homology model of 

DnaK-ATP, based on the yeast Hsp110 (Sse1) crystal structure (PDB: 2QXL) [21], and 
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the monomeric DnaK-ADP structure (PDB: 2KHO) [9] are shown (Figure 3.4A). If the 

dimeric and oligomeric forms of DnaK that were visualized by EM were similar to those 

seen in the previous biochemical studies (e.g., gel filtration), one would expected that 

they would monomerize in the presence of excess peptide substrate. To test this idea, the 

NRLLLTG peptide substrate (400 μM) was added, 6,098 particles were collected, and, as 

previously described, reference-free alignment and classification into 150 classes was 

applied (Appendix 3.9). As expected, a dramatic increase in the number of particles 

classified as monomers was observed as well as a corresponding decrease in those 

classified as dimers (Figure 3.4B and C, Appendix 3.8, and Appendix 3.9). Thus, we 

conclude that reversible multimers of DnaK are assembled from individual, folded 

monomers. 

 

3.4 Discussion 

Oligomerization of DnaK and other Hsp70s has been observed in vitro and in cellular 

studies [23, 24, 26, 30, 39]. However, the possible roles of these oligomers have not been 

clear. One hypothesis is that oligomeric DnaK may represent an inactive pool that can be 

rapidly monomerized and activated when needed. However, this model had not been 

directly tested. Furthermore, the structure of these oligomers was not clear, and so it was 

not certain if they were assembled from folded or unfolded monomers. Herein, we aimed 

to better understand nucleotide-dependent changes in DnaK oligomerization to clarify the 

possible roles of these structures within the chaperone cycle.  
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3.4.1 DnaK oligomerization in vivo  

One of our questions was whether DnaK oligomers are present in cells and whether any 

common stresses might influence their relative abundance. Using gel filtration and native 

gel electrophoresis on E. coli lysates, bands consistent with monomeric, dimeric, and 

trimeric forms of DnaK were observed under resting conditions (Figure 3.1C). It is 

possible that these bands could represent DnaK–substrate complexes, but the repeating 

separation values of 70 kDa suggest that these bands are homo-multimers. Interestingly, 

oligomeric DnaK levels increased in response to heat stress (Figure 3.1C). This result is 

consistent with previous work on human cells, where the stress inducible Hsp70 isoform 

(Hsp72) and the constitutively active isoform (Hsc70) have been found to form 

oligomeric structures in response to heat stress [24]. Thus, we conclude that DnaK, like 

other Hsp70s, samples both monomeric and oligomeric forms in vivo.  

 

A variety of mechanisms could explain the increase in oligomeric DnaK in response to 

heat stress. For example, heat stress is known to increase expression of this chaperone 

[31]; thus, a simple model is that increases in protein concentration lead to enhanced 

oligomerization. Consistent with this idea, overexpression of DnaK increases 

oligomerization (Appendix 3.3). Another explanation is that heat stress might change the 

ratio of ATP and ADP bound DnaK. At high temperatures, the co-chaperone GrpE is 

known to be partially unfolded and become less active [40-42]. Because GrpE normally 

catalyzes ADP release, its inactivation might be expected to favor accumulation of the 

ADP bound state. In what could be a related finding, it has also been shown that the 

human ER resident Hsp70, BiP, self-oligomerizes in response to glucose deprivation 
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[30]. Glucose deprivation depletes cellular ATP, and thus, these conditions might also be 

expected to promote the ADP bound (or nucleotide free) conformation. However, an 

increase in DnaK oligomerization was not observed under hydrogen peroxide-induced 

oxidative stress or during stationary phase (Appendix 3.3). Much like glucose 

deprivation, both of these stress conditions increase the expression of DnaK and deplete 

cellular ATP [4, 6, 34, 35, 43, 44]. Clearly, further work is required to fully understand 

the mechanism by which oligomeric DnaK increases in response to heat stress.  

 

It is important to note that DnaK oligomerization in response to specific types of 

oxidative stress has been well characterized by Jakob and colleagues [6, 45, 46]. In 

response to a combination of heat stress and hypochlorous acid, they found that DnaK 

becomes oligomeric and inactivated in a reversible fashion. At the same time, Hsp33 is 

activated, and this chaperone becomes responsible for cellular protection. Thus, in 

response to these stress conditions, E. coli clearly inactivates DnaK and transitions to an 

Hsp33- based protection mechanism. This study focused instead on different stress 

conditions, namely, heat stress alone or hydrogen peroxide treatment under normal 

growth temperatures, which are known to activate the DnaK chaperone system and, 

moreover, rely on its molecular chaperone activity to maintain viability [4, 6]. This 

approach was utilized in an effort to understand potential differences in the way that 

DnaK responds to stresses that have distinct requirements for its activity. Combined with 

the findings of the Jakob group, the results suggest that DnaK may be able to form 

multiple types of oligomers, some of which have partial activity while others do not. 

Taking this conclusion further, the increase in oligomerization observed during heat 
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shock may confer a selective advantage (under some conditions) by creating an active 

form possessing distinct chaperone activities from the monomer.  

 

3.4.2 DnaK oligomers are small, defined multimers 

 A major goal of this effort was to determine whether oligomeric DnaK was a product of 

non-specific interactions or whether these higher molecular weight structures represented 

oligomeric states assembled from well-behaved and properly folded monomers. Electron 

microscopy has recently been applied to the study of other Hsp70-related processes [47-

49]. Therefore, it seemed possible that this method could be used to explore DnaK 

oligomer structures, despite their small size. In these experiments, it was found that, for 

most of the monomeric DnaK particles, the two-domain architecture is clearly present. 

Moreover, DnaK-ADP samples contained small, defined oligomers (see Figure 3.4). It 

was also found that monomers could be released from the oligomers by substrate, 

suggesting a dynamic exchange between monomers and discrete multimers. Together, 

these findings are supportive of multimers being composed of individual folded 

monomers. In further support of this idea, cross-linked DnaK-ADP samples retained 

ATPase and “holdase” activity, which is expected of functional monomers assembled 

into multimers.  

 

3.4.3 DnaK oligomers are functional “holdases” but inactive “foldases”  

Another major question is whether DnaK oligomers retain any of the chaperone functions 

of the well-studied monomer. This question is important because the current models for 

ATPase cycling and chaperone activity do not take into account any change in DnaK’s 
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oligomerization, yet it appears to form in cells. In fact, it was assumed that the oligomers 

may serve as a reservoir of inactive chaperone. To test this idea, a number of chaperone 

functions were evaluated in vitro and it was found that DnaJ could not stimulate DnaK 

oligomers in either ATPase assays (see Figure 3.2C) or luciferase refolding experiments 

(see Figure 3.2D). However, DnaK oligomers retained many other chaperone functions, 

such as stimulation by GrpE. Furthermore, it retained the ability to bind luciferase and 

protect it from terminal heat denaturation (“holdase” activity). Consistent with this 

finding, oligomeric DnaK is known to bind lambda P [22], and oligomeric BiP still binds 

its peptide substrates [39]. Furthermore, while studying pre-steady state kinetics, Farr and 

Witt [50] observed results consistent with the formation of an oligomeric DnaK–peptide 

complex. Although one can never fully exclude the possibility of cross-linking artifacts, 

our results and these previous studies [22, 39, 50] support the idea that oligomeric DnaK 

is capable of binding to substrate proteins. Thus, we hypothesize that oligomerization 

largely converts DnaK from a co-chaperone dependent “foldase” to a co-chaperone 

independent “holdase” (Figure 3.5).  

 

This finding could have an important impact on the field’s understanding of DnaK 

biology because, under heat stress conditions, the enzyme might be required to 

predominately act in a “holdase” capacity until conditions improve. Such a model would 

be consistent with oligomerization providing a selective advantage under conditions of 

heat stress.  
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3.4.4 DnaK is structurally heterogeneous  

Recent NMR studies have suggested that the NBD and SBD of DnaK sample a number 

of relative orientations in the ADP + peptide state [9]. Consistent with this idea, the two 

domain structure of DnaK was successfully visualized by EM (Figure 3.4B) and the 

domains are present in a variety of relative orientations (e.g. some DnaK molecules were 

elongated, whereas others were compact and more reminiscent of the Hsp110 crystal 

structure [21]). Although some of this diversity could certainly be attributed to stain 

drying artifacts or deformations on the carbon support of the EM grid, recent studies 

using EPR and FRET have also observed multiple inter-domain conformations of Hsp70s 

in both the ATP and ADP bound state [51, 52]. Moreover, the work of Schlecht et al. 

[52] further highlights the functional importance of this conformational heterogeneity. 

They found that DnaK adopts a variety of open and closed forms that permit flexibility 

during binding to substrate proteins with different topologies. Thus, a recurring theme is 

that Hsp70-class chaperones sample a variety of possible conformations. Although their 
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substrates, co-chaperones, and nucleotide ligands can shift this balance, they rarely trap 

the chaperone in a uniform state. For DnaK, our results suggest that this structural 

heterogeneity should further include allowances for formation of higher ordered 

multimers.  

 

3.4.5 DnaK oligomerization interface and its potential for small molecule 
modulation  
 
The EM work has clearly demonstrated that oligomeric DnaK has a defined architecture 

made up of intact monomers. Furthermore, these oligomers retain some chaperone 

activities, including substrate binding, while losing the ability to refold substrates or be 

stimulated by the co-chaperone DnaJ. Thus, we postulate that oligomeric DnaK is formed 

via a definable interaction surface that could potentially be exploited to regulate 

chaperone activity. For example, promoting oligomerization of human Hsp70s might 

block some chaperone functions, perhaps rendering cancer cells more susceptible to 

apoptosis [53].  

 

However, what is the nature of this interface for oligomerization? Although molecular 

structures have remained elusive, previous work and our studies provide some clues. For 

example, Ladjimi and colleagues found that the SBD, but not the NBD, of a human 

Hsp70 retains the ability to oligomerize [28, 54]. Other evidence also points to the SBD 

being the major site of inter-monomer contacts in BiP [55]. Interestingly, deletion of the 

10-kDa C-terminus of Hsp70 does not affect oligomerization [56], suggesting that the 

entire SBD is not required. The fact that oligomerization seems to be primarily mediated 

through the SBD, along with the observation that many of the factors that promote 
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monomerization also promote peptide release, has appropriately lead to the hypothesis 

that DnaK oligomerization may be mediated through the substrate binding pocket [28, 

54]. However, several groups have demonstrated that oligomeric DnaK can still bind 

substrates [22, 39, 50], suggesting that any SBD-mediated interface must leave a free 

substrate-binding region available in at least one DnaK molecule within the oligomer. In 

support of this model, our results again demonstrate that oligomeric DnaK is still able to 

bind substrate (see Figure 3.3). This result suggests that some of the substrate-binding 

pockets within DnaK oligomer are left unoccupied. Further work is required to define the 

interface(s), but these results suggest that this contact surface might be a good place to 

target with chemical probes. Recent success by other members of the Gestwicki 

laboratory in targeting protein–protein interfaces in the chaperone complex support this 

idea [57, 58]. 

 

3.5 Experimental procedures 

3.5.1 Materials  

Reagents utilized throughout this study were obtained as follows: ATP-agarose column 

(Sigma, St. Louis, MO, USA), NRLLLTG peptide (University of Michigan Peptide Core) 

[59], luciferase, and Steady-Glo Reagent (Promega, Madison, WI, USA). The optical 

density and luminescence measurements were performed using a SpectraMax M5 

multimode plate reader (Molecular Devices, Sunnyvale, CA, USA).  

 

3.5.2 Plasmids and protein purification 

 Wild-type E. coli DnaK, the DnaK mutant T199A, E. coli DnaJ and E. coli GrpE were 

purified as previously described [60]. When eluting DnaK from the ATP-agarose column, 
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samples to be tested in the ADP bound state were eluted using ADP. All proteins were 

concentrated and exchanged into EM buffer [25 mM HEPES buffer pH 7.4, 20 mM KCl 

(150 mM KCl for DnaJ), 5 mM MgCl2] and stored at −80°C until use. DnaK to be used 

for EM was never frozen and further purified by Superdex 200 gel filtration column (GE 

Healthcare, Piscataway, NJ, USA). DnaK NBDL (residues 1–392) was purified by the 

same approach. The nucleotide state of DnaK was established by pre-incubating with 

either 1 mM ATP or ADP for 30 min at 4°C, which gave the expected change in 

tryptophan fluorescence (Appendix 3.1).  

 

3.5.3 Gel filtration  

Samples were prepared with 14 μM DnaK (unless otherwise indicated), 1 mM nucleotide, 

and the indicated amount of NRLLTG (NR) peptide, J-domain, or GrpE in EM buffer. 

Samples were allowed to equilibrate at 4°C for >30 min. A sample of 300 μL was 

separated into fractions (1 mL) using a Superdex 200 gel filtration column (GE 

Healthcare, Piscataway, NJ, USA) in EM buffer at a flow rate of 0.6 mL/min. 

Absorbance at 285 nm was monitored and normalized according to the nucleotide peak to 

control for variations in injection volumes. Gel electrophoresis For denaturing gel 

electrophoresis, samples were denatured with 3× sodium dodecyl sulfate (SDS) 

denaturing loading dye (1×: 80 mM Tris–HCl pH 6.8, 10% v/v glycerol, 5.3% v/v β-

mercaptoethanol, 2% w/v SDS, 0.01% w/v bromophenol blue) and heating to 95 °C for 2 

min. Samples were then separated for 1 h at 200 V using a 10% SDS-PAGE gel. For 

native gel electrophoresis, samples were prepared by adding 3× native loading dye (1×: 

80 mM Tris–HCl pH 6.8, 10% v/v glycerol, 0.01% w/v bromophenol blue). Samples 
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were separated for 4–6 h at 120 V and 4°C using a 4–20% Tris–HCl native gel (Biorad, 

Hercules, CA, USA) in Tris–acetate running buffer (30 mM Tris–HCl pH 8.0, 0.1% v/v 

acetic acid, 1 mM EDTA).  

 

3.5.4 Monitoring DnaK oligomerization in lysates  

W3110 cells were grown to mid-log phase at 30 °C in Luria–Bertani (LB). Cells were 

then either left at 30 °C in LB or subject to a specific stress for 1 h. Heat stress conditions 

were achieved by moving the mid-log phase culture to 43°C [5]. Oxidative stress was 

applied with the addition of 4 mM H2O2 [4, 6]. To probe the effect of DnaK over-

expression, Δdnak (DE3) cells transfected with wild-type DnaK under a T7- promoter 

were utilized [57]. Cells were grown to mid-log phase at 30°C, and DnaK expression was 

induced by isopropyl β-D-1-thiogalactopyranoside for 1 h. Following growth, cultures 

were immediately moved to an ice-water bath (4°C) and diluted to have an absorbance at 

600 nM (A600) of 0.4 and pelleted. Cells were lysed by resuspending the pellet in 500 μL 

of lysozyme reaction buffer [1 mg/mL lysozyme in 50 mM Tris–HCl pH 8.0, 2 mM 

EDTA, 200 μM phenylmethanesulfonylfluoride (PMSF)] for 30 min at 4°C, followed by 

the addition of 500 μL of 2× DNAase I reaction buffer (60 μg/mL DNAse I, 50 mM Tris–

HCl pH 8.0, 4 mM MgCl2, 12 mM CaCl2, 200 μM PMSF). After 10 min, cells were 

sonicated using a microtip (ThermoFisher Waltham, MA, USA) at 60% for 20 s. Cell 

debris was pelleted by centrifugation at 13.2 rpm for 15 min, and the resulting 

supernatant was passed through a 20-μm filter. Lysates were subsequently analyzed as 

described above. For the Western blots, gels were transferred to 0.2 μm Protran 

nitrocellulose (Whatman, Piscataway, NJ, USA). The membrane was blocked with 5% 
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w/v milk in TBS-T (25 mM Tris–HCl pH 7.4, 140 mM NaCl, 0.1% Tween 20) and 

probed with 1:500 mouse monoclonal anti-DnaK antibody (Assay Designs/Enzo Life 

Sciences, SPA-880F, Plymouth Meeting, PA, USA) followed by an horseradish 

peroxidase (HRP)-conjugated goat anti-mouse IgG (Anaspec, 28173, Fremont, CA, 

USA). Western blots were developed using the Western Lightning Plus-ECL kit 

according to the manufacturer’s protocol (PerkinElmer, Waltham, MA, USA).  

 

3.5.5 Cross-linking  

Samples were prepared with 14 μM DnaK (or DnaK NBDL) and 1 mM nucleotide in EM 

buffer and allowed to equilibrate at 4°C for >30 min. Samples were then moved to room 

temperature and 0.025% v/v glutaraldehyde in EM buffer was added to each. The 

reactions were quenched by addition of 100 mM glycine (pH 8.0). This quenching step 

was either performed immediately (for the control samples) or after incubating the 

solutions for 20 min at room temperature. To evaluate the cross-linking efficiency, 10 μL 

of each sample was evaluated by denaturing gel electrophoresis as described above. 

Furthermore, cross-linked samples were consistently tested for activity in DnaJ-mediated 

ATPase stimulation as a quality control measure. When testing these samples in the 

biochemical assays, they were diluted into assay buffer containing 1 mM nucleotide. 

Each biochemical assay was carried out on at least two independently cross-linked 

samples. The results depicted in Figures 3.2 and 3.3 are from a single, representative 

experiment performed in triplicate. The values reported in Table 3.1 were obtained by 

fitting the results from all replicates.  
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3.5.6 ATPase activity  

This procedure was adapted from a previously described protocol [61]. Briefly, the final 

concentration of DnaK was 0.5 μM, unless otherwise noted. In each experiment, the 

signal from non-specific ATP hydrolysis in a control lacking DnaK was subtracted. In 

testing GrpE stimulation, 0.5 μM DnaK was tested in the presence of 0.5 μM DnaJ and 

200 μM NRLLLTG peptide. DnaJ, NRLLLTG, and GrpE stimulation curves were 

evaluated by fitting the data using a hyperbolic fit with a non-zero intercept. The non-

linear fit was performed using GraphPad Prism version 5.0 for Windows (GraphPad 

Software San Diego, CA, USA). For clarity, graphs in Appendix 3.5 were transformed to 

obtain a zero y-intercept for all samples.  

 

3.5.7 Luciferase binding  

The procedure for DnaK binding to luciferase was adapted from a previous report [62]. 

Briefly, firefly luciferase (61.3 μM) was denatured by incubation with 6 M GuHCl for 1 h 

at room temperature and diluted to 100 nM for storage. Aliquots (50 μL) were added to 

each well of 96-well plates (Thermo Fisher, clear, nonsterile, flat bottom, Waltham, MA, 

USA), and these plates were then incubated for 2 h at 37°C. The wells were washed with 

150 μL of TBS-T (3×3 min, rocking). To these wells, 50 μL of a DnaK or DnaK NBDL 

solution (at indicated concentrations) in binding buffer (25 mM HEPES pH 7.2, 150 mM 

NaCl, 20 mM KCl, 5 mM MgCl2) with 1 mM ATP was added to each well and allowed 

to bind at room temperature while rocking overnight. After washing (3×3 min, rocking) 

with TBS-T, 5% w/v milk in 100 μL of TBS-T was added to each well for 5 min. Next, 

the primary antibody was added (1:5,000 dilution of rabbit anti-DnaK (Abcam, ab80161, 
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Cambridge, MA, USA) in TBS-T, 50 μL/well), and the plates were incubated for 1 h at 

room temperature. Wells were again washed with TBS-T, followed by addition of the 

secondary antibody [1:5,000 dilution HRPconjugated goat anti-rabbit (Anaspec, 28177, 

Fremount, CA) in TBS-T, 50 μL/well], and the plates were incubated for 1 h at room 

temperature. Finally, wells were washed one last time with TBS-T (3×3 min, rocking) 

and developed for 2 min using a TMB substrate kit (Cell Signaling Technology, Danvers, 

MA, USA). The absorbance was measured at 450 nM. In each experiment, the signal 

from non-specific binding of DnaK to empty control wells was subtracted. Binding 

curves were fit using hyperbolic fit with a non-zero intercept with GraphPad Prism 

version 5.0 for Windows (GraphPad Software, San Diego, CA, USA).  

 

3.5.8 Luciferase “holdase” assay 

“Holdase” activity was evaluated as described with minor changes [60]. The final 

concentrations per well were 0.016 μM luciferase and 1 mM ADP. After the reaction 

mixture was heated to 39.5°C for 8 min, 10 μL of the samples were transferred into 96-

well, opaque white assay plate (Thermofisher, Waltham, MA, USA) and then 10 μL of 

5% v/v SteadyGlo reagent in 50 mM glycine buffer (30 mM MgSO4, 10 mM ATP, and 4 

mM dithiothreitol, pH 7.8) was added into each well. Results were again fit using a 

hyperbolic fit with a non-zero intercept.  

 

3.5.9 Luciferase refolding assay 

Luciferase refolding activity was evaluated as described with minor changes [38]. The 

final concentrations were 1 μM DnaK, 100 nM denatured luciferase, and 1 mM ATP. 
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After 1 h of incubation at 37°C, 14 μL of 2% v/v SteadyGlo reagent was added into each 

well, and the luminescence was measured. For each experiment, the signal from a 

negative control containing everything, but DnaK was subtracted.  

 

3.5.10 Electron microscopy  

Samples were prepared containing 14 μM DnaK, 1 mM ADP, with/without 400 μM 

NRLLTG peptide (substrate), and allowed to equilibrate at 4°C for >30 min. Samples 

were then separated using a Superdex200 gel filtration column in EM buffer as described 

above. A fraction from between 13.8 and 14.0 mL was collected and immediately 

prepared for EM using a conventional negative staining protocol [63]. Briefly, eluted 

fractions were diluted 100× into EM buffer containing 1 mM ADP or 1 mM ADP + 400 

μM substrate, as indicated, and 2 μL of the sample was adsorbed to a glow discharged 

carbon-coated copper grid (Electron Microscopy Sciences, Hatfield, PA, USA) and 

stained with 0.75% uranyl formate (Polysciences Inc, Warrington, PA, USA) solution. 

Samples (see Figure 3.4, Appendix 3.8, and Appendix 3.9) were imaged at room 

temperature with a Tecnai T12 electron microscope equipped with a LaB6 filament and 

operated at an acceleration voltage of 120 kV. Images were recorded on a Gatan 4×4 k 

pixel charge-coupled device camera using low-dose procedures at a magnification of 

×52,000 and a defocus value of about–1.5 μm. The images were binned (2×2 pixels) to 

obtain a pixel size of 4.16 Å on the specimen level, and particles were manually excised 

using Boxer (part of the EMAN 1.9 software suite;[64]. 2D analysis of DnaK-ADP and 

DnaK-ADP + 400 μM substrate were carried out using the SPIDER image processing 

suite [65]. For the 2D analysis of DnaK-ADP, were interactively selected particles 
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windowed into 64×64 pixel images. A total of 6,313 particles from 49 images were 

subjected to ten cycles of reference-free alignment specifying 150 classes. Based on the 

first classification, a heterogeneous sample was observed containing monomeric two-lobe 

particles of DnaK, small more compact monomeric particles, dimeric assembles of DnaK, 

and some higher ordered assembles of DnaK (Appendix 3.8). Next, only the particles that 

were well resolved were selected, removing 223 particles. The remaining 6,090 particles 

were subjected to a second reference-free alignment to improve their classification 

(Figure 3.4, Appendix 3.9). For the 2D analysis of DnaK-ADP + 400 μM substrate, the 

same procedure was followed. A total of 6,689 particles were selected from 84 images, 

excluding underrepresented large oligomers (Appendix 3.9, arrow) and initially subjected 

to ten cycles of reference-free alignment specifying 150 classes. Based on this first 

classification, an increase in monomeric DnaK species was observed as compared to the 

DnaK-ADP sample (Appendix 3.9). Poorly resolved particles or larger (Appendix 3.9, 

arrow) underrepresented species (591 particles in total) were removed. The remaining 

6,098 particles were subjected to a second multi-reference alignment to improve their 

classification (Figure 3.4, Appendix 3.9). The number of particles belonging to each class 

as well as whether that class was interpreted as a monomer (m), dimer (d), assembly 

larger than a dimer (>d), or ambiguous (−) is recorded in Appendix 3.8 and 3.9. 

 

Notes 

This work has been published as “Visualization and functional analysis of the oligomeric 

states of Escherichia coli heat shock protein 70 (Hsp70/DnaK).” 2012 Cell Stress and 

Chaperones. 17:313-327 doi: 10.1007/s12192-011-0307-1. The original publication is 
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available at www.springerlink.com. Andrea D. Thompson and Jason E. Gestwicki 

designed the experiments. Andrea D. Thompson conducted the experiments. Steffan M. 

Bernard assisted with some of the gel filtration experiments. Georgios Skiniotis provided 

guidance and expertise in electron microscopy and structural analysis. Min Su provided 

training in electron microscopy and Brinae Bain assisted in the “holdase” assay. We 

would also like to thank Erik Zuiderweg and Ursula Jacob for helpful comments.  
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3.6 Appendix  

3.6.1 Protein purification and nucleotide state validation. 
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3.6.2 Reproducibility of gel filtration (GF) and native gels characterizing nucleotide 
dependent changes in DnaK homo-oligomerization. 
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3.6.3 Reproducibility of changes in observed DnaK-oligomerization within E. coli 
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3.6.4 Co-chaperones and substrate monomerize DnaK-ADP. 
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3.6.5 Examining the ability of co-chaperones to stimulate the ATPase rate of 
oligomeric DnaK. 
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3.6.6 Luciferase binding and “holdase” activity is mediated through the substrate 
binding domain in both cross-linked and non-cross-linked samples of DnaK. 
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3.6.7 NRLLLTG peptide can inhibit DnaK mediated “holdase” activity. 
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3.6.8 2D projection analysis of DnaK-ADP. 
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3.6.9 2D projection analysis of DnaK-ADP with peptide (NRLLLTG) substrate. 
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Chapter 4 

Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 
targets to tau for degradation. 

 

4.1 Abstract 

The microtubule associated protein tau (MAPT/tau) aberrantly accumulates in fifteen 

neurodegenerative diseases, termed tauopathies. One way to treat tauopathies may be to 

accelerate tau clearance; however, the molecular mechanisms that govern tau stability are 

not yet clear. The Gestwicki and Dickey laboratories had recently identified Hsp70-

dependent chemical probes that dramatically accelerate the clearance of tau in cellular 

and animal models. In this chapter, we used one of these probes in combination with 

immunoprecipitation and mass spectrometry to identify 48 proteins that change in their 

association with tau during the first 10 minutes after treatment. These proteins included 

known modifiers of tau proteotoxicity, such as ILF-2 (NFAT), ILF-3, and ataxin-2. One 

of the most striking observations from the dataset was that tau binding to heat shock 

protein 70 (Hsp70) decreased while binding to Hsp90 significantly increased. These 

chaperones have been linked to tau homeostasis, but their mechanisms hadn’t been clear. 

Using peptide microarrays and binding assays, Hsp70 and Hsp90 appeared to compete 

for binding to shared sites on tau. Further, the Hsp90-bound complex was important in 

initiating tau clearance in cells. These results suggest that the relative levels of Hsp70 and 

Hsp90 may help determine whether tau is retained or degraded. Consistent with this 

model, analysis of reported microarray expression data from Alzheimer’s disease patients 
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and age-matched controls showed that the levels of Hsp90 are reduced in the diseased 

hippocampus. These studies suggest that Hsp70 and Hsp90 work together to coordinate 

tau homeostasis.  

 

4.2 Introduction 

4.2.1 Tau protein homeostasis in disease 

Tau is primarily expressed in neurons, where it plays a central role in stabilizing 

microtubules within axons [1-3]. Tau protein homeostasis is regulated by its expression, 

phosphorylation and, turnover [4]. Within tauopathies, including Alzheimer’s disease 

(AD), frontotemporal dementia (FTLD), progressive supranuclear palsy (PSP), and 

corticobasal degeneration (CBD), tau homeostasis is disrupted, leading to 

hyperphosphorylation and accumulation of intracellular aggregates [5-7]. Genetic 

depletion of tau restores cognitive defects in several mouse models [8-12], suggesting 

that reducing tau levels may be an effective way to re-balance its homeostasis. Indeed, 

recent studies using compounds that reduce tau levels by increasing proteosomal and/or 

autophagic clearance [13] have shown that this strategy is able to partially recover 

cognitive defects in cellular and mouse models [14, 15]. Together, these findings have 

focused attention on understanding which cellular pathways protect tau and which 

proteins are important for its degradation. 

 

4.2.2 Molecular chaperones regulate tau homeostasis 

As discussed in Chapter 1, important regulators of tau homeostasis include the molecular 

chaperones, heat shock protein 70 (Hsp70). Hsp70 and its constitutively-expressed 
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isoform, Hsc70, bind directly to tau in a region near the microtubule-binding domains 

upon release from the microtubule [16]. Through these interactions, Hsp70s can facilitate 

the rebinding of tau to microtubules and have also been implicated in blocking tau 

aggregation and promoting its degradation [17-19]. Similarly, Hsp90 and a number of 

other co-chaperones have been implicated in regulating tau phosphorylation, aggregation, 

and degradation [16, 17, 20-22]. Thus, Hsp70 and Hsp90 appear to play roles during 

multiple processes involved in establishing tau homeostasis. However, these studies have 

not yet revealed the molecular mechanisms involved and it is unclear how these 

chaperones ultimately control tau stability. 

 

4.2.3 A chemical biology approach to understand tau homeostasis 

Here, we have used a small molecule to acutely disrupt tau equilibrium and favor a 

switch to a degradation fate. A key feature of this approach is that the molecule reduces 

tau levels rapidly (within ~ 15 minutes in HeLa cells), allowing identification of proteins 

that change in their association with tau during the first few minutes of triage. Using mass 

spectrometry and quantitative spectral analysis, it was determined that only 48 tau-

associated proteins are either released or enriched on tau during the switch to a 

degradation fate. Interestingly, Hsp70 is released during the early stages of tau 

degradation and is replaced by Hsp90. Knock-down analysis revealed that Hsp90 is 

required for degradation, suggesting that the switch to Hsp90 is an important step on the 

path to degradation. Further, Hsp70 competes with Hsp90 for binding to tau, suggesting 

that the levels of Hsp70 and Hsp90, in some cases, may dictate tau stability, a result 

supported by analysis of expression data from AD patients and age matched controls. 
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These studies reveal possible new strategies for the development of therapeutics that 

target tau for clearance.   

 

4.3 Results 

4.3.1 Identification of proteins involved in tau homeostasis 

Tau is an intrinsically disordered protein [23] that is thought to engage in protein-protein 

interactions that govern its localization, activity, and stability. Thus, we reasoned that 

there are likely tau-associated proteins that stabilize tau within the cell, whereas other 

complexes may be critical for its clearance. Further, a better understanding of these tau-

binding factors might reveal potential new drug targets and provide insights into the 

mechanisms of chaperone-mediated tau triage. Towards these goals, an important 

advance is the recent discovery of molecules that acutely disrupt tau equilibrium and 

favor a rapid and dramatic change in tau stability. One such molecule, methylene blue 

(MB), has been shown to reduce tau levels in a variety of cellular and animal models of 

tauopathies [13-15].  

 

To test whether this compound could be used to explore changes in the tau-associated 

proteome, we first confirmed that MB reduces total tau levels by ~80% in HeLa (C3) 

cells, which stably express V5-4RON tau (Appendix 4.1A). Loss of tau in this model is 

dose-dependent, with an effective concentration (EC50) of 8 +/- 1 µM, and rapid with a 

new equilibrium reached within ~10 to 20 minutes (Appendix 4.1B). The speed of this 

switch is important because it allows insights into the acute changes that occur in the tau-

associated protein complexes, while avoiding complications originating from global 
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cellular responses to MB. Finally, given our interested in chaperone-mediated tau 

degradation pathways it is particularly interesting to note that MB has been found to alter 

the ATPase activity of Hsp70 [13].  Further, it was observed that Hsp70 overexpression 

enhanced the ability of MB to clear tau from the cell [13].  Finally, a series of very recent 

experiments have clearly established the direct role of Hsp70 in MB-mediated clearance 

of tau. It was determined that MB inhibits the ATPase activity of Hsp70 via oxidization 

of specific cysteines on Hsp70. When these cysteines were mutated to serine, so that they 

could no longer be oxidized, not only was MB no longer able to inhibit the ATPase 

activity of Hsp70, but it was also no longer able to induce tau clearance within the 

cellular model utilized in our studies [Miyata and Rauch, unpublished data]. Thus, we 

conclude that MB would be an excellent chemical tool to induce the rapid and robust 

formation of pro-degradation tau protein complexes in an Hsp70-dependent manner.  

 

To identify proteins that change in their association with tau during the compound-

initiated switch to a degradation fate, cells were pre-treated with the proteasome inhibitor, 

bortezomib (bortez.), for 4 hours, followed by MB treatment (50 µM) or treatment with a 

vehicle control. Bortezomib was used to trap complexes destined for the proteasome, 

facilitating their subsequent identification by mass spectrometry (Appendix 4.1C). 

Immunoprecipitations with a V5 antibody were performed 10 minutes after MB/vehicle 

treatment and the precipitated material was subject to analysis by LC-MS/MS to identify 

the tau-associated proteome (Figure 4.1A). These experiments were performed in two 

independent, biological replicates and each replicate was analyzed by mass spectrometry 

in triplicate. Similar levels of tau (MAPT) were immunoprecipitated in each sample   
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 (Figure 4.1B) and a total of 504 interacting proteins were identified, including tubulin, 

TARDBP (TDP-43), vimentin, Hsp70, and Hsp90 (Appendix 4.2).  
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Next, quantitative spectral counting was utilized to detect proteins that change in their 

association with tau in response to MB. To be considered differentially associated with 

tau, proteins with greater than a two-fold change in abundance and a Bayes factor greater 

than ten were identified. Whereas the vast majority of interacting proteins, including 

tubulin, did not change their association with tau upon compound treatment, this criteria 

identified 48 differentially associated proteins, 20 of which decreased their binding to tau 

and 28 that increased their binding (Figure 4.1C). Interestingly, this list includes a 

number of factors previously identified as modifiers of tau toxicity, such as ataxin-2, IL-

2, and IL-3 [24, 25], suggesting that some of these factors might, in part, alter tau 

proteotoxicity by influencing its turnover. This list also included a number of proteins 

involved in gene regulation, such as the SWI-SNF components SMARCE1 (BAF57) and 

SMARCA4 (BRG1), and ribosome-associated proteins, such as RPS4X. 

 

4.3.2 Hsp90 is an important factor in tau degradation 

One of the most striking observations from the tau interactome analysis was that the 

association with stress-inducible Hsp70 (HSPA1B) in response to MB was significantly 

reduced, while binding to Hsp90 (HSP90AB1) was increased (Figure 4.1C). To confirm 

this finding, the V5-immunoprecipitations were repeated on freshly treated HeLa (C3) 

cells and western blots for Hsp70 and Hsp90 were performed. Consistent with the mass 

spectrometry findings, Hsp70 decreased while Hsp90 increased its association with tau 

after MB treatment (Figure 4.1D). This switch also occurred in the absence of a 

proteasome inhibitor (Figure 4.1D).  
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These results suggest that interplay between Hsp70 and Hsp90 may be involved in 

targeting tau for clearance. Consistent with this result, as discussed above, it had been 

previously shown that over-expression of Hsp70 enhances MB-mediated clearance of tau 

[13]. This result is significant because it highlights that MB is not playing a purely 

inhibitory role on Hsp70, release tau from the stabilizing influence of Hsp70.  Rather, 

Hsp70 seems to be actively involved in initiating MB-mediated clearance of tau, either 

through acute release or active transfer of tau to pro-degradation complexes. 

 

To better understand the specific role of Hsp90 in this system, examined whether it is 

required for MB-initiated tau degradation. Hsp90 is best known for its ability to stabilize 

many substrates, such as nuclear hormone receptors and kinases, protecting them from 

degradation [26, 27]. However, Hsp90 also promotes the degradation of other substrates, 

such as von Hippal Lindau factor and high-density lipoprotein [28, 29]. To explore which 

role might predominate in the tau system, siRNA knock-down was utilized to reduce the 

levels of Hsp90 in the cell. Consistent with previous reports [17, 20, 30, 31], knock-down 

of Hsp90 did not significantly change the levels of total tau, however it did suppress the 
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ability of MB to clear tau (Figure 4.2). This result supports a model in which Hsp90 is 

actively involved in targeting tau for degradation, at least in response to MB.  

 

4.3.3 The biochemistry which initiates an Hsp70 to Hsp90 switch  

To better understand this chaperone-dependent tau degradation pathway, we first 

explored how compound modulation of Hsp70 would lead to a decrease in Hsp70 

binding. It has previously been shown that MB decreases the ability of Hsp40 co-

chaperones to stimulate the ATPase rate of Hsp70 or stimulate Hsp70-dependent 

refolding of luciferase (Miyata and Rauch unpublished data, Appendix 4.3). Hsp40s 

promote the binding of Hsp70 to client proteins [32, 33]. Thus, one mechanism by which 

MB may disrupt the binding Hsp70 to tau could be by decoupling Hsp70 from Hsp40s 

within the cell, causing a passive release of tau from Hsp70. The effect of compound 

treatment on direct binding of Hsp70 to tau was also evaluated and no change in affinity 

was observed upon compound treatment (Appendix 4.4). Finally, another mechanism by 

which an Hsp70 to Hsp90 switch could occur is through a more active hand-off 

facilitated by the co-chaperone Hop, which binds both Hsp70 and Hsp90 to promote 

substrate transfer [34, 35]. However, no change in the affinity of Hsp70 for Hop was 

observed in response to compound treatment (Appendix 4.5). Further, knock-down of 

Hop had no effect on compound-mediated tau clearance. Interestingly, overexpression of 

Hop does enhance compound-induced tau clearance. These results suggest that in the 

presence of high levels of Hop the hand-off of tau from Hsp70 to Hsp90 is more efficient, 

promoting clearance. However, at endogenous levels of Hop, Hsp70 may instead 
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passively releases tau to initiate this degradation pathway, potentially due to being 

decoupled from J-proteins. 

 

 

4.3.4 Hsp90 competes with Hsp70 for binding to tau 

Based on these results, we hypothesized that exchange of Hsp70 for Hsp90 on tau might 

occur via competition for shared binding sites. At least two binding sites for Hsp70 have 
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been identified on tau [36], but the binding sites for Hsp90 have not yet been described. 

To study this question, we developed a peptide microarray composed of 15-mer peptides 

covering the peripheral nervous system tau sequence with 4 amino acid overlap (194 total 

spots in triplicate). Binding to Hsp70-His and Hsp90-His was measured using fluorescent 

anti-His antibodies and the controls were antibody alone and the nucleotide-binding 

domain (NBD) of Hsp70, which should not bind peptide substrates. As expected, the 

NBD bound non-specifically to only a few peptides, which were excluded from 

subsequent analyses (Figure 4.3A, Appendix 4.6). In contrast, Hsp70 and Hsp90 were 

bound to a number of tau-derived peptides (Figure 4.3A, Appendix 4.6). Restricting the 

analysis of these binding sites to one of the central nervous system tau isoforms (4R0N), 

which was utilized in the cellular studies, four sites were identified for Hsp70 and two for 

Hsp90 (Figure 4.3B). Strikingly, both of the Hsp90 binding sites were shared by Hsp70. 

Previous work has determined that deletion of residues I219, I220 and I250, V251 

reduces Hsp70 binding to tau [36]. Consistent with this result, these residues were present 

in the third and fourth Hsp70 binding sites, as measured by peptide microarray. These 

Hsp70 binding sites were further validated using a software program [37] developed to 
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predict binding sites for the prokaryotic Hsp70, DnaK. Using this approach, sites 2, 3, 

and 4 were positively identified.  

 

 

These findings suggest that Hsp90 binding sites are shared by Hsp70 and, thus, that these 

chaperones might compete for binding to tau. To test this model, we first synthesized 

peptides, smaller than 15 amino acids in length, corresponding to the binding sites 

predicted by the microarray. However, these peptides showed weak (>100 µM) binding, 

which was difficult to accurately measure. However, these peptides showed weak (>100 

µM) binding, which was difficult to accurately measure. Therefore, we switched to 

studying binding in the context of full-length 4RON tau in an ELISA-like platform. 

Using this method, immobilized Hsp70 bound tau with an affinity of 2.9 ± 0.2 µM and 

Hsp90 bound with a slightly weaker affinity of 7.0 ± 1.0 µM (Figure 4.4A). As predicted 

by the peptide microarray results, Hsp70 competed for binding with Hsp90 (IC50 ~ 4 µM) 

(Figure 4.4B). Conversely, Hsp90 was less effectively at competing with Hsp70 (IC50 > 

50 µM), perhaps because of the two unique Hsp70 binding sites (Figure 4.4C). These 

same relationships were observed with the major stress-inducible (Hsp70, Hsp90α) and 
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the constitutively expressed (Hsc70, Hsp90β) isoforms (Table 1). Based on these results, 

it was concluded that the MB-initiated increase in Hsp90 binding observed by mass 

spectrometry may be the result of exchange of Hsp70 for Hsp90 on shared binding sites 

within tau.  

 

4.3.5 Hsp90 is decreased in human brains with Alzheimer’s disease  

These results suggest that tau degradation may be sensitive to the relative levels of Hsp70 

and Hsp90. More specifically, reduced Hsp90 levels might favor net retention of tau, 

perhaps unbalancing tau homeostasis. To explore this idea, we examined the GDS810 

dataset, which collected microarray expression data from the hippocampal tissue of 

patients with incipient, moderate, and severe Alzheimer’s disease (AD) and age matched 

controls [38]. Similarly, the GSE5281 dataset that includes expression results from 
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micro-dissected, histopathologically normal, hippocampal neurons from AD patients and 

age matched controls was also queried [39, 40]. Previous analyses of these datasets had 

already noted AD-related changes in gene expression within protein folding genes, such 

as chaperones. However, we wanted to specifically ask how the relative levels of 

cytosolic Hsp70 and Hsp90 might change as a function of disease. Accordingly, both 

datasets were analyzed (Appendix 4.7) and observed statistically significant changes and 

trends that indicated an AD-associated decrease in Hsp90 (Figure 4.5). Conversely, no 

consistent changes in stress-inducible Hsp70 levels were observed (HSPA1B, HSPA2,  

 

HSPA6, HSPA14) but the constitutively expressed Hsc70 (HSPA8) was decreased in 

both datasets (Table 4.2). Importantly for the current study, the ratio of stress-inducible 

Hsp70s and Hsp90s was significantly changed in AD, suggesting that imbalance in the 

chaperone ratio might contribute to the accumulation of tau. Interestingly, these finding 

are consistent with an observation made in an AD mouse model in which Hsp90 protein 

levels were found to be inversely correlated with tau levels [17]. Taken together, a model 

emerges in which Hsp90 levels and the Hsp70:Hsp90 ratio help determine tau stability.  
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4.4 Discussion 

4.4.1 Insights into proteins potentially involved in regulating tau homeostasis 

Tau homeostasis is important in neurodegenerative tauopathies and enhancing tau 

degradation may be a promising therapeutic strategy [10, 13-16]. Thus, it is important to 

understand the pathways that stabilize tau and those that favor its turnover. Using a 

chemical biology approach, we specifically studied the early changes in the tau-

associated proteome that occur during the acute switch to a degradation fate. The 

resulting list of proteins included a number of factors previously linked to tau 

proteotoxicity, including ILF-2 (NFAT), ILF-3 and ataxin 2 [24, 25]. The results with 

ataxin-2 (ATXN2) and ataxin-2-like protein (ATXN2L) were particularly striking, with 

~16- and 8-fold reductions in binding to tau during degradation, respectively. These 

observations are interesting because ataxin-2 is linked to spinocerebellar ataxia type 2 

(SCA2), a polyglutamine expansion neurodegenerative disorder [41], so direct contacts 

between these disease-associated proteins might be contribute to their pathophysiology.  

 

4.4.2 The role of Hsp70 in tau homeostasis 

From the list of tau-associated proteins, one of the most striking observations was a loss 

of Hsp70 (HSPA1B) binding, coupled with an increase in Hsp90 (HSP90AB1). What 

role is Hsp70 playing in this process? Previous findings suggest that Hsp70 is important 

in stabilizing tau. For example, Hsc70 is required to recycle tau on microtubules, perhaps 

restricting its availability to the degradation pathways [19]. However, it is also clear that 

Hsp70s are not exclusively devoted to stabilizing tau. For example, if this were the case, 

then Hsp70 knock-down should reduce tau levels, phenocopying MB treatment. Instead, 
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only mild changes in tau levels are typically observed upon knock-down or over-

expression of myc-Hsp70 [17]. One possible way to account for these observations is that 

Hsp70 could play an active role in “hand-off” of tau to the degradation pathway. This 

process might be initiated by MB in these studies, because, although MB is certainly not 

a selective Hsp70 inhibitor [42, 43], over-expression of Hsp70 enhances compound-

induced degradation of tau [13]. Thus, MB might be leading to conversion of Hsp70, 

such that it links the chaperone to the degradation pathway. Such a mechanism could 

involve co-chaperones, however our data suggests that, if so, this mechanism is not 

driven by the co-chaperone Hop (Appendix 4.5). Alternatively, an acute release of tau 

from Hsp70 may be important to enable Hsp90 binding. In this model, the activity of 

Hsp70 that is favored by chemical inhibitors might not produce the same phenotype as 

knock-down or over-expression, which removes the entire protein. Rather, the transition 

might require a chemical trigger, such as MB or other Hsp70 inhibitors, which alter 

Hsp70’s nucleotide state, substrate affinity, or conformation [16, 44]. 

 

4.4.3 Hsp90-dependent degradation of tau 

What role is Hsp90 playing in this process? Many of our observations point to an 

unexpected role of Hsp90 in the degradation of tau. For example, knock-down of Hsp90 

attenuated MB-induced clearance (see Figure 4.2). This finding is unexpected, in part, 

because Hsp90 is best known for its ability to stabilize ~200 “client” proteins, such as the 

glucocorticoid receptor (GR) [27]. In those systems, Hsp90 is normally found in the final, 

high affinity complex that protects the active protein fold [26, 45-47]. Accordingly, 

inhibitors of Hsp90 relieve the protective effect and favor degradation of the clients, 
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usually through a process involving Hsp70. Thus, Hsp90 is typically considered a 

protective chaperone, while Hsp70 is considered a triage chaperone. However, there are 

clear examples of clients in the literature that don’t follow this paradigm. For example, 

Hsp90 promotes the degradation of the von Hippel-Lindau tumor-suppressor protein and 

high-density lipoprotein [28, 29] and, in those systems, Hsp70 appears to play an 

upstream role in folding. Our results suggest that tau might fall into this latter category of 

atypical chaperone clients, those in which Hsp90 can assume the task of promoting 

turnover. However, tau seems to be different in some important ways. For example, 

Hsp90 inhibitors block the degradation of Von Hippel-Lindau tumor-suppressor protein 

and high-density lipoprotein, whereas these same compounds reduce mutant and 

phosphorylated forms of tau in a pathway dependent on CHIP, but not HSF-1 or Hsp70 

[20]. These findings point to a model in which Hsp90 stabilizes some forms of tau, 

protecting them from clearance [20, 30, 48], while also being involved in the clearance of 

tau when Hsp70 is inhibited by MB. Clearly, the roles played by Hsp90 in tau 

homeostasis are complex.  

 

One compelling way to rationalize these observations is to invoke different “pools” of 

Hsp90. Hsp90 engages in protein-protein interactions with many different co-chaperones 

and recent work has elegantly shown that distinct Hsp90 complexes exist in the cytosol 

[49]. We can speculate that some of these Hsp90 complexes may be involved in 

stabilizing tau while others, such as the ones apparently favored by MB treatment, might 

target it for degradation. Indeed, some Hsp90 co-chaperones are known to promote tau 

stabilization, such as cdc37 and FKBP51, while others accelerate degradation, such as 
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FKBP52 and CHIP [16].  Further, the acetylation state of Hsp90 may also influence 

whether it targets tau for degradation [50, 51]. Unfortunately, there was no obvious 

change in co-chaperone levels in the tau mass spectrometry studies (Appendix 4.2), but 

these proteins may not have been abundant enough or might bind too weakly to be 

detected. Further work, perhaps using small molecules that target individual Hsp90 

complexes, will likely be required to better understand the mechanism by which co-

chaperones affect the fate of tau. 

 

4.4.4 Summary and future directions 

Some of the unresolved issues in understanding tau degradation are what happens during 

the handoff of tau from Hsp70 to Hsp90 and what happens after formation of the Hsp90-

tau complex? One key observation is that Hsp70 efficiently competes with Hsp90 for 

binding tau, but not the inverse (see Figure 4.4 and Table 4.1). Thus, Hsp90-mediated 

degradation might depend on a prior signal to release Hsp70. Moreover, this signal might 

induce a conformation of Hsp70 that actively recruits Hsp90, although we know it does 

not directly change the binding of Hop or tau to Hsp70 (Appendix 4.4 and 4.5). Despite 

these speculations and open questions, the use of a chemical probe allowed us to uncover 

changes in chaperone-tau complexes, which may be transiently present at low levels, 

during the initiation of degradation. In doing so, we gained unexpected insight into how 

Hsp90 is involved in degrading tau in response to MB. These findings suggest that 

exchange of Hsp70 for Hsp90 is one key aspect of the mechanism. This model is 

supported by the decreased gene expression levels of Hsp90 within Alzheimer’s disease 

patients (Figure 4.5, Table 4.2). Further, within a mouse model [17], it has been observed 
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that decreased Hsp90 levels is linked to tau accumulation. Additional insights into 

mechanisms of tau clearance will likely accelerate drug discovery in tauopathies, perhaps 

by suggesting ways of using Hsp70 and Hsp90 inhibitors to maximize the restoration of 

tau homeostasis.   

 

4.5 Experimental procedures 

4.5.1 Reagents, cell lines, and general methods   

Tetramethylthionine (methylene blue) was purchased from Sigma (St. Louis, MO). 

siRNAs (Qiagen, Valencia, CA) were transfected at 20 nM. Antibodies utilized are as 

follows: V5 (Sigma, V8137), β-actin (Anaspec, 54591, Fremont, CA), tau-WB/ELISA 

(Santa Cruz Biotech, sc5587, Santa Cruz, CA), pTau (p396/404, provided by Dr. Peter 

Davies, Albert Einstein College of Medicine, Bronx, NY), Hsp70 (Assay Designs, 

Plymouth Meeting, PA), Hsp90 (Santa Cruz Biotech, sc7947), goat anti-rabbit HRP 

(Anaspec, 28177), and goat anti-mouse HRP (Anaspec 28173). All cells were maintained 

according to ATCC guidelines. Stably transfected HeLa (C3) cells overexpressing wild-

type 4RON human tau were previously generated by clonal selection with G418 

(Invitrogen, Grand Island, NY) [13]. The absorbance and luminescence measurements 

were performed using a SpectraMax M5 multimode plate reader (Molecular Devices, 

Sunnyvale, CA, USA).  

 

4.5.2 Western blot analysis  

Samples were separated under reducing and denaturing conditions using 10-20% Tris-

Tricine gels (Invitrogen). After transfering to nitrocellulose membrane (Whatman, 
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Piscataway, NJ, USA), the membranes were blocked with 5% milk in TBS-T (25 mM 

Tris–HCl, 140 mM NaCl, 0.1% Tween 20) for at least 3 hours. Protein levels were 

detected by incubating the membrane overnight at 4 oC with primary antibodies diluted 

1:1,000, unless otherwise noted, in TBS-T containing 2% bovine serum albumin (BSA, 

Sigma). Finally, the membrane was incubated for 1 hour with the appropriate HRP-

conjugated secondary antibody diluted 1:10,000 in TBS-T with 5% BSA. Membranes 

were washed three times for 5 minutes with TBS-T at each step. Membranes were 

developed using Supersignal West Pico chemiluminescence kit (Thermo Scientific, 

Waltham, MA). 

 

4.5.3 Immunoprecipitation of V5-tau   

HeLa cells stably transfected with V5-4RON tau[13] were grown to 90 % confluence and 

subsequently treated with 5 mM bortezimib for four hours, followed by a ten minute 

treatment with either 50 mM MB or DMSO control (1%). Cells were lysed with M-Per 

lysis buffer[19] and 5 mg of lysate was immunoprecipitated by incubating with 75 µL of 

goat anti-V5 conjugated to agarose beads (Bethyl Laboratories, S190-119, Montgomery, 

TX) at 4 oC overnight in the dark. Beads were subsequently washed with 100 µL of PBS 

+ 0.1% Tween 20, followed by washes with 100 µL and then 200 µL of PBS. Finally 

proteins associated were eluted using 45 µL of 0.1 M glycine (pH 2.7) and neutralized by 

adding 5 µL 1M Tris-HCl (pH 8.0). 25 µL of these samples were separated on 10-20% 

Tris-Tricine gel (Invitrogen). 
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4.5.4 Mass spectrometry   

Gels were submitted for mass spectrometry analysis at the University of Michigan’s 

Department of Pathology Proteomics Facility. Immunoprecipitations were performed on 

two independent biological samples and each sample was subject to in-gel digestion with 

trypsin. Proteins were identified by liquid chromatography-tandem MS (MS/MS) as 

previously described[52]. Mass spectrometric analysis was performed in technical 

triplicates on each sample, providing a total of six datasets. Identified peptides were 

searched against the human IPI database developed by the Global Proteome Machine 

(www.thegpm.org). Tau interacting proteins were defined as proteins with at least 1 

peptide fulfilling a ProteinProphet [53, 54] probability score of > 0.97. This method gave 

a false-discovery-rate (FDR) of 0.05 and identified 504 tau-interacting proteins 

(Appendix 4.2).  

 

4.5.5 Quantitative spectral analysis   

Quantitative spectral analysis was performed as previously described [55, 56]. Briefly, a 

protein was considered to be differentially associated with tau if it had a Bayes factor 

greater than ten and exhibited a fold change greater than two. Using this definition, 48 of 

the 504 interacting proteins were found to be differentially associated upon MB treatment 

(Figure 4.1C, Appendix 4.2).  

 

4.5.6 Protein purification  

Human Hsp70 (HSPA1B), Hsc70 (HSPA8), Hsp70 NBD (HSPA1B 1-383), and Hsp70 

mutants were purified as previously described for DnaK using a His column, including 
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cleavage of the His tag via TEV protease, and final purification on an ATP-agarose 

column [57, 58]. Mutants were made using QuikChange site-directed mutagenesis kit 

(Stratagene, La Jolla, CA) according to the manufacture’s protocol [59]. Human Hsp90β 

(HSP90AB1) and Hsp90α (HSP90AA1) were purified as previously described [60]. 

Finally, N-terminal His-tagged Human 4RON tau and Hop were purified according to the 

previously developed protocols [61] [62]. 

 

4.5.7 Tau peptide microarray   

Tau peptides were designed as 15-mers containing 4 amino acid overhangs, spanning the 

full sequence of PNS-tau (P10636-9). In addition, full-length proteins expected to bind 

Hsp70 and Hsp90 were printed as positive controls, including human and mouse IgG and 

tau. Empty spots were used as negative controls. The microarrays were printed on single 

microscope slides in triplicate (JPT Peptide Technologies, Berlin, Germany). Binding 

was tested per the manufacturer’s protocol using 10 µM Hsp70-His, Hsp90-His, or 

Hsp70 nucleotide binding domain (NBD) in binding buffer (25 mM HEPES pH 7.2, 150 

mM NaCl, 20 mM KCl, 5 mM MgCl2, 0.01% Tween 20).  Binding was detected using 

1:1,000 titer of HiLyte555 anti-His antibody (Anaspec) in TBS-T with 1% bovine serum 

albumin (Sigma) and scanning the microarrays at a fluorescence emission of 532 nM 

using a GenePix 4100A Microarray Scanner (Molecular Devices, Sunnyvale, CA). A 

standard local background subtraction was performed for all experiments. Binding was 

defined as peptides giving fluorescence signals greater than 3 standard errors above the 

mean and those that did not appear as positive in the Hsp70 NBD or antibody alone tests.  
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4.5.8 ELISA-based tau binding  

The procedure for chaperone binding to luciferase was adapted from a previous report 

[63]. Briefly, 0.1 mg/mL of either human Hsp70 or Hsp90 (30 μL) in 50 mM MES buffer 

(pH 5.5) was added to each well of 96-well plates (Thermo Fisher, clear, nonsterile, flat 

bottom) and these plates incubated for 6 hrs at 37 °C. The wells were then washed with 

100 μL of TBS-T (3×3 min, rocking). To these wells, 50 μL of 4RON tau solution (at 

indicated concentrations) in binding buffer (25 mM HEPES pH 7.2, 150 mM NaCl, 20 

mM KCl, 5 mM MgCl2, 0.01% Tween20) with 1 mM ATP, unless otherwise noted, was 

added and the plates were incubated at room temperature with gentle rocking overnight. 

Plates were developed using the rabbit anti-tau primary antibody (Santa Cruz, sc5587) 

(1:2,000 dilution, in TBS-T, 50 μL/well) and the goat anti-rabbit HRP conjugated 

secondary antibody (Anaspec, 28177) (1:2,000 dilution in TBS-T, 50 μL/well). The TMB 

substrate kit (Cell Signaling Technology, Danvers, MA) was used to detect binding. In 

each experiment, the signal from non-specific binding of 4RON to empty control wells 

was used as a negative control and subtracted, but this signal was minimal. Binding 

curves were fit using hyperbolic fits with a non-zero intercept in GraphPad Prism version 

5.0 for Windows (GraphPad Software, San Diego, CA). MB treatment in vitro was 

performed by incubating 10 µM Hsp70 with 5 mM MB at 37 oC for 1 hour. Treated 

protein samples were subsequently dialyzed in 4 liters of dialysis buffer (25 mM HEPES, 

pH 7.4, 20 mM KCl, 6 mM MgCl2) at 4 oC changing dialysis buffer twice.  Thus, only 

the irreversibly oxidized Hsp70 was evaluated in this in vitro binding assay and all other 

in vitro biochemical assays discussed. 
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4.5.9 ATPase assay  

ATPase activity was measured according to the previously published method [58]. 

Briefly, malachite green-based assays were used to measure phosphate release from 

purified Hsp70s (1 µM). Reactions were initiated with 1 mM ATP, performed for 60 

minutes and quenched before measuring absorbance. Absorbance readings were 

converted to pmol of ATP using a phosphate standard curve.  

 

4.5.10 Luciferase refolding assay  

The luciferase refolding activity of DnaK WT and mutants was evaluated as described 

with minor changes [64]. Briefly, Gu-HCl denatured firefly luciferase (100 nM) was 

incubated with an enzyme mix containing Hsp70, MB treated Hsp70, or Hsp70 mutants 

(1 µM), and increasing concentrations of human J-protein DJA2. Refolding was initiated 

with the addition of 1 mM ATP. After 1 h of incubation at 37 °C, refolding was detected 

using a 2% (v/v) SteadyGlo (Promega, Madison, WI) reagent followed by measurement 

of luminescence. As a negative control, the signal from samples containing everything 

but Hsp70 was evaluated. 

 

4.5.11 Surface plasmon resonance experiments  

A streptavidin chip (SA; GE Healthcare) was docked and equilibrated with HBS 

modified buffer (25 mM HEPES pH 7.4, 150 mM NaCl, 20 mM KCl, 5 mM MgCl2, 

0.005% Tween-20) overnight at 5 uL/min. Proteins were biotinylated using Sulfo-NHS-

LC-Biotin (Invitrogen, B-6353) following the protocol provided by Invitrogen 

(MP00143). The chip was washed twice with two 10 µl pulses of 1M NaCl in 50mM 
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NaOH. Then, the indicated Hsp70’s were immobilized in MES buffer (50 mM MES pH 

5.5, 150 mM NaCl, 0.01% Tween-20) at 5 µl/min. Average immobilization responses for 

the various Hsp70 truncations were approximately 1,000 RUs. Hsp70 NBD was 

immobilized as a negative control, and signal from this lane was subtracted from that of 

the test lanes. After immobilization of all biotinylated proteins, the chip was equilibrated 

for at least 4 hours at 5 µL/min. Varying concentrations of HOP were prepared in HBS 

modified buffer and 30 µL was injected at 20 µL/min. For competition experiments, HOP 

(3 µM) and increasing concentrations of unlabeled Hsp70 were combined in HBS 

modified buffer greater than 30 min prior to injection. For both direct and competition 

binding, the binding surface was recovered with regeneration buffer (50 mM NaOH, 1M 

NaCl), using 2 pulse injections of 10 µL. Equilibrium data were fit using the RU values 5 

seconds prior to the end of the association phase, followed by non-linear regression 

analysis using GraphPad Prism software. 

 

4.5.11 Analysis of Hsp70 and Hsp90 expression levels in AD samples 

The GDS810 [38] and GSE5281 [39] gene expression microarray datasets were 

downloaded from the NCBI Gene Expression Omnibus. Normalized data for relevant 

microarray probes in all samples were extracted for the genes listed in Table 4.2. The 

sample GSM21206 was excluded from the GDS810 dataset due to artifact rendering 

which made this sample incomparable to the rest. Probe expression values were 

standardized as a z-score (z = (value – mean)/(standard deviation)) for all cytosolic 

isoforms of Hsp70 and Hsp90.  Individual probe z-scores were averaged for a given gene 

and compared across sample groups (control patients versus patients with disease). 
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Statistical significance (p-value <0.05) for gene expression changes between two sample 

groups was determined with a Mann-Whitney U test (see Appendix 4.7). 
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4.6 Appendix 

4.6.1 Methylene Blue (MB) causes robust, rapid clearance of tau. 
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4.6.2 Full results of mass spectrometry and quantitative spectral analysis 

Tau-association increased by  MB treatment 
 

Protein 
Bayes 
Factor 

Fold 
Change Direction FLAG description 

P58107 8.37E+04 2.27 1   ID=|EPIPL_HUMAN| GeneName=|EPPK1|  
sp|TRYP_PIG| 5.79E+04 1.18 1 FLAG COMMON CONTAMINANT! 
Q9UG75 5.22E+03 2.85 1   ID=|HNRL1_HUMAN| GeneName=|HNRNPUL1|  
O15027 1.91E+03 2.38 1   ID=|SC16A_HUMAN| GeneName=|SEC16A|  
P16402 1.90E+03 2.83 1   ID=|H13_HUMAN| GeneName=|HIST1H1D|  
P27708 1.43E+03 2.82 1   ID=|PYR1_HUMAN| GeneName=|CAD|  
P19338 777.16 2.38 1   ID=|NUCL_HUMAN| GeneName=|NCL|  
Q96ML2 363.17 8.86 1   ID=|VIME_HUMAN| GeneName=|VIM|  
P23526 304.15 5.73 1   ID=|SAHH_HUMAN| GeneName=|AHCY|  
Q8N1P6 261.25 5.42 1   ID=|K1C17_HUMAN| GeneName=|KRT17|  
P08238 244.74 2.42 1   ID=|HS90B_HUMAN| GeneName=|HSP90AB1|  
P30050 142.86 1.50 1 FLAG ID=|RL12_HUMAN| GeneName=|RPL12|  
P62701 100.75 9.15 1   ID=|RS4X_HUMAN| GeneName=|RPS4X|  
P08729 95.25 1.96 1 FLAG ID=|K2C7_HUMAN| GeneName=|KRT7|  
P18124 91.64 5.12 1   ID=|RL7_HUMAN| GeneName=|RPL7|  
P62847 86.70 4.51 1   ID=|RS24_HUMAN| GeneName=|RPS24|  
Q14444 84.36 1.78 1 FLAG ID=|CAPR1_HUMAN| GeneName=|CAPRIN1|  
O43809 68.23 3.23 1   ID=|CPSF5_HUMAN| GeneName=|NUDT21|  
P05109 49.20 4.06 1   ID=|S10A8_HUMAN| GeneName=|S100A8|  
P49207 47.63 3.56 1   ID=|RL34_HUMAN| GeneName=|RPL34|  
Q96QT5 29.67 2.22 1   ID=|BPA1_HUMAN| GeneName=|DST|  
P62241 29.03 3.00 1   ID=|RS8_HUMAN| GeneName=|RPS8|  
P62081 28.53 1.99 1 FLAG ID=|RS7_HUMAN| GeneName=|RPS7|  
Q5XKE5 26.95 3.80 1   ID=|K2C79_HUMAN| GeneName=|KRT79|  
Q13283 25.14 2.82 1   ID=|G3BP1_HUMAN| GeneName=|G3BP1|  
Q9Y2Q9 22.09 3.19 1   ID=|RT28_HUMAN| GeneName=|MRPS28|  
Q86YZ3 19.77 2.55 1   ID=|HORN_HUMAN| GeneName=|HRNR|  
Q96IT0 19.48 3.54 1   ID=|FAS_HUMAN| GeneName=|FASN|  
P62269 18.15 1.75 1 FLAG ID=|RS18_HUMAN| GeneName=|RPS18|  
P62910 18.09 2.44 1   ID=|RL32_HUMAN| GeneName=|RPL32|  
P62424 16.82 2.95 1   ID=|RL7A_HUMAN| GeneName=|RPL7A|  
Q92841 15.50 1.47 1 FLAG ID=|DDX17_HUMAN| GeneName=|DDX17|  
P62906 14.83 5.23 1   ID=|RL10A_HUMAN| GeneName=|RPL10A|  
P06702 14.19 3.50 1   ID=|S10A9_HUMAN| GeneName=|S100A9|  
Q08211 12.78 1.47 1 FLAG ID=|DHX9_HUMAN| GeneName=|DHX9|  
P31483 10.23 3.52 1   ID=|TIA1_HUMAN| GeneName=|TIA1|  

      Tau-association decreased by MB treatment 
     

Protein 
Bayes 
Factor 

Fold 
Change Direction FLAG description 

sp|K22E_ 
HUMAN| 5.08E+10 2.87 -1   COMMON CONTAMINANT! 
Q92945 1.65E+06 3.29 -1   ID=|FUBP2_HUMAN| GeneName=|KHSRP|  
P13645 1.31E+06 1.73 -1 FLAG ID=|K1C10_HUMAN| GeneName=|KRT10|  
Q99700 7.42E+05 15.94 -1   ID=|ATX2_HUMAN| GeneName=|ATXN2|  
P62314 2.00E+04 6.03 -1   ID=|SMD1_HUMAN| GeneName=|SNRPD1|  
P62316 4.15E+03 1.80 -1 FLAG ID=|SMD2_HUMAN| GeneName=|SNRPD2|  
Q8WWM4 1.14E+03 7.99 -1   ID=|ATX2L_HUMAN| GeneName=|ATXN2L|  
Q9Y224 573.74 1.56 -1 FLAG ID=|CN166_HUMAN| GeneName=|C14orf166|  
Q12905 281.18 4.49 -1   ID=|ILF2_HUMAN| GeneName=|ILF2|  
P55769 99.47 3.27 -1   ID=|NH2L1_HUMAN| GeneName=|NHP2L1|  
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Tau-association decreased by MB treatment 
  
  

Protein 
Bayes 
Factor 

Fold 
Change Direction FLAG description 

      Q3MHD2 93.31 2.98 -1   ID=|LSM12_HUMAN| GeneName=|LSM12|  
P08107 68.63 2.22 -1   ID=|HSP71_HUMAN| GeneName=|HSPA1B|  
Q52LJ0 57.03 2.59 -1   ID=|FA98B_HUMAN| GeneName=|FAM98B|  
Q969G3 50.93 3.95 -1   ID=|SMCE1_HUMAN| GeneName=|SMARCE1|  
Q86TJ0 35.16 1.36 -1 FLAG ID=|SC31A_HUMAN| GeneName=|SEC31A|  
P51532 30.57 2.12 -1   ID=|SMCA4_HUMAN| GeneName=|SMARCA4|  
P63261 26.19 1.61 -1 FLAG ID=|ACTG_HUMAN| GeneName=|ACTG1|  
Q9NQA2 24.08 2.41 -1   ID=|ILF3_HUMAN| GeneName=|ILF3|  
Q9UPQ9 22.42 2.89 -1   ID=|TNR6B_HUMAN| GeneName=|TNRC6B|  
Q99729 18.07 3.92 -1   ID=|ROAA_HUMAN| GeneName=|HNRNPAB|  
P21266 15.78 3.38 -1   ID=|GSTM3_HUMAN| GeneName=|GSTM3|  
P01903 15.08 2.62 -1   ID=|DRA_HUMAN| GeneName=|HLA-DRA|  
Q9Y367 14.56 1.98 -1 FLAG ID=|PAIRB_HUMAN| GeneName=|SERBP1|  
P13987 13.02 4.17 -1   ID=|CD59_HUMAN| GeneName=|CD59|  
Q9HAV7 12.07 3.35 -1   ID=|GRPE1_HUMAN| GeneName=|GRPEL1|  
Q14019 12.07 3.35 -1   ID=|COTL1_HUMAN| GeneName=|COTL1|  
P08195 10.32 2.81 -1   ID=|4F2_HUMAN| GeneName=|SLC3A2|  
Tau-association unchanged by MB treatment (Bayes Factor < 10) 

 
Protein 

Bayes 
Factor 

Fold 
Change Direction FLAG description 

P46777 9.45 3.75 1   ID=|RL5_HUMAN| GeneName=|RPL5|  
P61313 9.33 3.16 1   ID=|RL15_HUMAN| GeneName=|RPL15|  
P12268 9.24 2.55 1   ID=|IMDH2_HUMAN| GeneName=|IMPDH2|  
O43390 9.20 1.64 -1 FLAG ID=|HNRPR_HUMAN| GeneName=|HNRNPR|  
Q7Z794 7.93 3.10 -1   ID=|K2C1B_HUMAN| GeneName=|KRT77|  
O75340 7.76 1.36 1 FLAG ID=|PDCD6_HUMAN| GeneName=|PDCD6|  
P27635 7.53 3.34 1   ID=|RL10_HUMAN| GeneName=|RPL10|  
P32969 7.50 3.53 1   ID=|RL9_HUMAN| GeneName=|RPL9P9|  
P15880 7.43 2.98 1   ID=|RS2_HUMAN| GeneName=|RPS2|  
P99999 7.35 3.30 -1   ID=|CYC_HUMAN| GeneName=|CYCS|  
P61513 6.86 4.72 1   ID=|RL37A_HUMAN| GeneName=|RPL37A|  
Q07020 6.83 2.94 1   ID=|RL18_HUMAN| GeneName=|RPL18|  
Q8NCA5 6.63 3.43 -1   ID=|FA98A_HUMAN| GeneName=|FAM98A|  
P62244 6.29 2.08 1   ID=|RS15A_HUMAN| GeneName=|RPS15A|  
P26373 6.12 2.11 1   ID=|RL13_HUMAN| GeneName=|RPL13|  
P62306 6.05 2.24 -1   ID=|RUXF_HUMAN| GeneName=|SNRPF|  
P05388 6.01 3.61 1   ID=|RLA0_HUMAN| GeneName=|RPLP0|  
P09382 5.66 3.30 1   ID=|LEG1_HUMAN| GeneName=|LGALS1|  
Q13442 5.52 2.28 -1   ID=|HAP28_HUMAN| GeneName=|PDAP1|  
P35637 5.29 1.60 1   ID=|FUS_HUMAN| GeneName=|FUS|  
Q9Y4L1 5.15 2.23 -1   ID=|HYOU1_HUMAN| GeneName=|HYOU1|  
P62913 5.11 1.92 1   ID=|RL11_HUMAN| GeneName=|RPL11|  
Q6S381 5.07 2.81 1   ID=|PLEC_HUMAN| GeneName=|PLEC|  
P02647 4.95 2.87 1   ID=|APOA1_HUMAN| GeneName=|APOA1|  
P04843 4.88 3.05 -1   ID=|RPN1_HUMAN| GeneName=|RPN1|  
P08779 4.85 2.41 1   ID=|K1C16_HUMAN| GeneName=|KRT16|  
P32322 4.76 2.81 -1   ID=|P5CR1_HUMAN| GeneName=|PYCR1|  
P37837 4.74 2.68 1   ID=|TALDO_HUMAN| GeneName=|TALDO1|  
Q96RN5 4.71 2.16 -1   ID=|MED15_HUMAN| GeneName=|MED15|  
P39019 4.67 1.37 1   ID=|RS19_HUMAN| GeneName=|RPS19|  
P23246 4.67 3.06 -1   ID=|SFPQ_HUMAN| GeneName=|SFPQ|  
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Tau-association unchanged by MB treatment (Bayes Factor < 10) 

      
Protein 

Bayes 
Factor 

Fold 
Change Direction FLAG description 

Q15819 4.63 2.57 -1   ID=|UB2V2_HUMAN| GeneName=|UBE2V2|  
P63167 4.63 2.75 -1   ID=|DYL1_HUMAN| GeneName=|DYNLL1|  
P05783 4.60 2.56 1   ID=|K1C18_HUMAN| GeneName=|KRT18|  
P25398 4.57 1.40 1   ID=|RS12_HUMAN| GeneName=|RPS12|  
O96019 4.52 3.04 -1   ID=|ACL6A_HUMAN| GeneName=|ACTL6A|  
P04264 4.43 1.19 -1   ID=|K2C1_HUMAN| GeneName=|KRT1|  
P62841 4.38 1.97 1   ID=|RS15_HUMAN| GeneName=|RPS15|  
Q01650 4.27 2.81 -1   ID=|LAT1_HUMAN| GeneName=|SLC7A5|  
P17096 4.24 3.06 -1   ID=|HMGA1_HUMAN| GeneName=|HMGA1|  
Q9H3K6 4.16 2.55 -1   ID=|BOLA2_HUMAN| GeneName=|BOLA2B|  
Q00839 4.11 1.02 -1   ID=|HNRPU_HUMAN| GeneName=|HNRNPU|  
P35527 4.03 1.45 -1   ID=|K1C9_HUMAN| GeneName=|KRT9|  
P50748 3.97 3.36 1   ID=|KNTC1_HUMAN| GeneName=|KNTC1|  
P08708 3.87 1.60 1   ID=|RS17_HUMAN| GeneName=|RPS17|  
P01040 3.75 2.09 -1   ID=|CYTA_HUMAN| GeneName=|CSTA|  
P46782 3.65 1.61 1   ID=|RS5_HUMAN| GeneName=|RPS5|  
P27482 3.60 2.23 1   ID=|CALL3_HUMAN| GeneName=|CALML3|  
P46781 3.48 3.17 1   ID=|RS9_HUMAN| GeneName=|RPS9|  
P46779 3.44 1.97 1   ID=|RL28_HUMAN| GeneName=|RPL28|  
P06576 3.40 2.34 -1   ID=|ATPB_HUMAN| GeneName=|ATP5B|  
Q9P157 3.33 2.24 -1   ID=|ALBU_HUMAN| GeneName=|ALB|  
P98160 3.24 1.67 -1   ID=|PGBM_HUMAN| GeneName=|HSPG2|  
P18621 3.22 1.48 1   ID=|RL17_HUMAN| GeneName=|RPL17|  
Q96HK3 3.10 2.40 1   ID=|CALM_HUMAN| GeneName=|CALM3|  
Q96SI9 3.03 2.75 1   ID=|STRBP_HUMAN| GeneName=|STRBP|  
P60174 2.95 1.50 1   ID=|TPIS_HUMAN| GeneName=|TPI1|  
Q99584 2.90 2.54 -1   ID=|S10AD_HUMAN| GeneName=|S100A13|  
P40259 2.89 2.08 -1   ID=|CD79B_HUMAN| GeneName=|CD79B|  
P82932 2.89 3.72 1   ID=|RT06_HUMAN| GeneName=|MRPS6|  
P07900 2.89 2.10 1   ID=|HS90A_HUMAN| GeneName=|HSP90AA1|  
P35268 2.87 1.29 -1   ID=|RL22_HUMAN| GeneName=|RPL22|  
P62633 2.85 2.26 1   ID=|CNBP_HUMAN| GeneName=|CNBP|  
Q13765 2.81 1.82 1   ID=|NACA_HUMAN| GeneName=|NACA|  
P82650 2.80 2.14 1   ID=|RT22_HUMAN| GeneName=|MRPS22|  
P11021 2.79 1.44 -1   ID=|GRP78_HUMAN| GeneName=|HSPA5|  
P62899 2.74 1.44 -1   ID=|RL31_HUMAN| GeneName=|RPL31|  
P07437 2.70 1.18 1   ID=|TBB5_HUMAN| GeneName=|TUBB|  
P26196 2.69 2.12 -1   ID=|DDX6_HUMAN| GeneName=|DDX6|  
O75347 2.64 1.89 -1   ID=|TBCA_HUMAN| GeneName=|TBCA|  
Q8TAQ2 2.64 1.97 -1   ID=|SMRC2_HUMAN| GeneName=|SMARCC2|  
P00558 2.61 1.14 -1   ID=|PGK1_HUMAN| GeneName=|PGK1|  
Q9P225 2.59 2.34 1   ID=|DYH2_HUMAN| GeneName=|DNAH2|  
P62753 2.57 2.34 1   ID=|RS6_HUMAN| GeneName=|RPS6|  
Q86V69 2.52 1.82 -1   ID=|F120A_HUMAN| GeneName=|FAM120A|  
P30048 2.51 2.30 1   ID=|PRDX3_HUMAN| GeneName=|PRDX3|  
Q15233 2.48 1.75 -1   ID=|NONO_HUMAN| GeneName=|NONO|  
Q96EP5 2.48 2.29 1   ID=|DAZP1_HUMAN| GeneName=|DAZAP1|  
P62273 2.45 2.13 -1   ID=|RS29_HUMAN| GeneName=|RPS29|  
P84098 2.44 2.62 1   ID=|RL19_HUMAN| GeneName=|RPL19|  
P78332 2.39 2.69 -1   ID=|RBM6_HUMAN| GeneName=|RBM6|  
Q14157 2.37 1.31 1   ID=|UBP2L_HUMAN| GeneName=|UBAP2L|  
Q5D862 2.37 2.32 -1   ID=|FILA2_HUMAN| GeneName=|FLG2|  
Q9UBQ5 2.36 2.10 -1   ID=|EIF3K_HUMAN| GeneName=|EIF3K|  
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P52597 2.36 1.45 1   ID=|HNRPF_HUMAN| GeneName=|HNRNPF|  
P63220 2.35 2.72 -1   ID=|RS21_HUMAN| GeneName=|RPS21|  
P62917 2.30 1.82 1   ID=|RL8_HUMAN| GeneName=|RPL8|  
Q9NR22 2.26 2.27 1   ID=|ANM8_HUMAN| GeneName=|PRMT8|  
P61254 2.24 1.38 1   ID=|RL26_HUMAN| GeneName=|RPL26|  
Q96Q81 2.23 2.02 1   ID=|DUT_HUMAN| GeneName=|DUT|  
Q02809 2.23 1.88 -1   ID=|PLOD1_HUMAN| GeneName=|PLOD1|  
Q6GMP2 2.22 1.39 -1   ID=|ENOA_HUMAN| GeneName=|ENO1|  
P08575 2.20 2.19 -1   ID=|PTPRC_HUMAN| GeneName=|PTPRC|  
P14678 2.19 1.34 -1   ID=|RSMB_HUMAN| GeneName=|SNRPB|  
P52292 2.16 2.62 -1   ID=|IMA2_HUMAN| GeneName=|KPNA2|  
O15042 2.14 1.54 -1   ID=|SR140_HUMAN| GeneName=|SR140|  
Q9UQ80 2.09 2.69 1   ID=|PA2G4_HUMAN| GeneName=|PA2G4|  
P61978 2.08 1.99 1   ID=|HNRPK_HUMAN| GeneName=|HNRNPK|  
Q13148 2.05 1.71 -1   ID=|TADBP_HUMAN| GeneName=|TARDBP|  
O00425 2.03 2.10 -1   ID=|IF2B3_HUMAN| GeneName=|IGF2BP3|  
Q9Y3I0 2.02 1.40 -1   ID=|CV028_HUMAN| GeneName=|C22orf28|  
Q9UPA5 2.01 1.44 -1   ID=|BSN_HUMAN| GeneName=|BSN|  
O43684 1.99 1.65 1   ID=|BUB3_HUMAN| GeneName=|BUB3|  
Q9Y237 1.99 1.81 -1   ID=|PIN4_HUMAN| GeneName=|PIN4|  
Q15185 1.98 1.43 1   ID=|TEBP_HUMAN| GeneName=|PTGES3|  
Q99377 1.98 1.51 -1   ID=|RU17_HUMAN| GeneName=|SNRNP70|  
P11940 1.98 1.59 1   ID=|PABP1_HUMAN| GeneName=|PABPC1|  
P01912 1.98 2.15 -1   ID=|2B13_HUMAN| GeneName=|HLA-DRB1|  
Q5SRE5 1.96 2.52 -1   ID=|NU188_HUMAN| GeneName=|NUP188|  
Q00610 1.92 1.09 1   ID=|CLH1_HUMAN| GeneName=|CLTC|  
Q14671 1.91 1.37 -1   ID=|PUM1_HUMAN| GeneName=|PUM1|  
P39023 1.91 2.06 1   ID=|RL3_HUMAN| GeneName=|RPL3|  
Q9Y293 1.89 2.29 1   ID=|RTN4_HUMAN| GeneName=|RTN4|  
P00441 1.89 1.99 1   ID=|SODC_HUMAN| GeneName=|SOD1|  
P24534 1.86 1.86 1   ID=|EF1B_HUMAN| GeneName=|EEF1B2|  
P68363 1.84 1.35 1   ID=|TBA1B_HUMAN| GeneName=|TUBA1B|  
P00492 1.83 1.85 -1   ID=|HPRT_HUMAN| GeneName=|HPRT1|  
P13671 1.83 1.85 -1   ID=|CO6_HUMAN| GeneName=|C6|  
P35030 1.82 2.59 1   ID=|TRY3_HUMAN| GeneName=|PRSS3|  
Q06323 1.81 2.05 1   ID=|PSME1_HUMAN| GeneName=|PSME1|  
P29558 1.81 2.61 -1   ID=|RBMS1_HUMAN| GeneName=|RBMS1|  
P36873 1.72 1.93 1   ID=|PP1G_HUMAN| GeneName=|PPP1CC|  
Q01469 1.70 1.66 -1   ID=|FABP5_HUMAN| GeneName=|FABP5|  
Q9BWG4 1.70 2.29 -1   ID=|SSBP4_HUMAN| GeneName=|SSBP4|  
P63241 1.69 1.26 1   ID=|IF5A1_HUMAN| GeneName=|EIF5A|  
P81605 1.68 1.92 -1   ID=|DCD_HUMAN| GeneName=|DCD|  
O14737 1.64 1.92 -1   ID=|PDCD5_HUMAN| GeneName=|PDCD5|  
Q96DT0 1.63 1.79 1   ID=|LEG12_HUMAN| GeneName=|LGALS12|  
Q6IBQ6 1.63 2.08 -1   ID=|SAP_HUMAN| GeneName=|PSAP|  
P26447 1.61 1.60 -1   ID=|S10A4_HUMAN| GeneName=|S100A4|  
Q96PK6 1.61 1.54 -1   ID=|RBM14_HUMAN| GeneName=|RBM14|  
Q14974 1.60 1.09 1   ID=|IMB1_HUMAN| GeneName=|KPNB1|  
Q66GS9 1.60 1.30 1   ID=|CP135_HUMAN| GeneName=|CEP135|  
P09497 1.60 1.25 1   ID=|CLCB_HUMAN| GeneName=|CLTB|  
P63244 1.59 1.42 1   ID=|GBLP_HUMAN| GeneName=|GNB2L1|  
Q92973 1.57 1.45 -1   ID=|TNPO1_HUMAN| GeneName=|TNPO1|  
Q562E7 1.54 1.75 1   ID=|WDR81_HUMAN| GeneName=|WDR81|  
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P84103 1.54 2.64 -1   ID=|SFRS3_HUMAN| GeneName=|SFRS3|  
Q15365 1.54 1.30 1   ID=|PCBP1_HUMAN| GeneName=|PCBP1|  
P38159 1.54 1.99 -1   ID=|HNRPG_HUMAN| GeneName=|RBMX|  
P01700 1.52 1.73 -1   ID=|LV102_HUMAN| GeneName=|LUZP6|  
Q9UN86 1.52 1.52 1   ID=|G3BP2_HUMAN| GeneName=|G3BP2|  
P02545 1.51 1.60 -1   ID=|LMNA_HUMAN| GeneName=|LMNA|  
P01871 1.50 1.57 -1   ID=|IGHM_HUMAN| GeneName=|IGHM|  
Q02878 1.50 1.66 1   ID=|RL6_HUMAN| GeneName=|RPL6|  
Q02543 1.49 1.74 1   ID=|RL18A_HUMAN| GeneName=|RPL18A|  
P31946 1.49 1.32 1   ID=|1433B_HUMAN| GeneName=|YWHAB|  
P30040 1.49 1.52 -1   ID=|ERP29_HUMAN| GeneName=|ERP29|  
O60869 1.47 1.40 1   ID=|EDF1_HUMAN| GeneName=|EDF1|  
Q9BW65 1.47 1.95 1   ID=|RL14_HUMAN| GeneName=|RPL14|  
P07355 1.46 1.09 -1   ID=|ANXA2_HUMAN| GeneName=|ANXA2|  
Q07666 1.46 1.34 -1   ID=|KHDR1_HUMAN| GeneName=|KHDRBS1|  
P61604 1.46 2.16 -1   ID=|CH10_HUMAN| GeneName=|HSPE1|  
Q13435 1.45 1.79 -1   ID=|SF3B2_HUMAN| GeneName=|SF3B2|  
P15531 1.44 1.60 -1   ID=|NDKA_HUMAN| GeneName=|NME1|  
P04220 1.44 1.52 -1   ID=|MUCB_HUMAN| GeneName=|MUC7| | 
Q9UJ07 1.44 1.14 -1   ID=|SYNE1_HUMAN| GeneName=|SYNE1|  
P62854 1.43 1.71 -1   ID=|RS26_HUMAN| GeneName=|RPS26|  
Q92600 1.43 1.57 -1   ID=|RCD1_HUMAN| GeneName=|RQCD1|  
O95486 1.39 2.62 1   ID=|SC24A_HUMAN| GeneName=|SEC24A|  
P68032 1.39 1.77 -1   ID=|ACTC_HUMAN| GeneName=|ACTC1|  
Q9Y3F4 1.36 1.20 -1   ID=|STRAP_HUMAN| GeneName=|STRAP| | 
Q86V81 1.35 1.68 1   ID=|THOC4_HUMAN| GeneName=|THOC4|  
P55327 1.34 1.76 1   ID=|TPD52_HUMAN| GeneName=|TPD52|  
Q9HA92 1.34 1.76 1   ID=|RSAD1_HUMAN| GeneName=|RSAD1|  
P35579 1.33 1.30 -1   ID=|MYH9_HUMAN| GeneName=|MYH9|  
P02786 1.33 1.46 -1   ID=|TFR1_HUMAN| GeneName=|TFRC|  
O96005 1.33 1.46 -1   ID=|CLPT1_HUMAN| GeneName=|CLPTM1|  
Q15717 1.32 1.73 -1   ID=|ELAV1_HUMAN| GeneName=|ELAVL1|  
P05387 1.32 1.13 1   ID=|RLA2_HUMAN| GeneName=|RPLP2|  
Q9Y583 1.31 1.79 1   ID=|HNRPQ_HUMAN| GeneName=|SYNCRIP|  
Q9P0T4 1.31 1.77 1   ID=|ZN581_HUMAN| GeneName=|ZNF581|  
O00233 1.29 1.86 -1   ID=|PSMD9_HUMAN| GeneName=|PSMD9|  
Q70E73 1.29 1.86 -1   ID=|RAPH1_HUMAN| GeneName=|RAPH1|  
P42126 1.29 1.86 -1   ID=|D3D2_HUMAN| GeneName=|DCI|  
P43243 1.29 1.36 -1   ID=|MATR3_HUMAN| GeneName=|MATR3|  
P23396 1.25 1.14 1   ID=|RS3_HUMAN| GeneName=|RPS3|  
P47914 1.25 1.28 1   ID=|RL29_HUMAN| GeneName=|RPL29|  
P51398 1.24 1.52 1   ID=|RT29_HUMAN| GeneName=|DAP3|  
P62249 1.24 1.26 1   ID=|RS16_HUMAN| GeneName=|RPS16|  
Q9NUJ1 1.24 1.63 1   ID=|ABHDA_HUMAN| GeneName=|ABHD10|  
P40429 1.24 1.65 1   ID=|RL13A_HUMAN| GeneName=|RPL13A|  
Q9Y3D9 1.24 1.47 1   ID=|RT23_HUMAN| GeneName=|MRPS23|  
Q9BWW4 1.23 1.55 -1   ID=|SSBP3_HUMAN| GeneName=|SSBP3|  
Q92922 1.23 1.57 -1   ID=|SMRC1_HUMAN| GeneName=|SMARCC1|  
P35613 1.23 1.57 -1   ID=|BASI_HUMAN| GeneName=|BSG|  
Q15181 1.23 1.60 -1   ID=|IPYR_HUMAN| GeneName=|PPA1|  
P49321 1.23 1.45 -1   ID=|NASP_HUMAN| GeneName=|NASP|  
P32970 1.23 1.51 -1   ID=|CD70_HUMAN| GeneName=|CD70|  
Q9UKK9 1.21 1.80 -1   ID=|NUDT5_HUMAN| GeneName=|NUDT5|  
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P52434 1.21 1.39 1   ID=|RPAB3_HUMAN| GeneName=|POLR2H|  
P30043 1.21 1.39 1   ID=|BLVRB_HUMAN| GeneName=|BLVRB|  
P56703 1.21 1.39 1   ID=|WNT3_HUMAN| GeneName=|WNT3|  
P56537 1.20 1.11 1   ID=|IF6_HUMAN| GeneName=|EIF6|  
Q15691 1.19 1.61 -1   ID=|MARE1_HUMAN| GeneName=|MAPRE1|  
P62263 1.19 1.20 1   ID=|RS14_HUMAN| GeneName=|RPS14|  
P22626 1.19 1.45 1   ID=|ROA2_HUMAN|  
P51149 1.18 1.83 -1   ID=|RAB7A_HUMAN| GeneName=|RAB7A|  
P16949 1.17 1.45 1   ID=|STMN1_HUMAN| GeneName=|STMN1|  
Q09666 1.17 1.24 1   ID=|AHNK_HUMAN| GeneName=|AHNAK|  
Q9GZT3 1.16 1.50 -1   ID=|SLIRP_HUMAN| GeneName=|SLIRP|  
P62891 1.15 1.69 1   ID=|RL39_HUMAN| GeneName=|RPL39|  
Q14307 1.15 1.48 1   ID=|FGFR1_HUMAN| GeneName=|FGFR1|  
P62851 1.14 1.27 1   ID=|RS25_HUMAN| GeneName=|RPS25|  
P62820 1.14 1.10 1   ID=|RAB1A_HUMAN| GeneName=|RAB1A|  
P27348 1.14 1.08 1   ID=|1433T_HUMAN| GeneName=|YWHAQ|  
Q07955 1.14 1.25 -1   ID=|SFRS1_HUMAN| GeneName=|SFRS1|  
O76031 1.14 1.55 1   ID=|CLPX_HUMAN| GeneName=|CLPX|  
Q9P246 1.13 1.53 1   ID=|STIM2_HUMAN| GeneName=|STIM2|  
P08758 1.11 1.15 1   ID=|ANXA5_HUMAN| GeneName=|ANXA5|  
P49368 1.11 1.35 -1   ID=|TCPG_HUMAN| GeneName=|CCT3|  
Q9Y6E2 1.11 1.35 -1   ID=|BZW2_HUMAN| GeneName=|BZW2|  
Q8IY67 1.11 1.35 -1   ID=|RAVR1_HUMAN| GeneName=|RAVER1|  
Q9UBC3 1.11 1.35 -1   ID=|DNM3B_HUMAN| GeneName=|DNMT3B|  
P13928 1.11 1.35 -1   ID=|ANXA8_HUMAN| GeneName=|ANXA8|  
P04075 1.10 1.21 1   ID=|ALDOA_HUMAN| GeneName=|ALDOA|  
Q96I24 1.10 1.16 -1   ID=|FUBP3_HUMAN| GeneName=|FUBP3|  
Q14011 1.09 1.73 -1   ID=|CIRBP_HUMAN| GeneName=|CIRBP|  
Q9BY44 1.09 1.48 -1   ID=|EIF2A_HUMAN| GeneName=|EIF2A|  
Q15056 1.09 1.16 -1   ID=|IF4H_HUMAN| GeneName=|EIF4H|  
Q9H668 1.08 1.70 -1   ID=|STN1_HUMAN| GeneName=|OBFC1|  
P35080 1.07 2.00 -1   ID=|PROF2_HUMAN| GeneName=|PFN2|  
P61204 1.07 1.45 1   ID=|ARF3_HUMAN| GeneName=|ARF3|  
P61224 1.06 1.01 -1   ID=|RAP1B_HUMAN| GeneName=|RAP1B|  
Q9UC36 1.06 1.21 1   ID=|HSPB1_HUMAN| GeneName=|HSPB1|  
Q04837 1.06 2.09 1   ID=|SSBP_HUMAN| GeneName=|SSBP1|  
P06703 1.06 2.11 -1   ID=|S10A6_HUMAN| GeneName=|S100A6|  
Q9Y687 1.05 1.80 -1   ID=|ZFR_HUMAN| GeneName=|ZFR|  
P02538 1.05 1.48 1   ID=|K2C6A_HUMAN| GeneName=|KRT6A|  
Q9H910 1.05 2.08 -1   ID=|HN1L_HUMAN| GeneName=|HN1L|  
P78417 1.05 1.46 -1   ID=|GSTO1_HUMAN| GeneName=|GSTO1|  
O14733 1.04 1.83 -1   ID=|MP2K7_HUMAN| GeneName=|MAP2K7|  
P09496 1.04 1.17 1   ID=|CLCA_HUMAN| GeneName=|CLTA|  
Q92817 1.04 1.06 1   ID=|EVPL_HUMAN| GeneName=|EVPL|  
Q9Y6Y8 1.04 1.52 -1   ID=|S23IP_HUMAN| GeneName=|SEC23IP|  
O95622 1.03 1.38 -1   ID=|ADCY5_HUMAN| GeneName=|ADCY5|  
Q6ZW31 1.03 1.38 -1   ID=|SYDE1_HUMAN| GeneName=|SYDE1|  
Q14697 1.03 1.38 -1   ID=|GANAB_HUMAN| GeneName=|GANAB|  
Q9NTI5 1.03 1.38 -1   ID=|PDS5B_HUMAN| GeneName=|PDS5B|  
Q07021 1.02 1.52 -1   ID=|C1QBP_HUMAN| GeneName=|C1QBP|  
P31327 1.02 1.45 1   ID=|CPSM_HUMAN| GeneName=|CPS1|  
O14818 1.02 1.25 1   ID=|PSA7_HUMAN| GeneName=|PSMA7|  
Q8N1F7 1.01 1.34 1   ID=|NUP93_HUMAN| GeneName=|NUP93|  
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P01621 1.01 1.34 1   ID=|KV303_HUMAN| GeneName=|IGKV1-5|  
Q9P1Z9 1.01 1.21 -1   ID=|K1529_HUMAN| GeneName=|KIAA1529|  
P14923 1.00 1.39 1   ID=|PLAK_HUMAN| GeneName=|JUP|  
O95429 1.00 1.39 1   ID=|BAG4_HUMAN| GeneName=|BAG4|  
Q5VT18 1.00 1.39 1   ID=|CSKP_HUMAN| GeneName=|CASK|  
O75223 1.00 1.05 -1   ID=|GGCT_HUMAN| GeneName=|GGCT|  
Q9CWI7 0.99 1.36 1   ID=|RAN_HUMAN| GeneName=|RAN|  
P21108 0.99 1.31 1   ID=|PRPS3_HUMAN| GeneName=|PRPS1L1|  
P09661 0.97 1.07 1   ID=|RU2A_HUMAN| GeneName=|SNRPA1|  
O43813 0.97 1.27 1   ID=|LANC1_HUMAN| GeneName=|LANCL1| | 
P01622 0.97 2.16 1   ID=|KV304_HUMAN| GeneName=|IGKV1-5|  
Q92626 0.97 1.65 1   ID=|PXDN_HUMAN| GeneName=|PXDN|  
P31943 0.96 1.38 1   ID=|HNRH1_HUMAN| GeneName=|HNRNPH1|  
O43399 0.95 1.57 1   ID=|TPD54_HUMAN| GeneName=|TPD52L2|  
Q6P4C7 0.94 1.38 1   ID=|K2C8_HUMAN| GeneName=|KRT8|  
P28907 0.94 1.52 -1   ID=|CD38_HUMAN| GeneName=|CD38|  
P69849 0.94 1.52 -1   ID=|NOMO3_HUMAN| GeneName=|NOMO3|  
P26641 0.94 1.52 -1   ID=|EF1G_HUMAN| GeneName=|EEF1G|  
O75533 0.94 1.34 -1   ID=|SF3B1_HUMAN| GeneName=|SF3B1|  
P25705 0.94 1.34 -1   ID=|ATPA_HUMAN| GeneName=|ATP5A1|  
Q6P161 0.94 1.34 -1   ID=|RM54_HUMAN| GeneName=|MRPL54|  
Q9BUE0 0.94 1.34 -1   ID=|MED18_HUMAN| GeneName=|MED18|  
P50990 0.92 1.38 1   ID=|TCPQ_HUMAN| GeneName=|CCT8|  
P20339 0.92 1.38 1   ID=|RAB5A_HUMAN| GeneName=|RAB5A|  
sp|CAS2_BOV
IN| 0.92 1.38 1   COMMON CONTAMINANT! 
O00299 0.92 1.09 -1   ID=|CLIC1_HUMAN| GeneName=|CLIC1|  
Q13740 0.92 1.49 -1   ID=|CD166_HUMAN| GeneName=|ALCAM|  
P13639 0.92 1.75 1   ID=|EF2_HUMAN| GeneName=|EEF2|  
P54920 0.92 1.28 1   ID=|SNAA_HUMAN| GeneName=|NAPA|  
Q9BWB5 0.92 1.80 1   ID=|KPYM_HUMAN| GeneName=|PKM2|  
P23528 0.91 1.15 1   ID=|COF1_HUMAN| GeneName=|CFL1|  
P49458 0.89 1.07 1   ID=|SRP09_HUMAN| GeneName=|SRP9|  
P04080 0.89 1.06 1   ID=|CYTB_HUMAN| GeneName=|CSTB|  
Q6PKG0 0.88 1.23 1   ID=|LARP1_HUMAN| GeneName=|LARP1| | 
O14907 0.88 1.41 1   ID=|TX1B3_HUMAN| GeneName=|TAX1BP3| | 
Q92560 0.88 1.45 -1   ID=|BAP1_HUMAN| GeneName=|BAP1|  
Q6P179 0.87 1.49 -1   ID=|ERAP2_HUMAN| GeneName=|ERAP2|  
Q9UML6 0.87 1.60 1   ID=|CO1A1_HUMAN| GeneName=|COL1A1|  
P32119 0.87 1.21 1   ID=|PRDX2_HUMAN| GeneName=|PRDX2|  
Q13151 0.87 1.07 -1   ID=|ROA0_HUMAN| GeneName=|HNRNPA0|  
P29966 0.87 1.37 -1   ID=|MARCS_HUMAN| GeneName=|MARCKS|  
O43143 0.87 1.22 -1   ID=|DHX15_HUMAN| GeneName=|DHX15|  
Q01518 0.87 1.20 -1   ID=|CAP1_HUMAN| GeneName=|CAP1|  
P78396 0.87 1.41 -1   ID=|CCNA1_HUMAN| GeneName=|CCNA1|  
Q86X55 0.87 1.32 1   ID=|CARM1_HUMAN| GeneName=|CARM1|  
P28066 0.86 1.21 -1   ID=|PSA5_HUMAN| GeneName=|PSMA5|  
Q86VC0 0.86 1.03 1   ID=|RSSA_HUMAN| GeneName=|RPSA|  
Q9UKV8 0.86 1.19 1   ID=|AGO2_HUMAN| GeneName=|EIF2C2|  
P52565 0.86 1.13 1   ID=|GDIR1_HUMAN| GeneName=|ARHGDIA|  
Q9UKM9 0.86 1.44 -1   ID=|RALY_HUMAN| GeneName=|RALY|  
P13010 0.85 1.86 1   ID=|XRCC5_HUMAN| GeneName=|XRCC5|  
P10809 0.85 1.33 -1   ID=|CH60_HUMAN| GeneName=|HSPD1|  
P13647 0.85 1.26 1   ID=|K2C5_HUMAN| GeneName=|KRT5|  
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Tau-association unchanged by MB treatment (Bayes Factor < 10) 

      
Protein 

Bayes 
Factor 

Fold 
Change Direction FLAG description 

Q4VC05 0.84 1.46 -1   ID=|BCL7A_HUMAN| GeneName=|BCL7A|  
P63173 0.84 1.41 -1   ID=|RL38_HUMAN| GeneName=|RPL38|  

P10599 0.84 1.07 1   
ID=|THIO_HUMAN| GeneName=|TXN| 
Def=|Surface-associated sulphydryl protein| 

P49755 0.84 1.19 -1   ID=|TMEDA_HUMAN| GeneName=|TMED10|  
O75368 0.83 1.18 1   ID=|SH3L1_HUMAN| GeneName=|SH3BGRL|  
P84243 0.83 1.48 1   ID=|H33_HUMAN| GeneName=|H3F3B|  
P55854 0.82 1.36 1   ID=|SUMO3_HUMAN| GeneName=|SUMO3|  
P09972 0.82 1.30 -1   ID=|ALDOC_HUMAN| GeneName=|ALDOC|  

Q9BW01 0.82 1.48 -1   
ID=|SF01_HUMAN| GeneName=|SF1| 
Def=|Mammalian branch point-binding protein| 

P30086 0.82 1.12 -1   ID=|PEBP1_HUMAN| GeneName=|PEBP1|  
Q06830 0.81 1.17 1   ID=|PRDX1_HUMAN| GeneName=|PRDX1|  
P42766 0.81 1.10 1   ID=|RL35_HUMAN| GeneName=|RPL35|  
P06744 0.80 1.19 1   ID=|G6PI_HUMAN| GeneName=|GPI|  
P46776 0.80 1.54 1   ID=|RL27A_HUMAN| GeneName=|RPL27A|  
Q9UBV8 0.79 1.34 -1   ID=|PEF1_HUMAN| GeneName=|PEF1|  
P46778 0.79 1.82 1   ID=|RL21_HUMAN| GeneName=|RPL21|  
P30041 0.79 1.11 1   ID=|PRDX6_HUMAN| GeneName=|PRDX6|  
Q9Y315 0.79 1.49 -1   ID=|DEOC_HUMAN| GeneName=|DERA|  
Q9Y3S5 0.78 1.40 1   ID=|TTC28_HUMAN| GeneName=|TTC28|  
O75821 0.78 1.40 1   ID=|EIF3G_HUMAN| GeneName=|EIF3G|  
P68104 0.78 1.13 -1   ID=|EF1A1_HUMAN| GeneName=|EEF1A1|  
Q9UBD9 0.77 1.16 1   ID=|CLCF1_HUMAN| GeneName=|CLCF1|  
P04632 0.77 1.02 1   ID=|CPNS1_HUMAN| GeneName=|CAPNS1|  
Q96AE4 0.77 2.26 -1   ID=|FUBP1_HUMAN| GeneName=|FUBP1| | 
Q9UFU4 0.77 1.21 1   ID=|HNRH3_HUMAN| GeneName=|HNRNPH3|  
Q9H7N4 0.77 1.67 -1   ID=|SFR19_HUMAN| GeneName=|SCAF1|  
O00764 0.77 1.67 -1   ID=|PDXK_HUMAN| GeneName=|PDXK|  
P14866 0.74 1.42 -1   ID=|HNRPL_HUMAN| GeneName=|HNRNPL|  
Q9UL46 0.74 1.18 -1   ID=|PSME2_HUMAN| GeneName=|PSME2|  
P21291 0.74 1.28 1   ID=|CSRP1_HUMAN| GeneName=|CSRP1|  
P40925 0.74 1.00 1   ID=|MDHC_HUMAN| GeneName=|MDH1|  
P62258 0.73 1.26 -1   ID=|1433E_HUMAN| GeneName=|YWHAE|  
P20073 0.73 1.04 1   ID=|ANXA7_HUMAN| GeneName=|ANXA7|  
O43707 0.73 1.10 1   ID=|ACTN4_HUMAN| GeneName=|ACTN4|  
P42677 0.73 1.38 -1   ID=|RS27_HUMAN| GeneName=|RPS27|  
Q96HM4 0.73 2.01 -1   ID=|HNRPC_HUMAN| GeneName=|HNRNPC|  
P55735 0.73 1.18 1   ID=|SEC13_HUMAN| GeneName=|SEC13|  
P07737 0.72 1.00 1   ID=|PROF1_HUMAN| GeneName=|PFN1|  
Q9Y4F4 0.72 1.28 -1   ID=|F179B_HUMAN| GeneName=|FAM179B|  
P62861 0.71 2.59 1   ID=|RS30_HUMAN| GeneName=|FAU|  
Q92804 0.70 1.96 1   ID=|RBP56_HUMAN| GeneName=|TAF15| | 
Q8WW12 0.70 1.08 -1   ID=|PCNP_HUMAN| GeneName=|PCNP|  
P52952 0.70 1.10 1   ID=|NKX25_HUMAN| GeneName=|NKX2-5|  
P09429 0.70 1.38 -1   ID=|HMGB1_HUMAN| GeneName=|HMGB1|  
P62829 0.70 1.09 1   ID=|RL23_HUMAN| GeneName=|RPL23|  
P40926 0.69 1.76 1   ID=|MDHM_HUMAN| GeneName=|MDH2|  
Q86W34 0.69 1.35 -1   ID=|AMZ2_HUMAN| GeneName=|AMZ2|  
Q99625 0.69 1.35 -1   ID=|PIMT_HUMAN| GeneName=|PCMT1|  
Q5HYW2 0.69 1.35 -1   ID=|NHSL2_HUMAN| GeneName=|NHSL2|  
P26599 0.69 1.03 1   ID=|PTBP1_HUMAN| GeneName=|PTBP1|  
Q15437 0.69 1.07 -1   ID=|SC23B_HUMAN| GeneName=|SEC23B|  
P15311 0.69 1.17 1   ID=|EZRI_HUMAN| GeneName=|EZR|  
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Tau-association unchanged by MB treatment (Bayes Factor < 10) 

      
Protein 

Bayes 
Factor 

Fold 
Change Direction FLAG description 

P12429 0.69 1.44 1   ID=|ANXA3_HUMAN| GeneName=|ANXA3|  
sp|CAS1_BOV
IN| 0.68 1.16 1   COMMON CONTAMINANT! 
O15347 0.68 1.19 -1   ID=|HMGB3_HUMAN| GeneName=|HMGB3|  
P50995 0.68 1.08 -1   ID=|ANX11_HUMAN| GeneName=|ANXA11|  
A5PL33 0.68 1.16 -1   ID=|KRBA1_HUMAN| GeneName=|KRBA1|  
Q9UC56 0.67 1.46 1   ID=|GRP75_HUMAN| GeneName=|HSPA9|  
P62277 0.66 1.21 1   ID=|RS13_HUMAN| GeneName=|RPS13|  
P62318 0.66 2.88 -1   ID=|SMD3_HUMAN| GeneName=|SNRPD3|  
P62266 0.65 1.33 -1   ID=|RS23_HUMAN| GeneName=|RPS23|  
P37108 0.65 1.02 1   ID=|SRP14_HUMAN| GeneName=|SRP14|  

O60814 0.64 1.13 -1   
ID=|H2B1K_HUMAN| 
GeneName=|HIST1H2BK|  

P55145 0.64 1.03 -1   ID=|MANF_HUMAN| GeneName=|MANF|  
P18085 0.64 1.10 -1   ID=|ARF4_HUMAN| GeneName=|ARF4|  
A8MWD9 0.64 1.92 -1   ID=|RUXGL_HUMAN| GeneName=|SNRPF|  
Q9BZC7 0.64 1.11 -1   Def=|ATP-binding cassette transporter 2| 
Q9UNX3 0.64 1.30 -1   ID=|RL26L_HUMAN| GeneName=|RPL26L1|  
Q8N9B5 0.64 1.22 -1   ID=|JMY_HUMAN| GeneName=|JMY|  
Q99497 0.64 1.11 1   ID=|PARK7_HUMAN| GeneName=|PARK7|  
P37802 0.63 1.00 1   ID=|TAGL2_HUMAN| GeneName=|TAGLN2|  
Q96AT6 0.63 1.09 1   ID=|NPM_HUMAN| GeneName=|NPM1|  
P09012 0.63 1.07 -1   ID=|SNRPA_HUMAN| GeneName=|SNRPA|  
P02533 0.63 1.54 1   ID=|K1C14_HUMAN| GeneName=|KRT14|  
Q7Z2W4 0.62 1.38 -1   ID=|ZCCHV_HUMAN| GeneName=|ZC3HAV1|  

Q1KMD3 0.61 1.61 -1   
ID=|HNRL2_HUMAN| 
GeneName=|HNRNPUL2|  

Q7L576 0.61 1.14 -1   ID=|CYFP1_HUMAN| GeneName=|CYFIP1| O 
P60866 0.60 1.14 -1   ID=|RS20_HUMAN| GeneName=|RPS20|  
P30626 0.60 1.01 -1   ID=|SORCN_HUMAN| GeneName=|SRI| | 
P58546 0.60 1.06 1   ID=|MTPN_HUMAN| GeneName=|MTPN|  
Q8TEM1 0.59 1.55 -1   ID=|PO210_HUMAN| GeneName=|NUP210|  
Q861H8 0.59 1.55 -1   ID=|2B1C_HUMAN| GeneName=|HLA-DRB1|  
P62937 0.59 1.51 1   ID=|PPIA_HUMAN| GeneName=|PPIA|  
P21333 0.58 1.16 1   ID=|FLNA_HUMAN| GeneName=|FLNA|  
P23284 0.58 1.22 1   ID=|PPIB_HUMAN| GeneName=|PPIB|  
P0C0S8 0.57 1.01 1   ID=|H2A1_HUMAN| GeneName=|HIST1H2AM|  
P11142 0.57 1.00 -1   ID=|HSP7C_HUMAN| GeneName=|HSPA8|  
P80723 0.57 1.42 -1   ID=|BASP1_HUMAN| GeneName=|BASP1|  
P62280 0.57 1.32 -1   ID=|RS11_HUMAN| GeneName=|RPS11|  
P61353 0.56 1.41 1   ID=|RL27_HUMAN| GeneName=|RPL27|  
P16989 0.56 1.03 -1   ID=|DBPA_HUMAN| GeneName=|CSDA|  
Q15532 0.56 1.29 1   ID=|SSXT_HUMAN| GeneName=|SS18|  
Q16650 0.56 1.18 1   ID=|TBR1_HUMAN| GeneName=|TBR1|  
Q15366 0.56 1.20 1   ID=|PCBP2_HUMAN| GeneName=|PCBP2|  
P09211 0.55 1.45 1   ID=|GSTP1_HUMAN| GeneName=|GSTP1|  
P83731 0.55 1.09 1   ID=|RL24_HUMAN| GeneName=|RPL24|  
P61981 0.55 1.35 1   ID=|1433G_HUMAN| GeneName=|YWHAG|  
P02765 0.55 1.34 1   ID=|FETUA_HUMAN| GeneName=|AHSG|  
Q01085 0.55 1.34 -1   ID=|TIAR_HUMAN| GeneName=|TIAL1|  
O14979 0.54 1.56 1   ID=|HNRDL_HUMAN| GeneName=|HNRPDL|  
P62304 0.54 1.02 -1   ID=|RUXE_HUMAN| GeneName=|SNRPE|  
Q92734 0.54 2.16 1   ID=|TFG_HUMAN| GeneName=|TFG|  
P98179 0.53 1.01 1   ID=|RBM3_HUMAN| GeneName=|RBM3|  



166 
 

Tau-association unchanged by MB treatment (Bayes Factor < 10) 

      
Protein 

Bayes 
Factor 

Fold 
Change Direction FLAG description 

P46783 0.53 1.05 -1   ID=|RS10_HUMAN| GeneName=|RPS10|  
Q92499 0.53 1.46 1   ID=|DDX1_HUMAN| GeneName=|DDX1|  
P62805 0.52 1.04 -1   ID=|H4_HUMAN| GeneName=|HIST4H4|  
Q9UEG1 0.49 1.04 -1   ID=|RS27A_HUMAN| GeneName=|RPS27A|  
Q16629 0.49 1.31 1   ID=|SFRS7_HUMAN| GeneName=|SFRS7|  
O95487 0.49 1.01 -1   ID=|SC24B_HUMAN| GeneName=|SEC24B|  
P55795 0.48 1.09 1   ID=|HNRH2_HUMAN| GeneName=|HNRNPH2|  
Q01844 0.47 1.02 1   ID=|EWS_HUMAN| GeneName=|EWSR1|  
P14625 0.47 1.78 -1   ID=|ENPL_HUMAN| GeneName=|HSP90B1|  
Q01105 0.46 1.34 -1   ID=|SET_HUMAN| GeneName=|SET|  
P29401 0.45 1.01 -1   ID=|TKT_HUMAN| GeneName=|TKT|  
P13797 0.45 1.13 -1   ID=|PLST_HUMAN| GeneName=|PLS3|  
P62888 0.44 1.07 -1   ID=|RL30_HUMAN| GeneName=|RPL30|  
P09651 0.41 1.14 -1   ID=|ROA1_HUMAN| GeneName=|HNRNPA1|  
P26583 0.41 1.09 -1   ID=|HMGB2_HUMAN| GeneName=|HMGB2|  
P04406 0.40 1.03 1   ID=|G3P_HUMAN| GeneName=|GAPDH|  
P53999 0.40 1.49 -1   ID=|TCP4_HUMAN| GeneName=|SUB1|  
Q14847 0.39 1.07 1   ID=|LASP1_HUMAN| GeneName=|LASP1|  
P04275 0.37 1.49 -1   ID=|VWF_HUMAN| GeneName=|VWF|  
P78371 0.36 1.59 -1   ID=|TCPB_HUMAN| GeneName=|CCT2|  
P49773 0.35 1.67 1   ID=|HINT1_HUMAN| GeneName=|HINT1|  
P67809 0.34 1.20 -1   ID=|YBOX1_HUMAN| GeneName=|YBX1|  
P04083 0.33 1.22 -1   ID=|ANXA1_HUMAN| GeneName=|ANXA1|  
Q9UPA0 0.32 1.45 -1   ID=|XPO2_HUMAN| GeneName=|CSE1L|  
P15559 0.32 1.36 -1   ID=|NQO1_HUMAN| GeneName=|NQO1|  
P22314 0.32 1.36 -1   ID=|UBA1_HUMAN| GeneName=|UBA1|  
Q9UCE8 0.27 1.44 -1   ID=|HNRPD_HUMAN| GeneName=|HNRNPD|  
Q6NUR9 0.27 1.02 -1   ID=|1433Z_HUMAN| GeneName=|YWHAZ|  
P53992 0.27 1.36 1   ID=|SC24C_HUMAN| GeneName=|SEC24C|  
P61289 0.27 1.53 1   ID=|PSME3_HUMAN| GeneName=|PSME3|  
Q5CZI7 0.25 1.15 1   ID=|TAU_HUMAN| GeneName=|MAPT|  
sp|ALBU_BOV
IN| 0.24 1.13 1   COMMON CONTAMINANT! 
P51991 0.20 1.08 -1   ID=|ROA3_HUMAN| GeneName=|HNRNPA3|  
P62750 0.20 1.32 -1   ID=|RL23A_HUMAN| GeneName=|RPL23A|  
Q13242 0.19 1.12 -1   ID=|SFRS9_HUMAN| GeneName=|SFRS9|  
P07195 0.19 2.43 1   ID=|LDHB_HUMAN| GeneName=|LDHB|  
Q9HCM4 0.18 1.68 1   ID=|E41L5_HUMAN| GeneName=|EPB41L5|  
P61247 0.18 1.93 -1   ID=|RS3A_HUMAN| GeneName=|RPS3A|  
P09234 0.17 1.32 1   ID=|RU1C_HUMAN| GeneName=|SNRPC| C| 
P62857 0.14 1.57 -1   ID=|RS28_HUMAN| GeneName=|RPS28|  
P18669 0.11 1.15 -1   ID=|PGAM1_HUMAN| GeneName=|PGAM1|  
O00571 0.08 2.60 1   ID=|DDX3X_HUMAN| GeneName=|DDX3X|  
P00338 0.06 1.93 1   ID=|LDHA_HUMAN| GeneName=|LDHA|  
Q15436 0.05 2.81 1   ID=|SC23A_HUMAN| GeneName=|SEC23A|  
P17844 0.01 4.45 1   ID=|DDX5_HUMAN| GeneName=|DDX5|  
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4.6.3 MB treatment inhibits J-mediated stimulation of Hsp70. 
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4.6.4 MB treatment does not change tau binding to Hsp70. 

 

 
4.6.5 MB treatment does not promote Hop binding, although Hop can improve 
efficiency of degradation. 
 

 

 



169 
 

4.6.6 Results from peptide microarray experiments. 

Appendix 4.6 Results from peptide microarray experiments. 
  array 

ID 
residue # 
 

Hsp90α  
10 µM  

Hsp72  
10 µM 

Hsp72 NBD  
10 µM 

antibody only 
 

antibody only 
 

  PNS-tau Name Name Name Name Name 

1 1 
MAEPRQEFEV
MEDHA 

MAEPRQEFEV
MEDHA 

MAEPRQEFEV
MEDHA 

MAEPRQEFEV
MEDHA 

MAEPRQEFEV
MEDHA 

2 5 
RQEFEVMEDH
AGTYG 

RQEFEVMEDH
AGTYG 

RQEFEVMEDH
AGTYG 

RQEFEVMEDH
AGTYG 

RQEFEVMEDHA
GTYG 

3 9 
EVMEDHAGTY
GLGDR 

EVMEDHAGTY
GLGDR 

EVMEDHAGTY
GLGDR 

EVMEDHAGTY
GLGDR 

EVMEDHAGTY
GLGDR 

4 13 
DHAGTYGLGD
RKDQG 

DHAGTYGLGD
RKDQG 

DHAGTYGLGD
RKDQG 

DHAGTYGLGD
RKDQG 

DHAGTYGLGDR
KDQG 

5 17 
TYGLGDRKDQ
GGYTM 

TYGLGDRKDQ
GGYTM 

TYGLGDRKDQ
GGYTM 

TYGLGDRKDQ
GGYTM 

TYGLGDRKDQ
GGYTM 

6 21 
GDRKDQGGYT
MHQDQ 

GDRKDQGGYT
MHQDQ 

GDRKDQGGYT
MHQDQ 

GDRKDQGGYT
MHQDQ 

GDRKDQGGYT
MHQDQ 

7 25 
DQGGYTMHQD
QEGDT 

DQGGYTMHQD
QEGDT 

DQGGYTMHQD
QEGDT 

DQGGYTMHQD
QEGDT 

DQGGYTMHQD
QEGDT 

8 29 
YTMHQDQEGD
TDAGL 

YTMHQDQEGD
TDAGL 

YTMHQDQEGD
TDAGL 

YTMHQDQEGD
TDAGL 

YTMHQDQEGD
TDAGL 

9 33 
QDQEGDTDAG
LKESP 

QDQEGDTDAG
LKESP 

QDQEGDTDAG
LKESP 

QDQEGDTDAG
LKESP 

QDQEGDTDAG
LKESP 

10 37 
GDTDAGLKESP
LQTP 

GDTDAGLKESP
LQTP 

GDTDAGLKESP
LQTP 

GDTDAGLKESP
LQTP 

GDTDAGLKESP
LQTP 

11 41 
AGLKESPLQTP
TEDG 

AGLKESPLQTP
TEDG 

AGLKESPLQTP
TEDG 

AGLKESPLQTP
TEDG 

AGLKESPLQTP
TEDG 

12 45 
ESPLQTPTEDG
SEEP 

ESPLQTPTEDG
SEEP 

ESPLQTPTEDG
SEEP 

ESPLQTPTEDG
SEEP 

ESPLQTPTEDG
SEEP 

13 49 
QTPTEDGSEEP
GSET 

QTPTEDGSEEP
GSET 

QTPTEDGSEEP
GSET 

QTPTEDGSEEP
GSET 

QTPTEDGSEEP
GSET 

14 53 
EDGSEEPGSET
SDAK 

EDGSEEPGSET
SDAK 

EDGSEEPGSET
SDAK 

EDGSEEPGSET
SDAK 

EDGSEEPGSET
SDAK 

15 57 
EEPGSETSDAK
STPT 

EEPGSETSDAK
STPT 

EEPGSETSDAK
STPT 

EEPGSETSDAK
STPT 

EEPGSETSDAK
STPT 

16 61 
SETSDAKSTPT
AEDV 

SETSDAKSTPT
AEDV 

SETSDAKSTPT
AEDV 

SETSDAKSTPT
AEDV 

SETSDAKSTPT
AEDV 

17 65 
DAKSTPTAEDV
TAPL 

DAKSTPTAEDV
TAPL 

DAKSTPTAEDV
TAPL 

DAKSTPTAEDV
TAPL 

DAKSTPTAEDV
TAPL 

18 69 
TPTAEDVTAPL
VDEG 

TPTAEDVTAPL
VDEG 

TPTAEDVTAPL
VDEG 

TPTAEDVTAPL
VDEG 

TPTAEDVTAPL
VDEG 

19 73 
EDVTAPLVDEG
APGK 

EDVTAPLVDEG
APGK 

EDVTAPLVDEG
APGK 

EDVTAPLVDEG
APGK 

EDVTAPLVDEG
APGK 

20 77 
APLVDEGAPGK
QAAA 

APLVDEGAPGK
QAAA 

APLVDEGAPGK
QAAA 

APLVDEGAPGK
QAAA 

APLVDEGAPGK
QAAA 

21 81 
DEGAPGKQAA
AQPHT 

DEGAPGKQAA
AQPHT 

DEGAPGKQAA
AQPHT 

DEGAPGKQAA
AQPHT 

DEGAPGKQAAA
QPHT 

22 85 
PGKQAAAQPH
TEIPE 

PGKQAAAQPH
TEIPE 

PGKQAAAQPH
TEIPE 

PGKQAAAQPH
TEIPE 

PGKQAAAQPHT
EIPE 

23 89 
AAAQPHTEIPE
GTTA 

AAAQPHTEIPE
GTTA 

AAAQPHTEIPE
GTTA 

AAAQPHTEIPE
GTTA 

AAAQPHTEIPE
GTTA 

24 93 
PHTEIPEGTTAE
EAG 

PHTEIPEGTTAE
EAG 

PHTEIPEGTTAE
EAG 

PHTEIPEGTTAE
EAG 

PHTEIPEGTTAE
EAG 

25 97 
IPEGTTAEEAGI
GDT 

IPEGTTAEEAGI
GDT 

IPEGTTAEEAGI
GDT 

IPEGTTAEEAGI
GDT 

IPEGTTAEEAGI
GDT 

26 101 
TTAEEAGIGDT
PSLE 

TTAEEAGIGDT
PSLE 

TTAEEAGIGDT
PSLE 

TTAEEAGIGDT
PSLE 

TTAEEAGIGDTP
SLE 

27 105 
EAGIGDTPSLE
DEAA 

EAGIGDTPSLE
DEAA 

EAGIGDTPSLE
DEAA 

EAGIGDTPSLE
DEAA 

EAGIGDTPSLE
DEAA 

28 109 
GDTPSLEDEAA
GHVT 

GDTPSLEDEAA
GHVT 

GDTPSLEDEAA
GHVT 

GDTPSLEDEAA
GHVT 

GDTPSLEDEAA
GHVT 

29 113 
SLEDEAAGHVT
QEPE 

SLEDEAAGHVT
QEPE 

SLEDEAAGHVT
QEPE 

SLEDEAAGHVT
QEPE 

SLEDEAAGHVT
QEPE 

30 117 
EAAGHVTQEPE
SGKV 

EAAGHVTQEPE
SGKV 

EAAGHVTQEPE
SGKV 

EAAGHVTQEPE
SGKV 

EAAGHVTQEPE
SGKV 

31 121 HVTQEPESGKV HVTQEPESGKV HVTQEPESGKV HVTQEPESGKV HVTQEPESGKV
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VQEG VQEG VQEG VQEG VQEG 

32 125 
EPESGKVVQE
GFLRE 

EPESGKVVQE
GFLRE 

EPESGKVVQE
GFLRE 

EPESGKVVQE
GFLRE 

EPESGKVVQEG
FLRE 

33 129 
GKVVQEGFLRE
PGPP 

GKVVQEGFLRE
PGPP 

GKVVQEGFLRE
PGPP 

GKVVQEGFLRE
PGPP 

GKVVQEGFLRE
PGPP 

34 133 
QEGFLREPGPP
GLSH 

QEGFLREPGPP
GLSH 

QEGFLREPGPP
GLSH 

QEGFLREPGPP
GLSH 

QEGFLREPGPP
GLSH 

35 137 
LREPGPPGLSH
QLMS 

LREPGPPGLSH
QLMS 

LREPGPPGLSH
QLMS 

LREPGPPGLSH
QLMS 

LREPGPPGLSH
QLMS 

36 141 
GPPGLSHQLM
SGMPG 

GPPGLSHQLM
SGMPG 

GPPGLSHQLM
SGMPG 

GPPGLSHQLM
SGMPG 

GPPGLSHQLMS
GMPG 

37 145 
LSHQLMSGMP
GAPLL 

LSHQLMSGMP
GAPLL 

LSHQLMSGMP
GAPLL 

LSHQLMSGMP
GAPLL 

LSHQLMSGMP
GAPLL 

38 149 
LMSGMPGAPLL
PEGP 

LMSGMPGAPLL
PEGP 

LMSGMPGAPLL
PEGP 

LMSGMPGAPLL
PEGP 

LMSGMPGAPLL
PEGP 

39 153 
MPGAPLLPEGP
REAT 

MPGAPLLPEGP
REAT 

MPGAPLLPEGP
REAT 

MPGAPLLPEGP
REAT 

MPGAPLLPEGP
REAT 

40 157 
PLLPEGPREAT
RQPS 

PLLPEGPREAT
RQPS 

PLLPEGPREAT
RQPS 

PLLPEGPREAT
RQPS 

PLLPEGPREAT
RQPS 

41 161 
EGPREATRQPS
GTGP 

EGPREATRQPS
GTGP 

EGPREATRQPS
GTGP 

EGPREATRQPS
GTGP 

EGPREATRQPS
GTGP 

42 165 
EATRQPSGTGP
EDTE 

EATRQPSGTGP
EDTE 

EATRQPSGTGP
EDTE 

EATRQPSGTGP
EDTE 

EATRQPSGTGP
EDTE 

43 169 
QPSGTGPEDTE
GGRH 

QPSGTGPEDTE
GGRH 

QPSGTGPEDTE
GGRH 

QPSGTGPEDTE
GGRH 

QPSGTGPEDTE
GGRH 

44 173 
TGPEDTEGGR
HAPEL 

TGPEDTEGGR
HAPEL 

TGPEDTEGGR
HAPEL 

TGPEDTEGGR
HAPEL 

TGPEDTEGGRH
APEL 

45 177 
DTEGGRHAPE
LLKHQ 

DTEGGRHAPE
LLKHQ 

DTEGGRHAPE
LLKHQ 

DTEGGRHAPE
LLKHQ 

DTEGGRHAPEL
LKHQ 

46 NA AA AA AA AA AA 

47 181 
GRHAPELLKHQ
LLGD 

GRHAPELLKHQ
LLGD 

GRHAPELLKHQ
LLGD 

GRHAPELLKHQ
LLGD 

GRHAPELLKHQ
LLGD 

48 185 
PELLKHQLLGD
LHQE 

PELLKHQLLGD
LHQE 

PELLKHQLLGD
LHQE 

PELLKHQLLGD
LHQE 

PELLKHQLLGD
LHQE 

49 189 
KHQLLGDLHQE
GPPL 

KHQLLGDLHQE
GPPL 

KHQLLGDLHQE
GPPL 

KHQLLGDLHQE
GPPL 

KHQLLGDLHQE
GPPL 

50 193 
LGDLHQEGPPL
KGAG 

LGDLHQEGPPL
KGAG 

LGDLHQEGPPL
KGAG 

LGDLHQEGPPL
KGAG 

LGDLHQEGPPL
KGAG 

51 197 
HQEGPPLKGA
GGKER 

HQEGPPLKGA
GGKER 

HQEGPPLKGA
GGKER 

HQEGPPLKGA
GGKER 

HQEGPPLKGAG
GKER 

52 201 
PPLKGAGGKE
RPGSK 

PPLKGAGGKER
PGSK 

PPLKGAGGKER
PGSK 

PPLKGAGGKER
PGSK 

PPLKGAGGKER
PGSK 

53 205 
GAGGKERPGS
KEEVD 

GAGGKERPGS
KEEVD 

GAGGKERPGS
KEEVD 

GAGGKERPGS
KEEVD 

GAGGKERPGS
KEEVD 

54 209 
KERPGSKEEVD
EDRD 

KERPGSKEEVD
EDRD 

KERPGSKEEVD
EDRD 

KERPGSKEEVD
EDRD 

KERPGSKEEVD
EDRD 

55 213 
GSKEEVDEDR
DVDES 

GSKEEVDEDR
DVDES 

GSKEEVDEDR
DVDES 

GSKEEVDEDR
DVDES 

GSKEEVDEDRD
VDES 

56 217 
EVDEDRDVDES
SPQD 

EVDEDRDVDES
SPQD 

EVDEDRDVDES
SPQD 

EVDEDRDVDES
SPQD 

EVDEDRDVDES
SPQD 

57 221 
DRDVDESSPQ
DSPPS 

DRDVDESSPQ
DSPPS 

DRDVDESSPQ
DSPPS 

DRDVDESSPQ
DSPPS 

DRDVDESSPQD
SPPS 

58 225 
DESSPQDSPPS
KASP 

DESSPQDSPPS
KASP 

DESSPQDSPPS
KASP 

DESSPQDSPPS
KASP 

DESSPQDSPPS
KASP 

59 229 
PQDSPPSKASP
AQDG 

PQDSPPSKASP
AQDG 

PQDSPPSKASP
AQDG 

PQDSPPSKASP
AQDG 

PQDSPPSKASP
AQDG 

60 233 
PPSKASPAQDG
RPPQ 

PPSKASPAQDG
RPPQ 

PPSKASPAQDG
RPPQ 

PPSKASPAQDG
RPPQ 

PPSKASPAQDG
RPPQ 

61 237 
ASPAQDGRPP
QTAAR 

ASPAQDGRPP
QTAAR 

ASPAQDGRPP
QTAAR 

ASPAQDGRPP
QTAAR 

ASPAQDGRPP
QTAAR 

62 241 
QDGRPPQTAA
REATS 

QDGRPPQTAA
REATS 

QDGRPPQTAA
REATS 

QDGRPPQTAA
REATS 

QDGRPPQTAA
REATS 

63 245 
PPQTAAREATS
IPGF 

PPQTAAREATS
IPGF 

PPQTAAREATS
IPGF 

PPQTAAREATS
IPGF 

PPQTAAREATSI
PGF 

64 249 
AAREATSIPGF
PAEG 

AAREATSIPGF
PAEG 

AAREATSIPGF
PAEG 

AAREATSIPGF
PAEG 

AAREATSIPGFP
AEG 

65 253 
ATSIPGFPAEG
AIPL 

ATSIPGFPAEG
AIPL 

ATSIPGFPAEG
AIPL 

ATSIPGFPAEG
AIPL 

ATSIPGFPAEGA
IPL 
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66 257 
PGFPAEGAIPL
PVDF 

PGFPAEGAIPL
PVDF 

PGFPAEGAIPL
PVDF 

PGFPAEGAIPL
PVDF 

PGFPAEGAIPLP
VDF 

67 261 
AEGAIPLPVDFL
SKV 

AEGAIPLPVDFL
SKV 

AEGAIPLPVDFL
SKV 

AEGAIPLPVDFL
SKV 

AEGAIPLPVDFL
SKV 

68 265 
IPLPVDFLSKVS
TEI 

IPLPVDFLSKVS
TEI 

IPLPVDFLSKVS
TEI 

IPLPVDFLSKVS
TEI 

IPLPVDFLSKVS
TEI 

69 269 
VDFLSKVSTEIP
ASE 

VDFLSKVSTEIP
ASE 

VDFLSKVSTEIP
ASE 

VDFLSKVSTEIP
ASE 

VDFLSKVSTEIP
ASE 

70 273 
SKVSTEIPASEP
DGP 

SKVSTEIPASEP
DGP 

SKVSTEIPASEP
DGP 

SKVSTEIPASEP
DGP 

SKVSTEIPASEP
DGP 

71 277 
TEIPASEPDGP
SVGR 

TEIPASEPDGP
SVGR 

TEIPASEPDGP
SVGR 

TEIPASEPDGP
SVGR 

TEIPASEPDGPS
VGR 

72 281 
ASEPDGPSVG
RAKGQ 

ASEPDGPSVG
RAKGQ 

ASEPDGPSVG
RAKGQ 

ASEPDGPSVG
RAKGQ 

ASEPDGPSVGR
AKGQ 

73 285 
DGPSVGRAKG
QDAPL 

DGPSVGRAKG
QDAPL 

DGPSVGRAKG
QDAPL 

DGPSVGRAKG
QDAPL 

DGPSVGRAKG
QDAPL 

74 289 
VGRAKGQDAP
LEFTF 

VGRAKGQDAP
LEFTF 

VGRAKGQDAP
LEFTF 

VGRAKGQDAP
LEFTF 

VGRAKGQDAPL
EFTF 

75 293 
KGQDAPLEFTF
HVEI 

KGQDAPLEFTF
HVEI 

KGQDAPLEFTF
HVEI 

KGQDAPLEFTF
HVEI 

KGQDAPLEFTF
HVEI 

76 297 
APLEFTFHVEIT
PNV 

APLEFTFHVEIT
PNV 

APLEFTFHVEIT
PNV 

APLEFTFHVEIT
PNV 

APLEFTFHVEIT
PNV 

77 301 
FTFHVEITPNVQ
KEQ 

FTFHVEITPNVQ
KEQ 

FTFHVEITPNVQ
KEQ 

FTFHVEITPNVQ
KEQ 

FTFHVEITPNVQ
KEQ 

78 305 
VEITPNVQKEQ
AHSE 

VEITPNVQKEQ
AHSE 

VEITPNVQKEQ
AHSE 

VEITPNVQKEQ
AHSE 

VEITPNVQKEQ
AHSE 

79 309 
PNVQKEQAHS
EEHLG 

PNVQKEQAHS
EEHLG 

PNVQKEQAHS
EEHLG 

PNVQKEQAHS
EEHLG 

PNVQKEQAHSE
EHLG 

80 313 
KEQAHSEEHLG
RAAF 

KEQAHSEEHLG
RAAF 

KEQAHSEEHLG
RAAF 

KEQAHSEEHLG
RAAF 

KEQAHSEEHLG
RAAF 

81 317 
HSEEHLGRAAF
PGAP 

HSEEHLGRAAF
PGAP 

HSEEHLGRAAF
PGAP 

HSEEHLGRAAF
PGAP 

HSEEHLGRAAF
PGAP 

82 321 
HLGRAAFPGAP
GEGP 

HLGRAAFPGAP
GEGP 

HLGRAAFPGAP
GEGP 

HLGRAAFPGAP
GEGP 

HLGRAAFPGAP
GEGP 

83 325 
AAFPGAPGEGP
EARG 

AAFPGAPGEGP
EARG 

AAFPGAPGEGP
EARG 

AAFPGAPGEGP
EARG 

AAFPGAPGEGP
EARG 

84 329 
GAPGEGPEAR
GPSLG 

GAPGEGPEAR
GPSLG 

GAPGEGPEAR
GPSLG 

GAPGEGPEAR
GPSLG 

GAPGEGPEAR
GPSLG 

85 333 
EGPEARGPSLG
EDTK 

EGPEARGPSLG
EDTK 

EGPEARGPSLG
EDTK 

EGPEARGPSLG
EDTK 

EGPEARGPSLG
EDTK 

86 337 
ARGPSLGEDTK
EADL 

ARGPSLGEDTK
EADL 

ARGPSLGEDTK
EADL 

ARGPSLGEDTK
EADL 

ARGPSLGEDTK
EADL 

87 341 
SLGEDTKEADL
PEPS 

SLGEDTKEADL
PEPS 

SLGEDTKEADL
PEPS 

SLGEDTKEADL
PEPS 

SLGEDTKEADL
PEPS 

88 345 
DTKEADLPEPS
EKQP 

DTKEADLPEPS
EKQP 

DTKEADLPEPS
EKQP 

DTKEADLPEPS
EKQP 

DTKEADLPEPS
EKQP 

89 349 
ADLPEPSEKQP
AAAP 

ADLPEPSEKQP
AAAP 

ADLPEPSEKQP
AAAP 

ADLPEPSEKQP
AAAP 

ADLPEPSEKQP
AAAP 

90 353 
EPSEKQPAAAP
RGKP 

EPSEKQPAAAP
RGKP 

EPSEKQPAAAP
RGKP 

EPSEKQPAAAP
RGKP 

EPSEKQPAAAP
RGKP 

91 357 
KQPAAAPRGK
PVSRV 

KQPAAAPRGK
PVSRV 

KQPAAAPRGKP
VSRV 

KQPAAAPRGKP
VSRV 

KQPAAAPRGKP
VSRV 

92 361 
AAPRGKPVSR
VPQLK 

AAPRGKPVSR
VPQLK 

AAPRGKPVSR
VPQLK 

AAPRGKPVSR
VPQLK 

AAPRGKPVSRV
PQLK 

93 365 
GKPVSRVPQL
KARMV 

GKPVSRVPQL
KARMV 

GKPVSRVPQLK
ARMV 

GKPVSRVPQLK
ARMV 

GKPVSRVPQLK
ARMV 

94 369 
SRVPQLKARM
VSKSK 

SRVPQLKARM
VSKSK 

SRVPQLKARMV
SKSK 

SRVPQLKARMV
SKSK 

SRVPQLKARMV
SKSK 

95 373 
QLKARMVSKSK
DGTG 

QLKARMVSKSK
DGTG 

QLKARMVSKSK
DGTG 

QLKARMVSKSK
DGTG 

QLKARMVSKSK
DGTG 

96 377 
RMVSKSKDGT
GSDDK 

RMVSKSKDGT
GSDDK 

RMVSKSKDGT
GSDDK 

RMVSKSKDGT
GSDDK 

RMVSKSKDGT
GSDDK 

97 381 
KSKDGTGSDD
KKAKT 

KSKDGTGSDD
KKAKT 

KSKDGTGSDD
KKAKT 

KSKDGTGSDD
KKAKT 

KSKDGTGSDDK
KAKT 

98 385 
GTGSDDKKAKT
STRS 

GTGSDDKKAKT
STRS 

GTGSDDKKAKT
STRS 

GTGSDDKKAKT
STRS 

GTGSDDKKAKT
STRS 

99 389 
DDKKAKTSTRS
SAKT 

DDKKAKTSTRS
SAKT 

DDKKAKTSTRS
SAKT 

DDKKAKTSTRS
SAKT 

DDKKAKTSTRS
SAKT 

100 393 
AKTSTRSSAKT
LKNR 

AKTSTRSSAKT
LKNR 

AKTSTRSSAKT
LKNR 

AKTSTRSSAKT
LKNR 

AKTSTRSSAKT
LKNR 
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101 397 
TRSSAKTLKNR
PCLS 

TRSSAKTLKNR
PCLS 

TRSSAKTLKNR
PCLS 

TRSSAKTLKNR
PCLS 

TRSSAKTLKNR
PCLS 

102 401 
AKTLKNRPCLS
PKLP 

AKTLKNRPCLS
PKLP 

AKTLKNRPCLS
PKLP 

AKTLKNRPCLS
PKLP 

AKTLKNRPCLS
PKLP 

103 405 
KNRPCLSPKLP
TPGS 

KNRPCLSPKLP
TPGS 

KNRPCLSPKLP
TPGS 

KNRPCLSPKLP
TPGS 

KNRPCLSPKLP
TPGS 

104 409 
CLSPKLPTPGS
SDPL 

CLSPKLPTPGS
SDPL 

CLSPKLPTPGS
SDPL 

CLSPKLPTPGS
SDPL 

CLSPKLPTPGS
SDPL 

105 413 
KLPTPGSSDPLI
QPS 

KLPTPGSSDPLI
QPS 

KLPTPGSSDPLI
QPS 

KLPTPGSSDPLI
QPS 

KLPTPGSSDPLI
QPS 

106 417 
PGSSDPLIQPS
SPAV 

PGSSDPLIQPS
SPAV 

PGSSDPLIQPS
SPAV 

PGSSDPLIQPS
SPAV 

PGSSDPLIQPS
SPAV 

107 421 
DPLIQPSSPAV
CPEP 

DPLIQPSSPAV
CPEP 

DPLIQPSSPAV
CPEP 

DPLIQPSSPAV
CPEP 

DPLIQPSSPAVC
PEP 

108 425 
QPSSPAVCPEP
PSSP 

QPSSPAVCPEP
PSSP 

QPSSPAVCPEP
PSSP 

QPSSPAVCPEP
PSSP 

QPSSPAVCPEP
PSSP 

109 429 
PAVCPEPPSSP
KHVS 

PAVCPEPPSSP
KHVS 

PAVCPEPPSSP
KHVS 

PAVCPEPPSSP
KHVS 

PAVCPEPPSSP
KHVS 

110 433 
PEPPSSPKHVS
SVTS 

PEPPSSPKHVS
SVTS 

PEPPSSPKHVS
SVTS 

PEPPSSPKHVS
SVTS 

PEPPSSPKHVS
SVTS 

111 437 
SSPKHVSSVTS
RTGS 

SSPKHVSSVTS
RTGS 

SSPKHVSSVTS
RTGS 

SSPKHVSSVTS
RTGS 

SSPKHVSSVTS
RTGS 

112 441 
HVSSVTSRTGS
SGAK 

HVSSVTSRTGS
SGAK 

HVSSVTSRTGS
SGAK 

HVSSVTSRTGS
SGAK 

HVSSVTSRTGS
SGAK 

113 445 
VTSRTGSSGAK
EMKL 

VTSRTGSSGAK
EMKL 

VTSRTGSSGAK
EMKL 

VTSRTGSSGAK
EMKL 

VTSRTGSSGAK
EMKL 

114 449 
TGSSGAKEMKL
KGAD 

TGSSGAKEMKL
KGAD 

TGSSGAKEMKL
KGAD 

TGSSGAKEMKL
KGAD 

TGSSGAKEMKL
KGAD 

115 453 
GAKEMKLKGA
DGKTK 

GAKEMKLKGA
DGKTK 

GAKEMKLKGA
DGKTK 

GAKEMKLKGA
DGKTK 

GAKEMKLKGAD
GKTK 

116 457 
MKLKGADGKTK
IATP 

MKLKGADGKTK
IATP 

MKLKGADGKTK
IATP 

MKLKGADGKTK
IATP 

MKLKGADGKTK
IATP 

117 461 
GADGKTKIATP
RGAA 

GADGKTKIATP
RGAA 

GADGKTKIATP
RGAA 

GADGKTKIATP
RGAA 

GADGKTKIATP
RGAA 

118 465 
KTKIATPRGAA
PPGQ 

KTKIATPRGAA
PPGQ 

KTKIATPRGAA
PPGQ 

KTKIATPRGAA
PPGQ 

KTKIATPRGAAP
PGQ 

119 469 
ATPRGAAPPG
QKGQA 

ATPRGAAPPG
QKGQA 

ATPRGAAPPG
QKGQA 

ATPRGAAPPG
QKGQA 

ATPRGAAPPGQ
KGQA 

120 473 
GAAPPGQKGQ
ANATR 

GAAPPGQKGQ
ANATR 

GAAPPGQKGQ
ANATR 

GAAPPGQKGQ
ANATR 

GAAPPGQKGQ
ANATR 

121 477 
PGQKGQANAT
RIPAK 

PGQKGQANAT
RIPAK 

PGQKGQANAT
RIPAK 

PGQKGQANAT
RIPAK 

PGQKGQANAT
RIPAK 

122 481 
GQANATRIPAK
TPPA 

GQANATRIPAK
TPPA 

GQANATRIPAK
TPPA 

GQANATRIPAK
TPPA 

GQANATRIPAK
TPPA 

123 485 
ATRIPAKTPPAP
KTP 

ATRIPAKTPPAP
KTP 

ATRIPAKTPPAP
KTP 

ATRIPAKTPPAP
KTP 

ATRIPAKTPPAP
KTP 

124 489 
PAKTPPAPKTP
PSSG 

PAKTPPAPKTP
PSSG 

PAKTPPAPKTP
PSSG 

PAKTPPAPKTP
PSSG 

PAKTPPAPKTP
PSSG 

125 493 
PPAPKTPPSSG
EPPK 

PPAPKTPPSSG
EPPK 

PPAPKTPPSSG
EPPK 

PPAPKTPPSSG
EPPK 

PPAPKTPPSSG
EPPK 

126 497 
KTPPSSGEPPK
SGDR 

KTPPSSGEPPK
SGDR 

KTPPSSGEPPK
SGDR 

KTPPSSGEPPK
SGDR 

KTPPSSGEPPK
SGDR 

127 501 
SSGEPPKSGD
RSGYS 

SSGEPPKSGD
RSGYS 

SSGEPPKSGD
RSGYS 

SSGEPPKSGD
RSGYS 

SSGEPPKSGDR
SGYS 

128 505 
PPKSGDRSGY
SSPGS 

PPKSGDRSGY
SSPGS 

PPKSGDRSGY
SSPGS 

PPKSGDRSGY
SSPGS 

PPKSGDRSGYS
SPGS 

129 509 
GDRSGYSSPG
SPGTP 

GDRSGYSSPG
SPGTP 

GDRSGYSSPG
SPGTP 

GDRSGYSSPG
SPGTP 

GDRSGYSSPG
SPGTP 

130 513 
GYSSPGSPGTP
GSRS 

GYSSPGSPGTP
GSRS 

GYSSPGSPGTP
GSRS 

GYSSPGSPGTP
GSRS 

GYSSPGSPGTP
GSRS 

131 517 
PGSPGTPGSR
SRTPS 

PGSPGTPGSR
SRTPS 

PGSPGTPGSR
SRTPS 

PGSPGTPGSR
SRTPS 

PGSPGTPGSRS
RTPS 

132 521 
GTPGSRSRTPS
LPTP 

GTPGSRSRTPS
LPTP 

GTPGSRSRTPS
LPTP 

GTPGSRSRTPS
LPTP 

GTPGSRSRTPS
LPTP 

133 525 
SRSRTPSLPTP
PTRE 

SRSRTPSLPTP
PTRE 

SRSRTPSLPTP
PTRE 

SRSRTPSLPTP
PTRE 

SRSRTPSLPTP
PTRE 

134 529 
TPSLPTPPTRE
PKKV 

TPSLPTPPTRE
PKKV 

TPSLPTPPTRE
PKKV 

TPSLPTPPTRE
PKKV 

TPSLPTPPTRE
PKKV 

135 533 
PTPPTREPKKV
AVVR 

PTPPTREPKKV
AVVR 

PTPPTREPKKV
AVVR 

PTPPTREPKKV
AVVR 

PTPPTREPKKV
AVVR 
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136 537 
TREPKKVAVVR
TPPK 

TREPKKVAVVR
TPPK 

TREPKKVAVVR
TPPK 

TREPKKVAVVR
TPPK 

TREPKKVAVVR
TPPK 

137 541 
KKVAVVRTPPK
SPSS 

KKVAVVRTPPK
SPSS 

KKVAVVRTPPK
SPSS 

KKVAVVRTPPK
SPSS 

KKVAVVRTPPK
SPSS 

138 NA AA AA AA AA AA 

139 545 
VVRTPPKSPSS
AKSR 

VVRTPPKSPSS
AKSR 

VVRTPPKSPSS
AKSR 

VVRTPPKSPSS
AKSR 

VVRTPPKSPSS
AKSR 

140 549 
PPKSPSSAKSR
LQTA 

PPKSPSSAKSR
LQTA 

PPKSPSSAKSR
LQTA 

PPKSPSSAKSR
LQTA 

PPKSPSSAKSR
LQTA 

141 553 
PSSAKSRLQTA
PVPM 

PSSAKSRLQTA
PVPM 

PSSAKSRLQTA
PVPM 

PSSAKSRLQTA
PVPM 

PSSAKSRLQTA
PVPM 

142 557 
KSRLQTAPVPM
PDLK 

KSRLQTAPVPM
PDLK 

KSRLQTAPVPM
PDLK 

KSRLQTAPVPM
PDLK 

KSRLQTAPVPM
PDLK 

143 561 
QTAPVPMPDLK
NVKS 

QTAPVPMPDLK
NVKS 

QTAPVPMPDLK
NVKS 

QTAPVPMPDLK
NVKS 

QTAPVPMPDLK
NVKS 

144 565 
VPMPDLKNVKS
KIGS 

VPMPDLKNVKS
KIGS 

VPMPDLKNVKS
KIGS 

VPMPDLKNVKS
KIGS 

VPMPDLKNVKS
KIGS 

145 569 
DLKNVKSKIGS
TENL 

DLKNVKSKIGS
TENL 

DLKNVKSKIGS
TENL 

DLKNVKSKIGS
TENL 

DLKNVKSKIGST
ENL 

146 573 
VKSKIGSTENLK
HQP 

VKSKIGSTENLK
HQP 

VKSKIGSTENLK
HQP 

VKSKIGSTENLK
HQP 

VKSKIGSTENLK
HQP 

147 577 
IGSTENLKHQP
GGGK 

IGSTENLKHQP
GGGK 

IGSTENLKHQP
GGGK 

IGSTENLKHQP
GGGK 

IGSTENLKHQP
GGGK 

148 581 
ENLKHQPGGG
KVQII 

ENLKHQPGGG
KVQII 

ENLKHQPGGG
KVQII 

ENLKHQPGGG
KVQII 

ENLKHQPGGG
KVQII 

149 585 
HQPGGGKVQII
NKKL 

HQPGGGKVQII
NKKL 

HQPGGGKVQII
NKKL 

HQPGGGKVQII
NKKL 

HQPGGGKVQII
NKKL 

150 589 
GGKVQIINKKLD
LSN 

GGKVQIINKKLD
LSN 

GGKVQIINKKLD
LSN 

GGKVQIINKKLD
LSN 

GGKVQIINKKLD
LSN 

151 593 
QIINKKLDLSNV
QSK 

QIINKKLDLSNV
QSK 

QIINKKLDLSNV
QSK 

QIINKKLDLSNV
QSK 

QIINKKLDLSNV
QSK 

152 597 
KKLDLSNVQSK
CGSK 

KKLDLSNVQSK
CGSK 

KKLDLSNVQSK
CGSK 

KKLDLSNVQSK
CGSK 

KKLDLSNVQSK
CGSK 

153 601 
LSNVQSKCGSK
DNIK 

LSNVQSKCGSK
DNIK 

LSNVQSKCGSK
DNIK 

LSNVQSKCGSK
DNIK 

LSNVQSKCGSK
DNIK 

154 605 
QSKCGSKDNIK
HVPG 

QSKCGSKDNIK
HVPG 

QSKCGSKDNIK
HVPG 

QSKCGSKDNIK
HVPG 

QSKCGSKDNIK
HVPG 

155 609 
GSKDNIKHVPG
GGSV 

GSKDNIKHVPG
GGSV 

GSKDNIKHVPG
GGSV 

GSKDNIKHVPG
GGSV 

GSKDNIKHVPG
GGSV 

156 613 
NIKHVPGGGSV
QIVY 

NIKHVPGGGSV
QIVY 

NIKHVPGGGSV
QIVY 

NIKHVPGGGSV
QIVY 

NIKHVPGGGSV
QIVY 

157 617 
VPGGGSVQIVY
KPVD 

VPGGGSVQIVY
KPVD 

VPGGGSVQIVY
KPVD 

VPGGGSVQIVY
KPVD 

VPGGGSVQIVY
KPVD 

158 621 
GSVQIVYKPVD
LSKV 

GSVQIVYKPVD
LSKV 

GSVQIVYKPVD
LSKV 

GSVQIVYKPVD
LSKV 

GSVQIVYKPVD
LSKV 

159 625 
IVYKPVDLSKV
TSKC 

IVYKPVDLSKV
TSKC 

IVYKPVDLSKVT
SKC 

IVYKPVDLSKVT
SKC 

IVYKPVDLSKVT
SKC 

160 629 
PVDLSKVTSKC
GSLG 

PVDLSKVTSKC
GSLG 

PVDLSKVTSKC
GSLG 

PVDLSKVTSKC
GSLG 

PVDLSKVTSKC
GSLG 

161 633 
SKVTSKCGSLG
NIHH 

SKVTSKCGSLG
NIHH 

SKVTSKCGSLG
NIHH 

SKVTSKCGSLG
NIHH 

SKVTSKCGSLG
NIHH 

162 637 
SKCGSLGNIHH
KPGG 

SKCGSLGNIHH
KPGG 

SKCGSLGNIHH
KPGG 

SKCGSLGNIHH
KPGG 

SKCGSLGNIHH
KPGG 

163 641 
SLGNIHHKPGG
GQVE 

SLGNIHHKPGG
GQVE 

SLGNIHHKPGG
GQVE 

SLGNIHHKPGG
GQVE 

SLGNIHHKPGG
GQVE 

164 645 
IHHKPGGGQVE
VKSE 

IHHKPGGGQVE
VKSE 

IHHKPGGGQVE
VKSE 

IHHKPGGGQVE
VKSE 

IHHKPGGGQVE
VKSE 

165 649 
PGGGQVEVKS
EKLDF 

PGGGQVEVKS
EKLDF 

PGGGQVEVKS
EKLDF 

PGGGQVEVKS
EKLDF 

PGGGQVEVKS
EKLDF 

166 653 
QVEVKSEKLDF
KDRV 

QVEVKSEKLDF
KDRV 

QVEVKSEKLDF
KDRV 

QVEVKSEKLDF
KDRV 

QVEVKSEKLDF
KDRV 

167 657 
KSEKLDFKDRV
QSKI 

KSEKLDFKDRV
QSKI 

KSEKLDFKDRV
QSKI 

KSEKLDFKDRV
QSKI 

KSEKLDFKDRV
QSKI 

168 661 
LDFKDRVQSKI
GSLD 

LDFKDRVQSKI
GSLD 

LDFKDRVQSKI
GSLD 

LDFKDRVQSKI
GSLD 

LDFKDRVQSKI
GSLD 

169 665 
DRVQSKIGSLD
NITH 

DRVQSKIGSLD
NITH 

DRVQSKIGSLD
NITH 

DRVQSKIGSLD
NITH 

DRVQSKIGSLD
NITH 

170 669 
SKIGSLDNITHV
PGG 

SKIGSLDNITHV
PGG 

SKIGSLDNITHV
PGG 

SKIGSLDNITHV
PGG 

SKIGSLDNITHV
PGG 
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171 673 
SLDNITHVPGG
GNKK 

SLDNITHVPGG
GNKK 

SLDNITHVPGG
GNKK 

SLDNITHVPGG
GNKK 

SLDNITHVPGG
GNKK 

172 677 
ITHVPGGGNKK
IETH 

ITHVPGGGNKKI
ETH 

ITHVPGGGNKKI
ETH 

ITHVPGGGNKKI
ETH 

ITHVPGGGNKKI
ETH 

173 681 
PGGGNKKIETH
KLTF 

PGGGNKKIETH
KLTF 

PGGGNKKIETH
KLTF 

PGGGNKKIETH
KLTF 

PGGGNKKIETH
KLTF 

174 685 
NKKIETHKLTFR
ENA 

NKKIETHKLTFR
ENA 

NKKIETHKLTFR
ENA 

NKKIETHKLTFR
ENA 

NKKIETHKLTFR
ENA 

175 689 
ETHKLTFRENA
KAKT 

ETHKLTFRENA
KAKT 

ETHKLTFRENA
KAKT 

ETHKLTFRENA
KAKT 

ETHKLTFRENA
KAKT 

176 693 
LTFRENAKAKT
DHGA 

LTFRENAKAKT
DHGA 

LTFRENAKAKT
DHGA 

LTFRENAKAKT
DHGA 

LTFRENAKAKT
DHGA 

177 697 
ENAKAKTDHGA
EIVY 

ENAKAKTDHGA
EIVY 

ENAKAKTDHGA
EIVY 

ENAKAKTDHGA
EIVY 

ENAKAKTDHGA
EIVY 

178 701 
AKTDHGAEIVY
KSPV 

AKTDHGAEIVY
KSPV 

AKTDHGAEIVY
KSPV 

AKTDHGAEIVY
KSPV 

AKTDHGAEIVY
KSPV 

179 705 
HGAEIVYKSPV
VSGD 

HGAEIVYKSPV
VSGD 

HGAEIVYKSPV
VSGD 

HGAEIVYKSPV
VSGD 

HGAEIVYKSPV
VSGD 

180 709 
IVYKSPVVSGD
TSPR 

IVYKSPVVSGD
TSPR 

IVYKSPVVSGD
TSPR 

IVYKSPVVSGD
TSPR 

IVYKSPVVSGDT
SPR 

181 713 
SPVVSGDTSPR
HLSN 

SPVVSGDTSPR
HLSN 

SPVVSGDTSPR
HLSN 

SPVVSGDTSPR
HLSN 

SPVVSGDTSPR
HLSN 

182 717 
SGDTSPRHLSN
VSST 

SGDTSPRHLSN
VSST 

SGDTSPRHLSN
VSST 

SGDTSPRHLSN
VSST 

SGDTSPRHLSN
VSST 

183 721 
SPRHLSNVSST
GSID 

SPRHLSNVSST
GSID 

SPRHLSNVSST
GSID 

SPRHLSNVSST
GSID 

SPRHLSNVSST
GSID 

184 725 
LSNVSSTGSID
MVDS 

LSNVSSTGSID
MVDS 

LSNVSSTGSID
MVDS 

LSNVSSTGSID
MVDS 

LSNVSSTGSID
MVDS 

185 729 
SSTGSIDMVDS
PQLA 

SSTGSIDMVDS
PQLA 

SSTGSIDMVDS
PQLA 

SSTGSIDMVDS
PQLA 

SSTGSIDMVDS
PQLA 

186 733 
SIDMVDSPQLA
TLAD 

SIDMVDSPQLA
TLAD 

SIDMVDSPQLA
TLAD 

SIDMVDSPQLA
TLAD 

SIDMVDSPQLA
TLAD 

187 737 
VDSPQLATLAD
EVSA 

VDSPQLATLAD
EVSA 

VDSPQLATLAD
EVSA 

VDSPQLATLAD
EVSA 

VDSPQLATLAD
EVSA 

188 741 
QLATLADEVSA
SLAK 

QLATLADEVSA
SLAK 

QLATLADEVSA
SLAK 

QLATLADEVSA
SLAK 

QLATLADEVSA
SLAK 

189 745 
TLADEVSASLA
KQGL 

TLADEVSASLA
KQGL 

TLADEVSASLA
KQGL 

TLADEVSASLA
KQGL 

TLADEVSASLA
KQGL 

190 749 
GYSSPGEPGE
PGSRS 

GYSSPGEPGE
PGSRS 

GYSSPGEPGE
PGSRS 

GYSSPGEPGE
PGSRS 

GYSSPGEPGEP
GSRS 

191 753 
GYSSPGEPGTP
GSRS 

GYSSPGEPGTP
GSRS 

GYSSPGEPGTP
GSRS 

GYSSPGEPGTP
GSRS 

GYSSPGEPGTP
GSRS 

192 757 
PGSPGEPGSR
SRTPS 

PGSPGEPGSR
SRTPS 

PGSPGEPGSR
SRTPS 

PGSPGEPGSR
SRTPS 

PGSPGEPGSRS
RTPS 

193 761 
VKSKIGETENLK
HQP 

VKSKIGETENLK
HQP 

VKSKIGETENLK
HQP 

VKSKIGETENLK
HQP 

VKSKIGETENLK
HQP 

194 765 
DRVQSKIGELD
NITH 

DRVQSKIGELD
NITH 

DRVQSKIGELD
NITH 

DRVQSKIGELD
NITH 

DRVQSKIGELD
NITH 

195 769 
HGAEIVYKEPV
VSGD 

HGAEIVYKEPV
VSGD 

HGAEIVYKEPV
VSGD 

HGAEIVYKEPV
VSGD 

HGAEIVYKEPV
VSGD 

196 773 
SPVVSGDTEPR
HLSN 

SPVVSGDTEPR
HLSN 

SPVVSGDTEPR
HLSN 

SPVVSGDTEPR
HLSN 

SPVVSGDTEPR
HLSN 

197 NA AA AA AA AA AA 

198 
 

empty empty empty empty empty 

199 
 

empty empty empty empty empty 

200 
 

empty empty empty empty empty 

201 
 

empty empty empty empty empty 

202 
 

empty empty empty empty empty 

203 
 

empty empty empty empty empty 

204 
 

empty empty empty empty empty 

205 
 

empty empty empty empty empty 

206 
 

empty empty empty empty empty 

207 
 

empty empty empty empty empty 
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208 
 

empty empty empty empty empty 

209 
 

empty empty empty empty empty 

210   empty empty empty empty empty 

211   Human IgG Human IgG Human IgG Human IgG Human IgG 

212 
 

Human IgG Human IgG Human IgG Human IgG Human IgG 

213 
 

Human IgG Human IgG Human IgG Human IgG Human IgG 

214 
 

mouse IgG mouse IgG mouse IgG mouse IgG mouse IgG 

215 
 

mouse IgG mouse IgG mouse IgG mouse IgG mouse IgG 

216 
 

mouse IgG mouse IgG mouse IgG mouse IgG mouse IgG 

217 
 

TAU TAU TAU TAU TAU 

218 
 

TAU TAU TAU TAU TAU 

219 
 

TAU TAU TAU TAU TAU 

220 
 

empty empty empty empty empty 

221 
 

empty empty empty empty empty 

222 
 

empty empty empty empty empty 

223 
 

empty empty empty empty empty 

224 
 

empty empty empty empty empty 

225   empty empty empty empty empty 

BOLD indicates peptides which met the cut-off: 3 standard errors above the mean  
Grey indicates peptide that were positive for binding in the antibody controls and NBD 
experiments and were thus excluded from later analysis 
Green indicates peptides which met the cut-off and were not positive in any control experiments  
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4.6.7 Analysis of Hsp70 and Hsp90 mRNA levels in Alzheimer’s disease human 
hippocampus. 
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Chapter 5 

Conclusions and future directions: Progress towards understanding molecular 
decision making within the Hsp70 chaperone system. 

 

5.1 Abstract 

In the previous chapters, the effects of discrete variables such as ATPase rate, 

oligomerization, and substrate binding on the chaperone activities of Hsp70 were 

evaluated. These studies have improved the field’s understanding of the Hsp70 chaperone 

system, especially in linking its in vitro biochemical activities to cellular functions. 

However, there is still much to learn. For example, the mechanism(s) by which Hsp70 

and Hsp90 target substrates, such as tau, for degradation is not yet fully understood. The 

relative contributions of ATP turnover and co-chaperone interactions towards various 

chaperone functions, such as tau stability, are also unknown. This chapter discusses 

potential future directions towards answering these questions. In addition, this chapter 

highlights how this thesis work might predict novel therapeutic strategies. One of the 

major conclusions made herein is that a suite of small molecules and single point 

mutations could be combined to illuminate factors which drive molecular decision 

making in the Hsp70 complex. 

 

5.2 Conclusions 

A major goal of this thesis was to utilize a variety of technical approaches to probe what 

factors within the Hsp70 chaperone system direct the fate of its substrates. Hsp70 is 
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considered a major triage chaperone, which can promote either the degradation or 

stabilization of a substrate protein. As such, Hsp70 is central to normal protein 

homeostasis and its function may be disrupted in a variety of protein misfolding diseases. 

By understanding how Hsp70 makes “decisions” about whether to fold or degrade a 

substrate, I hoped to gain insight into how Hsp70 might be targeted therapeutically, 

especially in tauopathies.  

 

When I joined the 

Gestwicki 

laboratory in 2008 

the first high-

throughput screens 

on both the E.coli 

and human 

isoforms of Hsp70 

had recently been 

carried out [1, 2]. 

Whereas Hsp70 

alone has a very low ATPase rate, adding J-proteins permitted sufficient nucleotide 

turnover to give a usable signal. The Gestwicki lab had used this approach to identify a 

number of compounds that inhibited this Hsp70-J protein system, including methylene 

blue (MB). At the same time, dihydropyrimidines that stimulate the ATPase activity of 

Hsp70 were being described by Susan Wisén [3]. Combined, these efforts resulted in 
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several first-generation chemical tools that could be use to perturb the Hsp70 system and 

understand its function (Figure 5.1). Further, in collaboration with Chad Dickey’s 

laboratory at the University of South Florida, the Gestwicki lab had learned that Hsp70 

ATPase stimulators of the dihydropyrimidine class increased cellular tau levels, while 

inhibitors, belonging to the phenothiazine and flavonoid chemical classes, reduced tau 

levels in several cellular models of tauopathies [1].  

 

Based on these exciting developments, I wanted to further explore the logic of Hsp70 

chaperone system. In particular, the aim of this thesis was to understand how various 

variables within the Hsp70 chaperone system contribute to chaperone function. First, we 

explored whether ATPase activity linked to the fate of Hsp70-bound substrates. To probe 

this question, in Chapter 2, a series of point mutants within the prokaryotic Hsp70, DnaK, 

was generated (Figure 5.1). These point mutations provided DnaK variants with a wide 

range of ATPase activities and different responsiveness to co-chaperones. Using these 

mutants, it was found that ATPase rate is not directly related to classic chaperone 

activities, specifically refolding and the protection from heat stress (Figure 5.2B). Thus, 

one of the major results of Chapter 2 was that variables other than ATPase rate combine 

to determine molecular chaperone activities. Moving forward, point mutations may allow 

one to catalog the effect of these alterations on multiple variables of the Hsp70 chaperone 

system, which include ATPase rate, nucleotide state, co-chaperone interactions, and 

substrate binding (Figure 5.2A). This is important because these variables are inter-

dependent. For example, co-chaperone interactions influence ATPase rate and vice versa. 

By using a suite of mutant proteins and fully characterizing their biochemical and 
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chaperone activities, one may begin to tease apart the major variables which control a 

given function.  

 

Next, in Chapter 3, we focused on another variable with the Hsp70 chaperone system. 

Specifically, how nucleotide state dependent oligomerization of Hsp70 may influence 

chaperone functions. Specifically, the architecture and function of oligomeric DnaK was 

explored. This work showed that ADP-bound DnaK formed small, defined multimers that 

retained some chaperone functions, such as substrate binding. However, these oligomers 

had reduced refolding activity and they were poorly stimulated by the co-chaperone, 

DnaJ (Figure 5.2B). These studies imply that oligomerization might be an important step 

in Hsp70 chaperone cycling. Further, these studies suggest that there may be insight to be 

gained by monitoring the effects of Hsp70 chemical modulators on oligomerization, as 

this might be a viable mechanism by which small molecules alter Hsp70 function. 

 

Another major goal of my thesis work was to utilize the new chemical tools developed by 

the Gestwicki lab to understand molecular decision making within the Hsp70 chaperone 

system. In particular, these molecules seemed particularly well suited for probing tau 

stability and homeostasis, given the observed changes in tau homeostasis upon treatment 

[1]. Thus, in Chapter 4, changes in tau associated protein complexes during an acute, 

small molecule-induced, switch to a degradation fate were monitored. For this study 

methylene blue (MB) was utilized (Figure 5.1, red box), because it resulted in the most 

robust reductions in tau levels. Further, another key feature of MB is that it reduces tau 

levels rapidly (within ~ 15 minutes in HeLa cells). Thus, performing  
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immunoprecipitation of tau with and without MB treatment allowed for the identification 

of proteins that change in their association with tau during the first few minutes of triage. 

Using mass spectrometry and quantitative spectral analysis, 48 tau-associated proteins 

were identified which either release or enrich their binding to tau during the switch to a 

degradation fate. Interestingly, this work discovered a rapid switch from an Hsp70-bound 

complex to an Hsp90-bound complex during tau degradation (Figure 5.2B). Further, 

Hsp70 and Hsp90 seemed to compete for binding to similar regions of tau, suggesting 

that relative levels of these chaperones might influence tau stability. Finally, these 
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studies, taken in the context of known literature, highlight some interesting insights into 

how the substrate itself may influence whether the Hsp70-Hsp90 system favors 

stabilization or degradation. One striking example of this idea is that two substrates, tau 

and androgen receptor, were handled in an opposing manner after MB treatment (Figure 

5.2B) [4]. This observation is very interesting and, in the remainder of this chapter, I will 

discuss some possible mechanisms and suggest experiments to further this work. Finally, 

I will suggest how this work might predict unanticipated therapeutic strategies to 

rebalance protein homeostasis. 

 

5.3 Future directions 

5.3.1 Utilizing mutations in Hsp70 to uncover factors important to chaperone 
function. 
 
The work in Chapter 2 suggests that alterations in ATP turnover are not predictive of 

certain chaperone functions, specifically refolding and cellular protection from heat 

shock [5]. However, it remains unclear whether ATPase rate may be directly linked to 

other chaperone functions, such as tau turnover and other aspects of proteostasis. 

Towards this goal, a series of point mutants in human consitutively active (Hsc70) and 

stress-induced (Hsp70) Hsp70s were chosen based on the results in Chapter 2 (Figure 

5.1). Currently other members of the laboratory are actively pursuing this area of research 

and preliminary findings suggest that ATP turnover does not directly predict the extent of 

tau stabilization. If this result is confirmed, it would further support a model in which 

nucleotide state, conformation, or some other combination of variables dictates Hsp70’s 

chaperone functions (Figure 5.2A). For example, molecules that stabilize the ADP-bound 

conformation of Hsp70 seem to be potent at destabilizing tau, despite their weak effect on 
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steady-state ATP turnover [6]. This result suggests that the structure of Hsp70, or 

possibly its affinity for substrates, may be a better predictor of chaperone function than 

ATPase rate. Understanding this issue will be important because it will lead to more 

informed high throughput screens for molecules that destabilize tau and, ultimately, 

restore tau homeostasis in tauopathy.  

  

5.3.2 Expanding the identification of chaperone-dependent tau degradation 
pathways using a chemical biology approach. 
 
The results in Chapter 4 suggest that Hsp70 and Hsp90 work together to coordinate tau 

degradation. However, there are still many questions to be addressed before this 

mechanism is fully understood. I am particularly interested in the logic of this pathway as 

well as its generality. The work in Chapter 4 showed that chemical probes might be 

particularly powerful reagents to use in these inquiries, because they allow rapid and 

transient perturbations in tau homeostasis in an Hsp70-dependent manner. The speed with 

which these molecules act is important because it reduces the likelihood of activation of 

compensatory pathways. Ultimately, a full suite of small molecule modulators, which 

target different aspects of Hsp70 and/or Hsp90 structure and function, may be the best 

way of understanding the determinants of tau homeostasis within these chaperone 

systems.  

 

To enable these studies, a diverse array of Hsp70 and Hsp90 modulators able to acutely 

alter tau levels [1, 6-9], have been identified. These modulators interact with Hsp70 and 

Hsp90 via different molecular mechanisms (Figure 5.3A) [1, 6, 8-11]. Moreover, recent 

work by other members of the Gestwicki lab has further expanded the list of available  



189 
 

 

probes (Figure 5.2A, blue boxes) [Matt Smith, unpublished data] [6]. These compounds 

bind to new sites on Hsp70, suggesting that they might use mechanisms that are not 

currently accessed by other molecules. Based on what was found in Chapter 4, I suggest 

that, using this suite of Hsp70 and Hsp90 small molecules, one could expand on the 
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chemoproteomics approach to understand the breadth of protein complexes important in 

tau homeostasis [12]. Immunoprecipitation of tau coupled with MS could probe whether 

these distinct chemicals target tau for degradation by similar or unique changes in tau 

associated protein complexes (Figure 5.2B). Further, by also immunoprecipitating Hsp70 

and Hsp90, one may be able to capture changes in co-chaperone interactions (Figure 

5.2B). In addition to Chapter 4, the utility of the proposed approach is highlighted in 

work by Dickey and colleagues which have shown that an Hsp90 inhibitor causes the 

degradation of phosphorylated but not total tau via a process dependent on Hsp90 [7]. 

Thus, both an Hsp90 inhibitor and MB target tau for degradation via Hsp90, suggesting 

that the Hsp90-depenent degradation observed in Chapter 4 may represent a general 

pathway by which the cell clears tau. Expanding this approach to new Hsp70 and Hsp90 

modulators, may have the potential to uncover several chaperone-dependent tau 

degradation pathways and improve the field’s understanding of the principles that drive 

tau clearance.   

 

 5.3.3 Understanding substrate-dependent behavior 

Another exciting use of the available chemical tools would be to study multiple 

chaperone substrates. This approach may provide a better understanding of how the 

substrates itself may influence which chaperone pathway is initiated. Interestingly, recent 

findings have uncovered that different substrates may access different chaperone 

pathways. For example, Gladis Walter and other members of the Gestwicki laboratory 

recently used the Hsp70 stimulator, 115-7c, and mass spectrometry to show that soluble 

(Q25) and aggregation-prone polyQ (Q103) interacts with the molecular chaperones 
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Hsp26, Hsp70, Hsp90 and Hsp104 in a specific order [8]. Further, work by Yoshi Miyata 

in collaboration with Andrew Lieberman’s lab, at the University of Michigan, 

demonstrated that MKT-077 targets polyglutamine-expanded androgen receptor (polyQ-

AR) for ubiqutin-dependent degradation by increasing Hsp70 binding [13]. These 

examples highlight how Hsp70 might be involved in different stages in the degradation of 

tau and other substrates, such as polyglutamines. More examples will likely further 

clarify the scope of Hsp70’s activities and mass spectrometry-based proteomics may be a 

particularly powerful method for rapidly examining many substrates. For example, if one 

compound leads two substrates to opposing fates in a single cellular system, one could 

utilize these substrates to understand the mechanisms which drive this divergent outcome. 

Two substrates well suited for this analysis are the androgen receptor and tau. MB 

binding was previously found to increase Hsp90 binding for the androgen receptor. Yet, 

instead of leading to clearance as observed for tau in Chapter 4, androgen receptor was 

stabilized by compound treatment [4]. Thus, in this example the same change in Hsp70 

and Hsp90 binding led to two different cellular outcomes. It would be interesting to 

improve to know which co-chaperones are in complex with Hsp90 under these 

conditions. Further, coupling these studies with structural and kinetic characterization of 

substrate binding may help to reveal insights into the molecular mechanisms by which 

the structure and/or identity of the substrate protein may influence its cellular fate.  

 

5.3.4 New therapeutic strategies for the Hsp70 chaperone systems 

Another major goal of this work was to better to enable improved screening and 

therapeutic strategies for the Hsp70 system. Although previous screening efforts have  
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focused on ATPase activity, my studies suggest that complementary approaches should 

include screens that focus on different chaperone activities, such as substrate binding or 

co-chaperone interactions. For example, decreased Hsp70 binding to tau was shown in 

Chapter 4 to induce tau clearance. Therefore, fluorescence polarization, using a model 

peptide substrate, might be used to monitor substrate binding to Hsp70 [14, 15] and 

identify molecules that block this interaction. Further, the work in Chapter 3 has pointed 

to the functional role that nucleotide state plays in chaperone functions [16]. Thus, 

screens that specifically examine nucleotide state might also be good platforms for the 

discovery of useful compounds. One suitable method might be Förster resonance energy 

transfer (FRET). A recent study used FRET pairs to visualize ternary structural changes 

in Hsp70, especially those that are dependent on nucleotide [17, 18]. Together these new 

screening strategies have the potential to uncover novel scaffolds, which may modulate 

the activity of Hsp70 in different ways and with greater mechanistic specificity.  

 

This work has also provided insights into potential therapeutic strategies for the treatment 

of tauopathies (Figure 5.4). Specifically, Chapter 4 showed that tau is degraded through 

an Hsp90-dependent pathway. Interestingly, as mentioned above, Hsp90 inhibitors also 

reduce tau levels [7] via an Hsp90 and CHIP depedent degradation complex.  Further, 

Hsp90 inhibitors also elevate Hsp70 levels through the induction of HSF1. Thus, 

combining Hsp90 inhibitors and MB might have synergistic effects on tau degradation 

because they utilize parallel mechanisms that converge on a common Hsp90-dependent 

degradation pathway [7, 19] (Figure 5.4). This approach might access multiple “pools” of 



193 
 

tau. Further, the elevated Hsp70 levels induced by Hsp90 inhibitors typically counteracts 

tau clearance [10].  However, elevated Hsp70 levels enhance MB-mediated clearance of 

tau [1]. Thus, combining Hsp70 and Hsp90 treatments may turn what use to be a 

limitation of Hsp90 inhibition into an asset. 

  

 

5.4 Final thoughts 

Herein I have summarized the progress made towards understanding Hsp70 chaperone 

functions and outlined future studies to exploit Hsp70 as a therapeutic target. The major 

theme of this work is that combining mutants with chemical probes is a powerful way to 

perturb and learn about chaperone functions. One major conclusion is that no single 

Hsp70 function (e.g. ATPase rate, oligomerization, etc.) seems directly linked to 

functional outcomes. Also, this thesis uncovered an unexpected Hsp90-dependent 
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degradation pathway for the pathologically important client protein tau. Put together, this 

work shows how mutants and chemical tools can be used to probe chaperone function in 

neurodegenerative disease. In the future, it will be important to look at multiple 

chaperone systems, in multiple models and with new chemical probes because no one 

principle will likely be universal. Rather, a broad interdisciplinary approach, driven by 

collaborations, will reveal the factors governing the cellular fate of Hsp70 substrates.  
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Appendix A 

Chaperones preferentially bind fibril forming peptides. 

 

A.1 Abstract 

Molecular chaperones maintain protein homeostasis within the cell in a variety of ways, 

which include promoting protein folding, inhibiting aggregation, facilitating 

disaggregation, and targeting proteins for clearance. The ability of molecular chaperones 

to regulate protein aggregation plays a central role in the pathophysiology of diseases 

caused by the terminal aggregation of proteins into amyloid fibrils. Aggregation assays 

have consistently demonstrated that a variety of chaperones inhibit amyloid formation, 

however the mechanisms are not completely understood. Perhaps chaperones recognize 

the distinct signature of amyloid-prone peptides, thus protecting the cell from exposure to 

sequences that are particularly susceptible to aggregation. Recent work has shown that 

amyloid-prone sequences interdigitate their side chains into “steric zippers,” which 

stabilize the aggregated form. Using peptide microarrays and a suite of different 

chaperones, it was observed that some chaperones can discriminate between amyloid- 

and non-amyloid-forming sequences. Further, these chaperones contain cognate regions 

of high amyloid propensity in their binding sites, suggesting that chaperones might use 

hetero-amyloid recognition motifs to seek out problematic sequences. These results have 

important implications for how chaperones combat protein misfolding diseases, such as 

tauopathies. 
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A.2 Introduction 

A.2.1 Amyloid fibrils are linked to disease 

Amyloid fibers are rich in β sheets and they represent a characteristic fold in terminally 

aggregated proteins [1, 2]. In approximately 25 protein misfolding diseases, different 

proteins form amyloid fibrils [2], with perhaps the best known example being those 

formed by amyloid-β peptide (Aβ) within Alzheimer’s disease (AD) [3]. These amyloids 

are linked to gain-of-function toxicity and there is great interest in understanding how 

amyloids form and how they are removed.  

 

A.2.2 Molecular chaperones inhibit protein aggregation and amyloid formation 

Molecular chaperones play a central role in regulating protein folding and homeostasis 

within the cell [4]. Molecular chaperones are a structurally non-homologous class 

proteins that either promote protein folding or prevent misfolding and aggregation.  

Several molecular chaperones are heat shock proteins that are named by their apparent 

molecular weights (e.g. Hsp70, Hsp90, Hsp100, etc). In vitro and in vivo studies have 

consistently shown that molecular chaperones inhibit amyloid formation [5-11], yet the 
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mechanisms by which chaperones inhibit aggregation are not yet characterized (Figure 

A.1). Molecular chaperones likely inhibit aggregation, in part, by promoting proper 

protein folding. In addition, they may bind directly to amyloid-prone proteins and block 

aberrant interactions.  

 

A.2.3 “Steric zippers” stabilize amyloid fibrils. 

Recently, the atomic level structures of amyloids have been determined, providing some 

insights into how these structures form [1, 12-19]. Interestingly, one key observation is 

that the side chains in the amyloid-forming sequences are tightly interdigitated, with 

water excluded from the interface. These motifs are termed “dry steric zippers” [1] and 

they appear to be a common (and distinguishing) feature of amyloid-prone peptides. The 

sequences prone to these interactions can vary in their physicochemical properties and 

side chain identity, being polar or non-polar, with large or small side chains. Rather, what 

seems to be consistent is that they must fit together to form complementary hydrophobic 

and/or hydrogen bonding contacts. These “steric zippers” often form from 

complementary sequences, but they do not need to be self-complementary.  For example, 

there is strong evidence from solid state NMR that in Aβ, some close interactions 

between β strands with different sequence form what seems to be a “heterosteric zipper.” 

[20, 21].  Consistent with this model, computationally determining the ability of a 

sequence to form a “dry steric zipper” with favorable interaction energy can reliably 

predict whether a peptide sequence will form amyloid fibrils [22-24].   
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A.3 Results 

A.3.1 Chaperones recognize fibril forming peptides. 
 
Perhaps the same molecular mechanisms which guide amyloid formation may also guide 

chaperone binding. Specifically, molecular chaperones may preferentially bind 

aggregation prone or fibril forming peptides using “heterosteric zippers” formed between 

the chaperone and the peptide substrate. To test this idea, a peptide microarray was 

designed containing both fibril and non-fibril forming peptides that were chosen from 

both disease and non-disease related proteins (Appendix A.1).  These 120 peptides come 

from 33 different proteins, representing both secreted and extracellular proteins as well as 

cytosolic proteins.  Finally, these peptides were chosen such that their average 

hydrophobicity and other properties were the same between the  fibril forming and non 

fibril forming peptides (Appendix A.2, Figure A.3).  

 
A.3.2 A subset of chaperones and co-chaperones preferentially bind fibril forming 
peptides. 
 
Using this peptide microarray, printed in triplicate, the binding of a variety of His-tagged 

chaperones was tested (Figure A.2, Table A.1).  Binding was determined using 

fluorescently labeled anti-His antibodies. For the major chaperones, Hsp70 and Hsp90, 

significant changes and trends consistent with a preference for binding to fibrils was 

observed with an odds ratio (OR) of ~1.8 to 2.3. Hsp70s typically bound ~60% of fibril-

forming peptides and only ~40% of non-fibril forming peptides. Similarly, Hsp90 

demonstrate an ~1.5 to 2-fold preference for binding to fibril forming peptides (Table 

A.1, Appendix A.3). A significant preference for fibril forming peptides was observed for  
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the J-domain co-chaperones DJA2 and DnaJ with an OR of 2.833 and 4.800, respectively 

(Table A.1, Appendix A.3). In this case DJA2 and DnaJ bound approximately ~40% of 

fibril forming peptides and only ~20% of non-fibril forming peptides. Finally, much like 

Hsp70 and Hsp90, the cis-trans prolyl isomerase, FKBP51 demonstrated trends consistent 

with ~ 1.5 to 2 fold preference for binding to fibril forming peptides with an OR of 2.489, 

although the combined result from two experiments was not significant using a 95% 

confidence interval (Table A.1, Appendix A.3). These preference cannot be explained by 

a preference for hydrophobic peptides, quantified using a gravy score (Figure A.3). In 

fact, this subset of chaperones appears to recognize some structural feature of the 

amyloid-prone peptides that is not obvious from any physicochemical property. In 

contrast, small heat shock proteins and clusterin bound a significant number of peptides 

but did not demonstrate a preference for fibrils (Appendix A3 and A4). This result 

suggests that a preference for fibril forming peptides is a property unique to a subset of 

chaperones. Further, chaperones disulfide isomerase (PDI) and FKBP12 did not show a 

preference for fibrils. Rather, PDI and FKBP12 bound very few peptides. Similarly, 

negative controls were performed by testing antibody alone, the nucleotide binding 

domain of Hsp70s, and the J-domain of DnaJ. These proteins are not expected to bind 

peptide substrates and indicate the relative false positive rate that can be expect from this 

platform. These proteins exhibited a very low signal for binding to peptides on the 

microarray and, using the same analysis applied all tested proteins, were determined to 

bind ~10% of fibril and non-fibril forming peptides. Finally, two unrelated proteins; 

nanobody80 and MycF, were tested which behaved as negative controls binding very few 

peptides. Thus, it was concluded that preference for fibril forming peptides exhibited by 
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some chaperones and co-chaperones is not a result of non-specific binding. Rather, 

together these results demonstrate that a subset of molecular chaperones and co-

chaperones show a unique preference for binding to amyloid-prone peptides.  

 

Within cells a full complement of molecular chaperones, including representatives of all 

the major families, are likely to be expressed. Thus, whether the molecular chaperones 

would collectively be able to bind all of the amyloid-prone sequences was of interest. 

This analysis demonstrated that peptides that bound 3 or more chaperone proteins of 

different structural classes are two times more likely to be fibril forming and recognize 

60% of all fibril forming peptides (Figure A.3). Thus, there seems to be reasonable 
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coverage as well as redundancy within the molecular chaperone system for binding fibril 

forming sequences. 
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A.3.2 Chaperones which preferentially bind fibril forming peptides have predicted 
“steric zipper” forming regions within their substrate binding sites. 
 
To further explore the “heterosteric zipper” model, the amino acid sequence of molecular 

chaperones was computationally evaluated to predict which regions may have a 

propensity to form “homosteric zippers” [22].  It was observed that the proteins which 

had a preference for fibril forming peptides (e.g. Hsp70 and DJA2) had regions within 

their known substrate-binding sites that were predicted to form “homosteric zippers” 

(Figure A.4) [25, 26]. Further, FKBP51 also had regions near a potential substrate-

binding site enriched for “steric zippers.”  Interestingly this same region in FKBP12 was 

not enriched for “steric zippers.”  These observations suggest that chaperones may use 

heterotypic “steric zippers” to identify particularly problematic regions of target proteins. 

Further, many of the molecular chaperones are known to bind substrates as molecular 

clamps, protecting their bound substrate from the cellular environment [27]. Thus, 

chaperones may use an elegant mechanism for blocking aggregation, by forming 

complementary interactions with amyloid-prone peptides and blocking their 

polymerization.  

 

A.4 Future directions 

Although exciting, this model has not been rigorously tested. The peptide microarray 

binding results need to be validated in independent assays and the ability of these 

chaperones to inhibit aggregation of the fibril forming peptides also must be tested. 

Additionally, whether the peptides on the microarray are computationally predicted to 

form “heterostreic zippers” with peptide sequences within the substrate binding sites of 
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molecular chaperones will be evaluated.  It will be particularly informative if 

computationally determining the ability of complexes between chaperones and peptides 

 

to form “heterosteric zipper” with favorable interaction energy can reliably reproduce the 

results obtained in the peptide microarray binding experiments.  Finally, future work will 
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directly probe this hypothesis by obtaining co-crystal structures of complexes formed 

between chaperones and fibril-forming peptides.  

 

A.5 Summary 

In summary, this work has demonstrated that certain chaperones and co-chaperones have 

a preference for fibril forming peptides. Further, it has been shown that the substrate 

binding sites of chaperones that exhibit this preference have regions predicted to form 

“steric zippers.”  Although there is much work left to do, this study has the potential to 

uncover a mechanistic understanding of how amyloidogenic conformations of proteins 

are recognized by the cellular protein quality control systems.  

 

A.6 Experimental procedures 

A.6.1 Proteins making  

Hsp70s (DnaK, Hsc70, Hsp70, NBD constructs; Hsp70 NBD (1-383), Hsc70 NBD (1-

383), and Hsc70 NBD+linker (1-394) were purified as previously described [28].  

Likewise, Hsp90, J-domain (1-108), and DnaJ were purified as previously described [28, 

29], with the addition of a superdex 200 size exclusion column (GE Healthcare, Pittsburg, 

PA)  as the last step of the J-domain purification. N-terminal his tagged DJA1, DJA2 was 

purified as previously described [30]. Hsp27, Hsp22, αB crystallin, were expressed in 

Rosetta cells using the pMCSG7 vector with a N-terminal his tag. Cells were lysed by 

sonication into lysis buffer (20 mM Tris pH 8.0, 100 mM NaCl, 6M urea, 5 mM β-

mercaptoethanol, 15 mM imidazole) and purified by standard denaturing his purification 

using Ni-NTA resin (Novagen, Darmstadt,Germany). Proteins were eluted with 150 mM 
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imidazole. Following elution EDTA was added to 5 mM and protein was concentrated to 

~20 mg/ml. Protein was refolded upon injection on a superdex 200 size exclusion column 

(GE Healthcare, Pittsburg, PA) with refolding buffer (20 mM NaPi  pH 7.2, 100 mM 

NaCl).  The protein was flash frozen and stored at -80 oC. Finally, FKBP51 was purified 

by using a standard His purification with Ni-NTA resin (Novagen) followed by 

separation using a superdex 200 size exclusion column in (10mM NaPi, 2mM KPi pH 

7.4, 137 mM NaCl, 2.7 mM KCl, 1 mM DTT). The following proteins were purchased as 

follows; Clusterin (Enzo Life Sciences, 201-335-C050, Farmingdale, NY), PDI 

(PROSPEC, enz-262-b, East Burnswick, NJ), FKBP12 (PROSPEC, enz-347-c). MycF 

was a kind gift from Janet Smith (University of Michigan), nanobody80 was gift from 

Roger Sunahara (University of Michigan).   

 

A.6.2 Peptide microarray  

A peptide microarray consisting of a variety of proteins experimentally evaluated for 

their ability to form fibrils was designed (Appendix A.1). Empty spots and process 

controls were used as negative controls. The microarrays were printed on single 

microscope slides in triplicate (JPT peptide technologies, Berlin, Germany). Binding was 

tested per manufacturer’s protocol using 10 µM of His-tagged protein in binding buffer 

(25 mM HEPES pH 7.2, 150 mM NaCl, 20 mM KCl, 5 mM MgCl2, 0.01% Tween20).  

Binding was detected using 1:1,000 titer of Hilyte555 anti-His antibody (Anaspec, 

Fremont, CA) in TBS-T with 1% bovine serum albumin (Sigma) and scanning the 

microarrays at a fluorescence emission of 532 nM using a GenePix 4100A Microarray 

Scanner (Molecular Devices, Sunnyvale, CA). Binding was defined using previously 
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described peptide microarray analysis program, rapmad, which performed the following 

taskes; a log2 transformation, a control peptide based linear model fit, a mixture model 

removal of peptides positive in negative control experiment (in this analysis the NBD 

was consistently utilized as a control experiment for the corresponding lot of microarrays 

for this purpose), and finally a mixture model signal call to identify peptides which bound 

compared to the noise from unbound peptides [31].  The optional random forest 

procedure to remove potentially unreliable peptide spots was excluded from the analysis. 

Odds ratio (OR) were calculated for each individual experiment using the following 

equation;  

 (FB*NN)/(NB*FN),          (Equation 1) 

where FB indicates fibril forming peptides found to bind the chaperone, FN indicates 

fibril forming peptides found to not bind, NB indicates non-fibril forming peptides found 

to bind, and NN indicates non-fibril forming peptides found to not bind. Further, for 

proteins tested more than once, an OR was calculated for the combined data. In 

combining the data binding was defined as peptides found to bind in ≥ 2/3 of experiments 

for that given chaperone (Appendix A.3 for full results). 

 

A.6.3 ZipperDB analysis of molecular chaperones  

Molecular chaperone amino acid sequences were submitted to ZipperDB for analysis 

[22]. Structures for Hsp70 and DJA2 were obtained using homology models based on the 

DnaK and Ydj1 structures respectively [25, 26, 32, 33]. Further a structure was available 

for FKBP51 and FKBP12 [34, 35]. Within these structures, the first amino acid from a 6-
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mer sequence which exhibit a binding energy for homosteric zipper formation of less 

than -22 kcal/mol is indicated in red (Figure A.3).   

 

 

Notes 

This project is a collaboration with David Eisenberg’s lab (UCLA). Andrea Thompson, 

Atta Ahmad, and Jason Gestwicki designed the experiments. Andrea Thompson 

performed the experiments.  We would like to acknowledge Jennifer Rauch, Tomoko 

Komiyama, Leah Makley, Steffen Bernard, and Brian DeVree for providing proteins used 

in this study.  
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A.7 Appendix 

Appendix A.1 Peptide microarray design and layout 

ID # Name Protein   Fibril/Non-Fibril Control Location 
1 GGVLVN 248PAP286 Fibril [36]   Cytoplasm 
2 SLFLIG AIM1 non-Fibril [23]  membrane 
3 VGGAVVTGV α synuclein Fibril [17, 24]  Cytoplasm 
4 GSIAAT α synuclein Fibril [17]  Cytoplasm 
5 GVATVA α synuclein Fibril [17]  Cytoplasm 
6 GGAVVT α synuclein predicted Fibril [22]  cytoplasm 
7 AEKTKQ α synuclein predicted non-fibril [22]  cytoplasm 
8 MPVDPD α synuclein predicted non-fibril [22]  cytoplasm 
9 NFGAIL amylin Fibril [19, 22, 24, 37]   secreted/extra 

10 FLVHSS amylin Fibril [22, 38]   secreted/extra 
11 TNVGSNTY amylin Fibril [39]   secreted/extra 
12 QRLANFLVH amylin Fibril [40]  secreted/extra 
13 SSTNVG amylin Fibril [17]  secreted/extra 
14 LIAGFN amylin non-Fibril [22]  secreted/extra 
15 NLGPVL amylin non-Fibril [22]  secreted/extra 
16 KLVFFAED Aβ Fibril [24, 41]  extra 
17 AIIGLMVGGVV Aβ Fibril [17]  extra 
18 GGVVIA Aβ Fibril [17]  extra 
19 MVGGVV Aβ Fibril [17]  extra 
20 DGVVIA Aβ non-fibril FL [42]  extra 
21 LVGGVV Aβ non-fibril FL[20, 42]  extra 
22 GFVVIA Aβ non-fibril FL [20]   extra 

23 FFKRAA AR predicted non-fibril [22]  
Cytoplasm, 
Nucleus  

24 AVFIIY ASPM Fibril [23]  
Nucleus, 
Cytoplasm 

25 GRGHGG ataxin-1 (ATXN1) predicted non-fibril [22]  Cytoplasm  
26 DWSFYLLYYTEFT b2-microglobulin Fibril [17, 43]  secreted/extra 
27 KDWSFY b2-microglobulin Fibril [14]   secreted/extra 
28 KIVKWD b2-microglobulin Fibril [14]  secreted/extra 
29 FYLLYY b2-microglobulin Fibril [14]  secreted/extra 
30 LLYYTE b2-microglobulin Fibril [14]  secreted/extra 
31 NHVTLS b2-microglobulin Fibril [12, 14, 17, 22]  secreted/extra 
32 FHPSDIEVDLLK b2-microglobulin non-Fibril [43]  secreted/extra 
33 IQRTPKIQVYSRHPAE b2-microglobulin non-Fibril [43]  secreted/extra 
34 LSQPKIVKWDRDM b2-microglobulin non-Fibril [43]  secreted/extra 
35 NGERIEKVEHSDLSFSKD b2-microglobulin non-Fibril [43]  secreted/extra 
36 NGKSNFLNCYVSG b2-microglobulin non-Fibril [43]  secreted/extra 
37 PTGKDEYACRVNHVT b2-microglobulin non-Fibril [43]  secreted/extra 
38 YVSGFH b2-microglobulin non-Fibril [14, 22]  secreted/extra 
39 VYSRHP b2-microglobulin non-Fibril [14, 22]  secreted/extra 
40 KSNFLN b2-microglobulin non-Fibril [14, 22]  secreted/extra 
41 RTPKIQ b2-microglobulin non-Fibril [14, 22]  secreted/extra 
42 VTLSQP b2-microglobulin non-Fibril [14, 22]  secreted/extra 
43 TEFTPT b2-microglobulin non-Fibril [14, 22]  secreted/extra 
44 SRHPAE b2-microglobulin non-Fibril [14, 22]  secreted/extra 

45 
GGSGGSGGGSDYKDDD
DK   process control   

46 EALYLV b2-microglobulin non-Fibril [14, 22]  secreted/extra 
47 DFNKFH Calcitonin Fibril[17, 44]  secreted 
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ID # Name Protein Fibril/Non-Fibril Control Location 

48 NFVNYS CELR3 Fibril [23]  membrane 

49 VTFTIQ CPNE5 Fibril [23]  
Cytoplasm, 
membrane 

50 YLVNFT ECM1 Fibril [23]  extra membrane 

51 NEFIIT EMBP non-Fibril [23]  

secreted; 
cytoplasmic 
vesicles 

52 YLVLIM Fibulin-1 non-Fibril [23]  secreted/extra 
53 MIFFIY GCYB2 non-Fibril [23]  cytoplasm 

54 SAILTA gelsolin (GSN) predicted Fibril [22]  
Cytoplasm, Extra 
cellular  

55 TMSVSL gelsolin (GSN) predicted Fibril [22]  
Cytoplasm, Extra 
cellular  

56 LYNYRH gelsolin (GSN) predicted non-fibril [22]  
Cytoplasm, Extra 
cellular  

57 IRDNER gelsolin (GSN) predicted non-fibril [22]  
Cytoplasm, Extra 
cellular  

58 LYVLIV GRP21 Fibril [23]  membrane 

59 QQSLFQ HNRPD Fibril [23]  
Nucleus, 
Cytoplasm 

60 EIDFIL Huntington (HTT) predicted non-fibril [22]  Cytoplasm  

61 QQQQQQ 

Huntington, 
ATXN1, ATXN2, 
AR Fibril [17]   Cytoplasm 

62 SLYQLENY Insulin Fibril [13]   extra 
63 LVEALYLV Insulin Fibril [13]  extra 
64 LVEALY Insulin Fibril [14, 17, 22]  extra 
65 VEALYL Insulin Fibril [14, 17, 22]  extra 
66 LYQLEN Insulin Fibril [14, 17, 22]  extra 
67 YQLENY Insulin Non-Fibril [14, 22]  extra 
68 FVNQHL Insulin Non-Fibril [14, 22]   extra 
69 GSHLVE Insulin Non-Fibril [14, 22]   extra 
70 HLVEAL Insulin Non-Fibril [14, 22]   extra 
71 FYTPKT Insulin Non-Fibril [14, 22]   extra 
72 GERGFF Insulin Non-Fibril [14, 22]   extra 
73 GVWWFF Integrin beta-1 Fibril [23]  membrane 
74 GIFNIK LASS2 Fibril [23]  membrane 
75 IFQINS Lysozyme  Fibril [17, 24]  Cytoplasm 
76 TFQINS Lysozyme-Hu Fibril [17]  Cytoplasm 

77 NRLLLTG model substrate Unknown 
DnaK 
[26] NA 

78 AGAAAAGA Prion Fibril [16, 45]  extra membrane 
79 SNQNNF Prion  Fibril [17]  extra membrane 
80 VHDCVNITIK Prion 180-193 Fibril [24, 46]  extra membrane 
81 NITIKQHTVT Prion 180-193 Non-Fibril  [24, 46]  extra membrane 
82 QHTVTTTKG Prion 180-193 Non-Fibril  [24, 46]  extra membrane 
83 TTTKGENFTE Prion 180-193 Non-Fibril  [24, 46]  extra membrane 
84 MIHFGND Prion(Mu) Fibril [17]  extra membrane 
85 SMVLFSSPPV Prion141-150 Fibril  [24, 46]  extra membrane 
86 EDRYYRENMH Prion144-154 non-Fibril  [24, 46]  extra membrane 
87 FGSDYEDRYY Prion144-154 non-Fibril  [24, 46]  extra membrane 
88 SSEITT PTMA predicted Fibril [22]  cytoplasm 
89 EVDEEE PTMA predicted non-fibril [22]   cytoplasm 
90 AA  process control   
91 KRAAED PTMA predicted non-fibril [22]   cytoplasm 
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ID # Name Protein Fibril/Non-Fibril Control Location 
92 SSTSAASSSNY Rnase Fibril [47]  Cytoplasm 
93 KHIIVA Rnase Fibril [47]  Cytoplasm 
94 SYSTMS Rnase Fibril [47]  Cytoplasm 
95 SSTSAA Rnase Fibril [17]  Cytoplasm 
96 ASSSNY Rnase  Fibril [47]  Cytoplasm 
97 RNLTKD Rnase  Non-Fibril [47]  cytoplasm 
98 IHKAQN Rnase, scrambled Non-Fibril [47]  cytoplasm 
99 ISMTTS Rnase, scrambled Non-Fibril [47]  cytoplasm 

100 FERQHM Rnase, scrambled Non-Fibril [47]  cytoplasm 

101 GNNQQNY Sup35 Fibril [17]  
Yeast- Fibril 
control 

102 NNQQNY Sup35 Fibril [17]  
Yeast- Fibril 
Control 

103 VQIVYK  Tau (PHF6) Fibril [17, 48] 
Hsc70 
[49] cytoplasm 

104 VQIPYK Tau Non-Fibril [48]  Cytoplasm 
105 VQPVYK Tau Non-Fibril [48]  Cytoplasm 
106 GQVEVSKE Tau Non-Fibril [24]  cytoplasm 
107 VQEVYK Tau unknown  cytoplasm 
108 VQYK Tau unknown  cytoplasm 
109 VVRTPPKSPSSAKSR Tau unknown  cytoplasm 

110 VQIINK Tau  Fibril [50] 
Hsc70 
[49] Cytoplasm 

111 VDLSKVTSK Tau  Non-Fibril [24]  cytoplasm 

112 PGGGKVQIVYKPV  Tau (K19) Fibril [24] 
Hsc70 
[49] Cytoplasm 

113 PGGKVYKPV  Tau (K19d) Non-Fibril [24]  cytoplasm 
114 QTAPVPMPD Tau (K19Glu78) Non-Fibril [24]  cytoplasm 
115 GISVHI TDP-43 predicted Fibril [22]  cytoplasm 
116 GEVLMV TDP-43 predicted Fibril [22]  cytoplasm 
117 LRYRNP TDP-43 predicted non-fibril [22]  cytoplasm 
118 VFFFIG TRHDE non-Fibril [23]  membrane 
119 WTVNYS WDR36 Fibril [23]  Cytoplasm 
120 FIVNIV XRP2 Fibril [23]   membrane 
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Appendix A.2 Peptide microarray design summary 

  Fibril   Non-Fibril   Unknown 
Number of Peptides 59  56  5  
Experimentally validated 54  49  NA  
disease related 39  44  3  
hexamers 43  41  1  
< or > hexamers 16  15  2  
average length peptide 7.22 3.26 6.91 1.58 6.25 0.50 
average MW 822.51 351.41 807.69 196.87 775.53 95.89 
average pI 5.80 1.37 5.83 1.72 5.83 0.61 
average pos charge 0.29 0.56 0.73 1.06 0.25 0.50 
average neg charge 0.25 0.54 0.45 0.66 0.25 0.50 
average instability index 26.95 42.76 36.36 43.30 21.26 16.23 
average aliphatic index 108.06 68.01 88.49 73.19 16.25 32.50 
average GRAVY 0.48 1.47 -0.26 1.46 -1.74 1.66 
       

 

Appendix A.3 Full Odds Ratio (OR) analysis of chaperones binding to peptide 
microarray 
 

Sample 
type 

array 
lot # 

Chaperones 
 

[F] 
bound 

[F] not 
bound 

total 
[F] 

[NF] 
bound 

[NF] not 
bound 

total 
[NF] OR 

95% 
CI 

negative-ctrl 2080 Hsp70-NBD-ADP 7 52 59 5 51 56 1.373 
0.409-
4.609 

  2054 Hsp70-NBD-ATP 10 49 59 9 47 56 1.066 
0.398-
2.855 

  2090 
Hsc70-

NBD+linker-ATP 6 53 59 8 48 56 0.679 
0.220-
2.099 

  2090 
Hsc70-NBD-linker-

ATP (gain800) 10 49 59 10 46 56 0.939 
0.358-
2.463 

  2090 Hsc70-NBD-ADP 5 54 59 7 49 56 0.648 
0.193-
2.176 

   
NBD combined 

analysis 7 52 59 7 49 56 0.942 
0.308-
2.882 

  2054 antibody 5 44 49 4 43 47 1.222 
0.307-
4.857 

  2090 antibody-1 10 43 53 10 38 48 0.841 
0.316-
2.240 

  2090 antibody-2 7 52 59 7 49 56 0.906 
0.296-
2.771 

   

antibody 
combined 
analysis 1 51 52 2 47 49 0.461 

0.040-
5.250 

Hsp70s 2054 
Hsc70 (HSPA8)-

ATP 28 21 49 19 38 47 1.965 
0.872-
4.426 

  2080 
Hsc70 (HSPA8)-

ADP-1 28 24 52 17 34 51 2.333 
1.051-
5.181 

  2080 
Hsc70 (HSPA8)-

ADP-2 33 18 51 25 24 49 1.760 
0.789-
3.926 

  2090 
Hsc70 (HSPA8)-

ADP 24 29 53 15 33 48 1.821 
0.806-
4.115 

    
Hsc70 combined 

analysis  26 26 52 16 33 49 2.063 
0.920-
4.625 

  2080 
DnaK (E. coli)-

ADP 37 13 50 30 19 49 1.803 
0.767-
4.235 
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Sample 
type 

array 
lot # 

Chaperones 
 

[F] 
bound 

[F] not 
bound 

total 
[F] 

[NF] 
bound 

[NF] not 
bound 

total 
[NF] OR 

95% 
CI          

  2090 
Hsp70 (HSPA1B)-

ADP 27 27 54 18 31 49 1.722 
0.7827
-3.789 

Hsp90 2054 
Hsp90 

(HSP90AA1)-ATP 26 23 49 16 31 47 2.190 
0.961-
4.992 

  2090 
Hsp90 

(HSP90AA1)-ATP 18 36 54 12 37 49 1.542 
0.651-
3.653 

    Hsp90 combined 12 40 52 6 43 49 2.150 
0.737-
6.271 

small Hsps 2054 
Hsp27 (HSPB1) 

(gain600) 20 24 44 14 25 39 1.488 
0.615-
3.600 

  2054 Hsp22 (HSPB8) 12 32 44 9 30 39 1.250 
0.461-
3.390 

  2090 Hsp22 (HSPB8) 13 40 53 8 40 48 1.546 
0.478-
4.134 

   Hsp22 combined 3 49 52 3 46 49 0.939 
0.180-
0.489 

  2054 
αB crystallin 

(HSPB5) 10 39 49 8 39 47 1.250 
0.446-
3.502 

  2090 
αB crystallin 

(HSPB5) 10 43 53 8 40 48 1.163 
0.4174
-3.239 

    
αB crystallin 

combined 8 44 52 8 41 49 0.887 
0.304-
2.586 

co-
chaperones 2080 DJA2 (DNAJA2)-1 27 25 52 14 37 51 2.854 

1.256-
6.488 

  2080 DJA2 (DNAJA2)-2 22 30 52 11 40 51 2.667 
1.123-
6.332 

  2090 
DJA2 (DNAJA2) 

(gain650) 20 34 54 12 37 49 1.714 
0.730-
4.025 

    DJA2 combined 21 31 52 11 38 49 2.833 
1.199-
6.694 

  2080 DJA1 (DNAJA1)-1 8 44 52 3 48 51 2.909 
0.726-
11.662 

  2080 DJA1 (DNAJA1)-2 12 40 52 3 48 51 4.800 
1.266-
18.202 

   DJA1 combined 2 50 52 0 49 49 NA  

  2090 DnaJ (E.coli) 21 32 53 9 39 48 2.844 
1.145-
7.066 

  2090 
J-domain DnaJ 

(E.coli) (gain650) 6 48 54 7 42 49 0.750 
0.234-
2.408 

  2090 
FKBP51  

(FKBP5)-1 34 19 53 20 28 48 2.505 
1.123-
5.591 

  2090 

FKBP51  
(FKBP5)-2 
(gain800) 27 22 49 20 26 46 1.596 

0.710-
3.589 

  2090 
FKBP51 

combined 17 35 52 8 41 49 2.489 
0.959-
6.461 

other 
chaperones 2080 FKBP12 5 47 52 3 48 51 1.702 

0.385-
7.528 

  2090 FKBP12 2 52 54 2 47 49 0.868 
0.118-
6.409 

   
FKBP12 

combined 0 52 52 0 49 49 NA  

  2090 PDI 3 51 54 6 43 49 0.404 
0.095-
1.712 

  2090 clusterin 29 25 54 25 24 49 1.026 
0.473-
6.079 

unrealated 
negatives 2090 MycF 4 50 54 2 47 49 1.804 

0.316-
10.314 

  2090 nano80 8 46 54 7 42 49 1.044 
0.348-
3.126 

 
[F] and [NF] denote fibril and non-fibril, respectively. Unless otherwise noted, proteins tested were human proteins. 
OR and CI denote odds ratio and confidence interval, respectively.  
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Appendix A.4 Summary of full results of chaperone binding to microarrays 

Array 
ID # Name Fibril/Non-Fibril Chaperone Binding Results 

1 GGVLVN Fibril    

2 SLFLIG non-Fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
Hsp27, Hsp22, DnaK, PDI, 
Clusterin, DJA2,DnaJ, FKBP51 

3 VGGAVVTGV Fibril   

4 GSIAAT Fibril   

5 GVATVA Fibril  clusterin, DnaJ, FKBP51 

6 GGAVVT predicted Fibril  clusterin 

7 AEKTKQ predicted non-fibril  Hsp27, Hsp70, clusterin 

8 MPVDPD predicted non-fibril  FKBP51 

9 NFGAIL Fibril  Hsc70, DnaK, clusterin 

10 FLVHSS Fibril  Hsp27, DnaK,DnaJ 

11 TNVGSNTY Fibril  DnaK, clusterin,FKBP51 

12 QRLANFLVH Fibril  NBD 

13 SSTNVG Fibril    

14 LIAGFN non-Fibril  Hsc70, Hsp27,DnaK 

15 NLGPVL non-Fibril  Hsp27, DnaK 

16 KLVFFAED Fibril  Hsc70, Hsp27,DnaK, DJA2 

17 AIIGLMVGGVV Fibril    

18 GGVVIA Fibril    

19 MVGGVV Fibril    

20 DGVVIA non-fibril FL, peptide NT  Hsc70, clusterin, FKBP51 

21 LVGGVV non-fibril FL, peptide NT  clusterin 

22 GFVVIA non-fibril FL, peptide NT    

23 FFKRAA predicted non-fibril  
Hsp70, αB crystallin, DnaK, J-
domain, clusterin,nanobody80 

24 AVFIIY Fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
DnaK, J-domain, MycF,clusterin, 
nanobody80, DJA2, DnaJ 

25 GRGHGG predicted non-fibril  Hsp27, DnaK 

26 DWSFYLLYYTEFT Fibril  Hsc70, αB crystallin, DnaK, DJA2 

27 KDWSFY Fibril  
Hs70, αB crystallin, DnaK, DJA2, 
DnaJ 

28 KIVKWD Fibril  Hsc70,DnaK, clusterin, DJA2 

29 FYLLYY Fibril  
Hsc70, αB crystallin, DnaK, DJA2, 
DnaJ 

30 LLYYTE Fibril  NBD 

31 NHVTLS Fibril  αB crystallin, antibody 

32 FHPSDIEVDLLK non-Fibril  clusterin 

33 IQRTPKIQVYSRHPAE non-Fibril  clusterin, FKBP51 

34 LSQPKIVKWDRDM non-Fibril  DnaK 

35 NGERIEKVEHSDLSFSKD non-Fibril    
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Array 
ID # Name Fibril/Non-Fibril Chaperone Binding Results 

36 NGKSNFLNCYVSG non-Fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
DnaK, PDI, clusterin, nanobody 80, 
DJA2, antibody 

37 PTGKDEYACRVNHVT non-Fibril    

38 YVSGFH non-Fibril  NBD 

39 VYSRHP non-Fibril  DJA2, antibody 

40 KSNFLN non-Fibril    

41 RTPKIQ non-Fibril Hsp27 

42 VTLSQP non-Fibril    

43 TEFTPT non-Fibril  

Hsc70, Hsp70, Hsp27, DnaK, J-
domain, MycF, PDI, clusterin, 
nanobody 80, DJA2, DnaJ 

44 SRHPAE non-Fibril  

Hsp70, Hsp27,DnaK, J-domain, 
MycF, PDI, clusterin, nanobody80, 
DnaJ 

45 GGSGGSGGGSDYKDDDDK   

46 EALYLV non-Fibril  
Hsc70, Hsp70, Hsp90, αB crystallin, 
Hsp22, PDI, clusterin, DJA2, DnaJ 

47 DFNKFH Fibril  NBD 

48 NFVNYS Fibril  NBD 

49 VTFTIQ Fibril  Hsc70, DnaK, DJA2, DnaJ 

50 YLVNFT Fibril  
Hsc70, Hsp70, Hsp90, DnaK, 
nanobody80, DJA2, DnaJ, FKBP51 

51 NEFIIT non-Fibril  

Hsc70, Hsp70, Hsp90, DnaK, J-
domain, clusterin, 
nanobody80,DJA2, DnaJ, FKBP51 

52 YLVLIM non-Fibril  Hsp27, DnaK 

53 MIFFIY non-Fibril  Hsc70, Hsp27, DnaK 

54 SAILTA predicted Fibril    

55 TMSVSL predicted Fibril    

56 LYNYRH predicted non-fibril  NBD 

57 IRDNER predicted non-fibril  clusterin 

58 LYVLIV Fibril  

Hsp90, Hsp70, αB crystallin, 
Hsp27, Hsp22, PDI, clusterin, 
DJA2, DnaJ,FKBP51 

59 QQSLFQ Fibril  Hsp27 

60 EIDFIL predicted non-fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
DnaK, PDI, clusterin,DJA2, DnaJ, 
FKBP51 

61 QQQQQQ Fibril  

Hsc70, Hsp90, Hsp27, 
Hsp22,DnaK, clusterin, DJA2, 
FKBP51 

62 SLYQLENY Fibril  

Hsc70, Hsp70, Hsp90, DnaK, J-
domain,clusterin, nanobody80, 
DJA2, DnaJ, FKBP51 

63 LVEALYLV Fibril  NBD 

64 LVEALY Fibril  

Hsc70, Hsp70, Hsp90, Hsp22, 
DnaK, J-domain, clusterin,DJA2, 
DnaJ, FKBP51 

65 VEALYL Fibril  

Hsc70, Hsp70, αB crystallin, DnaK, 
J-domain, PDI, clusterin, 
nanobody80, DJA2, DJA1, DnaJ, 
FKBP51 
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Array 
ID # Name Fibril/Non-Fibril Chaperone Binding Results 

66 LYQLEN Fibril  
Hsc70, DnaK,clusterin,DnaJ, 
FKBP51 

67 YQLENY Non-Fibril  
Hsc70, αB crystallin, DnaK,DJA2, 
DnaJ 

68 FVNQHL Non-Fibril  
Hsc70, DnaK, clusterin, DJA2, 
DnaJ, FKBP51 

69 GSHLVE Non-Fibril  Hsp27 

70 HLVEAL Non-Fibril  clusterin 

71 FYTPKT Non-Fibril    

72 GERGFF Non-Fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
Hsp27, Hsp22,DnaK, J-
domain,clusterin, 
nanobody80,DJA2,DnaJ, FKBP51 

73 GVWWFF Fibril 

Hsc70, Hsp70, Hsp90, αB 
crystallin,DnaK, J-domain, MycF, 
PDI,clusterin, nanobody80, DJA2, 
DnaJ, FKBP51 

74 GIFNIK Fibril  
Hsc70, Hsp70, Hsp90, DnaK, 
clusterin,DJA2,DnaJ, FKBP51 

75 IFQINS Fibril  Hsp27, clusterin 

76 TFQINS Fibril  Hsp27, DnaK 

77 NRLLLTG predicted non-fibril   Hsp27, DnaK 

78 AGAAAAGA Fibril  

Hsc70,  Hsp70, Hsp90, Hsp27, 
DnaK, clusterin,DJA2,DnaJ, 
FKBP51 

79 SNQNNF Fibril  Hsc70, Hsp27,DnaK, clusterin 

80 VHDCVNITIK Fibril  Hsc70, Hsp27, DnaK, clusterin 

81 NITIKQHTVT Non-Fibril    

82 QHTVTTTKG Non-Fibril    

83 TTTKGENFTE Non-Fibril    

84 MIHFGND Fibril  

Hsc70, Hsp70, Hsp90, αB crystallin, 
Hsp27, DnaK, PDI,clusterin, DJA2, 
DnaJ, FKBP51 

85 SMVLFSSPPV Fibril    

86 EDRYYRENMH non-Fibril  NBD 

87 FGSDYEDRYY non-Fibril  NBD 

88 SSEITT predicted Fibril  DnaK, MycF, clusterin 

89 EVDEEE predicted non-fibril  Hsc70, DnaK,clusterin, DJA2 

90 AA  

Hsc70, Hsp70, Hsp90, 
Hsp27,DnaK, clusterin,DJA2, 
FKBP51 

91 KRAAED predicted non-fibril  clusterin 

92 SSTSAASSSNY Fibril  NBD 

93 KHIIVA Fibril  Hsc70, DnaK, clusterin 

94 SYSTMS Fibril  Hsp27, DnaK, clusterin 

95 SSTSAA Fibril  Hsp27, DnaK, clusterin 

96 ASSSNY Fibril  
Hsc70, Hsp27,DnaK,MycF, 
clusterin, nanobody80,DJA2,DnaJ 

97 RNLTKD Non-Fibril  DnaK, clusterin 

98 IHKAQN Non-Fibril  DnaK, clusterin 
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Array 
ID # Name Fibril/Non-Fibril Chaperone Binding Results 

99 ISMTTS Non-Fibril  clusterin 

100 FERQHM Non-Fibril  NBD 

101 GNNQQNY Fibril  NBD 

102 NNQQNY Fibril  
Hsc70, Hsp27,DnaK, DJA2, DJA1, 
FKBP51 

103 VQIVYK Fibril  
Hsc70, Hsp90, Hsp27,DnaK, 
clusterin, DJA2, FKBP51 

104 VQIPYK Non-Fibril  Hsc70,DnaK 

105 VQPVYK Non-Fibril  DnaK 

106 GQVEVSKE Non-Fibril  clusterin 

107 VQEVYK unknown Hsp27, DnaK, clusterin 

108 VQYK unknown DnaK, clusterin, FKBP51 

109 VVRTPPKSPSSAKSR unknown Hsp27,DnaK, clusterin 

110 VQIINK Fibril  
DnaK, Hsp70, clusterin,DnaJ, 
FKBP51 

111 VDLSKVTSK Non-Fibril    

112 PGGGKVQIVYKPV Fibril    

113 PGGKVYKPV Non-Fibril  DnaK 

114 QTAPVPMPD Non-Fibril  Hsp27,DnaK 

115 GISVHI predicted Fibril  Hsc70, Hsp27, DnaK, FKBP51 

116 GEVLMV predicted Fibril    

117 LRYRNP predicted non-fibril  Hsc70, αB crystallin,DnaK 

118 VFFFIG non-Fibril  Hsc70, αB crystallin, DnaK 

119 WTVNYS Fibril  

Hsc70, Hsp70, Hsp90, 
Hsp27,DnaK, J-domain, 
nanobody80,DJA2, DnaJ 

120 FIVNIV Fibril  Hsp27, clusterin 
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