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ABSTRACT

Mixed-Cell Methods for Diffusion Problems in Multiphase Systems

by

Nick Patterson

Chair: Katsuyo Thornton

We simulate diffusion in multimaterial systems with a cell-centered Eulerian mesh

in two dimensions. A system with immiscible fluids contains sharp interfaces. An

Eulerian mesh is fixed in space and does not move with the material. Therefore, cells

with an interface contain multiple fluids; these are known as mixed cells. The treat-

ment of mixed cells can vary in computational cost and accuracy. In some cases, the

primary source of inaccuracy can be attributed to approximations made in modeling

the mixed cells. This thesis focuses on the treatment of mixed cells based on the

diffusion approximation of the transport equation. We introduce five subgrid, mixed-

cell models. Two models have a single temperature for each cell, while the other

three allow a separate temperature for each phase. The single-temperature models

are implemented using the Support-Operators Method, which is derived herein. The

first single-temperature model utilizes an effective tensor diffusivity that distinguishes

diffusion tangent and normal to the interface. The second single-temperature model

specifies a unique diffusivity in each corner of a mixed cell, which is effectively a mesh

refinement of the mixed cell. The three multi-temperature models have increasingly

accurate levels of approximation of the flux: (i) flux is calculated between cell-centers

for each phase, (ii) flux is calculated between the centroid of each phase, and (iii) flux

normal to an interface is calculated between centroids of each phase. The physical

interpretations of these models are: (i) each phase occupies the entire cell, (ii) oblique

flux is continuous, (iii) only normal flux is continuous. The standard approximation,

using the harmonic mean of the diffusivities present in a mixed cell as an effective dif-

fusivity, is also tested for comparison. We also derive two time-dependent analytical
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solutions for diffusion in a two-phase system, in both one and two dimensions. With

the standard model as a reference point, the accuracy of the new models is quantified,

and the convergence rates of the error are determined between pairs of spatial resolu-

tions for the two problems with analytical solutions. Simulations of multiphysics and

multimaterial phenomenon may benefit from increased mixed-cell fidelity achieved in

this dissertation.
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CHAPTER I

Introduction

In this thesis, we study mixed cells, computational cells containing more than one

phase, in the context of cell-centered diffusion in two dimensions (2D). Mixed cells

occur when the interfaces do not align with the computational grid boundaries. This

is common in multiphase flow simulations (discussed in the next section). Mixed-cell

inaccuracy often dominates the error of simulation results since each phase has its own

diffusivity, which violates the discretization assumption (values in a cell are constant

or smooth), leading to a jump discontinuity of diffusivities at the interface within the

cell. A multiphysics, multiphase computational scheme that is second-order accurate

could lose its accuracy to first-order or lower due to mixed-cell error. In other words, a

higher-order method may become limited to the accuracy of numerical solution in the

mixed cells, essentially wasting the computational effort that is providing higher ac-

curacy away from interfaces. Furthermore, the values of the solution at the interfaces

are sometimes more important than in the bulk in many multiphase flow problems,

such as when reactions or energy exchange occurs along the interface. Mixed cells are

thus an important research problem; an increase in the accuracy of mixed cells would

enable multiphase computational schemes to regain the theoretical order of accuracy

of the discretization.

The goal of this thesis is to improve mixed-cell accuracy, ideally obtaining a mixed-

cell model that is second-order accurate in various p-norms. E∞, the ∞-norm of the

error as defined in Section 5.2, is the best measure for mixed-cell accuracy because

it finds only the maximum error, which typically occurs along the interfaces. Having

second-order convergence of E∞ is cogent evidence of an accurate treatment of mixed

cells. An alternative means to measure the accuracy of a method is if a model

consistently yields lower error at coarser grids compared to a standard method. A test

case or known solution is needed to compute the errors, but no standard test problem

exists against which various mixed-cell models have been benchmarked. Another goal
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of this thesis is to select and evaluate time-dependent, multiphase analytical solutions

that can handle an arbitrary diffusivity ratio to be used as a test problem to quantify

the accuracy of mixed-cell models.

1.1 Multiphase Flow

This work is motivated by the physics of fluid dynamics with multiple phases or

materials present in the system. Multiphase flows occur in the context of transport

phenomena in many diffusion related processes in physics and industrial applications.

Porous-media flow is a far-reaching field with numerous examples of multiphase flow,

including groundwater and contaminant flow through reservoirs. Oil and fluid flow

is important for petroleum engineering, such as oil extraction from reservoirs, which

also involves porous-media flow. Heat conduction in heterogeneous phases is a critical

phenomenon for industrial applications, such as heat dissipation that occurs with

solidification during a casting, as well as the cooling of engines or turbines. Fluid

mixing that occurs with chemical reactions at fluid interfaces is another example that

is found in many industrial applications. Radiation transport has many examples in

which multiphase flow is important, such as plasmas in a nebula, supernovae, inertial

confinement fusion, and high-energy density laboratory astrophysics.

These are just some of the multifarious examples that may use computational

modeling to aid in the research of basic phenomena and the development of industrial

applications. Interfaces are the boundaries between phases in multiphase systems. We

use ‘phases’ throughout this thesis to indicate different states of the same material or

different materials that are immiscible. Multiphase, in this context, refers to a system

with more than one identifiable phase. A system with two materials that is finely

mixed or homogeneous would not be considered a multiphase system. For problems

examined in this work, we assume a sharp interface, i.e., an interface has no width.

1.2 Description of Dynamics

Fluid motion can be described from one of two points of view [117]: the La-

grangian description or the Eulerian description, which are discussed below. (In the

forthcoming terminology, mesh and grid are equivalent, and a cell and an element are

used interchangeably.)
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1.2.1 Lagrangian Description

The Lagrangian description follows individual fluid particles/parcels as they move

along the system [117]. The mesh for a numerical scheme using the Lagrangian view-

point is attached to the fluid and moves as the system flows, making Lagrangian

meshes an option for computational hydrodynamics. The primary benefit of a La-

grangian method for interfaces is that the interface position is naturally maintained.

The interface position is known and remains sharp. The moving mesh leads to so-

called ‘body-fitted grids,’ where the grid (or mesh) is shaped such that the interfaces

occur only along the boundaries of the cells adjacent to interfaces. Each cell repre-

sents an arbitrarily shaped ‘particle’ or parcel of fluid that deforms with the phase

from its original shape. Accordingly, every cell is a pure cell, which is a cell con-

taining only one phase. Absence of mixed cells is advantageous because the physics

and numerical methods are well developed for pure (single-phase) cells, but not for

mixed cells. Additionally, the discretization process assumes that all variables and

parameters are smooth or constant within each cell, which pure cells generally follow,

while multiphase cells do not.

There are inherent disadvantages to Lagrangian methods. For example, inter-

polation of the discrete data is required to compute the solutions. There is a high

computational cost in tracking the interfaces and moving the mesh, and more com-

plicated interfaces increase the computational demand. The dynamic mesh leads to

skewed and non-uniform cells, which may reduce the overall accuracy as compared

to a uniform or smooth mesh. Furthermore, three-dimensional implementation is

especially difficult in a Lagrangian method. Under most circumstances, these are ac-

ceptable drawbacks. However, some of the more challenging issues with Lagrangian

techniques occur when the interfaces evolve quickly, such as with high velocity flows,

systems with shock waves, or processes involving rapid phase changes. The costly

mesh regeneration and interface updates may become prohibitively expensive when

the interface evolves rapidly. Additionally, the interfaces may move so quickly that

catastrophic failure occurs, where the mesh becomes entangled. A significant vor-

ticity can also lead to mesh entanglement. These problems are sometimes remedied

by remapping, in which the grid is projected back onto a simple rectangular mesh.

When remapping a Lagrangian method, the position of the interface must be esti-

mated, resulting in an additional source of error. Additionally, remapping systems

with significant vorticity yields unphysical results due to spurious vorticity dissipa-

tion. A Lagrangian technique may incur mixed cells after such a remap, making the

mixed-cell approaches in this thesis applicable in such a case.
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1.2.2 Eulerian Description

The Eulerian description observes the state of a fluid at given locations [117].

Thus, an Eulerian method maintains a stationary grid. Rather than moving the

mesh with the flow, the flow is tracked by the density, velocity, and other state

variables that describe the flow. Unlike Lagrangian methods, Eulerian methods do

not encounter mesh entanglement because the mesh is stationary, even when the

interfacial geometry is complicated or flow distortions are large. Eulerian methods are

simpler to implement computationally in both two dimensions and three dimensions

(3D).

Since the interface lies within an Eulerian mesh, Eulerian methods require a

method to determine interfacial positions; see Kothe and Rider [116] for a comparison

of various methods. We provide two examples for such methods: level set methods

(LSM) and volume of fluid (VoF) methods [68], both of which handle interface merg-

ing and splitting [52]. VoF methods and LSM are tools to capture/reconstruct the

interface in an Eulerian mesh, and they must be used in conjunction a scheme that

calculates the fluid field equations.

Level Set Methods. Level set methods (LSM), which capture the interface location

via a level-set function, were introduced by Osher and Sethian [165]. A level-set

function takes a value, typically zero, on the interface; as the interface moves, the

zero point of the level-set function also moves. The sign of the level-set function,

positive or negative, distinguishes the two phases. The signed distance function,

whose absolute value is equal to the distance to the nearest interface, is often used as

the level-set function.

Advantages of LSM include well-defined topological merging and breaking [116],

comparable complexity in 3D as in 2D [52], and the ability to treat interfaces with

curvature. The interface normal and curvature can be found from the gradient of

the level-set function [52]. The interfacial positions are not explicitly evolved in this

method [204]. While LSM naturally treat topological changes of the interface, the

cost to update the distance function can be expensive for rapidly evolving interfaces

[116]. Interfaces tend to be smoothed in LSM [52], which leads to mass loss or gain;

this is the primary disadvantage of LSM [116]. Modifications and variations of LSM

have been proposed to correct the mass conservation issue [18, 201]. Current methods

are not locally conservative but are effectively conservative globally [18].

Volume of Fluid. The volume of fluid (VoF) methods, introduced by Hirt and
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Nichols [94] and refined by Youngs [220], advect the fluids in one step and reconstruct

the interface in the second step [68]. The volume fraction, a scalar function, gives

the percentage or fraction of each fluid in a cell. A mixed cell has a volume fraction

between zero or one, while a pure cell has a volume fraction equal to zero or unity [183].

The interface advection in VoF methods leads to numerical diffusion since the exact

interface position is not tracked. After every volume fraction update, the interface is

reconstructed based on the volume fraction of a cell and its neighbors [183]. There

are a variety of ways to approximate the interfaces and calculate interface normals.

VoF methods are simple, flexible, and economical [116]. Large flow distortions

and interfacial motions are treated easily, and topological changes do not increase

the complexity of the algorithm. Perhaps the most important feature of the VoF

methods is that they conserve the mass of each fluid component [70]. VoF methods

are desirable for rapidly moving flows (where Lagrangian methods and LSM have

difficulties) due to their stability, robustness, and conservative nature.

The primary disadvantage of VoF methods is the loss of exact interfacial posi-

tion; only discrete volume data is retained instead, and volume fractions alone do not

guarantee unique interface reconstruction. Additionally, unlike LSM, VoF methods

do not naturally provide information required to compute local curvature [52]. Addi-

tional improvements such as the Moment of Fluid (MoF) method [70], which tracks

the centroids of the phase volumes, allows the interface to be reconstructed uniquely

and remedies these issues.

1.3 Numerical Methods

1.3.1 Finite Volume Methods and Finite Element Methods

Finite volume methods (FVM) are the most widely applied scheme in computa-

tional fluid dynamics (CFD) [93]. FVM use a conservative discretization, where the

integral conservation laws are applied to each control volume. ‘Finite volume’ refers

to this control volume, which is a cell in the mesh for this system. The cells in the

mesh are connected through surface fluxes, which arise from converting a divergence

integral to a surface integral (via the divergence theorem). FVM can be used on

any grid type, including unstructured grids. FVM may employ vertex-based or cell-

centered elements. The elements may change shape or position, allowing them to be

used with Lagrangian meshes. However, FVM are also frequently used with Eulerian

meshes as well. By discretizing the conservation equation without requiring basis

functions, the FVM are conceptually simpler than finite element methods.
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Finite element methods (FEM) [93, 117] are similar to FVM: they discretize the

mesh into cells or elements, they use an integral governing equation, and they can use

arbitrary meshes. FVM use cell-centered variables, while FEM are usually vertex-

based, as opposed to face-centered or cell-centered. The solution is represented as a

sum of basis functions, also known as shape functions, interpolation functions, and

trial functions. The performance of the code depends on the choice of the basis

functions, which should be chosen appropriately for a given set of equations and

boundary conditions. FEM are generally more numerically stable and accurate than

FVM. However, FEM are more computationally expensive, more difficult to code, and

are less intuitive than finite volume or finite difference methods (FDM) (discussed in

the next section). FEM are commonly used in structural engineering, but are also

used in fluid dynamics [93, 117]. For CFD, the Galerkin formulation of FEM and

their many variants are the most successful class of FEM [117, 151, 152].

1.3.2 Spectral Methods

Spectral methods are related to FEM because they both represent the solutions

using a set of basis functions. Spectral methods can be considered global methods

because each basis function is defined over the entire computational domain, while

FEM can be considered local methods because the basis functions are nonzero only

in a small area of the computational domain (an element). Spectral methods have

superb, often exponential, convergence rates (compared to FEM and FVM which are

often second-order). While less expensive than FEM, the global nature of spectral

methods leads to difficulties when the boundary has complex geometries or when the

phase coefficients are discontinuous.

1.3.3 Finite Difference Methods

FDM are based on Taylor expansions of functions and can be formulated for an

arbitrary order of accuracy based on the number of terms used in the expansion [93].

The governing equations are discretized directly, unlike FVM that first integrate the

equations over volume or FEM that define the solution in terms of basis functions.

As opposed the cells in FVM and FEM, FDM use a collection of individual points

in space. Thus, the mesh is not partitioned, and a solution must be interpolated to

provide values between grid points. FDM are generally simple to code, especially

for uniform grids, but require structured meshes [93]. The restriction on grid types

makes FDM more suited for Eulerian grids.

6



1.4 Volume Fractions & Mixed Cells

1.4.1 Volume Fraction

The volume fraction is an important parameter that characterizes a mixed cell, and

therefore, we here provide a discussion. Volume fractions appear not only in Eulerian

VoF methods but also, in fact, in a variety of methods as an intermediate step. The

difference is that VoF methods must average the phase properties within a mixed cell

and advect the interface, while other methods that use volume fraction may assume

immiscible phases, track explicit interfacial positions, and/or update the interface

more precisely. LSM, for example, maintain knowledge of the interface location via

the level-set function, but may be coupled with a method that uses volume fractions

in order to compute the flow field. Another common technique that may use volume

fractions is an Arbitrary Lagrangian Eulerian (ALE) method, where the interface is

updated using a Lagrangian method, allowing the cells to flow along with the fluid. A

remapping step then occurs in which the new Lagrangian mesh is mapped to a fixed

(Eulerian) grid. Field calculations are then performed on this Eulerian grid, using

volume fractions. The results are then used for the next Lagrangian interface update.

ALE methods reduce the numerical diffusion issues that occur in VoF methods and

do not eliminate the problem of vorticity dissipation.

1.4.2 Mixed Cells

This dissertation focuses on the treatment of mixed cells, and the exposition is

given under the assumption that only volume fractions are known (as in a VoF al-

gorithm). However, as discussed above, the application of an advanced mixed-cell

treatment has a larger scope than just to a VoF method, pertinent to any scheme

that involves mixed cells, including some LSM and Lagrangian mesh techniques. This

work focuses on the method to account for the effect of mixed cells, not on following

interface positions. Consequently, the problems solved in this thesis have stationary

interfaces in order to focus exclusively on the treatment of mixed cells. This is a ratio-

nal simplification because the subcell models use only volume fractions and interface

normals, allowing this work to apply to a variety of multiphase methods. Moreover

many multiphase codes use operator splitting, updating the interface position in a

hydrodynamics portion of the code and then updating the flow properties in another

portion of the code. We concentrate our study on cell-centered diffusion solvers be-

cause cell-centered methods are more easily integrated with hydrodynamics solvers

used, for example, in radiation hydrodynamics.
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Mixed cells are a large source of numerical error. The error in mixed cells is

larger than the rest of the domain, typically resulting in first-order accuracy near an

interface and higher-order elsewhere. Therefore, mixed cells dominate the error in

simulations, requiring attention (e.g., mesh adaptivity) to maintain overall computa-

tional accuracy. Since mixed cells have the potential to reduce a high-order scheme

to first-order, mixed cell accuracy is an important research topic.

The most common, and perhaps most accurate, technique to study multiphase flow

is to ensure that all cells are pure. This is typically achieved by aligning the interfaces

with the grid boundaries. This is straightforward when the interfacial geometries are

simple but becomes problematic when they are complex. Body-fitted grids (usually

with FEM or FVM) are used to align element faces with interfaces. Body-fitted grids

should be used whenever practical if phase discontinuities are a significant source of

error. However, in some cases, the cost of body-fitted grids outweighs their benefit.

If the interface is stationary, the generation of a body-fitted mesh is needed only

once, and the cost is justified. If the interface is time-dependent, moving the mesh

at each time step represents a large computational cost [215, 216, 218], and simply

allowing the interface to move relative to a uniform grid may be more appropriate

[123]. For example, Lagrangian methods may be too costly or unstable for problems

involving high velocity flows or shock waves. ALE codes represent a middle ground

between body-fitted grids (a Lagrangian technique) and stationary grids (an Eulerian

technique). ALE methods still incur mixed-cell effects on the Eulerian steps, while

potential grid distortions are also possible during the Lagrangian step. Our analysis is

applicable to systems in which mixed cells cannot be completely eliminated, including

Eulerian, ALE, and some Lagrangian methods.

Cutting a mixed cell into two or more pure cells is a logical strategy for handling

mixed cells. While cutting the cell can be effective, it leads to non-uniform grids and

cells of complex shape. For the same reasons above, we do not consider this case,

although the mixed-cell models presented herein do effectively cut the mixed cells.

We restrict our analysis to a Cartesian grid but note that a logically rectangular,

AMR-generated, or unstructured grid would be able to utilize a similar algorithm,

with modifications to account for the neighbor sizes and positions.

When mixed cells are not avoided or cut, the phase properties are typically homog-

enized (averaged) over each cell. The three most common averages are the arithmetic,

geometric, and harmonic mean. For diffusivity, the harmonic mean is the standard

approach. Homogenization leads to artificial mixing that potentially results in phase

properties that do not reflect the physical system. This occurs, for example, with
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opacities in radiation transport problems that may vary by greater than six orders

of magnitude. A simple average of opacities of an opaque medium and a transparent

medium does not reflect the radiation transport in the combined two-phase medium.

Homogenization often leads to inaccuracies, with an error larger than the discretiza-

tion error of the rest of the domain. Since the harmonic mean for diffusivity is the

standard technique, we use it as a reference point to which to compare our new

mixed-cell models.

As an alternative to viewing a mixed cell as a new phase with intermediate values,

a mixed cell can instead be considered as a cell containing immiscible phases. In this

interpretation of a mixed cell, an interface thus changes from smeared to sharp. A

mixed cell would then maintain the properties of each phase, where appropriate.

However, by considering the phases separately, we require a subcell or subgrid model,

in which structures below the smallest element are considered.

Adaptive mesh refinement (AMR) algorithms, in which a cell is partitioned into

multiple smaller cells in regions that are determined to require a higher resolution,

may be used to increase the grid resolution of interfacial regions. While this approach

reduces the total volume of mixed cells, the effect of mixed cells is not eliminated,

only abated, degree of which depends on the level of refinement used. Thus, mixed

cells are still relevant to an AMR code, just at a smaller extent. Furthermore, AMR

algorithms introduce substantial complexity, such as requiring varying time step sizes

for differently sized cells and distorting the band structure of the coefficient matrix,

and thus are not always advantageous.

1.5 Contributions

This dissertation focuses on subgrid models for mixed cells. We introduce five

new models that are compared with each other as well as with a standard treatment

(harmonic mean for diffusivity). Comparisons are quantified using convergence rates

of each model on four test problems: a 1D steady-state manufactured solution, a 2D

steady-state manufactured solution, a 1D dynamic boundary value problem, and a

2D dynamic boundary value problem.

We introduce five new mixed-cell models, two of which are single-temperature

models and three of which are multi-temperature models. We include the standard

method (harmonic mean of diffusivities) as the first single-temperature method, de-

noting it as the S1 model. This is used as a reference against which to measure the

benefit of the new models.
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The S2 model approximates the diffusive flux along an interface with an effective

diffusivity tensor. The flux perpendicular to an interface is modeled with the harmonic

mean, while the flux parallel to an interface uses the arithmetic mean. A tensor

diffusivity contains the two values, rotated according to the interface orientation. This

is physically reasonable because the flux normal to an interface between an opaque

and transparent medium is limited by the opaque medium, and the harmonic mean

gives a diffusivity that is close to that of the opaque material. The flux tangent to an

interface flows freely through the transparent medium but is limited in the opaque

medium. The arithmetic mean accounts for the volume ratio of the transparent

medium and the opaque medium.

The S3 model takes advantage of a particular numerical implementation (Support-

Operators Method), in which the diffusivity can be defined separately in each corner

(vertex) of a cell, while still utilizing a stable, cell-centered method. The flexibility of

having up to four different diffusivities in a 2D mixed cell allows for an effective mesh

refinement, similar to AMR or cutting the cell. However, unlike those methods, the

S3 model does not increase the algorithm complexity, lead to nonrectangular cells, or

disrupt the band structure of the coefficient matrix. By splitting the cell into pure

cells, we avoid any phase homogenization, allowing for a more physically accurate

computation of diffusion. This model is easily extrapolated to 3D.

The multi-temperature models assume that each phase in a mixed cell has a dis-

tinct temperature. The M1 model uses a rough approximation in which the distances

between adjacent cells are set to fixed values (∆x for left and right, ∆y for up and

down), while the separation between distinct phases within a mixed cell is set to

about half the cell width. This subcell model introduces a more physically accurate

model of separate temperatures for distinct phases while adding little computational

complexity. This model avoids complicated interface reconstruction and, therefore, is

applicable to 3D as well, but it involves a significant simplification.

The M2 model refines the M1 model by computing distances more precisely. In-

stead of assuming a uniform spacing between phases, the centroid of each phase ex-

isting within every cell is determined. The distances are then computed as centroid-

to-centroid distances, which is physically more accurate. The disadvantage of this

method is that the interface must be reconstructed, and centroids must be located.

However, this model could be seamlessly integrated with a larger computational

scheme that utilize interface reconstruction methods that track both volume and

centroid location, such as the MoF, which determines centroids. This method can

be extrapolated to 3D, provided the interface reconstruction methods employed are
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capable of providing the centroids.

The M3 model has the highest refinement among the multi-temperature methods

we examine. Similar to the M2 model, centroids are determined based on a linear

interface reconstruction. However, since centroid-to-centroid distances may be oblique

to the interfaces separating cells and/or phases, the M3 model computes the normal

distance to each face from each centroid. Thus, the M3 model makes an improvement

to the M2 model to enhance the accuracy by accounting for the obliqueness of the

vector between two centroids with respect to the face normal. As with the M2 model,

the M3 model can be expanded to 3D with interface reconstruction methods that

provide the centroid information.

1.6 Synopsis

The remainder of this thesis is organized into the following chapters.

Chapter II: Background and History

This chapter provides background information on fluid dynamics and diffusion. Ap-

plications of diffusion and multiphase flow are discussed. Radiation transport is

described at length, including a discussion of some of the most common computa-

tional methods as well as a derivation of the diffusion approximation. The motivating

problem is then described, followed by a description of the problem this dissertation

addresses: heat conduction. While the language of the problem and subsequent

chapters is in terms of heat conduction, this work applies to other problems that

can be formulated in the form of the diffusion equation, such as porous media flow

and diffusion-approximated radiative transfer. Previous work related to or involving

mixed cells is then reviewed. The chapter concludes with a discussion of iterative

solution methods, in particular, the conjugate gradient solver.

Chapter III: Single-Temperature Methods

We introduce three single-temperature models (one existing and two newly developed

models). All three models are implemented using the Support-Operators Method

(SOM), a mimetic approach to FDM. While only one of the three models requires this

particular implementation, we use it for all three for a consistent means to compare

each model. SOM is an advanced discretization technique that treats discontinuous

diffusivities in a stable and accurate manner. One peripheral benefit of this section

is a coherent derivation and explanation of SOM. SOM have the potential to be used

in place of FVM and FEM in many instances, therefore the clear presentation of this
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method is useful for future work.

Chapter IV: Multi-Temperature Methods

This chapter presents three new multi-temperature models we developed, based on

volume averaging of the diffusion equation over a cell. Volume averaging leads to

a volume-fraction-dependent equation, with an exchange term for mixed cells. The

derivation and discretization of the three models are presented.

Chapter V: Numerical Results: Code Verification

This chapter discusses code verification. We specify means to quantify the accuracy

of a numerical method through error analyses. This is followed by four numerical

problems that test various aspects of our single- and multi-temperature codes. These

tests focus on pure-cell cases to verify the codes.

Chapter VI: Numerical Results: 1D & 2D Manufactured Solution

This chapter discusses the method of manufactured solutions (MMS) as a means to

create test problems. We create two mixed-cell test problems using the MMS method,

one each in 1D and 2D. We then test each mixed-cell model on this analytic solution.

Chapter VII: Numerical Results: 1D Test

This chapter benchmarks the mixed-cell models against a 1D analytical solution.

The analytical solution describes a two-phase composite-medium problem. This is an

eigenvalue problem with a Fourier-series solution. The simulations are performed for

various diffusivities and interface configurations. Convergence rates for each model

in three p-norms are given for each test case.

Chapter VIII: Numerical Results: 2D Test

This chapter benchmarks the mixed-cell models against a 2D analytical solution.

The analytical solution is a 1D radial solution in cylindrical coordinates. This radial

solution is then projected onto a 2D grid, resulting in mixed cells at any resolution

because a Cartesian mesh cannot resolve a circular interface. The mixed-cell models

are compared for three different diffusivity ratios, and convergence rates for each

model in three p-norms are given for each test case.

Chapter IX: Summary

The last chapter summarizes the new models and their performance. Additionally,

several specific steps for future work are recommended.
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CHAPTER II

Background and History

This chapter provides a background on multiphase flow and diffusion, as well as

the approximations and numerical methods commonly implemented in the literature.

We begin our discussion in Section 2.1 with an introduction to diffusion and fluid

dynamics. We review some of the applications of diffusion, especially those that

also involve multi-fluid flow in Section 2.2. Radiation transport is the motivation

and key application of this work and is discussed in detail in Section 2.3. After

a brief description of radiation transport phenomenon, we summarize a stochastic

computational method to model it. We then introduce a deterministic, continuum

model for radiation transport, followed by an overview of approximations to this

model, including the diffusion approximation. After an introduction to diffusion,

fluids, and radiation transport is completed, we focus on interfaces.

The goal of this thesis is to examine how various methods of treating interfaces

perform numerically. Section 2.4 provides a motivation for considering interfaces as

an interesting research topic. We show that radiation transport and phase heat con-

duction can both be modeled with a similar mathematical formulation, allowing the

mixed-cell models presented in Chapters III-IV to be applicable to both phenomena.

After presenting the simplified problem, we provide a thorough overview of previous

work on interface problems. We conclude the chapter with a discussion of iterative

methods and efficient sparse matrix solvers in Section 2.5.

2.1 Introduction to Diffusion and Fluid Dynamics

2.1.1 Diffusion

Any phenomenon that can be described as a random walk can be modeled by dif-

fusion. A random walk can be illustrated by the drunken-walk analogy: an inebriated
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bar patron attempts to walk home after imbibing to excess. He takes one step and

falls. He stands up, facing a direction independent of how he fell. He takes one step

forward in this random direction and falls again. This process repeats with a constant

step size. To determine the inebriated man’s progress, one can calculate the expected

value of distance from the initial position as a function of the number of steps. The

average of many instances of possible walks results in an expected distance, although

a single particular walk may have a distance much longer or shorter than the expected

value. Such a process describes two-dimensional (2D) diffusion, but can be extended

to lower or higher dimensions. Diffusion processes describe many everyday phenom-

ena, such as how a drop of dye spreads in still water to become turbid, or how heat

conducts from the stovetop through a cast-iron pan. Even the movement of crowds

of people, each making individual decisions, can be modeled with diffusion, such as

traffic patterns or pedestrians leaving a stadium. The financial industry uses diffusion

for pricing and market predictions [90]. Perhaps the most sensational application of

diffusion was by Albert Einstein [76], who explained that the random motion, called

Brownian motion, of pollen suspended in water is due to collisions with individual

water molecules. This work was extraordinary because it changed the minds of many

of the members of the scientific community who had previously rejected the existence

of the atom [180]. Although microscopic or molecular motions physically cause dif-

fusion, diffusion can be described mathematically at the continuum level. For this

reason, diffusion is a prevalent approximation and, when applied to appropriate sys-

tems, is highly accurate without the need to model the dynamics of individual atoms

or molecules.

Fick [82] empirically derived diffusion by measuring the concentration of salt in

tubes of water of varying lengths. The governing equations of diffusion are still known

as Fick’s Laws, which are comprised of two equations,

~F = −D~∇U (2.1a)

∂U

∂t
= −~∇ · ~F +Q, (2.1b)

where U is a scalar field that can represent the density of a variety of conserved

quantities, such as energy or the number of particles. We shall simply refer to U as

concentration without specifying the species or type of conserved quantity. ~F is the

flux or current (amount of the conserved quantity crossing a unit surface area per

unit time), D is the diffusion coefficient or diffusivity, and Q is a source or sink of the

species per unit volume. The negative sign in Equation (2.1a) shows that the flux is
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directed from higher to lower concentration.

The diffusion equation, Equation (2.1), describes the change in concentration. The

diffusion coefficient (D), amongst its many names and roles, can be summed up as

the mobility of the diffusive species to transport in response to a driving force. The

situation in which the species diffuses independently of direction is called isotropic

diffusion; here, D is a scalar. If, however, there is a directional dependence, D is a

tensor of size 2×2 in 2D and 3×3 in 3D to reflect the anisotropy. The literature makes

a distinction for two different cases of tensor diffusion: diagonal tensor and full tensor.

A diagonal tensor has zeros for all off-diagonal terms. The most general case, the full

tensor problem, occurs when any of the off-diagonal values are nonzero. Diagonal

tensor problems are often treated separately because they are less complicated to

implement numerically, requiring, for example, only a five-point rather than nine-

point stencil in 2D [7].

The left-hand side (LHS) of Equation (2.1b) represents the rate of change in

concentration with time at a fixed point. The first term on the right-hand side (RHS)

represents the rate of net flow into an infinitesimal volume element. The last term

is a source (Q), which could originate from an endothermic or exothermic chemical

reaction in a heat diffusion model.

Equations similar to the diffusion equation appear in other contexts. In slow,

viscous fluid flow, Darcy’s law states that

~F = −k~∇P,

where ~F here is the fluid flux, P is the pressure, and k is the permeability of the

material through which the fluid is flowing. Fourier’s law for heat conduction states

that
~F = −k~∇T,

where ~F here is the heat flux, T is the temperature, and k is thermal conductivity of

the material through which the thermal energy is flowing. In electromagnetics, the

generalized Ohm’s law states that

~J = −σ~∇Φ,

where ~J is the electric current, Φ is the electric potential, and σ is the electric con-

nectivity of the material through which the current is flowing. All three of these cases

have a form identical to Fick’s first law: flux of some carrier (fluid, thermal energy,
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charge) is equal to a carrier-dependent constant multiplied with the gradient based

‘driving force.’ Note that the material constant can vary with the local conditions,

giving rise to nonlinearities. All of these cases can be solved numerically using similar

techniques. Consequently, diffusion models and solvers are powerful tools that can

be applied to many different phenomena.

2.1.2 Fluid Dynamics

The field dedicated to the study of fluid flow is hydrodynamics. The description

in this section is based on Hirsch [93], who gives a thorough introduction to fluid

dynamics. Conservation laws for three quantities define the evolution of fluid flow:

mass, momentum, and energy. The conservation law formulation of the fluid equations

is powerful because, when properly discretized, the equations remain conservative.

Conservation laws. The conservation laws for mass, momentum, and energy can be

written in integral or differential form. Conservation, in its most general form, applies

to all three of these quantities. Consider an arbitrary volume Ω bounded by surface

S that is fixed in space and crossed by the fluid flow. Let A represent a conserved

flow quantity which could be, for example, energy, mass, number of particles, etc. A

is the total amount of the quantity inside the volume Ω,

A =

∫
Ω

UdΩ, (2.2)

where U is the density of the quantity. The quantity A changes as a result of fluxes

— vector quantities measuring the amount of A crossing a unit area per unit time,

into or out of Ω. The flux tangential to a surface does not change the amount of A

in the domain; only the component of the flux normal to the surface S contributes

to the change. Sources account for any other contributions to the change of A, and

these sources are divided into volume (QV ) and surface ( ~QS) sources, although surface

sources tend to be enforced on boundaries or as an effective flux. The general form

of a conservation law in integral form is then

∂

∂t

∫
Ω

UdΩ +

∮
S

~F · d~S =

∫
Ω

QV dΩ +

∮
S

~QS · d~S. (2.3)

This is valid for any fixed volume Ω and its bounding surface S. In addition, the

flux may be discontinuous (such as with shock waves) in the integral form because

derivatives of the flux are not required.
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A local differential form of the conservation law can be derived by transforming

the surface integrals into volumetric integrals via the Divergence theorem, provided

the surface sources and fluxes are continuous. Thereby, the differential conservation

law can be obtained as
∂U

∂t
+ ~∇ · ~F = QV + ~∇ · ~QS, (2.4)

where surface sources have the same effect as a flux and could instead be written as

an effective flux, (~F − ~QS). Hirsch prefers to define the surface sources and fluxes

separately to delineate the physical origins of these terms [93]. Equation (2.4), the

differential conservation law, is more restrictive than the integral conservation law,

Equation (2.3), because it requires the fluxes (and surface sources) to be differentiable,

which is not the case in some systems (such as those with shock waves). Similar

integral and differential equations can be written for the conservation of a vector

quantity, such as momentum, where the conservation law applies to each component

of the vector quantity.

The flux, ~F , in a fluid is produced by two physically distinct effects: advection

and diffusion. Advection is the amount of the quantity A that is transported in the

direction of the flow, ~Fadv = U~v, where ~v is the flow velocity. Diffusion describes

the tendency of the molecular motions of a fluid to reduce any nonhomogeneity in

the concentration, ~Fdif = −D~∇U . Advection is facilitated by velocity and does not

occur in a stationary fluid. Diffusion can be present in a stationary or moving fluid,

but only occurs if U is non-uniform (~∇U 6= 0). The flow advects all quantities while

only some quantities diffuse. The Peclet number is a measure of the ratio of the

advective and diffusive fluxes. Inserting these fluxes into Equation (2.4) gives the

general conservative form of the transport equation,

∂U

∂t
+ ~∇ · (~vU) = ~∇ · (D~∇U) +QV + ~∇ · ~QS, (2.5)

which is also known as the advection-diffusion equation.

Regimes of fluid dynamics. It is important to distinguish three bounding sets of

regimes for the coupled set of equations resulting from conservation of mass, momen-

tum, and energy: viscous and inviscid; compressible and incompressible; laminar and

turbulent. Viscosity is a measure of a fluid’s internal friction of fluid layers against

each other. A fluid with no viscosity is an inviscid fluid, and its momentum equation

simplifies because the viscosity term vanishes. The system of equations for an inviscid

fluid is known as the Euler equations. A compressible fluid may change volume for
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a given amount of mass, meaning the material derivative ( ∂
∂t

+ ~v · ~∇) of the den-

sity is nonzero. All fluids are compressible to some degree, but some fluids can be

approximated as incompressible because the amount of compression is negligible for

the given conditions. The mass conservation equation reduces to a simpler form for

the case of an incompressible fluid because the material derivative of density is zero.

The system of equations for an incompressible fluid from conservation laws form a

system known as the Navier-Stokes (NS) equations [93]. Laminar flow occurs below a

critical velocity where the flow has well defined streamlines. Flows become turbulent

above this critical velocity, where the flow is chaotic and variables fluctuate around

a mean value. These fluctuations are strongly nonlinear and cannot be described

deterministically, but may be solved numerically [93].

The turbulent nature of the coupled and nonlinear NS equations is difficult to

simulate, spawning a variety of numerical techniques to solve or approximate the

equations. A Direct Numerical Simulation (DNS) solves the NS equations at all rele-

vant length scales without any approximations [64, 93]. This gives exact information

of local values of conserved quantities (energy, mass, momentum). Since turbulence

occurs over a range of scales, large 3D meshes are needed in a DNS. Greater velocities

cause more turbulence, and thus higher mesh resolution is required. A DNS is limited

by mesh size and computation time. The study of turbulent flow using a DNS for

industrial purposes is beyond computational capabilities for the foreseeable future

[64, 93]. An alternative, the Reynolds Averaged Navier-Stokes (RANS) approach, is

the most widely used turbulence model in computational fluid dynamics [93]. The

RANS method handles turbulence by taking a statistical average of the equations.

This averaging process creates a turbulent correlation function that requires a closure

model. This reduces the number of degrees of freedom, decreasing the computational

cost. RANS methods tend to require empirically derived closure models for each in-

dividual system and, hence, lack universality [64]. The most accurate approximation

to turbulent flow is known as the Large Eddy Simulation (LES). In LES, a sub-filter

model below a threshold length scale approximates turbulence, while it is calculated

exactly (as in DNS) above the threshold. The LES can be viewed as a hybrid method

of the full calculation of the DNS and the fully averaged calculation of the RANS ap-

proach [64]. There are many more approaches for simplifying the NS equations, such

as the thin shear layer approximation and the boundary layer approximation [93],

but delving deeper into these approximations is outside the scope of this overview.
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2.2 Relevance of Diffusion & Multiphase Flow in Applied

Problems

Diffusion and multiphase flow are relevant in many scientific and technological

problems. While both of these fields are vast, we focus on situations that involve

interfaces between two phases, for which their modeling requires mixed cells. While

it is beyond the scope of this document to catalog the numerous computational ap-

plications of fluid flow coupled with diffusion, we describe a few of the key topics in

this section. The discussion on radiation transport is more detailed than the other

sections due to its substantial relation to this work. In addition, we discuss previous

work for mixed-cell problems in Section 2.4.3.

Porous media flow. Fluid flow through porous media is one of the phenomena de-

scribed by a mathematical framework similar to Fick’s law of diffusion. The petroleum

industry models flow of oil through porous rock systems [53, 56, 51, 73, 72, 75, 123,

187, 194, 199, 213], often referred to as reservoir simulations. These types of simula-

tions are also referred to by the acronym IMPES, for IMplicit Pressure and Explicit

Saturation [14, 169]. Mixed finite element methods (FEM), and their concomitant

finite difference methods (FDM) form, have been used in petroleum reservoir engi-

neering for the last 60 years [14, 167, 213]. One common application is fluid injection

for oil recovery, where the resident fluid, oil, is extracted from a rocky soil system by

pumping a displacement liquid into the ground [199]. The displacement fluid flows

more easily than the resident fluid, forcing the oil out of the ground through extrac-

tion points. This same process is also studied for the injection of hazardous waste

deep underground [187].

A closely related topic to porous media flow is the flow of groundwater [7, 25,

43, 59, 115, 129, 195], which is useful for hydrologists. Likewise, waste or contam-

inant flow through porous media can be examined [28, 55, 59, 138, 195], which is

of importance to environmental protection and nuclear waste storage [78, 156, 187].

Flow through fractured porous media, which contain larger voids within them, are

also studied in the context of geothermal reservoirs [77, 162, 187]. When a Cartesian

mesh is used in modeling such a system, the heterogeneous nature of these reservoirs

often leads to features not aligned with the grid, resulting in mixed cells and/or tensor

permeabilities. Reservoir systems often use the harmonic mean of permeabilities to

account for the heterogeneity [14, 73].
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Solidification. Another noteworthy application of diffusion is in the study of solidifi-

cation for casting [129, 157, 192, 210], during which a molten liquid (typically metal)

freezes inside a mold. Interfacial heat transfer conditions are especially important

in many different types of casting, and interfacial heat transfer (along with phase

changes) is one of the most critical phenomena to produce accurate solidification

models [192]. Casting models are used in industry to predict and visualize the solidi-

fication structure, which aids in identifying defects, exploring effects of using different

processing temperatures or cooling times, and reducing trial stage of developing new

casts and methods.

Other applications. We list a few of the many other applications of multiphase

diffusion techniques. These techniques are relevant to electrostatics and potential

theory [56, 129, 211] since both have a similar mathematical framework as diffusion.

Bubble dynamics [129, 218] are multiphase problems with large density jumps, having

applications to chemical, electronic, petroleum, and power industries. Reference [50],

which examines mixing of multiphase flows, notes that chaotic mixing from turbu-

lent enhanced diffusion has applications to pollutant transport and weather patterns.

Magnetohydrodynamic turbulence simulations may involve diffusion [130, 155, 177],

as in Ramshaw and Chang [177] where they simulate multicomponent (different ions

and neutral particles) plasma diffusion at non-equilibrium temperatures. Biomedical

applications include the problem of blood flow through the moving boundaries of a

beating heart [124, 171, 172, 173]. Anisotropic diffusion is used to model light prop-

agation and distribution through human tissue [13, 15, 79, 84, 106, 108, 154, 208],

which has medical applications for skin diagnostics and laser therapy.

Transport. The diffusion approximation is a prevalent treatment of transport the-

ory. First derived for neutral particles in a homogeneous medium [15, 46, 60, 122],

diffusion transport was then applied to neutrons in heterogeneous domains [4, 5, 15,

19, 121, 120, 193]. Diffusion is frequently used to approximate radiative transfer,

as in References [113, 114, 161, 176, 181, 182, 184]. The diffusion approximation

of radiative transfer is part of a class of methods using a continuum model of the

radiation field to approximate the transport equation. Another class of methods is

more accurate and uses a discrete (particle-based) model to solve the full transport

equation.

There are many models to solve radiative transfer, each yielding different levels

of fidelity. Olson et al. [161] compares many of the continuum and deterministic
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methods, including diffusion, flux-limited diffusion (FLD), and spherical harmonics

(PN). FLD is one of the most common, yet least accurate, approximations used

[161]. The discrete-ordinate method is another important model for radiative transfer

[17, 102, 109, 131, 200]. One technique to model radiative transfer is to combine a

discrete transport method with the diffusion approximation, a continuum method,

such as in Pomraning and Foglesong [176]. This approach has the advantage of only

using the costly (transport) methods where they are needed while using inexpensive

(diffusion) methods where they are sufficiently accurate. This type of hybrid method

provides a balance between accuracy and computational cost. However, the coupling

of two methods generates other numerical issues, particularly in transitional regions.

For more details on many of these methods; see Section 2.3.3.

In the following section, Section 2.3, we discuss the phenomenon of radiation trans-

port and means to model it computationally with either stochastic or deterministic

approaches.

2.3 Overview of Radiative Transfer

Radiation transport is the movement of energy through (and interactions with) a

physical system by radiation [65]. The radiation field can be described as an ensemble

of photons, each with a specific frequency ν and traveling in a direction ~Ω. Photon-

photon interactions are negligible due to the small scattering cross-section of photons

relative to other particles of interest, such as ions and electrons. Photons propagating

through a medium can interact with that matter in three ways: emission, absorption,

and scattering. Photons can be absorbed by matter, removing that energy from

the radiation field while increasing the matter’s energy and temperature. Absorbed

radiation adds to the energy and momentum density of the medium [146]. Emission,

the reverse process of absorption, is the ejection of a photon from matter, decreasing

the internal energy of the matter while increasing the energy of the radiation field.

The amount of energy lost/gained by the radiation field is exactly equal to the energy

gained/lost by the matter. Scattering is another form of light-matter interaction.

In scattering, the light is not simply absorbed and then re-emitted, but rather it

effectively ‘collides’ with matter and ‘ricochets’ in another direction. A scattered

photon changes directions after interaction with a scattering center, and may have

its frequency modified [146]. When matter-matter interactions are also important

(as in hydrodynamics), they should also be considered, leading to a coupled physics

problem (i.e., radiation hydrodynamics).
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The remainder of this section is outlined as follows: in Section 2.3.1 we discuss

a stochastic method to simulate radiative transfer, then in Section 2.3.2 we describe

a deterministic model for radiation transport, and we conclude in Section 2.3.3 with

methods to approximate this model. Note that we use the term ‘material’ instead of

‘phase’ in the context of radiation transport to conform to the standard terminology.

2.3.1 Monte Carlo & Implicit Monte Carlo Methods

Monte Carlo (MC) methods are stochastic approaches for transport problems. The

random (probabilistic) nature of MC methods means that multiple runs with iden-

tical initial conditions and number of particles may give different results, although

results should converge with increasing numbers of particles. This stochastic nature

is in contrast to deterministic methods, which yield consistent and identical results

for a given initial condition. MC methods determine the average behavior of a sys-

tem by tracking many individual particles. Many applications of MC involve linear

phenomena, where the action of each particle is independent of other particles. MC

methods are computationally intensive, but the independent nature of each particle

allows solution via parallel computing. However, for radiation transport, the non-

linear nature of the problem, particularly how the absorption and emission from the

material affects subsequent absorption and emission events, couples the particles to

some extent.

In a MC method for radiative transfer, a probability (estimated from experiments)

is assigned for each possible photon event (emission, absorption, scattering), and a

pseudo-random number is used concomitantly with the probabilities to determine the

fate of a photon for each interaction with matter [42]. Each photon is followed sepa-

rately for its entire existence, from emission until it exits the domain or is absorbed.

Memory is reserved to describe the state of each photon, and this memory is freed

once a photon is removed from the system. The material energy increases for each

absorbed photon and decreases for each emitted photon.

An explicit time differencing scheme would use the material temperature at the

beginning of each time step to set the material state, which governs the probability of

emission and absorption events. In situations where the amount of energy exchanged

between the matter and radiation in a time step is enough to significantly change the

material temperature, instabilities may occur. However, an explicit time step in such

systems that prevents these (nonlinear) instabilities may be too small for practical use.

Using a larger time step would determine the emission probabilities at the beginning of

the time step, but this would prevent the matter from reradiating energy it absorbed
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during the time step [87]. One possible solution to this absorptions/re-emission issue

is to use implicit time dependence.

Implicit Monte Carlo (IMC) was the first successful method for simulating radia-

tive transfer and remains a prevalent method [83, 103, 217]. IMC treats the non-

linearities of transport equations using a linear approximation and small time steps

[103]. The IMC method is distinguished from standard MC methods in the manner

the time dependence is treated [42]. The implicit method estimates the material tem-

perature (using the material energy equation) at the end of the time step to compute

the material state and determine emission and absorption probabilities [87]. The end

result for the IMC method is that absorption and rapid re-emission are modeled as

isotropic ‘pseudo-scattering’ or as an effective scattering term [42, 87, 103].

When a sufficiently large number of particles is used, the IMC method offers ex-

cellent accuracy for transport simulations. The price for such accuracy is considerable

cost in terms of computer runtime and memory needs. The error for MC methods is

lowest where the particle concentration is highest, allowing one to raise the number

density in regions of interest to improve accuracy without significantly increasing the

total number of particles. The error for IMC simulations scales approximately with

α/
√
N , where α is a scaling constant that depends only on the implementation, and

N is the number of particles simulated [42, 103]. Since the error is roughly inversely

proportional to the square root of the number of particles, a factor of ten increase in

accuracy requires about one hundred times as many particles in the simulation. In

addition to statistical noise caused by limited numbers of particles, the IMC method

introduces truncation error for both the spatial and temporal discretization [103].

Despite these limitations, the accuracy of the IMC methods leads to their use in ra-

diative transfer as a benchmarking tool to gauge less accurate methods [103]. Also

note that there are other MC methods besides IMC to handle the nonlinear radiative

transfer problems [103], such as in Reference [63].

2.3.2 Gray Radiation Transport Equation

Deterministic models describe the radiation field via the density or intensity of

photons. The photon number density per unit volume per unit solid angle per unit

frequency is N(~x, ~Ω, ν, t), where ~x represents the spatial position, ~Ω is the direction of

travel, ν is the frequency of the photons, and t is the time. In the following discussion,

we assume the material is at rest. The number of photons inside a volume dV around

point ~x, traveling in direction dΩ around ~Ω, in a frequency range dν around ν, at
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time t [103], is given by

N(~x, ~Ω, ν, t)dV d~Ωdν. (2.6)

Since a photon energy is specified by E = hν and has a known velocity c, the radiation

field is usually expressed in terms of the radiation intensity,

I(~x, ~Ω, ν, t) = chνN(~x, ~Ω, ν, t), (2.7)

which has units of energy per unit area per unit time per unit frequency per unit solid

angle. The radiation intensity, I, gives the amount of photon energy in a volume at

a given time, where the volume is of a phase-space of three space variables (~x), three

momentum variables (a two component direction vector ~Ω and the frequency ν), as

well as time (t). Therefore, two photons at the same position and time, traveling

in different directions, occupy separate volumes in this phase-space, as would two

photons of different frequency traveling in the same direction at the same time.

The radiation intensity can be integrated over frequency to yield the gray radiation

intensity,

I(~x, ~Ω, t) =

∫ ∞
0

chνN(~x, ~Ω, ν, t)dν. (2.8)

However, treatments that are more accurate usually require a multigroup technique

to express the radiation intensity. In a multigroup method, instead of integrating

intensity over all frequencies, a collection of frequency-dependent intensities is cal-

culated by integrating over a frequency interval. This allows for a more physically

accurate description of radiation transport, including inelastic scattering and other

frequency-dependent processes. However, we use the gray approximation for the re-

mainder of this section for simplicity, and ‘radiation intensity’ refers only to the gray

radiation intensity.

We now examine the equations governing radiation transport (see References [49,

65, 146, 175] for more details). The radiation transport equation (RTE) accounts for

five ways that a photon can enter or exit a volume in the phase-space:

streaming: travels unimpeded into or out of the phase-space volume

absorption: captured by matter

emission: emitted from matter

out-scattering: scatters from inside the phase-space volume out of it

in-scattering: scatters from outside of the phase-space volume into it .
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The gray RTE, in an inertial (lab) frame, can be written as [42, 49, 65, 87, 103, 146]

1

c

∂I

∂t
+ ~Ω · ~∇I = −(σa + σs)I +

∫
4π

σs
4π
IdΩ + η +

Qr

4π
, (2.9)

where σa is the absorption opacity, σs is the scattering opacity, η is the emission term,

and Qr is a radiation source term. The units of each term in the equation are power

density over a sphere (energy per unit time per unit volume per unit solid angle).

The two terms on the LHS together describe the transport of radiation (i.e., the

streaming of photons), which is zero in the absence of any sources or sinks. The first

term on the RHS is a combination of absorption and out-scattering rates, which are

negative because both processes remove radiation from the volume. The second term

describes in-scattering, where the intensity is integrated over all angles to account for

in-scattering from any direction. The third term on the RHS is the emission rate,

which is positive because it adds radiation to the field. The last term is an arbitrary

radiation source.

Note that this is a classical description of the radiation field, and thus quantum

effects are disregarded [65]. The uncertainty principle is not considered, source terms

have no quantum degeneracy, and photons are treated as point particles. Polarization,

spin, interference, refraction, and diffraction are ignored. Even without the quantum

effects, the radiation intensity as described achieves accurate results in practice and

is a useful approximation for many systems.

The radiation field is coupled to the material through photon emission and ab-

sorption. There are many types of emission, such as bound-bound emission, which

occurs when an electron in an atom drops from a higher to a lower energetic quantum

state, releasing a photon equal to the energy loss. All matter, regardless of its com-

position or configuration, also emits photons because of thermal motions [219]; this

radiated energy depends only on temperature and is called thermal radiation. Black-

body radiation (also known as Planck’s law of radiation) or its frequency-integrated

form (the Stefan-Boltzmann law), Equation (2.10), describes the thermal emission of

a blackbody. A blackbody is an idealized form of matter, one that perfectly absorbs

and emits at all frequencies.

We can assume blackbody emission if the system is in local thermodynamic equi-

librium (LTE). The meaning of LTE, in this case, is that the material can be given

a temperature and treated as a blackbody source at this temperature, although the

radiation is not in equilibrium with the material [144] (if it were, the emission and

absorption terms would identically cancel). In other words, by LTE we mean that the
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material is in equilibrium with itself. The blackbody approximation must be made in

the rest frame of the fluid, where thermal emission is isotropic. However, we make a

stricter assumption of a stationary material. Integration of the Planck function over

all angles and frequencies gives [42, 144, 209],

B(T ) =

∫ ∞
0

∫
4π

B(T, ν ′)dν ′d~Ω′

=

∫ ∞
0

∫
4π

2hν ′3

c2

1

exp hν′

kT
− 1

dν ′d~Ω′

=
8π5k4

15h3c2
T 4 = acT 4, (2.10)

where the radiation constant (a) is

a =
8π5k4

15h3c3
, (2.11)

with units of energy per unit area per unit time per temperature to the fourth power.

B(T ) is the power radiated in all directions (energy per unit area per unit time); hence

the corresponding intensity is 1
4π
acT 4 (energy per unit area per unit time per unit

solid angle) [144]. The rate of absorption is the product of the blackbody intensity

with absorption opacity (σa); this is also the rate of emission due to the assumption

of LTE. Accordingly, for our system,

η = σa
1

4π
acT 4, (2.12)

and the gray RTE becomes

1

c

∂I

∂t
+ ~Ω · ~∇I = −(σa + σs)I +

∫
4π

σs
4π
IdΩ + σa

1

4π
acT 4 +

Qr

4π
. (2.13)

The absorption opacity combines many of the complications of the absorption of

light by matter, such as the material’s reflectivity, the material’s thickness versus the

frequency of light, etc.

The material energy equation, with assumptions of LTE of the matter with itself

and conservative or elastic scattering (where a photon can change direction but not

frequency), can be expressed as [87, 103, 144]

ρ(T )cv(T )
∂T

∂t
= σa

∫
4π

IdΩ− σaacT 4 +Qm, (2.14)
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where Qm is a material energy source (not necessarily related to the radiation source

Qr), ρ is the material density, and cv is the specific heat capacity of the material. Note

the units of Equation (2.14) are power density (energy per time per volume), and the

units of the heat capacity are energy per mass per temperature. Also, this equation

makes the assumption that the material energy (Um) depends on heat capacity and

temperature as

Um =

∫ T

0

ρ(T )cv(T )dT. (2.15)

The LHS of Equation (2.14) represents the total change of energy with time,

while the RHS gives the specific sources with which the energy can change. We are

assuming a stationary material, so radiation is the dominant form of energy exchange.

The first term on the RHS represents any radiation absorbed by the material, which

is integrated over all angles to account for absorption from any incoming direction.

The second term on the RHS is the energy emitted by the material due to blackbody

radiation; this term is negative because this energy is lost from the material. The

final term accounts for any other heat source or sink within the material.

Equations (2.13) and (2.14) are coupled equations that must be solved in order

to compute the radiation transport. Even when approximated, these are difficult

to solve due to the large phase-space (seven variables) as well as the nonlinearity.

Various methods exist to deal with nonlinearities [40, 41, 42, 85, 112, 113, 160, 184],

while References [49, 125, 146, 175] are good sources for more information on radiation

transport.

2.3.3 Approximations to the Radiative Transport Equation

We now describe specific methods of solving the RTE following a seminal review

article [42] as well as a comprehensive thesis [103]. The main methods explored are

discrete ordinates, spherical harmonics, diffusion, and flux-limited diffusion (FLD).

These methods are deterministic, in contrast to MC methods. The discretized RTE

forms a large system of linear equations that is often solved iteratively. Deterministic

methods converge more quickly than MC methods: a factor of four increase in simu-

lation size will decrease the error of a second-order deterministic method by a factor

of sixteen while error for MC methods will decrease by about a factor of two.

Solving the RTE is complicated because of the large number of dimensions in-

volved, and therefore various simplifications must be made. These simplifications

mostly involve the angular dependence of the radiation, either in the angular dis-

cretization or by taking angular moments. An angular moment of some arbitrary
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function f(~x, ~Ω, ν, t) is defined as follows:

0th moment:
∫

4π
fdΩ

1st moment:
∫

4π
~ΩfdΩ

2nd moment:
∫

4π
~Ω~ΩfdΩ ,

where ~Ω~Ω = ~Ω ⊗ ~Ω. The symbol ⊗ is the outer product (also known as the tensor

product and the dyadic product), which changes vectors into tensors, in contrast to

the inner product, which converts vectors into scalars. The number of the moment is

determined by how many factors of ~Ω occur in the integral. Note that infinitely many

moments can be taken, moments may be taken with respect to quantities other than

angle, and moments can be taken of entire equations as well as of a single function.

We next discuss four of the most common approximations to the RTE: discrete

ordinates, spherical harmonics, diffusion, and flux-limited diffusion. Each method

has a spatial discretization that works best with its approximation for the angular

description, while the temporal discretization is typically independent of the method

used [103].

2.3.3.1 Discrete Ordinates

One of the most frequently used discretization methods for the RTE is the discrete

ordinate method [103]. This method assumes that photons can travel along only a

finite set of directions [42]. Otherwise stated, the radiation intensity (I) is represented

by a sum of intensities (Im), corresponding to a discrete set of directions (~Ωm) [42],

I(~x, ~Ω, t) =
M∑
m=1

Im(~x, t)δ(~Ω− ~Ωm), (2.16)

where Im is the intensity I averaged over a definite range of dΩ about Ωm [146]. This

method is referred to as the SN method, where the subscript N is related to the

number of discrete directions (ordinates) used [42, 128]. A quadrature set, wm, is a

weighted set that is used to evaluate the integral of the intensity [103, 144],

∫
4π

I(~x, ~Ω′, t)dΩ′ ≈
M∑
m=1

wmIm, (2.17)

where
∑M

m=1 wm = 1.
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The RTE for the discrete ordinate method is written as,

1

c

∂Im
∂t

+ ~Ωm · ~∇Im = −(σa + σs)Im +
σs
4π

M∑
m=1

wmIm +
σaacT

4

4π
+
Qr

4π
. (2.18)

Note that each direction m is coupled to all the other directions through the scattering

term, and the directions are also coupled to each other though the material energy

equation via the temperature.

Increasing the number of ordinates increases the accuracy as well as the compu-

tational cost. Since a limited number of ordinates must be used in practice, some

areas of the domain do not receive the accurate amount of radiation that they would

with higher resolution. This leads to the defect called ray effects [39, 42, 128, 148],

which can cause large spatial oscillations in the energy density. One attempt to

counter ray effects is to introduce an extra scattering term to smooth the variation

[38, 42, 104, 179].

A highly scattering system can take a large number of iterations to converge.

This can be countered by multigrid methods, Krylov methods, or other forms of

acceleration [103]. However, the diffusion approximation may be more appropriate

for such a system, providing sufficient accuracy with reduced computational cost.

2.3.3.2 Spherical Harmonics

The spherical harmonic method takes a series of moments of the intensity to

approximate the angular dependence. In contrast to the discrete ordinate method of

discretizing the angular dependence into a finite number of directions, the spherical

harmonics method takes a finite number of angular moments of the RTE to build an

orthonormal basis for the solution. A solution is constructed as a linear combination

of basis functions. The standard notation for the spherical harmonics method is the

PN method.

The approximation of the radiation intensity is written in terms of spherical har-

monic functions, Yl,m, which are defined as

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (2.19)

where Pm
l (cos θ) are the Legendre polynomials and the angles θ and φ correspond to
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the direction of travel, ~Ω. The spherical harmonic functions form an orthonormal set,∫ 2π

0

∫ π

0

Yl,m(θ, φ)Y ∗l′,m′(θ, φ)dθdφ = δl,l′δm,m′ , (2.20)

where Y ∗l,m is the complex conjugate of Yl,m, and δi,j is the Kronecker delta function.

The approximated intensity can be written as [103, 145]

I(~x, ~Ω, t) ≈
N∑
l=0

l∑
m=−l

Yl,m(~Ω)

[∫
4π

Y ∗l,m(~Ω′)I(~x, ~Ω′, t)dΩ′
]
, (2.21)

where the expression is only approximate because a finite number (N) of moments

are used, but converges to the exact value when N →∞. The closure approximation

to Equation (2.21) is such that the moments are zero for any l ≥ N [42, 145], i.e.,∫
4π

Y ∗l,m(~Ω′)I(~x, ~Ω′, t)dΩ′ = 0 l ≥ N. (2.22)

The spherical harmonic method treats the radiation as waves and suffers from

wave effects [42, 103, 144, 145], which are analogous to the ray effects from the dis-

crete ordinate method’s treatment of the radiation as rays. In the spherical harmonic

method, particles travel as waves with finite speeds throughout the system. Each

moment has a corresponding eigenvalue and wave speed; the more moments used,

the more unique speeds (and corresponding wave patterns) are available for wave

propagation, increasing the accuracy. The wave nature of the solutions may lead to

negative solutions in the free-streaming limit [42, 145] or in the presence of steep gra-

dients [42, 103, 144, 145]. Negative values for the energy density can lead to negative

material temperatures, resulting in a discrepancy between the fundamental physics

and the simulation. Possible solutions to this problem consider using a nonlinear

closure equation [103, 145].

The P1 approximation is closely related to the diffusion approximation, as both

use the zeroth and first angular moments. A detailed explanation of this is given in

the next section.

2.3.3.3 Diffusion

Governing equation. The diffusion equation, arguably the most important approx-

imation to the RTE [49], is much easier to solve than higher-order methods. Although

it is a crude, low-order approximation in both angle and frequency, it is widely used
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because it yields a simple form for the radiative flux [175]. The diffusion approxima-

tion is achieved by taking the zeroth and first angular moments of the RTE, similar

to the P1 method. We define the following variables for each moment of the radiation

intensity:

E =
1

c

∫
4π

IdΩ (2.23a)

~F =

∫
4π

~ΩIdΩ (2.23b)

P =
1

c

∫
4π

~Ω~ΩIdΩ, (2.23c)

where E is the scalar intensity or energy density, ~F is the radiative flux, and P is

the radiative pressure tensor. The second moment is included since it is needed for

closure.

By taking the zeroth angular moment of the RTE,

1

c

∂I

∂t
+ ~Ω · ~∇I = −(σa + σs)I +

σs
4π
cE +

σaacT
4

4π
+
Qr

4π
, (2.24)

we obtain
∂E

∂t
+ ~∇ · ~F = −σacE + σaacT

4 +Qr, (2.25)

where the scattering terms (σs) have canceled. The units of each term of this equation

are of power density (energy per unit time per unit volume). Before taking the first

moment the RTE, note that the first moment of a constant (isotropic term) is zero,∫
4π

~ΩdΩ =

∫ 2π

0

∫ π

0

~Ω sin(θ)dθdφ (2.26a)

= ẑ

∫ 2π

0

∫ π

0

cos(θ) sin(θ)dθdφ (2.26b)

= 2πẑ

∫ 1

−1

µdµ (2.26c)

= 0ẑ, (2.26d)

where for simplicity the propagation direction is aligned with the z-axis [65], although

any direction would yield the same result. The first moment of Equation (2.24) is

1

c

∂ ~F

∂t
+ c~∇ ·P = −(σa + σs)~F , (2.27)
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where the last three terms of Equation (2.24) (scattering, emission, and source) vanish

because they are isotropic. However, the isotropy of these terms is an assumption:

scattering does not have to isotropic, and blackbody emission term is only isotropic

in a frame co-moving with the fluid.

Note how both the zeroth and first moment equations, Equations (2.25) and (2.27),

have a dependence on the first and second moment term, ~F and P, respectively. This

coupling with the next highest moment introduces a closure problem [146]. Issues

from the closure problem occur in Equation (2.27), where we do not have an equation

for the pressure tensor (P). An equation for P could be obtained by taking another

moment of the RTE, but then an equation for the third moment would be needed.

This process needs to be closed (given an additional relation) in order to avoid the

inconvenience of taking infinite moments.

Closing the angular moments. We now describe the closure for the P1 method,

from which the diffusion approximation can be obtained. Both of these methods

assume the radiation intensity is a linear function of angle [42, 103]. This assumption

is the spherical harmonic expansion of Equation (2.21) of lowest anisotropic order

(N = 1), giving an isotropic term and a single angular term,

I ≈ c

4π
E +

3

4π
~Ω · ~F . (2.28)

Using the approximation in Equation (2.28), we then take the second moment of the

radiation intensity,

P =
1

c

∫
4π

~Ω~ΩIdΩ (2.29a)

≈
∫

4π

~Ω~Ω

[
1

4π
E +

1

c

3

4π
~Ω · ~F

]
dΩ (2.29b)

≈ E

4π

∫
4π

~Ω~ΩdΩ + 0 (2.29c)

≈ E

3
I, (2.29d)

where I is the identity matrix and the flux term drops by integration [42, 65, 103].
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Evaluating the following integral elucidates the last step,∫
4π

~Ω~ΩdΩ =

∫ 2π

0

∫ π

0

~Ω~Ω sin(θ)dθdφ

= 2π

∫ π

0

cos2(θ) sin(θ)dθ

= 2π

∫ 1

−1

µ2dµ

=
4π

3
,

where we have assumed that ~Ω is aligned to the z-axis [65]. Using the fact that the

flux can pass through the angular integral, the same process for the ~Ω · ~F term leads

to an integral of µ3, which is zero.

Using Equation (2.29d) with the first moment of the RTE, Equation (2.27), we

obtain
1

c

∂ ~F

∂t
+
c

3
~∇E + (σa + σs)~F = 0, (2.30)

where ~∇ · (IE) = ~∇E. Equations (2.25) and (2.30) provides an expression for ~F and

E without introducing another term, giving two equations and two unknowns. This

completes the closure equation for the P1 approximation.

The diffusion approximation proceeds from Equation (2.30) with one additional

assumption: the time derivative term can be neglected. This assumption is called the

‘quasi-static’ approximation [42, 67, 103],

1

c2

∂ ~F

∂t
� 1

3
~∇E, (2.31)

allowing the time derivative term to be dropped from Equation (2.30). Mihalas

and Mihalas [146] justify dropping the time derivative in the limit of optically thick

systems because the time needed for photons to random walk a significant distance

is long, resulting in a small change of flux with time, i.e., [1
c
∂ ~F
∂t

]/[(σa + σs)~F ] ≈ 10−18

for typical values. This essentially is a comparison between the mean free path and

the characteristic length of the flux [87].

Upon dropping the time derivative of the flux from Equation (2.30), a simple

relation between the flux and the energy density is achieved,

c

3
~∇E + (σa + σs)~F = 0. (2.32)
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Solving for the flux and introducing a total opacity, σt = σa + σs, we have

~F = − c

3σt
~∇E, (2.33)

which matches the form of Fick’s first law, Equation (2.1a). Combining this result

with the zeroth moment of the RTE, Equation (2.25), we arrive at the diffusion

equation for radiative transfer,

∂E

∂t
+ ~∇ · ~F = σac(aT

4 − E) +Qr, (2.34)

where ~F = −cD~∇E and D = (3σt)
−1. Note that Equation (2.34) is simply Fick’s

second law, Equation (2.1b), with σa(acT
4−E)+Qr as a source term. Equation (2.14),

the material energy equation, is rewritten using the scalar energy density as

ρcv
∂T

∂t
= σac(E − aT 4) +Qm. (2.35)

Equation (2.34) and Equation (2.35) form the system of equations for the diffusion

approximation of radiative transfer. Ignoring potential source effects (Qm and Qr),

the energy gained/lost by the radiation field is equal to the energy lost/gained from

the material via emission/absorption.

Validity and applicability. The simple form of the flux given by Equation (2.33)

is one of the most appealing features of the diffusion approximation, as it reduces

many of the complications in finding a solution. However, the approximation (Equa-

tion (2.31)) of dropping the time dependent term changes the class of the differential

equation from hyperbolic to parabolic [42]. A hyperbolic system, such as the trans-

port equation, restricts particles or energy to travel at finite speeds. However, a

parabolic system, such as the diffusion equation, allows particles or energy to propa-

gate at infinite speeds. A change in one part of the domain instantly affects the entire

domain, though this effect is often so small that it is computationally negligible. The

infinite propagation speed becomes a problem when the diffusion approximation is

applied outside of its applicability range.

The diffusion approximation is only valid in an optically thick system. Three

properties characterize a system as being optically thick or optically thin: diffusivity,

opacity, and mean free path (MFP). These terms are related by

D =
1

3σt
= λMFP . (2.36)
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The MFP is the average distance a photon travels before an interaction event (i.e.,

scattering or emission-absorption) with matter. Systems with a small MFP and large

opacities are called optically thick, corresponding to a system with many scattering

and absorption/emission events compared to a characteristic length. Such a system

is accurately modeled by a random walk and, thus, diffusion. A system with a large

MFP and small opacity is optically thin, in which a photon travels relatively large

distances between scattering and absorption events. Diffusion is a poor model for

such systems because it allows energy to propagate faster than light speed.

The Cauchy-Schwarz inequality is applied to the radiation flux to determine an

equation for when the diffusion approximation is valid physically,

‖~F‖ =

∥∥∥∥∫
4π

~ΩIdΩ

∥∥∥∥ (2.37a)

≤
∫

4π

‖~Ω‖‖I‖dΩ (2.37b)

≤
∫

4π

IdΩ (2.37c)

≤ cE, (2.37d)

since ~Ω in a unit vector and the radiation intensity is non-negative [103]. This limit

is physically stating that the energy transported by the radiation flux cannot ex-

ceed the total amount of energy present. Inserting the diffusion flux approximation,

Equation (2.33), into Equation (2.37d) gives

‖~F‖ ≤ cE

‖−cD~∇E‖ ≤ cE

D ≤ E

‖~∇E‖
, (2.38)

where both D and E are always positive. In an optically thick region, D → 0,

easily satisfying Equation (2.38) unless there are large jumps in the energy density

(i.e., ‖~∇E‖ is large). In an optically thin region, however, D → ∞, which means

the RHS has to be even larger, which is difficult to satisfy. Therefore, the diffusion

approximation is valid in optically thick regions with relatively smooth variations in

energy density.

This completes the description of the diffusion approximation, which is accurate

when Equation (2.38) is satisfied. However, this inequality restricts to the systems to

which diffusion can be applied. The next section looks at expanding the applicability
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range of diffusion to optically thin systems by altering the flux to enforce the inequality

of Equation (2.38).

2.3.3.4 Flux-Limited Diffusion

The major shortfall of the diffusion approximation, namely the possibility of en-

ergy propagation faster than light speed, is due to discarding the ∂ ~F/∂t term from

Equation (2.30). Flux-limited diffusion (FLD) is an ad hoc method to artificially re-

strict the flux. The diffusivity, which comes from the assumption of Equation (2.31),

is given as

D =
1

3σt
. (2.39)

The flux and limit are summarized below:

~F = −cD~∇E (2.40a)

D ≤ E

‖~∇E‖
. (2.40b)

In the limit of the optically thick case, Equation (2.39) is appropriate. However,

in the optically thin case, Equation (2.40b) must be enforced to prevent unphysical

behavior, such as transporting energy faster than the speed of light.

Many different flux limiters are used in practice. The equations for the flux limiters

may be specified in terms of the following dimensionless parameter,

R =
1

σt

‖~∇E‖
E

, (2.41)

which is known as the radiation Knudsen number [49, 127, 205], which is a ratio of

the MFP (recall opacity is the inverse of MFP) and a characteristic length of the

system (in this case, E/‖~∇E‖). Some exemplar flux limiters are

D(R) =



(3 +R)−1 Sum [49, 146, 161]

(max(3, R))−1 Max [49, 161]

(3n +Rn)−
1
n Larsen [161]

R−1 (coth(R)−R−1) Levermore-Pomraning [42, 49, 126, 161]

(2.42)

where the first two are chosen to have the correct limits for small and large R, and have
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been shown to be zeroth-order accurate, while the modification by Larsen increases

accuracy to first-order [161]. The Levermore-Pomraning limiter comes from solving

the Chapman-Enskog problem [126], but works well beyond the original application

[161].

FLD has the disadvantage of making D nonlinear in E [49, 161], and the accuracy

of FLD must be examined for individual applications. Olson et al. [161] show that

Larsen’s n = 2 limiter is the best choice for FLD, but they determine that the

P1
3

method (a combination of the P1 spherical harmonics method and diffusion) is

superior to any FLD theories in geneal [161]. Despite its limitations, FLD yields more

qualitatively physical results in a wider range of problems than diffusion and, hence,

is widely used for radiative transfer.

This concludes the review of radiation transport. We now shift the focus from

background and introductory material to the phase-interface diffusion problem.

2.4 Highly Discontinuous Material Properties

This section focuses on the primary problem of this dissertation: discontinuous

material interfaces. Discontinuous interfaces commonly occur in multiphase diffu-

sion (e.g., heat conduction between two phase) when two immiscible phases or fluids

border each other with diffusivities that vary by several orders of magnitude. The

discontinuous change in phase coefficients is not modeled well by many schemes that

expect constant or smoothly varying values. While some work considers diffusivity

ratios around two or three as a discontinuous phase, we are more interested in ratios

of many orders of magnitude. When the diffusivity ratios are on orders of magnitude,

the problems are referred to as highly discontinuous or strongly discontinuous. The

ratio of the diffusivity for each phase is also referred to as the jump strength. In these

multiphase cases, the transition regions between phases have mixed cells, which are

grid cells containing more than one phase coefficient. Mixed cells are a large source

of inaccuracy in such systems. This thesis explores the treatment of mixed cells in

highly discontinuous cases.

We first describe the motivating problem in Section 2.4.1: energy transfer in

a radiative, multiphase system. We describe our primary problem of interest in

Section 2.4.2, where we show how the radiation transfer can be computationally made

to look like a heat conduction problem. We end with a detailed review of previous

work related to discontinuous material interfaces and mixed cells in Section 2.4.3.

37



Although most of the cited work only considers pure cells, it is still relevant to the

mixed-cell problem. Note that the terms fluid, material, and phase may be used

interchangeably; the method being developed can be applied to either fluids or solids

with discontinuities in the diffusivity.

2.4.1 Motivating Problem

Radiative transfer problems in multiphase systems are frequently modeled by dif-

fusion. Numerical issues occur when an opaque (optically thick) phase is bordered by

a vitreous or translucent (optically thin) phase. These systems have highly discon-

tinuous diffusivities. The ratio between the opaque and pellucid diffusivities can be

extremely high, on the order of 1010 [181]. Such a scenario makes the computations

very stiff, which can lead to sluggish or failed convergence [103, 181, 218].

A multi-fluid problem can be miscible (fluids mix) or immiscible (fluids segregate).

We focus on the immiscible case, where the fluids maintain a definite boundary. The

immiscible treatment of hydrodynamics can be considered a sharp-interface model. A

Volume of Fluid (VoF) method only maintains the percentage of each fluid in a cell,

discarding the exact interface position, smearing the interface across the entire cell.

Such a method can still be considered as having a sharp interface if the interfaces are

reconstructed rather than homogenizing (mixing or averaging) the cell.

At an immiscible interface between phases, both the energy and flux must be

continuous. Consider 1D heat conduction where T is the temperature, ~F is the flux,

and an interface located at x = a. The continuity equations for this 1D case are

b|T |c = T (a+)− T (a−) = 0 (2.43a)

b|F |c = F (a+)− F (a−) = 0, (2.43b)

where the notation a− means x approaches a from smaller values, and a+ means

x approaches a from larger values. The notation b|·|c means ‘jump’, which is the

difference of the quantity in the brackets on either side of an interface, as in Refer-

ences [129, 139]. In 2D, we use similar notation where ~a− and ~a+ means ‘approaching

interface from’ below or above the interface. The continuity of flux is expressed in

terms of F⊥, where

F⊥ = ~F · n̂ (2.44)

and n̂ is the normal to the interface, pointing from above to below. Introducing the

point of interest on an interface as ~a = (ax, ay), the 2D continuity equations are then
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b|T |c = T (~a+)− T (~a−) = 0 (2.45a)

b|F |c = F⊥(~a+)− F⊥(~a−) = 0. (2.45b)

Note that there is no constraint on the tangential flux (F‖). This is because flux

tangent or parallel to an interface is just an internal flux; the heat is only moving

within one phase with no energy exchanged between phases.

In the Section 2.3.3.3, we found the definition of flux, the diffusion approximation

of the RTE, and the material energy equation, which we re-state below

~F = −D~∇E = − 1

3(σa + σs)
~∇E (2.46a)

1

c

∂E

∂t
+ ~∇ · ~F = σa(acT

4 − E) +Qr (2.46b)

ρcv
∂T

∂t
= σa(E − acT 4) +Qm. (2.46c)

FLD could easily be reintroduced to the model, but we are assuming that pure dif-

fusion is adequate for the problems we are considering. Equation (2.46) is the set

of equations that must be solved, where Equation (2.46b) is the equation for the

radiation field, and Equation (2.46c) is the equation for the material. The heat ca-

pacity (cv) and density (ρ) depend on the specific material and, in real materials, are

temperature dependent functions (cv = cv(T ), ρ = ρ(T )), and may need to be inside

the time derivative ( ∂
∂t

(ρ(T )cv(T )T )). Several assumptions are already inherent to

Equation (2.46): the radiation intensity is linear in angle, the emission and absorp-

tion are isotropic, the material is in local thermodynamic equilibrium (LTE), and the

flux varies much more slowly in time than the energy changes in space. Moreover, we

are no longer solving for the radiation intensity, I, but its zeroth moment, the scalar

intensity, E.

Note that by LTE, we mean that the material is in thermal equilibrium with itself,

making a Planckian emission term physically appropriate. If the matter and radiation

were in LTE with each other, then the emission would exactly cancel absorption,

making the RHS of both Equation (2.46b) and Equation (2.46c) identically zero.

The CRASH program motivates this work. Approximately half of the effort in the

CRASH program is experimental. In the quintessential experiment of this program

[201, 209], a thin beryllium wafer is accelerated by a strong laser impulse in order

to drive a shock down a xenon gas-filled tube. The process has enough energy to
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enter the radiative regime, where the shock is radiating energy upstream. Among

many diagnostics, radiographs (an image produced from x-rays) are used to image

the shock. Beryllium is x-ray transparent, which partially explains its use for the

drive disk. This experiment involves hydrodynamics of up to five material species

(phases), coupled with thermal and radiation transport.

The other half of the CRASH program is the development of a code to simulate

the experiment. The CRASH code solves for either a gray radiation intensity or a set

of multi-group intensities. Scattering is ignored. Three characteristic temperatures

exist: ion temperature, electron temperature, and effective radiation temperature1.

This follows from the LTE assumption: ions are in LTE with themselves; electrons

are in LTE with themselves; and radiation is not in LTE with the ions, electrons, or,

in general, with itself. Opacity is usually obtained by a look-up table, but the option

is present for an opacity solver. The Rosseland mean opacity is used for the radiation

diffusion coefficient, while the Planck mean opacity is used for emission and absorption

[209]. The software solves the problem in three steps using operator-splitting, a com-

putational technique to treat different types of physics processes separately (at least

one in an implicit fashion) [49]. The first two steps are an explicit shock-capturing hy-

drodynamics solver and a linear advection of the radiation. The third step implicitly

solves the stiff problem of radiation diffusion, heat conduction, and energy exchange.

It is this third step on which we focus: energy exchanges between materials via dif-

fusion/heat conduction. Note that CRASH solves radiation-hydrodynamics, where

the fluid equations are coupled to the radiation transport. What we have presented

in Equation (2.46) is a stationary version of this system of equations, where all the

velocity-dependent terms are neglected.

2.4.2 A Simplified Problem

This section reduces some of the intricacies of the motivating problem in order to

focus on improving the treatment of mixed cells. The three primary simplifications

are to treat the phases as stationary; assume constant opacity; and ignore scattering,

absorption, and emission. This enables us to examine the treatment of interfaces

while eliminating many complications. The results of this work on the simplified

problem are still directly applicable to more complex cases.

The first simplification we make is the assumption that phase boundaries are

fixed, effectively freezing any hydrodynamics. The CRASH code solves the radia-

1The energy distribution of the radiation field may be approximated by an effective radiation
temperature.
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tion diffusion, heat conduction, and energy exchange problem separately from the

hydrodynamics and advection problems [209]. Within a single time-step, the fluid

boundaries can be considered fixed with initial temperatures for each phase. The

phases then exchange energy based on the surface area of the interface, the length

of the time-step, the temperature difference, each phase’s thermal diffusivity and ra-

diative opacity, and of course any photon emission and absorption. Since our goal

is to examine treatment of mixed cells in diffusion problems, we can make the same

simplification of treating the energy exchange problem separately. We can also ignore

all hydrodynamic effects by assuming the phase boundaries are fixed. (The CRASH

code does not make this simplification; it keeps velocity terms up to some order.)

While this stationary assumption loses much of the dynamics of the system, these

dynamics are unrelated to the energy exchange problem, at least for a single time

step.

The second simplification we make is to assume a constant opacity for each phase,

meaning the opacity for a phase does not vary with space, time, or temperature. The

diffusivity of a phase depends on the opacity, and opacity of a real material can be an

acutely complicated term. Let us consider the system in Equation (2.46), the material

energy and diffusion approximation of the RTE. Opacity (σt) is inversely proportional

to the MFP and the diffusivity (D = (3σt)
−1). From Equation (2.46), it is clear that

emission is proportional to T 4. The gray absorption opacity is frequently modeled as

σ ∝ T−3 [103, 153, 181, 182, 184, 217]. This relationship is highly nonlinear and shows

why radiative transfer problems are so stiff. There are two kinds of opacities in the

system in Equation (2.46): absorption opacity (σa) and scattering opacity (σs). These

effects can be combined to form a total opacity, σt = σa + σs, although as noted by

Brunner [42], this combination is only true for energy dependent equations, and may

be untrue once averaged or discretized. In some systems scattering is a small effect

and can be neglected [103], so σt ≈ σa (CRASH makes this assumption). For realistic

materials, opacity depends on several factors, such as the density, temperature, and/or

EoS. Also, opacity is a frequency-dependent variable. A lucid example of frequency

dependence is that a person is opaque in visible light but transparent for x-rays,

while bones are opaque for both frequency regimes. The computation of accurate

opacities is challenging due to their highly nonlinear nature, their dependence on

several material characteristics, and that they combine several possible interactions

(scatter; absorb; bound-bound, bound-free, and free-free transitions). Calculations

often use a mean opacity, one that averages all of the possible effects to give a single

value. In practice, opacities can be obtained via a look-up table — often the SESAME
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opacity library from Los Alamos National Laboratories. The two most common types

of averaged opacities used are the Planck mean opacity (σP ) and the Rosseland mean

opacity (σR), defined as

σP ≡
1

B(T )

∫ ∞
0

σνBνdν (2.47a)

σR ≡
∫∞

0
∂Bν
∂T
dν∫∞

0
1
σν

∂Bν
∂T
dν
, (2.47b)

where B(T ) and Bν(T ) is the frequency averaged and frequency dependent Planck

function [65]. It is not our goal to improve the computation of opacities or to explore

when to use σR instead of σP . Rather, our goal is examine the treatment of opacities

on an interface. A mixed cell contains more than one phase, and our interest is to

determine how best to model this as multiple pure phases and not some intermediate

mixture. Therefore, it is logical to use a constant opacity for each material, avoiding

a convolution of the complicating effects of a variable (and more physical) opacity.

The third and most drastic simplification we make is to ignore absorption, emis-

sion, and scattering, changing our problem to one of pure diffusion. By ignoring scat-

tering, we follow the CRASH code. Comparing Fick’s second law, Equation (2.1b),

with the diffusion equation for the radiation field, Equation (2.46b), we see that the

only difference is presence of the absorption and emission terms (σa[acT
4 − E]) in

Equation (2.46b) that are not present in Fick’s second law. If these terms where to

cancel, the remaining equation would be

1

c

∂E

∂t
+ ~∇ · ~F = Q.

Physically, the assumption that σa[acT
4−E] = 0 means that the radiation and mate-

rial are in LTE, and that the temperature of the radiation is equal to the temperature

of the material. As mentioned in Section 2.1.1, Fick’s laws of diffusion mirror Fourier’s

laws for heat conduction. Therefore, with our assumptions, we can choose our system

to be one of heat conduction,

ρcv
∂T

∂t
= −~∇ · ~F +Q, (2.48)

where
~F = −D~∇T. (2.49)

Thus, the problem we are solving is heat conduction for a discontinuous media. For
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this problem, we assume perfect thermal contact, which is akin to lacking thermal

contact resistance. While this is true for fluids, this is an idealization for solid materi-

als, which have voids or surface roughness. These voids (or roughness) create thermal

contact resistance, which results in a temperature jump at an interface [107, 192].

However, inclusion of thermal contact resistance (b|T |c 6= 0) would not change the

techniques other than adding a constant to the continuity equation.

Although some physics in the motivating problem has been lost, we gain the abil-

ity to garner deeper insight into the interface problem. Our assumption of constant

opacity allows the examination of mixed cells to be straightforward: a mixed cell con-

tains diffusivities D1 = 10n and D2 = 10−n (at various ratios), which is much more

tractable for analysis than diffusivities based on physical opacity values that are dy-

namic functions of the system. We also eliminate hydrodynamics from our problem,

which is justified because the hydrodynamics are frequently treated separately from

radiation transport in practice, such as with the CRASH program. The problem we

solve is no longer that of radiation diffusion, but rather heat conduction. This is a

non-issue: since we wish to examine the treatment of mixed cells on a sharp inter-

face, the results of the simplified problem will be directly transferrable to the more

complicated radiative transfer case (as well as any mixed cell occurrence). Addition-

ally, since heat conduction is, mathematically, still diffusion, the simplified problem

uses the same numerical schemes as the motivating one. Consequently, rather than

just simplifying the physics, we are transitioning the problem to a higher level of

abstraction, increasing the breadth and scope of this work.

2.4.3 Previous Work

Much of the previous work on discontinuous coefficients does not involve mixed

cells, but rather, concentrates on methods that handle the stiff, nonlinear problems

of adjacent pure cells, with large jumps in coefficients. Although this thesis is focused

on treating mixed cells, discontinuous pure cells are apropos to mixed-cell problems

because the techniques involved are often similar.

Section 2.4.3.1: Solving the nonlinearities. The first techniques reviewed

solve the nonlinearities of the stiff system. By treating nonlinearities, highly discontin-

uous coefficients do not lead to errors or instabilities because the method specifically

converges nonlinear effects. This is related to the mixed-cell problem because cases

where mixed-cell error is a dominant effect are typically also highly nonlinear, such

as in radiative transfer.
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Section 2.4.3.2: Fictitious points and expanding the stencil. Handling

strong phase jumps is often done by expanding a 2D stencil from five to nine points

while introducing fictitious unknowns on the faces of the cells. A nine-point stencil

captures effects that are not aligned with the grid better than a five-point stencil. A

fictitious point is an additional unknown that is added to the stencil. However, instead

of solving for this point computationally, the value can be determined by algebra,

physics, or some other means. The value of this fictitious point is then substituted

into the equations. Since the unknown is determined before the calculations, it serves

as an intermediate step, which is why it is called a fictitious unknown rather than

simply an additional unknown. Most mixed-cell techniques also use an expanded

stencil and fictitious unknowns.

Section 2.4.3.3: Mimetic finite difference methods. Another growing ap-

proach is that of mimetic finite difference methods (MFD), where discretizations are

approached in a nonstandard way which yields superior results to standard finite

difference methods (FDM). A mimetic method typically gives more accurate results,

including in interfacial regions. Another benefit of a mimetic method is that the

computational framework easily handles strongly discontinuous diffusivities. This

section goes into detail of the origin and development of MFD because one of the

main mixed-cell approaches used in this thesis is based on a mimetic method (see

Chapter III).

Section 2.4.3.4: Previous mixed cell work. Finally, there are some tech-

niques for the highly discontinuous problem that address mixed cells directly. This

section is related to mixed-cell work because it discusses competing or alternative

techniques. We do not discuss the most common solution to the mixed-cell problem

(to avoid them by using body-fitted grids), as this is akin to the trivial solution of

a differential equation. We mention only a few of the many cell-cutting methods

(where the mixed cell is partitioned into smaller pure cells), which are the next most

common approach and very related to body-fitted grids. A few mimetic approaches

are mentioned as well as a family of methods based on emending the Taylor expansion

from which FDM are derived. The largest family of the Taylor expansion techniques

is related to the immersed interface methods.

2.4.3.1 Solving the Nonlinearities

When using the diffusion approximation of radiation transport and making the

assumption that the matter and radiation are in LTE, then the radiation energy
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density assumes a blackbody distribution (E ∝ T 4), giving a diffusion equation

∂T

∂t
= ~∇ · (D(T )~∇T 4), (2.50)

where the standard assumption is that opacity depends inversely on T 3 (D ∝ σ−1 ∝
T 3). Equation (2.50) is a highly nonlinear and stiff system. The diffusivity at phase

boundaries in such a system can have ratios as large as 1010 [181]. Although the

problem is highly nonlinear, the standard solution methods integrate the governing

equations with a linearized differential equation, with no attempt to converge the

nonlinearities [29, 182, 184]. Such an approach may lead to instabilities. Furthermore,

flux limiters are usually used in a linearized fashion (using explicit or time-lagged

values to evaluate the limiter) [29, 184, 202].

Olson, Rider, and Knoll (ORK) have several related works that address multi-

phase radiation transport for problems with highly discontinuous diffusivities using

FLD [112, 113, 114, 181, 182, 184]. ORK solve the nonlinear equations using a

highly efficient multigrid preconditioned Newton-Krylov method. They do not con-

sider mixed cells, but rather consider the problem of highly discontinuous phases

between pure cells. ORK consider both the equilibrium [184] and non-equilibrium

[114] case between the material temperature and the radiation energy. They solve

Equation (2.50) by implementing exceptionally efficient solvers.

A Newton-Krylov method contains an outer loop to solve the nonlinearities (via

Newton’s method) and an inner loop that solves the linear equations (via a Krylov

method). The algorithm works as follows: The nonlinear term is estimated, and the

Krylov system is solved using that value. The result is fed back into the Newton solver

to better estimate the nonlinear term, at which point the new nonlinear estimate is

used to solve the Krylov system again. This process repeats until a criterion is met

that says the nonlinear value is converged.

ORK use the highly efficient Newton-Krylov method to solve this nonlinear heat

conduction problem, ensuring that the nonlinearities are converged. Given a good

initial guess, Newton’s method deals well with nonlinearities. Krylov methods are

exceptionally efficient at solving linear algebra equations. The particular Krylov

method used is GMRES, which, although highly effective, has a disadvantage of

increased storage cost of vectors and work requirements as the number of iterations

grows. The combination of these two methods, Newton and Krylov, can yield accurate

solutions with exceptional efficiency. However, these methods can require too many

iterations or fail to converge without a good initial guess or effective preconditioner.
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For this reason, ORK use a multigrid method for a preconditioner based on a Picard-

type linearization of the governing equations.

Multigrid, first conceptualized in the 1960s [80, 81], was proposed and systemized

by Brandt in the 1970s [31, 32]. Typically, non-multigrid schemes quickly converge

high frequency errors but are slow to converge low frequency errors, where the fre-

quency is related to the grid spacing. A multigrid method accelerates convergence by

solving the problem on multiple levels, converging high frequency errors on fine grids

and low frequency errors on coarse grids. The multigrid method can solve different

types of equations and is considered among the most efficient iterative methods [93].

ORK utilize multigrid as a preconditioner because its efficiency stays relatively

constant as the problem size grows, and it is more efficient per iteration than other typ-

ical preconditioners [181]. An advantage of Newton-Krylov with Picard-type multi-

grid preconditioning is that the Jacobian matrix is never formed — it shares this

characteristic with some methods, but not others [57, 58, 184]. ORK also apply their

techniques to other systems, such as the Navier-Stokes equations [112]. Applications

of this work include astrophysical phenomena, inertially confined fusion, combustion,

and hypersonic flow [184].

In the stiff, nonlinear, highly discontinuous diffusion problem, converging the non-

linearities improves accuracy. A method that does not converge the nonlinearities is

forced to either use very small time steps or to give deficient results. While converg-

ing the nonlinearities as done by ORK is very efficient, it does not offer much insight

in how to deal with mixed cells. However, any model that does treat mixed cells

for radiative transfer (or other nonlinear) problems should consider ORK’s numerical

scheme in conjunction with the mixed-cell model.

2.4.3.2 Fictitious Points & Expanding the Stencil

A common theme in 2D work that deals with discontinuities in phase properties is

the transition from the standard five-point stencil (center cell plus the cells west, east,

north, and south) to the nine-point stencil (standard stencil plus the cells northwest,

northeast, southeast, and southwest) [4, 199, 56, 75] as well as using a full tensor

for the diffusivity. Alcouffe et al. [4] were one of the earliest to examine strongly

discontinuous coefficients, originally motivated by neutron diffusion. They noted that

existing methods could handle jumps with ratios under ten, while jumps greater than

an order of magnitude had poor convergence. In their approach, the phase boundary

lies on grid lines, leaving only pure cells. Using multigrid, Alcouffe et al. found that

expanding to a nine-point operator from a five-point operator gave better results.
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Shubin et al. [199] consider the problem for displacement fluid flow for oil recovery

processes, calling the problem adverse mobility ratio. Since their application is fluid

displacement, the phase coefficient is mobility rather than diffusivity, and adverse

mobility ratio is another way to say highly discontinuous coefficients. They present

an example where two finite-difference grids at 45◦ angles yield drastically different

results, when they should be identical. Referring to this phenomenon as grid orienta-

tion effects, Shubin et al. note that grid refinement actually exacerbates this problem.

They reduce the grid orientation effect by employing a nine-point stencil, using a full

tensor diffusion coefficient, and introducing fictitious corner and face-centered values

by interpolation. The physical diffusion term is replaced with a rotationally invari-

ant numerical diffusion term to reduce spurious oscillations, with a similar term for

artificial dispersion. Mixed cells can be considered a type of grid orientation effect

because mixed cells occur when interfaces not aligned with a grid. Consequently, the

work of Shubin et al. is related to mixed cells.

Crumpton et al. [56] consider the strongly-varying-coefficients problem with ficti-

tious face-centered unknowns and interpolated vertex values. The method uses finite

volume methods (FVM) with a full tensor diffusivity and a multigrid solver for so-

lutions of elliptic diffusion equations. The fictitious points enable Crumpton et al.

to partition each element into eight triangles, with each triangle defined by a cell-

center, a face-center, and a vertex value (see Figure 2.1(a)). The face-centered values

are solved using flux continuity, then substituted back into the discretization. The

vertex points are found through interpolation. The method reduces to the standard

discretization with harmonic means when the permeabilities are a diagonal tensor.

They note that this method can be applied to non-uniform structured grids with more

advanced interpolation. The main idea of the approach of Crumpton et al. could be

used to partition a mixed cell into several pure subcells without actually cutting

the cell and adding any unknowns, which is similar to the S3 method presented in

Chapter III.

Edwards [73] examines flux continuity for mismatched grids resulting from adap-

tive mesh refinement (AMR) in cell-centered FVM by introducing fictitious unknowns

on the face-centers of fine grids adjacent to course grids. This work was motivated

by reservoir simulations while noting applications to fluid dynamic systems such as

incompressible Euler and Navier-Stokes equations. In this work, an interface refers

to a boundary where a coarse cell meets a fine cell rather than a division between

phases. Implementing continuity of flux from cell-centered quantities across an inter-

face causes severe errors because the line joining the centers is not orthogonal to the
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(a) (b) (c)

Figure 2.1:
Sketches of cells to illustrate some concepts in the previous work section.
Important cell-centers (red circles), vertices (green stars), and fictitious
values (blue squares) are indicated. Subfigure (a) shows how Crumpton
et al. [56] partition each cell into eight triangles. Subfigure (b) shows
an example of a hanging node, where the face of one cell is larger than
the face of its neighbor (commonly found in AMR grids). This figure
elucidates how the center-to-center line of cell centers on a hanging node
is not orthogonal to the cell face. Subfigure (c) shows how Edwards et al.
[75] form four triangles in each cell.

interface (see Figure 2.1(b)). While mismatched cells are not identical to the discon-

tinuous coefficient problem, Edwards’ method is germane. In order to compute a flux

normal to the interface, Edwards introduces fictitious values on the cell face. These

face-centered values can be solved algebraically by flux continuity. The resulting flux

at a face depends on the harmonic mean of each cell’s permeability, a common occur-

rence in reservoir simulations [14, 73]. Interpolation is used between the cell-centered

and face-centered values to define yet another new value. These final fictitious values

are located in coarse cells such that the line joining these values and the cell-centered

value of the fine cells is orthogonal to the interface (see Figure 2.1(b)). This process

results in a fully conservative system with a symmetric positive-definite (SPD) coeffi-

cient matrix that can be solved by a preconditioned conjugate gradient method. All

interfaces considered in this work are aligned to the grid since every cell is a rectangle,

however the concept of solving for fictitious face-centered values in order to compute

flux normal to an interface is applicable to mixed-cell problems where interfaces are

not aligned to the grid.

Edwards and Rogers [75] consider the discontinuous coefficient problem, providing

a conservative, flux continuous, cell-centered quadrilateral, FVM for full tensors. Full

tensor equations arise whenever the computational grid is not parallel to the principal

axes of the local tensor field. This occurs in the motivating problem of a heterogeneous
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reservoir simulation, where there are strong discontinuities and rapid variation in

permeabilities. Other full tensor examples include any anisotropic medium not aligned

with the computational grid, non-orthogonal or unstructured grids, or cross bedding.

Full tensor schemes can be achieved in 2D using a nine-point stencil with some mesh

options: a vertex based method [71, 74], a cell-face method [110], or a mixed method

[7, 178]. A common mixed method is the cell-centered technique of introducing and

then solving for face-centered (fictitious) values, which leads to effective permeabilities

on the interface that are the harmonic mean of neighboring values. A cell-centered

mixed method is possible with a five-point stencil only if the phase coefficient is a

scalar or diagonal tensor.

Edwards and Rogers’ method [75] of solving a full tensor, cell-centered problem

first requires expanding the stencil to a nine-point scheme and then introducing two

fictitious values on each cell face. The flux normal to each face of a quadrilateral is

continuous. Each cell has a constant permeability (pure cells), but permeability may

be discontinuous amongst neighbors. Each quadrilateral and its permeability tensor

is transformed to a square domain by an isoparametric mapping. The vertex of

each cell is then surrounded by four fictitious cell-face values, such that there are two

new unknowns on each cell face. The term face-centered is not applicable because the

values are not at the mid-point of a face. Four triangles per cell are introduced, defined

by the center value of that cell and two face-centered values nearest to each vertex (see

Figure 2.1(c)). A quadrature is introduced to enforce piecewise linear variation over

each triangle. This leads to two expressions of flux between a cell-center value and one

of its faces, with one flux equation for each cell-face unknown. An interior cell face

then has four associated flux equations (two from each cell), and these four equations

are related by continuity of flux. This defines a system of equations that can eliminate

the cell-face unknowns by expressing them entirely in terms of cell-centered values.

Substituting the cell-face values into the flux equations, an SPD coefficient matrix is

formed that expresses the flux normal to each quadrilateral using only cell centers.

Edwards’ methods [73, 75] have applications to mixed-cell methods that cut cells

into smaller fragments and mixed-cell methods involving AMR. His methods are also

applicable as a mixed-cell method that fictitiously cuts a cell, similar to Crumpton

et al. [56] as well as the new mixed-cell method that we propose in Chapter III.

2.4.3.3 Mimetic Finite Difference Methods

Mimetic finite difference methods (MFD) are a relatively recent discretization

technique, originating in the mid 1990’s [90]. Mimetic methods are a subset of finite
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difference methods (FDM). The pivotal difference is that standard FDM discretize a

differential equation, while MFD discretize an operator (typically the gradient, diver-

gence, and curl). The operators must take a coordinate invariant form, depending only

on quantities such as volume, area, and angle [100]. Once the operators have a discrete

form, any differential equation written in terms of these operators can be discretized

by matrix manipulations, with different coordinate systems defined by changing the

geometric quantities of the operators. By discretizing these vector-calculus operators

in terms of the physics of the problem, symmetry and conservation properties survive

the conversion from continuum to discrete. It can be shown that the discrete analog

of the continuum equation shares or mimics many important properties; this is why

schemes of this type are called mimetic [100]. Relevant vector-calculus identities are

also preserved, notably the Divergence Theorem, which relates the volume integral

of the divergence of a function to the outward-normal integral of the surface of said

volume. MFD have a significant advantage over standard FDM: results are more

physically accurate without a more complex discretization [90]. Mimetic methods

have comparable accuracy to other FDM on ‘nice’ problems (simple grids, smoothly

varying coefficients, etc.), but they are superior to FDM and mixed FEM on more

difficult problems [100, 198]. All cited MDM papers considering interfaces make the

assumption that the interface is aligned with the cells (no mixed cells) unless oth-

erwise noted. This is a reasonable assumption for most MFD work because MFD

typically use non-orthogonal grids, where the cells are body-fitted.

Mimetic methods are often derived by the Support-Operators Method (SOM)

[100]. (For a detailed discussion of SOM; see Chapter III.) SOM decomposes to

standard FDM when the grids are orthogonal (Cartesian). SOM requires a prime

and derived operator, with an integral identity relating them. The derived operator

is supported or referenced by the prime operator. The diffusion equation consists of

the divergence of a gradient, called the diffusion operator,

LD = ~∇ · (D~∇). (2.51)

SOM uses a mimetic description of the divergence operator (D = ~∇·) as the prime

operator. The derived operator is the modified gradient (G = −D~∇) or flux operator.

The gradient operator is then defined in terms of the primary (divergence) such that

they are adjoint (G = D∗) with respect to an inner product space defined by an

integral relation. This scheme is conservative and contains many other advantageous

properties that are discussed in Chapter III. The use of the flux operator instead
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of only the gradient is one of the key choices that makes SOM so applicable and

advantageous for heterogeneous diffusion problems.

Samarskii et al. [190, 191] laid the foundation for mimetic methods in the early

1980’s. They define two restrictions that should be imposed on any difference scheme:

(1) the approximation and stability of the solution must converge to the exact value

when the mesh intervals become small enough, and (2) the discrete analog must

retain important properties of the original PDE (such as conservation, vector-calculus

properties, etc.). Many schemes satisfy the first property, but few focus on satisfying

the second. Samarskii et al. [190, 191] first approximate finite difference analogs of

tensor calculus operators. Samarskii et al. use the term ‘reference operator’, which

defines one operator in terms of another. This is the predecessor to SOM.

About a decade later, Shashkov built from Samarskii’s foundation and established

MFD and SOM. He and Liska [137] gave the underlying mathematical details while

also providing a technique to use symbolic algorithms to construct FDM with SOM

for a non-orthogonal logically rectangular grid. Use of symbolic algorithms is useful

for 3D, where the equations become involved. Shashkov and Steinberg [196, 197, 198]

provide a cornerstone for all subsequent MFD and SOM work. Shashkov’s book [196]

(edited by Steinberg), in particular, gives explicit mathematical details and descrip-

tions of many of these operators (applicable to a general grid), as well as Fortran

source code for implementation. In References [197, 198], they solve the diffusion

equation with rough coefficients in rough grids using SOM. Shashkov has noted that

the term Support-Operators Method is a flawed translation from the original Russian

name, suggesting that basic or reference operator would be a truer translation [198].

Morel et al. [150] created a cell-centered Lagrangian method for general quadrilat-

erals not using SOM, but ended up with a matrix that was not symmetric positive-

definite (SPD). Morel et al. [152] then use SOM to make a very similar method that

yields approximately the same results and error values. However, this new method

could be solved faster and more efficiently because the matrix was SPD. This si-

multaneously shows the advantage of solving an SPD matrix as well as using SOM.

Later, Morel et al. [151] expanded their method to 3D with general six-sided cells

(hexahedral meshes). While Shashkov’s method [198] forms a dense matrix due to

an inversion step, Morel’s method [151, 152] is sparse, reducing the complexity of

the matrix-vector multiplication used in the Krylov solvers. The sparseness of the

matrix is because Morel et al. use a local SOM; all of the nonzero values in a row of

the coefficient matrix correspond to the nearest neighbors of the cell associated with

that row. The cost of making the matrix sparse is that additional unknowns on each
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face-center must be added. However, the gain in solving efficiency more than offsets

the cost of extra unknowns.

Hyman and Shashkov (and often Steinberg and Morel), published work of a much

more mathematical nature, formally proving the properties of not only SOM, but the

mimetic discretizations in general of the divergence, gradient, and curl operators [95,

96, 97, 98, 99, 100]. They specifically explore the behavior of strongly heterogeneous

problems [95, 99], while also looking at boundary conditions [97] and convergence

properties [100]. Konstantin Lipnikov is another mathematically focused contributor

to the development of SOM, often in collaboration with Shashkov. Lipnikov et al.

explore diffusion for non-orthogonal, nonconformal meshes for general quadrilaterals

[132] and general polyhedral meshes [135]. Lipnikov et al. [133] consider two-phase

flow in porous media in a heterogeneous reservoir.

The following is a brief review of some of the many other works that explore or

advance mimetic methods. Examples of other mathematical papers, either proving

properties or examining convergence behaviors of mimetic methods include Refer-

ences [22, 24, 26, 35, 37, 186]. The relation of SOM to mixed FEM is mentioned in

Morel et al. [152] and explored in References [22, 91]. SOM can be expanded from

second-order to fourth- or sixth-order accuracy with grids that are uniform or general,

in one or two dimensions [47, 48, 90, 149]. Many different grid types are explored, such

as staggered 1D and general quadrilaterals. Some of the more complex grids devel-

oped include hexahedral [151], unstructured polygonal and polyhedral [37, 135, 136],

and polyhedral with curved (nonplanar) faces [35, 36]. A polyhedral mesh, with each

element having many faces, is more likely to have a face perpendicular to the flow [34],

which is advantageous since only the flux normal to the flow is continuous. Works

focusing on applications of the tensor capabilities (such as for an artificial viscosity)

of mimetic methods include References [24, 34, 36, 44, 45, 134].

Domain decomposition is another method that can treat interface problems. Do-

main decomposition is a technique where the full domain is partitioned into smaller

segments (such as by phase boundaries). FEM are typically used when domain de-

composition splits the problem by phase into homogeneous regions. Each partition

may have its own grid and resolution, which allows each domain to be solved in

parallel. Domain decomposition may be overlapping, where interfacial regions are

contained in multiple domains, or non-overlapping, where iterations are needed to

constrain the interface values to match each other. Solution matching at mismatched

grids can be tackled by introducing Lagrange multipliers at the boundaries; this space

is called a mortar finite element space [23]. An example of a standard approach (not
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mimetic) is exampled by Braess et al. [30]: using a multigrid technique that is fast

for homogeneous regions, they apply mortar elements with domain decomposition to

handle strong phase jumps. Berndt et al. use mimetic mortar FDM for nonmatching

grids from domain decomposition [23].

2.4.3.4 Previous Mixed-Cell Work

All work cited to this point has consisted entirely of pure cells, in which phase

boundaries are aligned with cell faces. While body-fitted grids avoid mixed cells

altogether, in many applications it is either not possible or not practical to align

the mesh with interfaces, leading to the need for mixed cells. This section discusses

some of the mixed-cell approaches in the literature, such as cutting the cell, mimetic

techniques, and immersed interface methods.

Cutting the cell. The most logical approach to treat a mixed cell is to simply

cut the cell into pure cells. This leads to irregularly shaped cells and body-fitted

grids. There are examples of cut-cell approaches, many of which also involve merging

(amalgamating small, irregular cells into a larger cell). Three examples follow, the

latter two being mimetic methods.

Ye et al. [218] cut mixed cells and merge the smaller fragment with neighbors of the

same phase. They examine large ratios of the phase property (strongly discontinuous

coefficients) in the context of liquid to vapor phase changes for bubble dynamics.

While body-fitted grids are a good choice for discontinuous phases, fixed grids are

more suitable in some circumstances, such as when there is a phase transition with

sizable volumetric changes. The approach of Ye et al. to this problem is to use an

Arbitrary Lagrangian Eulerian (ALE) method, where marker cells track the interface

in a Lagrangian method while the field calculations are performed on an Eulerian

mesh. Rather than lose the ability to map one-to-one back to the Cartesian grid by

creating more total cells after cutting, the smaller portion of a cut cell is merged with

a neighbor of the same phase. This leads to a constant number of cells, with uniform

cells far from the interface and irregular cells near the interface. FVM are used to

solve the coupled fluid equations (mass, momentum, energy transfer) to account for

both the Cartesian and trapezoid cells. Fluxes are estimated normal to any of the cell

surfaces based on interpolation. Results are presented in terms of bubble dynamics,

such as accuracy of drag coefficients or growth rates, making it difficult to compare

the effectiveness of this method to other mixed-cell techniques. (See Ye et al. [218] for

details on bubble dynamics.) The downsides of this method include the creation of
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irregular cells near the interface, as well as the standard downsides of using an ALE

method, such as the cost associated with marker points and the cost and physical

errors introduced by re-meshing.

There is a scant number of mimetic approaches to mixed-cell problems, primarily

because mimetic methods are often employed with non-orthogonal grids in order to

align with interfaces. While a mimetic method can use body-fitted grids, it can

also approach a problem using a uniform, Cartesian grid. We know of only three

examples of mixed-cell approaches using mimetic techniques [86, 118, 216]. Two

of the approaches [86, 118] simply cut the mixed cell into pure cells, while the third

approach is in 1D only [216]. Two unique, 2D Cartesian grid, MFD mixed-cell models

that do not cut the cells are presented as new work in Chapter III.

Garimella and Lipnikov [86] cut mixed cells for a 3D mesh, solving a multiphase

diffusion equation. Interfaces are reconstructed inside mixed cells using volume frac-

tions, and then the mixed cells are cut into pure cells using these interfaces. This

new mesh, having irregular or polyhedral elements, is then discretized and solved

with MFD. Cells are not simply cut in two, but rather into several parts such that

the mesh is conforming. “Conforming,” in this sense, means that faces on either side

of a interface have the same length, avoiding hanging nodes (see Figure 2.1(b)). Cells

are amalgamated when possible to help reduce the cost of creating more elements

and unknowns. Garimella and Lipnikov show their method is second-order accurate

and has lower error than averaging methods (harmonic and arithmetic), which they

show to be first order. They generate a linear and polynomial test solution using

the method of manufactured solutions (MMS) (discussed in Section V) with a diffu-

sivity ratio of 100. They demonstrate that a mixed-cell model can be benchmarked

by the MMS, and its performance compared to the averaging techniques (harmonic

and arithmetic mean) that are employed in standard practice. The mixed-cell mod-

els presented in Chapters III-IV also use the harmonic mean as a reference point in

Chapters VII-VIII.

Kuznetsov et al. consider multiphase diffusion problems in References [91, 118,

119]. They first approach the problem using MFD on polygonal meshes, but they

assume no mixed cells [119]. They achieve second-order convergence on locally re-

fined, nonmatching meshes. Kuznetsov approaches the discontinuous problem again,

this time with mixed cells, in a related paper [118] using mixed FEM (which has

been shown to have a deep connection to MFD [22, 91, 152]). His approach is to

cut the cells into several triangular pure cells. Kuznetsov works with Gvozdev and

Shashkov in Reference [91] to perform a similar technique where mixed cells in polyg-
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onal meshes are triangulated into many pure cells. This method works in both 2D

and 3D. Their results have a jump in error at the interface that is approximately an

order of magnitude lower than the jump in error at the interface of a more typical

method.

Noncutting MFD. Winters and Shashkov [216] consider the mixed-cell problem

in diffusion using MFD (and SOM specifically) with two approaches, homogenization

and fictitious unknowns. To the author’s knowledge, Winters et al. is the only example

of a mimetic technique to address mixed cells without cutting. The method is limited

to 1D and two phases only, but they show it is easily extended to multiple phases.

In the homogenization method (volume-weighted averaging of the diffusivities) they

compare results using three different means (arithmetic, geometric, harmonic). The

condensation method [118, 119] adds a fictitious unknown on the interface then al-

gebraically solves for these unknowns using continuity. The resulting equation for

the flux is a coupled 2×2 system that reduces to the pure-cell flux expression if the

volume fraction is zero or unity. This system that determines flux for each phase

is rather intricate, especially for a 1D problem, and will quickly grow in complexity

in higher-dimensions. Test problems are created using the method of manufactured

solutions (discussed in Section V). Test results demonstrate that mixed cells drop the

convergence from second-order to first-order and that the harmonic mean performs

slightly better than the arithmetic or geometric mean.

Winters and Shashkov [216] also provide an estimate of each phase’s individual

temperature in a mixed cell using a limiter reconstruction technique. The limiter

reconstruction of the derivative is similar to the method used in Berger and LeVeque

[21]. The success of this technique in finding each phase’s temperature depends on

the approximation of the spatial derivative of temperature, which employs a limiter.

Winters and et al. compare the Barth-Jespersen and minmod limiters. Their results do

not show a clear consensus as to which is better nor do they obtain both temperatures

to equal accuracy. This indefinite conclusion is attributed to imprecise interface

knowledge. This work is related to our Chapter IV, where we present a new method

that gives the temperature of each phase in a mixed cell. Also of note, two errors are

reported in the ∞-norm: global error and pure-cell error. The pure-cell error shows

how well the computation performs away from the interface, which is useful because

the interfacial region (mixed cells) dominate the error. While Winters et al. make

an original approach to the mixed-cell problem using SOM, the problem is greatly

simplified in that it is only in 1D, in which the volume fraction exactly locates the
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interface and all fluxes are automatically normal to the interface because there is only

one possible axis.

Predictor-corrector method. Pember et al. [170] take a predictor-corrector ap-

proach to the mixed-cell problem. Their method uses a nine-point stencil in 2D and

a twenty-seven-point stencil in 3D. It works on a uniform grid or coupled with AMR

for both Cartesian and cylindrical coordinates. In the first (predictor) step, fluxes are

calculated as in the standard method, with no regard to the interfaces. A reference

state is then calculated based on these fluxes, and all pure cells not neighboring a

mixed cell are updated to this reference state. In the second (corrector) step, two

corrections are calculated: one correction is conservative but (potentially) unstable

and the other correction is stable but nonconservative. These two corrections are

used to re-establish conservation; fluxes are redistributed by the amount that conser-

vation was violated in a mass-weighted manner to mixed cells and their neighbors.

The geometric information needed for this scheme includes the volume fractions, the

surface fractions, the interface normal, and the interfacial area. These can be found

in a variety of ways, including assumption of a piecewise linear interface (with vol-

ume fractions provided). Pember et al. report the scheme to be globally second-order

while first-order near interfaces. Two 1-norm errors are reported: one considering the

entire domain and another considering only interfacial regions (mixed cells).

Improved Taylor expansions. There is a group of methods that addresses the

discontinuous coefficient problem by taking a Taylor series on each side of an interface

[21, 123, 124, 139, 142, 143, 215]. One of the assumptions for a Taylor series, the

foundation for finite differences, is that the function is smoothly varying (infinitely

differentiable). This assumption is violated near a discontinuous interface, implying

that the standard FD discretization is invalid in such regions. This can be remedied

by either correcting the Taylor expansion or by taking separate expansions on each

side of the interface, where the phase parameters are constant or smooth.

An early example of the Taylor series approach is by MacKinnon and Carey [139].

They note that FEM with body-fitted grids naturally have flux continuity normal to

the interface, but suboptimal convergence is seen if the element is not aligned with

the grid. In FDM, an interface not aligned with the grid is typically accommodated

using an intermediate value (homogenization), such as the arithmetic, geometric, or

harmonic mean. Using a Taylor series on each side of the interface, MacKinnon and

Carey calculate some correction terms to the standard FD discretization. Comparing
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results with and without these correction terms, as well as with results using different

mean values (arithmetic, geometric, harmonic), they determine the following: (i) the

harmonic mean is second order but does better for smaller diffusivity ratios; (ii) the

arithmetic and geometric averages are only first order; (iii) the correction terms only

improve the solution on coarse grids; and (iv) the harmonic mean is superior to their

correction terms on a slightly refined grid.

Mayo [141] introduces a new approach to the discontinuous coefficient problem in

terms of an integral equation. Mayo’s integral method involves embedding a complex

region inside a large, simple rectangular region [141, 142, 143]. Extending the domain

to a rectangular region avoids common issues with integral techniques, and the non-

symmetric system can be solved with existing fast solvers. This method is applied

to multiple problems and equations, but only the diffusion application is summarized

here. The problem solves ~∇ ·K~∇u = f in some complex shaped region D, which is

embedded in a simple rectangular region R. This leads to three zones: cells where

all neighbors are inside the boundary (interior), cells where all neighbors are outside

the boundary (exterior), and cells with neighbors on either side (interfacial). The

interior regions solve ~∇ · K~∇u = f , while the exterior regions solve ~∇ · K~∇u = 0.

The interfacial values are treated with a new method. The value K is large inside

D while small outside of it, leading to a discontinuous jump. Since the diffusivity

K is not smooth in the transitional regions, the function u must have a kink. A

Taylor expansion of a nonsmooth function is not valid. The Taylor expansion may

be corrected if one knows the discontinuities in u and its derivatives in the normal

direction. Mayo’s method modifies the Taylor expansion by taking derivatives of the

jump conditions in the normal and tangent direction ( ∂
∂ξ
b|u|c and ∂

∂ξ

⌊∣∣∣~F ∣∣∣⌋ where

ξ is the normal or tangent direction). Combining this with derivatives of the jump

conditions for the differential equation ( ∂
∂ξ

⌊∣∣∣~∇ ·K~∇u
∣∣∣⌋), terms in the Taylor series

can be determined up to arbitrary order. The final result is a matrix equation A~u = ~b

where A is a standard nth-order accurate discretization on the LHS and ~u is a vector

of the unknowns. The RHS is ~b, which is simply f inside region D with no boundary

neighbors, f +m inside region D with boundary neighbors, m outside region D with

boundary neighbors, and 0 outside region D with no boundary neighbors. Since the

correction term, m, only appears on the RHS, the matrix A is unaltered. Not altering

the matrix allows rapid solutions with existing solvers, giving pth-order solutions in

irregular regions, where p is the order that is determined by the minimum of solver’s

accuracy as well as the accuracy of the Taylor expansion’s correction.

Motivated by transient flows with strong shocks around complex boundaries,
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Berger and LeVeque [21] introduce a scheme with a rotated reference frame for mixed

cells in Cartesian grids in conjunction with AMR. They desire to preserve the advan-

tages of using uniform grid methods (i.e., no irregular or body-fitted cells), such as

simple data structures and higher solution accuracy. In order to have continuity of

flux normal to an interface, they create a rotated reference frame inside each mixed

cell, calculating flux normal and tangential to the interface. This rotated difference

scheme builds from related work [20]. Additional unknowns are needed to compute

fluxes in this rotated frame. These fictitious values are created by taking a first or-

der Taylor series on the interface, noting that a globally second order scheme can be

first order near an interface [21, 123, 212]. Berger and LeVeque [21], citing work by

Wendroff and White [212] state that, ‘the local error can be one order lower than

normally required in irregular grid cells without the error accumulating to destroy

the global accuracy.’ Fluxes are computed at these fictitious unknowns using a slope

limiting linear reconstruction of the solution with the Taylor series expansion. For

small cells, which emerge due to AMR, this method increases the stencil size. This

method results in second-order convergence everywhere except the interfacial region,

where it is first-order. This approach is very similar to the S2 method introduced

in Chapter III, where a tensor rotates the diffusivity to calculate flux parallel and

normal to the interface without introducing additional unknowns.

LeVeque and Li specify the immersed interface method (IIM) in References [123,

124]. This method is an offshoot of the immersed boundary method from Peskin

[171], motivated by blood flowing through a beating heart. The immersed boundary

method can only handle a delta function forcing term, not discontinuous coefficients.

The IIM, however, is designed to handle discontinuous terms, such as a scalar diffu-

sivity. Since cells near the interface form a lower-dimensional set, second-order global

accuracy can still be maintained with only first-order truncation error near interfaces

[21, 123, 212]. The main idea behind the IIM is to take Taylor expansions near the

interface because the expansions from the standard discretization are not valid near

a nonsmooth function.

We describe the 2D IIM in detail because it explicitly deals with mixed cells

and has spawned several cognate methods, while References [21, 139] can be seen as

predecessors. Since the diffusion coefficient is a scalar, a full nine-point (2D) scheme

is not needed. For the IIM, the standard five-point stencil is modified by including

one additional point for cells near boundaries. This sixth point is chosen to be one of

the four additional values used in a nine-point stencil (NW, NE, SW, SE). A uniform

Cartesian grid is assumed with mixed cells near interfaces. The calculation for a given
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mixed cell begins by selecting a point on the interface nearest to the cell-center; much

of the subsequent calculations depend on this interface point. A coordinate transform

is applied such that the local system has axes normal and tangent to the interface,

with respect to the interface point selected. Note that the grid does not change.

Rather, a second coordinate system is introduced, which is defined with respect to

the interface at a chosen point. The jump conditions are then written in terms of

values at the interface point. From the four corner cells (NW, NE, SW, SE), the one

with the minimum distance from its cell-center to the interface point is selected as

the sixth point in the stencil. A Taylor expansion is performed around this interface

point for all six cells, with some being ‘outside’ the interface and some being ‘inside’.

The result for each term is an expression in the form of

u(ξ, η) = u± + (ξ − ξ∗)u±ξ + 1
2
(η − η∗)u±η + (ξ − ξ∗)2u±ξξ

+ 1
2
(η − η∗)2u±ηη + (ξ − ξ∗)(η − η∗)u±ξη +O(h3),

where h is the grid spacing, the + and − superscripts specify a side of the interface, ξ

and η are the local coordinates, and (ξ∗, η∗) is the interface point (typically chosen to

be the zero of the coordinate transform). The local truncation error for the differential

equation can be expressed as a linear combination of the various terms in the six

Taylor expansions (the standard five cells plus one additional cell). The truncation

error, Ti,j, can be written as

Ti,j = a1u
− + a2u

−
ξ + a3u

−
η + a4u

−
ξξ + a5u

−
ηη + a6u

−
ξη

+ a7u
+ + a8u

+
ξ + a9u

+
η + a10u

+
ξξ + a11u

+
ηη + a12u

+
ξη +O(h),

where the coefficients ai come from the six Taylor series. A relation between each

side of the interface is determined by the jump conditions, and these can be substi-

tuted into the local truncation error equation. By requiring only first order accuracy,

the coefficients ai must all be zero, which yields a system of six equations with six

unknowns. For the case that the diffusion coefficient is the same on both sides of the

interface, the coefficients for the sixth stencil point are zero, and the problem reduces

to the standard five-point discretization. The values of the coefficients depend on

the position of the interface relative to the stencil and the ratio of diffusivities. The

discontinuous diffusion equation is then solved in terms of cell-centered values only,

with mixed cells having an extra stencil point to specify the flux with respect to the

interface.
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The IIM method is powerful and accurate, showing second-order accuracy in the

∞-norm. The IIM also allows for discontinuities for the solution or the flux across the

interface, which is equivalent to a double-layer or single-layer source at the interface,

respectively, in potential theory [123, 129], or thermal contact resistance for heat

conduction. However, the IIM comes with a few notable disadvantages. First, this

method requires detailed knowledge of the interface, which is not always available.

Sometimes the interface is only known discretely, so an appropriate interpolation

must be used. Other times, such as with a VoF method, the exact interface position

is not known, only the fraction of each fluid is given in a cell. Second, the diffusion

coefficient cannot be a tensor due to the stencil (six points instead of nine), which

limits the applicability of this method. Third, the discontinuities must be ‘mild’; this

approach fails for strong jumps in the discontinuity. Fourth and most important, the

addition of a sixth stencil point breaks the symmetry of the matrix equation. While

a five-point scheme forms an SPD coefficient matrix, the IIM adds one term to the

matrix. The matrix is still diagonally dominant because the sixth stencil coefficient

is smaller than the other five. However, the matrix loses symmetry, which is an

important property because an SPD matrix can be inverted with some of the more

efficient solvers (see Section 2.5.3.1).

Li [129] addresses the main deficiency of the IIM, where he restores symmetry,

leading to an SPD matrix. Li preconditions the diffusion equation before applying

the IIM. The critical result of this approach is that the RHS of the matrix equation

is modified, leaving the matrix itself untouched and SPD. Li notes that most other

methods for treating this problem (such as harmonic averaging, smoothing, and FEM)

may have second-order convergence of E1 or E2, but are rarely second-order with E∞

since they smooth out the solution near the interface. Second-order infinite norm

attempts include Mayo’s method [141, 142, 143] as well as the IIM [123, 124]. Li

notes that some problems with large jumps in the coefficient cause the IIM to fail or

converge very slowly. Li’s approach results in two separate second-order problems to

be solved: Poisson’s equation in the pure regions and a Neumann boundary condition

in the interface region. While the total system can be solved as a block matrix

problem, it is more efficient to solve the two problems separately. The pure regions

are solved via a Schur complement system with GMRES, while the interface region

is solved via weighted least squares. Hence, the price of restoring symmetry to the

coefficient matrix of the IIM is preconditioning the problem before applying the IIM

and then solving a second, albeit smaller, system.

Wiegmann and Bube [214, 215] continue the development of the IIM with the
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Explicit Jump Immersed Interface Method (EJIIM). In this approach, they com-

bine LeVeque’s IIM [123, 124] with some of Li’s modifications [129], as well as some

of Mayo’s techniques [141, 142, 143]. Wiegmann uses Mayo’s idea of embedding a

complex geometry inside of a simple rectangular region, treating the boundary as

an interface. They also use Mayo’s modification of the Taylor expansion by taking

derivatives of the phase jumps. First implementing in 1D to model traffic flow [214],

Wiegmann and Bube [215] later extend their method to 2D. They report second-

order convergence for their 2D method for discontinuous coefficient problems with

diffusivity ratios of 5,000 and 1/5,000. Similar to Li’s method [129], the system of

equations to be solved is either a block matrix system or two separate systems of

equations, consisting of the bulk values and interface values. While Wiegmann and

Bube do not retain Li’s fix to keep the coefficient matrix SPD, their approach can

correct FDM of arbitrary order. The only restriction, and this is critical to both

Mayo’s method and the IIM family, is that the interface and all coefficient jumps

must be known with precision. Knowing the phase coefficient jumps is simple if they

are constant or linear, but there are many cases where they are nonlinear (such as

in radiation transport where the diffusivity can depend on the third power of tem-

perature). Of greater importance, however, is the fact that this method depends on

detailed knowledge of the interface. The Taylor expansions are taken with respect

to points on the interface closest to the cell-center of each mixed cell. While some

numerical methods do explicitly track the interface, others must reconstruct it, often

with a linear approximation. Basing the second-order (and potentially higher) Taylor

expansion on a (frequently linear) reconstructed interface defeats the purpose of the

higher-order Taylor expansion. The IIM and its consanguineous methods are a useful

and accurate approximation, but they are best applied when the interface knowledge

(both the formula for the interface and the phase properties on either side of it) are

known with high fidelity.

Recapitulation. In summary, multi-fluid problems in an Eulerian frame can lead

to mixed cells. AMR can be used to alleviate the effect of mixed cells, but the same

inaccuracies still exist on a smaller scale (not to mention the many complications

AMR introduces). A common way to treat these is to form a body-fitted grid or

to cut (and possible merge) cells into pure cells. These techniques are effective,

but they lead to irregularly shaped cells that encounter numerical issues and require

interpolation. If mixed cells are not simply avoided or cut, they can be treated by

homogenization, an averaging technique in which a (weighted) mean of each phase
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diffusivity is computed, and the cell is treated as a pure cell of this averaged value.

Another common set of methods introduces fictitious unknowns on the cell-faces and

solves for these using continuity. This is often accompanied by expanding the stencil

from the standard five-point to a nine-point scheme. These approaches typically

achieve second-order accuracy away from interface while being first-order accurate

near the interface. However, in many cases, the global accuracy will eventually reduce

to the accuracy of the lowest-order region of the domain.

Some unique approaches include a rotated-difference scheme [21], where the co-

ordinates are transformed to a set parallel and perpendicular to the interface, and a

predictor-corrector scheme [170], where the fluxes are modified in a conservative and

stable way to account for the interfaces. Most mixed-cell schemes attain second-order

accuracy globally but only first-order accuracy near the interface. However, there is

a family of schemes that is second-order everywhere, which is accomplished by cor-

recting the Taylor expansion for the finite difference derivatives. While these schemes

are second-order on the interfaces, they require detailed knowledge of the interface

and the coefficients near the interface, which are not always available. They perform

best with only moderate jumps (jump strength is ultimately limited by order of the

Taylor correction).

A mixed-cell method must be at least first-order accurate at the interfaces and

second-order accurate globally to be equivalent to the majority of mixed-cell methods.

Second-order accuracy at interfaces with strong jumps would be an unequivocally

successful method, competing with the immersed interface family of methods as the

best option for treating mixed cells without generating irregular (nonrectangular in

2D) cells. Use of E∞ (defined in Section 5.2) as a metric is highly beneficial because it

finds the least accurate area (which is near/on the interface), giving a measure of the

interfacial accuracy. Any method that performs at second-order accuracy with E∞

for systems with highly discontinuous coefficients could be a step forward to the field

of mixed cells. Unfortunately, one would have to weigh the cost of such a method

in terms of additional unknowns introduced and the required level of accuracy of

interface knowledge, against those of competing methods. The new models proposed

in this thesis require only volume fractions and a linear approximation of the interface.

The new models do introduce additional unknowns, but they create a symmetric

positive-definite (SPD) coefficient matrix, which can be solved efficiently. The next

section discusses the benefits of an SPD matrix and explicates the conjugate gradient

method as a means to solve an SPD system.
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2.5 Efficient Iterative Methods

This section discusses the motivation for solving systems of equations iteratively

and discusses an efficient class of solvers. Iterative methods are advocated due to the

nonlinear and sparse nature of the system of equations. The class of efficient iterative

solvers considered is the set of Krylov methods, focusing on the conjugate gradient

technique.

2.5.1 Iterative vs. Direct Solvers

Any discretization method of a partial differential equation (PDE) leads to a

system of algebraic equations connected to the grid points [93]. This system is often

large, especially in industrial applications and 3D problems. The coefficient matrix

is square (same number of rows as columns) and the entries are typically real. The

coefficient matrix is nonsingular, which implies a unique solution exists. This system

of equations can be written in the form of the matrix equation,

A~x = ~b, (2.52)

where the coefficient matrix (A) and the RHS (~b) are known, and ~x represents the

unknowns. The sizes of these terms are ~x ∈ <n×1, ~b ∈ <n×1, A ∈ <n×n, where n is

some integer.

A system of equations, such as that described above, can be solved in two ways:

directly and iteratively. If floating-point operations had no round-off error, a direct

method would compute the exact solution in a finite number of steps. An iterative

method, in contrast, makes successive approximations to the solution, with each

iteration of the method (ideally) getting more accurate. Some methods do not have

strictly monotonic convergence but do converge overall. Theoretically, an iterative

solution converges to the exact solution after an infinite number of steps (iterations).

In practice, exact solutions cannot be achieved because of the finite precision of

floating point numbers. Iterative methods must have a way of judging how good

a solution is at any iteration so that the iterative method will stop once sufficient

quality has been achieved (stopping criterion). Therefore, solution approximations

are often quantified with a residual,

~r = ~b−A~x, (2.53)

where ~x is the current estimate of the solution and ~r is the residual. A common
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stopping criterion is

‖~r‖ ≤ ε,

where ε is a chosen tolerance.

The number of operations to directly solve a general or dense n×n matrix is O(n3),

although some direct solvers require less than the third power of n, e.g., Strassen’s

algorithm of O(n2.81) and the Coppersmith-Winograd algorithm of O(n2.34) [207].

Direct methods are a good option for small or linear systems. However, as the size

grows, the amount of time, the amount of memory, and the number floating point

operations needed to solve the system may become more costly than an iterative

method. Iterative methods require about O(n2) operations to solve a dense system,

but many require as few as O(n) to solve a matrix primarily composed of zeros

(sparse) [207]. A direct method may or may not be able to take advantage of a sparse

matrix. The round-off errors can compound for very large and dense systems in

direct methods, preventing them from finding the correct solution. Nonlinear systems

need an iteration scheme to converge the nonlinearities, making it economical to use

an overall iterative scheme rather than iterating a direct method [93]. Therefore,

nonlinear schemes are usually solved with iterative methods.

Iterative methods are simply trying to solve Equation (2.52) by inverting the

matrix

~x = A−1~b. (2.54)

Matrix inversion is typically the most computationally demanding step in solving a

PDE and occupies most of the runtime. Considerable effort has been placed on creat-

ing efficient and cost effective methods of inverting matrices. Different discretization

schemes and PDEs lead to different types of coefficient matrices, which require special-

ized inversion techniques. A coefficient matrix from a discretized PDE will typically

be sparse and often SPD.

2.5.2 Sparse and SPD Matrices

A sparse matrix has mostly zeros for elements, with only a few bands of nonzero

values. A band is a diagonal line through the coefficient matrix with nonzero values,

always measured from the upper left (lower row and column) to the lower right (higher

row and column). The sparsity from a PDE is due to the system being local. Local

means that a given mesh element is only influenced by other elements within some

radius or count (e.g., the two closest neighbors on each side). This is in contrast to a

global method, such as the spectral method, where a mesh element is influenced by all
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other elements. Note that an AMR algorithm will invariably move nearest neighbors

in the coefficient matrix; sparsity will be maintained, but neighbors may move far

from their band.

As the name would suggest, a PDE involves derivatives, which are computed based

on linear combinations of a cell with some of the cells around it. Each cell in the mesh

has one corresponding row and column in the coefficient matrix. A given row in the

coefficient matrix corresponds to the equation for that element. The main diagonal,

when the row number is the same as the column number, has the largest magnitude in

each row (may be most negative or most positive number). An off-diagonal element

in the matrix defines the strength of the relation between the element corresponding

to the row with the element corresponding to the column. The number of nonzero

values in a row corresponds to the number of elements used to compute the derivative,

which is also related to the number of bands in the coefficient matrix. Sparse matrices

are ideal to work with because they require much less storage in memory as well as

less computation. The multiplication of a vector by a matrix is much quicker if most

of the matrix values are zero and may be skipped.

A symmetric matrix is one that is equal to its transpose,

A = AT , (2.55)

which means for an element (i, j), Ai,j = Aj,i. Symmetric matrices are advantageous

because only the main-diagonal and the elements above (or below) it must be stored,

for a savings of about half. The product of a matrix and its transpose is always

symmetric, which can be seen by

(AAT )T = (AT )T (A)T

= AAT ,

noting the reverse order of terms when distributing the transpose operator. A Her-

metian matrix is one that is equal to its complex transpose, A = A∗. Since we are

concerned with real matrices only, the transpose and complex transpose are identical.

A positive-definite matrix is the matrix analog to a positive number. For any

arbitrary, nonzero vector of length n (∀~x ∈ <n×1), an n×n matrix (A ∈ <n×n) is

positive-definite if

~xTA~x > 0. (2.56)

A semi-definite matrix is one that may yield zero for this product.
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An SPD matrix is a matrix that has both symmetric and positive-definite prop-

erties. These matrices, especially when sparse, are an ideal matrix to work with for

solving iterative systems. Such matrices often occur in practice; the standard, five-

point discretization of the diffusion equation is SPD. An SPD matrix can be inverted

with some of the most efficient solvers.

2.5.3 Krylov Methods

Krylov methods are some of the most powerful and efficient iterative solvers avail-

able today. When using them, it is not necessary to form the matrix explicitly, and

they avoid any matrix-matrix multiplication, which is a costly function. Instead, a

Krylov method’s most costly operation is matrix-vector products. Another reason for

their efficiency is that these algorithms work with vectors as opposed to an element-

by-element method, such as Gauss-Seidel, making them efficient on modern pipelined

CPU architectures.

A Krylov subspace is achieved by a power series: repeated multiplications of a

matrix by a vector. For a typical Krylov method, the matrix is the coefficient matrix

(A) and the vector is the RHS of Equation (2.52) (~b). The ith Krylov subspace is

defined as

Ki(A,~b) = span
{
~b,A~b,A2~b, ...,Ai−1~b

}
. (2.57)

A Krylov based numerical solver adds one more dimension to its vector-space with

each iteration. The first iteration has a very small vector space, K1 = {~b}, and the

second has just two vectors to span the subspace, and so on. The matrix A need

never be multiplied with itself, since the multiplications build with each iteration

(i.e., ~v0 = ~b, ~v1 = A~v0, ~v2 = A~v1, . . . ). Although the vector-space of a Krylov

method grows with each power of iteration, the vectors are not orthogonal, sometimes

having a large projection onto each other. Therefore, Krylov methods implement an

orthogonalization algorithm, such as Gram-Schmidt, to form an orthonormal basis

for the vector-space. Let the set {~p0, ~p1, . . . , ~pi−1} be an orthonormal basis to the

Krylov subspace Ki. This basis spans the Krylov subspace as well,

Ki(A,~b) = span
{
~b,A~b,A2~b, ...,Ai−1~b

}
= span{~p0, ~p1, . . . , ~pi−1},

with the property that ~pj · ~pk = δj,k where δj,k is the Kronecker delta function.

A Krylov method for an n×n system theoretically converges in at most n steps,
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while in practice convergence can occur in many fewer steps. As with most iterative

methods, convergence can be accelerated with preconditioning or a good guess of the

solution. Krylov methods can be used to solve the matrix equation (A~x = ~b) or the

eigenvalue equation (A~x = λ~x). Common Krylov methods for eigenvalue equations

are Lanczos for Hermitian matrices and Arnoldi for non-Hermitian matrices [207].

Krylov methods for solving the matrix equation for non-Hermitian matrices include

GMRES, while a Hermitian matrix can be solved with the conjugate gradient method

[207]. Some Krylov methods, like GMRES [188], require the storage of an additional

vector for each iteration, which makes the solver become more costly with increasing

accuracy. The conjugate gradient method, however, has a constant storage footprint,

regardless of the number of iterations.

2.5.3.1 Conjugate Gradient

Introduced by Hestenes and Stiefel in 1952 [92], conjugate gradient (CG) is a

Krylov subspace method for SPD matrices. The SPD requirement is restrictive and

prevents CG from being applied more generally. However, CG is an excellent choice

whenever applicable [49]. Properties of CG include rapid convergence, numerical

stability, dependence of each step on the original data (i.e., the matrix A), and that

at any step, one can restart the algorithm using the previous solution as an initial

guess [92]. This section elucidates the essence of how CG works.

Mathematical definitions. Before we proceed further, we introduce some mathe-

matical notation. While a basis does not have to be orthogonal, no basis vector can

be zero or parallel to another basis vector. Let the set {~pi}ni=1 form a basis for a

vector space of n vectors, with each vector having n elements. Any arbitrary vector

~u can be written as a linear combination of the basis vectors, using a set of scalars,

{αi}ni=1, as shown,

~u = α1~p1 + α2~p2 + · · ·+ αn~pn. (2.58)

The magnitude of a vector is defined as

‖~u‖ =
√
u2

1 + u2
2 + u2

3 + · · ·+ u2
n. (2.59)

Let us define an inner product between two vectors of length n as

〈~u,~v〉 = ~u · ~v = ~uT~v = u1v1 + u2v2 + · · ·unvn. (2.60)
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Two nonzero vectors are orthogonal or normal if their inner product is zero, 〈~u,~v〉 = 0.

The inner product of a vector with itself gives its magnitude squared,

〈~u, ~u〉 = ‖~u‖2 . (2.61)

Equation (2.60) is the standard inner product, but an inner product can be defined

with respect to other spaces. For the CG method, we introduce the A-norm, the inner

product space for the real matrix A. Let us define this as

〈~u,~v〉A = 〈~u,A~v〉 = 〈AT~u,~v〉 = 〈A~u,~v〉, (2.62)

where a transpose has already been defined, and the last equality is true because A

is symmetric (SPD). Two nonzero vectors that have a zero A-norm (〈~u,~v〉A = 0) are

called A-orthogonal or conjugate. Indeed, this is what ‘conjugate’ refers to in CG.

Algorithm and properties. With these definitions in place, we now present the

CG algorithm. The following algorithm solves Equation (2.52), A~x = ~b, where ~pi are

basis vectors or search directions, ~ri are residual vectors, and αi and βi are a set of

scalars. A residual vector is defined as ~ri = ~b−A~xi, where ~xi is the solution estimate

for the current iteration.

CG Algorithm

Initialize

~x0 = 0 (x0 can be defined on input, default is zero)

~p0 = ~r0 = ~b−A~x0

Loop

αi =
〈~pi, ~ri〉
〈~pi, ~pi〉A

~xi+1= ~xi + αi~pi

~ri+1 = ~ri − αiA~pi
βi = −〈~ri+1, ~pi〉A

〈~pi, ~pi〉A
~pi+1 = ~ri+1 + βi~pi

The initial guess can be random, zero, or a user input. An initial guess of a zero

vector is assumed in this section for simplicity. Each iteration of a loop involves one

matrix-vector multiplication (A~pi), which is the most computationally intensive part

of the algorithm. As is written above, each vector (~xi, ~pi, and ~ri) as well as each

scalar (αi and βi) must be stored. However, in practice, one needs to store one vector
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each for the solution, residual, and search-direction, as well as a single value for the

scalar α and a single value for β (i.e., not one for each i). The only additional stored

values needed are the previous and current residual magnitudes. For the highest

performance, the matrix A does not need to be formed, only a procedure to store the

result of multiplying the sparse matrix A with the current step’s search direction, ~pi,

is needed.

A large number of properties and relations can be written down for this algorithm,

none more important than the following two. CG produces a set of orthogonal residual

vectors and a set of mutually conjugate basis vectors [207], shown as follows:

〈~ri, ~rj〉 = 0 j 6= i (2.63a)

〈~pi,A~pj〉 = 0 j 6= i. (2.63b)

The implication is that each iteration searches for the solution in a new or orthogonal

direction in the Krylov space. In other words, the search process chooses the most

efficient direction to search. Having already found the closest solution for the previous

Krylov subspace (Ki−1), the algorithm looks in the new direction afforded by the

current Krylov subspace (Ki), which is conjugate to the previous subspace. There

are two important forms for both αi and βi:

αi =
‖ri‖2

〈~pi,A~pi〉
=
〈~pi, ~ri〉
〈~pi,A~pi〉

(2.64a)

βi =
‖ri+1‖2

‖ri‖2 = −〈~ri+1,A~pi〉
〈~pi,A~pi〉

. (2.64b)

Initial studies by Hestenes and Stiefel [92] show that the expressions furthest to the

right obtain better results with respect to round-off behavior, especially in poorly

conditioned systems. Equation (2.64b) comes from substituting in ~ri+1 = ~pi+1 − βi~pi
with both Equation (2.63) and Equation (2.64a), and Equation (2.64a) is found in

the proof of Equation (2.63a).

While the ‘conjugate’ part of ‘conjugate gradient’ has already been explained, it is

not clear what ‘gradient’ is referring to. This comes from viewing the problem as one

of optimization. The function being optimized, sometimes called the natural energy
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function [203], is defined as

φ(~x) = 1
2
〈~x, ~x〉A − 〈~x,~b〉

= 1
2
〈~x,A~x〉 − 〈~x,~b〉

= 1
2
~xTA~x− ~xT~b. (2.65)

Taking the gradient of this function is as straightforward as if we assume we had a

scalar function, d
dx

(1
2
Ax2 − bx) = Ax − b [203]. Hence, the gradient of the natural

energy function is defined as A~x−~b. Fundamental calculus states that the maximum

or minimum of a function occurs where the derivative is zero. Because A is SPD

(positive-definite), the energy function must be a minimum, not a maximum [206].

Therefore, the minimum of the energy function is when ~x = ~u, where we define ~u as

the exact solution. The function φ(~x) is called the natural energy because minimizing

the energy equation solves A~x = ~b. Finding ~x = ~u solves the matrix equation as well

as optimizes the natural energy function. For this reason, the CG method can be

viewed as a linear solver and/or as an optimizer. It can be shown that the choice

for αi ensures that the optimal step length is chosen along each search direction, and

when the function φ(~x) is minimized over ~x, it is minimized over the entire vector

space [207].

Expounding the algorithm. All necessary formulas, expressions, and definitions

needed for the CG method have been introduced. In the following, we restate the

loop part of the algorithm and then explicate what each step is doing.

αi =
〈~pi, ~ri〉
〈~pi,A~pi〉

(2.66a)

~xi+1 = ~xi + αi~pi (2.66b)

~ri+1 = ~ri − αiA~pi (2.66c)

βi = −〈~ri+1,A~pi〉
〈~pi,A~pi〉

(2.66d)

~pi+1 = ~ri+1 + βi~pi (2.66e)

In Equation (2.66a), αi is a scalar that weights how far along the ~pi direction that

~xi+1 must be adjusted for optimal stability and convergence. It is the ratio of the

projection of ~pi onto ~ri with the A-norm of ~pi.

The approximate solution, Equation (2.66b), is updated by adding the next weighted

basis vector, ~pi, which was calculated in the previous iteration. This step is straight-
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forward since ~x is expressed as a weighted sum of the basis for the current Krylov

subspace, as in Equation (2.58). Another way to view Equation (2.66b) is that the

search-direction ~pi is a scalar multiple of the gradient of ~xi (αi~pi = ~xi+1 − ~xi). This

means that ~pi goes in the direction of the gradient of the evolution of approximate

solution, ∆~xi = ~xi+1 − ~xi.
The residual, Equation (2.66c), is updated by subtracting the new, weighted basis

vector after multiplication by A. Since the solution update is αi~pi and the residual

is defined as ~ri = ~b − A~xi, the residual update is simply −αiA~pi. This can also

be looked at as the step that enforces the A-orthogonality because this is where the

contribution from the A~pi term is removed, and the subsequent search-directions are

equated to the residual (Equation (2.66e)). A-orthogonality ensures that each new

residual is conjugate to the current Krylov subspace, while Equation (2.63a) ensures

that each new residual is orthogonal to all previous residuals.

Equation (2.66d) is a scalar weight chosen to help select the next search-direction.

The specific choice of βi allows for the optimal solution of the energy function for

each step, although different choices could be made for different CG-like methods.

The last step of the algorithm, Equation (2.66e), is the most subtle, however

certain substitutions help illuminate what is happening. Substituting ~p0 = ~r0 and

Equation (2.64b) into Equation (2.66e), the following can be obtained,

~p1 = ~r1 +
‖~r1‖2

‖~r0‖2~r0

~p2 = ~r2 +
‖~r2‖2

‖~r1‖2

(
~r1 +

‖~r1‖2

‖~r0‖2~r0

)
= ~r2 +

‖~r2‖2

‖~r1‖2~r1 +
‖~r2‖2

‖~r0‖2~r0

~p3 = ‖~r3‖2

[
~r3

‖~r3‖2 +
~r2

‖~r2‖2 +
~r1

‖~r1‖2 +
~r0

‖~r0‖2

]
...

~pi = ‖~ri‖2
i∑

j=0

~rj

‖~rj‖2 = ‖~ri‖2
i∑

j=0

r̂j,

where r̂j is the normalized residual. Since the residuals are mutually orthogonal,

Equation (2.63a), the ith search direction (~pi) is formed from an orthonormal ba-

sis. The residuals themselves account for the A-orthogonality, Equation (2.66c).

Therefore, each new residual ~ri+1 is conjugate to the previous Krylov space, Ki =

span{~r0, ~r1, ..., ~ri}. Consequently, Equation (2.66e) creates a vector that is mutually

conjugate with all previous search directions as well as A-orthogonal to the previous
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Krylov space, making it a basis vector as well.

Each step of the CG algorithm has been explained. Starting from any initial

guess, the algorithm finds the optimal search direction in a manner similar to the

method of steepest decent, but in the A-norm. Each residual vector is orthogonal to

all previous residuals, and each search direction is conjugate to the previous Krylov

subspace. Choosing a stopping criterion for CG is not straightforward. The most

obvious criterion, requiring that the Euclidean norm of the residual (‖~r‖) is smaller

than some value, is often sufficient. However, the residual is not the best measure

for accuracy because the residual is not the function being minimized [92]. Effective

choices of stopping criterion for the CG are an active area of research [9, 10, 11].

While a good initial guess will quickly converge on the solution, the CG method can

be accelerated with a preconditioner. Multigrid preconditioners are often used with

CG in practice [1, 27, 114, 174, 206]. The problems considered in this dissertation

converge in a small enough number of iterations that we do not find preconditioners

to be necessary. However, many simplifications are made (e.g., no source terms, no

interface dynamics, small domains), and preconditioners would be necessary in the

more complicated cases.

There are many CG variants and related methods, such as bi-conjugate gradient,

but the heart of the method remains as described in this section. If the coefficient

matrix is not SPD, one could make the system SPD by multiplying by the transpose,

giving a matrix equation of

ATA~x = AT~b.

However, squaring the matrix in this manner also squares the conditions number

[207], which makes a poorly conditioned system worse. Additionally, the extra steps

of multiplying by the transpose (a matrix-matrix multiplication) may prove too costly,

in which case a matrix that is not SPD can be solved by GMRES.

2.6 Summary

This marks the end of the Background and History chapter. We have introduced

diffusion and fluid dynamics, as well as given examples of these phenomena in ap-

plied problems. We then discussed radiation transport, including the RTE and some

common approximations of the RTE, including the diffusion approximation. We then

discussed our motivation for highly discontinuous diffusivity problems, notably the

diffusion approximation of radiation transport for the CRASH project. We were able

to mathematically relate the diffusive radiation transport with heat conduction, en-
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abling us to focus on a simpler case, while retaining applications to radiation transport

and multiphase flow. We gave a detailed literature review of previous work involving

either highly discontinuous coefficients or mixed cells. We concluded with a discussion

of iterative methods for solving differential equations, with a particular emphasis on

the conjugate gradient method.

A single temperature and a multi-temperature mixed-cell model for highly discon-

tinuous multiphase, diffusive systems, solved with the CG method, are presented in

Chapters III-IV. Numerical results for these models are presented in Chapters V-VIII.
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CHAPTER III

Single-Temperature Methods

This chapter presents three single-temperature models to treat mixed cells for a

2D heat diffusion problem, as well as a detailed derivation of the Support-Operators

Method (SOM) [95, 99, 132, 151, 152, 185, 198] applied to the problem. We note

that it is customary in SOM to use 3D terminology even in 2D, so a volume has

units of length squared, an area has units of length, etc. Section 3.1 specifies the

single-temperature mixed-cell models. The first is a standard method (S1), while the

second (S2) and third (S3) represent new work. All three models are implemented

using SOM, which is detailed in Section 3.2. The chapter concludes with a summary

in Section 3.3.

The S1 method homogenizes the diffusivities in a mixed cell by taking the har-

monic mean of the diffusivity of each phase, weighted by volume fraction. S2 is based

on a rotated tensor diffusivity, where a subcell interface is modeled using the tensor

properties of the diffusivity. S3 is a ‘split-zone’ method, where the shape matrix

allows each corner of a cell to have a unique diffusivity and volume fraction.

Although the S1 and S2 models may be solved with a variety of computational

methods, we chose SOM for their numerical implementation. SOM is a fitting choice

because it remains second-order accurate even with strong jumps in the scalar or

tensor diffusivities (for pure cells). Consequently, the code based on SOM could

implement all three models, giving a consistent framework to compare the methods.

SOM is general enough to treat non-orthogonal meshes, including those having

more than four faces per cell in 2D (and more than six faces in 3D). However, our

implementation of SOM is restricted to orthogonal grids. While this is a more com-

plicated method than is necessary for the S1 model, its ability to treat the S2 and S3

models justify its use. Moreover, SOM is well suited for problems with discontinuous

diffusivities. SOM can treat hanging nodes generated from adaptive mesh refinement

(AMR) (see Figure 2.1(b) for an example) in 2D or 3D for x-y or r-z coordinates,
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and it is a natural choice to couple with a Lagrangian hydrodynamics code, making

it a viable method for coupled diffusion-hydrodynamics problems. The primary dis-

advantage of using SOM compared to standard finite difference methods (FDM) is

the larger number of unknowns, which may increase computational cost; SOM inputs

and outputs cell-centered values, but computations are performed at the more nu-

merous cell-faces. However, this is offset by increases in accuracy and computational

efficiency per degree of freedom.

3.1 Three Single-Temperature Models

3.1.1 S1 - Harmonic-Mean Diffusivity

The harmonic-mean method (S1) is included as a reference model in the compar-

ison, along with the new models presented in this dissertation. The harmonic-mean

model has been similarly considered as a reference for mixed-cell analysis in the past

[86, 216]. Additionally, it is a sensible comparison because mixed cells are treated in

this manner in most methods that do not explicitly treat subcell interfaces. Justifica-

tion for the use of the harmonic mean for a mean diffusivity is described by Pantankar

[166], and is now common practice, although there is evidence that the harmonic mean

is not always the best option in nonlinear heat conduction [105]. Furthermore, when

two adjacent pure cells on an orthogonal grid have different diffusivities, SOM results

are identical to the harmonic-mean model, and therefore the effective diffusivity set

by the harmonic mean can be considered a reasonable approximation for diffusion in

and near mixed cells.

3.1.2 S2 - Rotated Tensor Diffusivity

While the S1 model converges to SOM when there are no mixed cells, when

mixed cells are present, it loses the anisotropy in the effective diffusivity that should

be present. The rotated tensor diffusivity method (S2) retains the anisotropy of the

diffusivity by exploiting the tensor form of the diffusion coefficient. In this model, dif-

fusion near an interface between two different homogeneous phases, each with scalar

(isotropic) diffusivity, is modeled with an anisotropic diffusion tensor, with flux tan-

gent and normal to the interface given by the arithmetic and harmonic means, re-

spectively. We define the arithmetic mean (DA) and harmonic mean (DH) of two
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diffusivities as

DA = D‖ = f1D1 + f2D2 (3.1a)

DH = D⊥ =

[
f1

D1

+
f2

D2

]−1

, (3.1b)

where fi is the volume fraction of phase i (f1 + f2 = 1), and Di is the diffusivity of

phase i. The arithmetic mean of a large and a small number yields a value similar

to the large number; on the other hand, the harmonic mean yields a value similar to

the small number.

D⊥
D‖

(a)

θ

D⊥ D‖

(b)

Figure 3.1:
S2 model (rotated tensor diffusivity) for mixed cells in the single-

temperature method. This model specifies the diffusivity tensor in terms

normal and tangent to the interface for a mixed cell (33% volume frac-

tion shown), with phase 1 shown in blue and phase 2 shown in red. The

angle θ is defined as the angle between the interface normal and the y-

axis. The examples shown have (a) θ=0◦ and (b) θ=33.7◦. Parallel and

perpendicular are defined with respect to the interface.

Figure 3.1 shows two examples of mixed cells configurations to help explain the

S2 model, with phase 1 shown in blue and phase 2 shown in red. Figure 3.1(a) shows

a mixed cell where the interface is aligned with the x-axis. Flux in the x-direction

(parallel to the interface) is dominated by the larger diffusivity, in which case the

rule of mixture for diffusivity gives the arithmetic mean. Flux in the y-direction

(perpendicular to the interface) is limited by the smaller diffusivity since the flux of
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species must pass through both phases, in which case the rule of mixture gives the

harmonic mean. Thus, for the mixed cell in Figure 3.1(a), the diffusivity tensor is

specified by

D =

[
D‖ 0

0 D⊥

]
. (3.2)

The key concept of the S2 model is evident when considering Figure 3.1(b). In this

case, applying the 2D rotation matrix specifies the diffusion tensor,

R =

[
cos θ − sin θ

sin θ cos θ

]
, (3.3)

to the diffusion tensor in Equation (3.2), which gives

DS2 = RDR′ (3.4a)

=

[
D‖ cos2 θ +D⊥ sin2 θ 1

2
(D‖ −D⊥) sin 2θ

1
2
(D‖ −D⊥) sin 2θ D‖ sin2 θ +D⊥ cos2 θ

]
, (3.4b)

where θ is the angle between the interface normal and the y-axis. The geometric

information required for this model is the volume fraction of each phase as well as

the vector normal to the interface. In a Volume of Fluid (VoF) method, the volume

fractions are given naturally, but the interface must be reconstructed (typically with

a linear approximation) in order to approximate the interface normal. In level set

methods (LSM), the interface normal is given naturally as the direction of the gradient

of the level-set function, and the volume fractions can be calculated. Although the

author is not aware of any other application of the rotated diffusivity tensor to a

mixed-cell model, the rotated diffusivity has been used for test problems [56, 99, 197].

Berger and LeVeque [20, 21] present a similar idea, where the coordinate system is

rotated via an isoparametric coordinate transform in order to describe the flux parallel

and perpendicular to the interface.

3.1.3 S3 - Split-Zone Diffusivity

The split-zone method (S3) effectively gives one ‘free’ mesh refinement in a mixed

cell with little additional computational cost when using SOM. However, SOM itself

is more costly than other methods, and thus the ‘free’ refinement is in comparison

to SOM without split zones, not to the standard FDM discretization of the diffusion

equation. Every element or cell in SOM has a diffusivity-dependent shape matrix
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(a) (b) (c)

Figure 3.2:
Three of the four classes of configurations that arise in the S3 (split-zone)
model for mixed cells in the single-temperature method. The S3 model
divides a mixed cell into four virtual subcells associated with each corner
of the cell such that the volume of each phase is conserved. Note that
only the phase and volume of each virtual subcell determine the diffusivity
assigned at the associated cell corner in the S3 model; the orientation is
for visualization purposes only. The top row shows the mixed cell and
the bottom row shows the corresponding virtual subcells. The classes
are distinguished by how the interface crosses the cell: the interface (a)
crosses opposite faces (case (i)), (b) crosses one corner (case (ii)), and
(c) crosses adjacent faces (case (iii)). The majority phase, phase 1, is
rendered in blue, while the minority phase, phase 2, is rendered in red.

that contains information specific to that cell only (diffusivities, volume, angles of

corners). This shape matrix considers the region associated with each corner of a

cell separately, a feature that can be exploited to specify a different diffusivity and

volume in the virtual subcell associated with a corner. The sum of the total volume

and phase volumes of all virtual subcells within a cell must equal those of the cell.

For a pure cell, the diffusivities associated with all four corners are equal to the pure

cell value, and the corresponding subcell volumes are simply ∆x∆y/4. The split-zone

method takes advantage of an intrinsic capability of SOM, while not altering any

of the properties or procedures of SOM. Although Morel, Hall, and Shashkov [151]

mention that each corner can have a different diffusivity and that choice of volume
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(a) (b) (c) (d)

Figure 3.3:
The fourth class of configurations for the S3 (split-zone) model for mixed
cells in the single-temperature method (case (iv)). This case is when the
interface crosses two corners, as shown in (a). Note that only the phase
and volume of each virtual subcell determine the diffusivity assigned at the
associated cell corner in the S3 model; the orientation is for visualization
purposes only. Figures (b) and (c) show two ways to split this cell while
preserving phase volumes and minimizing the ambiguous regions. Both
options result in a large and small rectangle (3/8 and 1/8 of the cell
volume) of each phase. The NW and SE virtual subcells clearly belong to
one of the two phases, defining the diffusivities at these corners, but the
SW and NE corners have two possible assignments of the phases. Case
(d) resolves the ambiguity of phase assignments in the NE and SW virtual
subcells via a harmonic-averaged diffusivity (shown as purple).

weights is flexible, to this author’s knowledge, this capability of SOM has not been

previously applied to a mixed-cell model.

Figures 3.2 and 3.3 show how the split-zone method approximates a mixed cell

containing a linear interface as four virtual subcells. The four classes of interfacial

configurations are: (i) interface crosses opposite sides of cell, (ii) interface crosses

one corner, (iii) interface crosses adjacent sides of cell, and (iv) interface crosses two

corners. While we will only discuss the orientations shown in these figures, each of

these cases has between two and eight degenerate versions, found through rotation

and/or reflection. Note that case (iv) results in two mixed and two pure virtual

subcells, whereas all other cases result in four pure virtual subcells.

The areas of each cell face are not affected by the split-zone method; the surface

area of each phase is found by interface reconstruction. The contribution of the virtual

subcells is defined by the shape matrix, which is derived in Appendix B. Surface terms

do not appear with the shape matrix, only the volume, phase, and corner angles. The

purpose of the shape matrix is to account for effects from non-orthogonal corners, thus

an orthogonal grid would give equal terms in each subcell. As mentioned earlier, the
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S1 and S2 models are also solved using SOM; these cases use identical diffusivities and

volumes (∆x∆y/4) in all four subcells for the shape matrix in each cell. For mixed

cells only, the S3 model defines a different diffusivity and volume in each subcell for

the shape matrix (pure cells use the same values in the four subcells).

The particular implementation of specifying the volume of each virtual subcell

is given in Appendix A. Our implementation is based on the VoF method to track

volume fractions, which is then used to reconstruct interfaces using a linear approxi-

mation, but other methods such as LSM can be applied. There are a variety of means

to calculate the subcell volumes, and one method may prove more accurate than an-

other. We have attempted to reduce the mixed virtual cell volumes as discussed in

Appendix A. Finding an optimal, most accurate approach represents an important

next step to the development of the S3 model, whereas this thesis provides a ‘proof

of concept’ for the S3 model.

We summarize the split-zone formulae for the orientations shown in Figures 3.2

and 3.3, which are developed in Appendix A. Alternate orientations have analogous

formulae. Some of the cases (when interface crosses opposite or adjacent faces) are

specified in terms of surface fractions, the percentage of a face occupied by a particular

phase. The surface area of the top face, for example, is specified in terms of the surface

fraction as AT = aT∆x. Note that the following equations are written in terms of the

majority phase, i.e., f ≥ 1/2, and in all cases, VLT + VLB + VRT + VRB = ∆x∆y.

Crosses opposite sides. The diffusivities are DLT = DLB = D1 and DRT = DRB =

D2, and the subcell volumes are

VLT =
1

4

3aT + aB
aT + aB

f∆x∆y (3.5a)

VLB =
1

4

aT + 3aB
aT + aB

f∆x∆y (3.5b)

VRT =
1

4

3(1− aT ) + (1− aB)

(1− aT ) + (1− aB)
(1− f)∆x∆y (3.5c)

VRB =
1

4

(1− aT ) + 3(1− aB)

(1− aT ) + (1− aB)
(1− f)∆x∆y. (3.5d)

Crosses one corner. The diffusivities are DLT = DLB = D1 and DRT = DRB = D2,
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and the subcell volumes are

VRT =
1

4
(1− f)∆x∆y (3.6a)

VRB =
3

4
(1− f)∆x∆y (3.6b)

VLT =
1

4
(1 + f)∆x∆y (3.6c)

VLB =
1

4
(3f − 1)∆x∆y. (3.6d)

Crosses adjacent sides. The diffusivities are DLT = DLB = DRT = D1 and

DRB = D2, and the subcell volumes are

VRB = (1− f)∆x∆y (3.7a)

VLB = p(1− q)∆x∆y (3.7b)

VLT = (1− p)q∆x∆y (3.7c)

VLB = (1− p)(1− q)∆x∆y, (3.7d)

where

p =

√
(1− aR)(1− f)

(1− aB)
(3.8a)

q =

√
(1− aB)(1− f)

(1− aR)
. (3.8b)

Crosses two corners. The diffusivities are DLT = D1, DRB = D2, and DLB =

DRT = 2D1D2

D1+D2
. The subcell volumes are

VRB =
3

8
∆x∆y (3.9a)

VLB =
1

8
∆x∆y (3.9b)

VLT =
3

8
∆x∆y (3.9c)

VLB =
1

8
∆x∆y. (3.9d)
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3.2 Support-Operators Method

SOM is not a specific computation method but is a technique to build a discretiza-

tion of partial differential equation (PDE) using mimetic finite difference methods

(MFD). Note that ‘mimetic’ is not equivalent to ‘memetic,’ which is an unrelated al-

gorithm. MFD retain the vector-calculus mathematical properties of the continuum

equation better than FDM. In standard FDM, the governing PDE is discretized and

solved. MFD, however, first discretize vector-calculus operators while maintaining

an integral identity, then build the differential equation using these operators, and

subsequently solve the system. This extra step of creating invariant operators has nu-

merous advantages, such as preserving certain continuum properties [151, 198] which

will be discussed shortly.

Although we are technically applying a local SOM to discretize the diffusion equa-

tion in order to create a mimetic algorithm, we shall refer to the algorithm as simply

“SOM,” even though SOM is more general. The implementation of SOM used in

this thesis is to solve the time-dependent, linear diffusion equation on a uniform,

rectangular mesh. SOM could also model time-independent or nonlinear diffusion

[151]. Additionally, SOM can be applied to many PDEs, such as Maxwell’s equations

involving divergences and curls of the electric and magnetic fields [198]. Furthermore,

one of most the useful features of SOM is the flexibility for grid choice, such as han-

dling 2D non-uniform or unstructured grids with quadrilateral, triangle, or polygonal

cells (and hexahedral or polyhedral grids in 3D).

In this section, we present the details of the specific SOM implemented in our work.

Detailed references to SOM and the more general MFD can be found in Section 2.4.3.3.

However, fundamental references for SOM and those that were particularly valuable

for this dissertation include References [95, 99, 132, 151, 152, 185, 198].

This SOM section is outlined as follows. We start in Section 3.2.1 by listing

some important properties of this method. Section 3.2.2 shows the derivation of the

operators in the continuum space. This section is useful when developing the math-

ematical comprehension and justification of the internal mechanisms of the method.

Section 3.2.2.1 defines two specific inner-product spaces (Hilbert spaces) as well as an

integral identity. This step leads to the two main operators of the method, divergence

and gradient operators, which are adjoint to each other in the specified inner-product

spaces. Section 3.2.2.2 shows how to construct the PDE in terms of these operators,

expressing the system of equations in a single operator equation, ACU = B, where

AC is an SPD operator.
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All subsequent steps occur in Section 3.2.3, which details the discrete derivation

of the method. This section is most informative to those who are generating actual

code. The discrete derivation begins in Section 3.2.3.1 with the discretization of the

integral identity, which creates discrete analogs of the inner-product spaces. The

key for this step is to maintain important properties of the continuum inner-product

spaces. This step involves creating a discrete version of the divergence operator, which

is perhaps the most complicated step of SOM. We do not discretize the modified

gradient operator, but instead use the adjoint property to define it in terms of the

divergence operator. As a result, the divergence operator is the prime operator and

the modified gradient is the derived operator. The prime operator in SOM is the

operator discretized directly from the integral identity; the derived operator is only

specified in terms of the prime operator, due to the adjoint relationship of these two

operators. The namesake ‘support operators’ refers to this prime and derived operator

relationship.

The PDE is then discretized for a single cell in Section 3.2.3.2, which creates unique

face-centered unknowns on all four faces of every cell, yielding five unknowns in each

cell (one cell-centered and four face-centered). The case with both an orthogonal mesh

and scalar diffusivity would allow elimination of the face-centered unknowns, resulting

in one unknown per cell. However, since we use a full-tensor diffusivity, the equations

for the face-centered values are coupled such that they cannot be eliminated. Instead,

the cell-centered values are eliminated in Section 3.2.3.4, resulting in four unknowns

per cell.

The final step, detailed in Section 3.2.3.5, is to form a global system. The global

system connects adjacent mesh cells by enforcing continuity of temperature and flux

at faces, which is equivalent to maintaining the adjoint relationship in the global

system. This leads to a system of equations with a symmetric positive-definite (SPD)

coefficient matrix. The system solves for a vector of face-centered unknowns, which

are used to calculate the cell-centered value for each cell. In 2D, the number of

face-centered unknowns is approximately double the number of unknowns for a cell-

centered system. The only unknowns needed from the previous time-step are the cell-

centered values, meaning the face-centered values are used only as an intermediate

step and do not need to be stored.

3.2.1 Properties of SOM

There are many choices and options when constructing SOM, such as the co-

ordinate system, dimension, and mesh type (orthogonal, quadrilaterals, polygons,
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unstructured, etc.). There are also two main technique options: the global SOM,

where the system consists only of cell-centered unknowns, and the local SOM, where

the system has both cell-centered and face-centered unknowns. A local stencil results

in a sparse, banded matrix because cells are coupled only with neighbors that are

spatially close rather than a global stencil where each cell is coupled to all others.

The following discussions apply to the specific formulation of SOM employed in

our work. However, the consideration of non-orthogonal grids is retained so that it

can be applied to a general quadrilateral mesh, even though this present work uses

only orthogonal grids. Since SOM is a mimetic method, certain properties of the

continuum problem (e.g., the gradient operator gives zero only when applied to a

constant field) are maintained in its discrete form.

The most important properties associated with the specific SOM in the absence

of mixed cells are [99, 152, 198]:

1. The finite difference scheme is conservative.

2. The finite difference scheme is second-order accurate for both smooth and non-
smooth meshes, with or without phase discontinuities.

3. The system has both cell-centered and face-centered temperature unknowns.

4. The discrete diffusion operator, A, is SPD for Dirichlet, Neumann, and Robin
boundary conditions.

5. A is sparse due to a local stencil at the cost of requiring face-centered unknowns.

6. A is the composition of the discrete divergence operator, D, and the discrete
flux operator, G.

7. The discrete flux operator is adjoint to the discrete divergence operator, i.e.,
G = D∗.

8. D of a constant vector is zero for any grid.

9. The null space of G consists only of constant functions.

10. G is exact for linear functions if D is piecewise constant.

11. The normal component of flux, F⊥ = ~F · n̂, is continuous across phase discon-
tinuities.

12. The tangential component of flux, F‖, may or may not be continuous along
phase discontinuities.

13. Discontinuous isotropic (scalar) diffusivities (D) reduce to the harmonic average
of the two adjacent cells for flux across the face between them for rectangular
grids, as in the standard FDM.
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14. All discrete operators reduce to a standard finite differencing for rectangular
grids.

15. All discrete operators are linear.

Note that the diffusivity tensor, D, the scalar diffusivity, D, and the divergence

operator, D, are separate entities.

As mentioned, these properties assume that phase interfaces occur at the cell

boundaries. Each cell is assumed to be homogeneous (i.e., there are no mixed cells),

and phase properties can change abruptly only across cell boundaries. When mixed

cells are present, some of these properties, such as second-order accuracy, change.

These effects are explored in the numerical results (Chapters V-VIII), and, for now,

we present SOM as intended, with only pure cells.

The operators are coordinate invariant (defined with quantities like volume, area,

and angle), meaning the operators can be applied to any coordinate system merely

by changing the formulas for these invariant quantities [95, 99, 198]. Accordingly,

SOM can be applied to any coordinate system with much less effort than is typically

required to change coordinate systems.

SOM creates a flux operator that is the adjoint to the divergence operator by

defining an inner-product space weighted by the inverse of the diffusivity. Mixed FEM

[7, 12, 33, 43, 178, 213] also define an inner-product space weighted by the inverse

diffusivity. The inclusion of D−1 in the inner-product space is what allows SOM to

handle discontinuous coefficients accurately [99, 198]. Physically, the diffusion tensor

must be SPD, guaranteeing the existence of its inverse.

Morel et al. [152] discusses how the relationship between SOM and FEM is not

just the similarly weighted inner product. For example, mixed FEM preserves the

volume integral of the diffusion equation over each spatial cell, just like SOM. Mixed

FEM are a class of FEM with a variety of specialized properties, such as being cell-

centered and maintaining flux continuity with anisotropic, discontinuous diffusivity

tensors [33, 178, 213]. The temperature unknowns at the cell centers in these FEM

lead to an indefinite matrix that is difficult to solve [152]. This is similar to the global

variant of SOM that has only cell-centered unknowns and yields a dense matrix. If

FEM enforce continuity of temperature and the normal flux at the face-centers (rather

than vertices), one can eliminate the continuity requirement from the trial-space and

impose it with Lagrange multipliers. This results in an SPD system with both cell-

centered and cell-edge temperature unknowns, very similar to SOM. In this case, the

Lagrange multipliers can be shown to be equivalent to the face-centered unknowns

in SOM [152]. However, SOM does not use basis functions in the formalism, and
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therefore it is fundamentally a FVM, despite some similarities to FEM discussed

above [151, 152].

The primary disadvantage to SOM is the need for face-centered values. This leads

to about twice as many unknowns as an equivalent cell-centered FDM. Additionally,

each cell has a small (4×4) system of equations that must be inverted in order to form

the global matrix. This additional computational overhead, as well as the increase in

the number of unknowns, leads to SOM being outperformed by simpler methods (such

as FDM) for problems with smooth meshes and continuous coefficients [185, 198]. On

that account, there is little advantage to using SOM for problems with smooth (or

rectangular) grids or smooth phase coefficients, as it offers comparable accuracy, but

with additional cost. However, SOM excels for problems with highly non-uniform

grids and/or coefficients that change rapidly in space, performing significantly better

than traditional FVM and FDM [99, 198]. For our purposes, SOM is apt because the

systems we consider have highly discontinuous coefficients, although we use a simple

rectangular mesh.

The cost is offset in three ways. First, the small system of equations that must be

inverted for each cell are independent from all other cells, enabling this computation

to be performed in parallel with high efficiency. Second, the SPD nature of the coef-

ficient matrix allows it to be solved with powerful and efficient linear matrix solvers

(e.g., multigrid-preconditioned conjugate gradient), with only half of the coefficients

needing to be stored [99, 198]. Third, because the method is second order, a smaller

grid size is needed to give the same level of accuracy as common first-order methods,

adding to the offset of the cost associated with larger number of unknowns.

3.2.2 Continuum Derivation of SOM

We here summarize the derivation of MFD applied to the diffusion equation by

the means of local SOM by starting with the continuum problem. We mainly follow

the steps described in [198]. We use a subscript C to distinguish continuum operators

from discrete operators that appear in Section 3.2.3. The system of equations that

describe diffusion in the volume V , bounded by surface ∂V , are

∂U

∂t
+ ~∇ · ~F = Q, on V (3.10a)

~F = −D~∇U, on V (3.10b)

αU + βD~∇U · n̂ = ψ, on ∂V , (3.10c)
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where the third equation is the Robin boundary condition, n̂ is the outward unit

normal to the boundary surface, and α, β, and ψ are functions on the boundary.

Additionally, U is a scalar temperature field, ~F is a vector flux, Q is a source or

driving function, D is the diffusivity. Introducing the standard inner-product of two

vectors as ~J · ~F = ( ~J, ~F ), the boundary conditions, after substituting the expression

for the flux, becomes

αU − β(~F , n̂) = ψ on ∂V . (3.11)

Note the equivalent expressions for the inner product of two vectors,

~J · ~F = ( ~J, ~F ) = ( ~J)T ~F , (3.12)

where the superscript T indicates the transpose.

The derivation of SOM depends on the following two properties of inner-product

spaces and adjoint operators [152, 198]: (i) the adjoint of an operator depends on

the specific definition of the associated inner-product spaces (Hilbert space) of that

operator; (ii) the adjoint is unique for a fixed inner product. Consequently, the

divergence and modified gradient are adjoint to one another in a particular inner-

product space. Moreover, the product of an operator and its adjoint is a Hermitian

(self-adjoint) positive-definite operator. The adjoint of an operator is the conjugate

transpose of the operator, which is just the transpose for a real operator.

Equations (3.10a), (3.10b), and (3.11) comprise the system to be solved via SOM.

To solve this system, we must first construct the vector-calculus operators, and then

build the PDE from these operators. The two most important operators for this flavor

of SOM are the divergence operator, DC , and the (modified) gradient operator, GC ,

which is also the flux operator.

Constructing these operators involves defining an integral identity and appropri-

ate inner-product spaces to express this identity, which is shown in Section 3.2.2.1.

Once the integral identity is defined in terms of a primary and derived operator, Sec-

tion 3.2.2.2 shows how to construct the PDE in terms of these operators, expressing

the system of equations in a single operator equation, ACU = B, where AC is an SPD

operator.
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3.2.2.1 Operators & Inner-Product Spaces

In this section we first derive a vector-calculus identity relating a vector and

a scalar. An inner product space is then introduced to express this identity. A

divergence and flux operator are then defined which express the integral identity in

the inner-product space.

The integral identity originates from evaluating the divergence of the product

between a vector and a scalar. Let W be a sufficiently smooth scalar and ~J be a

sufficiently smooth vector, each defined in the volume V and on the boundary ∂V .

The scalar-tensor product rules gives,

~∇ · (W ~J) = ~J · ~∇W +W (~∇ · ~J). (3.13)

Integrating this over volume yields,∫
V

~∇ · (W ~J)dV =

∫
V

~J · ~∇WdV +

∫
V

W (~∇ · ~J)dV (3.14a)∮
∂V

(W ~J) · n̂dS =

∫
V

~J · ~∇WdV +

∫
V

W (~∇ · ~J)dV, (3.14b)

where the Divergence theorem was applied to transform the LHS to a surface integral.

Finally, this identity is written using inner-product notation, giving∮
∂V

W ( ~J, n̂)dS =

∫
V

( ~J, ~∇W )dV +

∫
V

W (~∇ · ~J)dV. (3.15)

Equation (3.15) is a vector-calculus identity that is true for any sufficiently smooth

values of ~J and W in the volume V . We refer back to this equation often because

this is the general form of the integral identity that the SOM uses to relate the two

main operators.

Now Equation (3.15) is applied to our specific system by substituting W = U .

Keeping ~J as a general vector and moving some of the terms gives∫
V

U(~∇ · ~J)dV −
∮
∂V

U( ~J, n̂)dS = −
∫
V

( ~J, ~∇U)dV

= −
∫
V

( ~J,D−1D~∇U)dV, (3.16)

where D−1D = I, and I is the identity matrix. This is the integral identity we wish

to preserve using SOM. It embeds the relationship between the flux (vector) and

temperature (scalar), including the phase terms.
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In order to express Equation (3.16), two inner-product spaces must be introduced:

one for vectors (H) and another for scalars (H). Let V be the domain that is bounded

by ∂V . Let X and W be arbitrary, smooth scalars in the scalar inner-product space:

X ∈ H, W ∈ H. Let ~J and ~Y be arbitrary, smooth vectors in the vector inner-product

space: ~J ∈ H, ~Y ∈ H. (See Reference [198] for more details on these inner-product

spaces.) X and ~Y are arbitrary and will be eliminated. These SOM inner products

are

(X,W )H =

∫
V

XWdV +

∮
∂V

XWdS (3.17a)

( ~J, ~Y )H =

∫
V

~J · (D−1~Y )dV =

∫
V

( ~J,D−1~Y )dV. (3.17b)

SOM makes an important choice by weighting the vector inner-product space by

the inverse diffusivity in this definition, a key for accurately solving problems with

discontinuous diffusivities [99, 198]. Note that the two SOM inner products will have

a H or H subscript, while the standard inner product will have no subscript.

In order to write Equation (3.16) in terms of the inner-product spaces, Equa-

tion (3.17), two operators must be defined,

DC
~F =

~∇ · ~F (x, y) ∈ V
−β(~F , n̂) (x, y) ∈ ∂V

(3.18a)

GCU = −D~∇U (x, y) ∈ V. (3.18b)

The operators DC and GC are the operators at the heart of SOM, and the discrete

forms of these are used to construct a mimetic algorithm to solve the diffusion equa-

tion. The choice of modifying the gradient operator to a flux operator is an important

step to allow SOM to treat strongly discontinuous coefficients. The flux operator does

not need any boundary conditions because the divergence operator accounts for them.

Using the inner-product spaces specified in Equation (3.17) and the operators

defined in Equation (3.18), the integral identity of Equation (3.16) can be expressed

as

(DC
~J, U)H = ( ~J,GCU)H, (3.19)

where DC
~J is a scalar, and GCU is a vector. The implication of Equation (3.19) is

that DC and GC are adjoint to each other,

DC = G∗C , (3.20)
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where the superscript ∗ is the adjoint (conjugate transpose). However, since all terms

involved are real, this is equivalent to simply the transpose, such that G∗C = GT
C . Since

DC and GC are real and nonzero, the products DCGC and G∗CD∗C form SPD operators.

3.2.2.2 Diffusion Equation in Operator Form

This section expresses the diffusion equation using the divergence (DC) and mod-

ified gradient (GC) operators. This step in the derivation involves discretization in

time. Note that the continuum operators specifically refer to continuous in space.

The diffusion equation and its boundary terms,

∂U

∂t
+ ~∇ · ~F = Q (3.21a)

~F = −D~∇U (3.21b)

αU − β(~F , n̂) = ψ, (3.21c)

must be expressed using the operators of Equation (3.18). Let U be the current

value of the temperature and U o be the old value (at a time ∆t in the past). Thus,
∂U
∂t

= lim∆t→0(U − U o)/∆t. The boundary value and the current portion of the

time-derivative term can be accounted for by introducing another operator,

ΩCU =

 1
∆t
U (x, y) ∈ V

αU (x, y) ∈ ∂V
. (3.22)

The system is fully specified by accounting for the source term (Q), boundary values

(ψ), and the old portion of the time derivative, in the term,

B =

Q+ 1
∆t
U o (x, y) ∈ V

ψ (x, y) ∈ ∂V
, (3.23)

where B is a scalar.

The system of equations, Equation (3.21), can now be expressed as

ΩCU + DC
~F = B, (3.24)

where the boundary conditions are embedded in the operators. Expressing the prob-
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lem using the flux operator yields

(ΩC + DCGC)U = B. (3.25)

Since all the operators are acting on one value (U), they can be combined into one

operator, AC , reducing the problem to

ACU = B, (3.26)

where

AC = ΩC + DCGC . (3.27)

To show AC is SPD, we can specify α ≥ 0 with appropriate definitions of β and

ψ (i.e., if α < 0, multiply the boundary condition by negative one). Since ∆t > 0 as

well, ΩC = Ω∗C ≥ 0 [99, 198]. Substituting Equation (3.20), which states DC = G∗C ,

we have

AC = ΩC + G∗CGC = ΩC + DCD∗C . (3.28)

It logically follows that AC = A∗C [198]. Thereby, AC is a Hermetian or self-adjoint

operator, which leads to the property that

(U,ACV )H = (ACU, V )H . (3.29)

3.2.3 Discrete Derivation of SOM

This section derives the discrete form of SOM. Note that the discrete forms of the

operators are matrices. However, for clarity of presentation, we shall continue to use

the operator symbol with the explicit understanding that operators in this section

are discrete analogs of the continuum operators and represent real matrices.

There are three primary steps. First, the integral identity is discretized over a

single cell (Section 3.2.3.1). Second, the diffusion equation is discretized over a sin-

gle cell using the integral identity Section 3.2.3.2. Third, a global system is formed

by combining cells such that continuity of temperature and flux are enforced (Sec-

tion 3.2.3.5).
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3.2.3.1 Discretization of the Integral Identity

Starting from Equation (3.15) with the substitutions that W = U and ~∇W =

D−1D~∇U = −D−1 ~F , we have∫
V

~J · (D−1 ~F )dV =

∫
V

U(~∇ · ~J)dV −
∮
∂V

(U ~J) · n̂dS, (3.30)

where ~J is an arbitrary vector. Equation (3.30) becomes the integral identity central

to SOM, which is discretized below. The integral discretization choices are based on

References [151, 152, 185]. Note that this integral embeds the relationship between

the flux and the gradient of the temperature without containing the gradient operator.

The RHS is simpler, and thus we being with these terms.

We assume general quadrilateral cells where the volume integrals are taken over

a single cell. Since our work is in 2D, the volume is in fact an area. Local values

are defined on the left, right, top, and bottom sides of a quadrilateral (as well as the

center for scalars) for each cell. A scalar has the following definitions,

UC cell center (3.31a)

UL left face center (3.31b)

UR right face center (3.31c)

UT top face center (3.31d)

UB bottom face center. (3.31e)

Similarly, vector components are defined as

JL = ~J · n̂L left face center (3.32a)

JR = ~J · n̂R right face center (3.32b)

JT = ~J · n̂T top face center (3.32c)

JB = ~J · n̂B bottom face center, (3.32d)

where n̂s is the outward unit normal from side s. In addition, for rectangular cells,

n̂L = −x̂, n̂R = x̂, n̂T = ŷ, and n̂B = −ŷ, where the hat symbol indicates a unit

vector.

Considering the first term on the RHS of Equation (3.30), we have∫
V

U(~∇ · ~J)dV ≈ UC [ALJL + ARJR + ATJT + ABJB] , (3.33)
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where As is the areas of side s. For rectangular grids, this reduces to∫
V

U(~∇ · ~J)dV ≈ UC [∆y(JL + JR) + ∆x(JT + JB)] . (3.34)

Note that all components of ~J are added (rather than some being subtracted) be-

cause the elements are defined with respect to the outward unit normal (see Equa-

tion (3.32)).

The second term on the RHS of Equation (3.30) is a surface integral, so we have∮
∂V

(U ~J) · n̂dS ≈ ALULJL + ARURJR + ATUTJT + ABUBJB, (3.35)

where we must use the surface components of the scalar temperature. For a rectan-

gular cell, this reduces to∮
∂V

(U ~J) · n̂dS ≈ ∆y(ULJL + URJR) + ∆x(UTJT + UBJB). (3.36)

It should be evident how to generalize both Equation (3.33) and Equation (3.35) to

cells with greater or fewer sides, since these integral approximations both reduce to

summations of surface components.

The remaining term of the integral identity, LHS of Equation (3.30), introduces a

diffusivity-modified shape matrix, which we will simply refer to as the shape matrix.

The derivation of the shape matrix requires a protracted explanation, and the full

details of the discretization of this term are given in Appendix B. As we alluded to

when discussing the S3 model, this integral is vertex based. The vertex dependence

is evident in the resulting discretization,∫
V

~J · (D−1 ~F )dV ≈( ~JLT · SLT ~FLT )VLT + ( ~JRT · SRT ~FRT )VRT

+( ~JLB · SLB ~FLB)VLB + ( ~JRB · SRB ~FRB)VRB, (3.37)

where Sss′ is a 2×2 corner shape matrix for terms at the vertex at the intersection of

side s(=R or L) and side s′(=T or B). Similarly, ~Jss′ and ~Fss′ are two-element vectors

pointing in the n̂s and n̂s′ directions. Vss′ represents the volumetric weight of the ss′

corner. For a rectangle, Vss′ = 1
4
∆x∆y for all four corners. The shape matrix for the

ss′ corner is specified as

Sss′ =

[
Ss,sss′ Ss,s

′

ss′

Ss
′,s
ss′ Ss

′,s′

ss′

]
. (3.38)
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The components are

Ss,sss′ =
1

sin2 θss′
[Kxx

ss′ sin2 θxs′ +Kyy
ss′ cos2 θxs′ −Kxy

ss′ sin(2θxs′)] (3.39a)

Ss
′,s′

ss′ =
1

sin2 θss′
[Kxx

ss′ sin2 θxs +Kyy
ss′ cos2 θxs −Kxy

ss′ sin(2θxs)] (3.39b)

Ss,s
′

ss′ = Ss
′,s
ss′ =

1

sin2 θss′
[Kxy

ss′ sin(θxs + θxs′)

− (Kxx
ss′ sin θxs sin θxs′ +Kyy

ss′ cos θxs cos θxs′)] (3.39c)

where K = D−1. We have Ss
′,s
ss′ = Ss,s

′

ss′ because Dxy = Dyx, since D is physically

required to be SPD [16, 111, 159, 163, 164]. The shape matrices from the other three

corners are defined analogously. From Equation (3.39) it is clear that (Sss′)
−1 acts as

an effective diffusivity tensor that converts the x-y diffusivity and angular dependence

with respect to the x-y grid into the face-normal system.

Equations (3.33), (3.35), and (3.37) complete the discretization of Equation (3.30).

While the specific choices for discretization are not unique [152], they are straightfor-

ward. The integral identity,∫
V

~J · (D−1 ~F )dV =

∫
V

U(~∇ · ~J)dV −
∮
∂V

(U ~J) · n̂dS, (3.40)

is discretized as

( ~JLB · SLB ~FLB)VLB+( ~JRB · SRB ~FRB)VRB + ( ~JLT · SLT ~FLT )VLT

+( ~JRT · SRT ~FRT )VRT =UC [ALJL + ARJR + ATJT + ABJB]

− [ALULJL + ARURJR + ATUTJT + ABUBJB] (3.41)

Terms on the RHS can be grouped, giving a slightly more compact form,

( ~JLB · SLB ~FLB)VLB + ( ~JRB · SRB ~FRB)VRB

+( ~JLT · SLT ~FLT )VLT + ( ~JRT · SRT ~FRT )VRT =

ALJL(UC − UL)+ARJR(UC − UR) + ATJT (UC − UT ) + ABJB(UC − UB). (3.42)

3.2.3.2 Local System of Equations

The diffusion equation, combined with Equation (3.42), can be expressed in the

form of the matrix equation, A~x = ~b, where A ∈ <5×1 and ~x,~b ∈ <5×1. First the

discrete analog of the integral identity must be written in matrix form.
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The LHS of Equation (3.42) can be expressed as the following matrix products,

[
JL JR JT JB

]
S


FL

FR

FT

FB

 =


ALJL(UC − UL)

ARJR(UC − UR)

ATJT (UC − UT )

ABJB(UC − UB)

 , (3.43)

where S ∈ <4×4 is the shape matrix. S is defined as

S =

 (VLTS
L,L
LT +VLBS

L,L
LB ) 0 VLTS

L,T
LT VLBS

L,B
LB

0 (VRTS
R,R
RT +VRBS

R,R
RB ) VRTS

R,T
RT VRBS

R,B
RB

VLTS
T,L
LT VRTS

T,R
RT (VRTS

T,T
RT +VLTS

T,T
LT ) 0

VLBS
B,L
LB VRBS

B,R
RB 0 (VLBS

B,B
LB +VRBS

B,B
RB )

 ,
(3.44)

where the components are defined in Equation (3.39). Note that S is SPD. For an

orthogonal grid with equal diffusivities in each corner, the shape matrix is

S =
∆x∆y

4


2Kxx 0 −Kxy Kxy

0 2Kxx Kxy −Kxy

−Kxy Kxy 2Kyy 0

Kxy −Kxy 0 2Kyy

 . (3.45)

Up to this point, the vector ~J has been arbitrary; these equations hold true for

any ~J . Therefore, one can define a particular ~J such that a simple system of equations

can be generated. SOM selects the standard basis ([1,0,0,0], [0,1,0,0], [0,0,1,0], and

[0,0,0,1]) as ~J , which correspond to the cell faces {L,R, T,B} [151, 152, 185]. Note

that we have chosen a particular order for the vector components; this choice is free

and arbitrary, but once made, it must remain consistent.

Substituting ~J in this manner reduces the system of equations to,

S~F = A(UC~1− ~U), (3.46)
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where the following matrix and three vectors are defined as

A =


AL 0 0 0

0 AR 0 0

0 0 AT 0

0 0 0 AB

 (3.47a)

~F T =
[
FL FR FT FB

]
(3.47b)

~1T =
[
1 1 1 1

]
(3.47c)

~UT =
[
UL UR UT UB

]
. (3.47d)

This can be expressed succinctly by adding an additional column to the area matrix

and an additional row to the temperature matrix,

S~F = −A′~U ′, (3.48)

where

A′ =


AL 0 0 0 −AL
0 AR 0 0 −AR
0 0 AT 0 −AT
0 0 0 AB −AB

 (3.49a)

(~U ′)T =
[
UL UR UT UB UC

]
. (3.49b)

The expression for flux becomes

~F = −S−1A′~U ′. (3.50)

Comparing this with ~F = −D~∇U , we can identify the discrete form of the modified

gradient operator, S−1A′. Equation (3.50) gives an expression for the flux solely

in terms of known values (diffusivities, face areas, corner angles, and cell volumes)

multiplied by the temperature vectors, which consist of both cell- and face-centered

unknowns.

The inverted shape matrix is required to write the expression for flux. Every

cell then has an associated 4×4 matrix that must be inverted, which can be done

iteratively or directly. We henceforth no longer write the exact expressions for the

matrix products and restrict ourselves to forms such as Equation (3.50) rather than
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Equation (3.49).

Discretize the diffusion equation. The integral identity, Equation (3.30), as

well as the divergence and flux operator have been discretized, culminating in Equa-

tion (3.50). However, the diffusion equation has not yet been discretized. The diffu-

sion equation integrated over the volume of one cell is∫
V

∂U

∂t
dV =

∫
V

~∇ · ~FdV =

∫
V

qdV. (3.51)

Let the cell-centered value of the temperature be defined as∫
V

UdV = V UC , (3.52)

and let the time derivative be discretized using backwards-Euler time differencing,

∂UC
∂t
≈ UC − U o

C

∆t
, (3.53)

where U o
C is the value at the previous time-step. The source term is defined as

Q =

∫
V

qdV + U o
C/∆t. (3.54)

Applying the divergence theorem to the flux term leads to [185]

∫
V

~∇ · ~FdV ≈
4∑
i=1

AiFi, (3.55)

where this term is discretized similarly to Equation (3.35). Thus, the discrete diffusion

equation for a single cell is

V

∆t
UC +

4∑
i=1

AiFi = Q. (3.56)

Equation (3.50) is an expression for the flux, which, when multiplied by A, gives

A~F = −AS−1A′~U ′. (3.57)
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Straightforward matrix multiplication finds that

AiFi = −Ai[Pi1(ALUL − AiUC) + Pi2(ARUR − AiUC) (3.58)

+Pi3(ATUT − AiUC) + Pi4(ABUB − AiUC)],

where Pij is the ith row and jth column of P = S−1 and Ai is the value on the diagonal

of the ith row of A. Let M = −AS−1A′; thus Equation (3.57) becomes

A~F = M~U ′, (3.59)

where M ∈ <4×5. Then the area-flux face product (AsFs) for a side s can be expressed

as the sum of a column of the matrix-vector product M~U ′,

AsFs =
5∑
j=1

MsjU
′
j, (3.60)

where Msj is the sth row and jth column of M and s is one of [L, R, T , B].

By substituting Equation (3.60) into Equation (3.56), the discrete diffusion equa-

tion becomes
V

∆t
UC +

4∑
i=1

(
5∑
j=1

MijU
′
j

)
= Q, (3.61)

where U ′j is the jth element of the five element temperature vector that contains the

cell-center and face-center values. Rewriting Equation (3.61) with the cell-centered

values separated gives

4∑
i=1

4∑
j=1

MijUj +

(
V

∆t
+

4∑
i=1

Mi5

)
UC = Q, (3.62)

which makes the following steps clearer.

A single system of equations containing Equation (3.62) and A~F = M~U ′ can be

formed by creating a 5×5 zonal matrix Z, of which the first four rows are equal to M.

The first four elements of the fifth row is equal to the transpose of the fifth column

of M. The last element (located in fifth row, fifth column of Z) is defined by the

coefficient of UC in Equation (3.62). Thus the following system,

Z~U ′ = ~B, (3.63)
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is defined by

Zij =


Mij i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5}
Mj5 i = 5, j ∈ {1, . . . , 4}

− V

∆t
−

4∑
i=1

Mi5 i = j = 5

(3.64a)

Bi =

−AiFi i 6= 5

−Q i = 5
, (3.64b)

where Bi are elements of ~B, Zij are elements of Z, and M = −AS−1A. The sizes of

these matrices are M ∈ <4×5, Z ∈ <5×5, ~B ∈ <5×1, ~U ′ ∈ <5×1. Taking the negative

of the diffusion equation in the fifth row of Z makes the system of equations SPD, as

opposed to symmetric negative-definite.

The diffusion equation and integral identity for a single cell are now expressed

as a 5×5 matrix equation, Z~U ′ = ~B. In order to obtain the equations for the en-

tire mesh, a global matrix equation must be assembled from the single-cell matrix

equations. This global matrix equation is what is given as input to a matrix solver

(e.g., a conjugate gradient solver). However, two additional steps must occur before

assembling the global system. First, the boundary conditions must be implemented,

as this alters both Z and ~B from the matrix equation. Second, the cell-centered un-

known must be eliminated from the system, resulting in a 4×4 matrix equation. This

reduced system is then assembled into a global matrix equation, where the unknown

vector consists entirely of face-centered unknowns. The following three sections are

thus presented in the order in which they must logically occur: enforcing boundary

conditions (Section 3.2.3.3), eliminating cell-centered unknowns (Section 3.2.3.4), and

assembling the system of equations (Section 3.2.3.5).

3.2.3.3 Boundary Conditions

Equation (3.63) is the 5×5 equation for each cell. Boundary conditions are en-

forced on this system prior to forming the global system. Note that while most cells

do not have any boundaries, some cells (four in 2D) have multiple boundaries. Mul-

tiple boundary conditions are applied by considering one boundary first, making the

appropriate zonal matrix and solution vector modifications, and then repeating for

each additional boundary.
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The general boundary condition is

αU − β(~F , n̂) = ψ (on ∂V ), (3.65)

where α 6= 0 and β = 0 yields a Dirichlet boundary condition, α = 0 and β 6= 0

corresponds to a Neumann boundary condition, and αβ 6= 0 is a mixed or Robin

boundary type. Note that both α and β cannot be simultaneously zero. In SOM,

boundary conditions are enforced on cell faces, as opposed to the cell centers of a

ghost zone. As a result, for a particular boundary face k, the boundary condition is

αUk − βFk = ψk. (3.66)

Dirichlet boundary condition. A Dirichlet boundary condition is

Uk =
ψk
α
. (3.67)

This is enforced in the equation Z~U ′ = ~B by setting the kth row and column of Z

to zeros everywhere except for on the diagonal, i.e., Zij = δi,kδj,k, and Bk = ψk/α.

However, in order for the system to remain conservative, the contributions to the flux

from the kth face must be subtracted from ~B. This is possible because the exact value

of Uk is known. The matrices now become

BDBC
i =


Bi − Zik

ψk
α

i 6= k

ψk
α

i = k
(3.68)

ZDBC
ij =


Zij (i 6= k) and (j 6= k)

0 ((i = k) or (j = k)) and (i 6= j)

1 i = j = k

, (3.69)

where DBC indicates ‘Dirichlet boundary condition.’ The result is that the matrix
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multiplication for this row of Equation (3.63) is simplified to

[
0 0 1 0 0

]

UL

UR

UT

UB

UC

 =
ψk
α
, (3.70)

where we have shown the case k = 3, which clearly gives αUT = ψk.

Neumann boundary conditions. The Neumann boundary conditions are written

in terms of gradient, which makes it natural to impose these conditions on the flux-

based SOM. For a particular boundary face k, a Neumann boundary condition is

Fk = −ψk
β
. (3.71)

Recall that the system of equation Z~U ′ = ~B represents AiFi with the first four rows

(the fifth enforces the diffusion equation). Hence, a Neumann boundary condition

update is enforced as

BNBC
i =


Bi i 6= k

Bi + Ai
ψk
β

i = k
, (3.72)

with no modification of the zonal matrix, Z, and where NBC indicates Neumann

boundary condition.

Robin boundary conditions. The Robin boundary condition is more complicated

since both Uk and Fk must be specified. To proceed, Equation (3.66) is rewritten as

AkFk − Ak
α

β
Uk = −Ak

ψk
β
. (3.73)

From Z~U ′ = ~B we have that

AkFk =
5∑
j=1

ZkjU
′
j, (3.74)
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the boundary condition can be expressed again in terms of the matrix Z as,

5∑
j=1

ZkjU
′
j − Ak

α

β
Uk = −Ak

ψk
β
. (3.75)

This can be enforced by modifying ~B and Z as

BRBC
i =


Bi i 6= k

Bi − Ak
ψk
β

i = k
(3.76)

ZRBC
ij =

Zij i 6= k

Zij − Ak
α

β
i = k

, (3.77)

where RBC indicates Robin boundary condition.

3.2.3.4 Eliminating the Cell-Centered Unknown

Once the boundary conditions have been enforced, there is enough information

to completely eliminate the cell-centered unknown from the system. Hence, the 5×5

system Z~U ′ = ~B can be reduced to a 4×4 system, and the temperature vector reverts

back to simply ~U from ~U ′.

The last row of Equation (3.63) is

4∑
j=1

Z5jUj + Z55UC = B5, (3.78)

which can be solved for UC , giving

UC =
1

Z55

(
B5 −

4∑
j=1

Z5jUj

)
. (3.79)

This expresses the cell-centered temperature only in terms of known matrix elements

and the face-centered temperatures. Note that the values of B5 and Z5j that appear

in Equation (3.79) must be stored so that the cell-centered value can be recovered at

the end of the time step.

Next, Equation (3.79) is substituted for row i ∈ {1, . . . , 4} of Equation (3.63) (the
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matrix equation):

4∑
j=1

ZijUj + Zi5UC = Bi (3.80a)

4∑
j=1

ZijUj +
Zi5
Z55

(
B5 −

4∑
j=1

Z5jUj

)
= Bi (3.80b)

4∑
j=1

ZijUj −
Zi5
Z55

4∑
j=1

Z5jUj = Bi −
Zi5
Z55

B5 (3.80c)

4∑
j=1

(
Zij −

Zi5
Z55

Z5j

)
Uj = Bi −

Zi5
Z55

B5. (3.80d)

This eliminates the cell-centered value from Equation (3.63). The new system of

equations is

Z̃~U = B̃, (3.81)

where

B̃i = Bi −
Zi5
Z55

B5 i ∈ {1, . . . , 4} (3.82a)

Z̃ij = Zij −
Zi5
Z55

Z5j i, j ∈ {1, . . . , 4}, (3.82b)

and Z̃ ∈ <4×4 and B̃ ∈ <4×1. The boundary conditions must be implemented prior

to defining Z̃ and B̃.

3.2.3.5 Assembling the Global System

Up until this point, the discrete derivation has only considered a single cell in

the mesh. The face-centered coordinates have been local and completely indepen-

dent. The global matrix equation is constructed by assembling the single-cell matrix

equations. In order to maintain the discrete analog of the integral identity, Equa-

tion (3.30), continuity of temperature and flux must be satisfied. This converts the

surface integral of Equation (3.30) from the surface of an individual cell to the external

boundaries where the boundary conditions are imposed [152].

Let us introduce a global notation for temperature and flux. A specific cell in the

mesh is referred to by the ith row and jth (e.g., Ui,j), while the four faces of a cell are
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enumerated and referenced by s, giving

U s
i,j (3.83a)

F s
i,j. (3.83b)

Note that i and j correspond to a position within the spatial grid, not an element of

the coefficient matrix as with the local coordinate system. Also note that the comma

in terms like Ui,j do not imply a derivative.

Continuity of temperature requires that cells sharing a face must have the same

temperature on that face, e.g.,

UR
i,j = UL

i+1,j (3.84a)

UT
i,j = UB

i,j+1. (3.84b)

This leads to a single-temperature value on each face, allowing it to be uniquely

referred to by the face-centered index,

U
i+

1
2
,j

= UR
i,j = UL

i+1,j (3.85a)

U
i,j+

1
2

= UT
i,j = UB

i,j+1. (3.85b)

Therefore, we no longer need to identify a temperature as being cell-centered. (A

cell-centered temperature has been denoted by integer indices; a face-centered tem-

perature now has a half-integer index.)

Continuity of flux demands that the flux leaving one face of a cell is equal to the

amount of flux entering the cell sharing that face,

FR
i,j = −FL

i+1,j (3.86a)

F T
i,j = −FB

i,j+1, (3.86b)

where the negative sign is due to flux components all being defined as outward fluxes.

In order to construct a global matrix that is SPD [152, 185], the flux continuity

expression must be negative, e.g.,

−ARi,jFR
i,j − ALi,jFL

i+1,j = 0 (3.87a)

−ATi,jF T
i,j − ABi,jFB

i,j+1 = 0. (3.87b)
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This means that the values of AiFi in Equation (3.64b) (and all subsequent expressions

for ~B and B̃) are not actually needed unless the face is on an external boundary or

has a surface source. Accordingly, one can set AiFi to zero for the faces where the

fluxes are continuous before assembling the global system, and then manipulate the

matrices as described.
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Figure 3.4:
Sparse matrix structure for a 10×10 grid from SOM. Nonzero values are
marked with blue asterisks, and the seven bands are visible. With 1,188
nonzero values and 2202 elements, this matrix is 2.45% nonzero.

The global system is then given by

Z ~U = ~B, (3.88)

where ~U is the vector consisting of each face-centered temperature, and ~B is assembled

from B̃ of each cell. The global matrix, Z, is an SPD matrix that can be inverted

with efficient linear solvers such as the conjugate gradient solver. Figure 3.4 shows an

example of the sparse matrix Z for a 10×10 system, which corresponds to 100 cell-

centered unknowns and 220 face-centered unknowns. The vector ~U contains only face-

centered temperatures, while ~B contains source terms, boundary values, and terms

that were used to eliminate cell-centered temperatures in Equation (3.82a). Once the

matrix is inverted and ~U is determined, the cell-centered values of the temperature

can be recovered via Equation (3.79) and the fifth row values from the single cell

equation. Note that script variables (e.g., ~U , F) correspond to global variables.

The global mapping process is similar to that of finite element methods (FEM),

and further details can be obtained from literature of that method (e.g., Zienkiewicz

and Taylor [222]). An equation of flux for each face in the mesh is collected into a

system of equations expressed as Z ~U = ~B. For an interior face, flux (multiplied with

the area) from two cells sharing a face are combined to sum to zero (in the absence of

105



source terms). (Three cells would be used for a flux expression for a hanging node.)

The equation for a boundary face depends on a single cell; the kth row of Z̃ and B̃

are mapped to Z and ~B, respectively, from the boundary face (k) of the boundary

cell.

FB

(i,j)

FT

FL

F R
(i+1,j)

FT

FB

F L

FR

Figure 3.5:
Flux between a face shared between two cells. The flux for each face of a
cell is indicated, with each cell having a single color (red for cell (i, j) and
blue for cell (i + 1, j)). The expressions for flux in the single cell system
couples all four face-centered temperatures in each cell. Consequently, the
equation for flux of one face in the global system (which depends on two
cells) leads to an equation with seven unknowns. This is evident in the
picture by the seven different face-centered temperatures (marked with
black boxes).

We consider one specific example of assembling the global equation of the flux

for one particular face shared between nonboundary cells. Let us consider the flux

between the right face of cell (i, j) and the left face of cell (i+1, j) for two nonboundary

cells, as shown in Figure 3.5. Let the global element number for the (i+ 1
2
, j) face be

n (i.e., F
i+

1
2
,j

= Fn). Using the local coordinate system, where the subscript (i, j) is

the cell coordinate and the superscript is the side of that cell, the flux equation for the

nth face is −ARi,jFR
i,j−ALi+1,jF

L
i+1,j = 0. In the most general case, where the diffusivity

is a tensor and the cells are not rectangles, all four faces of a cell are coupled. Thus,

the local equation for flux to the right in cell (i, j) depends on UL
i,j, U

R
i,j, U

T
i,j, and UB

i,j;

while the local flux equation to the left for cell (i + 1, j) depends on UL
i+1,j, U

R
i+1,j,

UT
i+1,j, and UB

i+1,j. Since UR
i,j = UL

i+1,j, the global equation for flux in the mesh at face

Fn depends on seven unknowns (four from each cell, with one shared value). All the

elements of Z in row n are zero except for the seven columns corresponding to these

seven unknowns. These nonzero values correspond to the four values from the second

row (i.e., right face) of Z̃ for cell (i, j) and the four values from the first row (i.e., left

106



face) of Z̃ in cell (i + 1, j). Similarly, the nth row of ~B is the combination (negative

sum) of the second element (i.e., right face) of B̃ of cell (i, j) and first element (i.e.,

left face) B̃ of cell (i+ 1, j).

3.3 Summary

We have discussed three single-temperature mixed-cell models. The first of which,

the S1 model, is a standard approach where the harmonic mean of each phase’s

diffusivity is used as an effective diffusivity for a mixed-cell. This S1 model is used

as a baseline for comparison for the other two single-temperature models, as well

as for the three multi-temperature models presented in the next chapter. The S2

model is a rotated tensor diffusivity, where the effective diffusivity of a mixed cell is

approximated in the form of a tensor in attempt to capture the effect of the phase

interface. The S3 model effectively splits a mixed cell into four subcells, and we show

a means to approximate these subcells as four pure cells whenever possible while

maintaining the correct volumes of each phase.

The S1 and S2 model can be implemented with a variety of numerical schemes.

The S3 model, however, is more restrictive in its implementation. We chose to exe-

cute all three of these models using SOM, a mimetic technique that yields excellent

computational and mathematical properties, particularly with discontinuous diffu-

sivities. SOM is a pertinent method for solving problems with highly discontinuous

diffusivities, such as those explored in this thesis. Moreover, SOM is unheralded due

to its short history and abstract description. This chapter serves as a useful intro-

duction and resource to broaden the application of SOM in apposite computational

problems.
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CHAPTER IV

Multi-Temperature Methods

In this chapter, we present three multi-temperature models to treat mixed cells

for a 2D diffusion problem. To accomplish this, we derive the diffusion equation in a

phase-based form, where there is an equation for each phase and an exchange between

phases. Section 4.1 presents the derivation and discretization of this method. After

deriving the method, we specify all three mixed-cell models in Section 4.2, which are

based on progressively more accurate approximations. The first model is a rough

approximation whose main advantage is simplicity, which is achieved by avoiding

interface reconstruction. The second and third models both reconstruct the interface

in order to compute the centroids for each phase and compute face areas, centroid

distances, and (ideally) temperatures more accurately.

The multi-temperature method is discretized via finite difference methods (FDM).

However, the equations must be integrated over the volume of a single cell in order

to obtain average values for each phase. (Note, as with SOM, we use 3D terminology

for 2D terms.) This step results in the generation of volume fractions, which are used

to compute the temperature of phases separately. Furthermore, since the method

enforces flux continuity between faces, this is technically a finite volume method

(FVM), albeit with an orthogonal grid. While the presentation of this method is

restricted to only two phases (and two temperatures), in principle, the number of

phases (and associated temperatures) can be extended to n phases.

The original motivation for the work presented in this chapter was to create a mul-

tiphase, multi-temperature code that increases mixed-cell accuracy without requiring

interface reconstruction. It is desirable to avoid interface reconstruction when extrap-

olating from 2D to 3D, where interface reconstruction is much more difficult. Interface

reconstruction is used, however, in the M2 and M3 methods in order to determine

the location of the centroids, as well as to approximate areas of faces and interface

normals. Should these two models achieve significantly higher accuracy than the M1
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model, it may be an indication that the knowledge of the interfacial location is essen-

tial for accurately capturing subcell effects when using this approach. The centroids

are calculated in the M2 and M3 models only for two phases while assuming a linear

interface. However, there are a variety of ways to determine the centroids, and an

astute next step would be to employ a more robust method, such as the Moment

of Fluid (MoF) algorithm [69, 70], which tracks volume fractions and centroids of

multiple phases and which has been extended to 3D [2].

4.1 Multi-Temperature Derivation

Two-phase and multi-phase flow are well-established [66, 88, 89, 157, 158, 162,

168]. The motivation for volume averaging is frequently associated with porous me-

dia flows, where one averages the fine structure over a volume to obtain average values

at lower resolution (this is often referred to as coarse graining). However, the assump-

tions of our model problem (see Section 2.4.2) greatly simplify the typical exposition

by their lack of a velocity dependence (which reduces the equations, from a fluids

perspective, to just energy, eliminating mass and momentum transfer). Note that by

having adjacent phases with different temperatures, particularly within a single cell,

the phases are not in LTE with each other.

The forthcoming derivation applies to all three models (M1, M2, and M3) unless

specifically noted.

4.1.1 Notation

Directions and cells are labeled with respect to the center cell (C). The four faces

(and neighbors) on the left, right, top, and bottom of C are represented with labels

L, R, T , and B, with the variable ζ used to indicate one of the labels (e.g., ζ = L).

There is a fifth possible type of face that occurs only in mixed cells, denoted as I, that

corresponds to a interface. Two phases exist: phase 1 and phase 2. The arbitrary

designation of these phases allows for the presentation to apply to either phase, thus

most equations will be written only for phase 1. However, the corresponding expres-

sions can be obtained for phase 2 in a similar manner. There are five quantities of

interest: flux (~F ), face area (A), temperature (U), distance (l), and diffusivity (D).

We introduce the following notation, which applies to all five of these quantities,

F 1
Cζ , (4.1)
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where the superscript indicates the phase, the first subscript indicates the position,

and the second subscript (when present) indicates the face or direction with respect

to the position. Flux, area, and distance require the double subscript to indicate what

face of the cell is being measured, and the order of the subscripts can represent the

normal direction (e.g., l1TC points from the top cell to the center cell). Temperature

and diffusivity are scalars who only require a single subscript to identify the cell where

the variable is located. For example, the phase 1 flux component from the left cell to

the center cell is F 1
LC , which is equal and opposite to the phase 1 flux from the center

cell to the left cell, F 1
CL. The phase 2 area that the right cell shares with the center

cell is A2
RC , and D1

B is the diffusivity of phase 1 of the bottom cell.

In most cases, the faces shared between two cells are of the same phase and size

and thus,

A1
Cζ = A1

ζC (4.2a)

A2
Cζ = A2

ζC , (4.2b)

where the ζ face of the center cell (C) equals the face that cell ζ shares with cell C.

Figure 4.1 is an example of a mixed cell with the majority phase (phase 1) rendered

as blue and the minority phase (phase 2) rendered as red. Note that when a face has

only one phase, such as the left and top faces in Figure 4.1, the face area of the other

(nonpresent) phase is defined as zero.

A1
CT

A1
CB

A1
CL

A2
CR

A
1

C
I

A
2

C
I

A2
CB

Figure 4.1:
Multi-temperature area labels for faces in a typical mixed cell. The su-
perscript indicates the phase, where the blue region is phase 1 and the
red region is phase 2.

Certain boundaries violate Equation (4.2), such as when the interface has struc-
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ture below the resolution of a cell; under the present work, we ignore such cases,

i.e., the interfacial structures are sufficiently resolved by the meshes used. However,

Equation (4.2) can also be violated if the interface lies along a cell face. This leads

to adjacent pure cells of different phase, in which case the areas of different phases

are equal,

A1
Cζ = A2

ζC . (4.3)

This case is quite common and must be accounted for, which leads to two types

of flux possible: within the same phase (intraphase) and between different phases

(interphase). Note that the flux across A1
CI is always interphase, while flux across a

face A1
Cζ is usually intraphase. Similarly, flux between phases within a cell is intracell

flux, and flux between two cells is intercell flux.

There are five directions in which the flux could be directed: the four cardinal

directions and normal to the interface. Five directions and two phases yield ten

possible fluxes in any given cell,

F 1
CL F 1

CR F 1
CT F 1

CB F 1
CI

F 2
CL F 2

CR F 2
CT F 2

CB F 2
CI

.

Only four to eight of these are nonzero at any given time. Any of these ten fluxes

can be interphase, but only F 1
CI and F 2

CI cannot be intraphase.

4.1.2 Determining the Fluxes

Consider the general system shown in Figure 4.2, which can be considered flux

between two phases in different cells, flux between two phases in the same cell, or flux

between the same phase in different cells (where the colors would not signify phase).

Accordingly, α and β can be the same phase (α = β = 1 or α = β = 2) or different

phases (α 6= β). Similarly, A and B can represent adjacent cells or, in the case of a

mixed cell, the same cell. The interface ζ between A and B may represent any face

(e.g., ζ = L), including the interface in a mixed cell. The flux from the centroid of

cell A to the surface ζ between cells A and B is

Fα
Aζ = −Dα

A
~∇Uα

A · n̂⊥, (4.4)
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lαAζ

lβBζ

Uα
ζ

Uα
A Uβ

ζ

Uβ
B

Figure 4.2:
Generic example of flux between two quadrilaterals. Uα

ζ and Uβ
ζ , ficti-

tious unknowns on the surface ζ, are required to calculate the flux. The
superscripts α and β may be equal or distinct phases, and A and B may
be the same or neighboring cells. For each phase, the centroid and its
normal distance to surface ζ is indicated.

where n̂⊥ is the outward unit normal, which is perpendicular to face ζ. We can

discretize the flux as

Fα
Aζ ≈ −Dα

A

Uα
ζ − Uα

A

lαAζ
, (4.5)

where the interface temperature Uα
ζ is defined at the minimum distance (normal

distance) between Uα
A and the interface ζ. (See Figure 4.3 for a definition of normal

distance.) Similarly, the flux from the centroid of cell B to the surface ζ is

F β
Bζ ≈ −Dβ

B

Uβ
ζ − Uβ

B

lβBζ
. (4.6)

The flux leaving the face of one cell must equal the flux entering the adjacent cell

through the same face,

Fα
Aζ + F β

Bζ = 0. (4.7)

Note that, as was the case in Support-Operators Method (SOM), the fluxes are de-

fined via the outward normal. Therefore, the sums combine to zero rather than the

differences.

In order to solve this under-determined system, we make the approximation that

the temperatures on a shared surface are equal:

Uα
ζ = Uβ

ζ . (4.8)
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(x0,y0)

y=mx+b
d

Figure 4.3:
Normal (minimum) distance from a point to a line. The minimum dis-

tance from point (x0, y0) to line y = mx+ b is d =

√
(mx0 + b− y0)2

1 +m2
.

For ease of notation, let us refer to the interfacial temperature as Uζ , and let us

assume the expressions for flux are exact (so we can use full equal signs). Substituting

Equations (4.5) and (4.6) into (4.7) and solving for Uζ gives

Uζ =

Dα
A

lαAζ
Uα
A +

Dβ
B

lβBζ
Uβ
B

Dα
A

lαAζ
+
Dβ
B

lβBζ

. (4.9)

Substituting this expression for the interfacial temperature back into Equation (4.4),

we find

Fα
Aζ = −D

α
A

lαAζ
(Uζ − Uα

A)

= −D
α
A

lαAζ


Dα
A

lαAζ
Uα
A +

Dβ
B

lβBζ
Uβ
B

Dα
A

lαAζ
+
Dβ
B

lβBζ

− Uα
A


= −D

α
A

lαAζ

Dβ
B

lβBζ

Uβ
B − Uα

A

Dα
A

lαAζ
+
Dβ
B

lβBζ

= − Uβ
B − Uα

A

lαAζ
Dα
A

+
lβBζ

Dβ
B

. (4.10)
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The flux from the other side follows the same derivation,

F β
Bζ = − Uα

A − Uβ
B

lαAζ
Dα
A

+
lβBζ

Dβ
B

, (4.11)

where flux expressions are clearly equal and opposite, Fα
Aζ + F β

Bζ = 0. We note that

in the case where the distances are equal and sum to ∆x (lαAζ = lβBζ = ∆x/2), the

flux Fα
Aζ is

Fα
Aζ = − 2Dα

AD
β
B

Dα
A +Dβ

B

Uβ
B − Uα

A

∆x
, (4.12)

which gives an effective diffusivity as the equally weighted harmonic mean of the two

diffusivities. This expression gives insight as to why the harmonic mean is used and

how it arises.

The general flux expressions of Equations 4.10 and (4.11) can be applied to the

three specific cases of flux:

F 1
Cζ = −

D1(U1
ζ − U1

C)

l1Cζ + l1ζC
Intraphase, intercell flux (4.13a)

F 1
Cζ = −

U2
ζ − U1

C

l1Cζ
D1
C

+
l2ζC
D2
ζ

Interphase, intercell flux (4.13b)

F 1
CI = − U2

C − U1
C

l1CI
D1
C

+
l2CI
D2
C

Interphase, intracell flux, (4.13c)

with equivalent expressions for the phase 2 fluxes.

4.1.3 Volume-Averaged Diffusion in a Single Cell

The volume average of a cell in the mesh is also known as a control volume, as

well as a representative elementary volume. We desire to take the volume average of

the diffusion equation,

ρc
∂u

∂t
+ ~∇ · ~F = q, (4.14)

where the temperature (u), diffusivity (D), flux (~F ), source term (q), and the heat

capacity and density (ρc) are multi-phase values. We restrict the number of phases

to two for this work, with the knowledge that this can be generalized to n phases.

We further restrict the diffusivity, density, and heat capacity to be constant for each
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phase.

Let the temperature be denoted as u1
C and u2

C , where the superscripts refer to

phase 1 and phase 2, respectively. For explicit clarity, any powers of terms in this

chapter would be written outside of parenthesis, e.g., (u2)2. The subscript, which

indicates position, is C for all terms because we are working in a single cell. The

volume of phase 1 is V 1
C , the volume of phase 2 is V 2

C , and the total volume is ∆V =

V 1
C + V 2

C . Note that all cells have the same total volume, ∆V . We define the volume

fraction as

f 1
C =

V 1
C

∆V
. (4.15)

Region V 2
C is non-overlapping with V 1

C , and phase 1 variables are zero in V 2
C and vice

versa. Thus, we have∫
∆V

u1
CdV =

∫
V 1
C

u1
CdV +

∫
V 2
C

u1
CdV =

∫
V 1
C

u1
CdV. (4.16)

Then, the volume average of u1
C in a cell of volume ∆V is

1

∆V

∫
∆V

u1
CdV = f 1

C

1

V 1
C

∫
V 1
C

u1
CdV. (4.17)

Note that phase 1 is equivalent to phase 2 (i.e., we assume they have the same physics

in each phase), so any expression can exchange 1 and 2. Consequently, most equations

are only written for phase 1.

The volume average of the phase 1 of the diffusion equation is found as follows,

1

∆V

∫
∆V

(ρc)1
C

∂u1
C

∂t
dV +

1

∆V

∫
∆V

~∇ · ~F 1
CdV =

1

∆V

∫
∆V

q1
CdV

(ρc)1
Cf

1
C

∂

∂t

1

V 1
C

∫
V 1
C

u1
CdV +

1

∆V

∫
δV 1
C

~F 1
C · n̂outdS =

f 1
C

V 1
C

∫
V 1
C

q1
CdV

(ρc)1
Cf

1
C

∂U1
C

∂t
+

1

∆V

s∑
ζ=1

A1
CζF

1
Cζ =f 1

CQ
1
C , (4.18)

where s is the number of sides or faces, n̂out is the outward surface normal, and δV 1
C

is the surface bounding the volume V 1
C . We introduce phase average values U1

C and
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Q1
C ,

U1
C =

1

V 1
C

∫
V 1
C

u1
CdV (4.19a)

Q1
C =

1

V 1
C

∫
V 1
C

q1
CdV. (4.19b)

Note that ζ, while still representing the sides of a cell, has been enumerated (e.g., ζ = 1

corresponds to the face). The most general case of the flux term in Equation (4.18)

is

1

∆V

s∑
ζ=1

A1
CζF

1
Cζ =

1

∆V
[A1

CLF
1
CL+A1

CRF
1
CR +A1

CTF
1
CT +A1

CBF
1
CB +A1

CIF
1
CI ], (4.20)

where the interface term, A1
CIF

1
CI , is the intracell, interphase flux between phase 1

and phase 2.

4.1.4 Discretized Volume-Averaged Diffusion Equation

With an expression for flux, Equations (4.10) and (4.11), and the discrete diffusion

equation, Equation (4.18), we can now create our system of equations. Using a

backward-Euler time discretization, we have

(ρc)1
Cf

1
C

U1
C − Ũ1

C

∆t
− 1

∆V

s∑
ζ=1

A1
Cζ

Uζ − U1
C

l1Cζ
D1
C

+
lζC
Dζ

= f 1
CQ

1
C , (4.21)

where Ũ1
C is the value of U1

C from the previous time step, and ζ represents the sides

of the cell or the neighbor adjacent to that side of the cell. Terms in cell ζ do not

have a phase indicated because either phase is possible. We group the temperature

terms for the center cell to obtain,(ρc)1
Cf

1
C

∆t
+

1

∆V

s∑
ζ=1

A1
Cζ

l1Cζ
D1
C

+
lζC
Dζ

U1
C = f 1

CQ
1
C +

(ρc)1
Cf

1
CŨ

1
C

∆t
+

1

∆V

s∑
ζ=1

A1
CζUζ

l1Cζ
D1
C

+
lζC
Dζ

.

(4.22)
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This equation can be expressed in a more polished form as

ξ1
CU

1
C = B1

C + ξ12
C U

2
C + (ξ11

L U
1
L + ξ11

R U
1
R + ξ11

T U
1
T + ξ11

B U
1
B) (4.23)

+ (ξ12
L U

2
L + ξ12

R U
2
R + ξ12

T U
2
T + ξ12

B U
2
B),

where we define

ξ12
ζ =

A1
Cζ

∆V

[
l1Cζ
D1
C

+
l2ζC
D2
ζ

]−1

(4.24a)

ξ11
ζ =

A1
CζD

1

∆V (l1Cζ + l2ζC)
(4.24b)

ξ̃1
C =

1

∆t
f 1
C(ρc)1

C (4.24c)

B1
C = f 1

CQ
1
C + ξ̃1

CŨ
1
C (4.24d)

ξ1
C = ξ̃1

C + ξ12
C + (ξ11

L + ξ11
R + ξ11

T + ξ11
B ) + (ξ12

L + ξ12
R + ξ12

T + ξ12
B ), (4.24e)

and ζ can represent any cell face or the interface inside a mixed cell, and faces with

zero areas make the corresponding ξ terms zero. The equation for phase 2 is found

by swapping 1 and 2 in all terms.

There are two options for discretizing an N×M mesh with two phases: every cell

can have both phase temperatures, or cells will only have phase temperatures for the

phases that exist in the cell. The former method is easier to implement but is more

costly. We use the latter option, where we only place a phase temperature in a cell if

that cell contains the associated phase. The result is a smaller system, but the sizes

of variables for each phase is not known at runtime. The sizes can only be determined

after the volume fractions are determined; thus, we use allocatable variables in our

implementation.

Boundary conditions are implemented via ghost cells, a layer of dummy cells

surrounding the mesh whose values are specified in terms of the Robin boundary

conditions,

b1U + b2(~∇U, n̂) = b3. (4.25)

Using UG for the boundary (ghost) temperature, UI for the interior temperature, and
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d for the distance between them, we find that

b1UG + b2
UG − UI

d
= b3 (4.26a)(

b1 +
b2

d

)
UG = b3 +

b2UI
d

(4.26b)

UG =
b3d+ b2UI
b1d+ b2

. (4.26c)

We form a system of equations,

A~U = ~B, (4.27)

where the elements of ~B are defined as in Equation (4.24d). The global system,

A, is an SPD matrix. We solve this system using the conjugate gradient method.

The output is the cell-centered temperature for pure cells and the centroid-centered

temperatures for mixed cells. The ordering of the elements in the temperature vector

is a free choice, however, the ordering must remain consistent once a choice has been

made. We choose to define all the phase 1 temperature values first, followed by the

phase 2 temperature values. Each row in a matrix contains at most ten nonzero

elements, as shown in Equation (4.23). A cell in the mesh uses a row/column (i, j)

notation to refer to each cell uniquely.

The error on a test problem can be computed in two ways. The phase-separate

computes a centroid-centered error for each phase. The combined-phase error com-

putes a cell-centered error by taking the volume weighted arithmetic mean,

Uaverage
C = f 1

CU
1
C + f 2

CU
2
C . (4.28)

4.2 Three Multi-Temperature Models

We introduce three mixed-cell models using the framework of the phase-averaged

diffusion equation outlined in the previous section. The models, referred to as the

M1, M2, and M3 models, account for progressively more accurate approximations of

the subgrid dynamics. The distinguishing feature between the models is the way in

which distance is defined, which is used for flux calculations.
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The flux between phase 1 of cell C and generic phase α of cell ζ is defined as

F 1
Cζ = −

Uα
ζ − U1

C

l1Cζ
D1
C

+
lαζC
Dα
ζ

. (4.29)

Intraphase flux (α = 1) only occurs for intercell flux. Interphase flux (α = 2) occurs

both inside mixed cells (intracell) and when there are different phases on either side

of a cell face (intercell).

Equation (4.29) requires two distances to compute the flux, the normal distance

from each centroid to the face. However, the M1 and M2 models only approximate

the total distance,

lCζ = l1Cζ + lαζC . (4.30)

The individual distances, l1Cζ and lαζC , must be approximated for the M1 and M2

models in terms of the volume fractions (f 1
C and fαζ ) and total distance (lCζ). The

approximation we use for the M1 and M2 models is

l1Cζ =
f 1
C

f 1
C + fαζ

lCζ (4.31a)

lαζC =
fαζ

f 1
C + fαζ

lCζ , (4.31b)

where ζ can be a neighbor or cell C in the case of mixed cells.

We can plug these distances into Equation (4.29), which gives us

F 1
Cζ = −

 f 1
C + fαζ

f 1
C

D1
C

+
fαζ
Dα
ζ

 Uα
ζ − U1

C

lCζ
, (4.32)

where the only distance term is the combined distance, and the term in parenthesis is

the weighted harmonic mean. For intraphase flux, α = 1, the assumption of constant

diffusivities for each phase allows the diffusivities to be factored out, and the flux

expression reduces to

F 1
Cζ = −D1

U1
ζ − U1

C

lCζ
, (4.33)

which is the standard flux approximation.

We now specify how each model approximates the distances. This is the main

difference between the models. The only other difference is how the surface areas are
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specified, where the M1 model is different from the M2 and M3 models. Figure 4.4

shows the difference between distance definitions. The M1 model defines the total

distance as the cell center spacing (black lines). The M2 model defines the total

distance as the centroid spacing (dashed lines). The M3 model uses the normal

distance between the centroid and the interface.

M1
M2
M3

Figure 4.4:
Distance definitions for multi-temperature models. The M1 model uses
cell-centered spacing (black dotted lines), the M2 model uses centroid
spacing (cyan dashed lines), and the M3 model uses the normal distance
between each centroid and face (green solid lines). Cell centers are indi-
cated with black circles, phase 1 centroids are indicated with cyan circles,
and phase 2 centroids are indicated with green circles. Note that parts of
the neighboring cells are truncated.

4.2.1 M1 Model

Using the local volume fractions (a cell and its nearest neighbors) and an assump-

tion of a linear interface, the surface fractions and interface normal can be approx-

imated as follows. The surface fractions, a1
Cζ , in the M1 model, are approximated

as a1
Cζ = 1

2
(f 1
C + f 1

ζ ), where f 1
ζ is the volume fraction of phase 1 in cell ζ and f 1

C is

the volume fraction of phase 1 in cell C. However, if either cell is a pure cell (i.e.,

f 1 = 1), the surface fraction is unity. The surface fraction for phase 2 complements

that of phase 1 (i.e., a1
CL + a2

CL = 1). The surface area for a particular phase is the

surface fraction multiplied by the area of the cell face (e.g., for a left face, the area is

A1
CL = a1

CL∆y). The surface area of the interface within a mixed cell can be approx-
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imated from the surrounding face areas, ACI =
√

(A1
CL − A1

CR)2 + (A1
CT − A1

CB)2.

The angle of the phase interface, θ, is readily approximated from the face areas.

The M1 model makes a simple assumption that the centroid of each phase is

located at the cell center for calculating the distance for flux between cells. Thus,

the distance between any two adjacent cells is either ∆x or ∆y. However, for flux

within a mixed cell, this same assumption results in a distance of zero between two

phases. This is undesirable because these distances occur in the denominator of

the flux term, and infinite flux within mixed cells would not allow unique phase

temperatures. Consequently, a second assumption of the M1 model is required to

give the distances between the phases in a mixed cell a nonzero value. A distance of

∆x/2 is reasonable for a vertical interfaces, as is a distance of ∆y/2 for a horizontal

interface. Thus, the distance between phases in a mixed cell is approximated for

any interfacial orientation as 1
2

√
∆x2 cos2 θ + ∆y2 sin2 θ. This expression for distance

works in the two limiting cases of horizontal and vertical interfaces, but may over

or underestimate for intermediate angles, depending on the volume fractions. In

summary, the approximated distance of the M1 model are given as

l1CL = l1CR = l2CL = l2CR = 1
2
∆x (4.34a)

l1CT = l1CB = l2CT = l2CB = 1
2
∆y (4.34b)

and

l1CI + l2CI = 1
2

√
∆x2 cos2 θ + ∆y2 sin2 θ. (4.35)

The advantage of the M1 model is its simplicity, especially for implementation.

The face areas and interface normal are estimated from only the volume fractions,

and they are sufficient in specifying the distances. The diffusivity for a flux between

phases within a mixed cell uses the harmonic mean, weighted by volume fractions,

Equation (4.32).

4.2.2 M2 Model

The M2 and M3 models approximate the centroid of each phase in every cell. For

pure cells, the centroid coincides with the cell center; more mixed cells, the centroids

are calculated for each phase. Using only the volume fractions and an assumption

of a linear interface, the centroids (as well as the surface fractions and face normals)

can be computed for a 2D mesh. The volume fractions in a 3×3 stencil are used to

distinguish the different cases of how the interface divides the cell and the orientations
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of the interface. (See Figure 3.2 for examples.) By doing so, each subcell region

occupied by a phase becomes a polygon with three, four, or five vertices. We use these

vertices to calculate the face areas and centroids of these polygons. Note that this

procedure is only accurate for a linear interface. There are more advanced interface

reconstruction algorithms (see Dyadechko and Shashkov [68] for a review); however,

the current implementation is sufficient for the work presented in this dissertation.

l1CL + l1LC

l
1
CR

+
l
1
RCl1 C

T
+
l1 T

C

l1 C
B
+
l1 B

C

l 1
CI +l 2

CI
l
2
CR

+ l
2
RC

l2 C
B
+
l2 B

C

Figure 4.5:
The M2 model for mixed cells in the multi-temperature method. Dis-
tances are computed from centroid to centroid in this model. Phases are
indicated by background colors (phase 1 is blue, phase 2 is red), and all
distances needed for this center cell are labeled for phase 1 (white) and
phase 2 (green). Note that parts of the neighboring cells are truncated.

The M2 model defines distances between two values as the centroid-to-centroid

distance, shown in Figure 4.5. This is significantly more accurate than the M1 model,

albeit at the cost of a more complicated algorithm (such as distinguishing the cases in

Figure 3.2 and their proper orientation). Only the total centroid-to-centroid distances

are found in this model, therefore, only the distance sums are shown in Figure 4.5.

The flux is calculated using Equation (4.32). However, since only flux normal to an

interface is continuous physically, this model is flawed, e.g., the fluxes to the right in

Figure 4.5 where it is clear these are oblique to the faces.
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4.2.3 M3 Model

l1CR

l 1
CI

l1CT

l1CB

l1CL

l2CR

l2CB

l 2CI

l2RC

l1TC

l1LC

l1BC
l2BC

l1RC

Figure 4.6:
M3 model for mixed cells in the multi-temperature method. Distances
are specified as the normal distance from each centroid to the appropri-
ate face, which makes the flux normal to a face continuous. Phases are
indicated by background colors (phase 1 is blue, phase 2 is red), and all
distances needed for this center cell are labeled for phase 1 (white) and
phase 2 (green). Solid lines represent these distances while dashed lines
represent the centroid-to-centroid distances of the M2 model. Note that
parts of the neighboring cells are truncated.

The M3 model, which also locates the centroids, accounts for the oblique inter-

sections that are neglected in the M2 model. Physically, only the flux normal to an

interface is continuous; therefore the M3 method defines the distances as the nor-

mal (minimum) distance from the centroid to a face, as shown in Figure 4.6. (See

Figure 4.3 for a precise definition of normal distance.) Accordingly, the individual

distances are defined in this model, unlike the M1 and M2 models. Thus, Equa-

tion (4.29) is used for flux, which is more accurate than Equation (4.32), which is

used for both the M1 and M2 models.
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4.3 Discussion

The main advantage of the multi-temperature method is that it allows each phase

in a mixed cell to be treated separately. Physically, adjacent phases not in equilibrium

may have unique temperature with a heat flux from the warmer to the cooler material.

In standard methods, a mixed cell is treated as a single entity with a set of effective

material properties obtained from a combination of the properties of each phase. In

the multi-temperature model, the fluxes in a mixed cell are computed separately

for each phase. Thus, homogenization is avoided while maintaining an orthogonal

grid. Consequently, the multi-temperature model maintains the simplicity of uniform

meshes while achieving a higher degree of physical accuracy.

However, although the overall mesh structure is uniform, the differencing in the

mixed cells effectively introduces a cut cell, which gives a non-uniform mesh size

near the interface. Because the change in cell width is discontinuous (as opposed

to smoothly varying) and because the subcell zones are on the order of the origi-

nal cell (i.e., f∆x is O(∆x)), the multi-temperature model introduces a first-order

error [93]. The upshot of this method is that the physics is more accurate for the

mixed cells. Thus, we expect the multi-temperature models to have lower error than

a single-temperature model for rough grids while having a lower convergence rate.

Consequently, the multi-temperature models will begin with a lower error, but the

single-temperature models will become more accurate with sufficient refinement. We

will look for when the multi-temperature models attains second-order convergence,

but the better measure of the success of these models occurs by considering the error

on coarse grids compared to a single-temperature model’s error at the same refine-

ment.

The models are implemented with the assumption of a linear interface. However,

the models themselves do not require an assumption of a linear interface. Therefore,

the multi-temperature models could be implemented with more advanced interface

tracking or interface reconstruction in order to increase the accuracy of the simula-

tions.

Since the M2 and M3 models require the centroid to be computed for each phase

in each cell, a next step in the development of this method would be to integrate with

a scheme that naturally tracks centroids, such as the Moment of Fluid (MoF) method

[2, 3, 6, 68, 69, 70]. The MoF method is the Volume of Fluid (VoF) method with one

additional complexity. The VoF method tracks the zeroth volumetric moment of posi-

tion (volume), while the MoF method tracks both the volume and the first volumetric
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moment (centroid). In addition, when multiple phases are present (greater than two),

the MoF naturally handles the problem of ordering the phases, which is an issue with

multi-interface reconstruction. Interface reconstruction methods for greater than two

phases yield different results depending on the order they reconstruct the interface

for each phase. The MoF method compares the results from each ordering possibility

and determines which is best, thus leading to accurate interface reconstruction in

multiphase systems.

The multi-temperature methods could be coupled with a fluid dynamics scheme

that provides the volume fractions for an orthogonal grid. An example of a such

a method is Arbitrary Lagrangian Eulerian (ALE) method. The fluid advection is

performed using a Lagrangian technique, where the mesh moves with the fluid. After

each time step, the irregular mesh is projected onto an orthogonal mesh (which creates

mixed cells) and the fluid state updated (e.g., chemical diffusion or heat conduction).

The multi-temperature model could be implemented during the Eulerian cycle of an

ALE method, calculating the properties of each phase separately. The results for

each phase in each cell could be used in the subsequent Lagrangian cycle in order to

advect the fluid, all the while avoiding any homogenization.

Although the work presented involving the multi-temperature methods is re-

stricted to a linear interface and two phases, the models have the potential to be

applied to n phases with nonlinear interfaces. Therefore, the multi-temperature mod-

els are not limited to the cases presented, but rather, these are a proof-of-concept of

this mixed-cell approach.

4.4 Summary

We have developed a multi-temperature method to calculate temperature in heat

conduction problems with two phases, where the method may be generalized to n

phases. This method allows each material in a mixed cell to have a unique temper-

ature, which is more physically accurate. By integrating over the volume of a cell

and solving the problem via surface fluxes, this FDM is technically a FVM on an

orthogonal grid.

Specification of certain parameters that compose the flux, notably distances re-

quired to approximate the gradient, culminated in three different multi-temperature

models. The M1 model simply assumes that the spacing between neighboring cells

is equal to the grid spacing, while the distance for the exchange flux within a mixed

cell is half the grid spacing modified by the interfacial orientation. The M2 model,
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while more accurate, requires the location of the centroids for each phase existing

in every cell. The centroid separation is used to define the distances for in the flux

calculation. The M3 model makes improvements from the M2 model by computing

only flux normal to a surface or interface, calculating the normal distance from each

centroid.

These three models may be implemented using a variety of numerical techniques

with potential applications to two- and multi-phase flow. We use simple finite dif-

ferences to implement these models, although a modified SOM could be used in the

future. These models are evaluated in Chapters VI-VIII using numerical tests, with

comparisons made between the standard mixed-cell model (the harmonic-mean model

(S1) described in the previous chapter) to determine if these methods are advanta-

geous.
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CHAPTER V

Code Verification

This chapter summarizes the verification of the single- and multi-temperature

codes using the Method of Exact Solutions (MES) and the Method of Manufactured

Solutions (MMS). Technically, a code can never be fully verified, but rather evidence

can be collected that suggests a code has the correct behavior. Consequently, when

we use the word verify, we mean to state that a certain set of tests has given evidence

that particular aspects of a code are functioning as expected, and we assume these

aspects are trustworthy. The purpose of this chapter is to demonstrate the reliability

of the codes which implement the models for a standard, pure-cell problem prior to

their applications to mixed-cell problems.

In Section 5.1, we discuss our definition of code verification in more detail. In

Section 5.2, we define p-norms, error, and convergence rates. We present the results

of four numerical tests employed to verify various aspects of the single-temperature

and multi-temperature code for pure-cell cases in Section 5.3. We conclude with a

discussion in Section 5.4.

5.1 Definition of Code Verification

Verification (of a code that solves a set of equations) checks that the governing

equations are solved consistently, often examining the order-of-accuracy against the

accuracy of the discretization method [189]. Code verification does not ensure that

the equations are solved with the most efficient numerical methods, nor that the com-

puted solutions describe the system being modeled [189]. Model validation examines

whether the governing equations selected to be solved sufficiently model the physical

system [189]. We consider only verification and not validation here.

There are many ways to verify a code. Much of this section is based on Salari

and Knupp [189], which gives a thorough discussion and review of code verification
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techniques. Some of the less rigorous methods are trend testing and symmetry test-

ing. In trend testing, one varies input parameters in order to qualitatively check

the behavior of the code, i.e., observe trends. Symmetry testing may involve setting

up a problem with a known symmetric solution to verify the results are symmetric,

or checking that translations and rotations of an asymmetric solution give expected

results. Both trend and symmetry testing give only qualitative results and require

expert judgment — review by a person with experience and knowledge of the correct

solution behavior. A method that is slightly more quantitative is comparison testing,

where a code is compared with a verified code that solves the same problem. Issues

with the comparison method include the fact that different codes rarely solve identical

systems, and that comparable codes that are verified may not exist or may not be

accessible.

One of the most widely used and quantitatively sound methods to verify codes

is the Method of Exact Solutions (MES) [189]. In MES, computational results are

compared with an analytic solution, a closed-form mathematical expression for the

solution at every position and time in the domain. Such solutions can be found in

literature or derived via solution methods such as separation of variables (SoV) or

integral transforms. One issue with this method is that the analytic solution is often

less general than the code’s capabilities (e.g., being of lower dimension, requiring ho-

mogeneous coefficients, or specifying a simple domain), meaning that certain aspects

of the code will not be tested. This lack of comprehensiveness in testing a code with

a single analytic solution is often addressed by testing against a suite of analytic

solutions [189]. Some important issues with MES are that a solution often (i) does

not exist for the system, (ii) is difficult to numerically implement, or (iii) does not

test critical aspects of the code. See Chapter VIII for an example of a MES that

is difficult to implement due to the solution containing special functions and infinite

sums.

The Method of Manufactured Solutions (MMS) is a more flexible and often simpler

alternative to the MES. A closed form solution U is created (manufactured) by the

user. The solution U can be anything, but it is most useful if it is written in terms of

easily computed functions (e.g., sine, logarithms, exponentials) as well as polynomials

of the time or spatial variables. A solution can be created that is general enough to

exercise many (if not all) of the code’s capabilities, including those that cannot be

verified quantitatively by MES or other means. The solution U is then operated on

by the differential operator (L), resulting in a source term (Q). For the diffusion

128



equation, this process can be mathematically described as

Q = L[U ], (5.1)

where

L[U ] =
∂U

∂t
− ~∇ ·D~∇U. (5.2)

This source term (Q) is implemented into the code, effectively driving the code to the

chosen solution U . The source term may be complicated, however algebraic programs

such as Maple and Mathematica can compute the source term and output the results

in proper FORTRAN or C syntax. The best choices for domain size/shape and

boundary conditions would yield a solution that tests the most aspects of a code, or

instead, that tests aspects that are not otherwise tested. Despite this flexibility in

choosing the domain and boundary conditions, all MMS problems presented in this

thesis are computed on a square domain and use Dirichlet boundary conditions that

are set by the appropriate analytical solution. The discretization error of a code can

then be computed by comparing the code’s calculated solution (u) to the known exact

solution (U).

5.2 Discretization Error & Convergence Rate

5.2.1 Discretization Error & Its Quantification

Discretization is the process of converting a continuous domain into a discrete

domain, subdividing the domain into finite-sized cells. The difference between the

continuum and discrete solutions is called the discretization error. Higher resolution

(smaller cells) should always yield lower error, which is termed the ‘convergence’ of

the numerical solution. A time dependent equation, such as the diffusion equation,

is discretized in both space and time. Therefore, it has spatial as well as temporal

discretization errors.

We choose to measure errors in terms of the p-norm, defined as

‖x‖p = (|x1|p + |x2|p + |x3|p + · · ·+ |xn|p)
1
p , (5.3)

where x is a discrete n-element vector, p ≥ 1, and |xi| is the absolute value of the ith

element. For a 1D solution with N cells in a unit length domain, the error between
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an exact solution (U) and an approximate solution (u) is defined as

‖U − u‖p =

[
N∑
i=1

|Ui − ui|p
1

N

] 1
p

. (5.4)

For a 2D solution on N×M cells, the error measured in the p-norm is defined as

‖U − u‖p =

[
N∑
i=1

M∑
j=1

|Ui,j − ui,j|pVi,j
] 1
p

, (5.5)

where Vi,j = 1
NM

for a uniform mesh on the unit square.

We use three p-norms as metrics for the error analysis in this thesis: p ∈ {1, 2,∞}.
The p-norms for these three values are

‖U − u‖1 =
N∑
i=1

M∑
j=1

|Ui,j − ui,j|Vi,j (5.6a)

‖U − u‖2 =

√√√√ N∑
i=1

M∑
j=1

(Ui,j − ui,j)2Vi,j (5.6b)

‖U − u‖∞ = max
i,j
|Ui,j − ui,j|. (5.6c)

However, we use the relative error to specify results, which is the usual p-norm of the

difference (U − u) divided by the p-norm of the exact solution (U) [129, 151, 152].

Accordingly, our three error metrics are

E1 =

∑
i,j |Ui,j − ui,j|∑

i,j |Ui,j|
(5.7a)

E2 =

√∑
i,j(Ui,j − ui,j)2∑

i,j(Ui,j)
2

(5.7b)

E∞ =
maxi,j |Ui,j − ui,j|

maxi,j |Ui,j|
, (5.7c)

where the summations have been combined and the summation limits suppressed for

brevity. The volume factor cancels since we are using a uniform grid and Vi,j = ∆x∆y,

which can be factored from the sum. For the multi-temperature methods, the dividing

through by the volume factor leads to subcells with different volumes and thus to the

appearance of volume fractions in the error expressions. Thus, the three relative error
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metrics for phase 1 are

E1
1 =

∑
i,j |U1

i,j − u1
i,j|f 1

i,j∑
i,j |U1

i,j|f 1
i,j

(5.8a)

E1
2 =

√∑
i,j(U

1
i,j − u1

i,j)
2f 1
i,j∑

i,j(U
1
i,j)

2f 1
i,j

(5.8b)

E1
∞ =

maxi,j |U1
i,j − u1

i,j|f 1
i,j

maxi,j |U1
i,j|f 1

i,j

, (5.8c)

where both the calculated and analytical solutions are computed at the centroid of

each cell i, j. Note that the volume fractions do not cancel out, although many are

zero or one, and the expressions for the phase 2 error are found by substituting 2 in

for the phase superscript.

5.2.2 Error Convergence & Its Rate

The rate at which the error reduces as the resolution increases is known as the

convergence rate, q. The standard assumption is that the error resulting from spatial

discretization scales directly with the cell width, h, as

‖E(h)‖ ≈ Chq +O(hq+1), (5.9)

where C is the convergence rate constant [56, 99, 151, 152, 189, 197, 198]. For a 2D

solution with a grid N×M , the grid spacing (h) dependence of the error is dominated

by the larger direction for isotropic systems,

h = max

(
1

N
,

1

M

)
. (5.10)

Dividing error values at two grid sizes (h1 and h2) gives

‖E(h1)‖
‖E(h2)‖ ≈

Chq1 +O(hq+1
1 )

Chq2 +O(hq+1
2 )

. (5.11)

Solving for q, after dropping the terms with powers greater than q, gives

q ≈
log ‖E(h1)‖

‖E(h2)‖

log h1
h2

=
log ‖E(h1)‖ − log ‖E(h2)‖

log h1 − log h2

. (5.12)
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A convergence rate is always compared between two spatial resolutions. However, the

convergence rate is not necessarily the same between different sets grid resolutions.

Therefore, in the tests presented in this thesis, we compare the convergence for a

series of spatial resolutions, with the grid spacings listed as h1 → h2 for each pair of

resolutions.

For convergence studies, the grid sizes are often chosen to increase by factors of

two in each refinement, such that h1
h2

= 2, which gives (via the logarithm change of

base) the simpler form of the convergence rate,

q ≈ log2

‖E(h)‖
‖E(h/2)‖ . (5.13)

However, we use Equation (5.12) to maintain the flexibility in the manner resolution

refinements are made. Note that there is a temporal convergence rate as well, where

∆t takes the place for h, but we focus on the spatial convergence.

Since the error at the interface is the largest error in the domain and since we are

focused on treating this interfacial error, the error metric that emphasizes the largest

discrepancy is the best metric for mixed-cell analysis. The error characterized by the

∞-norm is a better measure of the mixed-cell error than any other norm because

the it calculates only the least accurate cell (which is a mixed cell for the problems

tested). Thus, the E∞ is the most stringent measure of mixed-cell accuracy. E1 and

E2 are included for completeness and additional information; however the figures and

discussion will include E∞ alone. Appendix C contains any E1 and E2 information

not shown in the main text.

The phrase ‘convergence rate’ in this work will always refer to the convergence

of the relative error, and phrase ‘order of accuracy’ is synonymous with ‘order of

convergence.’ Thus, the accuracy of a method is measured using the convergence

rate.

5.3 Pure-Cell Test Problems

We present four test problems. The first two are time dependent with no source

terms. The first test uses MES with a constant scalar diffusivity. The second test

uses MMS with a scalar diffusivity that changes with position. The third and fourth

tests are steady-state solutions created by MMS. The third test has a constant tensor

diffusivity, which applies to the single-temperature code. The fourth test is 1D with

a single interface. This interface test is performed for a pure-cell case here, while a
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mixed-cell version of this test is performed in Chapter VI.

5.3.1 Test 1: MES with Fundamental Solution

The first test employs what is known as the fundamental solution, an analytic solu-

tion found by using a Green’s function on an infinite domain. This test demonstrates

that the code correctly solves the time-dependent diffusion equation. The problem is

heat conduction on an infinite plane of homogeneous diffusivity, D, initially with a

unit heat source concentrated at the origin. In 2D, the solution is

U(x, y, t) =
ti
t

exp

(
−x

2 + y2

4Dt

)
, (5.14)

where D is the diffusivity (we use D = 1 for this test), and ti is the initial time, which

must be greater than zero when implemented in order to avoid a singularity (ti=0.01

is used). The solution decays to zero as the distance from the origin approaches

infinity. The computational domain, however, is finite, and zero Dirichlet boundary

conditions are used. The simulation is terminated before the heat wave from the

impulse is affected by the boundary conditions. For a domain of x, y ∈ [−2, 2], a

maximum time of t = 0.11 is sufficient to avoid boundary effects. This is determined

by ensuring the total amount of energy remains constant (i.e., none is lost due to

boundary effects). Unlike the single-temperature code, the multi-temperature code

requires an interface defined. We define this interface outside of the computational

domain, reducing the multi-temperature code to standard finite difference methods

(FDM).

Single-T Multi-T

grid size q1 q2 q∞ q1 q2 q∞

20→40 2.33 2.38 2.33 2.34 2.38 2.41

40→60 2.19 2.22 2.21 2.19 2.22 2.23

60→80 2.16 2.19 2.19 2.16 2.19 2.20

80→100 2.11 2.14 2.14 2.11 2.14 2.15

mean 2.20 2.23 2.22 2.20 2.23 2.25

Table 5.1:
Convergence rates for the first pure-cell verification problem. For both the
single-temperature and multi-temperature codes, the convergence rate is
calculated for three p-norms. The leftmost column gives the two grid sizes
between which the convergence rate is being calculated.
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Table 5.1 lists the time-averaged convergence rates for this test problem. The

solution is obtained at ten equally spaced times in the interval from tmin = 0.01

to tmax = 0.11. For the time range of this test, the difference in error for a given

grid resolution is insignificant (i.e., the convergence rates have little variance with

time for pair of grids). Thus, we present the results after averaging the ten outputs

produced over the duration of the simulation. Both the single-temperature and multi-

temperature codes achieve better than second-order accuracy in all three error norms

at every sample time.

The single-temperature and multi-temperature models are equivalent for this

problem because there are no mixed cells. The only difference between the multi-

temperature and single-temperature codes for this test is the numerical method for

solving the differential equation: SOM for the single-temperature code and FDM

for the multi-temperature code. SOM gives comparable accuracy to FDM for this

problem, which is expected because the grid is rectangular and the diffusivities are

constant. SOM is only advantageous compared to FDM for skewed grids and/or

discontinuous coefficients.

This test demonstrates that both codes solve the time-dependent heat equation

(diffusion equation with unit diffusivities) with second-order accuracy.

5.3.1.1 Multi-temperature Numerical Issue

We note some interesting solution behavior for the multi-temperature code when

the interface lies within the computational domain while setting the diffusivities of

each phase equal. Table 5.2 shows the results of this test problem with seven different

interface locations, one outside the domain, three along an axis of symmetry, and three

asymmetric interfaces. The domain is x, y ∈ [−2, 2], and the solution has circular

symmetry from the origin. Therefore, any linear interface that crosses through the

origin will lie on an axis of symmetry. We find that the results are second-order

accurate when the interface is outside the domain or on an axis of symmetry (y = 0,

y = x, y = 2x). When the interface is elsewhere (y = x+1, y = −2x+0.3, y = 2x+0.3)

the convergence rate reduces to as low as q1 = 1.2. We demonstrate this behavior

using the test problem of this section with the M1 model, but this behavior was

observed in any problems when equal diffusivities were set on two phases. Therefore,

this is an inherent artifact appearing in the code.

The multi-temperature code only recovers a second-order, single-temperature FDM

solution in certain cases when introducing an interface between equivalent phases.

While this behavior is worrisome, it may or may not represent a significant flaw. It is
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Interface q1 q2 q∞

Outside 2.34 2.38 2.41

y=0 2.34 2.38 2.41

y=x 2.34 2.38 2.41

y=2x 2.34 2.37 2.41

y=x+1 1.85 1.84 1.80

y=-2x+0.3 1.19 1.18 1.36

y=2x+0.3 1.19 1.18 1.36

Table 5.2:
Results for the multi-temperature code for the first pure-cell verification
problem showcasing the interface-dependent convergence rates. The in-
terfaces fall into three groups: those outside the computational domain,
those along an axis of symmetry (line through the origin for this problem),
and those not along an axis of symmetry. The convergence rate is calcu-
lated for three p-norms between square grids of size 10 and 20 with the
M1 model.

possible that the multi-temperature model simply cannot recover the single temper-

ature model due to the dividing and subsequent differencing of the mixed cell. The

first-order error introduced by differentiating on a subgrid mesh may manifest with

these asymmetric interfaces while canceling otherwise. However, this behavior may

instead represent a problem in the discretization or implementation of the model.

This problem would not manifest in 1D but may skew the 2D results. Further study

is needed to fully explore this issue.

5.3.2 Test 2: MMS with Spatially Dependent Diffusivity

The second problem is a MMS test problem that showcases a spatially dependent

diffusivity. It is necessary to demonstrate that the correct solution is obtained when

the diffusivity has a spatial dependence because the numerical test presented in Chap-

ter VIII uses a nonlinear interfacial geometry, which leads to a spatially dependent

diffusivity near the interface. This test, adopted from Salari and Knupp [189], was

designed to be a time-dependent problem with a zero source term. The solution and

diffusivity are [189]

U(x, y, t) = ex cos(y) exp

(
− t

ρc

)
(5.15a)

D(x, y) = ex sin(y)− x. (5.15b)
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Note that a physics-based assumption necessary for the code is that D must be

positive. As a result, we shift the domain from the standard unit square to x ∈
[−2,−1] and y ∈ [0, 1].

Single-T Multi-T
grid size q1 q2 q∞ q1 q2 q∞

20→40 1.98 1.98 1.93 2.05 2.15 2.20
40→60 2.00 2.00 1.97 2.04 2.09 2.12
60→80 2.00 2.00 1.98 2.02 2.05 2.08
80→100 2.00 2.00 1.98 2.03 2.06 2.08
100→200 2.00 2.00 1.99 2.00 2.02 2.03

mean 2.00 1.99 1.97 2.03 2.07 2.10

Table 5.3:
Convergence rates for the second pure-cell verification problem. For both
the single-temperature and multi-temperature codes, the convergence rate
is calculated for three p-norms.

As in the first test, this is a time-dependent problem, and the solution error is

measured at ten equally spaced intervals during the simulation time from t = 0 to

t = 0.1. We find that the errors at a particular grid size remain effectively constant

with time (variance below 10−12 with errors between 10−5 and 10−7) for the range of

time examined. Therefore, the convergence rates between two particular grid sizes are

also effectively constant with time. The convergence rates for both codes, averaged

over all ten times, are shown in Table 5.3. Both problems are second-order accurate

in all three error norms, although the multi-temperature code has slightly higher

accuracy in all cases (2-6% higher convergence rates).

This test demonstrates that both codes solve a variable diffusivity time-dependent

scalar diffusion problem with second-order accuracy.

5.3.3 Test 3: MMS with Anisotropic Diffusivity

The third test, generated by MMS, verifies the tensor diffusion capabilities of the

single temperature code. Verification of the tensor capabilities of the code is highly

desirable because one of the single temperature mixed-cell models (S2) uses a tensor

approach. The multi-temperature code is not evaluated with this test because it

cannot handle tensor diffusivities. Since we have two time dependent tests already,

this is designed to be a steady-state problem. Choosing a solution of

U(x, y) = x sin(2πy) + ey ln(x+ 1), (5.16)
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with a generic constant diffusivity tensor,

D =

[
Dxx Dxy

Dxy Dyy

]
, (5.17)

the source term is

Q(x, y, t) =
Dxxey

(x+ 1)2
+Dyy

(
4π2x sin(2πy)− ey ln(x+ 1)

)
−2Dxy

(
2π cos(2πy) +

ey

x+ 1

)
.

(5.18)

Note that D must be symmetric physically (Dxy = Dyx) due to Onsager’s principle

[16, 111, 159, 163, 164].

grid size q1 q2 q∞

10→20 2.02 2.01 2.04
20→30 2.00 2.00 2.01
30→40 2.00 2.00 2.01
40→50 2.00 2.00 2.02
50→100 2.00 2.00 2.01

mean 2.00 2.00 2.02

Table 5.4:
Convergence rates of the single-temperature code for the third pure-cell
verification problem. The convergence rate is calculated for three p-norms.

This problem is run to steady state on the unit square. The diffusivity values are

randomly chosen to be Dxx = 629, Dyy = 85.3, and Dxy = 0.741. The convergence

rates, shown in Table 5.4, demonstrate that single-temperature code remains second-

order accurate for tensor diffusivities.

5.3.4 Test 4: MMS with Two Phases

The fourth test is an MMS problem that displays each code’s ability to handle

a phase interface where a jump in the diffusivity occurs. This is a 1D test that is

run to steady-state (time-independent) with a discontinuous diffusivity. This test is

executed such that the discontinuity occurs at a cell face such that there are only

pure cells.

The solution is constant in the y-direction and could be run on a grid with an

arbitrary number of points in that dimension. However, for consistency with all other

tests, this problem is run on square mesh with ∆x = ∆y. Thus, the domain of

the problem is the unit square. The computed results are constant in the y-direction,
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effectively giving a 1D solution. This test has a quadratic solution, which was inspired

by a test with a linear solution in Shashkov and Steinberg [198], and is designed to

give a constant source term in the domain. The solution, diffusivity, and source are

defined as follows,

U(x, y) =

D2x
2 + a2(D1 −D2) (x < a)

D1x
2 (x > a)

(5.19a)

D =

D1 (x < a)

D2 (x > a)
(5.19b)

Q = −2D1D2, (5.19c)

where x = a is the location of the interface. The interface location is chosen to

lie along cell faces, avoiding any mixed cells. Note that temperature and flux are

continuous at the interface.

This problem tests that the code can correctly account for the effect of an interface.

The interface is orthogonal to the grid such that there are no mixed cells. It is crucial

to show the accuracy of the codes for a pure-cell, two phase problem prior to exploring

the behavior of a mixed-cell case. This test is a precursor to the more advanced 1D

test problem presented in Chapter VII, which is time-dependent and has an analytic

function to describe the evolution from initial condition to steady-state.

Single-T Multi-T
grid size q1 q2 q∞ q1 q2 q∞

10→20 2.00 1.99 2.04 1.85 1.87 1.91
20→30 2.00 2.00 2.03 1.74 1.86 1.95
30→40 2.00 2.00 2.02 2.19 2.05 1.97
40→50 2.00 2.00 2.01 1.52 1.78 1.97
mean 2.00 2.00 2.03 1.83 1.89 1.95

Table 5.5:
Convergence rates for the fourth pure-cell verification problem. The jump
ratio is 102 and the interface is near the middle of the domain. For both
the single-temperature and multi-temperature codes, the convergence rate
is calculated for three p-norms.

This test is implemented using diffusivities D1 = 10 and D2 = 0.1 (ratio of 102)

on the unit square. The interface is placed at a = 0.5 for the single-temperature code,

ensuring that there are no mixed-cells. The multi-temperature grid is shifted by half

a cell with respect to the single-temperature grid because the boundaries are defined
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differently in the respective codes (face centered versus cell centered). Consequently,

the interface for the multi-temperature code must be shifted with each grid size to

ensure that there are no mixed cells. It is placed as near to a = 0.5 as possible

without going over.

Table 5.5 presents the convergence rates for this test problem. The single-temperature

code remains second-order accurate for a discontinuous diffusivity, as expected for

SOM. The multi-temperature method is slightly below second-order accurate, with

average convergence rates of about 1.89, compared to the average rates of 2.00 for

SOM. Since the multi-temperature method with no mixed cells reduces to the stan-

dard FDM, these results also show that the FDM is not as accurate for a discontinuous

coefficient.

To show that the lower performance of the multi-temperature code is not particular

to the set value of the jump strength, another test is performed on the first three grids

of the multi-temperature code where the jump strength changes (with no mixed cells).

As Table 5.6 shows, the changes in the convergence rates with the jump strength r

are negligible. Therefore, the sub-second-order convergence for the two-phase problem

appears to be an inherent characteristic of the multi-temperature code..

ratio grid size q1 q2 q∞

5
10→20 1.83 1.87 1.92
20→30 1.78 1.87 1.93

102 10→20 1.85 1.87 1.91
20→30 1.74 1.86 1.95

104 10→20 1.85 1.87 1.91
20→30 1.74 1.86 1.95

Table 5.6:
Convergence rates for various jump ratios for the multi-temperature code
on the fourth pure-cell verification problem. The convergence rate is cal-
culated for three p-norms. The interface lies on the cell boundaries such
that no mixed cells are present.

This test indicates that both codes treat a discontinuous diffusivity problem at

or near second-order accuracy for pure cells. The results of this test also show that

SOM is more accurate than the multi-temperature code on such problems.

5.4 Summary

In this chapter we have defined verification, error metrics, and convergence rates.

Convergence rates, using the relative error in three p-norms, are used in this and the
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following numerical results chapters in order to make an objective measure of the

performance of the six mixed-cell models. The convergence rate of E∞ is used as

the primary metric in the analysis of the mixed-cell codes because it most accurately

measures the mixed-cell error.

Four test problems are performed in this chapter, two of which are dynamic and

two steady-state. These tests are used in an effort to build confidence that the single-

and multi-temperature diffusion codes perform in the expected manner. The first

test demonstrates that the codes solve a single-phase diffusion problem at second-

order accuracy. The second test substantiates that the codes solve a diffusion prob-

lem with a position-dependent diffusion coefficient at second-order accuracy. The

third test, which is only executed on the single-temperature code, indicates that the

single-temperature code correctly solves a full tensor diffusion problem, which is nec-

essary for the S2 mixed-cell model. The fourth test demonstrates that the single- and

multi-temperature codes solve a two-phase problem at or near second-order accuracy

for exclusively pure-cell problems, which is a typical assumption required for many

multiphase codes (phrases such as ‘the interface lies on cell boundaries’ generally

accompany such methods).
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CHAPTER VI

Numerical Results: 1D & 2D Manufactured

Solution

This chapter presents two test problems using the method of manufactured so-

lutions (MMS) in order to explore the accuracy of the mixed-cell models. (MMS is

detailed in Section 5.1.) The similarities and differences between the six mixed-cell

models are summarized in Table 6.1. Both test problems are run to steady state, with

the first problem in 1D and the second problem in 2D. The convergence rates for a

set of grids will be given for each model in three variants of each test. These tests act

as a segue to the more complicated method of exact solution (MES) mixed-cell tests

presented in the subsequent two chapters.

We present the MMS test and convergence rates of each model for the 1D test

in Section 6.1 and for the 2D test in Section 6.2. This chapter concludes with a

discussion in Section 6.3.
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Single-Temperature
Similarities Mixed cells have only one temperature, calculated at the cell-center.

Implemented using SOM.
Differences The distinguishing trait is how the diffusivity that represents both

phases for a mixed cell is specified.
S1 Section 3.1.1 Effective scalar diffusivity from volume-fraction-weighted harmonic

mean of diffusivities of each phase in a mixed cell.
S2 Section 3.1.2 Effective tensor diffusivity from volume-fraction-weighted averages

of diffusivities of each phase in a mixed cell: arithmetic mean for
direction parallel to interface, harmonic mean for direction perpen-
dicular to interface normal.

S3 Section 3.1.3 The calculation of flux for the mixed cell is partitioned into four
separate calculations in subcell regions, where each subcell, associ-
ated with one of the corners, has a diffusivity, volume, and corner
angle.

Multi-Temperature
Similarities Mixed cells have a temperature for each phase, calculated at the

phase centroid. Implemented using a flux-based FDM approach,
where the flux across each face (including interfaces within a mixed
cell) is computed.

Differences The flux is computed differently between the three multi-
temperature models. The flux requires the diffusivity of each phase,
the area of the interface, and the distance from each centroid to the
face.

M1 Section 4.2.1 Assumes all intercell distances are ∆x or ∆y, and intracell distances
are about half a cell apart. Face areas are approximated using the
volume fractions of neighboring cells.

M2 & M3 Centroids computed for each phase in all cells, so distances and face
areas are accurately computed.

M2 Section 4.2.2 Centroid-to-centroid distance used for all flux calculations, regard-
less of orientation with respect to the interface.

M3 Section 4.2.3 Normal distance from each centroid to common interface is used for
flux calculations.

Table 6.1: Description of the six mixed-cell models.

6.1 1D Mixed-Cell Test

This section uses the same 1D test problem as in Section 5.3.4 with one difference:

the interface is positioned such that it passes through a cell, creating mixed cells.

This problem allows for an arbitrary discontinuity in the diffusivity to be placed in

the domain, creating a single mixed cell in the 1D solution.

The solution is constant in the y-direction and could be run on a grid with an
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arbitrary number of points in that dimension. However, for consistency with all other

tests, this problem is run on square mesh with ∆x = ∆y. Thus, the domain of the

problem is the unit square. The computed results are constant in the y-direction,

effectively giving a 1D solution with a single mixed cell. This test has a quadratic

solution, which was inspired by a test with a linear solution in Shashkov and Steinberg

[198], and is designed to give a constant source term in the domain. The solution,

diffusivity, and source are the same as Section 5.3.4:

U(x, y) =

D2x
2 + a2(D1 −D2) (x < a)

D1x
2 (x > a)

(6.1a)

D =

D1 (x < a)

D2 (x > a)
(6.1b)

Q = −2D1D2, (6.1c)

where x = a is the location of the interface, chosen to cut through cell faces, creating

mixed cells. Note that temperature and flux are continuous at the interface.

6.1.1 1D MMS Results

This test is implemented using diffusivities D1 = 10 and D2 = 0.1 (ratio of 102),

as in Section 5.3.4. The difference here is that we introduce mixed cells. Thus, we

position the interface near a = 0.5 such that the volume fraction of the mixed cell

is constant for each grid. We explore three different volume fractions for the mixed

cell: 33%, 50%, and 85%. The error (in the particular, E∞) are plotted in Figure 6.2,

and the convergence rates obtained from these errors are summarized in Table 6.2

for the six models (three each for single-temperature and multi-temperature codes).

Additional convergence information (such as the rates for each grid and other norms)

is available in Table C.1. Any convergence rate equal to or above 1.9 shown as bold

in every convergence results tables for mixed-cell problems.

Unlike the pure-cell results, the multi-temperature results differ when taking the

numerical solution at a phase-centered position versus at a cell-centered position.

For pure-cell cases, the phase-center for each cell is the cell center. However, for a

mixed cell, the phase-centered temperature is located at the centroid of each phase.

A cell-centered temperature can be computed by taking an arithmetic average of

the temperature from each phase, weighted by the volume fraction. However, this

averaging introduces a first-order error even though the results for the individual
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Figure 6.1:
Analytical solution profile for the 1D MMS test. The interface is indicated
with a dashed line, with D1=10 on the LHS and D2=0.1 on the RHS.

phases may be second-order accurate. In fact, the cell-centered results for the M3

model are approximately the same as the S1 model, meaning that the extra effort

for the multi-temperature model offers no gain compared to the standard FDM using

the harmonic mean. Thus, the advantage of the M3 model is only realized using

phase-centered temperature values.

Furthermore, for the values used on this test, the phase 2 results are of greater

interest because the solution has a much higher slope than in phase 1 (see Figure 6.1).

In fact, the error analysis for the multi-temperature code in each mixed cell test

problem uses the phase where the solution has a higher slope. Thus, for the multi-

temperature models we use the phase 2 solution for the error analysis for this problem.

We show the cell-centered results in many of the tables, where the three models are

labeled as M1c, M2c, and M3c, where the ‘c’ indicates combined. The phase-centered

results displayed will not indicate which phase is used (this choice will always be

stated), and the three models are indicated as M1, M2, and M3.

Examination of Figure 6.2 shows that the phase 2 results of the M3 model have

lower relative error values than the S1 and M1 models. The S3 model has equivalent

error to the M3 model in v2 and v3, where both are second-order accurate. However,

the S3 model actually has the highest error in v1.

S1 and S2 models. The S1 model is only first-order accurate in the ∞-norm,

and it performs at approximately the same accuracy in each volume fraction (see

Table 6.2). The S2 model, while having slightly lower q1 and q2 compared to the S1
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Figure 6.2:
Error versus cell width calculated with the∞-norm for each volume frac-
tion in the 1D MMS mixed cell test problem. The volume fractions shown
are (a) v1, (b) v2, and (c) v3. Only phase 2 results are shown for the
multi-temperature models, and the M2 model is not shown because it is
identical to the M3 model. Similarly, the S2 model is not shown because
it very similar to the S1 model.
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S1 S2 S3 M1c M2c M3c M1 M2 M3
v1 0.92 0.68 1.00 0.74 0.97 0.97 0.87 2.16 2.16
v2 0.96 0.68 1.98 0.69 0.90 0.90 0.69 1.95 1.95
v3 0.96 0.86 2.03 0.72 1.14 1.14 0.72 1.78 1.78

Table 6.2:
Average convergence rates of all six mixed-cell models for the 1D MMS
mixed-cell test problem. The interface is near the center of the domain
and makes the volume fractions indicated for the mixed cells. The jump
strength is 102, and phase 2 is shown for the multi-temperature models.
The convergence rate is measured using E∞ and the rates are averaged
over all pairs of grids. Table C.1 is an expanded version of this table. Bold
indicates qi ≥ 1.90.

model, does especially poor in the ∞-norm (see Table C.1). This is surprising, as

the S2 model should reduce to the S1 model in 1D because in the xx element of the

diffusivity tensor in the S2 model uses the harmonic mean of the diffusivities of two

phases. The differences between the S2 and S1 models are due to the anisotropy of

the S2 diffusivity, which uses the arithmetic mean in the yy component of the tensor

diffusivity, while the S1 model is isotropic and uses the harmonic mean.

S3 model. In v1 (33% volume fraction), the S3 model performs slightly better than

the S1 model in all three norms, but it is still only first-order accurate in the∞-norm;

see Table 6.2. However, for v2 and v3, the S3 model is second-order accurate in all

three norms (Table 6.2) and has the error much lower than the S1 and M1 models.

Second-order performance is the desired result; however the fact that this is only

achieved when the larger diffusivity is the majority fraction may limit the success of

this model in 2D. This behavior is discussed further for the 1D MES test problem in

Section 7.3.2.

M1, M2, and M3 models. The M1 model is first-order accurate or less in each error

norm and each volume fraction. This indicates that the simplistic approximations

made with this model are too rough to yield any gain in accuracy. The M2 and M3

models are equivalent in 1D since the distinguishing feature, off-axis interfaces, does

not occur in 1D. Thus, in 1D, we will only discuss the M3 model.

The M3 model is second-order accurate in all three error normals for v1 and v2 (see

Table C.1 in the appendix). However, the convergence rates decrease as the volume

fraction increases (e.g., q∞ are 2.16, 1.95, and 1.78 for v1, v2, and v3, respectively).

Thus, when the smaller diffusivity is the majority phase, the M3 model converges more
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rapidly. This is opposite to the trend in the S3 model. However, while the smallest

q∞ for the M3 model is 1.78, which is much larger than the worst convergence rate

of the S3 model, which is only 1.00. Therefore, the M3 model has the best overall

accuracy for E∞ for this test, as supported by the error values shown in Figure 6.2.

6.2 2D Mixed-Cell Test

This is a 2D MMS problem that creates a solution that has continuous temper-

ature and flux across a linear interface, y = mx + b, where m is the slope and b is

the y-intercept. The source term is equal for both phases, which is important for

implementation purposes; it can introduce an ambiguity when two different sources

must be assigned to a single cell, which may affect the rest of the test. The solution,

diffusivity, and source are defined as follows,

T (x, y) =

D2(y −mx− b) sin(2πx) sin(2πy) (y < mx+ b)

D1(y −mx− b) sin(2πx) sin(2πy) (y > mx+ b)
(6.2)

D =

D1 = 10 (y < mx+ b)

D2 = 0.1 (y > mx+ b)
(6.3)

Q = −4πD1D2

[
− 2π(y −mx− b) sin(2πx) sin(2πy) (6.4)

+ sin(2πx) cos(2πy)−m cos(2πx) sin(2πy)
]
.

This is just one example of potential 2D MMS tests for mixed-cells. The test is im-

plemented on the unit square, and the solution is zero for every external boundary

as well as along the interface. The solution, shown in Figure 6.3(a), contains neg-

ative temperatures, which is not an issue for the codes tested. If, however, this is

problematic, a constant ψ could be added to the solution, only changing the Dirichlet

boundary conditions from zero to ψ.

A line only divides a rectangular cell when it crosses at two points. The points

have four possible arrangements: two opposite corners, one corner and a face, opposite

faces, or adjacent faces. In order to test each of these four cases, we run this 2D MMS

test problem using the following three interfaces (shown in Figure 6.3(b)):

L1: y = x (6.5a)

L2: y = 2x (6.5b)

L3: y = 1√
2
− x√

5
. (6.5c)
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Figure 6.3:
2D MMS mixed cell test. (a) 2D analytical solution obtained via the MMS
which is use for the mixed-cell test with D1=10, D2=0.1, and interface
y=x. (b) The three interfaces used for this test.

Equation (6.5a) creates an interface that cuts two corners of every cell along the

diagonal, making volume fractions of one half in every mixed cell. Equation (6.5b)

crosses one corner of every mixed cell, making volume fractions of one quarter and

three quarters. By using irrational numbers, Equation (6.5c) should not intersect

any corners of cells in the grid, resulting in mixed cells with interfaces that cross

opposite sides and adjacent sides. These mixed cells should have a spread of volume

fractions. Note that these lines are given for the grid of the single-temperature code.

The multi-temperature grid has a half grid shift in both the x- and y-directions,

requiring Equation (6.5b) to be y = 2x−∆x/2, while the other two interfaces remain

unchanged. No changes are required for L1 or L3 for the multi-temperature grid

since Equation (6.5a) still cuts two corners along the diagonal and Equation (6.5c)

still does not touch any corners.

As implemented, phase 1 is below the interface (y < mx + b). Thus, the phase

with relatively constant temperature in Figure 6.3(a) is phase 1. Therefore, we will

only report the results of error analysis for phase 2 for the multi-temperature models,

as this phase has larger variation in the solution (temperature) than phase 1.

6.2.1 2D MMS Results

The average convergence rates for each interface and model are presented in Ta-

ble 6.3, and additional convergence information (including convergence rates for other
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Figure 6.4:
Error versus cell width calculated with the ∞-norm for each interface of
the 2D MMS mixed cell test problem. Only phase 2 results are shown for
the multi-temperature models. The interfaces shown are (a) L1, (b) L2,
and (c) L3. Bold indicates qi ≥ 1.90.
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S1 S2 S3 M1c M2c M3c M1 M2 M3
L1 1.08 1.08 2.05 0.79 0.93 1.00 0.79 0.92 1.01
L2 1.69 2.03 1.20 1.08 1.47 1.62 0.99 0.86 0.88
L3 1.06 1.40 1.06 0.96 1.15 1.13 0.96 1.17 1.33

Table 6.3:
Average convergence rates of all six mixed-cell models for the 2D MMS
mixed-cell test problem. The convergence rate is measured using E∞.
Results are shown for three different linear interfaces, defined in Equa-
tion (6.5). The jump strength is 102, and phase 2 is shown for the multi-
temperature models. Table C.2 is an expanded version of this table. Bold
indicates qi ≥ 1.90.

norms as well as rates for each set of grids) can be found in Table C.2. Log-log plots

of the error versus cell width are shown in Figure 6.4. The slope of each best-fit line,

indicated with the legends, represents the convergence rates.

S1 and S2 models. As shown in the first row of Table 6.3, the S1 and S2 models

give equivalent results in for the L1 interface, each with an average q∞ of 1.08. The

S1 model has its best performance using the L2 interface, starting out at second-

order accuracy (q∞ = 2.04) but dropping to first-order with increasing resolution

(q∞ = 1.15), as seen in Table C.2. This decreasing convergence rate indicates that

the mixed-cell error is below the discretization error for lower resolutions, but that

the discretization error converges more quickly than the mixed-cell error. This leads

to mixed-cell dominating error for higher resolutions.

The S2 model performs at second-order accuracy for the L2 interface for each

set of grids tested (as well as all three error norms); see Table C.2. This consistent

performance in each grid indicates that the anisotropic tensor, using arithmetic and

harmonic means, accurately computes the mixed-cell temperature for this case. It is

not surprising that both the S1 and S2 models perform best with the same interface,

as they are related methods (homogenization involving the harmonic mean).

Neither model performs well in the L3 interface, although for q∞, the S2 model

(1.40) is better than the S1 model (1.06), as shown in the third row of Table 6.3.

Thus, when considering all three interfaces for this test case, the S2 model represents

a slight improvement over the S1 model.

S3 model. Table 6.3 shows that the S3 model achieves second-order accuracy for the

L1 interface, where y = x. Each mixed cell in this case involves two pure subcells and

two subcells homogenized by the harmonic mean. This indicates that homogenization
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can yield second-order accuracy, at least when combined with the split-zone method.

Second-order accuracy for the harmonic-mean approach also occurs for L2 with the

S2 model, as discussed above.

The S3 model is only first-order accurate for the L2 and L3 interfaces. However,

Table C.2 shows that q1 and q2 for the S3 model are between 1.88 and 2.00 on average

for these interfaces. Figure 6.4(c) shows that the S3 model has the highest error of all

models for the L3 interface. In fact, even in the L1 interface where S3 is second-order

accurate, it has the largest error for the coarsest grid; see Figure 6.4(a).

The L3 interface crosses cells on adjacent sides as well as opposite sides. The cells

crossed on opposite sides should more or less alternate which phase is the majority.

As we learned from the 1D MMS test, the S3 model has a performance drop for mixed

cells with interfaces that cross opposite sides when the majority phase is the smaller

diffusivity. Since this occurs frequently in L3, the large error for this interface is

related to the observations from the 1D test: the S3 model is only first-order accurate

when the majority phase is the smaller diffusivity (for cells with an interface that

crosses opposite sides).

M1, M2, and M3 models. The multi-temperature results are all first-order accu-

rate or less, as shown in Table 6.3 and Table C.2. The M3 model has peak q∞ (1.3)

for L3, which, similar to the 1D MMS results, is also the interface where the S3 model

performs worst. The fact that M3 tends to perform best in the instances where S3

performs worst (and vice versa) suggests that a model that combines the S3 and M3

models may yield the best overall performance.

Although M3 is only first-order accurate, examination of Figure 6.4 shows that it

has the lowest error for first-order order results in all cases. In fact, it is evident from

Figure 6.4 that the M3 model along with the M2 model have the lowest error for the

coarsest grid in every case. Examination of Tables 6.3 and C.2 show that the M2 and

M3 models yield similar convergence rates. The M1 model, while having the lowest

convergence rate and highest error of the multi-temperature methods, has error lower

than all three single-temperature models at the coarsest grid.

The strength of the multi-temperature models is most apparent in this test. Al-

though they all have only first-order convergence rates, we find that the error is

lower than the single-temperature models for the coarsest grids. This indicates that

the multi-temperature models are approximating the physics better. The fact that

the convergence is lower than second-order is a consequence of the subzonal model:

the discretization of the mixed cells effectively yields a non-uniform grid. The non-
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uniformity is discontinuous (i.e., not smoothly varying) and the change in size is on

the order of the grid spacing (distances from mixed-cell centroids to cell faces are

on the order of ∆x/2). Hirsch [93] shows that if either of these properties is true

(discontinuity in grid size or spacing on the order of ∆x), the resulting discretization

is only first-order. The multi-temperature model could potentially achieve second-

order accuracy by accounting for the non-uniformity of the grid spacing. This can

be achieved by supplementing the discretization near the interface with higher-order

terms [93].

6.2.2 Modified S3 (Split-Zone) Results

Through the results presented above, we realized that it was possible to modify

the split-zone method to achieve better accuracy. The change applies to mixed cells

where the interface crosses adjacent sides as well as where the interface crosses one

corner. In each case, the minority phase is mostly associated with a single corner.

Say that phase 2 is localized in the bottom-right corner with volume fraction 1− f .

We then specify

VRB = (1− f)∆x∆y (6.6)

VLB = 1
3
f∆x∆y (6.7)

VLT = 1
3
f∆x∆y (6.8)

VRT = 1
3
f∆x∆y. (6.9)

This is in contrast to Equation (3.7) for when the interface crosses adjacent cells and

Equation (3.6) for when the interface crosses one corner.
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L2: y = 2x L3: y = 1√
5
− x√

2

S3 grid size q1 q2 q∞ q1 q2 q∞

old

10→20 1.95 1.96 1.55 1.97 1.93 1.11

20→30 1.89 1.87 1.01 2.03 1.99 1.44

30→40 1.83 1.80 1.03 1.98 1.87 0.62

mean 1.89 1.88 1.20 2.00 1.93 1.06

new

10→20 1.98 2.03 2.04 1.93 2.00 2.05

20→30 2.00 2.01 2.01 2.08 2.00 1.83

30→40 2.00 2.00 2.01 1.93 1.92 -0.31

mean 1.99 2.01 2.02 1.98 1.97 1.19

Table 6.4:
Comparison of convergence rates for 2D MMS mixed-cell test problem

for the initial (old) and modified (new) S3 model implementations. The

convergence rate is calculated for three p-norms. Results for each pair

of grids are presented along with the average convergence rate. Updated

results are shown for the L2 and L3 interfaces (there was no change for

the L1 interface). The diffusivity ratio is 102. Bold indicates qi ≥ 1.90.

Table 6.4 compares the convergence rates using this new S3 model compared

to the old S3 model. The L1 interface case, where S3 is second-order accurate, is

identical in both variants of the S3 model because the modifications do not affect this

case. We see that the S3 model now achieves second-order q∞ for the L2 interface.

Now both the S2 and S3 models are second-order accurate for this interface. We

also see increased performance for the S3 model in the L3 interface case. While

the S3 model starts out at second-order for the L3 interface, it drops to negative

convergence for the highest resolution tested. This indicates that the mixed-cell

error starts below the discretization error but eventually grows and peaks above the

discretization error, leading to a negative convergence rate. The improved results at

low resolution demonstrate that the error from the adjacent crossing cells is reduced,

but the error from the opposite crossing cells still dominates the results at higher

resolution.

We see for L1 in Table C.2 and for L2 and L3 in Table 6.4 that the modified S3

model is now second-order in all three error norms for all three interfaces except for

q∞ using the L3 interface. Therefore, the S3 model yields the highest accuracy and

convergence rates for this 2D MMS mixed-cell test.
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6.3 Summary

We presented MMS mixed-cell tests in 1D and 2D. The method of manufactured

solutions creates a test problem by choosing an analytic solution and then calculating

result of operating the governing differential equations on the analytic solution. This

result is then used as a source term that, along with the boundary conditions, drives

the system to the analytic solution.

The 1D test maintains a constant volume fraction in the mixed cells at each grid

size. In 1D, we find that the S1 and M1 models are only first-order accurate. We also

find that the S3 and M3 models give second-order accuracy for E∞, however the S3

model only performs at second-order for two of the three volume fractions, while the

M3 model performs well in all cases. The S3 model is second-order only when the

majority phase (f ≥ 1/2) is the larger diffusivity.

In 2D, we find that the S1, M1, M2, and M3 models are only first-order accurate.

However, we also see that the error associated with the multi-temperature models is

lowest for the coarsest grids, even though they may have a lower convergence. The

S2 model performs at second-order accuracy for one interface (y = 2x), but only

first-order for the other two interfaces.

The S3 model has similar performance to the S2 model, achieving second-order

accuracy in only one of the three interfaces. However, we were able to modify the

S3 model, which provides second-order accuracy in two of the three cases tested.

The lower convergence rate for the S3 model in the L3 interface is likely related to

the first-order performance in the 1D MMS case. Thus, when the interface crosses

opposite sides and the majority phase is the smaller diffusivity, the S3 model is first-

order accurate but second-order otherwise. Further research is needed to explore

techniques to mitigate this issue.
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CHAPTER VII

Numerical Results: 1D Exact Solution

This chapter summarizes the error analysis to quantify the fidelity of different

mixed-cell models using a 1D composite rod solution. This solution serves as a

benchmark test against which the models introduced in this thesis are compared.

The analytical solution we present does not represent new work [61, 62, 147, 221];

however using this solution as a mixed-cell benchmark is unique. The chapter begins

in Section 7.1 with the derivation of the analytic solution via separation of variables

(SoV). The resulting eigenvalue solution is then discussed in Section 7.2, showing the

dependence on the diffusivity ratios, the time variable, and the number of eigenvalues.

This is followed with results for each mixed-cell technique in Section 7.3. The chapter

concludes in Section 7.4 with a discussion.

The problem solved in this chapter is the 1D heat equation for an insulated com-

posite rod, which can only conduct heat along the length of the rod. The 1D heat

equation is

ρc
∂T (x, t)

∂t
=

∂

∂x

(
D
∂

∂x
T (x, t)

)
, (7.1)

where ρ is density, c is heat capacity, T (x, t) is temperature, D is diffusivity, x is

position, and t is time. The rod has length L with a domain of 0 ≤ x ≤ L. An

interface at x = a separates the two phases, with D1 from 0 ≤ x ≤ a and D2 from

a ≤ x ≤ L. Figure 7.1 shows the basic problem set up.

We assume continuity of temperature at the interface. However, physical sit-

uations may have thermal contact resistance at material interfaces due to surface

roughness and voids. Thermal contact resistance leads to a jump in the tempera-

ture at the interface [107, 192]. However, this complication could be added to the

test problems with relatively little difficulty in order to match the test with realistic

materials.
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D1 D2

a L0

Figure 7.1:
One dimensional heat conduction problem domain. Phase 1 is the blue

region with diffusivity D1, and phase 2 is the red region with diffusivity

D2. The rod is insulated along its length, which only allows for head

conduction across the endpoints.

Initially, the rod is at a uniform temperature, T (x, 0) = Ti for 0 ≤ x ≤ L. For

t > 0, the two ends of the rod are held at constant temperatures, T (0, t) = T0 and

T (L, t) = TL. The results presented make the assumption that T0 < TL < Ti, but

the solution is valid for any values of these three temperatures. Further constraints

include continuity of temperature and flux across the interface. Mathematically, these

constraints are given as

T (x, 0) = Ti Initial Condition (7.2a)

T (0, t) = T0 Left Boundary (7.2b)

T (L, t) = TL Right Boundary (7.2c)

T (a−, t) = T (a+, t) Continuity of Temperature (7.2d)

D1
∂T (x, t)

∂x

∣∣∣∣
x=a−

= D2
∂T (x, t)

∂x

∣∣∣∣
x=a+

Continuity of Flux. (7.2e)

The notation x = a− indicates x approaching a from below (smaller values), and

x = a+ indicates x approaching a from above (larger values).

Using a constant initial condition is a good choice because it avoids numerical

complications. Namely, the assignment for temperature in a mixed cell is less clear

if there is a gradient or if each material has a different temperature. The test can

become contaminated by the initial implementation of the temperature profile if the

initial condition has a gradient or kink at the interface. A smooth initial condition

avoids this problem entirely, allowing the analysis to focus on the fidelity of the mixed

cells without the complication of introducing any potential inaccuracy at the start of

the problem.
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7.1 Derivation of the Analytical Solution

This derivation is a simpler case of an n-layered, composite media, analytical heat

equation solution [61, 62, 147]. The approach presented in this chapter for a two-

layered composite media problem follows that of Zauderer [221]. Although we can

express the thermal conductivity (D) as a function of x in terms of the Heaviside step

function,

D(x) = (D2 −D1)H(x− a) +D1, (7.3)

we choose instead to break the problem in two parts. By treating each phase sepa-

rately, the diffusivity no longer depends on x, simplifying the problem. The solution

for each phase is related by enforcing continuity of temperature and flux at the inter-

face. There exists a set of solutions (eigenfunctions) that satisfies Equation (7.1) in

each phase, with a constant for each eigenfunction determined by the initial condition.

This section first applies SoV and determines the time dependence of the solution

(Section 7.1.1). This is followed by the steady-state solution (Section 7.1.2) and the

transient solution (Section 7.1.3). The full solution is presented in Section 7.1.5,

summarizing all terms and constants required to express the analytical solution.

7.1.1 Separation of Variables & Time Dependence

Beginning with the SoV assumption, we write the two-variable temperature as the

product of a function of time, τ(t), with a function of position, X(x), so that

T (x, t) = τ(t)X(x). (7.4)

Because the diffusivity is no longer a function of x, it can pass through the spatial

derivative. As a result, the differential equation becomes

ρcτt(t)X(x) = Dτ(t)Xxx(x)

τt(t)

τ(t)
=
D

ρc

Xxx(x)

X(x)
= −k, (7.5)

where k is some constant relating the time-dependent LHS to the position-dependent

RHS, and the subscript notation here indicates a derivative of a single variable func-

tion (i.e., Xx(x) = dX(x)/dx, τt(t) = dτ(t)/dt). By treating the two equalities of

Equation (7.5) separately, two ordinary differential equations, one each for τ(t) and

X(x), are obtained.
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The solution for τ(t) in Equation (7.5) is given by

τ(t) = b exp(−kt) + b0 exp(kt), (7.6)

where b and b0 are arbitrary constants. We choose k to be non-negative, which

requires b0 = 0 to avoid unphysical exponential growth with time. Therefore, the

solution to the temporal function is

τ(t) = b exp(−kt), (7.7)

where k must be either zero or positive. This restriction on k guides the process of

finding the spatial function, X(x).

7.1.2 Steady-State Solution (k = 0)

When k = 0, the time equation reduces to a constant, which we choose to be

unity. Let X1(x) describe the function from x = 0 to x = a, with phase parameters

ρ1c1 and D1 and boundary conditions X1(0) = T0 and X1(a) = Ta. We can then solve

the differential equation for x < a,

D1

ρ1c1

X ′′1 (x) = 0, (7.8)

as follows:

X1(x) = c0x+ c1 General Solution

X1(0) = T0 = c1, Left Boundary Condition

X1(a) = Ta = c0a+ T0 Right Boundary Condition

X1(x) =
Ta − T0

a
x+ T0. (7.9)

Following the same approach for x ≥ a, with boundary conditions X2(a) = Ta and

X2(L) = TL, we find

X2(x) =
Ta − TL
L− a (L− x) + TL (x ≥ a) (7.10)
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We combine Equations (7.9) and (7.10) to write our piecewise expression of the steady-

state (ss) temperature,

Tss(x) =

T0 + x
a
(Ta − T0) (x ≤ a)

TL + L−x
L−a(Ta − TL) (x ≥ a),

(7.11)

where we have T (x, t) = T (x) = X(x) because k = 0 and τ(t) is constant. Equa-

tion (7.11) satisfies the nonhomogeneous boundary conditions, so any other contri-

butions from nonzero values of k will have a boundary condition of T (0, t > 0) =

T (L, t > 0) = 0.

Enforcing continuity of temperature and flux completes the steady-state solution.

Continuity of temperature was enforced by defining the value Ta, which is not yet

determined. The additional equation necessary to solve for Ta is given from continuity

of flux:

−D1
dT (x)

dx

∣∣∣∣
x=a−

= −D2
dT (x)

dx

∣∣∣∣
x=a+

(7.12)

D1

a
(Ta − T0) =

D2

L− a(TL − Ta)

Ta

(
D2

L− a +
D1

a

)
=

D2

L− aTL +
D1

a
T0

Ta =

D2

L− aTL +
D1

a
T0

D2

L− a +
D1

a

. (7.13)

Substituting Equation (7.13) into Equation (7.11) and simplifying the resulting ex-

pression gives the steady state temperature,

Tss(x) =



T0 +
x

a

D2

L− a

 TL − T0

D2

L− a +
D1

a

 (x < a)

TL +
L− x
L− a

D1

a

 T0 − TL
D2

L− a +
D1

a

 (x > a).

(7.14)

Introducing combinations of constants, we rewrite this linear expression for reference
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later as

Tss(x) =

T0 + σx (x < a)

TL + β(L− x) (x > a).
(7.15)

This is the final form of the steady-state solution.

7.1.3 Transient Solution (k > 0)

For positive values of k, the temporal solution is exponential decay, with an ar-

gument that depends on the values of k. The temporal solution is given in Equa-

tion (7.7). For the spatial solution, we require that X(0) = X(L) = 0 as the non-

homogeneous boundary conditions are accounted for by the steady-state portion of

the solution. Starting with x ≤ a for the spatial solution of Equation (7.5) and

introducing constants (bi’s) to be determined, we have

X1(x) = b1 sin

(√
kρ1c1

D1

x

)
+ b2 cos

(√
kρ1c1

D1

x

)
. (7.16)

The condition X1(0) = 0 means that b2 = 0. Similarly, we can write the spatial

solution for x ≥ a as

X2(x) = b3 sin

(√
kρ2c2

D2

(L− x)

)
+ b4 cos

(√
kρ2c2

D2

(L− x)

)
. (7.17)

Again, we find the cosine term vanishes because X2(L) = 0 = b4.

Let us define four new constants for ease of exposition:

λ =
√
k (7.18a)

µ =

√
ρ1c1

D1

(7.18b)

ν =

√
ρ2c2

D2

(7.18c)

η = L− a. (7.18d)

We identify k as the eigenvalue for the differential equation to be solved. However,

the presentation is more crisp to discuss the eigenvalues in terms of λ rather than of

k. Consequently, we will refer to λ as the eigenvalues, with the implicit knowledge

that the eigenvalues are technically the square of λ. There is no loss of information

since k is non-negative.
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Substituting Equation (7.18), the spatial solutions are then

X1(x) = b1 sin(λµx) (7.19a)

X2(x) = b3 sin(λν(L− x)). (7.19b)

Continuity of temperature, X1(a) = X2(a), gives a relation between b1 and b3, allow-

ing us to write the solutions as

X1(x) = b
sin(λµx)

sin(λµa)
(x < a) (7.20a)

X2(x) = b
sin(λν(L− x))

sin(λνη)
(a < x). (7.20b)

Continuity of flux, Equation (7.12), gives

µD1 cot(λµa) + νD2 cot(λνη) = 0. (7.21)

Equation (7.21) is a transcendental equation and the eigenvalue equation for Equa-

tion (7.5). There exists an infinite set of values for λ > 0 that satisfy Equation (7.21).

We enumerate this ordered set of eigenvalues with n, where λn ∈ {λ1, λ2, λ3, ...}.
The set eigenfunctions, v(n)(x), is specified on a domain of 0 ≤ x ≤ L in two

piecewise-continuous sections. The set of eigenfunctions, corresponding to the eigen-

values specified by Equation (7.21), are defined as

v(n)(r) =

v
(n)
1 (r) (0 ≤ x ≤ a)

v
(n)
2 (r) (a ≤ x ≤ L)

(7.22)

where

v
(n)
1 (x) =

sin (λnµx)

sin (λnµa)
(7.23a)

v
(n)
2 (x) =

sin (λnν(L− x))

sin (λnνη)
, (7.23b)

where the scalar constant series bn is absorbed into the temporal solution, and the

subscripts 1 and 2 refer to the regions of the rod (see Figure 7.1). The transient

solution to this 1D heat conduction problem for discontinuous media is

Ttransient(x, t) =
∞∑
n=1

bne
−λ2ntv(n)(x). (7.24)
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7.1.4 The Full Solution

Combining the steady-state, Equation (7.15), and the transient, Equation (7.24),

solutions, we find a combined solution of

T (x, t) =


T0 + σx+

∞∑
n=1

bne
−λ2ntv

(n)
1 (x) (x < a)

TL + β(L− x) +
∞∑
n=1

bne
−λ2ntv

(n)
2 (x) (x > a).

(7.25)

We must determine the scalar constants series bn in order to fully specify the

solution. This involves two steps. First, in Section 7.1.4.1, we must demonstrate

that the eigenfunctions are orthogonal and determine their magnitude, creating an

orthonormal basis. Second, in Section 7.1.4.2, we determine the constants bn from

the initial conditions.

7.1.4.1 Eigenfunctions: Orthonormal Basis

Each eigenfunction, Equation (7.23), is a solution to the governing equation, Equa-

tion (7.5). The eigenfunctions are orthogonal and form a basis of the eigenspace. In

this section we first demonstrate the orthogonality of the eigenfunctions, and then

determine the magnitude in order to normalize the basis. The orthogonalization dis-

cussion and inner product definition, which come from Sturm-Liouville problems, are

adapted from Zauderer [221].

Let λi and λj be eigenvalues corresponding to eigenfunctions v(i) and v(j). Let L

be the diffusion operator, written as L[v(n)(x)] = −~∇·(D~∇v(n)(x)) = λρcv(n)(x). The

1D form is simply L[v(n)(x)] = −Dv(n)
xx (x) = λρcv(n)(x), where v

(n)
xx (x) = ∂2

∂x2
v(n)(x).

Orthogonality can be shown with the integral∫ L

0

(v(i)Lv(j) − v(j)Lv(i))dx

and

Lv(i) = −Dv(i)
xx = λiρcv

(i). (7.26)
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Beginning with the first definition of the operator L, we find∫ L

0

(v(i)Lv(j) − v(j)Lv(i))dx =

∫ L

0

(v(j)Dv(i)
xx − v(i)Dv(j)

xx )dx

=

∫ L

0

d

dx

(
Dv(j)v(i)

x −Dv(i)v(j)
x

)
dx (7.27)

Repeating the integral using the second definition of L, we have∫ L

0

(v(i)Lv(j) − v(j)Lv(i))dx =

∫ L

0

(v(i)λjρcv
(j) − v(j)λiρcv

(i))dx

= (λj − λi)
∫ L

0

ρcv(i)v(j)dx

= (λj − λi) 〈v(i), v(j)〉, (7.28)

where we define the inner product for this eigenvalue problem as [221]

〈v(i)(x), v(j)(x)〉 =

∫ L

0

ρcv(i)v(j)dx = µ2D1

∫ a

0

v
(i)
1 v

(j)
1 dx+ν2D2

∫ L

a

v
(i)
2 v

(j)
2 dx, (7.29)

where ρ1c1 = µ2D1 and ρ2c2 = ν2D2 by Equation (7.18)(b-c).

Combining Equation (7.27) and Equation (7.28), we find the expression

(λj − λi) 〈v(i), v(j)〉 =

∫ L

0

d

dx
(Dv(j)v(i)

x −Dv(i)v(j)
x )dx. (7.30)

Therefore, demonstrating orthogonality of the eigenfunctions is now a matter of

demonstrating that the RHS of Equation (7.30) is zero when λj 6= λi, since this

would imply 〈v(i), v(j)〉 = 0.

We have shown the following three properties of the eigenfunctions in Section 7.1.3:

v(n)(0) = v(n)(L) = 0 (7.31a)

v
(n)
1 (a) = v

(n)
2 (a) (7.31b)

D1
d
dx

[v
(n)
1 (x)]x=a− = D2

d
dx

[v
(n)
2 (x)]x=a+, (7.31c)

which correspond to (a) zero at the endpoints, (b) continuous across the interface,

and (c) flux continuity across the interface. All three of these properties were enforced
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when constructing the eigenfunctions. Using Equation (7.31), we find that∫ L

0

(v(i)Lv(j) − v(j)Lv(i))dx =

∫ a

0

d

dx
(D1v

(j)v(i)
x −D1v

(i)v(j)
x )dx

+

∫ L

a

d

dx
(D2v

(j)v(i)
x −D2v

(i)v(j)
x )dx = 0. (7.32)

This integral is identically zero because the eigenfunctions vanish at the endpoints,

and the functions Dv(j)v
(i)
x and Dv(i)v

(j)
x each occur with opposite signs due to conti-

nuity of temperature and flux at x = a. Since Equation (7.32) is identically zero, we

see that Equation (7.30) must be true for λj 6= λi. Therefore, the eigenfunctions are

orthogonal.

We now evaluate the inner product, Equation (7.29), between identical eigenfunc-

tions to determine the magnitude,

‖v(n)‖2 = 〈v(n), v(n)〉. (7.33)

The norm of the nth eigenfunction is found by substituting Equation (7.23) into

Equation (7.29) and evaluating the integral:

‖v(n)(x)‖2 =

∫ L

0

(ρc)
(
v(n)(x)

)2
dx = µ2D1

∫ a

0

(
v

(n)
1

)2

dx+ ν2D2

∫ L

a

(
v

(n)
2

)2

dx

= µ2D1
λnµa− cos(λnµa) sin(λnµa)

2λnµ sin2(λnµa)
+ ν2D2

λnνη − cos(λnνη) sin(λnνη)

2λnν sin2(λnνη)

=
µ2D1a

2 sin2(λnµa)
+

ν2D2η

2 sin2(λnνη)
− 1

2λn
(µD1 cot(λnµa) + νD2 cot(λnνη))

=
µ2D1a

2 sin2(λnµa)
+

ν2D2η

2 sin2(λnνη)

=
1

2

[
µ2D1a csc2(λnµa) + ν2D2η csc2(λnνη)

]
, (7.34)

where the cotangent terms vanish due to Equation (7.21).

We use Equation (7.34) as the magnitude of the eigenfunctions in order to create

an orthonormal basis for constructing the initial condition, where in turn defines the

constant set bn.

7.1.4.2 Constructing the Initial Conditions

The full solution is now determined by specifying bn, which is accomplished by

constructing the initial condition in terms of the eigenfunctions, Equation (7.23).
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Up to this point, the initial condition has not influenced the derivation. Therefore,

this is the only step that needs to change for using different initial conditions for

this problem. The scalars are specified using a Fourier series. The Fourier series was

developed to solve the heat equation, transforming an arbitrary function between two

limits into a summation of sines and cosines.

The Fourier series can be generalized [8, 221] in terms of inner products of basis

vectors defined for an interval. We summarize the basic formulae needed for a general

Fourier series. The Fourier series for a function f(x) in an interval is written as

f(x) =
∞∑
n=1

bnv
(n)(x), (7.35)

provided the basis vectors satisfy the orthogonality condition (v(n)(x) ∂
∂x
v(n)(x) = 0)

at the endpoints of the interval. The constants in the Fourier series, bn, are defined

[8] as

bn =
〈v(n)(x), f(x)〉
〈v(n)(x), v(n)(x)〉 . (7.36)

The standard sine and cosine Fourier series uses an interval of 2π, with v(n)(x) =

sin(αnx) and/or v(n)(x) = cos(αnx), inner products of 〈v(i), v(j)〉 =
∫ 2π

0
v(i)v(j)dx, and

magnitudes of ‖v(x)‖ =
√
π.

To determine our set of scalars bn, we must solve Equation (7.36), which depends

on f(x). We must express our solution, Equation (7.25), at t = 0 in the form of Equa-

tion (7.35), in order to determine f(x). Since T (x, 0) = Ti, we write Equation (7.25)

as

(Ti − T0)− σx =
∞∑
n=1

bnv
(n)
1 (x) (x < a) (7.37)

(Ti − TL)− β(L− x) =
∞∑
n=1

bnv
(n)
2 (x) (x > a). (7.38)

Comparison with Equation (7.35) allows us to define f(x) as

f(x) =

(Ti − T0)− σx (x < a)

(Ti − TL)− β(L− x) (x > a).
(7.39)
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The Fourier constants are then solved as

bn =
〈f(x), v(n)(x)〉
〈v(n)(x), v(n)(x)〉

bn =
1

‖v(n)(x)‖2

[
µD1

∫ a

0

f(x)v
(n)
1 (x)dx+ νD2

∫ L

a

f(x)v
(n)
2 (x)dx

]
. (7.40)

7.1.5 Summary of the Full 1D Solution

We can evaluate Equation (7.40) by straightforward integration and ‖v(n)(x)‖2 in

Equation (7.34). After some simplification, we have the Fourier coefficients as

bn =
[
µD1

[
(Ti − T0)(csc(λnµa)− cot(λnµa)) +

σ

λµ
(λµa cot(λnµa)− 1)

]
+νD2

[
(Ti − TL)(csc(λnνη)− cot(λnνη)) +

β

λν
(λνη cot(λnνη)− 1)

]]/
[
λn
2

[
µ2D1a csc2(λnµa) + ν2D2η csc2(λnνη)

] ]
. (7.41)

The following is a summary of the one-dimensional solution of this discontinuous

media heat conduction problem,

T (x, t) =


T0 + σx+

∞∑
n=1

bne
−λ2ntv

(n)
1 (x) (x < a)

TL + β(L− x) +
∞∑
n=1

bne
−λ2ntv

(n)
2 (x) (x > a),

(7.42)

where the constants needed are

λ =
√
k (7.43a)

η = L− a (7.43b)

µ =

√
ρ1c1

D1

(7.43c)

ν =

√
ρ2c2

D2

(7.43d)

σ =
D2

aη

TL − T0

D2

η
+ D1

a

=
D2(TL − T0)

aD2 + ηD1

(7.43e)

β =
D1

aη

T0 − TL
D2

η
+ D1

a

=
D1(T0 − TL)

aD2 + ηD1

. (7.43f)
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The eigenfunctions and eigenvalue equation are

v
(n)
1 (x) =

sin (λnµx)

sin (λnµa)
(7.44a)

v
(n)
2 (x) =

sin (λnν(L− x))

sin (λnνη)
(7.44b)

µD1 cot(λnµa) = −νD2 cot(λnνη). (7.44c)

7.2 Dependence of Analytical Solution on Eigenvalues

In order to apply the analytic solution, Equation (7.42), one must be able to

compute the eigenvalues. There is an infinite set of eigenvalues, but we must use

a finite number when computing the solution. We must be able to determine how

many eigenvalues we need for the truncated solution to retain sufficient accuracy. This

section explores these two topics: finding eigenvalues (Section 7.2.1) and deciding how

many to use (Section 7.2.2). This section concludes by choosing the diffusivity ratio

and simulation time for the numerical testing of the mixed-cell models (Section 7.2.3).

The results discussed in the text and shown in plots in this and the remainder of

this chapter use the following constants:

T0 = 1 (7.45a)

TL = 10 (7.45b)

Ti = 30 (7.45c)

L = 1 (7.45d)

a = 0.6 (7.45e)

ρ1c1 = 1 (7.45f)

ρ2c2 = 1. (7.45g)

While various ratios of D1 to D2 are used, the figures and examples given, for consis-

tency, use D1 = 10−3 and D2 = 103 whenever possible.

7.2.1 Evaluating the Eigenvalues

Finding the eigenvalues is a key step in the implementation of this analytic solu-

tion. The most important eigenvalues in Equation (7.42) are those with small n, due

to the negative exponential term and the fact that the eigenvalues are well ordered.

While eigenvalues can be found graphically (plotting the functions and manually
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locating the intersections), an automated method is superior for speed, accuracy,

and robustness. Transcendental equation, Equation (7.21), is in terms of cotangents,

which have a known period (the period of cot ax is π/a). The transcendental equation

can be written in terms of two functions,

f1(λ) = µD1 cotλµa and f2(λ) = −νD2 cotλνη, (7.46)

where the eigenvalues exist at the intersections of these functions. We make a dis-

tinction between λn, the discrete set of eigenvalue, and λ, which is the continuous

argument of the functions f1 and f2. Finding the eigenvalues is made easier because

λ = 0 marks the beginning of both periods. Calculation of eigenvalues for these

equations becomes an exercise in finding the minimum of |f1(λ)− f2(λ)| for λ in the

interval defined by the asymptotes of each function, as shown in Figure 7.2.
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f 1, 
f 2

λ

Figure 7.2:
The transcendental functions, Equation (7.46), for the 1D eigenvalue so-
lution for D1 = 1 and D2 = 2. A search interval is bounded by the
asymptotes for each function, marked with as ‘×’ on the axis below the
figure. Each intersection (an eigenvalue) is marked with a red circle.

The algorithm for finding eigenvalues consists of four steps, with the goal of finding

the first N eigenvalues. The first step determines the search intervals based on the

periodicity of the transcendental functions, as shown in Figure 7.2. More than N

intervals should be searched because some intervals do not contain an intersection.

The second step finds the minimum of |f1 − f2| for each interval; this corresponds

to an early estimate of the eigenvalue. Step three searches in a range around each

approximate eigenvalue to refine the solution of the transcendental equation as well

as to ensure that the functions indeed intersect at the that point. This removes points
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where the functions do not intersect, as some search intervals contain no intersection

(e.g., when one function goes to positive infinity while the other goes to negative

infinity). The intersection condition is either that the absolute difference between the

functions at a proposed intersection is below some tolerance (0.1 is used) or that the

normalized difference is below some tolerance (1 is used),

|f1(Λ)− f2(Λ)| < (absolute difference tolerance) (7.47a)

|f1(Λ)− f2(Λ)|
max(|f1(Λ)| , |f2(Λ)|) < (normalized difference tolerance), (7.47b)

where Λ is the proposed eigenvalue. Failure to normalize by the largest function value

causes the algorithm to miss eigenvalues for cases with very large jumps (e.g., 106

and higher) where the absolute difference may be in the tens of thousands, but the

normalized difference is less than one. Simply looking for a sign change is inefficient

for stronger ratios due to the resolution required in λ-space in order to capture the

intersection as well the fact that the asymptotes also rapidly change signs. Step four

refines the value by iteratively searching in smaller ranges around each intersection

point until the change falls to machine precision.

The eigenvalue-finding algorithm has been explicitly verified for ratios from 10−10

to 1010 up to the first 200 eigenvalues by graphing the functions and confirming

intersections. Figure 7.2 illustrates a simple case with a diffusivity ratio of two, while

Figure 7.3 shows a case with a much stronger jump ratio (10−6). The latter plot is

focused on the first instance where the function with the longer period crosses the

λ-axis.

7.2.2 Accuracy of a Truncated Solution

There are three solutions we must distinguish. There is the exact analytical so-

lution, which requires an infinite summation of eigenvalues. There is a truncated

analytical solution, which uses a finite number of eigenvalues to approximate the so-

lution. Lastly, there is the calculated solution, which is generated from codes, for

which error is quantified using the analytical solution. It is pragmatically necessary

to use a truncated analytical solution to compare with the calculated solution, but

we must quantify the accuracy of the truncated solution, lest our analysis be in vain.

While it takes many thousands of eigenvalues to resolve a strongly discontinuous

solution at t = 0, far fewer eigenvalues are needed at any other time because the

contribution of an eigenvalue decreases exponentially in both time and magnitude
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Figure 7.3:
Transcendental functions, Equation (7.46), for the 1D eigenvalue solution
for D1 = 10−3 and D2 = 103. Eigenvalues are indicated with red circles.

(exp(−λ2
nt)). (Recall that the eigenvalue is technically λ2

n, but we are referring to λn

as eigenvalue for brevity.) Thus, at each point in time there is only a finite number of

eigenvalues that will change the accuracy of the truncated solution above the accuracy

of the calculated solution. Consequently, computational cost can be reduced by using

the minimum number of terms (corresponding to the number of eigenvalues) needed

to have a truncation error below the discretization error of the codes being validated.

There are three factors to consider when comparing the accuracy versus the number

of eigenvalue terms: diffusivity ratio, simulation time, and error metric at which the

comparisons are made.

Diffusivity ratios. We compare diffusivity ratio cases using D1 = 10±r/2 and D2 =

10∓r/2 with even s ∈ {2, 4, . . . , 10}. The definition of the power of the ratio is

s = ± log10

D1

D2

. (7.48)

Inclusion of ratios up to ten orders of magnitude is considered because some discon-

tinuous coefficient problems in radiative transfer have such high ratios [181].

Simulation time. The choice of the time at which to sample solutions with different

diffusivity ratios is more involved. Solutions with different diffusivity ratios take

various amounts of time to reach steady-state. In order to compare solutions with
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various s at equivalent times, one may rescale time in terms of energy content (per

unit area for this 1D problem). We define the energy at a given time as

E(t) =

∫ a

0

ρ1c1T1(x, t)dx+

∫ L

a

ρ2c2T2(x, t)dx, (7.49)

where ρi is the density, ci is the heat capacity, and the subscript i indicates the

phase. Using this energy definition, we introduce a function that characterizes the

energy evolution with respect to the steady-state energy for problems with Dirichlet

boundary conditions:

ξ(t) =
‖E(t)− Efinal‖
‖Einitial − Efinal‖

, (7.50)

where Einitial is the initial energy, Efinal is the steady-state energy, and we assume that

Einitial 6= Efinal. The metric ξ(t) would not work with most non-Dirichlet boundary

conditions, such as a no-flux or time dependent boundary condition. Equation (7.50)

gives unity at t = 0 and approaches zero as t→∞.
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Figure 7.4:
1D MES solutions at different points in the energy evolution. The diffu-

sivity ratio shown are (a) s = −6 and (b) s = 6. Other parameters are

given in Equation (7.45). The energy characteristic is defined in Equa-

tion (7.50), where 100% indicates the system has all of its initial energy,

while 0% means it has lost all excess energy and equilibrated to steady-

state.

Using the energy characteristic, ξ(t), as a means to measure the progress of the

solution towards equilibrium, we define three points in time: early, when ξ(t)=0.50;

171



intermediate, when ξ(t)=0.20; and late, when ξ(t)=0.05. It would not be useful to use

times after steady-state is reached because the eigenvalues make no contribution to

the solution by that point. Table 7.1 presents the simulation time to reach the early-,

intermediate, and late-stage points for various s values. Figure 7.4 shows plots of the

analytic solution for s = −6 and s = 6, each plotted at five different energy states: ini-

tial condition, early, intermediate, late, and steady-state, ξ(t) ∈ {1.0, 0.5, 0.2, 0.05, 0}.
Note that the sign of the ratios is important because of the arrangement of the phases

with respect to the boundary conditions. The specific values of |r|, however, do not

make a significant difference because the smaller diffusivity is already much smaller

than the larger value, even for |r| = 2. Thus, solutions with different diffusivity ratios

(of the same sign) compared at the same point of their energy evolution look almost

identical.

Error metric. The truncation error, e2, is measured with the 2-norm,

e2 =

√√√√ M∑
i=1

[si(t)− Si(t)]2
1

M
, (7.51)

where M is the number of points in space at which the solution is sampled, s(t) is

the n-term truncated solution, S(t) N -term truncated solution representing the exact

solution, and t is the time the solutions are compared. The truncation error is com-

puted for s(t) for n ∈ {1, 2, . . . } until the error falls to machine precision (2.2×10−16).

In the event that that s(t) requires as nearly many eigenvalue terms as S(t), i.e., n is

near N (say n > 0.85N), N is increased and the error is recalculated. The result of

this calculation is the truncated-solution error versus the number of eigenvalues terms

used. Figure 7.5 plots the error versus number of eigenvalues for various diffusivity

ratios at early-stage time, and Table 7.1 shows number of eigenvalues needed to reach

machine precision truncation error for all the energy characteristic stages and each s

value considered.

Note that the truncation error, Equation (7.51), is only weakly dependent on

the spatial resolution (M). This is verified by comparing various M values for

early-stage results between N = 1000 and n = 16 on a problem with s = −6.

Spatial resolutions M ∈ {250, 500, 1000, 2000} have corresponding errors e2(M) ∈
{2.8929, 2.8981, 2.8998, 2.8997} × 10−13, which shows that a factor of two increase in

the spatial resolution has negligible effect on the overall error.
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Solution accuracy versus number of eigenvalues for 1D analytic solution
at early-stage. The logarithmic plot measures the solution at early-stage,
defined by ξ(t) = 0.50.

Table 7.1 shows the time for solutions with various values of s to reach early-,

intermediate-, and late-stage energy contents. The table also shows the number of

eigenvalues that are needed to represent the solution to machine precision. It can be

seen for all intermediate- and late-stages (and early-stage for s < 0) that the time to

reach each stage increases by about a factor of ten for every factor of 100 increase in |s|.
This trend is because the diffusion time scales inversely with diffusivity (∆t ∝ 1/D)

and because the time scale is controlled primarily by the smaller diffusivity, which

decreases by a factor of ten when |s| increase by a factor of 100. Only the early times

for positive ratios break this trend, where their time decreases by about a factor of

ten for every factor of one hundred increase in |s|. This trend is because most of

the energy loss occurs in phase 1, which has a larger diffusivity and lower boundary

condition (i.e., this trend would be reversed if T0 > TL). Thus, the time to reach the

early-stage is governed by the faster diffusivity, which increases by a factor of ten.

Another trend in Table 7.1 is that the positive ratio cases evolves more rapidly than

the equivalent negative ratio cases. This is because the boundary condition is lower

for phase 1, thus when D1 > D2, energy can escape the system more rapidly than

D1 < D2. Because the s > 0 cases evolve more rapidly, more eigenvalues are needed at

all stages compared to the s < 0 cases, simply because the number of eigenvalue terms

needed depends on the simulation time (both cases use the same eigenvalues). All
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ratio Time Number of Eigenvalues

s Early Int. Late Early Int. Late

2 1.564E-2 9.019E-2 0.3189 21 9 5

4 1.867E-3 0.6232 2.863 173 9 4

6 1.904E-4 6.207 28.60 1,676 9 4

8 1.904E-5 62.07 286.0 16,674 9 4

10 1.904E-6 620.7 2860 166,674 9 4

-2 4.593E-2 0.3655 0.8781 16 6 3

-4 0.3653 3.517 8.574 18 5 3

-6 3.644 35.16 85.72 18 5 3

-8 36.44 351.6 857.2 19 5 3

-10 364.3 3516 8,572 19 6 4

Table 7.1:
1D MES analytic solution trends depending on ratio of phase coefficients.
Solution times to reach early-, intermediate-, and late-stage are listed.
Also, the number of eigenvalues needed for the solution at these three
times to have an error in the 2-norm near machine precision are listed.

intermediate- and late-stage solutions need less than ten eigenvalues, and most early-

stage cases need twenty or fewer. However, s > 0 cases need thousands of eigenvalues

for the early-stage. A comparison of the early-stage plot (green) in Figure 7.4(a) and

Figure 7.4(b) shows that the positive-ratio case contains sharp temperature gradients

(which require more eigenvalues to resolve than a smooth curve) because the system

is at the earlier time even though half of the energy has been lost. If we instead

compared the different ratio cases at the same time for a given set up (rather than at

the same energy characteristic stage), we would find that they require an equivalent

number of eigenvalues.

Figure 7.5 shows the 2-norm solution truncation error versus number of eigen-

values at early-stage time, where the negative ratio cases overlap and are difficult

to distinguish. The trend in Table 7.1 that s < 0 diffusivity ratios require more

eigenvalues is also clear in Figure 7.5.

Note that the behavior of a positive ratio versus a negative ratio depends on the

choice of boundary conditions, where T0 < TL. If this were reversed (T0 > TL), the

trends and numbers would all switch between positive and negative ratios. Using

T0 = TL may give different trends altogether, but the purpose of this chapter is to use

this solution to examine mixed cells, not to fully explore the behavior of the analytic

solution. Therefore, we use the parameters specified in Equation (7.45) for the results

presented in the remainder of this chapter.
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7.2.3 Selection of Numerical Testing Parameters

The purpose of this chapter is to create an analytic solution to test the mixed-

cell models. Therefore, it is not important what s and simulation time are used for

the comparison, so long as the mixed-cell is a critical point (i.e., the temperature

profile has distinguishing features in the mixed cell) and the computational effort is

minimized.

We can use Table 7.1 and Figure 7.4 to choose the values for the computational

analysis. Examining Figure 7.4 shows a temperature kink at the interface for all

plots except the ξ(t) = 0.05 value for the negative ratio case. This kink is important

because it makes the temperature of the mixed cell more meaningful for a test of

accuracy than if the solution were smooth at the interface.

We choose the early-stage time, ξ(t) = 0.50, for the negative ratio diffusivities,

s < 0, for the mixed-cell test. As shown in Table 7.1, this particular set occurs at an

early simulation time (minimizing the runtime of the simulations) and requires fewer

than twenty eigenvalues (unlike the early-stage for the s > 0 case). Furthermore,

examination of Figure 7.4(a) shows the temperature profile at this stage contains a

prominent discontinuity in the gradient.

7.3 Results of Mixed-Cell Models for 1D Analytical Test

This section presents the performance of the mixed-cell models used in this study

to this 1D MES test problem. The similarities and differences between the six mod-

els are summarized in Table 6.1. Three single temperature models are presented:

the harmonic mean (S1), the rotated tensor-diffusivity method (S2), and the split-

cell method (S3). (See Chapter III for the description of these models.) A multi-

temperature model is also presented with three variants, based on the level of the

approximation (M1, M2, M3). (See Chapter IV for the description of these models.)

Five of these six models represent new work, with the harmonic mean (S1) used as

a baseline. The accuracy of a model’s results in comparison to the harmonic mean

determines if the method is advantageous as compared to the standard treatment.

7.3.1 Implementation

The implementation of the 1D analytic solution is straightforward (in comparison

with the 2D analytic solution of Chapter VIII). No-flux (reflecting) boundary con-

ditions are implemented for the y-direction boundaries, while Dirichlet boundaries
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are implemented for the two x boundaries. The no-flux boundaries for the y-axis

convert the problem from 2D to 1D, with the physical interpretation that the rod

is insulated along its length, only able to conduct heat at the ends. The Dirichlet

boundary conditions are T (0, t) = T0 and T (L, t) = TL. The problem is initialized by

setting T (x) = Ti. The mixed-cell simulations are run for various grid refinements to

characterize convergence trends. The temporal discretization is first-order accurate

while the spatial discretization is second-order accurate. The time-step is scaled con-

servatively as ∆t ∝ ∆x3 in order to ensure the temporal error is below the spatial

error. The analytic solution is not needed until the errors of the mixed-cell model are

computed.

We first note that the time when the solutions are sampled does not affect the

trends. The caveat to this observation is that all methods have the same initial

conditions and converge to steady-state after sufficient time, so the time chosen to

sample the solutions must be between these two points. In this interval, the plots of

the errors of a method versus time do not cross; if one method has a lower error, the

error is lower at any time in this interval. This is verified with a ratio of 10−6 on a

20×20 grid. E1, E2, or E∞ plots versus time do not cross for neither the mixed nor

pure case. Therefore, we can present the results by sampling the solutions at a single

time, which we choose to be when the energy content reaches the early-stage. Second,

we note that all the methods yield the same level of error when using pure-cells only.

Relative errors in three different p-norms are used: E1, E2, and E∞. Each of these

errors has an equivalent convergence rates: q1, q2, and q∞. All cases are compared

at a single time, defined by ξ(t) = 0.50. Each case is tested on six grid sizes, N ∈
{10, 20, 30, 40, 50, 100}, where N is the number of elements in the 1D solution. Three

diffusivity ratios are used, s = log10
D1
D2
∈ {−2,−6,−10}.

In this 1D problem, there is only one mixed cell, having a volume fraction of any

value between zero and one. Three volume fraction cases are tested: 1
3
, 1

2
, 17

20
. Note

that in order to have a set volume fractions on a uniform grid, the interface location

must be flexible from one resolution to the next. Additionally, since the boundaries

are defined differently in the single- and multi-temperature cases (face centered versus

cell centered), each of these methods has a unique set of interface locations. Interface

position, a, is constrained to be as near to a = 0.6 as possible in a range of 0.5 ≤
a ≤ 0.6 for the single-temperature model and a range of 0.55 ≤ a ≤ 0.65 for the

multi-temperature model. The interface locations are presented in Table 7.2.
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Single Temperature Multiple Temperature

grid v1 (33%) v2 (50%) v3 (85%) v1 (33%) v2 (50%) v3 (85%)

10 8/15 11/20 117/200 7/12 3/5 127/200

20 17/30 23/40 237/400 71/120 3/5 247/400

30 26/45 7/12 119/200 107/180 3/5 367/600

40 7/12 47/80 477/800 143/240 3/5 487/800

50 44/75 59/100 597/1000 179/300 3/5 607/1000

100 89/150 119/200 1197/2000 359/600 3/5 1207/2000

Table 7.2:
Interface location for single- and multi-temperature methods required for
1D MES test problem. The values listed in the table are the interface
location, a, for a domain size of unity. Phase 1 occupies the LHS of the
domain, and the volume fractions refer to this phase. The interface location
depends on the grid size (denoted simply as ‘grid’), volume fraction of
the mixed cell (1

3
, 1

2
, 17

20
), and model type (single- or multi-temperature).

Overall, phase 1 accounts for about 60% of the volume fraction.

7.3.2 Results

This section presents the convergence rates of all six mixed-cell models for the 1D

test case developed in this chapter. Nine different variations of the test are examined

(three volume fractions and three diffusivity ratios) for six different mixed-cell models.

The volume fractions, f , used are v1 (33%), v2 (50%), and v3 (85%). The phase 1

multi-temperature results are given as well as the phase-averaged results. The phase 2

results are not informative because, as shown in Figure 7.4(a), equilibrium is reached

in this phase. Therefore, the temperature in this phase is (nearly) constant, and the

error does not represent discretization error.

Table 7.3 presents the averaged q∞, while additional convergence information

(such as q1 and q2 and the convergence rate for each grid) can be found in Tables C.3,

C.4, and C.5. The two most obvious conclusions from Table 7.3 are that the S1 and

S2 models give similar results, as do the M2 and M3 models.

The degeneracy of the S1 and S2 models in 1D occurs because the tensor rotation

model (S2) reduces to the harmonic mean along the x-direction, which is the approach

of the S1 method. The results are not identical, which is only distinguishable in the

s = −10 case. The S1 model uses a scalar diffusivity that is equal to the harmonic

mean, weighted by volume fractions, of the diffusivities in the mixed cell. The S2

model uses a tensor diffusivity, which is, for this set up, the harmonic mean for the
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xx tensor component, the arithmetic mean for the yy tensor component, and zero

for the xy tensor component. Although the y-direction is constant due to the no-flux

boundary conditions, the anisotropic tensor causes slight variations between these

models due to the matrix operations performed by SOM when calculating the flux.

The degeneracy of the M2 and M3 methods occurs because, in 1D, the centroid-

to-centroid lines can only be orthogonal to a cell face or a interface. Thus, the

distinguishing feature between the M2 and M3 models is not present. The centroid-

to-centroid line can only be off-axis in 2D (see Figure 4.2), which is only accounted

for by the M3 model. Because of these degeneracies, we limit our discussion to the

S1, S3, M1, and M3 models.

f s S1 S2 S3 M1c M2c M3c M1 M2 M3

33%

-2 1.21 1.21 2.12 0.55 0.99 0.99 0.55 1.78 1.78

-6 1.17 1.17 2.07 0.58 1.02 1.02 0.58 1.83 1.83

-10 1.18 1.15 1.53 0.58 1.03 1.03 0.58 1.82 1.82

50%

-2 1.17 1.17 2.07 0.63 1.00 1.00 0.51 1.67 1.67

-6 1.17 1.17 2.07 0.63 1.00 1.00 0.53 1.67 1.67

-10 1.17 1.15 1.51 0.63 1.00 1.00 0.53 1.66 1.66

85%

-2 1.41 1.41 0.99 0.74 1.92 1.92 0.74 1.95 1.95

-6 1.45 1.45 0.99 0.83 1.91 1.91 0.83 1.93 1.93

-10 1.45 1.43 0.99 0.82 1.95 1.95 0.82 1.98 1.98

Table 7.3:
Average q∞ for the 1D MES mixed cell test problem. Three mixed-cell

volume fractions, f , are tested using three different diffusivity ratios. The

convergence rates for phase 2 are shown for the multi-temperature models.

The convergence rates are averaged for grids of size 10, 20, 30, 40, and 50.

Additional convergence rates are presented in Tables C.3, C.4, and C.5.

Bold indicates qi ≥ 1.90.

Figure 7.6 plots the temperature profile for all three volume fractions for the

s = −6 ratio by aligning the interface location. Each case shows the results for the S1,

S3, M1, and M3 models. The multi-temperature models show both the cell-centered

value (indicated as M1c and M3c) as well as the phase-centered values (indicated as

M1 and M3). Three cells are shown in each graph, from left to right: pure phase 1,

mixed cell, pure phase 2. In all phase 2 pure cells, the six methods overlap. This is

because the solution for this phase is nearly constant and all methods perform equally

well in this case. This justifies the omission of the phase 2 convergence rates (which

are zero) for the multi-temperature method from Table 7.3.
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Figure 7.6:
Results for 1D MES test problem for various mixed-cell models. The
problem uses a phase ratio of s = −6 on a 100 element grid. Each figure
shows three cells: a mixed cell flanked by two pure cells (i.e., the dotted
lines and vertical plot boundaries represent cell faces). The coordinate
system of the single- and multi-temperature methods, which differ due to
face centered versus cell centered boundaries, have been shifted such that
the interfaces align. Three volume fractions (in terms of the phase left of
the interface) are shown: (a) v1 (33%), (b) v2 (50%), and (c) v3 (85%).
The legend is shown in (d). The interface occurs at the kink of the exact
solution. Both the phase-averaged (M1c, M3c) and phase-centered (M1,
M3) solutions are shown for the multi-temperature method.
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Figure 7.7:
Error versus cell width calculated with the ∞-norm for 1D MES test
problem. The s = −6 case is shown logarithmically for volume fractions
(a) 1/3, (b) 1/2, and (c) 17/20. The lines are the least-squares fit to E∞
data (circles). The slopes (convergence rates) are indicated in the legend
of each plot. Four mixed-cell models are shown, with the M3 model
showing both the phase-averaged (labeled as M3c) and phase 1 (labeled
as M3) results.

Figure 7.7 plots E∞ versus cell width on a log-log scale, where the slope of each

least-squares fit line (indicated in the legend) corresponds to the convergence rate.

The s = −6 ratio is shown for all three volume fractions. The relative error values

of each model can be compared within each figure. We observe that the M3 model

has the lowest error value in each case, and the S3 model has the second lowest error

overall for v1 and v2, but it has the highest error in v3.

7.3.3 Discussion

As noted earlier, we discuss only the S1, S3, M1, and M3 models: in 1D, the results

of the S2 model are equivalent to the S1 model, and the M2 model is indistinguishable

from the M3 model.

S1. Table 7.3 shows that the S1 model, which is used as a reference point for all the

other models, performs at consistent rates for each diffusivity ratio in a given volume

fraction. The average convergence rate for E∞ in all cases is 1.23. Thus, the S1 model

does not have second-order accuracy in the ∞-norm for any case.

For the s = −2 and s = −6 ratios, the average convergence rates are 2.01 and 1.79

for the 1-norm and 2-norm, respectively; see Tables C.3 and C.4. However, for the

s = −10 ratio, these convergence rates are drop to 1.54 and 1.58. This performance

degradation suggests that such this large of a ratio may be beyond the capabilities

of SOM. Figure 7.7 shows that, in terms of absolute error value, the S1 model is the
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among the least accurate methods. Examination of Figure 7.6 shows that the S1

model performs best in v3, which is where the S3 model performs worst.

S3. It is clear from Table 7.3 that the S3 model has the highest convergence rates for a

cell-centered result (i.e., only considering the single-temperature and phase-averaged

multi-temperature codes). It is also evident that the S3 model has a performance

drop for v3 and s = −10 ratio cases. Interestingly, every other model (S1, M1, M3)

achieves its best performance in v3 and maintains consistent performance in all three

diffusivity ratios for a given volume fraction. Only the S3 model breaks these trends.

Ignoring the s = −10 ratio, we observe from Tables C.3 and C.4) that the S3

model is second-order accurate in the ∞-norm for when f ≤ 1
2
, but it is only first-

order accurate when f > 1
2
. This is consistent with the results found in the 1D MES

test in Section 6.1. For v3 (f=85%), the S3 model has the least accuracy, as is evident

in Figures 7.7(c) and 7.6(c).

If we consider only v1 and v2 while continuing to ignore the s = −10 ratio, the S3

model has the ideal performance, which is evident in plots (a) and (b) in Figures 7.7

and 7.6. Consulting Tables C.3 and C.4 for these cases shows the average conver-

gence rates of the S3 model are 2.02, 2.10, and 2.07, for q1, q2, and q∞, respectively.

Therefore, the S3 model is the ideal mixed-cell model for these cases.

However, the performance of the S3 model is inconsistent since it has second-

order convergence rates only in certain cases. Using Table 7.3, let us compare the

convergence rates between the S3 and S1 models for the cases where S3 is not second-

order accurate. The S3 model has higher convergence in the∞-norm for the s = −10

ratio and volume fractions v1 and v2, but S1 has higher rates for the 1-norm and

2-norm. Since the ∞-norm is the best indicator for the accuracy of a mixed-cell

model, we conclude the S3 model outperforms the S1 model for all ratios in the first

two volume fractions. For v3, where phase 2 (the larger diffusivity) is the minority

phase, the S3 model is outperformed by the S1 model in q∞ at every diffusivity ratio.

The fact that the S1 model performs well in this case is not surprising because the

harmonic mean weights the smaller diffusivity. The drop in the performance of the

S3 model for v3 suggests that, unlike the harmonic mean, the S3 model weights the

larger diffusivity more. The fact that the S3 model predicts the same temperature,

equal to the nearly constant phase 2 temperature, in all three volume fraction cases

(see Figure 7.6) supports this observation.

The main trend for the S3 model is that it is second-order accurate in all three

error norms when the majority phase is the larger diffusivity (and |s| < 10) but it is
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only first-order accurate in the ∞-norm when the smaller diffusivity is the majority

phase. Modifications to the split-zone model were tested (including changing the

subcell volumes and diffusivities), but none was found to be equally accurate or

better than the implementation described in Appendix A (note that in 1D, interface

can only cross opposite sides for a mixed cell). This limitation of the S3 model in 1D

could potentially hinder the success of this model in 2D.

M1. As seen in Tables 7.3, the M1 model has the lowest convergence rate, less than

first-order accurate in every case. This includes both the cell-centered and phase-

centered results. Figure 7.6 shows that the M1 model is farthest away from the

exact solution in phase 1, while Figure 7.7 shows that it consistently ranks amongst

the two least accurate models. Hence, we can conclude that the M1 model, which

makes a very simple assumption, is insufficient. The S1 model easily outperforms the

M1 model, indicating one would be better off using a standard single-temperature

discretization with a harmonic mean of diffusivities for mixed cells rather than the

M1 model.

M3. Considering first the phase-averaged results, we observe that the M3 model is

second-order accurate in v3, but is only first-order accurate in v1 and v2 (the inverse

of the S3 model). The average convergence rate for the cell-centered M3 model is

1.31, which is slightly better than the average rate of the S1 model (1.26).

However, the main advantage of the M3 model is truly evident when the phase-

centered results are considered. When we consider the phase 1 results, the M3 model is

indisputably the most accurate mixed-cell model in this test. The M3 model maintains

consistent performance for every diffusivity ratio tested, i.e., it does not suffer a

performance drop in the s = −10 ratio as in the S3 model. The average convergence

rates for the M3a model in Table 7.3 is 1.81, while the S3 model has an average of 1.59

when all volume fractions and ratios are considered. Examination of Figure 7.6 shows

that values of the M3 models match the exact solution for both phases in all three

volume fractions. It is evident from Figure 7.7 that the M3 model has the lowest

error and highest or second-highest convergence rate in all three volume fractions.

The low error the M3 model for the coarsest grids, most noticeable in Figure 7.7(b),

makes the convergence rate lower for the 10→ 20 case than any other set of grids. We

compute the convergence rates while ignoring the coarsest grid, as shown in Table 7.4,

using Tables C.3, C.4, and C.5. When the coarsest grid results are neglected, we find

that the M3 model is second-order accurate in all three volume fractions for all three
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ratios, as shown in Table 7.4. Thus, the phase-centered M3 model has the best overall

performance for this test.

v1 v2 v3

s q1 q2 q∞ q1 q2 q∞ q1 q2 q∞
-2 1.99 2.01 2.01 1.94 1.96 1.98 1.94 1.95 1.98

-6 2.01 2.03 2.03 1.97 1.98 2.00 1.95 1.96 1.99

-10 2.01 2.03 2.04 1.96 1.97 1.99 1.97 1.96 1.99

Table 7.4:
Average convergence rates for the M3 model in 1D MES mixed cell test

problem. The results come from averaging the convergence rates in Ta-

bles C.3, C.4, and C.5 for all sets of grids except 10→ 20. Bold indicates

qi ≥ 1.90.

Potential New Models Results indicate that the S1 and S3 models could be com-

bined to form a new, more accurate single-temperature model. The S3 model has

excellent performance in the volume fractions where the majority phase has a larger

diffusivity (v1 and v2) but does poorly in v3. The average convergence rate of the

S1 model in v3 is 1.43, which is better than that of the S3 model (0.99). This sug-

gests that a best single-temperature model may be one that dynamically chooses

between the S1 and S3 models, depending on the diffusivity of the majority phase.

Tables C.3, C.4, and C.5 indicate that such a model would have accuracy of 1.9 or

better in all three error norms for all cases save one; E∞ when the majority phase

is the smaller diffusivity (S1 model) would only have a convergence rate of 1.4. (In

the above discussion, we ignore the s = −10 ratio, where the performance of the

single-temperature methods suffers.) Furthermore, a combination of the S3 model

with the phase-centered M3 model would give a q∞ greater than 1.9 in every case.

7.3.4 Conclusion

The M3 model (as well as the 1D degenerate M2 model) is the best method as

measured by this 1D MES analytic test, while the M1 model is the worst model. These

models perform consistently in all volume fractions and diffusivity ratios, including

the largest ratio. The S3 method has the second best performance in this test,

followed by the S1 and its 1D degenerate S2 model. The S3 model is only first-order

accurate when the majority phase is the smaller diffusivity and when the s = −10; it

is second-order in every other case.
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However, the final verdict for best method depends on the application. The moti-

vation for this thesis was to create a cell-centered diffusion scheme that could be cou-

pled to a cell-centered hydrodynamics scheme. While the phase-centered M3 method

has the highest convergence rate, the results are not cell centered, and the averaging

process introduces additional errors (as seen in the M3c results in Table 7.3). Conse-

quently, the M3 method would only be recommended if the code for the application

employing the mixed-cell models (e.g., a hydrodynamics scheme) could input dis-

tinct temperatures for each phase in a cell. If the application requires a cell-centered

solution, the S3 method would be the best choice.

Another key difference is that the M3 model requires interface reconstruction in

order to accurately locate the centroids prior to computing the flux for each phase.

The S3 model, alternatively, only uses volume fractions and makes a much less sophis-

ticated estimate of the interfacial position. Therefore, if the code does not already

have higher-order interface reconstruction, the S3 model is a superior choice. Further-

more, avoiding interface reconstruction is beneficial in 3D due to its computational

demand and complexity.

7.4 Summary

We presented a derivation of a 1D, time dependent, two phase, analytical solution

to a composite-media heat-conduction problem. The solution is an eigenvalue problem

expressed as a Fourier series that accepts any ratio of diffusivities. Details for finding

the eigenvalues and quantifying a truncated solution are discussed.

This solution is used to test the six mixed-cell models presented in Chapters III and

IV. We were indeed able to find models that improved upon the convergence rate of the

S1 model, which is a standard method of using the harmonic mean of the diffusivities

in a mixed cell. We found that the M1 model is the least accurate, while the M2 and

M3 models (which give identical results in 1D) provide the highest accuracy. However,

the M2/3 models performance is best when resulting temperatures of two phases in a

mixed cell are not averaged. Thus, the M2/3 models would be most beneficial if if the

application requiring a mixed-cell model were able to track the temperatures for each

phase separately. If the application can only take a single, cell-centered temperature

for a mixed cell, the S3 model is the next best choice. We also proposed two new

models that would improve upon the deficiencies of the S3 model.
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CHAPTER VIII

Numerical Results: 2D Exact Solution

This chapter summarizes the error analysis to investigate the precision of different

mixed-cell models using a discontinuous-media problem for a 2D composite disk. This

problem is solved by a radial solution in cylindrical coordinates that we project onto a

2D grid to create mixed cells with various volume fractions and interface angles. The

analytical solution to this problem serves as a 2D benchmark test against which the

mixed-cell models introduced in this thesis are compared. The solution is a simplified

version of that presented by Mikhailov, Özişik, and Vulchanov [147]. In Section 8.1,

we first derive the analytic solution via separation of variables (SoV). This is followed

by an analysis of the eigenvalue behavior in Section 8.2, considering how accuracy

is affected by diffusivity ratios, solution time, and number of eigenvalues used to

represent the solution. Results of each mixed-cell model are compared in Section 8.3,

followed by a discussion in Section 8.4.

The heat equation in cylindrical coordinates is

ρc
∂T (r, φ, z, t)

∂t
= D

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
+

∂2

∂z2

)
T (r, φ, z, t), (8.1)

where ρ is density, c is heat capacity, T (r, φ, z) is temperature, D is diffusivity, r is the

radial coordinate, φ is the polar angle, z is the height coordinate, and t is time. Our

problem is a disk of radius R with phase 1 for 0 ≤ r ≤ a and phase 2 for a ≤ r ≤ R, as

shown in Figure 8.1. In 2D, we assume T to be independent of z, thus T = T (r, φ, t).

We assume continuity of temperature at the interface. However, physical situ-

ations may have thermal contact resistance at phase or material interfaces due to

surface roughness and voids. Thermal contact resistance leads to a jump in the tem-

perature at the interface [107, 192]. However, this complication could be added to the

test problems with relatively little difficulty in order to match the test with realistic

materials.
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Figure 8.1:
Two dimensional domain considered for the circular-interface heat-

conduction problem. Phase 1 is the inner (blue) circle of radius a, phase 2

is the outer (red) region from radius a to R. The computational domain

is a square of length L (dashed line), where 0 < a < L < R.

As in the 1D case, we define the PDE on each domain occupied by a phase, and

relate the two domains by continuity of temperature and flux. In this problem, a

composite disk is initially at a uniform temperature Ti. After t = 0, the perimeter of

the disk is held at constant temperature TR. A physical example of this problem is a

short, thick rod at uniform temperature Ti that is dipped into a thermal reservoir (at

temperature TR). The rod is insulated at the ends and only conducts heat along the

radial direction (the opposite situation of the 1D rod in the previous chapter). The

temperature profile is identical for any disk cross section perpendicular to the axis of

the rod.

The set of boundary conditions and continuity constraints that specify the problem
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are given as

T (r, 0) = Ti Initial Condition (8.2a)

∂T (r, t)

∂r

∣∣∣∣
r=0

= 0 Inner Boundary (8.2b)

T (R, t) = TR Outer Boundary (8.2c)

T (a−, t) = T (a+, t) Continuity of Temperature (8.2d)

D1
∂T (r, t)

∂r

∣∣∣∣
r=a−

= D2
∂T (r, t)

∂r

∣∣∣∣
r=a+

Continuity of Flux. (8.2e)

The notation r = a− indicates r approaching a from the center, and r = a+ indicates

r approaching a from the outside.

The justification for the choice of a constant initial condition is the same as in

Chapter VII: it avoids numerical complications. It is less clear how to assign the

temperature of a mixed cell when there is a gradient or if each material has a different

temperature as compared to when the temperature is constant across the entire cell.

The accuracy of the test becomes contingent on the initial implementation of the

temperature profile if the initial condition has a gradient (or kink) at the interface. A

constant initial condition avoids this problem entirely, allowing the analysis to focus

on the fidelity of the mixed cells without the complication of introducing any potential

inaccuracy at the start of the problem.

The solution is a 1D radial function in cylindrical coordinates because we assume

symmetry in φ and z. This 1D solution is then projected onto a Cartesian mesh.

The advantage of this projection is that a Cartesian mesh cannot resolve a circular

interface at any resolution. Although normally this would be a disadvantage, this

projection guarantees the presence of mixed cells at various ratios and orientations

and, thus, provides a more challenging test for our mixed-cell models. Only some

of the circular domain can be represented on the Cartesian computational domain.

The problem domain is 0 ≤ r ≤ R, while the computational domain is a square that

fits inside the circle of radius R. While this rectangle could be anywhere inside the

circle, including at an asymmetric location, we choose to use a square of length L in

the positive quadrant, where 0 < a < L < R and
√

2L < R; see Figure 8.1. This

(symmetrical) choice of computational domain reduces the computational demand

when implementing the boundary conditions. (See Section 8.3.2.1 for alternative

configurations for this test.)

In the 1D MES test problem (Chapter VII), the computational domain and bound-
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ary conditions matched those of the analytic solution; therefore the eigenvalues and

analytic solution needed to be computed only as a post-processing step. For the

2D problem, both the computational domain and boundary conditions are different

from those of the analytic problem. The computational domain is a subset of the

analytic domain, and the boundaries of the computational domain must be specified

as Dirichlet boundary conditions using the known analytic values at every time-step.

Prescribing the boundary conditions in such a manner makes this a computationally

expensive test, especially since the solution depends on numerous eigenvalues and is

comprised of special (Bessel) functions. However, this is still a valuable mixed-cell

test, especially since it tests two-dimensional effects.

8.1 Derivation of the Analytical Solution

This 2D solution is a simplified version of that presented by Mikhailov, Özişik, and

Vulchanov [147]. The derivation of the 2D MES analytical solution closely mirrors

the derivation for the 1D MES solution presented in Section 7.1. As in the 1D case,

the problem is simplified by treating each phase separately, yielding a diffusivity that

is not a function of position. The solution for each phase is related by enforcing

continuity of temperature and flux at the interface. There exists a set of solutions

(eigenfunctions) that satisfies the heat equation in each phase, with a constant for

each eigenfunction determined by the initial condition.

We first apply SoV and determine the time dependence of the solution (Sec-

tion 8.1.1). This is followed by the steady-state solution (Section 8.1.2) and the

transient solution (Section 8.1.3). The full solution is presented in Section 8.1.4,

summarizing all terms and constants required to express the analytical solution.

8.1.1 Separation of Variables and Time Dependence

We begin with the SoV assumption that the solution depends on the product of

functions of a single variable, T (r, φ, t) = τ(t)Γ(r)Φ(φ). The diffusion equation in

polar coordinates leads to a separated equation in the following steps:(
∂

∂t
− D

ρc

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

))
τ(t) Γ(r)Φ(φ) = 0

τt ΓΦ =
D

ρc

(
τ ΓrrΦ +

1

r
τ ΓrΦ +

1

r2
τ ΓΦφφ

)
τt
τ

=
D

ρc

(
Γrr
Γ

+
1

r

Γr
Γ

+
1

r2

Φφφ

Φ

)
= −k, (8.3)
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where we now have functions of time isolated from functions of space. The subscript

notation here indicated a derivative of a single variable function (e.g., Φφφ(φ) =

d2Φ(φ)/dφ2). As in the 1D case (see Equation (7.7)), we define k as non-negative.

This physically implies that the solution for τ(t) must be

τ(t) = e−kt, (8.4)

where k ≥ 0, and we have set the function constant to unity. Next we assume no

angular dependence, reducing our spatial equation to simply

r2Γrr + rΓr +
kρc

D
r2Γ = 0, (8.5)

with the physical restriction that D, ρ and c are positive

8.1.2 Steady-State Solution (k = 0)

When k = 0, there is no time dependence, and Equation (8.5) reduces to simply

rΓrr + Γr = 0, (8.6)

which is solved as

Γ(r) = c1 log r + c2, (8.7)

where c1 and c2 are arbitrary constants. Imposing boundary conditions, Equa-

tions (8.2b) and (8.2c), eliminates the r dependence, reducing the spatial solution

to a constant,

Γ(r) = TR. (8.8)

This solution accounts for the nonhomogeneous boundary conditions and is added to

the transient case, for which k is nonzero.

8.1.3 Transient Solution (k > 0)

Equation (8.5) for k > 0 is Bessel’s equation of order zero, which has a general

solution,

Γ(r) = c1J0

(√
ρck

D
r

)
+ c2Y0

(√
ρck

D
r

)
, (8.9)

where J0 is the Bessel function of the first kind and Y0 is the Bessel function of the

second kind, both of zeroth order. Since the T (R, t) = TR boundary condition has
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already been satisfied with the steady-state solution, the outer boundary condition

for the transient solution becomes homogeneous,

Ttransient(R, t) = 0, (8.10)

while the inner boundary condition, Equation (8.2c), remains unchanged.

As in the 1D case, we define some constants for ease of notation:

λ =
√
k (8.11a)

µ =

√
ρ1c1

D1

(8.11b)

ν =

√
ρ2c2

D2

. (8.11c)

We identify k as the eigenvalue for the differential equation to be solved. However,

the presentation is more concise to discuss the eigenvalues in terms of λ rather than

of k. Consequently, we will refer to λ as the eigenvalues, with the implicit knowledge

that the eigenvalues are technically the square of λ. No information is lost by the

substitution since k is non-negative.

Substituting Equation (8.11), the spatial solutions are then

Γ1(r) = b0J0 (λµr) + b1Y0 (λµr) (r < a) (8.12)

Γ2(r) = b2J0 (λνr) + b3Y0 (λνr) (r > a), (8.13)

where bi are constants to be determined. The Bessel functions at zero are J0(0) = 1

and Y0(0)→ −∞. Since the domain for phase 1 (0 ≤ r ≤ a) includes zero and Γ1(r)

must be bounded at r = 0 (i.e., have a finite value), we have b1 = 0. Thus, the

phase 1 solution is

Γ1(r) = b0J0(λµr). (8.14)

We enforce Equation (8.10) to determine the phase 2 solution below,

Γ2(R) = b2J0 (λνR) + b3Y0 (λνR) = 0

Γ2(r) = b2 (J0 (λνr) + βY0 (λνr)) , (8.15)

where we define b3 in terms of b2 via the convenient value β,

β = −J0 (λνR)

Y0 (λνR)
. (8.16)
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Imposing the continuity condition, Equation (8.2d), gives solutions

Γ1(r) = bn
J0(λµr)

J0(λµa)
(r < a) (8.17a)

Γ2(r) = bn
J0 (λνr) + βY0 (λνr)

J0 (λνa) + βY0 (λνa)
(a < r). (8.17b)

For simplicity of the remaining chapter, we assume that J0(λµa) 6= 0 and J0 (λνa) +

βY0 (λνa) 6= 0 and, although this could be treated as a special case, ensure a pos-

teriori that this is satisfied. Also note that Equation (8.2b) is satisfied because

d/dr[J0(r)]r=0 = −J1(0) = 0.

Enforcing continuity of flux across the interface, Equation (8.2e), gives the tran-

scendental equation, which determines the set of eigenvalues for our solution. Flux

continuity of Equation (8.17) is evaluated as follows:

D1
dΓ1(r)

dr

∣∣∣∣
r=a

= D2
dΓ2(r)

dr

∣∣∣∣
r=a

cnD1
∂

∂r

(
J0(λµr)

J0(λµa)

) ∣∣∣∣
r=a

= cnD2
∂

∂r

(
J0 (λνr) + βY0 (λνr)

J0 (λνa) + βY0 (λνa)

) ∣∣∣∣
r=a

−bnλµD1
J1(λµa)

J0(λµa)
= −bnλνD2

J1 (λνa) + βY1 (λνa)

J0 (λνa) + βY0 (λνa)

µD1
J1(λµa)

J0(λµa)
= νD2

J1 (λνa) + βY1 (λνa)

J0 (λνa) + βY0 (λνa)
, (8.18)

where we use the identity that

∂

∂r
B0(αr) = −αB1(αr), (8.19)

where B0(αr) can represent any J0(αr) or Y0(αr) (or any linear combinations). here

exists an infinite set of values of λ > 0 which satisfy Equation (8.18). We order and

enumerate this set with n, where the set of eigenvalues is λn ∈ {λ1, λ2, λ3, . . . }.
We define the set of eigenfunctions, v(n)(r), on a domain of 0 ≤ r ≤ R in two

piecewise-continuous sections, corresponding to the eigenvalues λn, as

v(n)(r) =

v
(n)
1 (r) (0 ≤ r ≤ a)

v
(n)
2 (r) (a ≤ r ≤ R)

(8.20)
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where

v
(n)
1 (r) =

J0(λnµr)

J0(λnµa)
(8.21a)

v
(n)
2 (r) =

J0 (λnνr) + βnY0 (λnνr)

J0 (λnνa) + βnY0 (λnνa)
, (8.21b)

where the scalar constants, bn, are absorbed into the temporal solution. The transient

solution to this 2D heat conduction problem for discontinuous media is

Ttransient(x, t) =
∞∑
n=1

bne
−λ2ntv(n)(r). (8.22)

8.1.3.1 The Full Solution

Combining the transient solution, Equation (8.22), with the steady-state solution,

Tss(r, 0) = TR, yields a combined solution of

T (r, t) =


TR +

∞∑
n=1

bne
−λ2ntv

(n)
1 (r) (r < a)

TR +
∞∑
n=1

bne
−λ2ntv

(n)
2 (r) (r > a).

(8.23)

We must determine bn in order to fully specify the solution. This involves two

steps. First, in Section 8.1.3.2, we must demonstrate that the eigenfunctions are

orthogonal and determine their magnitude, creating an orthonormal basis. Second,

in Section 8.1.3.3, we determine bn from the initial conditions.

8.1.3.2 Eigenfunctions: Orthonormal Basis

As shown in texts such as those by Jackson [101] and Arfken and Weber [8],

Bessel’s equation are self-adjoint, and the solutions are orthogonal when Sturm-

Liouville boundary conditions are satisfied. Specifically, letting αγm be the mth zero

of the γth order Bessel function of the first kind (Jγ(αγm) = 0), one can show for a

finite interval r ∈ [0, R],∫ R

0

Jγ

(
αγm

r

R

)
Jγ

(
αγn

r

R

)
r dr =

R2

2
[Jγ+1(αγn)]2δm,n, (8.24)

where δm,n is the Kronecker delta function. This represents orthogonality with respect

to the roots of the Bessel functions of fixed order γ. The necessary conditions for an

192



eigenfunction to be orthogonal on a finite interval r ∈ [0, R], is that v(r)v′(r) is zero

at the endpoints,

v(0)v′(0) = 0 (8.25a)

v(R)v′(R) = 0. (8.25b)

These conditions are satisfied for our 2D analytic solution by Equation (8.2b) and

Equation (8.2c). The discontinuity in our eigenfunctions does not prevent orthogo-

nality because, by construction, both the eigenfunctions and their flux are continuous

across the interface which are other conditions that must be met to give orthogonality.

Therefore, the eigenfunctions, Equation (8.21), are orthogonal.

We define the inner product for this problem as

〈f(r), g(r)〉 =

∫ R

0

ρc fgrdr = µ2D1

∫ a

0

fgrdr + ν2D2

∫ R

a

fgrdr, (8.26)

where ρ1c1 = µ2D1 and ρ2c2 = ν2D2 by Equation (8.11).

A necessary integral identity, confirmed by Maple [140], is∫ c

b

B0(λr)2 r dr =

[
r2

2

(
B0(λr)2 +B1(λr)2

)]r=c
r=b

, (8.27)

where B0(λr) can represent J0(λr) or Y0(λr) (or a linear combination of the two).

The inner product of the nth eigenfunction is

||v(n)(r)||2 =
〈
v(n), v(n)

〉
= µ2D1

∫ a

0

(
v

(n)
1

)2
rdr + ν2D2

∫ R

a

(
v

(n)
2

)2
rdr ≡ P1 + P2,

where we find P1 and P2 separately. Using the integral identity in Equation (8.27),

the first term is solved as

P1 = µ2D1

∫ a

0

(
v

(n)
1

)2
rdr = µ2D1

∫ a

0

(
J0(λnµr)

J0(λnµa)

)2

rdr

=
D1

2

(
aµ

J0(λnµa)

)2 [
J0(λnµa)2 + J1(λnµa)2

]
− 0

=
a2µ2D1

2

[
1 +

(
J1(µλna)

J0(µλna)

)2
]
. (8.28)
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Defining γn as the inverse of the denominator for v
(n)
2 for intermediate steps,

1

γn
= J0 (λnνa) + βnY0 (λnνa) , (8.29)

the second term is

P2 = ν2D2

∫ R

a

(
v

(n)
2

)2
rdr = ν2D2

∫ R

a

γ2
n [J0 (λnνr) + βnY0 (λnνr)]

2 rdr

=
D2

2
(νγn)2

[
R2

((
J0(λnνR) + βnY0(λnνR)

)2
+
(
J1(λnνR) + βnY1(λnνR)

)2
)

− a2

((
J0(λnνa) + βnY0(λnνa)

)2
+
(
J1(λnνa) + βnY1(λnνa)

)2
)]

=
R2ν2D2

2

(
J1(λnνR) + βnY1(λnνR)

J0(λnνa) + βnY0(λnνa)

)2

− a2ν2D2

2

[
1 +

(
J1(λnνa) + βnY1(λnνa)

J0(λnνa) + βnY0(λnνa)

)2
]
,

(8.30)

where we used the outer boundary condition, Equation (8.10), to eliminate one term.

Combing Equation (8.28) and Equation (8.30) gives us the square of the norm of

the nth eigenfunction,

||v(n)(r)||2 = P1 + P2

=
a2

2
(µ2D1 − ν2D2) +

R2ν2D2

2

(
J1(λnνR) + βnY1(λnνR)

J0(λnνa) + βnY0(λnνa)

)2

+
a2

2

[
1

D1

(
µD1

J1(µλna)

J0(µλna)

)2

− 1

D2

(
νD2

J1(λnνa) + βY1(λnνa)

J0(λnνa) + βY0(λnνa)

)2
]

=
a2

2

[
(µ2D1 − ν2D2) +

(
1

D1

− 1

D2

)(
µD1

J1(µλna)

J0(µλna)

)2
]

+
R2ν2D2

2

(
J1(λnνR) + βnY1(λnνR)

J0(λnνa) + βnY0(λnνa)

)2

, (8.31)

where the last step combines two terms by using the square of Equation (8.18).

As in the 1D case, the magnitude of the eigenfunctions, Equation (8.31), and their

orthogonality forms an orthonormal basis. The initial conditions are constructed as

a Fourier-Bessel series, where bn specifies the weight of each basis function.
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8.1.3.3 Constructing the Initial Conditions

The full solution is now determined by specifying bn, which is accomplished by

constructing the initial condition in terms of the orthogonal eigenfunctions. Prior

to this point, the derivation has been generic for any initial condition. Only the

determination of the Fourier-Bessel constants, bn, depend on the initial condition.

We use formulae for a general Fourier series introduced in Section 7.1.4.2, as they

are applicable here. The set of constants for a Fourier-Bessel series is defined as [8]

bn =

〈
v(n)(r), f(r)

〉
〈v(n)(r), v(n)(r)〉 (8.32a)

=
1

||v(n)(r)||2
[
µ2D1

∫ a

0

f(r)v
(n)
1 (r)rdr + ν2D2

∫ R

a

f(r)v
(n)
2 (r)rdr

]
, (8.32b)

where f(r) can be any function in general. However, for our problem f(r) is defined

by the initial condition, Equation (8.2a), and the expression for the temperature,

Equation (8.23). Consequently, the function f(r) is defined as

f(r) =
∞∑
n=1

bnv
(n)(r) = Ti − TR. (8.33)

Note that if Ti = TR, the constants would all be zero. This is the correct behavior

because that initial condition would equal the steady-state condition, meaning there

would be no transient term.

Since the function f(r) = Ti−TR is a constant, the set of Fourier-Bessel constants

is given by

bn =
Ti − TR
||v(n)||2

[
µ2D1

∫ a

0

v
(n)
1 (r)rdr + ν2D2

∫ R

a

v
(n)
2 (r)rdr

]
(8.34a)

= (Ti − TR)

〈
1, v(n)

〉
||v(n)||2 . (8.34b)

The denominator is already determined in Equation (8.31), and we examine the

inner product of 1 and v(n) into two parts as when we found the eigenfunction mag-

nitude,

〈
1, v(n)

〉
= µ2D1

∫ a

0

v
(n)
1 (r)rdr + ν2D2

∫ R

a

v
(n)
2 (r)rdr

≡ P1 + P2.
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The integral needed for this inner product is∫ c

b

B0(λr)rdr =
[ r
λ
B1(λr)

]r=c
r=b

, (8.35)

where B0(λr) represents J0(λr) or Y0(λr) (or a linear combination). The first term

is then

P1 = µ2D1

∫ a

0

(
v

(n)
1

)
rdr = µ2D1

∫ a

0

J0(λnµr)

J0(λnµa)
rdr

=
µ2D1

J0(λnµa)

[
a

λnµ
J1(λnµa)− 0

]
=

a

λn

(
µD1

J1(λnµa)

J0(λnµa)

)
. (8.36)

The second term is evaluated below,

P2 = ν2D2

∫ R

a

(
v

(n)
2

)
rdr = γnν

2D2

∫ R

a

(J0 (λnνr) + βnY0 (λnνr))rdr

=
γnν

2D2

λnν
[R(J1 (λnνR) + βnY1 (λnνR))− a(J1 (λnνa) + βnY1 (λnνa))]

=
RνD2

λn

J1 (λnνR) + βnY1 (λnνR)

J0(λnνa) + βnY0(λnνa)
− a

λn

[
νD2

J1 (λnνa) + βnY1 (λnνa)

J0(λnνa) + βnY0(λnνa)

]
. (8.37)

Combining Equation (8.36) and Equation (8.37) gives

〈1, v(n)〉 = P1 + P2

=
a

λn

[(
µD1

J1(λnµa)

J0(λnµa)

)
−
(
νD2

J1 (λnνa) + βnY1 (λnνa)

J0(λnνa) + βY0(λnνa)

)]
+
RνD2

λn

J1 (λnνR) + βnY1 (λnνR)

J0(λnνa) + βY0(λnνa)

=
RνD2

λn

J1 (λnνR) + βnY1 (λnνR)

J0(λnνa) + βY0(λnνa)
, (8.38)

where the term in brackets is eliminated using the eigenvalue equation, Equation (8.18).

From Equation (8.34b) and Equation (8.38), the set of constants is defined as

bn =
(Ti − TR)RνD2

||v(n)||2λn
J1 (λnνR) + βnY1 (λnνR)

J0(λnνa) + βY0(λnνa)
, (8.39)

where ||v(n)||2 is defined in Equation (8.31).
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8.1.4 Summary of the Full 2D Solution

The two-dimensional solution to the discontinuous media circular heat conduction

problem is

T (r, t) =



TR +
∞∑
n=1

cne
−λ2ntv

(n)
1 (r) (r < a)

TR +
∞∑
n=1

cne
−λ2ntv

(n)
2 (r) (a < r).

(8.40)

The following definitions are needed for the eigenfunctions:

µ =

√
ρ1c1

D1

(8.41a)

ν =

√
ρ2c2

D2

(8.41b)

βn = −J0 (λnνR)

Y0 (λnνR)
(8.41c)

v
(n)
1 (r) =

J0(λnµr)

J0(λnµa)
(8.41d)

v
(n)
2 (r) =

J0 (λnνr) + βnY0 (λnνr)

J0 (λnνa) + βnY0 (λnνa)
. (8.41e)

The scalar constants are defined with the following two equations,

||v(n)|| =a
2

2

[
(µ2D1 − ν2D2) +

(
1

D1

− 1

D2

)(
µD1

J1(µλna)

J0(µλna)

)2
]

+
R2ν2D2

2

(
J1(λnνR) + βnY1(λnνR)

J0(λnνa) + βnY0(λnνa)

)2

(8.42a)

bn =
(Ti − TR)RνD2

||v(n)||2λn
J1 (λnνR) + βnY1 (λnνR)

J0(λnνa) + βY0(λnνa)
, (8.42b)

where λn is the ordered set of eigenvalues which satisfy

µD1
J1(λnµa)

J0(λnµa)
− νD2

J1 (λnνa) + βnY1 (λnνa)

J0 (λnνa) + βnY0 (λnνa)
= 0. (8.43)

8.2 Dependence of the Analytical Solution on Eigenvalues

Finding the eigenvalues is a crucial step for implementing this analytic solution.

While there exists an infinite number of eigenvalues, we can only use a finite number
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of terms when computing the analytic solution. We must use enough eigenvalues

such that the truncated solution accuracy is sufficient to measure the error of the

computed solution. Use of the 2D analytic solution to validate the accuracy of a

mixed-cell model is computationally expensive because the analytic solution must

be evaluated on the computational boundary at every time step. This requires that

all the necessary eigenvalues be computed as a pre-processing step. We must deter-

mine how many eigenvalue terms are needed to compute the truncated solution at

every time the analytic solution is required. This section explores these two topics:

finding eigenvalues (Section 8.2.1) and deciding how many terms of eigenfunctions to

keep (Section 8.2.1.1). This section concludes by choosing the diffusivity ratio and

simulation time for the numerical testing of the mixed-cell models (Section 8.2.1.2).

The parameters used in the results for this problem are

TR = 10 (8.44a)

Ti = 30 (8.44b)

R = 1.5 (8.44c)

a = 0.6 (8.44d)

L = 1 (8.44e)

ρ1c1 = 1 (8.44f)

ρ2c2 = 1, (8.44g)

which only differ from the 1D case in that L is the computational domain and the

problem domain goes to R = 1.5; see Figure 8.1 for the configuration.

8.2.1 Evaluating the Eigenvalues

Finding the eigenvalues for the 2D case is more complicated than in the 1D case.

The primary reason for this difference is that the two functions are trigonometric in

the 1D case, having constant spacing between zeros, whereas the two functions in the

2D case are combinations of Bessel functions, which do not have constant spacing

between zeros. This makes it more difficult to determine the search intervals, such as

those shown in Figure 7.2 for the 1D case.

The transcendental equation, Equation (8.18), can be written in terms of the
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following two functions,

f1(λ) = µD1
J1(λµa)

J0(λµa)
and f2(λ) = νD2

J1(λνa)− J0(λνR)

Y0(λνR)
Y1(λνa)

J0(λνa)− J0(λνR)

Y0(λνR)
Y0(λνa)

, (8.45)

where the eigenvalues occur at the intersections of these functions. A sample plot of

these functions is shown in Figure 8.2. Note that the plotted diffusivity values (D1

and D2) are chosen to be close in value so that the figure can show multiple cycles

of each function. More typical values, where the diffusivities have ratios from 102 to

1010, are more difficult to plot because the value of the transcendental functions are

larger and change greatly from on point to the next. We distinguish the continuous

variable λ, used as arguments of f1 and f2 to explore λ-space, from the discrete set

of eigenvalues λn, which occur only when f1 and f2 are equal.

0 2 4 6 8 10 12 14

f1(x)
f2(x)

-20
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15
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f 1, 
f 2

λ
Figure 8.2:

Eigenvalues for 2D analytic solution from transcendental equations, Equa-
tion (8.45). A small diffusivity ratio (D1 = 1 and D2 = 2) is shown for
clarity. Each intersection (an eigenvalue) is marked with a red circle.

The algorithm for finding eigenvalues consists of six steps. The first step is to

determine search intervals. This is accomplished by estimating and then refining the

average period of each function. Half integer increments of these periods are used

as search intervals because the periods are not exactly constant. Moreover, since

eigenvalues occur mostly at the endpoints (asymptotes) of each period, searching at

half-integer periods helps prevent missing an eigenvalue. The second step finds the

minimum for each search interval for both the difference and normalized difference,

defined in Equation (7.47) for the 1D eigenvalue-finding algorithm. The normal-
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ized difference is only used if the functions are larger than unity in the interval,

max(|f1| , |f2|) > 1. This prevents normalizing when the function values are near

zero. If the differences are less than a tolerance (1 is used), they are stored for the

next step, with a potential of two values for each search range (the standard-difference

and the normalized-difference). The third step searches around each potential inter-

section, finding the minimum standard or normalized difference for this small range.

If the difference is small enough (0.1 is used for the standard difference and 1 is used

for the normalized difference), these potential intersection points are passed to the

fourth stage. Step four refines the intersections, as in step three, but now uses a

tighter criterion to determine whether or not to keep an intersection (10−3 for stan-

dard difference and 10−1 for normalized difference). For the normalized difference,

often one function will be small (less than one) and the other will be large (greater

than one thousand); in cases when both functions are smaller than a tolerance (for

ratios less than 107, 0.5 is used, and 15 is used for stiffer ratios), that point is also kept

as a potential intersection. Step five finds the average spacing of potential eigenvalues

and examines points that are deemed too close together (less than 20% of average),

keeping only the value with the smaller difference (normalized-difference used if val-

ues are large). Step six searches in smaller and smaller ranges around each eigenvalue

until the change falls to machine precision. This step simply increases the accuracy

of the eigenvalues found, which is crucial for very stiff problems. This algorithm has

been graphically verified to find the first 200 eigenvalues for the following ten ratios

10s : s ∈ ±{2, 4, 6, 8, 10}.

8.2.1.1 Accuracy of a Truncated Solution

We must distinguish three solutions: (i) the analytic solution, resulting from an

infinite summation of eigenvalue terms, (ii) the truncated solution, resulting from a

finite summation of eigenvalue terms, and (iii) calculated solution, generated from

the numerical approximation of the equations. For the test to be valid, it is necessary

that the error for the truncated solution is less than the discretization error of the

calculated solution.

We quantify the behavior of this problem by comparing ten diffusivity ratios,

measuring the truncation error using Equation (7.51), at three sampling times based

on the energy evolution versus stead state, Equation (7.50). (Refer to Section 7.2.2

for details on these choices.) The diffusivity ratio is expressed in terms of s, defined

as

s = log10

D1

D2
. (8.46)
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Note that the specific units of time, diffusivity, etc., are arbitrary. Furthermore, recall

that we refer to λn as the eigenvalues, but technically the eigenvalues are λ2
n.

ratio Time Number of Eigenvalues

s Early Mid Late Early Mid Late

2 2.3894 5.7748 10.8881 4 3 2

4 23.873 57.71 108.818 4 3 2

6 238.73 577.1 1,088.15 4 3 2

8 2,387.3 5,771 10,881.75 4 3 2

10 23,873 57,710 108,817.5 4 3 2

-2 0.035115 0.46355 1.34735 22 6 3

-4 3.6486E-3 4.1085 12.7926 189 5 3

-6 3.6283E-4 41.033 127.859 1,804 6 3

-8 3.626E-5 410.315 1,278.58 17,931 5 3

-10 4.2211E-6 4,530.47 13,197.85 169,751 5 3

Table 8.1:
2D MES analytic solution trends depending on ratio of phase coefficients.
Solution times to reach early-, intermediate-, and late-stage are listed.
Also list is the number of eigenvalues needed to construct the solution at
those times with an error near machine precision.

Table 8.1 shows the time for solutions with various diffusivity ratios to reach

early-, intermediate-, and late-stage, which corresponds to ξ(t) = 0.50, ξ(t) = 0.20,

and ξ(t) = 0.05, respectively. Equation (7.50) defines ξ(t), which a function that

characterizes the energy evolution with respect to the steady-state energy; a value of

ξ(t) = 0.90 still has 90% of the energy at the initial condition, and ξ(t) = 0 indicates

the solution is at equilibrium (i.e. the system has lost all energy above steady-state).

Also shown is the number of eigenvalues needed to represent the solution to machine

precision at these three times. The trends relating the time and diffusivity ratios in

Table 8.1 are opposite to those Table 7.1 (i.e., the same trends for opposite signs of s).

The time to reach intermediate- and late-stage (and early-stage for s > 0) increases

by a factor of ten for every factor of 100 increase in s. This trend is because the

diffusion time scales inversely with diffusivity (∆t ∝ 1/D) and because the time scale

is controlled primarily by the smaller diffusivity, which decreases by a factor of ten

when |s| increases by a factor of 100. The exception to this trend is the early time

behavior for s < 0, where the time decreases by a factor of ten for increasing |s| by

100. This is due to heat flux at the r = R boundary being faster for this ratio because
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the phase 2 diffusivity is large. In other words, when D2 is large, energy can leave

the system very quickly; when D2 is small, phase 2 acts as an insulator, causing the

energy to leave the system slowly. Thus, the larger diffusivity dominates in this case,

and the time goes down by a factor of ten as D2 increase by a factor of ten (which

occurs as |s| increases by a factor of 100).

Another trend in Table 8.1 is that the positive ratio solutions take about a factor of

ten longer for equivalent negative ratio solutions, which is because the outer boundary,

r = R, has a smaller diffusivity, which partially insulates the disk. All solutions need

six eigenvalues or fewer except the early-stage, s < 0 cases. As in the 1D case, the large

number of eigenvalues for this case arises because the solution so quickly loses energy

through the outer boundary to reach the boundary condition, T (R, t) = TR, leading

to a temperature profile with corners rather than smooth curves. An alternative

viewpoint to explain this trend is that more eigenvalues are needed simply because

the solution is evaluated earlier in time, when the larger eigenvalues terms are not

damped as strongly by the exponential term. If we instead compared the different

ratio cases at the same time for a given set up (rather than at the same energy

characteristic stage), we would find they require an equivalent number of eigenvalues.

8.2.1.2 Selection of Numerical Testing Parameters

We are using the 2D analytical solution to test the validity of the mixed-cell mod-

els. We desire to determine the parameters for the test that minimize computational

effort while making the mixed cell a critical point (i.e., the temperature profile must

have a distinguishing feature in the mixed cell rather than being smooth).

The positive ratio jumps are the best choice for a run-set for the numerical im-

plementation of the 2D analytic solution. Table 8.1 shows that the positive ratio

cases needs fewer eigenvalues to resolve the solution, although they do require longer

runtimes. However, since the solution must be specified on the boundary at every

time step, the solution must be resolved as early as t = ∆t (the truncated analytic

solution is not required at t = 0). Since we are defining the time step as a function

of the grid size (∆t = ∆x3), we must determine the number of eigenvalues needed

for the most refined grid of the study. Next, we desire to run the problem for as

little time as possible since this is a computationally intensive problem. We focus

our attention on just three jump ratios (102, 106, 1010), which should be sufficient to

discern trends.

Figure 8.3 shows five plots of the radial solution at various points between the

initial condition and the steady-state value for s = 6. A kink in the solution be-
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Figure 8.3:
Radial plot of 2D analytic solution at various points in the energy evolu-
tion. The energy evolution function is defined in Equation (7.50), where
100% means that the (cooling) problem has all of its initial energy, while
0% means the problems has lost all excess energy and equilibrated at
steady-state. The jump ratio is s = 6, the interface is at a = 0.6, and
other parameters are given in Equation (8.44).

comes perceptible at about ξ(t) = 0.75, after which the quasi-uniform temperature of

phase 1 slowly drops while phase 2 becomes linear. Prior to this point, the solution is

smooth across the interface, and we desire a kink in order to best test the mixed-cell

models. Thus, a simulation can be terminated when ξ(t) = 0.75 in order to minimize

computation time. Figure 8.4 shows the solution at this point for both the whole do-

main (−R ≤ x, y ≤ R) and the computational domain (0 ≤ x, y ≤ 1). Table 8.2 gives

the times and number of eigenvalues needed to resolve the solution at the stopping

point (ξ(t) = 0.75), which is a just six eigenvalues. However, we also need enough

eigenvalues to create a sufficiently accurate truncated solution at the initial time step

(t = ∆t), which depends on grid size. Consequently, Table 8.2 also shows the number

of eigenvalues needed for the first time step for grid sizes of 40, 50, and 100.

The number of eigenvalues needed for the truncated solution to have sufficient

accuracy varies with time. While the first time step may need on the order of 106

eigenvalues, this number quickly drops to the order of 102. One cannot use just ten

eigenvalues because the solution at early times would be highly inaccurate, and this

error would perpetuate. However, using hundreds of thousands of eigenvalues for

every time step would be needlessly computationally intensive. One solution to this
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Figure 8.4:
2D solution at final time (ξ(t) = 0.75). A ratio of s = 6 is plotted for both
the problem domain (a) and the computational domain (b) is shown.

conundrum is to use variable number of eigenvalues by enforcing a criterion,

exp(−λ2
nt) > tolerance, (8.47)

to truncate the eigenvalue summation (we use a tolerance of 10−10∆x2).

Two other specific choices are made to speed up implementation. Saving every

eigenfunction is an unnecessary use of memory, but recalculating each eigenfunction

is likewise inefficient. We therefore save only the first n eigenfunctions and calculate

all eigenfunctions greater than n for each time step (n=400 is used). The advantage

of this is that the most commonly used eigenfunctions (the first several) are stored,

and after some point in time, the number of eigenfunctions used will be less than

n. Second, the choice to position the computational domain in the positive quadrant

provides symmetry to the solution along the bottom and left edges, as well as along

the top and right edges. This means that there are two degenerate edges, so the

boundary conditions need only be computed along two edges, and these values can

also be used on the remaining two edges. Because each boundary edge is used for two

edges of the computational domain, the number of spatial elements in the truncated

analytic solution is reduced.
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Solutions at Initial and Final Times

Initial Time (t = ∆t = ∆x3) Final Time

Grid Size 100 50 40 Any

s t ξ(t) 0.99 0.99 0.99 0.75

2 0.83895 Number 5,255 1,877 1,379 6

6 83.833 of 46,906 16,881 12,034 6

10 8,383.3 Eigenvalues 443,225 160,001 115,234 6

Table 8.2:
Number of eigenvalues at the start and the time at the end for 2D MES
analytical test for various jump ratios s. The initial time step depends on
grid size, and three grid sizes are listed. The value for the final time (t),
when ξ(t) = 0.75, are also listed for each ratio.

8.3 Results of Mixed-Cell Models for 2D Analytical Test

This section presents the results for six mixed-cell models for solving the 2D ana-

lytic test problem discussed in this chapter. The similarities and differences between

the six models are summarized in Table 6.1. Three single temperature models are

presented: the harmonic mean (S1), the rotated tensor-diffusivity method (S2), and

the split-cell method (S3). (See Chapter III for the description of these models.) A

multi-temperature model is also presented with three variants, based on the level of

the approximation (M1, M2, M3). (See Chapter IV for the description of these mod-

els.) Five of these six methods represent new work, with the harmonic mean used as

a baseline. The convergence rate of a model compared to the convergence rate of the

harmonic mean model determines if a model is advantageous.

8.3.1 Implementation

Implementing this analytical solution on a Cartesian mesh is an involved process.

The truncated analytical solution must be computed at every time step to specify

the Dirichlet boundary conditions of the computational domain. While the outer

boundary conditions are simple for the domain of the problem, T (R, t) = TR, for the

computational domain the boundary conditions are T (r, t) = TR +
∞∑
n=1

cne
−λ2ntv(n)(r)

where r =
√
x2 + y2 and x and y are defined on the perimeter of the unit square

(x, y ∈ [0, L]).

The problem is initialized by setting T (r, 0) = Ti. The time step is conservatively

scaled as ∆t = ∆x3 to ensure the first-order temporal discretization error is below

205



the second-order spatial discretization error. The mixed-cell models are executed for

various grid refinements to characterize convergence trends. These grid refinements

are square grids of length 10, 20, 30, and 40 for all three ratios, while the s = 6 ratio

also has a grid of 50, and the s = 2 ratio has additional grids of length 50 and 100.

8.3.2 Results

The calculated solution for every model, ratio, and grid refinement resembles

Figure 8.4(b). In other words, even in cases where the convergence rates are near

zero, the computed solution for each grid is a qualitative match of the analytical

solution.

Table 8.3 presents the convergence rates at the time where ξ(t) = 0.75 for each

model and ratio. The convergence rates listed are averaged over each grid for each

particular ratio. No model performs at second-order accuracy for all three error

norms. In fact, only the S1 and S3 models achieve near second-order accuracy in any

error norm, having rates greater than 1.8 in the 1-norm.

Strongest jump ratio. The s = 10 ratio does poorly in every model, having near

zero convergence rates (constant error regardless of grid resolution) in the single-

temperature methods; see Table 8.3. The single-temperature methods have absolute

convergence rates on the order of or below 0.1, which is effectively zero. The multi-

temperature methods attain positive, nonzero convergence rates, but only about 0.32

on average, which is well below first order. The deficient results of the strongest jump

are likely due to one of two primary causes: problems with the eigenvalues or problems

with the code. The eigenvalues used for the boundary conditions may have skipped

some values or may not be accurate enough. The number of eigenvalues needed

to resolve both phases for this ratio is so large that it is impractical to graphically

verify that no values were skipped. Since the eigenvalues occur at the asymptotes of

Equation (8.45), the results are highly sensitive to slight variations of any digit of the

calculated eigenvalues. Accordingly, any inaccuracy in these eigenvalues is greatly

magnified in the eigenfunctions, much more than any inaccuracy in the s = 2 or

s = 6 ratios. However, since the results look qualitatively correct it is reasonable

to conclude that the eigenvalues are not the problem, especially since the larger the

eigenvalue, the smaller its contribution. One might think that the errors occur at

early times, when more eigenvalues are needed; however, we show later that the early

time solutions are second-order accurate. There could also be a numerical issue with

the computation of the Bessel functions. Alternatively, the cause for the poor results
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for the s = 10 ratio may be that the (single- and multi-temperature) codes simply

cannot handle such highly discontinuous diffusivities. The 1D MES test also show

a performance drop for the single-temperature code for a ratio of |s| = 10, however

the performance of the multi-temperature code for this ratio was consistent with the

smaller ratios. While another test could be used to explore the behavior of these

codes with such a strong jump to ascertain the root of the issue, for now we put aside

this particular ratio, noting that the multi-temperature models performed better at

this ratio, and focus on the jumps of s = 2 and s = 6.

Case Single-T Multi-T
s # q1 q2 q∞ q1 q2 q∞

2
1 1.90 1.47 0.89 1.10 1.03 0.65
2 1.67 1.46 0.88 1.07 1.01 0.85
3 1.81 1.56 0.68 1.12 1.07 0.90

6
1 1.79 1.41 0.87 1.26 1.10 0.54
2 1.14 1.04 0.75 1.15 1.06 0.85
3 1.73 1.53 0.57 1.22 1.13 0.91

10
1 0.06 0.04 0.03 0.41 0.39 0.35
2 -.08 -.09 -.12 0.32 0.30 0.25
3 0.05 0.04 -.00 0.31 0.29 0.24

Table 8.3:
Convergence rates for 2D MES. Single- and multi-temperature results are
given, showing three different diffusivity ratios (10s) and measured with
three error norms. The rates are averaged over all the grids used for each
ratio. The model number for each row is indicated in the column labeled
#. Bold indicates qi ≥ 1.90.

Multi-temperature methods. The multi-temperature results perform, at best,

first order. Examination of the convergence of E∞ in Table 8.3 for the ratios s = 2

and s = 6 show a clear trend that the convergence rate increases with higher fidelity

models (i.e., M3 better than M2, M2 better than M1), which is the sensible and

expected result. The M3 method does marginally better than the S1 method in

the ∞-norm, and this marks the only measurable instance where any of the multi-

temperature results are superior to the single-temperature results for the s = 2 and

s = 6 ratios. Examination of the phase error for phase 2 shows results almost exactly

matching the combined-phase error. This is because the phase 1 solution is constant

and easily achieves high accuracy, while all of the change and topology occurs in

phase 2. Hence, the phase-averaged error is dominated by the phase where the solution

is more quickly evolving. Plots of the difference between the analytic and computed
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solution show a discretization error that is quickly overshadowed by error at the

interface; see Figure 8.6. The multi-temperature methods are less accurate than the

single-temperature methods for this test problem, and we focus the remainder of this

section on the single-temperature results.
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Figure 8.5:
Convergence rates versus time for 2D solution. The three single-
temperature models are each shown, and the three multi-temperature
models are averaged together and labeled as M . Convergence is calcu-
lated for three p-norms, with jump ratios of (a) s = 2 and (b) s = 6. The
x-axis shows percent progress to the final time (ξ(t) = 0.75).

Single-temperature methods. The single-temperature methods have the best

performance for this 2D mixed-cell test for the jump ratios of s = 2 and s = 6; see

Table 8.3. However, the convergence rates at ξ(t) = 0.75 are below the expected

second-order rate. The S2 model has the worst overall performance for the single-

temperature models, however the S3 model has the lowest q∞. The S1 model has the

highest convergence rate for each ratio.

Convergence as a function of time. Figure 8.5 plots the convergence rates versus

time for the two lower jumps. The x-axis of the plot is the percentage in time

between t = 0 and the time where ξ(t) = 0.75 (see Table 8.2). The multi-temperature

convergence rates are plotted for comparison purposes. Note that the convergence

rates for the three multi-temperature models are averaged because they are so similar,
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so the plot labeled ‘M’ represents the M1, M2, and M3 models. It is evident from these

plots is that the convergence rate begins at second order, but at some point drops to

a lower rate. The multi-temperature convergence rates drop sooner than the single-

temperature rates in all cases, but especially for q∞. The single-temperature results

appear to have a critical point (most evident in the ∞-norm) about 40% through

the run where the convergence rate begins its descent. The S1 and S3 models have

similar trends in both cases, near second-order convergence rates in 1-norm, near 1.5

in 2-norm, and between 0.5 and 1 in the ∞-norm. The S2 model follows the trends

of the other two models in the s = 2 ratio, but is less accurate for the 1-norm and

2-norm for the s = 6 ratio.
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Figure 8.6:
Difference between 2D analytic and calculated solution versus time. The
percentage progress of the plots are (a) 20%, (b) 40%, (c) 60%, and (d)
100%. The S1 model is shown with a jump ratio of 106. Error along
interface is conspicuous and grows with time.

The reason that the convergence rates for the single-temperature methods decrease
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with time is apparent from the series of subplots in Figure 8.6: the interfacial error

grows with time and eventually dominates the problem. Figure 8.6(a) shows only

discretization error, which converges at second-order, with no discernible interfacial

error. Examination of the remainder of the subplots in Figure 8.6 shows that the

error along the interface grows with time (note the scale of the temperature axis).

In fact, this error overshadows the discretization error in the rest of the domain,

and will eventually cause the whole problem to drop to first-order accuracy or worse.

Note that while these plots are for s = 6, the same trends occur in the s = 2 ratio.

Furthermore, only the S1 model is shown, but the S2 and S3 models look qualitatively

equivalent, with the sole exception that the S3 model has both negative and positive

spikes at the interface.

8.3.2.1 Alternative Implementations

The poor results for the 2D MES test problem presented in this chapter are likely

due to an implementation issue. Two possible causes are (i) the presence of mixed

cells on the boundary or (ii) the fact the solution is driven by the boundary values.

Mixed cells on boundary. We repeat the 2D MES test problem as has been

presented with one change: the computational domain is expanded from x, y ∈ [0, L]

to x, y ∈ [−L,L]. In other words, we moved the computational domain such that all of

phase 1 (and therefore all mixed cells) is contained within the computational domain.

By exploiting the symmetry of the problem, this change in domain does not increase

or decrease the number of analytic solution elements that needed to be computed for

the boundary conditions, although the number of elements in the solution increased

by a factor of four.

The convergence rates of the∞-norm for this problem are presented in Table 8.4,

while additional convergence rate information (such as q1 and q2) can be found in

Tables C.6 and C.7. Comparison between Table 8.3 and Table 8.4 shows that the

convergence rates are slightly higher for the single-temperature methods using the

larger domain, with q∞ becoming closer unity. The multi-temperature models increase

in convergence rate for M1 while staying about the same for M2 and M3. Therefore,

the presence of mixed cells on the boundary is not the cause of the low-order results

seen in the previous section. The results of this new domain are equivalent to the

x, y ∈ [0, L] domain: the convergence rates decline from second-order to first-order

accuracy with time, and the error is dominated by the mixed cells.
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s grid size S1 S2 S3 M1c M2c M3c M1 M2 M3

2

20→40 1.19 1.21 1.23 0.84 0.88 0.88 0.83 0.90 0.91
40→60 0.83 0.79 0.76 1.03 0.95 0.95 1.03 0.92 0.91
60→80 1.23 1.25 1.23 0.85 0.89 0.89 0.84 0.89 0.89
mean 1.09 1.08 1.07 0.90 0.91 0.91 0.90 0.90 0.90

6

20→40 1.19 1.32 1.23 0.84 0.86 0.86 0.83 0.88 0.89
40→60 0.83 0.83 0.75 1.03 1.00 1.06 1.03 0.98 0.97
60→80 1.22 1.25 1.22 0.84 0.87 0.87 0.83 0.87 0.87
mean 1.08 1.13 1.07 0.90 0.91 0.92 0.90 0.91 0.91

Table 8.4:
Convergence rates of all six mixed-cell models for the 2D MES mixed-cell
test problem using the expanded computational domain. The convergence
rate is measured using E∞ for the indicated grid sizes. Results are shown
for two different diffusivity ratios, s = −2 and s = −6, and phase 2 is
shown for the multi-temperature models. Tables C.6 and C.7 are expanded
versions of this table.

Constant boundary conditions. It is clear from Figures 8.4(b) and 8.6(a) that

the temperature in the domain is driven by the corner point, which is undesirable.

This set up makes the boundary values for this corner more important than any

other point. Running the test problem with the expanded domain, x, y ∈ [−L,L],

exacerbates this issue by making all four corners critical points in driving the solution,

as opposed to just one corner. It would be preferable to eliminate the dependence of

this solution on the corner values. It would be better if the problem were not driven

by changing boundary values, but rather the problem simply evolves from the initial

conditions with static boundary conditions.

The 2D MES test problem, with some modifications, could indeed be run using

constant boundary conditions. Not only would this eliminate the effect of the corner

boundary values, but it would also alleviate much of the computational expense of the

problem because the analytical solution would not need to be calculated at any time

step, only required as a post-processing step. Furthermore, far less eigenvalues would

be needed because the analytical solution would not need to be evaluated until a time

much greater than t = ∆t, where ∆t ∝ ∆x3. By making the outer material (phase 2)

have the larger diffusivity (s < 0) and setting the initial temperature profile for that

phase to the boundary value (TR), a computational boundary of x, y ∈ [−L,L] could

remain constant in time. The initial temperature in the inner region (phase 1) would

need to be different from the outer, constant region so that the problem would not

start in equilibrium.

We desire an initial temperature profile that smoothly transitions from zero at
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r = 0 to TR at r = a. Using a quadratic expression, the initial temperature profile is

T (r, 0) =

TR
(r
a

)2

r < a

TR a < r.
(8.48)

The solution expression is the same as before,

T (r, t) = TR +
∞∑
n=1

bn exp (−λ2
nt)v

(n)(r), (8.49)

with only the constants series (bn) changing. Integration of Equation (8.32b) using

Maple [140] with the new initial conditions finds the new Fourier-Bessel constants as

bn =
1

||v(n)||2
2TRD1

λ3
nµa

[
λnµa− 2

J1(λnµa)

J0(λnµa)

]
, (8.50)

where the only contribution occurs in phase 1, since phase 2 set to steady-state.

We find that a diffusivity ratio of s = −2 is not strong enough to give constant

temperature on the computational boundary, however a ratio of s ≤ −6 does maintain

a constant temperature for parameters R = 1.5 and a = 0.6. We run the problem to

ξ(t) = 0.5, which is t = 41.3 for a ratio of s = −6. Figure 8.7 shows the initial and

final temperature profiles for this alternate 2D MES test problem. For this problem,

the solution in phase 1 has a nonzero slope, so the phase-centered multi-temperature

results are measured to quantify the error (phase 2 results were used in the previous

instances of this problem).

While this version of the 2D MES mixed-cell test problem has simple computa-

tional boundary values, the initial condition is more complicated. When specifying

the initial condition for the mixed cells, the question arises as to whether it is more

appropriate to use the value of the solution at the cell center of the mixed cell or to

use a value that is averaged over the entire cell, thereby accounting for each phase.

A similar issue occurs during the analysis and error computation: should the ana-

lytic solution use the solution at the cell-center location or a temperature value that

has been averaged over the mixed cell? Two versions of the problem are run to

compare these cases: (i) the cell-center version initializes the problem and computes

the analytical solution using the cell-centered values (as has been done throughout

the thesis), and (ii) the cell-averaged version uses a temperature value for the initial

temperature profile and final analytical solution that has been averaged over each

mixed cell. The averaging process is done numerically by partitioning each mixed
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Figure 8.7:
2D MES analytical solution in the computational domain for the
quadratic initial condition with s = −6. Shown are (a) the initial condi-
tions (t=0) and (b) the final value (ξ(t) = 0.5).

cell region into a 5×5 mesh, computing the analytical solution at the center of each

of the mesh elements, and then using the average temperature from these 25 values.

Centroid-centered average solutions for the multi-temperature models used this same

concept, but only the values within each phase contribute to the average.

grid size S1 S2 S3 M1c M2c M3c M1 M2 M3

20→40 0.52 1.01 1.01 0.01 0.59 0.59 0.09 0.62 0.63

40→60 0.93 0.93 0.93 0.06 0.77 0.76 0.06 0.70 0.69

60→80 1.09 1.11 1.11 -0.02 1.22 1.22 -0.02 1.21 1.22

mean 0.85 1.02 1.02 0.05 0.86 0.86 0.05 0.85 0.84

Table 8.5:
Convergence rates for the 2D MES problem with a quadratic initial con-

dition using a cell-centered solution. Phase 1 is shown for the multi-

temperature models. Table C.8 is an expanded version of this table. The

diffusivity ratio is s = −6.
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grid size S1 S2 S3 M1c M2c M3c M1 M2 M3

20→40 0.94 0.88 0.88 0.66 1.01 1.02 0.68 1.03 1.04

40→60 1.00 0.96 0.96 0.48 1.70 1.81 0.48 1.67 1.79

60→80 1.16 1.21 1.21 0.40 -1.45 -1.73 0.40 -1.39 -1.68

mean 1.03 1.02 1.02 0.51 0.42 0.37 0.52 0.44 0.38

Table 8.6:
Convergence rates for the 2D MES problem with a quadratic initial con-

dition using a cell-averaged solution. Phase 1 is shown for the multi-

temperature models. Table C.9 is an expanded version of this table. The

diffusivity ratio is s = −6.

The convergence rates using a cell-centered initial temperature profile and analyt-

ical solution are presented in Table 8.5 with an expanded version shown in Table C.8.

The convergence rates for the cell-averaged versions are presented in Tables 8.6 and

C.9. These two options make little change in q∞ for the S2 and S3 models. The M2

and M3 models perform better using the cell-centered version than the cell-averaged

version of this test, while the S1 and M1 models perform better using the cell-averaged

version. However, it is clear that, regardless of which choice is made, the models are,

at best, first-order accurate. The single-temperature models outperform the multi-

temperature models, and the three single temperature models yield about the same

convergence rate.

Considering the cell-centered error only, found in Table 8.5 and Table C.8, we see

that the S2 and S3 models have equivalent q∞ (1.02) while the S1 model is lower

(0.85). However, the S1 model has the lowest absolute error of these models in all

three norms. The S3 error is about twice as large as the S1 error, while the S2 error

is five times as high in the∞-norm and twenty to thirty times as high for the 1-norm

and 2-norm. The fact the S2 model has larger error than the S1 and S3 models can

be inferred from Table C.8, where it is clear that the S2 model has lower convergence

rates than the S1 and S3 models for the 1-norm and 2-norm.

The M2 and M3 models, as seen in Table 8.5, have equivalent convergence rates,

as do the S2 and S3 models. However, unlike the S2 and S3 models, the M2 and

M3 models have almost identical errors along with their convergence rates. The ratio

error between the M2 and M3 models for phase 1 and the S1 model is between five

and eight. The error ratio between the M1 and S1 models is between ten and forty.

Thus, the S1 model has the lowest error with competitive convergence rates to the

S2, S3, M2, and M3 models. While the S2 and S3 models give equivalent convergence

rates, the S3 model is much more accurate. Therefore, for this version of the test
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problem, the S1 model has the highest accuracy, followed by the S3 and M2/3 models,

and all have similar convergence rates, between 0.84 and 1.02.
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Figure 8.8:
Absolute value of difference between analytic and calculated solution for
the 2D MES with a quadratic initial profile. The S3 model is shown for
a ratio of s = −6 at three times between the initial conditions and the
final time (when ξ(t) = 0.5): (a) 10%, (b) 50%, and (c) 100%.

Unlike the case with a constant initial condition, where the convergence rates

start at second-order accuracy and drop to first-order (see Figure 8.5), this version

of the test yields convergence rates that are effectively constant. While the mixed

cell error does not grow in time, the mixed cell error dominates the error at every

time. This is because the problem does not start with constant values in the vicinity

of the interface that forms a kink at the interface with time. Instead, this version

does the opposite: starts with a kink near the interface that becomes smooth with

time. The mixed cell error then is the highest early on (after the initial conditions)

and decreases gradually, as shown in Figure 8.8. Thus, this alternate version of this

2D MES test problem removes the boundary effects but adds initialization effects.

What is clear from Figure 8.8 is that the error on either side of the interface is
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low, indicating that the interfacial error does not spread into phase 1. Thus, the

interfacial flux is adequate. The error values (not shown) for the cell-centered version

of this problem are lowest for the S1 model and highest for the M1 model. Thus, in

terms of E∞, the models perform (from best to worst) as follows: S1, S3, M3, M2,

S2, M1. The ratio between the error for a model and the error for the S1 model are

between two and eight for each model except the M1 model, where the ratios are

between 300 and 2000. Unlike in the 1D MES test, the multi-temperature models do

not have the lowest error for the coarsest grids. It is likely that the error from using

a linear approximation of a circular interface has overshadowed the physical accuracy

of the M3 model.

8.3.3 Discussion

We run the 2D MES problem using two sets of initial conditions. The first case uses

a constant initial condition in the entire domain and requires the analytical solution

to be calculated at every time step in order to set the computational boundary values.

We refer to this test as the constant case. Two computational domains were tested,

x, y ∈ [0, L] and x, y ∈ [−L,L], which we will refer to as the quarter-circle and full-

circle domain, respectively. The terms quarter- and full-circle refer to the amount of

phase 1 (inner phase) that is captured in the computational domain. The quarter-

circle problem results in a q∞ convergence rate below first order for every model,

Table 8.3. The S1 and M3 models preform best, having convergence rates of about

0.9 for the s = 2 and s = 6 ratios. The full-circle problem has better results than the

quarter-circle problem, with the convergence rates closer to first order, Table 8.4. The

S1, S2, and S3 models each has a convergence rate that average to about 1.1, while

the M1, M2, and M3 models each has an average rate of about 0.9. Thus, while using

the full-circle removes mixed cells from the boundary, it does not yield second-order

convergence rates.

The second version of the problem uses an initial condition that is constant in

phase 2, but quadratic in phase 1. We refer to this version as the quadratic case.

By setting the phase 2 diffusivity to be larger and the initial phase 2 temperature

equal to the boundary value, the temperature in phase 2 away from the interface is

constant with time. This makes the computational boundary values constant, which

alleviates the necessity to compute the analytical solution at every time step. The

quadratic case is only run using the full circle domain. We find q∞ convergence rates

of about 0.8 for the S1, M2, and M3 models, while the S2 and S3 models perform best,

with convergence rates of 1.0, Table 8.5. Thus, while the quadratic case alleviates
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the computational demand for computing the boundary values, the models do not

achieve second-order convergence rates for this problem. This problem introduces

an ambiguity when defining the initial conditions for mixed cells, where each phase

has a unique temperature; this ambiguity was avoided in the previous version of the

problem, where the initial conditions were constant.

In the constant case, the mixed-cell error grows with time as the solution evolves

and the temperature profile begins to kink near the interface. Given enough time, the

problem would reach steady state and give a constant temperature profile once again.

The mixed cell error would accordingly diminish and vanish as the system reaches

steady state. For the quadratic case, the temperature profile has a kink at the initial

condition, and the profile smoothes out over time. We find that the mixed-cell error

begins high for this case and declines with time. We expect that the mixed-cell error

would vanish as the system reaches steady state, where the temperature profile is

constant.

We find that our mixed-cell models are only first-order for this test problem, where

we expect convergence rates closer to second-order at least for the S3 model. The

most likely reason for this discrepancy is related to the fact that both the single- and

multi-temperature codes make an assumption of a linear interface when calculating

the parameters necessary for each mixed cell model (e.g., such as surface areas and

interface normals). This first-order assumption of a higher-order interface may be

the underlying reason why we only see first-order results. If this were indeed the

problem, the solution would become more accurate on grids with higher resolution,

as the curvature of the interface would be better approximated as linear. Table 8.5

supports this notion as the convergence rates tend to increase with higher resolution

for the S1, M2, and M3 models. The expanded version of this table, Table C.8, shows

that the S2 and S3 models follow this trend for the q1 and q2 convergence rates.

However, the S2 and S3 models have a non-monotonic trend in the q∞ rate, as does

the S1 model for the q1 and q2 rate.

The multi-temperature models introduce a first-order discretization error by dif-

ferentiating within the cell with varying grid sizes, as discussed regarding the 2D

MMS test problem in Section 6.2.1. This causes a discontinuity in the mesh spacing

for adjacent cells, which can lead to a first-order error [93]. Second-order convergence

rates for a non-uniform grid requires smoothly varying grids with a change in cell

width on the order of ∆xi+1 − ∆xi = O(∆x2
i ) [93], whereas the multi-temperature

models have a change in cell width on the order of ∆xi+1 − ∆xi = O(∆xi). The

advantage of the multi-temperature models is that the physics of heat conduction is
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modeled more accurately in a mixed cell, particularly when the materials have highly

discontinuous diffusivities and different temperatures. The lower convergence rate

is offset by having low error at coarser grids (i.e., a single-temperature model will

converge at a faster rate but start at a higher error). The point in which a single-

temperature model becomes more accurate than a multi-temperature model depends

on the material properties (diffusivity) and temperature differences. However, in this

test, we do not find that the multi-temperature model begins with a lower error.

While this 2D MES test is an excellent benchmark problem for future mixed-cell

models, the circular interface is not reconstructed well enough with the current im-

plementation of the code. This also explains why the 2D MMS results in Section 6.2.1

were better than the 2D results in this section, as the 2D MMS problem utilizes a

linear interface. Therefore, while the results for the models for this 2D MES test

problem were not second-order, it is more likely that the models did not receive ad-

equate interfacial information rather than the models being only first-order in 2D.

Future work could retest these models (particularly the S1, S3, and M3 models) for

this MES problem using a higher-order interface reconstruction scheme.

The 2D MES test problem described in this chapter makes an excellent bench-

mark test for future mixed-cell models. The first instance of this problem requires the

analytical Fourier-Bessel series solution to be computed for each time step. This ver-

sion is computationally demanding, and the boundary values drive the solution. We

were able to recast the problem to yield constant boundary values. By using a high

diffusivity for the outer phase and giving an initial temperature equal to the analyti-

cal boundary temperature, the computational boundary conditions remain constant.

This makes this benchmark problem much more computationally feasible and less

prone to error based on the eigenvalue computations. However, a nonconstant initial

conditions introduces an issue for determining what temperature value is appropriate

for a mixed cell; this same issue is avoided using a constant initial condition.

Another complication could be added to this problem by using multiple interfaces,

as shown by Mikhailov, Özişik, and Vulchanov [147], with the constraint that the

outermost phase must have a large diffusivity and the computational boundary is

far enough from a interface to remain constant. Thus, the outer phase with high

diffusivity would simply act as a boundary phase (similar to an immersed interface

method), allowing the inner phases to take any form while keeping the boundary

conditions constant.
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8.4 Summary

We have shown a detailed derivation of a 1D radial, time dependent, two phase,

analytic solution to a composite media heat conduction problem via SoV. The so-

lution is an eigenvalue problem expressed as a Fourier-Bessel series. The cylindrical

coordinates of the solution allow the radial solution to be projected onto a 2D Carte-

sian grid. Because a Cartesian grid cannot resolve a circular interface, this projection

generates mixed cells at any resolution. Thus, we convert our 1D radial solution to a

2D problem as a means to test 2D behavior of the mixed-cells models with an analytic

solution.

All six mixed-cell models fail to achieve second-order accuracy in the∞-norm, each

having the error dominated by the mixed-cells. We tried three different versions of

this problem: (i) constant initial conditions with a quarter-circle domain, (ii) constant

initial conditions with a full-circle domain, and (iii) quadratic initial conditions with

a full-circle domain. We find that all three test problems gives first-order or lower

convergence rates. This is likely due to the linear assumption made by both the single-

temperature and multi-temperature codes during interface reconstruction. However,

this linear assumption is not an inherent feature of the models, but only the codes

that implemented these models. Therefore, if these models were implemented in

a code with a higher-order interface reconstruction, they may achieve second-order

convergence of E∞, especially for the S3 and M3 models.
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CHAPTER IX

Conclusion

The endeavor of this dissertation is to develop computational schemes for heat

transfer with increased accuracy for mixed cells. We have presented five new mixed-

cell models for heat transfer (diffusion) on an Eulerian mesh. These models can be

used as part of a larger computational scheme for applications such as fluid dynamics

or radiation transport.

Traditionally, mixed-cell models have been assessed by comparing their results

to those obtained from one of two types of models: (i) other mixed cells models

(e.g., taking the harmonic mean of the diffusion coefficients) or (ii) models without

mixed cell (e.g., aligning the interface to the cell boundaries or using particle-based

methods). We have selected and explored two analytical solutions that function as

mixed-cell benchmark tests. These tests improve our ability to quantify the accuracy

of mixed-cell models, which provides a consistent basis to which we can compare

future mixed-cell models.

Ancillary to the models and analytic solutions, we investigated the Support-

Operators Methods (SOM) and provided a complete 2D derivation that will enable

future work to use SOM for tensor and/or skewed-mesh diffusion problems. SOM are

mimetic finite difference methods (MFD) that discretize operators, such as the gradi-

ent or divergence, and then build the discrete analog of the differential equation using

these operators while maintaining an integral identity. This integral identity relates

the divergence and flux operators (diffusivity multiplied with the gradient), which

is expressed in an inner product space such that the divergence and flux operators

are adjoint. The diffusion equation is written in terms of these adjoint operators and

then discretized. In contrast, standard finite difference methods (FDM) discretize the

differential equation directly. These extra steps — defining the diffusion in terms of

two operators discretized in an adjoint inner-product space — improve the fidelity of

MFD for skewed grids and discontinuous diffusivity problems as compared to standard
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FDM, as well as some instances of finite element methods (FEM) and finite volume

methods (FVM). However, SOM yield equivalent results to simpler FDM for smooth

or orthogonal grids and continuous or constant coefficients [185, 198]. Thus, SOM

is best applied to more complicated problems, such as the strongly discontinuous

coefficient problems explored in this thesis.

The main contributions of this work are summarized as follows:

• We selected and explored 1D and 2D MES tests to serve as mixed-cell model
benchmarks.

• We demonstrated the application of the MMS to create 2D mixed-cell test cases.

• We presented cases where the S3 model achieves second-order convergence rates
in three p-norms, including the ∞-norm.

• We described 1D cases where the M3 model achieves second-order convergence
rates in three p-norms, including the ∞-norm.

• We demonstrated that the 2D M3 models yields E∞ lower than any other model
on the coarsest grids.

• We demonstrated that the S2 model is not advantageous to the S1 model.

• We showed that the M1 model is numerically inaccurate.

We conclude by reviewing the results of our new models and then discussing future

work.

9.1 Performance of Mixed-Cell Models

rank 1DMMS 1DMES 2DMMS 2DMES*

1 M2/3 M2/3 S3 S1

2 M2/3 M2/3 S2 S2

3 S3 S3 S1 S3

4 S1 S1 M3 M1

5 M1 S2 M2 M2

6 S2 M1 M1 M3

Table 9.1:
Performance ranking summary of the six mixed-cell models for all four
main tests. The 2DMES test has an asterisk to indicate the test is suspect
and gives first-order accuracy for every model with only slight variations.
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9.1.1 Performance Rankings

The similarities and differences between the six mixed-cell models (five new and

one reference model) are summarized in Table 6.1. Four mixed-cell test problems

were performed: (i) a 1D steady-state method of manufactured solutions (MMS), (ii)

a 1D dynamic method of exact solutions (MES), (iii) a 2D steady-state MMS, and

(iv) a 2D dynamic MES.

For each test, we rank the relative performance of each mixed-cell model from best

to worst using the average q∞ as a metric. For multi-temperature models, we con-

sider the phase-centered multi-temperature results (as opposed to the phase-averaged

results). We refer to the M2 and M3 models as M2/3 in 1D, where they are identical.

The rankings are summarized in Table 9.1.

1D MMS test (Section 6.1). For the 1D MMS test, the model rankings are M2/3,

S3, S1, M1, and S2. Only the M2/3 and S3 models yield results that are better than

first-order accurate for this test, with average convergence rates of 1.96 and 1.67,

respectively. However, when q∞ of the S3 model is considered for cases where the

majority phase has the larger diffusivity, the average convergence rate is 2.01.

1D MES test (Chapter VII). For the 1D MES test, the model rankings are M2/3,

S3, S1, S2, and M1. Only the M2/3 and S3 models have convergence rates greater

than 1.3, with average rates of 1.81 and 1.59, respectively. However, when the S3

model is averaged using only the volume fractions where the majority phase has the

larger diffusivity, the average convergence rate is 1.90.

2D MMS test (Section 6.2). For the 2D MMS test, the model rankings are S3,

S2, S1, M3, M2, M1. Only the S2 and S3 models have convergence rates above

1.3, with average rates of 1.43 and 1.50, respectively. However, when the S3 model

is tested using the modified implementation discussed in Section 6.2.2, the average

convergence rate becomes 1.75. Furthermore, when the modified S3 model is averaged

using only the two interfaces that do not cross opposite sides of a mixed cell, the

average convergence rate is 1.88. Although the M2 and M3 models are only first-

order accurate for this test, they both have the smallest E∞ for the coarsest grid in

each test. Additionally, when the S1 (reference) model is first-order accurate, the M2

and M3 models have smaller error than the S1 model at every resolution.

2D MES test (Chapter VIII). The implementation of this test was challenging,
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and therefore the results may be significantly affected by errors introduced in the

implementation. Three configurations were attempted (quarter-circle domain with

constant initial conditions, full-circle domain with constant initial conditions, and

full-circle domain with quadratic initial conditions), and the full-circle domain with

constant initial conditions is used for these rankings because it is the least likely

version to be tainted by implementation error because there are no mixed cells on

the boundary and there is no ambiguity in specifying the initial temperature value

for a mixed cell. The results for each model were only first-order accurate, and the

following rankings occur from the minor differences in these first-order convergence

rates: S1, S2, S3, M3, M2, M1.

9.1.2 Discussion of Performance

1D. For the 1D test problems, we find that the M2/3 and S3 models perform best,

each having error lower than all the other models while having the highest convergence

rates. The average convergence rates, factoring both the MES and MMS 1D problems

are 1.89 and 1.63 for the M2/3 and S3 models, respectively. While the M2/3 model

performs consistently well for every volume fraction and diffusivity ratio tested, the

S3 model varies in its performance. The S3 model (as well as the group of single-

temperature models in general) does not perform well when the diffusivity ratio is as

large as 1010. When the results using this ratio are ignored, the S3 model is second-

order accurate only when the majority phase has the larger diffusivity, while it is only

first-order accurate otherwise. The average convergence rate for the S3 model in 1D

problems is 1.95 when only factoring in results where the S3 model performs well (i.e.,

diffusivity ratio is less than 1010 and the majority phase has the larger diffusivity).

2D. Two 2D tests were used, a MMS and MES. While the 2D MES test problem was

run with a few different implementations, we find that none of the models obtained

greater than first-order convergence rates. This first-order result is most likely due

to the fact that the codes employing these models assume a linear interface, while

the interface for this problem is circular. The 2D MMS test results offer the best

available measure of the accuracy for mixed-cell models in 2D because this test has

a linear interface. Therefore, this analysis will primarily focus on the 2D MMS test

while ignoring the 2D MES test.

Only the modified S3 model has a mean convergence rate significantly greater than

first-order in 2D, with an average q∞ of 1.75. This model is second-order accurate for
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two of the three interfaces tested (mean q∞ = 2.04), which is an excellent result for the

treatment of mixed cells. In the case where the S3 model is only first-order accurate

(the L3 case in Section 6.2.1), the interface crosses either opposite or adjacent faces

of each mixed cell. The discrepancy between the temperature predicted by the S3

model and the analytic solution is only large in some (but not all) mixed cells where

the interface crosses opposite sides. In 1D, the interface can only cross opposite sides

of a mixed cell. Therefore, the fact that the S3 model is first-order for the L3 interface

appears be related to the first-order results seen in both 1D tests when the majority

phase is the smaller diffusivity. Consequently, if this issue can be addressed within

the framework of the S3 model, this model would be second-order accurate in any

volume fraction in 1D and with any linear interface in 2D (for diffusivity ratios less

than 1010). Otherwise, the best option would be to package the S3 model with a

new mixed-cell model that obtains second-order convergence rate when the larger

diffusivity is the minority phase. The code that implements these models would

choose which mixed-cell model to use based on the volume fractions and diffusivities

of the mixed cell.

The multi-temperature results are only first-order accurate for the 2D test prob-

lems. Although these models take 2D effects into account (such as the centroid

position depending on both x and y), first-order convergence rate is expected due

to the subcell discretization using the phase centroids. By allowing each phase in

a mixed cell to have a unique temperature, these models are more physically ac-

curate. This notion is confirmed by the finding of lower error compared with the

single-temperature models for coarsest grids in the 2D MMS test, as seen in Fig-

ure 6.4. The multi-temperature models also have the lowest error in the coarsest

grids in 1D for both the MMS and MES tests. Further study is needed to investigate

the multi-temperature models in 2D problems.

9.1.3 Conclusion for Rankings

We conclude from these results that the S2 and M1 models are the least accurate

models tested. The approximations in the M1 model for the calculation of distances

between each phase is very inaccurate, and the more refined approximations in the

M2 and M3 methods yield superior convergence rates. Compared to the S1 model, the

S2 model yields approximately the same first-order accuracy in 1D and moderately

higher convergence rates (1.5 versus 1.3) in the 2D MMS problem (with approximately

the same error magnitude). Thus, the extra cost to compute a full tensor diffusivity

does not lead to sufficiently superior accuracy to be justified. The sub-second-order

224



results of the S2 model suggest that the model does not accurately approximate the

physics of an interface with an effective tensor diffusivity. Similar work by Berger

and LeVeque [21], which uses a rotated reference frame to compute flux normal and

tangent to the interface, is only first-order accurate near the interface. This suggests

that techniques of this sort are not second-order accurate.

The S3 and M2/3 models are the most accurate of the new models developed

for this thesis. The M2/3 model is second-order accurate in every 1D test. The

S3 model is second-order accurate in the majority of the 1D tests as well as the

2D MMS test. The M3 model is more accurate than the M2 model in 2D, but the

difference is small. The 2D results for the M3 model are only first-order accurate,

but they achieve the lowest relative error compared with the other models on the

coarsest grids considered. Furthermore, it is plausible that additional development of

this model, such as including higher-order terms when computing mixed-cell fluxes,

would yield second-order-accurate results in 2D.

The 1D and 2D MES tests find that the single temperature models (implemented

via SOM) are less accurate when the diffusivity ratio is 10±10. The multi-temperature

methods have no decline in convergence rate for this ratio in the 1D case, and while

the convergence rates suffer in the 2D case, they perform better than the single-

temperature models. Therefore, the multi-temperature models appear to be more

robust than the single-temperature models for diffusivities with a large discontinuity.

However, none of the models are accurate for diffusivity ratios as large as 10±10, and

approximating one phase to be at constant temperature would treat this case more

simply and more accurately.

9.2 Selection & Applications of Methods

We use two metrics to determine if a mixed-cell model has resulted in a more

accurate solution: either E∞ is lower for coarse grids or E∞ converges at second-

order accuracy. The S3 model meets this goal in certain cases, making a positive

contribution to the field of mixed cells. The conditions where the S3 model is second-

order include instances when the jump strengths are below a ratio of 1010 and the

majority volume fraction has the larger diffusivity. In 1D, the cell-centered M2/3

model performs comparable to the S1 model, signifying that there is not an advantage

to using the M2/3 model compared to standard finite differences with a harmonic

mean. Yet, the phase-centered M2/3 model performs similarly to the S3 model,

indicating that that M2/3 is a successful new mixed-cell model. However, the phase-
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centered M3 model does not match the original intention of this dissertation as it is

not cell-centered. The excellent convergence rates of the 1D phase-centered results of

the M2/3 model signify another useful contribution to the mixed-cell field. However,

because it is not cell-centered, it can only be employed in a computational framework

(e.g., hydrodynamics or radiation transport codes) with the capability to treat phase

temperatures independently within a mixed cell.

The best single-temperature model tested is the S3 model, even though it is limited

in the numerical schemes in which it may be implemented. The S1 and S2 models

can be implemented in a variety of numerical methods, but the S3 model must be

effectuated using SOM or a very similar method. The S3 model requires a scheme

which utilizes a diffusivity-dependent shape matrix for each cell, which allows each

cell corner to be treated separately. This is a specific requirement that may not be

met in schemes other than SOM. Therefore, the S3 model, although an excellent

mixed-cell model, cannot be implemented in most existing numerical methods.

The ideal application of the S3 model would be in situations where SOM is suit-

able, such as in a coupled hydrodynamic-diffusion code where the interface moves too

quickly to create a body-fitted grid at every time step. The S3 model could treat any

mixed cells, thereby increasing the accuracy of the code, provided sufficient interfacial

knowledge is available (e.g., volume fractions or a level-set function). Additionally,

the S3 model could be used in a scheme which also employs an adaptive mesh refine-

ment (AMR) method because SOM (and hence the S3 model) are compatible with

AMR methods. In such a scheme, the criteria for the AMR algorithm to resolve

interfaces could be relaxed, and the S3 model would maintain second-order accuracy

for the mixed-cells at a lower interfacial refinement.

The phase-centered M2/3 model is the next best model; however, it is also limited

in applicability. First, it can only be used in a code that tracks both centroids and

volume fractions. Second, it requires a temperature for each phase in a mixed cell,

a requirement which is not implemented in most codes. Therefore, if one desires

to utilize this model in a multiphase computational framework, the code must be

written such that each phase has a unique temperature, i.e., LTE is not assumed

for adjacent phases. This assumption is more physically accurate but requires an

additional temperature variable to be evolved.

An ideal method to use the M2/3 model would be an Arbitrary Lagrangian Eule-

rian (ALE) method. An ALE method updates the fluid location using a Lagrangian

method and then projects the skewed mesh onto an Eulerian mesh to update the

fluid parameters. The projection onto the Eulerian mesh typically leads to mixed
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cells. In such a scheme, the M2/3 model could compute the temperature of each

phase separately. The Lagrangian step could be altered such that the individual

phase temperatures found in the Eulerian step could be used, thereby increasing the

model’s accuracy of the physics as well as the remapping process. The centroids for

each phase in the Eulerian mesh are needed, however.

The harmonic mean (S1 model) is the best model tested which can be implemented

in a single-temperature, cell-centered scheme without using SOM. The harmonic mean

emphasizes the smaller diffusivity; thus it is most accurate if the majority phase of a

mixed cell is the smaller diffusivity. The S1 model is generally second-order accurate

in the 1-norm, around 1.5 in the 2-norm, and only between 1.0 and 1.4 in the ∞-

norm. Thus, the standard technique of using the harmonic mean provides ease of

implementation while remaining versatile and at least first-order accurate.

9.3 Insights Gained from this Work

In general, the primary insight we gained from this work is that the mixed cells

should be split into pure cells, either by cutting or effectively partitioning them. These

techniques are superior because each phase is solved independently, which is more

physically accurate. This is evident in the analytic solution presented in the 1D and

2D MES test problems, which solve the governing equation for each phase separately,

patching the solution from each phase together by continuity of temperature and flux.

For a cell-centered method, we find that the S3 model is the best option amongst

the models tested. This model effectively splits the mixed cell by partitioning the

calculation of the flux into four regions of the cell. Similarly, the M2/3 model, which

obtains lower error for coarse grids but is not cell centered, also calculates the flux

and temperature of each phase separately. Alternatively, the cells can be cut into two

or more pure cells, creating additional grid elements of irregular size. Another option

is to align the cell faces with the interface, creating a body-fitted grid without mixed

cells. If a cell-centered method is required that does not treat each phase separately

and cannot cut the mesh or fit the grid to the interface, then homogenization is the

best remaining option, and one must accept only first-order convergence rates on the

interface.
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9.4 Future Work

There are a variety of avenues in which the models presented in this thesis could

be further explored.

3D. All of the new models discussed can be extended to 3D. The M2 and M3 models

are useful mixed-cell models for potential 3D applications. The primary difficulty with

a 3D version of these models is tracking of the centroid for each phase; however, there

already exists at least one method of doing so (MoF). Thus, a multi-temperature,

multiphase, Eulerian mesh, 3D diffusion solver with moving interfaces could employ

the M2 or M3 model to improve mixed-cell accuracy.

SOM has already been derived for a variety of 3D grid types [34, 35, 36, 37, 135,

136, 151, 185, 186]. Any existing 3D SOM code could immediately implement the

S3 model because each 3D element, most generally a polyhedron, can have a unique

value for the diffusivity and volume defined in each corner. Most of the 3D SOM

examples have body-fitted grids, but this restriction can be relaxed if using the S3

model. The primary difficulty is determining the interface location and the proper

volume fractions, but this is handled by an interface reconstruction scheme, separate

from the S3 model. The number of possible interfacial configurations for the S3 model

is greater in 3D than 2D, where there are only four (interfaces can cross either two

corners, one corner, adjacent faces, or opposite faces). Therefore, implementing the

S3 model in 3D would require some additional development.

Additional testing. The mixed-cell models, particularly the S3 and M3, could be

tested for more cases of the 1D and 2D analytic solutions. More 2D MMS solutions

could be tested. There are many potential 2D MMS tests that could be used; we only

explored one at a single diffusivity ratio. A test with an interface orthogonal to the

grid, as in the test presented in Section 5.3.4 but with temperature variation in both

the x- and y-directions, would be a simple but interesting test, especially to explore

the 2D behavior of the M3 model. A MMS test using more than one interface and

more than two phases in the domain, but not necessarily in a mixed cell, would also

be of interest.

Computational efficiency. The overall benefit of a mixed-cell model is best gauged

by weighing the increase in accuracy versus the increase in computational effort.

This work does not quantitatively consider computational efficiency, but only com-

pares models in terms of the convergence rate of the relative error with respect to
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grid resolution. A comparison of computational efficiency would involve first tuning

the code such that the model implementation yields near-peak performance, which

would include investigating such topics as preconditioners, parallelization, compiler

optimization, and the layout of the coefficient matrix (which can be organized to min-

imize computational effort). After the efficiency is maximized, mixed-cell models can

be evaluated for both accuracy and computational cost. One may find, for example,

that the benefit of the second-order S3 method only overcomes the extra cost of SOM

when the mesh is sufficiently skewed or when the diffusivity discontinuity is suitably

large. Alternatively, one may find that the low cost of the M3 model combined with

the low error at coarse grids compensates for a lower convergence rate order.

Numerical methods. Codes that use the mixed-cell models can be improved in a

number of ways. A more accurate time stepping scheme, such as Crank-Nicholson [54],

could be implemented with SOM to increase the time-step size. Maintaining accuracy

with larger time steps becomes important for computational speed, to compensate

for increases in problem size, grid complexity, and number of phases.

Research into mixed-cell models on more complicated grids is a logical next step.

The S3 model can be incorporated with an AMR scheme since SOM is compatible

AMR schemes for general quadrilaterals [132]. SOM also works naturally with meshes

from Lagrangian hydrodynamics methods. The multi-temperature model could be

explored through implementation with more advanced methods, such as potential

integration with SOM or FVM to achieve grid flexibility. As a consequence, both

single-temperature and multi-temperature mixed-cell models could be explored using

general grids, which is of interest to the hydrodynamics community.

A higher-order interface reconstruction method could be used. Our models have

only been tested with a linear interface approximation. The performance of these

models may increase with a more accurate interface reconstruction method, partic-

ularly with the 2D problem in Chapter VIII. The Moment of Fluid (MoF) method

is an excellent option for accurate interface reconstruction. It is capable of 2D and

3D implementation, it is compatible with AMR grids, and it is successful with re-

constructing multiple interfaces [2, 3, 6, 69, 68, 70]. The multi-temperature methods

would benefit most from MoF. An alternative interface tracking scheme of interest is

the level set methods (LSM), which can provide curvature information in addition to

more accurate knowledge of interfacial position.

Physical problems. This thesis focused on a linear heat conduction problem be-
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tween multiple phases with a fixed interface. This simplification was imposed in order

to focus on the accuracy of mixed cells by eliminating all other effects. However, test-

ing these models on problems with other physical effects, such as fluid motion, would

be of greater interest to the community. Future work could involve coupling these

models with a hydrodynamics code. The models could be applied to more accurately

simulate nonlinear diffusion as an approximation to radiation transport. Inclusion of

position- and temperature-dependent heat capacities, densities, and opacities would

represent a more physically realistic case.

Expanding the mixed-cell models to handle three or more phases would be of

great importance. A two-phase case is the logical starting point, but generalizing to

n phases is more applicable to a wider range of problems and cases. The CRASH

code, for example, includes five phases.

Additional models. A combination of the S1 and S3 models is a potentially better

model. The S1 model, which uses the harmonic mean to give an effective diffusivity,

is more accurate when the majority phase of a mixed cell has the smaller diffusivity.

The S3 model, as shown in the 1D MMS and 1D MES tests, has better performance

when the majority phase of the mixed cell has the larger diffusivity. Accordingly, an

intermediate model would define the mixed cell choosing either the S1 or S3 model,

depending on the diffusivity of the majority phase. The downside to this combination

is that the S1 model is not second-order accurate.

Another potential model would combine the rotated tensor diffusivity (S2) model

with the S3 model. In such a case, the tensor diffusivity could be assigned to some of

the corners of a mixed cell. The failure of the S2 model as implemented may be due

to the fact that every face on a mixed cell uses the same effective diffusivity tensor,

despite the fact that the interface only crosses two or less faces. Thus, combining

the S2 model with the S3 model would allow the diffusion of a pure face (a face not

crossed by an interface) to be defined by that phase and not some anisotropic mixture.

An additional model could modify SOM to place a face-centered unknown on

the interface of a mixed cell, similar to 1D work by Winters and Shashkov [216].

SOM already places face-centered unknowns on the exterior faces of every cell to

calculate flux, and thus including one additional unknown for each mixed cell would

not significantly increase the overall cost. Additional complexity lies in determining

how to recalculate the cell-centered temperatures in mixed cells from the face-centered

values.

Finding a model that gives second-order accuracy in E∞ (or gives lower error
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than the standard treatments for coarse grids) for all test cases is the consummate

goal of a mixed-cell model. While we found the M3 and S3 models indeed give this

accuracy in some cases, they are not second-order accurate in all cases. Incorporating

previous work with the S3 and M3 models, such as an improved Taylor expansion near

interfaces, or a predictor-corrector method, may be a useful approach to consider.

Fully determining where and why the S3 and M3 models fail to give second-order

accuracy may guide future research as well. A logical starting point for the multi-

temperature models would be to explore why they give different results depending

on the interface location when the diffusivities equal. A logical starting point for the

S3 model would be to explain why it requires the majority phase to be the larger

diffusivity in order to achieve second-order accuracy in 1D.

Investigations can be performed using other error norms, such as E1 and E2. We

chose the E∞ as an error metric in order to focus on the accuracy of the solution

on or near the interface. However, if one is more interested in the accuracy of the

solution in the bulk (i.e., far from the interface), then another error metric may prove

to be more useful. The accuracy of the interface is only important to a bulk solution

if the interfacial error spreads into the bulk region. If the interfacial error (which is

typically higher than the bulk error) remains local to the interface, the accuracy of

the bulk solution is best measured with error norms that do not isolate the largest

error in the domain (such as E1 and E2). Alternatively, the E∞ can also serve as a

measure of the error in the bulk region if it is calculated using only data from the bulk

regions (i.e., filtering out data from the interfacial region). This may be useful since

it will provide a stringent assessment of the bulk error; by using E∞, any localized

error would not be diluted due to averaging that occurs with other means.
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APPENDIX A

Split-Zone (S3) Model Implementation Details

This appendix derives the subcell volumes and diffusivities used for the split-zone

(S3) model. We first note that the interface is assumed to be sufficiently resolved

for nonlinear cases. This implies that the discretized representation of a curved or

complicated interface must be represented by sufficient number of mesh points that

when viewing a 3×3 stencil, the interface can be approximated as linear. Pember et

al. [170] discuss such resolution requirements in further detail. Note that the subcells

discussed in this section are virtual subcells, meaning that the subcells quantities are

used as intermediate step with the shape matrix; we do not replace a mixed-cell with

four smaller cells. In this section, the term ‘virtual’ is implied whenever ‘subcell’ is

used.

The expressions for the subcell volumes for the S3 model varies for four interface

cases: crosses opposite faces, crosses one corner, crosses adjacent faces, and crosses

two corners. Figures A.1 and A.2 show the interfacial configurations and the re-

sulting split-cell configurations for the particular orientations we derived here. The

other orientations have analogous expressions. All cases are identified by the volume

fractions of the nearest neighbors with respect to the volume fraction of the mixed

cell in question. The surface fractions are approximated from the volume fractions,

where a surface fraction is the fraction of the surface area that belongs to a partic-

ular phase with respect the total surface area of that face of the mixed cell. Let

the surface fractions of the left, right, top, and bottom face be denoted aL, aR, aT ,

and aB, respectively. We take the volume and surface fractions to be of the majority

phase, which in this case is phase 1 (blue). With this definition, the majority phase

is phase 1, which is render as blue in all figures. Let the volume fraction be denoted

as f , which is written in terms of majority phase (phase 1), and the volume fraction
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(a) (b) (c)

Figure A.1:
Three of the four classes of configurations that arise in the S3 (split-
zone) model for mixed cells in the single-temperature method. The S3
model divides a mixed cell into four virtual subcells associated with each
corner of the cell such that the volume of each phase is conserved. Note
that only the phase and volume of each virtual subcell determine the
diffusivity assigned at the associated cell corner in the S3 model; the
orientation is for visualization purposes only. The top row shows the
mixed cell and the bottom row shows the corresponding virtual subcells.
The classes are distinguished by how the interface crosses the cell: the
interface (a) crosses opposite faces, (b) crosses one corner, and (c) crosses
adjacent faces. The majority phase, phase 1, is rendered in blue, while
the minority phase, phase 2, is rendered in red.

of the minority phase is (1− f). A volume fraction without a subscript indicates the

volume fraction of the center cell, while a volume fraction with two subscripts refers

the fraction of a phase in a split-zone corner (i.e., fLT is the amount of phase 1 in the

upper-left subcell relative to the total amount of phase 1 in the mixed cell).

Crosses opposite faces. For this case, Figure A.1(a), we cut each trapezoid in half

by height. The upper-left volume fraction is the volume of top half of the trapezoid
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(a) (b) (c) (d)

Figure A.2:
The fourth class of configurations for the S3 (split-zone) model for mixed
cells in the single-temperature method. This case is when the interface
crosses two corners, as shown in (a). Note that only the phase and
volume of each virtual subcell determine the diffusivity assigned at the
associated cell corner in the S3 model; the orientation is for visualization
purposes only. Figures (b) and (c) show two ways to split this cell while
preserving phase volumes and minimizing the ambiguous regions. Both
options result in a large and small rectangle (3/8 and 1/8 of the cell
volume) of each phase. The LT and RB virtual subcells clearly belong to
one of the two phases, defining the diffusivities at these corners, but the
LB and RT corners have two possible assignments of the phases. Case
(d) resolves the ambiguity of phase assignments in the RT and LB virtual
subcells via a harmonic-averaged diffusivity (shown as purple).

divided by the total trapezoid volume,

fLT =

[
1
2
aL
] [

1
2

(
aT +

aT + aB
2

)]
[aL]

[
aT + aB

2

] (A.1a)

=
1

4

3aT + aB
aT + aB

, (A.1b)

where this volume fraction is with respect to the trapezoid and must be multiplied by

f∆x∆y to give the physical volume. Similarly, the volume fraction for the lower-left

face is found to be

fLB =
1

4

aT + 3aB
aT + aB

. (A.2)

Thereby, the four subcell volumes for the case where the interface crosses the top and
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bottom sides are

VLT =
1

4

3aT + aB
aT + aB

f∆x∆y (A.3a)

VLB =
1

4

aT + 3aB
aT + aB

f∆x∆y (A.3b)

VRT =
1

4

3(1− aT ) + (1− aB)

(1− aT ) + (1− aB)
(1− f)∆x∆y (A.3c)

VRB =
1

4

(1− aT ) + 3(1− aB)

(1− aT ) + (1− aB)
(1− f)∆x∆y, (A.3d)

where there are similar expressions for when the interface crosses the left and right

faces. Note that these four corner volumes sum to ∆x∆y. The diffusivities are

DLT = DLB = D1 and DRT = DRB = D2.

Crosses one corner. For this case, Figure A.1(b), we work first with the triangle

of phase 2 (red), cutting this triangle into a triangle and a trapezoid of equal height.

We introduce two dummy variables, p and q to describe the width of the rectangles

to which we map this triangle and trapezoid. Since terms will cancel, let us describe

the full triangle with a generic height h and base width w. The upper-right volume

fraction is the volume of the smaller triangle divided by the volume of the larger

triangle,

fRT =
1
2

[
1
2
w
] [

1
2
h
]

1
2

[w] [h]
=

1

4
. (A.4)

This corresponds to a square of height 1
2

and width p, where

[1
2
][p] = fRT (1− f) (A.5a)

p = 1
2
(1− f). (A.5b)

Similarly, the lower-right volume fraction is the volume of the trapezoid divided by

the volume of the larger triangle,

fRB =

[
1
2
h
] [

1
2
(w + 1

2
w)
]
]

1
2

[w] [h]
=

3

4
. (A.6)

This corresponds to a square of height 1
2

and width q, where

[1
2
][q] = fRB(1− f) (A.7a)

q = 3
2
(1− f). (A.7b)
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As a consequence, the four subcell volumes for the case where the interface crosses a

face and the upper-right corner are

VRT = 1
2
p∆x∆y =

1

4
(1− f)∆x∆y (A.8a)

VRB = 1
2
q∆x∆y =

3

4
(1− f)∆x∆y (A.8b)

VLT = 1
2
(1− p)∆x∆y =

1

4
(1 + f)∆x∆y (A.8c)

VLB = 1
2
(1− q)∆x∆y =

1

4
(3f − 1)∆x∆y, (A.8d)

where there are similar expression for the case in which the interface crosses a face and

one of the other three corners. Note that these four corner volumes sum to ∆x∆y,

and, as mentioned earlier, the volume fractions are of the majority phase (f ≥ 1
2
).

The diffusivities are DLT = DLB = D1 and DRT = DRB = D2.

Crosses adjacent faces. For this case, Figure A.1(c), we map the small triangle of

the minority phase (volume fraction (1− f)) to a rectangle of height p and width q.

We approximate the values of p and q through the following substitutions,

pq = 1− f (A.9a)

=
(1− aR)(1− aB)(1− f)

(1− aR)(1− aB)
(A.9b)

=

√
(1− aR)2(1− f)

(1− aR)(1− aB)

√
(1− aB)2(1− f)

(1− aR)(1− aB)
(A.9c)

=

√
(1− aR)(1− f)

(1− aB)

√
(1− aB)(1− f)

(1− aR)
. (A.9d)

Therefore, we define

p =

√
(1− aR)(1− f)

(1− aB)
(A.10a)

q =

√
(1− aB)(1− f)

(1− aR)
. (A.10b)

These expressions give the correct limiting behavior: both (1− aR) and p increase in

value as the height of the triangle grows, and both (1 − aB) and q increase in value

as the base of the triangle grows. For that reason, in the case where the interface
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crosses the bottom and right faces of the cell, we express the four subcell volumes in

terms of p and q as,

VRB = pq∆x∆y (A.11a)

VLB = p(1− q)∆x∆y (A.11b)

VLT = (1− p)q∆x∆y (A.11c)

VLB = (1− p)(1− q)∆x∆y, (A.11d)

where there are similar expressions for the other three cases in which the interfaces

cross adjacent faces. Again, these four volumes sum to ∆x∆y. The diffusivities are

DLT = DLB = DRT = D1 and DRB = D2.

Crosses two corners. As explained in Figure A.2, there are a variety of ways to

express the subcell volumes in the case where the interface crosses two corners. Both

case (b) and (c) in Figure A.2 are equally valid and yield a upper-left and lower-right

subcell volume of 3
8
∆x∆y. However, while both (b) and (c) also yield a lower-left and

upper-right subcell volume of 1
8
∆x∆y, these smaller subcells correspond to different

phases; see Figure A.2(b-c). Unlike the upper-left and lower-right subcells, it is not

clear which phase the lower-left and upper-right subcells should have. Therefore, we

use the harmonic mean to combine the two diffusivities for these subcells, as shown

in case (d), giving an effective diffusivity for those subcells. Note that the S3 model

only specifies a volume and diffusivity in each subcell. Thus, the upper-left subcell is

equivalent for cases (b) and (c) because they both define this subcell as phase 1 with

volume of 3
8
∆x∆y. This same argument applies to the lower-right subcell, where both

(b) and (c) define it as phase 2 with volume of 3
8
∆x∆y. Consequently, only the phase

and volume of each subcell is important, and it is irrelevant that the larger rectangles

are shown in case (d) as being tall rather than wide. If (d) showed the larger rectangles

as being wide, the following would still be true: the upper-left subcell is phase 1 with

volume 3
8
∆x∆y, the bottom-right subcell is phase 2 with volume 3

8
∆x∆y, and both

the upper-right and lower-left subcells are the harmonic mean of phases 1 and 2 with

volume 1
8
∆x∆y.

Unlike all other cases in the S3 method, which yield only pure cells, this case

only reduces the mixed-cell volume from the full mixed cell to one quarter of the

mixed cell. Splitting the mixed cell into four equally sized virtual subcells would only

reduces the mixed-cell volume to one half of the mixed cell, so our choice of volumes

further reduces mixed cell effects. (See Equations (A.4) and (A.6) and their associated
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discussions justification of why the triangles are cut into squares containing one- and

three-quarter fractions of the triangle’s volume.) The volumes of each subcell are

given as

VRB =
3

8
∆x∆y (A.12a)

VLB =
1

8
∆x∆y (A.12b)

VLT =
3

8
∆x∆y (A.12c)

VLB =
1

8
∆x∆y, (A.12d)

The diffusivities are DLT = D1, DRB = D2, and DLB = DRT = 2D1D2

D1+D2
.

239



APPENDIX B

SOM Shape Matrix Derivation

This section discretizes the LHS of the following integral identity,∫
V

~J · (D−1 ~F )dV =

∫
V

U(~∇ · ~J)dV −
∮
∂V

(U ~J) · n̂dS. (B.1)

The discretization of the two terms on the RHS, Equations (3.33) and (3.35), occur

in the face-normal coordinate system, where a vector component Js points in the

outward normal direction to side s. Since the vector contributions of these integrals

reduce to surface contributions, it is not necessary to specify elements in terms of the

x-y coordinate system. However, the LHS of Equation (B.1) contains dot products.

A coordinate transform is required to form the discrete analog of this term. This is

because the continuum functions existed in the x-y coordinate system, where x̂·ŷ = 0;

while the discrete variables are written in a face normal coordinate system, where

n̂s · n̂s′ = cos θss′ and θss′ is the angle between sides s and s′. For a rectangular cell,

θss′ = π
2

for all corners, giving zero for the cosine term. Accounting for the nonzero

dot products for a general quadrilateral takes the next few pages.

We first jump to the answer,∫
V

~J · (D−1 ~F )dV ≈( ~JLT · SLT ~FLT )VLT + ( ~JRT · SRT ~FRT )VRT

+( ~JLB · SLB ~FLB)VLB + ( ~JRB · SRB ~FRB)VRB, (B.2)

where Sss′ is a 2×2 ‘shape’ matrix for terms at the vertex at the intersection of side

s and side s′. Similarly, ~Jss′ and ~Fss′ are two-element vectors pointing in the n̂s and

n̂s′ directions. The volume, Vss′ , represents the volumetric weight of the ss′ corner.

For a general quadrilateral, each corner weight is one quarter of the area defined by
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the parallelogram formed by mirroring sides s and s′ [152]. Note that defining the

volumetric weights in this manner may require normalizing the four corner volumes

such that their sum is equal to the volume of the cell. For a rectangle, the four

volumetric weights are all simply 1
4
∆x∆y.

We now introduce a coordinate transform matrix (Gss′) in order to fully explain

Equation (B.2) and the Sss′ matrices. We denote the vectors in the x-y system using

the standard arrow (e.g., ~F ), while using the bar notation (e.g., F̄ ) to indicate the

face-normal coordinate system. The face-normal vector can be expressed in terms of

an x-y vector as follows:

F̄ss′ = Gss′
~Fss′ (B.3a)[

Fs

F ′s

]
=

[
x̂ · n̂s ŷ · n̂s
x̂ · n̂′s ŷ · n̂′s

][
Fx

Fy

]
(B.3b)[

Fs

F ′s

]
=

[
cos θxs cos θys′

cos θxs′ cos θys

][
Fx

Fy

]
(B.3c)[

Fs

F ′s

]
=

[
cos θxs sin θxs

cos θxs′ sin θxs′

][
Fx

Fy

]
, (B.3d)

where we use the fact that cos θys = sin θxs on the last step, which follows because

θys + θxs = π
2
. This is a useful step because it reduces the number of angles from four

to two. Hence, Gss′ for a general vertex is

Gss′ =

[
cos θxs sin θxs

cos θxs′ sin θxs′

]
. (B.4)

The inverse is

G−1
ss′ =

1

sin θxs′ cos θxs − sin θxs cos θxs′

[
sin θxs′ − sin θxs

− cos θxs′ cos θxs

]
. (B.5)

We can now write the dot product between x-y vectors in terms of face-normal

vectors by using the inverse of the transform matrix Gss′ ,

( ~Jss′ , ~Fss′) = (G−1
ss′ J̄ss′ ,G

−1
ss′ F̄ss′). (B.6)

Since Gss′ is real, we can move it to other side of the inner product by taking the

transpose,

(G−1
ss′ J̄ss′ ,G

−1
ss′ F̄ss′) = (J̄ss′ , (G

−1
ss′)

TG−1
ss′ F̄ss′). (B.7)
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The product (G−1
ss′)

TG−1
ss′ is easily evaluated in 2D:

(G−1
ss′)

TG−1
ss′ =

1

(sinφ cos θ − sin θ cosφ)2

[
sinφ − cosφ

− sin θ cos θ

][
sinφ − sin θ

− cosφ cos θ

]

=
1

(sin(φ− θ))2

[
sin2 φ+ cos2 φ − sinφ sin θ − cosφ cos θ

− sinφ sin θ − cosφ cos θ sin2 θ + cos2 θ

]

=
1

(sin(φ− θ))2

[
1 − cos(φ− θ)

− cos(φ− θ) 1

]

=
1

sin2 θss′

[
1 − cos θss′

− cos θss′ 1

]
, (B.8)

where φ and θ correspond to θxs and θxs′ . Note that the square of the sine term

and the fact that cosine is an even function means both θ − φ and φ − θ give the

same result. Equation (B.8) defines the shape matrix when the diffusivity is a scalar.

Also note that for θss′ = π
2
, Equation (B.8) reduces to the identity. Accordingly, for

orthogonal grids, the S matrices in Equation (B.2) are all equal to the identity, and

the integral is approximated as∫
V

~J · (D−1 ~F )dV ≈ ∆x∆y

2D
(JLFL + JRFR + JTFT + JBFB). (B.9)

However, for a tensor diffusivity, the LHS of Equation (B.1) requires the inner

product of ( ~J,D−1 ~F ). Using the same steps, we find that

( ~Jss′ ,D
−1 ~Fss′) = (G−1

ss′ J̄ss′ ,D
−1
ss′G

−1
ss′ F̄ss′) (B.10a)

= (J̄ss′ , (G
−1
ss′)

TD−1
ss′G

−1
ss′ F̄ss′), (B.10b)

where Gss′ is defined exactly as in Equation (B.4). The diffusivity is already written

in the x-y coordinate system, so it does not require any factors of G. We then define

the shape matrix as,

Sss′ = (G−1
ss′)

TD−1
ss′G

−1
ss′ . (B.11)

The evaluation of this product proceeds similarly to that in Equation (B.8), with the

one additional matrix product from the 2×2 diffusivity tensor. The presence of this

tensor prevents the use of trigonometric identities to give a simple, compact answer.
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Therefore, we write the shape matrix in component form as

Sss′ =

[
Ss,sss′ Ss,s

′

ss′

Ss
′,s
ss′ Ss

′,s′

ss′

]
, (B.12)

where each component is

Ss,sss′ =
1

sin2 θss′
[Kxx

ss′ sin2 θxs′ +Kyy
ss′ cos2 θxs′ −Kxy

ss′ sin(2θxs′)] (B.13a)

Ss
′,s′

ss′ =
1

sin2 θss′
[Kxx

ss′ sin2 θxs +Kyy
ss′ cos2 θxs −Kxy

ss′ sin(2θxs)] (B.13b)

Ss,s
′

ss′ = Ss
′,s
ss′ =

1

sin2 θss′
[Kxy

ss′ sin(θxs + θxs′)

− (Kxx
ss′ sin θxs sin θxs′ +Kyy

ss′ cos θxs cos θxs′)] (B.13c)

where K = D−1. We have Ss
′,s
ss′ = Ss,s

′

ss′ because Dxy = Dyx, since D is physically

required to be SPD [16, 111, 159, 163, 164]. From Equation (B.13) it is clear that

(Sss′)
−1 acts as an effective diffusivity tensor that converts the x-y diffusivity and

angular dependence with respect to the x-y grid into the face-normal system. We

note that setting the diffusivity to a scalar recovers Equation (B.8), while using a

tensor diffusivity on an orthogonal grid yields Sss′ = Kss′ = D−1
ss′ .

We now repeat Equation (B.2) where, with Equation (B.12) and Equation (B.13),

we have specified all terms,∫
V

~J · (D−1 ~F )dV ≈( ~JLB · SLB ~FLB)VLB + ( ~JRB · SRB ~FRB)VRB

+( ~JLT · SLT ~FLT )VLT + ( ~JRT · SRT ~FRT )VRT . (B.14)

Via the shape matrices, we specify the diffusivity and the corner volumes as being

unique to each corner, which is an important distinction for the S3 model. The

assumption of a homogeneous phase would imply that the diffusivity is the same in

each corner within a cell, and a typical rectangular discretization would give equal

quarter weights to the four corner volumes. We use the same values in all four corners

for diffusivity and volumetric weight in pure cells. However, we modify these values

for mixed cells in the S3 method.
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APPENDIX C

Supplemental Tables

This appendix contains tables of convergence rates that supplement the main text.

These tables shows the convergence rates of E1, E2 and E∞, whereas the main text

primarily shows only E∞. The tables in this appendix also show the convergence rates

for each grid, while the main text often gives only the convergence rate averaged over

all grids. Each table caption indicates the associated section or table. All convergence

rates equal to or above 1.900 will be marked in bold.
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s = 2 v1 (33%) v2 (50%) v3 (85%)

Model Grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

S1

10→20 1.902 1.357 0.878 1.918 1.372 0.939 1.923 1.505 0.931

20→30 1.951 1.418 0.938 1.961 1.427 0.969 1.960 1.492 0.966

30→40 1.968 1.441 0.958 1.975 1.448 0.979 1.972 1.490 0.977

mean 1.940 1.405 0.924 1.951 1.416 0.962 1.952 1.496 0.958

S2

10→20 1.662 1.348 0.430 1.620 1.331 0.461 1.726 1.566 0.871

20→30 1.863 1.367 0.721 1.840 1.357 0.707 1.849 1.518 0.801

30→40 1.936 1.393 0.873 1.921 1.386 0.868 1.899 1.501 0.900

mean 1.821 1.369 0.675 1.794 1.358 0.679 1.825 1.528 0.857

S3

10→20 1.979 1.465 0.999 2.098 2.034 1.976 1.997 1.982 2.047

20→30 1.992 1.482 1.000 2.058 2.023 1.987 1.997 1.981 2.029

30→40 1.995 1.488 1.000 2.033 2.012 1.990 1.994 1.974 2.020

mean 1.989 1.479 1.000 2.063 2.023 1.984 1.996 1.979 2.032

M1

10→20 0.970 1.067 0.991 0.658 0.644 0.539 0.604 0.636 0.588

20→30 0.958 0.996 0.771 0.771 0.772 0.723 0.779 0.793 0.749

30→40 0.965 0.985 0.834 0.831 0.836 0.796 0.845 0.854 0.814

mean 0.964 1.016 0.865 0.753 0.751 0.686 0.743 0.761 0.717

M2

10→20 2.431 2.443 2.110 2.059 2.153 1.926 1.736 1.763 1.674

20→30 2.433 2.514 2.173 2.062 2.158 1.954 1.856 1.869 1.809

30→40 2.385 2.527 2.209 2.048 2.144 1.966 1.891 1.903 1.860

mean 2.416 2.495 2.164 2.056 2.152 1.949 1.827 1.845 1.781

M3

10→20 2.431 2.443 2.110 2.059 2.153 1.926 1.736 1.763 1.674

20→30 2.433 2.514 2.173 2.062 2.158 1.954 1.856 1.869 1.809

30→40 2.385 2.527 2.209 2.048 2.144 1.966 1.891 1.903 1.860

mean 2.416 2.495 2.164 2.056 2.152 1.949 1.827 1.845 1.781

Table C.1:
Full table of convergence rates of all six mixed-cell models for the 1D

MMS mixed-cell test problem from Section 6.1. The convergence rate is

measured in three p-norms for the indicated grid sizes. The interface is

near the center of the domain and makes the volume fractions (v1, v2,

and v3) indicated for the mixed cells. The diffusivity ratio is 102. Bold

indicates qi ≥ 1.90.
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s = 2 y = x y = 2x y = 1√
5
− x√

2

Model Grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

S1

10→20 1.943 1.825 1.344 1.946 1.988 2.039 1.904 1.938 1.583

20→30 1.976 1.759 0.908 1.964 1.967 1.898 1.943 1.916 1.829

30→40 1.986 1.720 0.998 1.980 1.956 1.147 1.962 1.862 -0.233

mean 1.969 1.768 1.083 1.963 1.970 1.694 1.937 1.905 1.060

S2

10→20 1.882 1.803 1.370 1.912 1.992 2.041 1.870 1.925 1.966

20→30 1.961 1.746 0.884 1.958 1.967 2.014 1.853 1.855 1.248

30→40 1.978 1.710 0.982 1.963 1.943 2.021 1.889 1.809 0.996

mean 1.940 1.753 1.079 1.944 1.967 2.025 1.871 1.863 1.404

S3

10→20 1.968 2.006 2.083 1.945 1.956 1.550 1.973 1.930 1.113

20→30 1.988 1.980 2.042 1.887 1.873 1.014 2.032 1.993 1.438

30→40 1.994 1.968 2.016 1.829 1.798 1.025 1.979 1.874 0.616

mean 1.983 1.985 2.047 1.887 1.876 1.196 1.995 1.932 1.056

M1

10→20 1.242 1.106 0.756 0.698 0.794 1.249 1.640 1.605 1.010

20→30 1.097 1.001 0.781 0.805 0.810 0.862 1.942 1.868 1.762

30→40 1.047 0.987 0.831 0.851 0.858 0.851 1.218 1.114 0.109

mean 1.129 1.031 0.790 0.785 0.821 0.987 1.600 1.529 0.960

M2

10→20 1.5170 1.436 1.015 0.703 0.769 0.832 1.770 1.719 1.447

20→30 1.310 1.205 0.893 0.808 0.819 0.893 1.549 1.470 0.729

30→40 1.221 1.119 0.863 0.857 0.866 0.857 1.456 1.395 1.332

mean 1.349 1.253 0.924 0.790 0.818 0.861 1.591 1.528 1.170

M3

10→20 1.579 1.516 1.262 0.710 0.774 0.892 1.870 1.848 1.633

20→30 1.370 1.270 0.917 0.808 0.823 0.895 1.653 1.639 1.295

30→40 1.274 1.166 0.863 0.855 0.868 0.855 1.570 1.540 1.050

mean 1.408 1.317 1.014 0.791 0.822 0.881 1.697 1.676 1.326

Table C.2:
Full table of convergence rates of all six mixed-cell models for the 2D

MMS mixed-cell test problem from Section 6.2. The convergence rate is

measured in three p-norms. Results for three different linear interfaces are

shown. The diffusivity ratio is 102. Bold indicates qi ≥ 1.90.
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s = −2 v1 (33%) v2 (50%) v3 (85%)

Model Grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

S1

10→20 2.041 1.921 1.386 1.971 1.824 1.310 1.960 2.053 1.613

20→30 2.004 1.811 1.214 1.976 1.729 1.179 1.947 1.920 1.479

30→40 2.063 1.762 1.147 2.032 1.687 1.123 2.022 1.908 1.326

40→50 2.008 1.692 1.100 1.975 1.638 1.084 1.960 1.820 1.224

50→100 2.015 1.630 1.056 2.010 1.585 1.046 1.988 1.754 1.123

mean 2.026 1.763 1.181 1.993 1.693 1.148 1.975 1.891 1.353

S2

10→20 2.041 1.921 1.386 1.971 1.824 1.310 1.960 2.053 1.613

20→30 2.004 1.811 1.214 1.976 1.729 1.179 1.947 1.920 1.479

30→40 2.063 1.762 1.147 2.032 1.687 1.123 2.022 1.908 1.326

40→50 2.008 1.692 1.100 1.975 1.639 1.084 1.960 1.820 1.224

50→100 2.015 1.630 1.056 2.010 1.585 1.046 1.988 1.754 1.123

mean 2.026 1.763 1.181 1.993 1.693 1.148 1.975 1.891 1.353

S3

10→20 2.074 2.344 2.280 2.070 2.389 2.264 1.754 1.517 0.949

20→30 2.053 2.070 2.139 2.075 2.084 2.137 1.855 1.533 0.999

30→40 2.055 2.123 2.157 2.074 2.103 2.156 1.897 1.537 1.007

40→50 1.982 2.003 1.905 1.612 1.660 1.720 1.925 1.537 1.010

50→100 1.999 2.017 2.008 2.140 2.127 2.067 1.956 1.530 1.009

mean 2.033 2.111 2.098 1.994 2.073 2.069 1.877 1.531 0.995

M1

10→20 0.546 0.298 -0.069 0.729 0.289 -0.241 1.090 0.712 0.138

20→30 0.774 0.701 0.622 0.833 0.688 0.613 1.343 1.231 0.914

30→40 0.846 0.815 0.796 0.864 0.805 0.798 1.237 1.178 0.952

40→50 0.876 0.857 0.861 0.880 0.844 0.859 1.234 1.167 0.971

50→100 0.921 0.914 0.929 0.918 0.906 0.928 1.157 1.116 0.983

mean 0.792 0.717 0.628 0.845 0.706 0.591 1.212 1.081 0.792

M2

10→20 1.624 1.512 1.090 1.499 1.340 0.740 1.808 1.902 1.845

20→30 1.949 1.977 2.033 1.836 1.883 2.041 1.878 1.869 1.930

30→40 1.987 2.044 2.097 1.961 1.998 1.924 1.962 1.977 1.958

40→50 2.003 1.998 1.916 1.981 1.971 1.970 1.954 1.953 2.051

50→100 2.006 2.009 2.012 1.991 1.996 1.998 1.981 1.985 1.974

mean 1.914 1.908 1.830 1.854 1.838 1.735 1.917 1.937 1.952

M3

10→20 1.624 1.512 1.090 1.499 1.340 0.740 1.808 1.902 1.845

20→30 1.949 1.977 2.033 1.836 1.883 2.041 1.878 1.869 1.930

30→40 1.987 2.044 2.097 1.961 1.998 1.924 1.962 1.977 1.958

40→50 2.003 1.998 1.916 1.981 1.971 1.970 1.954 1.953 2.051

50→100 2.006 2.009 2.012 1.991 1.996 1.998 1.981 1.985 1.974

mean 1.914 1.908 1.8230 1.854 1.838 1.735 1.917 1.937 1.952

Table C.3:
Full table of convergence rates for the 1D MES mixed-cell test problem in

Section 7.3.2. Diffusivity ratio is 10−2. Bold indicates qi ≥ 1.90.
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s = −6 v1 (33%) v2 (50%) v3 (85%)

Model Grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

S1

10→20 1.991 1.929 1.361 1.981 1.874 1.359 1.971 2.111 1.784

20→30 2.082 1.843 1.171 2.042 1.753 1.161 2.026 1.994 1.513

30→40 2.051 1.737 1.087 2.033 1.672 1.089 2.014 1.908 1.295

40→50 2.035 1.680 1.051 2.024 1.624 1.054 2.011 1.851 1.190

50→100 2.013 1.613 1.021 2.008 1.572 1.023 2.000 1.762 1.086

mean 2.034 1.760 1.138 2.017 1.699 1.137 2.004 1.925 1.374

S2

10→20 1.991 1.929 1.361 1.981 1.874 1.359 1.971 2.111 1.784

20→30 2.082 1.843 1.171 2.042 1.753 1.161 2.026 1.994 1.513

30→40 2.051 1.737 1.087 2.033 1.672 1.089 2.014 1.908 1.295

40→50 2.035 1.680 1.051 2.024 1.624 1.054 2.011 1.851 1.190

50→100 2.013 1.613 1.021 2.008 1.572 1.023 2.000 1.762 1.086

mean 2.034 1.760 1.138 2.017 1.699 1.137 2.004 1.925 1.374

S3

10→20 1.903 2.264 2.179 2.029 2.317 2.179 1.790 1.558 0.973

20→30 2.107 2.153 2.156 2.095 2.144 2.155 1.904 1.544 0.991

30→40 2.044 2.075 1.897 2.052 2.065 1.897 1.937 1.539 0.996

40→50 2.060 2.047 2.047 2.036 2.039 2.047 1.958 1.534 0.997

50→100 2.011 2.024 2.019 2.004 2.018 2.019 1.976 1.525 0.999

mean 2.025 2.113 2.060 2.043 2.117 2.059 1.913 1.540 0.991

M1

10→20 0.575 0.307 -0.059 0.796 0.314 -0.263 1.173 0.857 0.338

20→30 0.792 0.720 0.664 0.831 0.702 0.652 1.325 1.252 0.980

30→40 0.854 0.822 0.829 0.863 0.807 0.828 1.258 1.190 0.988

40→50 0.887 0.870 0.896 0.887 0.858 0.896 1.214 1.154 0.993

50→100 0.927 0.923 0.955 0.922 0.915 0.955 1.148 1.104 0.997

mean 0.807 0.728 0.657 0.860 0.719 0.614 1.223 1.111 0.859

M2

10→20 1.651 1.553 1.199 1.507 1.371 0.699 1.849 1.900 1.787

20→30 2.009 2.030 1.958 1.885 1.936 1.998 1.875 1.902 2.131

30→40 1.997 2.032 2.105 1.974 1.993 2.109 1.960 1.961 1.837

40→50 2.023 2.025 2.039 2.007 2.004 1.871 1.986 1.980 1.979

50→100 2.015 2.015 2.004 2.001 2.007 2.016 1.981 1.993 2.009

mean 1.939 1.931 1.861 1.875 1.862 1.739 1.930 1.947 1.949

M3

10→20 1.651 1.553 1.199 1.507 1.371 0.699 1.849 1.900 1.787

20→30 2.009 2.030 1.958 1.885 1.936 1.998 1.875 1.902 2.131

30→40 1.997 2.032 2.105 1.974 1.993 2.109 1.960 1.961 1.837

40→50 2.023 2.025 2.039 2.007 2.004 1.871 1.986 1.980 1.979

50→100 2.015 2.015 2.004 2.001 2.007 2.016 1.981 1.993 2.009

mean 1.939 1.931 1.861 1.875 1.862 1.739 1.930 1.947 1.949

Table C.4:
Full table of convergence rates for the 1D MES mixed-cell test problem in

Section 7.3.2. Diffusivity ratio is 10−6. Bold indicates qi ≥ 1.90.
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s = −10 v1 (33%) v2 (50%) v3 (85%)

Model Grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

S1

10→20 1.878 1.865 1.387 1.863 1.832 1.375 1.805 1.951 1.775

20→30 1.693 1.651 1.173 1.753 1.668 1.169 1.567 1.632 1.511

30→40 1.505 1.506 1.095 1.500 1.516 1.092 1.361 1.431 1.314

40→50 1.279 1.345 1.054 1.247 1.374 1.054 1.057 1.139 1.191

mean 1.589 1.592 1.177 1.591 1.598 1.172 1.448 1.538 1.447

S2

10→20 1.942 1.897 1.361 1.938 1.855 1.358 1.914 2.051 1.779

20→30 1.910 1.763 1.144 1.920 1.726 1.163 1.830 1.851 1.513

30→40 1.698 1.597 1.063 1.809 1.614 1.067 1.740 1.737 1.319

40→50 1.432 1.450 1.043 1.594 1.516 1.028 1.711 1.668 1.098

mean 1.746 1.677 1.153 1.815 1.678 1.154 1.799 1.827 1.427

S3

10→20 1.753 2.028 1.955 1.882 2.120 1.972 1.796 1.566 0.973

20→30 1.575 1.653 1.742 1.653 1.701 1.774 1.881 1.540 0.991

30→40 1.396 1.447 1.439 1.235 1.323 1.335 1.879 1.5145 0.996

40→50 0.800 0.904 0.987 0.683 0.847 0.970 1.837 1.472 0.997

mean 1.381 1.508 1.531 1.363 1.498 1.513 1.848 1.523 0.989

M1

10→20 0.590 0.307 -0.064 0.799 0.309 -0.272 1.182 0.871 0.350

20→30 0.799 0.724 0.666 0.823 0.703 0.654 1.319 1.232 0.955

30→40 0.857 0.824 0.831 0.861 0.808 0.829 1.254 1.179 0.975

40→50 0.888 0.871 0.895 0.885 0.858 0.897 1.211 1.147 0.985

mean 0.783 0.681 0.582 0.842 0.670 0.527 1.241 1.107 0.816

M2

10→20 1.641 1.543 1.173 1.473 1.343 0.664 1.969 2.047 1.952

20→30 2.017 2.034 1.996 1.893 1.932 2.025 1.910 1.917 2.086

30→40 1.999 2.033 2.118 1.976 1.990 2.061 1.990 1.985 1.850

40→50 2.024 2.021 1.999 2.002 1.989 1.879 1.995 1.988 2.021

mean 1.920 1.908 1.821 1.836 1.814 1.657 1.966 1.984 1.977

M3

10→20 1.641 1.543 1.173 1.473 1.343 0.664 1.969 2.047 1.952

20→30 2.017 2.034 1.996 1.893 1.932 2.025 1.909 1.917 2.086

30→40 1.999 2.033 2.118 1.976 1.990 2.061 1.990 1.985 1.851

40→50 2.024 2.021 1.999 2.002 1.989 1.879 1.995 1.988 2.021

mean 1.920 1.908 1.821 1.836 1.814 1.657 1.966 1.984 1.977

Table C.5:
Full table of convergence rates for the 1D MES mixed-cell test problem in

Section 7.3.2. Diffusivity ratio is 10−10. Bold indicates qi ≥ 1.90.
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s = 2 Single T Multi-T Multi-T (phase 2)

# grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

1

20→40 2.320 1.990 1.193 1.569 1.597 0.837 1.473 1.462 0.832

40→60 1.772 1.334 0.833 1.085 1.347 1.026 1.798 1.616 1.031

60→80 1.807 1.678 1.228 1.420 1.842 0.846 1.289 0.943 0.839

mean 1.966 1.667 1.085 1.358 1.595 0.903 1.520 1.341 0.900

2

20→40 2.241 1.979 1.207 1.530 1.531 0.880 1.473 1.462 0.896

40→60 1.581 1.328 0.791 0.148 0.766 0.946 1.798 1.616 0.920

60→80 1.779 1.678 1.249 1.675 1.844 0.893 1.289 0.943 0.893

mean 1.867 1.661 1.082 1.118 1.380 0.906 1.520 1.341 0.903

3

20→40 2.313 1.988 1.225 1.582 1.550 0.882 1.473 1.462 0.909

40→60 1.694 1.317 0.764 0.147 0.818 0.950 1.798 1.616 0.908

60→80 1.762 1.673 1.226 1.732 1.885 0.892 1.289 0.943 0.892

mean 1.923 1.659 1.072 1.154 1.418 0.908 1.520 1.341 0.903

Table C.6:
Full table of convergence rates for the 2D MES mixed-cell test problem in

Section 8.3.2.1 with the expanded computational domain. The diffusivity

ratio is 102. Bold indicates qi ≥ 1.90.

s = 6 Single T Multi-T Multi-T (phase 2)

# grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

1

20→40 2.255 1.984 1.192 1.626 1.599 0.835 1.733 1.771 0.829

40→60 1.681 1.328 0.830 1.100 1.349 1.029 1.787 1.603 1.031

60→80 1.631 1.666 1.222 1.416 1.835 0.838 1.251 0.909 0.831

mean 1.856 1.659 1.081 1.381 1.594 0.900 1.590 1.428 0.897

2

20→40 1.432 1.821 1.318 1.549 1.536 0.860 1.733 1.771 0.875

40→60 0.649 0.882 0.828 0.478 0.979 1.004 1.787 1.603 0.981

60→80 1.084 1.233 1.250 1.767 1.981 0.870 1.251 0.909 0.871

mean 1.055 1.312 1.132 1.265 1.499 0.911 1.590 1.428 0.909

3

20→40 2.252 1.980 1.228 1.606 1.555 0.863 1.733 1.771 0.888

40→60 1.560 1.305 0.752 0.496 1.023 1.007 1.787 1.603 0.968

60→80 1.824 1.677 1.220 1.875 2.030 0.874 1.251 0.909 0.874

mean 1.878 1.654 1.067 1.326 1.536 0.915 1.590 1.428 0.910

Table C.7:
Full table of convergence rates for the 2D MES mixed-cell test problem in

Section 8.3.2.1 with the expanded computational domain. The diffusivity

ratio is 106. Bold indicates qi ≥ 1.90.
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s = 6 Single T Multi-T Multi-T (phase 1)

# grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

1

20→40 1.569 1.207 0.522 0.421 0.296 0.090 0.095 0.109 0.090

40→60 2.038 1.608 0.932 0.257 0.173 0.062 0.087 0.081 0.062

60→80 1.509 1.432 1.089 0.022 -0.008 -0.017 -0.019 -0.011 -0.017

mean 1.705 1.416 0.848 0.233 0.153 0.045 0.055 0.060 0.045

2

20→40 0.883 0.933 1.005 1.442 1.339 0.585 1.081 0.999 0.622

40→60 0.961 1.026 0.930 1.409 1.312 0.767 1.262 1.236 0.701

60→80 1.315 1.302 1.111 0.343 0.535 1.215 0.481 0.824 1.214

mean 1.053 1.087 1.015 1.065 1.062 0.855 0.941 1.020 0.846

3

20→40 1.491 1.226 1.009 1.481 1.359 0.587 1.120 1.027 0.631

40→60 1.643 1.623 0.930 1.512 1.365 0.763 1.360 1.289 0.685

60→80 1.766 1.429 1.111 0.198 0.510 1.215 0.409 0.836 1.215

mean 1.633 1.426 1.016 1.064 1.078 0.855 0.963 1.051 0.844

Table C.8:
Full table of convergence rates for the 2D MES problem with a quadratic

initial condition using a cell-centered solution corresponding to Table 8.5.

The diffusivity ratio is 106. Bold indicates qi ≥ 1.90.

s = 6 Single T Multi-T Multi-T (phase 1)

# grid q1 q2 q∞ q1 q2 q∞ q1 q2 q∞

1

20→40 2.088 1.674 0.938 1.258 1.101 0.661 0.918 0.672 0.676

40→60 1.255 1.038 0.996 -0.119 0.106 0.475 0.694 0.709 0.480

60→80 2.197 2.190 1.161 1.910 1.459 0.395 0.932 0.613 0.395

mean 1.847 1.634 1.032 1.016 0.889 0.510 0.848 0.665 0.517

2

20→40 0.947 0.972 0.876 1.341 1.385 1.013 0.775 0.766 1.033

40→60 0.906 0.914 0.963 1.307 1.332 1.696 0.940 1.091 1.667

60→80 1.344 1.338 1.205 0.037 -0.070 -1.445 0.019 -0.084 -1.392

mean 1.066 1.075 1.015 0.895 0.883 0.422 0.578 0.591 0.436

3

20→40 2.183 1.607 0.877 1.377 1.427 1.020 0.852 0.819 1.039

40→60 1.243 1.269 0.962 1.417 1.448 1.813 1.061 1.230 1.786

60→80 2.383 2.012 1.205 -0.197 -0.310 -1.726 -0.186 -0.299 -1.676

mean 1.936 1.629 1.015 0.866 0.855 0.369 0.576 0.583 0.383

Table C.9:
Full table of convergence rates for the 2D MES problem with a quadratic

initial condition using a cell-averaged solution corresponding to Table 8.6.

The diffusivity ratio is 106. Bold indicates qi ≥ 1.90.
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