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ABSTRACT 
 

DEFINING THE ROLES OF MAMMALIAN COPII COMPONENTS SEC24C 
AND SEC24D 

 
by 
 

Elizabeth Janine Adams 
 
 

Chair:  David Ginsburg 

 

 Newly synthesized proteins are transported from the endoplasmic reticulum (ER) 

to the Golgi via COPII coated vesicles.  The COPII coat is a highly conserved and tightly 

regulated complex composed of an inner layer containing the GTPase Sar1 and 

heterodimers of SEC23 and SEC24, and an outer coat made up of heterotetramers of 

SEC13 and SEC31. The SEC24 subunit is thought to be primarily responsible for 

recruitment of protein cargoes into nascent vesicles through direct contacts between 

SEC24 and the cytoplasmic portion of transmembrane cargo proteins or through contact 

with cargo adaptor proteins that are essential in linking soluble cargo proteins within the 

ER lumen to SEC24.  Mammalian genomes encode four Sec24 paralogs (Sec24a-d), 

though little is known about their comparative functions.  A number of biochemical and 

structural studies have identified a handful of paralog-specific interactions, but many 

more remain are likely uncharacterized, given the highly heterogeneous pool of proteins 

traversing the secretory pathway.  Based on protein sequence, SEC24A/B are more 

closely related to one another than they are to SEC24C/D.  Mice deficient for SEC24A 
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exhibit a mild hypocholesterolemic phenotype, and Sec24b null embryos die from a 

specific neural tube closure defect near the end of embryonic development.  

 Through the generation and characterization of a mouse model deficient in 

SEC24C, we demonstrate that SEC24C is required during early embryonic development, 

with SEC24C-deficient embryos dying around embryonic day 7.5. However, we found 

SEC24C to be dispensable in a number of tissues, likely as a result of compensation by 

other Sec24 paralogs.  A mouse model of SEC24D-deficiency revealed that the 

requirement for SEC24D begins prior to the blastocyst stage.  Mice heterozygous for null 

alleles of Sec24c or Sec24d, as well as compound heterozygotes, exhibit normal growth, 

development and survival, and no obvious phenotypic abnormalities.  We sought to 

determine the extent of functional overlap between SEC24C and SEC24D by generating 

a Sec24cc-d allele, in which the SEC24C coding sequence has been largely replaced with 

SEC24D. Crossing mice with the Sec24cc-d allele to Sec24c mice demonstrates that 

SEC24D, when its expression is driven by Sec24c regulatory elements, can rescue Sec24c 

null mice from embryonic lethality. However, Sec24cc-d /c-d mice die shortly after birth, 

suggesting that the overlap in function between SEC24C and SEC24D is incomplete, 

consistent with the wide range of phenotypes observed in mouse models of SEC24 

deficiency. Taken together, these results indicate that the four Sec24 paralogs have 

developed unique functions over the course of vertebrate evolution, but have also 

maintained some overlap in function. Future work to understand the functional 

differences and cargo-specificities between the mammalian SEC24 paralogs will provide 

further insight into the dynamic process of cargo recruitment and COPII assembly. 
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CHAPTER I: INTRODUCTION 
 
 
 

Abstract 

 
 Newly synthesized proteins are transported from the endoplasmic reticulum (ER) 

to the Golgi via COPII coated vesicles that assemble at specific sites on the ER.  The 

COPII coat is a highly conserved and tightly regulated complex composed of an inner 

layer containing the GTPase Sar1 and heterodimers of SEC23 and SEC24, and an outer 

coat made up of heterotetramers of the cytosolic proteins SEC13 and SEC31.  The 

SEC24 subunit of the inner coat complex is thought to be primarily responsible for 

recruitment of protein cargoes into nascent vesicles.  This action is mediated by direct 

interaction of SEC24 with the cytoplasmic portion of transmembrane cargo proteins or 

through contact with cargo adaptor proteins that are essential in linking soluble cargo 

proteins within the ER lumen to SEC24.  The mammalian genome encodes four Sec24 

paralogs (Sec24a-d), and while their overall structure is conserved, little is known about 

their comparative functions.  Based on protein sequence, SEC24A and B are more closely 

related to one another than they are to SEC24C and D.  Sec24b and Sec24d knockout 

mice exhibit embryonic lethality, while Sec24a knockouts have low cholesterol levels 

due to reduced secretion of PCSK9.   A number of biochemical and structural studies 

have identified a handful of paralog-specific interactions, but it stands to reason that 

many more have yet to be characterized, given the highly heterogeneous pool of proteins 
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traversing the secretory pathway.   Understanding the overlap in function between the 

mammalian Sec24 paralogs will provide further insight into the dynamic process of cargo 

recruitment and COPII assembly.  

COPII Vesicle Formation  

 Nearly one-third of all proteins traverse the secretory pathway en route to their 

final destinations, either within the cell or beyond [1,2].  Included in this subset of 

proteins are all transmembrane proteins destined for certain intracellular compartments or 

the plasma membrane, as well as soluble proteins intended for secretion or to be located 

in some membrane bound intracellular compartments (Figure 1-1).   These newly 

synthesized proteins begin their journey in the endoplasmic reticulum (ER), where they 

are folded and undergo initial post-translational modifications.  Once properly folded, 

these proteins are recruited to ribosome-free regions of the ER called ER-exit sites 

(ERES) [1,3,4,5].  It is here that the process of COPII vesicle formation occurs, and a 

cargo protein’s journey through the secretory pathway begins.   

 Sar1-GTP, Sec23/24 and Sec13/31 are the minimal machinery required for COPII 

vesicle budding in vitro [6].  COPII vesicle formation is initiated by the activation of the 

small GTPase SAR1 by its guanine nucleotide exchange factor (GEF), Sec12, which 

facilitates the binding of GTP to the inactive, GDP-bound Sar1 (Figure 1-2).  Sec12 is 

localized to ERES by the protein SEC16, a cytosolic factor required for the in vivo 

formation of COPII vesicles [7,8].  GTP binding to Sar1 induces a conformational 

change, leading to the insertion of an N-terminal, amphipathic helix into the ER 

membrane, initiating membrane curvature [9,10].  Activated Sar1 recruits the cytosolic 

heterodimer of Sec23/Sec24 to form the pre-budding complex via GTP-Sar1’s interaction 
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with Sec23[11,12]. Transmembrane cargoes and adaptors interact with Sec24 and 

become concentrated in the nascent vesicle bud.  Vesicle formation continues as the 

cytosolic heterotetramer of Sec13/31 binds to the inner layer of Sec23/24 via a Sec23-

Sec31 interaction; this outer coat of Sec13/31 further drives membrane curvature initiated 

by Sar1-GTP [13].   As the self-assembly of the COPII coat nears completion, GTPase-

activating protein (GAP) activity of Sec23 triggers GTP hydrolysis, and disassembly of 

the coat begins [14,15].  The final step in the COPII process is vesicle fission, and once 

free of the donor membrane, the COPII vesicle travels to the ER-Golgi Intermediate 

Complex (ERGIC).  

Selective Recruitment Model 

 Despite the extensive studies of the early secretory pathway and the formation of 

the COPII coat, there remains at least one aspect of ER export that is still a point of 

contention, and that is the mechanism by which proteins destined for ER export end up in 

a newly forming COPII vesicle.  Two models have been proposed: selective recruitment 

and bulk flow [16,17,18].   In the selective recruitment model, cargo molecules 

containing ER exit motifs interact with SEC24 directly or via cargo adaptors that function 

to recruit them to ERES and package them into nascent COPII vesicles by acting as a 

physical linker to the cytoplasmic coat.  The bulk flow model proposed that secreted 

proteins are packaged into COPII vesicles in a stochastic manner, with unfolded and ER 

resident proteins precluded from these vesicles by their interaction with other ER protein 

machinery.  Although there is some evidence to suggest that export of proteins from the 

ER by bulk flow may be sufficient for a number of highly abundant proteins [19,20,21], a 

growing body of evidence suggests that the packaging of the majority of cargo proteins 
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into newly forming vesicles is mediated by selective transport [22,23].  The random 

nature of bulk flow fails to explain the efficiency of ER export, and an increasing number 

of ER exit motifs have been identified (discussed in detail in a later section) further 

supporting the model of selective transport.  

Expansion of SEC24 Paralogs  

 While the components of the COPII coat are highly conserved, multiple paralogs 

for several of these genes have arisen in higher eukaryotes (Figure 1-2), potentially 

driven by the increased complexity and diversity of cargoes passing through the early 

secretory pathway.  A primary example of this evolutionary expansion is the major cargo-

binding COPII component, SEC24.  The yeast genome encodes the canonical Sec24p, but 

also two non-essential homologs, Iss1p and Lst1p, both of which are able to bind to 

Sec23p [24,25].  All three paralogs are able to bind to the SNARE Sed5/syntaxin-5 [25].  

However, Lst1p can form heterodimers with yeast Sec23p and facilitate the formation of 

larger vesicles to accommodate lager cargoes such as ATPase Pma1 [24].  The 

mammalian genome encodes four Sec24p homologs (Sec24a-d).   Like Sec24p (and 

Lst1p, Iss1p), each of the four mouse paralogs contain a hypervariable N-terminal region, 

while the C-terminal half of the protein displays a higher degree of sequence 

conservation, a region containing several predicted conserved domains (Figure 1-3).  

Based on protein sequence identity, Sec24p is more closely related to mammalian 

SEC24A and SEC24B, and Iss1p, while Lst1p has more homology to SEC24C and 

SEC24D (Figure 1-4). Interestingly, the mammalian SEC24A/B subgroup is no more 

similar to SEC24C/D than is either subgroup to the ancestral Sec24p, suggesting an early 

duplication and divergence between these two subfamilies.  The amplification of COPII 
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paralogs in higher eukaryotes might result in an increased capacity to handle the greater 

diversity of secretory proteins in mammalian cells compared to yeast, with various COPII 

paralogs potentially functioning in a tissue-specific and/or cell-type-specific fashion to 

direct selective transport of a wide range of cargo proteins. 

 In the mouse, a diverse range of phenotypes is observed in the absence of any 

single paralog of SEC24.  Loss of SEC24A disrupts secretion of the regulatory protein 

PCSK9, resulting in low circulating cholesterol levels in SEC24A-deficient mice [26]. 

These mice are otherwise healthy with no other apparent phenotypic abnormalities.   In 

contrast, loss of SEC24B, C, and D all result in lethality at different stages of 

development.   A mutation in murine SEC24B that results in a truncated form of the 

protein was identified in a genetic screen as the cause of a very specific neural tube 

closure defect resulting from a block in secretion of the planar-cell-polarity protein 

VANGL2 [27].   Loss of SEC24C results in embryonic lethality ~E7.5 (described in more 

detail in Chapter III), while SEC24D-deficient embryos are lost prior to the blastocyst 

stage [28], discussed in Chapter II.  

 In both C. elegans and D. melanogaster two paralogs of Sec24p (sec24.1/sec24.2 

and sec24/CG10882) are present, while in fish there are four SEC24 paralogs (SEC24A-

D), similar to mammals. Mutagenesis screens for craniofacial defects in zebrafish 

uncovered a role for the Sec24 paralogs in proper secretion of extracellular matrix 

collagens [29,30].   The bulldog phenotype results from a frame shift mutation and early 

stop codon in the zebrafish Sec24d gene, with bulldog mutants exhibiting craniofacial 

defects due to abnormalities in collagen secretion [31].  A second mutant, crusher, due to 

a substitution in Sec23a [32] which closely resembles the bulldog phenotype, again 
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consistent with a critical role for COPII transport in the secretion of collagen and other 

extracellular matrix proteins in zebrafish.  A medaka mutant, vertebra imperfecta, due to 

a nonsense mutation in SEC24D, also exhibits skeletal defects and abnormal craniofacial 

cartilage [33].  In Arabadopsis thaliana, the loss of SEC24 is lethal.  However, a 

missense mutation (R693K) in the conserved binding pocket of Sec24 resulted in the 

accumulation of cargoes in an unusually distended ER [34]. 

 To date there have been no human diseases associated with mutations in any of 

the four SEC24 paralogs.   Given the frequency of potentially damaging alleles in the 

general population (0.07% for SEC24A, 0.02% for SEC24B, 0.05% for SEC24C, and 

0.9% for SEC24D, data from Exome Variant Server, NHLBI), it remains possible that 

mutations in any human SEC24 paralog could be responsible for a human disease for 

which the genetic cause is unknown.   The loss of a particular paralog in humans may 

also result in a very mild phenotype that wouldn’t necessarily be seen clinically.  Or it is 

possible that the complete loss of function of any particular paralog would result in 

embryonic lethality as is observed in the mice, thus no viable homozygotes or compound 

heterozygotes would ever be seen.  

SEC24 recruits cargoes directly or via cargo adaptor molecules 

 SEC24 is the COPII component primarily responsible for the recruitment of cargo 

proteins into the newly forming vesicle bud.  Given the topology of a COPII coated 

vesicle, the interaction between SEC24 and a potential cargo can occur in one of two 

ways: (i) directly, if the protein possesses a cytoplasmic tail that can come into contact 

with SEC24 via an ER exit motif, or (ii) indirectly if the potential cargo does not have a 

cytoplasmic tail to interact with cytosolic SEC24.  Proteins in the second class require an 
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adaptor molecule to span the ER membrane and facilitate interaction with the cytosolic 

coat.  Data from the human proteome suggests that approximately 11% of the 24,701 

predicted full-length open reading frames in the human proteome are thought to be 

soluble, secreted proteins which would require a cargo adaptor, while about 20% are 

predicted to be transmembrane proteins [35], suggesting that thousands of distinct cargo 

molecules must be able to be recruited via interactions directly with SEC24 or via cargo 

adaptors. Once a COPII vesicle reaches the ERGIC or the Golgi compartment, many of 

these receptors are then recycled back to the ER for another round of cargo recruitment.  

Several cargo adaptors have been identified in yeast, and mutations in these proteins 

result in defective transport of specific cargoes reviewed in [36,37].  Similar results are 

also seen when homologous proteins in Drosophila are mutated [36].  However, the only 

clearly defined mammalian cargo adaptor is ERGIC-53, also known as LMAN1, part of 

the LMAN1-MCFD2 complex that is responsible for the selective transport of the blood 

coagulation proteins FV and FVIII [38,39].   The highly conserved p24 family of proteins 

have a similar topology to LMAN1, appear to cycle between the ER and the Golgi, and 

selective trafficking defects occur when these proteins are mutated.  However, these 

proteins may play another role within the early secretory pathway, as there is no direct 

evidence that they function as professional cargo adaptors [36,40].    

 Many additional cargo adaptors may yet remain to be identified, each contributing 

to the COPII system’s ability to accommodate the diverse array of secretory proteins 

exiting the ER.  It is possible that these proteins have other primary functions within the 

cell and only transiently interact with soluble cargoes in the context of COPII vesicle 

formation. Alternatively a large class professional cargo adaptors may bind to their 
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ligands in the ER, facilitate transport to the ERGIC, followed by cargo release and 

recycling of the adaptor back to the ER.  

The structure of SEC24 

 Detailed structural analysis of the COPII coat has provided critical insights into 

the formation, regulation, and evolution of this intricate cellular complex to handle the 

enriched cargo diversity found in mammals.   Early electron microscopy (EM) 

experiments provided a first look at the overall shape of the COPII components and 

revealed that the inner coat has a bow-tie like shape, with Sec23p forming one half of the 

bow-tie and Sec24p the other [41]. Using full-length recombinant yeast Sec24p in 

complex with yeast Sec23p as well as the complex of Sec23p/Sar1, Bi et al. determined 

the structure of the pre-budding complex of Sar1/Sec23/Sec24 at a resolution of 

approximately 2.75Å [42] that fit nicely with the previously reported EM data.  The 

initial 132 residues of Sec24p were disordered in the crystal, likely due to a high number 

of glutamine and proline residues in this N-terminal hypervariable region.  In this study, 

the authors found that the pre-budding complex has a concave inner surface potentially 

contributing to the formation and maintenance of membrane curvature of the nascent 

vesicle bud.  Residues on both Sec23p and Sec24p proximal to the ER membrane were 

overall positively charged, while the outer face of these proteins was much more acidic. 

This polarized characteristic is conserved from yeast to humans [42].  Structurally, 

Sec23p and Sec24p are quite similar to each other, with the same conserved domains 

including a zinc finger, a von Willebrand factor type A “trunk” domain, a β-barrel, a 

helical domain, and a gelsolin-like repeat (Figures 1-3 and 1-5), yet strikingly their 

overall sequence identity is low, at only 14% [42].    The trunk domain forms the 
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interface of Sec23p and Sec24p, specifically with a single β-strand (β-14) on both Sec23p 

and Sec24p and covers a 900Å2 region on the surface of Sec24. Two critical residues in 

this region Phe385 and Pro 387 are conserved in all known Sec24 sequences from yeast 

to humans. The Sec23p trunk domain is also responsible for its interaction with Sar1p.  

However, the distance between these the Sec24p and Sar1p contact points on Sec23p is 

more than 25Å, sufficient for coordinated formation of the pre-budding complex [42].  

Cargo binding sites on SEC24 

 In the selective transport model, each cargo must contain an export motif or signal 

that interacts with a cargo recognition site located within SEC24.  Four such binding sites 

on Sec24p have previously been characterized, each critical for the recruitment of a 

specific set of cargoes  (Figure 1-5) [23,43,44,45]. The “A-site” (also known as the Sed5 

binding site) is located on the edge of the membrane-proximal region of SEC24, similar 

to the SAR1 binding site on SEC23, and recognizes cargo displaying the sorting signal 

YNNSNPF such as the yeast t-SNARE Sed5 [44].  A second site, the “B-site,” was 

shown in structural studies near a basic pocket on the membrane face of SEC24 [44] [46] 

and is conserved from yeast to humans (though only found in human SEC24A/B) [23]. A 

third site on SEC24, the “C-site” is required for the binding of the t-SNARE Sec22p, 

though this interaction depends on the state of SNARE assembly, as the export signal is 

likely a folded epitope [44,45,46]; of note, the binding of Sec22p at this site is specific to 

mammalian SEC24A and SEC24B, as this binding site in SEC24C and D is occluded 

[45].  A fourth site (IxM binding site) is located on the opposite face of SEC24 from the 

SEC23 interface, about half the distance between the A-site and the B-site (Figure 1-5) 

[23].  This site is only found on human SEC24C and D; in human SEC24A and B, a loop 
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from the N-terminal region competes for binding at this site and prevents cargo binding 

[23].   While these are the only characterized binding sites to date, it is likely that many 

additional sites, as yet undefined, are required for any given subset of cargo molecules, 

and they have yet to be defined.  

ER exit signals on transmembrane cargo interact with the COPII coat 

 To be recruited by SEC24 and enriched at ER exit sites, cargo molecules or 

adaptors are thought to require an ER export signal that binds to cargo recognition sites 

on SEC24.  In this way, ER resident proteins lacking an exit motif will be excluded from 

the newly forming vesicle.  Structural and biochemical studies have identified several 

classes of signal motifs have [47].  A subset of transmembrane cargo proteins interacts 

with the Sec23p–Sec24p subunit of COPII via a di-acidic D/E-X-D/E motif.   This signal 

was originally identified in a series of experiments truncating the 29 amino acids in the 

cytoplasmic tail of the vesicular stomatitis virus glycoprotein (VSV-G), followed by an 

alanine scan that revealed the requirement for Asp21 and Glu23 for efficient transport of 

VSV-G out of the ER [48].  Similar experiments demonstrated the requirement of the 

acidic motif DxE on the yeast protein Sys1p for its secretion [49]. Later work 

demonstrated that the DxE signal on VSV-G confers a specificity for human SEC24A/B 

[23]. Di-acidic motifs have also been found to direct the export of several additional 

proteins including the cystic fibrosis transmembrane conductance regulator (CFTR) [50],  

the mammalian lysosomal acid phosphatase [48], and the mammalian potassium channels 

Kir1.1 and Kir2.1 [51], and the yeast protein Gap1p [22].   Cargoes containing this motif 

bind to the B-site on SEC24 [46].   
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 A second class of ER exit motifs that also binds to the B-site on SEC24 is the 

peptide sequence LXXLE, which was originally found on the v-SNARE Bet1p [52].  A 

related signal LXXME was identified on the yeast t-SNARE Sed5, which is used in 

conjunction with YNNSNPF to form a bipartite signal to bind to the A-site of Sec24p in 

yeast [44].  A third motif  (IxM) was identified on the human paralog of Sed5, syntaxin 5.  

This export signal was found to bind specifically to a groove on the surface of human 

SEC24C and D [23]; in a study to determine the paralog-specific interactions of SNARE 

proteins using an in vitro budding assay, SEC24C and SEC24D were shown to 

specifically recruit and package syntaxin 5 and membrin via their IxM exit motif [23],  

demonstrating overlap in function between SEC24C and D.  

 Di-hydrophobic export signals have also been identified for COPII mediated 

transport of several proteins. The FF motif present on LMAN1 is required for its efficient 

export out of the ER [53], with this motif also found on Prm8p [46].  The FF motif seems 

to function in the context of a larger export signal, because it is not sufficient to drive 

export of a reporter protein [53]. An LV motif is necessary for the recruitment and export 

of the p24 protein Emp24p [54] that has been shown to bind to SEC24’s B site.  The 

yeast protein Erv41p requires an IL signal on cytoplasmic tail for proper ER export, 

while the related protein Erv46p requires both an IL and FY signal [55].  

 Recent work indicates that the SEC24A/B and SEC-24C/D mammalian subgroups 

differ in their affinity for a subset of known sorting signals present on cargo 

proteins.  The serotonin receptor (SERT) has been reported to be an exclusive cargo of 

SEC24C, with this specificity mediated by an export signal on the N-terminus of SERT 

[56].  Mutation of this site results in SERT preferentially binding to SEC24D instead of 
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SEC24C [57].  Additionally, it was found that ER export of the GABA transporter 1 

(GAT1) is reduced by RNAi knockdown of SEC24D, and mutational analysis suggests 

that an RL amino acid sequence motif located near the C-terminus of GAT1 and two 

other members of the SLC6 family of neurotransmitter transporters might be a paralog-

specific export motif for SEC24D [58].  RNAi experiments in HeLa cells demonstrated 

that SEC24A is required for the transport of reporter constructs containing the LL ER 

export motif, while transport of II and VV containing signals have a preference for 

SEC24C/D [59]. Finally, it should be noted that although direct cargo binding by COPII 

is thought to be mediated by Sec23p–Sec24p, one study reports an interaction between 

Sar1 and a specific class of Golgi glycosyltransferases that requires a di-basic R/K-X-

R/K ER export motif [60].  

The role of cargoes in COPII vesicle formation 

 A number of reports suggest that cargoes and cargo adaptors play an active role in 

COPII vesicle formation (reviewed in [61,62]).  The amount of cargo present in the ER 

can influence the number and size of ERESs, which can increase COPII budding activity 

in a cell [63,64].   Additionally, cargoes may stabilize the pre-budding complex on the 

ER membrane though an interaction with SEC24 despite the inactivation of SAR1 

[65,66].   The size and topology of cargo also influence the size of COPII vesicles and the 

architecture of the coat itself.  Bulky and asymmetric cargo molecules, such as the p24 

family and GPI-anchored proteins, oppose the membrane curvature generated by the 

COPII coat, requiring more rigidity in the coat conferred by the outer coat component 

SEC13 [67].  Larger cargoes such as pro-collagen require additional accessory proteins 

such as TANGO, which can bind to both luminal collagen and SEC23, acting as a cargo 
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adaptor-like molecule, and regulating the formation of extended COPII vesicles or 

tubules [68].  

Other roles for SEC24 

 In addition to providing a platform for cargo binding, SEC24 may also play a 

regulatory role as well. A number of Sec24p mutants have shed light on the functions of 

critical residues and the overall function of Sec24p. The essential ERES protein Sec16 

decreases the GTPase activity within the coat by preventing recruitment of Sec31 to the 

Sec23/23/Sar1 complex.  A recently classified mutant (Sec24-m11) contains the 

substitutions E504A and D505A near the A-site on Sec24p; these changes reduce the 

binding affinity of Sec24p for Sec16 by preventing this interaction between Sec16 and 

Sec31 and increasing the GTPase activity in the coat, resulting in the formation of 

smaller vesicles [69].  This observation raises the possibility that cargo binding to Sec24 

could play a role in dictating the stability of the COII coat. Akt, a protein kinase central 

to many cellular processes including glucose metabolism, cell proliferation and apoptosis, 

was shown to phosphorylate mammalian SEC24C and Sec24D [70], suggesting another 

potential regulatory role for SEC24.  This phosphorylation weakens SEC24 binding to 

SEC23, thus providing an opportunity to regulate the formation of COPII vesicles in 

response to cellular cues.   Finally, SEC24C has been implicated in the docking of 

specialized pre-chylomicron transport vesicles to the Golgi [71], suggesting a role for the 

COPII coat beyond the recruitment and formation of vesicles at the ER surface.  
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Concluding Remarks 

 The formation and regulation of COPII-mediated ER export is an essential and 

complex process.  The fundamental roles of the core proteins in COPII biogenesis have 

been highly conserved, though there has been an expansion in the number of paralogs, 

perhaps to compensate for the amplification in the secretory demand of multicellular 

organisms. This increase in paralogs may also allow higher organisms to form different 

classes of COPII vesicles composed of different combinations of the coat proteins to deal 

with the dynamic needs of a given cell or tissue type, though this remains to be proven.  

Central to this cellular process is the cargo-binding subunit SEC24.  Structural and 

biochemical studies have shed light on the mechanisms by which SEC24 can recognize 

specific classes ER exit motifs on transmembrane cargoes and adaptor molecules.   

However, given the great diversity and sheer number of cargo proteins that are 

transported through the secretory pathway, it is likely that many more cargo recognition 

sites on SEC24 remain to be discovered.  Is the function of a given SEC24 paralog driven 

by its precise tissue-specific or cell-type specific expression patterns or are there key 

differences in the proteins themselves (perhaps in the N-terminal region where a lot of 

variability is present) that govern their ability to recruit particular cargoes into COPII 

vesicles?  While there appears to be partial overlap in function among the mammalian 

SEC24 paralogs, increasing evidence for paralog-specific interactions are emerging 

(Table 1-1).    
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Figure 1-1: The mammalian secretory pathway 

A schematic depicting the many compartments of the secretory pathway. Newly 
synthesized proteins enter the secretory pathway in the endoplasmic reticulum (ER), and 
travel to the ER-Golgi intermediate compartment (ERGIC) via COPII vesicles (blue).  
They are then transported to the Golgi, where they undergo further modifications before 
being trafficked to various intracellular compartments or are secreted outside the cell. 
COPI vesicles (green) direct retrograde transport from the ERGIC and Golgi to the ER.  
Transport later in the pathway is primarily mediated by clathrin coats (red).  Arrows 
indicate directional vesicular transport steps.  (Figure adapted from Bonifacino and 
Glick, Cell, 2004). 
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Figure 1-2: COPII vesicle composition and formation 

Newly synthesized proteins exit the ER in COPII-coated vesicles, which are composed of 
the small GTP-binding protein SAR1, the heterodimeric SEC23-SEC24 complex and the 
heterotetrameric SEC13-SEC31 complex.  The mammalian genome encodes multiple 
paralogs of many of the core components (shown in color). (a) The exchange of GDP for 
GTP, catalyzed by SEC12, a guanine nucleotide exchange factor located in the ER 
membrane, activates SAR1, causing it to insert an N-terminal amphipathic helix into the 
ER membrane. (b) SAR1-GTP recruits the inner coat complex, SEC23-SEC24. (c) 
SEC24 interacts with the cytoplasmic domains of transmembrane proteins, which may in 
turn serve as cargo receptors for soluble proteins. (d) The outer coat complex, SEC13-
SEC31, polymerizes the COPII vesicle to drive budding from the ER membrane.  (Figure 
adapted from A. Baines, 2009) 
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Figure 1-3: Domain Structure of the mammalian SEC24 paralogs 

The mammalian SEC24 proteins are shown with the conserved domains highlighted.  
Though variable in overall protein length, all paralogs of SEC24 share the same 
conserved domain organization and an N-terminal hypervariable region. 
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Figure 1-4: Evolution and divergence of the SEC24 paralogs 

(A) Phylogram depicting the SEC24A/B and SEC24C/D subfamilies of the mammalian 
paralogs and their relationship to the ancestral yeast paralog Sec24p.  (B) Table 
displaying percent of protein sequence identity between yeast and mammalian SEC24 
paralogs, calculated using ClustalW2 alignment software.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 19 

 

 
 

Figure 1-5: Localization of characterized binding sites on the structure of SEC24 

The four characterized cargo recognition sites depicted on SEC24 are shown on the 
ribbon diagram of the SEC23-SEC24 heterodimeric complex.  The A-site is located 
within the trunk domain of SEC24, near the interface with SEC23. The B-site is located 
on the membrane face near a basic pocket of SEC24.  The C-site is also near the trunk 
domain, and the IxM recognition site is on the opposite face from SEC23, halfway 
between the A- and B-sites. (Adapted from Lee and Miller, Seminars in Cell & 
Developmental Biology, 2007) 
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Protein or Motif Class SEC24 
preference 

Species 

Pmap1 transmembrane Lst1p yeast 

PCSK9 soluble SEC24A mouse 

VANGL2 transmembrane SEC24B mouse 

SEC22 SNARE SEC24A/B human 

(IxM) motif export signal SEC24C/D human 

(DxE) motif export signal  SEC24A/B human 

(LxxLE) motif export signal  SEC24A/B human 

SERT transmembrane SEC24C human 

GAT1 transmembrane  SEC24D human 

 
 

Table 1-1: Paralog-specific interactions characterized to date. 
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CHAPTER II:  DISRUPTION OF THE SEC24D GENE RESULTS IN EARLY 
EMBRYONIC LETHALITY IN THE MOUSE 

 
 
 

ABSTRACT 

 Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to 

the Golgi is mediated by the coat protein complex COPII.  The inner coat of COPII is 

assembled from heterodimers of SEC23 and SEC24.   Though mice with mutations in 

one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in 

humans or mice has not yet been described for any of the other Sec24 paralogs.   We now 

report characterization of mice with targeted disruption of Sec24d.   Early embryonic 

lethality is observed in mice completely deficient in SEC24D, while a hypomorphic 

Sec24d allele permits survival to mid-embryogenesis.  Mice haploinsufficient for Sec24d 

exhibit no phenotypic abnormality.   A BAC transgene containing Sec24d rescues the 

embryonic lethality observed in Sec24d-null mice.   These results demonstrate an 

absolute requirement for SEC24D expression in early mammalian development that is 

not compensated by the other three Sec24 paralogs.  The early embryonic lethality 

resulting from loss of SEC24D in mice contrasts with the previously reported mild 

skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube 

phenotype of SEC24B deficiency in mice.  Taken together, these observations suggest 

that the multiple Sec24 paralogs have developed distinct functions over the course of 

vertebrate evolution. 
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INTRODUCTION 

 Approximately one-third of all vertebrate proteins traverse the intracellular 

secretory pathway prior to being secreted into the extracellular space or transported to 

any of a number of intracellular compartments, including the Golgi, endosome, lysosome, 

or plasma membrane [1,2,35]. Following co-translational translocation into the 

endoplasmic reticulum (ER) lumen, newly synthesized proteins are folded and undergo 

initial post-translational modification, followed by exit from the ER at ribosome-free 

regions called ER exit sites (ERES) [3] via COPII-coated vesicles [1,4,5].  In yeast, the 

COPII coat is composed of the small GTP-binding protein Sar1p, the heterodimeric 

Sec23p/Sec24p complex and the heterotetrameric Sec13p/Sec31p complex [72].  Sar1p 

generates membrane curvature and initiates vesicle formation by inserting an N-terminal 

amphipathic helix into the ER membrane [10]. The active membrane-bound Sar1p-GTP 

recruits Sec23p/Sec24p, and Sec24p drives the selective recruitment of cargo proteins 

into budding vesicles [43,46,73]. Polymerization of the outer Sec13p/Sec31p complex is 

the final step in vesicle budding [13]. 

 While the components of the COPII coat are highly conserved, and the 

fundamental interactions appear to be similar from yeast to mammals, most components 

exhibit multiple paralogs in higher eukaryotes.  Studies in yeast suggest that Sec24p is 

the major cargo binding component of the COPII coat, with three cargo-binding sites in 

the N-terminal region interacting with either cytoplasmic domains of the cargo itself or 

cargo adaptors [73].  Deletion of yeast Sec24p is lethal, whereas deletion of either of two 

non-essential Sec24p paralogs, Lst1p and Iss1p, results in specific cargo-transport defects 

[24,25,74].  In vertebrates, four Sec24 paralogs (SEC24A-D) have been identified. These 
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Sec24 paralogs fall into two subfamilies, a SEC24A/B subgroup and a SEC24C/D 

subgroup, based on protein sequence similarity, with the A/B subgroup closer to yeast 

Sec24p [75]. All four paralogs contain highly conserved C-terminal domains and a more 

variable N-terminal region, while the SEC24A/B and SEC24C/D subgroups appear to 

differ in their affinity for a subset of known cargo-sorting signals [23,59].  

 Mice with mutations in Sec24b exhibit neural tube closure defects as a result of 

decreased VANGL2 trafficking out of the ER [27], though no human disorders resulting 

from deficiencies of SEC24B or any of the other Sec24 paralogs have been reported.  

Mutations in the SEC24 binding partner SEC23, which has two paralogs (Sec23a and 

Sec23b), have been characterized both in humans and in fish.  Missense mutations in 

human SEC23A lead to cranio-lenticulo-sutural dysplasia (CLSD), characterized by the 

persistence of wide-open fontanelles into childhood and the development of Y-shaped 

cataracts [76].  Mutations in human SEC23B cause congenital dyserythropoietic anemia 

type II (CDAII), characterized by a specific defect in erythrocyte development [77] while 

Sec23b deficient mice have a markedly different phenotype, exhibiting pancreatic 

disruption and disintegration [78].  Disruption of either Sec23a or Sec23b in zebrafish 

both result in defects in extracellular matrix (ECM) protein secretion, producing a 

phenotype reminiscent of CLSD in humans [32,76].  Zebrafish lacking SEC24D exhibit 

similar craniofacial dysmorphology, presumably due to defects in the trafficking of 

extracellular matrix (ECM) proteins including type II collagen and matrilin [31] and 

medaka fish with a nonsense mutation in sec24d have also have skeletal defects [33]. We 

now report the characterization of murine SEC24D deficiency. Mice null for SEC24D 
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exhibit very early embryonic lethality, suggesting an essential role for SEC24D in the 

transport of critical protein cargoes from the ER.   

 

MATERIALS AND METHODS 

Generation of SEC24D deficient mice 

 ES cell clones RRT226 and RRR785 were obtained from the International Gene 

Trap Consortium (IGTC, Bay Genomics, San Francisco, CA), and will be referred to as 

Sec24dgt and Sec24dgt2, respectively.  Both ES cell clones were cultured as described [79] 

and expanded for microinjection and preparation of total RNA and genomic DNA. ES 

cell-mouse chimeras were prepared by blastocyst microinjection as described [80] and 

bred with C57BL/6J mice to obtain germ-line transmission.  ES-cell derived F1 agouti 

offspring were genotyped using primers Neo A and Neo B to amplify a region of the 

neomycin cassette to determine the presence (Neo+) or absence (Neo-) of the gene trap 

allele.  Sequences for all primers used in this study are listed in Table 2-1.  Mice carrying 

the gene trap allele were maintained by backcrossing to C57BL/6J. 

Mapping of the gene trap vector insertion sites 

 The gene trap vector insertion sites in intron 8 of Sec24dgt and intron 20 of 

Sec24dgt2 were determined by PCR amplification and DNA sequencing.  A series of 

forward primers evenly spaced throughout the intronic sequence (I8F1-21 and I20F1-7, 

Table 2-1) were combined with a reverse primer (Vector 19 or Vector 20, Table 2-1) 

specific to the 5’end of the gene trap vector sequence. Amplicons corresponding to a 
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specific product spanning the insertion site were confirmed by DNA sequencing.    

Insertion site sequences for both gene trap alleles were deposited into GenBank.   

Genotyping mice by PCR and Southern Blot 

 Mice from Sec24dgt were genotyped using a three-primer competitive PCR assay 

consisting of a common forward primer, (In8F3) located upstream of the insertion site in 

intron 8, and two reverse primers, located downstream of the insertion site in intron 8, 

(In8R4) or within the gene trap vector (V19) (Figure 2-1A).  This reaction produces 

products of different sizes from the wild-type (762bp) and gene trap (666bp) alleles, 

which are resolved by agarose gel electrophoresis (Figure 1B).  Genotypes for four 

representative Sec24dgt mice were also confirmed by Southern blot analysis using a 

371bp probe amplified from C57BL/6J genomic DNA with the primers ApaI A and ApaI 

B.  The probe was hybridized to ApaI-digested genomic DNA, as previously described 

[81].   Mice from Sec24dgt2 were also genotyped using a three-primer competitive PCR, 

with a common forward primer (In20F1) located upstream of the insertion site in intron 

20, and two reverse primers, located downstream of the insertion site (In20R1) in intron 

20 or within the gene trap vector (V20) (Figure 2-2A).  This reaction produces a 715bp 

product from the wild-type allele and a 558bp product from the gene trap allele, which 

are resolved by agarose gel electrophoresis (Figure 2-2B).  

Timed mating 

 Timed matings were performed by intercrossing Sec24d heterozygous mice.  

Embryos were harvested at multiple time points, including day E10.5-11.5 for genotyping 

and histological analysis and E13.5 for the preparation of mouse embryonic fibroblasts. 

Genotyping was performed on genomic DNA isolated from embryonic yolk sacs. For 
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blastocyst collection, female Sec24d+/gt or Sec24d+/gt2 mice were superovulated by 

intraperitoneal injection of 0.5 IU pregnant mares' serum gonadotropin (PMSG) on day 1 

and 0.5 IU human chorionic gonadotropin HCG on day 3.  Females were then mated with 

Sec24d+/gt or Sec24d+/gt2 males, and copulation plugs were noted on day 4, counted as day 

E0.5 of embryonic development.  Blastocysts were harvested on day 7 (E3.5) as 

previously described [82], and crude lysates were genotyped by three-primer PCR.  

Morula (8-cell embryos) were collected from juvenile superovulated Sec24d+/gt female 

mice mated with Sec24d+/gt male mice and placed in culture as described [83]. 

Reverse-transcription PCR 

 Total RNA was isolated from a panel of frozen tissues from wild-type mice, 

Sec24d+/gt mice and wild-type E10.5 embryos using the RNeasy Mini Kit (Qiagen), as 

per manufacture’s instructions, including the optional DNaseI digestion step.  cDNA 

synthesis and PCR were carried out in one reaction using the SuperScript® III One-Step 

RT-PCR System with Platinum®Taq (Invitrogen).  Primers were designed such that 

amplicons for each gene were approximately the same size.  Primer sequences are listed 

in Table 2-1.  

Quantitative analysis by Southern blot 

 To determine the limit of sensitivity for our PCR assay, serial dilutions of total 

RNA from wild type into total RNA from Sec24dgt2/gt2 embryos were used as template for 

RT-PCR.   PCR products 190bp in length were amplified from the resulting cDNA using 

Sec24dExon20-21F and Sec24dExon20-21R (Table 2-1) and analyzed by Southern 

blotting using a 144bp 32P-labelled DNA probe generated from wild-type cDNA using 

primers 24dEx20-21ProbeF and 24dEx20-21ProbeR (Table 2-1).    
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Generation of BAC Transgenic Mice 

 Two bacterial artificial chromosome (BAC) clones containing the entire Sec24d 

gene, RP23-355K12 (RP23) and RP24-271N12 (RP24) were obtained from the BACPAC 

Resources Center at Children’s Hospital Oakland Research Institute (CHORI, 

http://bacpac.chori.org/).  BAC DNA was purified using a NucleoBond® BAC 100 kit 

(Machery-Nagel), per manufacturer’s instructions. C57BL/6JxSJL F1 female mice were 

generated by the University of Michigan Transgenic Animal Model Core and crossed to 

Sec24d heterozygous mice.  Zygotes from this cross were injected with BAC DNA and 

transgenic founders for RP23 and RP24 were detected by PCR using pBACe3.6F1 and 

pBACe3.6R1 (Table 2-1), primers specific for the vector backbone.  

 Transgenic founders carrying the BAC transgene (Tg+) were generated using 

Sec24d+/gt females as the egg donors, resulting in both Sec24d+/+ and Sec24d+/gt founders 

for RP23 or RP24.  Sec24d+/gt Tg+ founders were immediately crossed with mice 

heterozygous for the Sec24d gene trap allele (Sec24d+/gt) to generate potential Sec24dgt/gt 

Tg+ rescues.  To generate Sec24d+/gt Tg+ for lines with wild-type founders, an additional 

cross between Sec24d+/+ Tg+ and mice heterozygous for the Sec24d gene trap allele 

(Sec24d+/gt) was required. The resulting Sec24d+/gt Tg+ mice were crossed with 

Sec24d+/gt mice to generate potential Sec24dgt/gt Tg+ mice.  All progeny were subjected to 

genotyping for Sec24d as well as the presence of the BAC transgene.  However, these 

assays cannot distinguish the endogenous wild-type allele from the copy of Sec24d 

present on the BAC-transgene. Thus, Sec24dgt/gt Tg+ mice were distinguished from 

Sec24d+/gt Tg+ mice by genotyping for microsatellites differing between the Sec24d “+” 
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and “gt” alleles (see below).  All Sec24d+/gt mice used for this study had been 

backcrossed to C57BL/6J (>N8).    

Microsatellite Genotyping 

 A microsatellite genotyping assay was designed to distinguish the wild-type allele 

from the gene trap allele originally targeted on the 129S1/SvImJ background.  To ensure 

that the correct genotype assignments were given, four independent microsatellites near 

Sec24d but outside both BAC transgenes were chosen, two on either side of Sec24d 

(Figure 2-3). These microsatellites, three tetra-nucleotide repeats and one tri-nucleotide 

repeat, were selected for use in the microsatellite genotyping assay using the Tandem 

Repeat Database [84] because they differed in allele size among the relevant mouse 

strains to distinguish the endogenous Sec24d from the copy of the Sec24d gene in the 

BAC-transgene.  Each microsatellite was evaluated for every potentially transgenic 

Sec24dgt/gt mouse by PCR on genomic DNA using GoTaq® Hot Start Green Master Mix 

(Promega).  A forward primer located upstream and a reverse primer located downstream 

of the microsatellite repeat were used for amplification (see primer sequences, Table 2-1).  

 Primers were designed using Primer3 such that the amplicon size was 

approximately 200bp in length, based on the C57BL/6J reference sequence.   PCR was 

performed as per manufacturer’s instructions, using 29 cycles and scaled up to a 30µl 

reaction volume. Amplification annealing temperatures were optimized for each primer 

set.  PCR products were separated by PAGE using 20% polyacrylamide gels and 

ethidium bromide staining. The gene trap allele is expected to be 129/SvImJ within the 

congenic interval, in contrast to wild-type alleles, which should be either C57BL/6J, 

DBA/2J, or SJL/J, based on the breeding strategy.  (SJL/J was introduced with some of 
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the original transgenic founders, and DBA/2J with some early matings, though all 

subsequent backcrosses were to C57BL/6J).   Genomic DNA isolated from pure 

C57BL/6J, DBA/2J, 129S1/SvImJ, and SJL/J mouse strains was also used as templates to 

determine the amplicon size corresponding to each strain for each microsatellite marker.  

The genotypes of mice identified as Sec24dgt/gt Tg+ were confirmed by progeny testing 

through crosses with Sec24d+/gt mice (> N7 on C57BL6/J). Data shown in the tables 

excludes 6 mice in which a recombination event occurred between the upstream and 

downstream sets of markers.  This number is consistent with the predicted recombination 

frequency of ~1:50 within this 4.2Mb interval.  We cannot exclude the possibility that we 

missed a double recombination event, though the chance of that occurring within our 

sample size is unlikely (predicted frequency for double recombinants,  ~1:2500). 

Ethics Statement 

 All animal care and use complied with the Principles of Laboratory and Animal 

Care established by the National Society for Medical Research.  The University of 

Michigan’s University Committee on Use and Care of Animals (UCUCA) approved all 

animal protocols in this study under protocol number 08571 

Statistical Analysis 

 To determine statistical deviation from the expected Mendelian ratios of 

genotypes from a given cross, the p-value reported is the chi-squared value of observed 

ratio of genotypes compared to the expected ratio.  Complete blood counts parameters 

were evaluated for significance using Student’s T-test comparing levels from wild-type 

mice to levels from Sec24d+/gt mice. An initial analysis showed no significant difference 

between males and females for each genotype, therefore data from males and females 
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were pooled. The wild-type group consisted of 1 male and 2 females, and the Sec24d+/gt 

group consisted of 2 males and 2 females. Alpha levels were adjusted for multiple 

observations according to the Bonferonni correction.  

 

RESULTS 

SEC24D is required for early embryonic development in the mouse. 

 Genomic PCR and sequencing identified the Sec24dgt gene trap insertion site at 

position 3378 of intron 8, numbering from the start of the intron (GenBank accession 

number KC763189) (Figures 2-1A,B, 2-4A-C).  This insertion is consistent with the 

mRNA RT-PCR data mapping the gene trap to exon 8 [85] and is anticipated to disrupt 

SEC24D, generating a fusion transcript containing SEC24D exons 1 through 8 (encoding 

amino acids 1-347 of the total 1032 in SEC24D) fused to the β-geo selection cassette.  

Germline transmission of the Sec24dgt allele was achieved, as confirmed by PCR and 

Southern blot analysis (Figure 2-1B-D).    

 The genotypes of progeny mice generated from Sec24d+/gt intercrosses are shown 

in Table 2-2.  Of 209 pups genotyped at weaning, no Sec24dgt/gt mice were observed 

(p<7X10-17). Similarly, 0/28 and 0/27 Sec24dgt/gt genotypes were observed at E10.5-11.5 

or the blastocyst stage, respectively.  Only 1 out of 17 embryos genotyped at the 8-cell 

stage was Sec24dgt/gt (p<0.07).  Though a statistically significant excess of Sec24d+/gt 

mice was observed (p<0.001) in intercross progeny at all of the above stages, analysis of 

a much larger number of backcross progeny (634) was consistent with the expected 

Mendelian ratio of 50:50 for wild-type and heterozygous mice (p>0.8).  
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No phenotypic abnormalities in Sec24d+/gt mice 

 Sec24d+/gt mice are viable and fertile and exhibit no gross or microscopic 

abnormalities on standard autopsy examination. Complete blood count analysis identified 

no significant differences between Sec24d+/gt and Sec24d+/+ littermates for most 

parameters measured after correction for multiple observations (Table 2-3).  Electron 

microscopy of pancreas and liver tissues from Sec24d+/gt mice, as well as mouse 

embryonic fibroblasts derived from Sec24d+/gt mice, showed no abnormalities in the 

cellular organization or ER structure compared to tissues or fibroblasts derived from 

littermate Sec24d+/+ controls (Figure 2-5A-D).   

Sec24d is ubiquitously expressed 

 Analysis of Sec24a-d mRNA expression by real-time RT-PCR detected 

expression of all four Sec24 paralogs at E10.5, E14, and E18.5, consistent with data from 

the EMAGE gene expression database (http://www.emouseatlas.org/emage/) [86].  RT-

PCR analysis of Sec24d expression in adult mouse tissues demonstrated broad expression 

in a wide range of tissues, similar to previous reports of human expression patterns [75] 

from the RNA Atlas [87].  The latter identifies SEC24D expression in all measured 

human tissues (including colon, heart, hypothalamus, kidney, liver, lung, ovary, skeletal 

muscle, spleen testes, and adipose tissue).  Taken together, these data indicate that 

Sec24d is expressed early and broadly across tissues.  

Sec24d BAC transgenes rescue the embryonic lethal Sec24gt/gt phenotype 

 Two independent BAC transgenes, both spanning the full Sec24d gene (Figure 2-

3), exhibited rescue of the Sec24dgt/gt embryonic lethal phenotype (Table 2-5). Sec24dgt/gt 

Tg+ mice appeared healthy, and exhibited normal fertility and lifespan with no apparent 
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abnormalities on gross autopsy.  The Sec24dgt/gt Tg+ genotypes were confirmed by 

progeny testing (Table 2-5).  While both BACs were able to rescue Sec24dgt/gt mice, all of 

the transgenes generated less than the expected number of Sec24dgt/gt Tg+ rescues. A 

range of penetrance was observed, both between the RP23 and RP24 (average of 58% 

and 37.5%, respectively) and within founder lines of individual BACs (penetrance for 

RP23 transgene founders range from 40-75% and for RP24 founders, from 23-58%).   

A hypomorphic Sec24gt2 allele supports development to mid-embryogenesis 

 A second Sec24d null mouse line (Sec24dgt2) was generated from ES cells derived 

from an independent gene trap insertion and mapped to position 639 of intron 20 in 

Sec24dgt2 (GenBank accession number KC763190) (Figures 2-2, 2-6).  The fusion 

transcript encoded by Sec24dgt2 contains SEC24D exons 1 through 20 (encoding the first 

872 amino acids out of 1032) fused to the β-geo selection cassette.  Sec24d+/gt2 mice, like 

the Sec24d+/gt mice, are healthy and exhibit no apparent abnormalities upon standard 

autopsy examination. Intercrosses also yielded no Sec24dgt2/gt2 pups at weaning (Table 2-

6), confirming the embryonic lethality of SEC24D deficiency.  In contrast to the Sec24dgt 

allele, analysis at both the blastocyst-stage and E10.5-11.5 identified Sec24dgt2/gt2 

embryos in the expected Mendelian ratio, though no Sec24dgt2/gt2 embryos were observed 

beyond E13.5. The Sec24dgt2/gt2 E10.5 embryos appeared grossly and histologically 

indistinguishable from their wild type and heterozygous littermates, with visible 

heartbeats just prior to dissection.  RT-PCR of total RNA prepared from Sec24dgt2/gt2 

embryos at E10.5 detected a low level of residual normal splicing around the gene trap, 

though quantitative analysis by PCR and Southern blotting suggests that the level of this 
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residual full-length transcript in Sec24dgt2/gt2 mice is less than 0.1% of the wild type 

allele.  

DISCUSSION 

 Our data demonstrate that SEC24D is absolutely required for early embryonic 

development in the mouse, with complete deficiency resulting in uniform loss prior to the 

blastocyst stage.  Low levels of SEC24D expression (< 0.1% of wild-type) are sufficient 

to support development through mid-embryogenesis, though incompatible with survival 

to term, whereas SEC24D haploinsufficiency results in no apparent phenotypic 

abnormalities.  The lack of a heterozygous phenotype, together with transgenic rescue of 

the homozygous null phenotype, excludes a contribution from a dominant negative effect 

of the truncated SEC24D fusion protein to the embryonic lethality.  The transgenic rescue 

also excludes a passenger gene effect at a nearby locus related to the gene targeting [88].  

The transgenic rescue also demonstrates that the critical cis-regulatory sequences 

required for SEC24D expression are contained within the ~140 Kb genomic segment 

shared by the 2 BACs used in these experiments. 

 The reduction in null embryos as early as the 8-cell stage (Table 2-2) suggests that 

residual maternal SEC24D is insufficient to maintain normal cellular function beyond the 

first few cell divisions.  These data suggest a role for an essential secretory cargo in the 

early embryo that is specifically dependent on SEC24D for transport from the ER.  

Alternatively, SEC24D could be the major or only Sec24 paralog expressed at this early 

developmental stage.  In either case, the low level of normal Sec24d mRNA (<0.1%) 

resulting from residual splicing around the hypomorphic Sec24dgt2 gene trap allele 

appears to be sufficient to support development past this stage, though the corresponding 
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level of wild-type SEC24D protein was not directly measured. Also, a higher level of 

residual splicing in the early embryo, or partial function of the SEC24D β-gal fusion 

protein cannot be excluded.   

 The early essential role for SEC24D contrasts with the isolated neural tube 

developmental defect resulting from SEC24B deficiency in the mouse [27].  These results 

are surprising, in light of the observation of a higher extent of sequence identity for 

SEC24A and B to the essential yeast Sec24p protein than the SEC24C and D vertebrate 

paralogs, which are closer to the nonessential yeast genes Lst1p and Iss1p.  The profound 

dependence of the early mammalian embryo on SEC24D was also unexpected, given the 

much milder phenotype observed in SEC24D deficient zebrafish.  The latter animals 

exhibit craniofacial dysmorphology, thought to result from a specific defect in collagen 

secretion from chondrocytes [31], but otherwise develop normally. Variances in the level 

of maternal mRNA deposition between mice and zebrafish is not a likely explanation for 

these differences given the lengthy embryonic survival of the zebrafish compared to the 

mouse [31].  Rather, these observations suggest that the specific functions of the 

vertebrate SEC24s, mediated either through unique cargo selectivity or tissue-specific 

expression programs, may have shifted over evolutionary time.  Consistent with this 

notion, the phenotypes of SEC23B deficiency differ markedly between humans, mice and 

zebrafish [32,77,78,89]. 

 The initial F1 and N5 intercrosses of Sec24gt/+ heterozygous mice revealed a 

puzzling excess of heterozygotes compared to wild-type offspring, significantly 

exceeding the expected 2:1 ratio (Table 2-2, p < 0.0094).  This apparent selective 

advantage to the Sec24gt/+ heterozygote was no longer evident after further backcrossing 
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into C57BL/6J, with genotyping of 634 backcross animals no longer showing an 

imbalance between the Sec24gt/+ and Sec24+/+ genotypes.  Intercrosses of the second gene 

trap allele (Sec24gt2) also failed to confirm an excess of heterozygous offspring (Table 2-

6).  Taken together, these data suggest the presence of an incidental “passenger“ gene 

mutation at a locus tightly linked to the initial Sec24gt allele [88], which was eventually 

lost as a result of backcrossing to C57BL/6J.  

 The early embryonic lethality observed in SEC24D-deficient mice is consistent 

with the absence of a previously identified human SEC24D phenotype, though human 

deficiencies have also not yet been identified for any of the other Sec24 paralogs.  

However, the specific phenotypes of human mutations at SEC23A and SEC23B suggest 

the possibility of unique disorders associated with more subtle SEC24D mutations.  Only 

2 SEC23A-deficient pedigrees have been identified, each carrying unique missense 

mutations, likely associated with a partial change/loss of function.  Similarly, though 

many different SEC23B mutations have been identified in patients with CDAII, no 

patients have yet been identified who are homozygous or compound heterozygous for 2 

null mutations, suggesting that complete SEC23B deficiency might also result in early 

lethality.  The diverse phenotypes of humans, mice, and zebrafish with mutations in 

genes encoding components of the COPII coat suggests a complex balance of function 

among the multiple paralogous genes in each family.  The availability of genetic models 

for deficiency in COPII component genes should enable future studies of COPII function 

and cargo selection in vivo. 

 
 
 



 36 

 
 
 

 
Figure 2-1: Generation of SEC24D-deficient mice 

 (A) Schematic representation of the Sec24dgt gene trap allele in intron 8 at the mouse 
Sec24d locus.  (B) Genotype results using a three-primer competitive PCR assay with the 
primers indicated in A.  (C-D) Confirmation of the gene trap insertion by Southern blot 
analysis of ApaI-digested Sec24dgt genomic DNA from Sec24d+/+ and Sec24d+/gt mice; 
ApaI restriction enzyme sites (arrows) and probe location are depicted in C. 
Hybridization to the wild-type allele detected a 4.7kb ApaI restriction fragment, whereas 
hybridization to the gene trap allele detected a 3.0kb ApaI restriction fragment.  In mice 
heterozygous for the Sec24dgt gene trap allele, both restriction fragments are present.  
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Figure 2-2: Generation of a second allele for SEC24D-deficient mice 

(A) Schematic representation of the Sec24dgt2 gene trap allele in intron 20 at the mouse 
Sec24d locus.   (B) A three-primer competitive PCR genotyping assay to identify the 
Sec24dgt2 allele.  Primer locations are depicted in (A).   
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Figure 2-3: Locations of BACs and microsatellite markers on mouse chromosome 3 
BAC transgenes RP23-355K12 (RP23) and RP24-271N12 (RP24) contain the entire 
Sec24d gene as well as upstream and downstream sequences as indicated.   Stars depict 
relative locations of the four microsatellite markers used for microsatellite genotyping.   
Exact genomic locations are listed for genotyping primers are listed in Table 2-1. 
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Figure 2-4: Sec24dgt allele sequence 
(A) Sequence of the Sec24dgt gene trap insertion site in intron 8 of the Sec24d gene. The 
arrowhead indicates the site of the gene trap vector pGT0LxF insertion, with the flanking 
Sec24d intron 8 sequence in bold. The locations of genotyping primer sequences are 
underlined. (B) 5’ end of the vector sequence inserted into intron 8. Sequence aligning to 
intron 8 is in bold, while the lowercase sequence represents a 77bp insertion that is not 
present the pGT0LxF vector and cannot be identified in the mouse genome. The position 
of primer V19 within the 5’ vector sequence is indicated. (C) 3’ end of the vector 
sequence inserted into intron 8. Intron 8 sequence is in bold.   
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Figure 2-5: Transmission electron micrograph of Sec24d+/+ and Sec24d+/gt cells 
 (A) pancreatic islet cells, (B) pancreatic acinar cells, (C) hepatocytes, and (D) mouse 
embryonic fibroblasts.  Islet cells are identified by the presence of specialized secretory 
granules and acinar cells by the presence of zymogen granules.  Samples were viewed at 
10,500-13,500x direct magnification. A scale bar at the top right of each image 
corresponds to 1µm.  Abbreviations: N = nucleus, ER = endoplasmic reticulum (black 
arrowheads), SG = secretory granules, ZG = zymogen granules, MT = mitochondria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 41 

 
 

Figure 2-6: Sec24dgt2 allele sequence 
(A) Sequence of the Sec24dgt2 gene trap insertion site in intron 20 of the Sec24d gene. 
The arrowhead indicates the site of the gene trap vector pGT0LxF insertion.  Intron 20 
sequences flanking the insertion site are in bold. The locations of genotyping primer 
sequences are underlined. (B) 5’ and (C) 3’ ends of the vector sequence inserted into 
intron 20. The position of primer V20 within the 5’ vector sequence is indicated, and 
flanking intron 20 sequences are in bold. 
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Table 2-1: List of primers used in Chapter 2 
All primers are listed 5’ to 3’.  
 
 
 

Mapping and Genotyping Primers Primers for BAC Transgene Rescue 

In8F1 CCATGCAGTGCTACACAAGC pBACe3.6F1 GCTGCAGATCCCTAAACAGC 
In8F2 CTGCTGCCTGAAGATCAAGA pBACe3.6R1 TTCCGTCTCCGTCAAAAATC 

In8F3 CATTCGTTGCTCCTCCTCTT MS-1F TGGTAGCAGGACACAGCTGATA 
In8F4 AATCTGACCTGGGGAGAAGC MS-1R GGTCTAACACACGAGAATTTGAA 

In8F5 CCCAACCCTCACGACAATAA MS-2F GCATGGAAAAACCCTGTCTC 

In8F6 GCAGAGGCTGCTATTCCATC MS-2R CACCATTCAGCAATGATTCTC 

In8F7 ATGGATGCTGCTGGAACTCT MS-3F TTCGGCTATTGTCTTCCACA 

In8F8 CACAGGGAAAACGTGGAAAG MS-3R ACGGGGTTAGGTAGCCAGAT 

In8F9 CGTGTCCTTCCCTAAACAGC MS-4F TGAGTCTGGCTAATTGCACTG 

In8F10 CAGGTGGGGGATCTTATGAG MS-4R GATGGGAGGAGCATTCTGAG 

In8F11 GGTGCTTTCAAATTGGTCAC 
Southern Blot Probe Primers In8F12 GATGGCGTGTAAGCTGTTGA 

In8F13 GGGACAAAACAGCAGCCTAC ApaI A AATCCGTGGTTGTAGGTTGC 
In8F14 CACTGGGGATATGGAACCTG ApaI B CAAAGGATCTCCCCACTCTG 

In8F15 GGTGGGGAAGAGAACTTGTG 24dEx20-21ProbeF ACAGTTTGTTGAAAAACTG 

In8F16 CTGGCCTCTTTACACCCTTG 24dEx20-21ProbeR ACGTGTGGATTGGCAGGAGCAG 

In8F17 AAAGAGCGAGACCAACCTGA 

RT-PCR Primers In8F18 TTTTCCTGTAGGCCCATGAC 

In8F19 AGCACAGGGAAGCCTAAGTG GAPDH-F TGTGATGGGTGTGAACCACGAGAA 
In8F20 CCCTTTCCTCTTCCTCCACT GAPDH-R ACCAGTGGATGCAGGGATGATGTT 

In8F21 GAGGTCAGAAGAGGGATCA Sec24dEx20-21F TGAAGGTGCTGCCTGTGTACATGA 

In20F1 GGCAGTGGAAGGTGTAAGGA Sec24dEx20-21R ACATGTTCAGACCGTTAGCCAGCA 

In20F2 GCCATGCAAGAGTCCCTCAGT 

  

In20F3 GCCCCTGTCTCTAAGCCTCT 

In20F4 CATCCTGTTCGTCCTCCATC 

In20F5 TGATCGGTTGCCACATAAAA 

In20F6 CCCTAGTCGGGCTCTTACCT 

In20F7 GGCCTTTCTCCCTCAAAAAG 

In8R4 TGTCCAGGAAACACGACAGA 

In20R1 CTGGCCCTGAATTTATTGTGTG 
Vector 19 GGGTCTCAAAGTCAGGGTCA 
Vector 20 GACCTGGCTCCTATGGGATA 
NeoA CTTGCGCAGCTGTGCTCGACGTTG 

NeoB TCTTCGTCCAGATCATCCTGATCG 
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Table 2-3: Results of Sec24d+/gt intercrosses, and backcrosses to Sec24d+/+ mice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sec24d genotype: +/+ +/gt gt/gt p-value 

Sec24d+/gt ×Sec24d+/gt  expected:  25% 50% 25%  

Progeny at weaning (n=209) 21.1% 
(44) 

78.9% 
(165) 0 < 7.1 x 10-17 

E10.5 to E11.5 (n=28) 21.4% 
(6) 

78.6% 
(22) 0 < 2.3 x 10-3 

Blastocyst (n=27) 29.6% 
(8) 

70.4% 
(19) 0 < 2.7 x 10-3 

8-cell embryo (n=17) 11.8% 
(2) 

82.4% 
(14) 

5.8% 
(1) < 6.0 x 10-2 

Sec24d+/gt × Sec24d+/+ expected: 50% 50% ---  

N2 to N17 Progeny at weaning 
(n=634) 

49.5% 
(314) 

50.5% 
(320) --- > 0.81 
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Table 2-4: Complete blood count analysis of Sec24d+/+ and Sec24d+/gt mice 

Whole blood was drawn by retro-orbital puncture and analyzed on an Advia120 whole 
blood analyzer.  All values are + or – standard error of the mean. *Based on the 
Bonferonni correction for multiple observations, the level of significance corresponding 
to p < 0.05 for a single observation would be adjusted to p < 3.8x10-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                Sec24d+/+                Sec24d+/gt                     p-value* 

WBC (× 103 cells/µl) 5.50 + 0.74 7.25 + 0.63 > 0.12 

RBC (× 106 cells/µl) 9.57 + 0.22 9.93 + 0.13 > 0.19 

HGB (g/dL) 15.67 + 0.88 16.0 + 0.0 > 0.67 

HCT (%) 45.0 + 1.0 46.25 + 0.75 > 0.35 

MCV (fL) 46.93 + 0.35 47.35 + 0.23 > 0.34 

MCH (pg) 16.10 + 0.74 16.15 + 0.06 > 0.93 

MCHC (g/dL) 34.37 + 1.68 34.08 + 0.13 >0.84 

RDW (%) 12.07 + 0.09 11.75 + 0.09 > 0.04 

PLT (× 103 cells/µl) 950.0 + 120.1 1035.0 + 46.3 > 0.49 

MPV (fL) 6.13 + 0.52 6.50 + 0.17 >0.48 
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Table 2-5: Rescue of Sec24dgt/gt mice by BAC transgenes 

Genotypes indicated are of 2-week old progeny resulting from a cross between Sec24d+/gt 
Tg+ mice and Sec24d+/gt mice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24dgt/gt 
Tg+ other p-value 

Expected Ratio with Rescue 14.3% 
(1/7) 85.7% (6/7)  

Total for RP23 BAC (n=109) 8.3% (9) 91.7% (100) < 7.3 x 10-02 

RP23-677 (n= 53) 5.7% (3) 94.3% (50) < 7.3 x 10-02 

RP23-686 (n=56) 10.7% (6) 89.3% (50) < 4.5 x 10-1 

Total for RP24 BAC (n=243) 5.3% (13) 94.7% (230) < 6.9 x 10-05 

RP24-122 (n=61) 3.3% (2) 96.7% (59) < 1.5 x 10-02 

RP24-139 (n=85) 3.5% (3) 96.5% (82) < 4.6 x 10-03 

RP24-157 (n=97) 8.3% (8) 91.8% (89) < 9.0 x 10-02 

Total (n=352) 6.25% (22) 93.75% (330) < 1.7 x 10-05 
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Table 2-6: Progeny testing of Sec24dgt/gt Tg+ mice 

Tested mice were crossed with Sec24d+/gt mice, and progeny were genotyped.  The 
presence of any Sec24d+/+ mice would indicate that the test parent was heterozygous for 
the gene trap allele.  P-values are calculated for the observed genotypes compared to the 
expected if the tested transgenic mouse was Sec24d+/gt rather than Sec24dgt/gt.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24d+/+  
Sec24d+/+ Tg+ other  

Expected Ratio if parent 
was Sec24d+/gt, BAC-Tg+ 28.6%  (2/7) 71.4% (5/7) p-value 

Total for RP23 BAC (n=47) 0%  100% (47) < 1.5 x 10-05 

RP23-677 (n= 53) 0% 100% (47) < 1.5 x 10-05 

Total for RP24 BAC (n=83) 0% 100% (83) < 8.4 x 10-09 

RP24-139 (n=53) 0% 100% (53) < 4.2 x 10-06 

RP24-157 (n=30) 0% 100% (30) < 5.4 x 10-04 

Total (n=130) 0% 100% (130) < 5.6 x 10-13 
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Table 2-7: Results of Sec24d+/gt2 intercrosses, and backcrosses to Sec24d+/+ mice 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sec24d genotype: +/+ +/gt2 gt2/gt2 p-value 

Sec24d+/gt2  × Sec24d+/gt2  
expected: 25% 50% 25%  

Progeny at weaning  (n=88) 34.1% (30) 65.9% (58) 0 < 6.1 x 10-08 

E13.5 to E18.5 (n=29) 37.9% (11) 62.1% (18) 0 < 1.9 x 10-03 

E10.5 to E11.5 (n=105) 24.8% (26) 56.2% (59) 19% (20) < 1.6 x 10-01 

Blastocyst (n=99) 26.3% (26) 47.4% (47) 26.3% (26) < 7.8 x 10-01 

Sec24d+/gt2  × Sec24d+/+ 
expected: 50% 50% ---  

Backcrosses at N2 to N12 
(n=367) 56% (207) 44% (160) --- > 1.0 x 10-02 
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This chapter was published in the journal PLoS One in 2013 under the title “Disruption 

of the Sec24d gene results in early embryonic lethality in the mouse” by Andrea C. 

Baines*, Elizabeth J. Adams*, Bin Zhang, and David Ginsburg.    
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CHAPTER III:  MAMMALIAN COPII COMPONENT SEC24C IS REQUIRED 
FOR EMBRYONIC DEVELOPMENT IN MICE 

 
 
 

ABSTRACT 

 COPII coated vesicles mediate the transport of newly synthesized proteins from 

the endoplasmic reticulum (ER) to the Golgi.  SEC24 is the COPII component primarily 

responsible for recruitment of protein cargoes into nascent vesicles.  There are four Sec24 

paralogs in mammals, with mice deficient in SEC24A, B, and D exhibiting a wide range 

of phenotypes.  We now report characterization of mice with deficiency in the fourth 

Sec24 paralog, Sec24c.  Although mice haploinsufficient for Sec24c exhibit no apparent 

abnormality, homozygous deficiency results in embryonic lethality around embryonic 

day 7.  Tissue-specific knockouts of Sec24c in hepatocytes, pancreatic acinar cells, 

smooth muscle cells, and intestinal epithelium are phenotypically normal. Thus, SEC24C 

is required in early mammalian development, but is dispensable in a number of tissues, 

likely as a result of compensation by other Sec24 paralogs.  The embryonic lethality 

resulting from loss of SEC24C occurs considerably later than the lethality previously 

observed in SEC24D deficiency, and is quite distinct from the restricted neural tube 

phenotype of Sec24b null embryos, and the mild hypocholesterolemic phenotype of adult 

Sec24a null mice.  Taken together, these results demonstrate that the four Sec24 paralogs 

have developed unique functions over the course of vertebrate evolution. 
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INTRODUCTION 

 Approximately one-third of all mammalian proteins traverse the secretory 

pathway en route to their final destinations, including localization to cell surface 

membranes, the lysosomes and other intracellular compartments, or secretion into the 

extracellular space [1,2].  These proteins begin their journey in the endoplasmic reticulum 

(ER), where they are recruited into newly forming COPII vesicles located at ribosome-

free ER exit sites [1,3,4,5].  The yeast COPII coat is composed of the small GTP-binding 

protein Sar1p, a heterodimeric complex of Sec23p/Sec24p, and a heterotetrameric of 

Sec13p/Sec31p [72]. The COPII vesicles containing these cargoes are then trafficked 

from the ER to the ER-Golgi intermediate compartment (ERGIC), where they are further 

modified and directed to their final destination.  

 The mechanism of COPII coat assembly has been elegantly dissected in S. 

cerevesiae and the fundamental mechanisms appear to be conserved from yeast to 

humans [90]. Vesicle formation is initiated with the activation of the small GTPase Sar1p 

by the GEF Sec12p, which is localized on the ER membrane.  GTP binding to Sar1p 

induces a conformation change and insertion of a small amphipathic helix of Sar1p into 

the ER membrane and begins the process of vesicle formation [9,10].  Activated Sar1p 

recruits the Sec23p-Sec24p heterodimer to the ER forming the inner layer of the COPII 

coat [11,12]. Polymerization of Sec13p and Sec31p heterotetramers to form the outer 

layer, promoting further curvature and budding of the nascent COPII vesicle from the ER 

[13].  

 SEC24 is the COPII component thought to be primarily responsible for cargo 

recruitment, with ER exit motifs on protein cargos interacting with specific binding sites 
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on SEC24 [46,73].  SEC24-cargo interactions are either direct, in the case of 

transmembrane proteins, or require a transmembrane adaptor to mediate interaction of ER 

luminal cargo with the COPII coat located on the cytoplasmic face of the ER membrane. 

Examples include the well-characterized interaction between the adaptor component 

LMAN1/MCFD2 and its cargos Factor V and Factor VIII [39,91,92]. 

 In S. cerevisiae, loss of Sec24p is lethal, while deficiency of either of two non-

essential Sec24p paralogs, Iss1p or Lst1p, results in specific cargo-transport defects 

[24,25,74]. The mammalian genome encodes four paralogs of Sec24 (Sec24a-d), which 

can be classified into two subgroups, SEC24A/B and SEC24C/D, based on protein 

sequence identity, with the A/B subgroup more closely related to the ancestral yeast 

paralog Sec24p [75,93].   All four paralogs contain a highly conserved C-terminus and a 

variable N-terminal region, with previous reports suggesting differences between the two 

SEC24 subgroups in their affinity for cargo-sorting signals [23,59]. All four Sec24 

paralogs appears to be ubiquitously expressed in the adult and in the developing embryo 

mouse [28,86]. 

 Mutations in several Sec24 paralogs in Zebrafish suggest a critical role in proper 

the secretion of extracellular matrix collagens [29,30,31,32].  While there have been no 

diseases attributed to mutations in any of the human SEC24 paralogs, mutations in 

SEC23A result in the human disorder cranio-lenticulo-sutral dysplasia [76] and mutations 

in human SEC23B cause congenital dyserythropoietic anemia type II (CDAII) [77].  In 

contrast to humans, Sec23b deficient mice exhibit perinatal lethality due to the 

destruction of the pancreas [78].   Mice deficient in SEC24A exhibit low plasma 

cholesterol levels, attributed to a block in the secretion of the regulatory protein PCSK9 
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[26]. SEC24B-deficient mice have a specific defect in the secretion of VANGL2 leading 

to a neural tube closure defect[27].  SEC24D-deficient mice die very early in embryonic 

development (~E3.5)[28].  We now report that the loss of murine SEC24C also results in 

embryonic lethality, though at a later time point (~E7.5).  However, ablation of SEC24C 

in multiple tissues is surprisingly well tolerated.  

 

MATERIALS AND METHODS 

Generation of SEC24C deficient mice 

 ES cell clone EPD0241-2-A11 for Sec24ctm1a(EUCOMM)Wtsi, an allele for Sec24c 

with conditional potential, was obtained from the European Mouse Mutagenesis program 

(EUCOMM) and will be referred to as Sec24cGT. ES cells were cultured and expanded for 

microinjection and genomic DNA isolation as previously described [80].   ES cell-mouse 

chimeras were generated as described [81] and subsequently bred to B6(Cg)-Tyrc-2J/J 

(JAX stock #000058) to achieve germ-line transmission.  ES-cell derived F1 black 

progeny were genotyped using primers to detect the presence (Sec24cGT) or absence 

(Sec24cwt) of the targeted allele (primers Ex and E, Figure 3-2, Table 3-7).  The Sec24cGT 

allele was maintained by continuous backcrosses to C57BL/6J mice.  Genotyping was 

performed with mouse tail clip DNA using Go-Taq Green Master Mix (Promega, 

Madison, WI), and the resulting PCR products resolved by 2% agarose gel 

electrophoresis.  

Long-range PCR to confirm insertion site of Sec24c gene trap allele 

 Genomic DNA isolated from the ES cell clone EPD0241-2-A11 and genomic 

DNA from a wild type C57BL/6J mouse tail clip were amplified by long-range PCR to 
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confirm correct targeting of the Sec24cGT allele with primers 24c-GF3 and primer B (5’ 

end) and 24c-GR4 and RAF5 Fwd using Phusion Hot Start II DNA Polymerase (Thermo 

Scientific), with products resolved on a 0.8% agarose gel.  

Generation of a Sec24c conditional allele 

 To generate mice carrying the conditional Sec24ctm1c(EUCOMM)Wtsi allele, referred to 

from now on as Sec24cFL allele, Sec24c+/GT were crossed to mice transgenic for Flpe 

recombinase driven by an actin promoter (C57BL/6J background, JAX stock no. 

005703).  Mice were genotyped with primers Ex and E to detect both the wild type 

(308bp) allele and the presence of the LoxP site (278bp), primers A,B and C to 

distinguish between the Sec24cGT (204bp) and Sec24cFL (534bp) alleles, and with primers 

FLP1 and FLP2 to detect the FLPE transgene (750bp). Sec24c+/FL mice were backcrossed 

to C57BL/6J mice to remove the FLPe transgene.    

Generation of a Sec24c null allele 

 Sec24c+/FL were crossed to EIIA driven Cre recombinase transgenic mice 

(C57/BL6 background, JAX stock no. 003724), and offspring were genotyped with 

primers A, Ex, and E to distinguish Sec24c+, Sec24cFL, and the Sec24ctm1d(EUCOMM)Wtsi 

allele, referred to as the Sec24c- allele (Figure 3-2).  The Cre transgene was detected with 

primers Cre fwd and Cre rev.  Sec24c+/- mice were backcrossed to C57BL/6J mice to 

remove the Cre transgene. 

Generation of tissue-specific knockout mice 

 Sec24cFL/FL mice were crossed to Sec24c+/- Cre+ using the following tissue-

specific transgenes: P48-Cre (pancreas-specific,[94]), Villin-Cre (intestinal-epithelial-
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specific, JAX #004586) [95], Albumin-Cre (hepatocyte-specific, JAX #003574) [96] 

SM22-Cre mice (smooth-muscle-specific, JAX #004746) [97], and Meox2-Cre transgene 

(ubiquitous expression beginning at embryonic day 5, JAX #003755) [98].  Progeny were 

genotyped at the Sec24c locus with primers A, Ex, and E and with primers AnyCreF and 

AnyCreR to detect the presence of the appropriate Cre transgene.  The level of Cre-

mediate excision was assessed by isolation of genomic DNA from tissue samples of 

either Sec24c+/FL Cre+ or Sec24cFL/- Cre+ mice and PCR using primers A, Ex, and E 

(Table 3-7) at the Sec24c locus.  

Phenotypic analysis of Sec24c+/- and Sec24c+/-Sec24d+/GT, and tissue-specific 

knockout mice 

 Whole blood was collected and complete blood counts were carried out as 

previously described [28].   For histology, tissues were fixed in 4% paraformaldehyde in 

PBS overnight at 4°C, then transferred to 30% EtOH, 50% EtOH, and 70% EtOH, each 

for thee times ten minutes.  Processing, embedding, sectioning and H&E staining were 

performed at the University of Michigan’s Microscopy and Image Analysis Laboratory.   

Body weights were measured weekly from weaning up to 12 weeks of age.  A high fat 

diet (45% of calories from fat) was purchased from Research Diets (New Brunswick, NJ) 

and fed ad libitum.  For insulin and blood lipid analysis, mice were fasted 16 hours before 

blood collection.  Blood was collected using heparin-coated collection tubes (Fisher, 

Pittsburgh, PA) by retro-oribtal bleeding from mice anaesthetized with isoflurane. Plasma 

samples were then collected by centrifugation of heparinized blood samples at 3,000 g for 

5 min at 4°C. Plasma cholesterol and triglyceride levels were measured with 5ul of 

plasma samples colorimetric assays using the LiquiColor Cholesterol test kit (Stanbio, 
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Boerne, TX), or Serum Triglyceride Determination Kit (Sigma-Aldrich, St. Louis, MO) 

according to the manufacturer's instructions. Insulin levels were measured using the Ultra 

Sensitive Mouse Insulin ELISA Kit (Chrystal Chem), per manufacturers instructions.   

Timed Matings 

 Timed matings were carried out by intercrossing Sec24c heterozygous mice. 

Embryos were harvested at multiple time points, including day E7.5–11.5 for genotyping 

and histological analysis.  Genotyping was performed on genomic DNA isolated from 

embryonic yolk sacs.  Blastocyst collection and genotyping was performed as previously 

described [82] using super-ovulated Sec24c+/- females and Sec24c+/- males.  

Construction of Sec24c and Sec24d transgenes and generation of transgenic mice 

 Transgenes carrying either Sec24c or Sec24d were designed using the previously 

reported pCAG3Z vector [99].  The entire transgenic construct is shown in Figure 6A.  

The CAG promoter contains the CMV intermediate-early enhancer and the chicken β-

actin promoter to drive early, ubiquitous expression [100,101] of either Sec24c or 

Sec24d.   AgeI and NotI sites were added upstream of an SV40 early termination signal 

and a poly A signal isolated from Tg2.33 [99] and this was placed downstream of the 

CAG promoter in the pCAG3Z vector to create pCAG3zS (Figure 6A).   Sec24c (cDNA -

9 to 3290) or Sec24d (cDNA -9 to 3098) was inserted between the CAG promoter and the 

SV40 signal using AgeI and NotI.  DNA sequencing was performed on all constructs 

prior to microinjection to verify the integrity of the transgenes. All primers used to create 

these constructs are listed in Table 3-7.   pCAG3zS-Sec24c and pCAGzS-Sec24d were 

liberated from the vector backbone with a double digest with BamHI-HF/SphI-HF  or 

SacI/HindIII, respectively (New England Biolabs), and transgenic mice generated by the 
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University of Michigan Transgenic Animal Model Core as previously described [102]. 

Transgenic founders (C57BL/6J X SJL F2) for both lines were detected by PCR using 

Primer-7F and Primer-7R located in the promoter region of the transgenes. Mice 

transgenic for either pCAG3zS-Sec24c or pCAG3zS-Sec24d were crossed with Sec24c+/- 

mice to generate Sec24c+/- Tg+ mice, which were then crossed to Sec24c+/- mice to 

generate potential Sec24c-/- Tg+ mice.   All progeny were genotyped at the Sec24c locus 

and for the presence of the transgene.   Similar crosses were also performed with 

Sec24d+/GT [28] mice.  Five founders for pCAG3zS-Sec24c were used to generate 

transgenic lines to test the ability of pCAG3zS-Sec24c to rescue the loss of Sec24c.  Four 

pCAG3zS-Sec24d founders were used to generate transgenic lines. 

Reverse-transcription PCR 

 Total RNA was isolated from a panel of frozen tissues from transgenic mice from 

each of the founder lines using RNAeasy kit (Qiagen) as per manufacture’s instructions.  

cDNA synthesis and PCR were carried out in one reaction using SuperScript® III One-

Step RT-PCR System with Platinum®Taq (Invitrogen) per manufacturer’s instructions.   

Primers V, W, X, Y located in Sec24c exons 4 through 7 were used to amplify signal 

from Sec24c cDNA (Figure 3-1). Primers 24c-F or 24d-F and primers 24c-R or 24d-R 

were used to detect cDNA specific for the Sec24c or Sec24d transgene (Figure 3-6).   

GAPDH amplification with primers GAPDH-QFwd3 and GAPDH-QRev3 was carried 

out in parallel for each sample.  Primer sequences are listed in Table 3-7. 

Statistical Analysis 

 P-value for progeny genotypes were calculated by a chi-squared test comparing 

expected ratio of genotypes compared to those observed.  Complete blood counts 
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parameters were evaluated for significance using Student’s T-test. Alpha levels were 

adjusted for multiple observations according to the Bonferonni correction.  

 

RESULTS 

Sec24c is ubiquitously expressed, although two alternative splice forms are tissue-

specific 

 Sec24c mRNA expression was detected by RT-PCR in all 15 adult mouse tissues 

tested, consistent with previously reported human expression patterns [75,87].  RT-PCR 

analysis also detected an alternative, in-frame exon (exon 6*, encoding 23 amino acids), 

present in a subset of Sec24c mRNAs (Figure 3-1A, B). The transcript containing this 

additional exon (Sec24c-2) is expressed only in the heart, brown adipose tissue, skeletal 

muscle, and the brain (Figure 3-1C). The transcript skipping exon 6* (Sec24c-1) is the 

only splice form detected in the remaining tissues (adrenal gland, liver, lung, kidney, 

spleen, stomach, large intestine, small intestine, white adipose tissue, salivary gland, 

testis), with only low levels of Sec24c-1 detected in Sec24c-2 expressing tissues (Figure 

3-1C).   

Sec24cGT/GT and Sec24c-/- mice exhibit lethality 

 Correct targeting of the Sec24cGT allele (Figure 3-2A) was confirmed by long-

range PCR (Figure 3-2B).   Genotypes of 2-week-old progeny mice generated from 

Sec24c+/GT intercrosses revealed the expected number of wild type and heterozygous 

offspring but none of the expected ¼ Sec24cGT/GT (p<2X10-06, Table 3-1).  Intercrosses of 

Sec24c+/FL (obtained by excision of the β-geo cassette from Sec24cGT) generated the 
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expected number of Sec24cFL/FL mice (Table 3-2) demonstrating that death of the 

Sec24cGT/GT mice results from the presence of the gene trap cassette, rather than a 

passenger gene effect [88]. EIIA-Cre mediated excision of the Sec24cFL generated the 

Sec24c- allele, which lacks exon 3 and results in a frame-shift and early termination 

codon.  Intercrosses of Sec24c+/- mice confirm uniform loss of Sec24c-/- mice by 2 weeks 

of age (Table 3-3).  At embryonic day 10.5-11.5, no intact Sec24c-/- embryos were seen, 

though their yolk sacs were still present and were able to be separated from maternal 

tissue and genotyped and found to be present at the expected ratios (p>0.25).  Genotypes 

were assessed at E9.5, yet still only the yolk sacs of null embryos were found (p<0.05), 

while at E8.5, the Sec24c-/- embryo was noted to have been dead for approximately 12 

hours (blinded observation prior to genotyping). Histological observations of E7.5 

embryos revealed that they fell into 3 groups: those that are just remnants of the egg 

cylinder (#1, Figure 3-3A), those that are not yet gastrulating (#2, Figure 3-3A) and those 

that are gastrulating and developing normally (#3, Figure 3-3A), though no genotypes 

were assigned to any of these embryos.  Taken together, these data suggest that SEC24C 

deficient embryos are dying between E7.5 and E8.5, though the cause of death is 

unknown.  Analysis of progeny from Sec24c+/- intercrosses indicates that heterozygous 

mice are present in the expected ratios (p>0.09) (Table 3-3).   

No phenotypic abnormalities in Sec24c+/- mice 

 As noted above, the expected numbers of Sec24c+/GT and Sec24c+/- mice are 

observed at 2 weeks of age.  Growth and complete blood counts of heterozygous mice 

were also indistinguishable from their wild type littermates (Figure 3-4, Table 3-4). Adult 

Sec24c+/- mice are fertile and exhibit no gross or microscopic abnormalities on standard 
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autopsy examination (Figure 3-4C).  While only a small number of wild type littermates 

were followed beyond 100 days, no significant difference (p>0.05) was observed in the 

lifespan of Sec24c+/- mice compared to controls. 

Combined haploinsufficiency for SEC24C and SEC24D is also well tolerated 

 Given the high level of sequence similarity between SEC24C and SEC24D [75], 

we performed intercrosses between Sec24c+/- and Sec24d+/GT mice [28] (Table 3-5).  At 

two weeks of age, double heterozygous mice are present at the expected Mendelian ratio 

(p>0.12). No differences were observed in growth to 12 weeks (Figure 3-5A,B) or 

complete blood count analyses (Table 3-4), when compared to WT or single 

heterozygous littermates.  While only a small number of wild type littermates were 

followed beyond 100 days, no significant difference (p>0.05) was observed in the 

lifespan of Sec24c+/-Sec24d+/gt mice compared to controls. Routine autopsy and 

histological survey were also unremarkable (Figure 3-5C).  

 

The embryonic lethality of Sec24c-/- mice is not rescued by an early, ubiquitous 

Sec24c or Sec24d transgene 

 Transgenes designed to express SEC24C or SEC24D from the ubiquitous chick β-

actin promoter (Figure 3-6A) were generated and tested for their ability to rescue the 

lethal Sec24c-/- phenotype.  No Sec24c-/- Tg+ mice survived to weaning for either the 

SEC24C (1 line, n=34) or SEC24D (1 line, n=49) transgene.   Similarly, crosses to the 

Sec24dGT mice failed to demonstrate rescue of the Sec24cGT/GT lethal phenotype by either 

transgene; for the SEC24D transgene, no rescues were observed out of 149 transgenic 

mice from 5 different founder lines, with n for each line ranging from 9 to 43 transgenic 
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progeny.  For the SEC24C transgene, no rescues were observed out of 130 transgenic 

mice from 4 founder lines, with n of each line ranging from 11 to 57 transgenic progeny.   

SEC24C is dispensable in pancreatic acinar cells, hepatocytes, smooth muscle cells, 

and intestinal epithelium 

 To test the requirement for SEC24C in specific adult tissues, Sec24cFL/FL mice 

were crossed with mice carrying Cre transgenes specific for pancreatic acinar cells, 

hepatocytes, smooth muscle cells, and intestinal epithelial cells (Table 3-6). Sec24cFL/- 

Cre+ mice were observed in the expected numbers for p48-Cre (p>0.65), SM22-Cre 

(p>0.46), Villin-Cre (p>0.46), and Albumin-Cre (p>0.10) and SM22-Cre (p>0.46).   

Though Cre mediated excision of the Sec24cFL allele is nearly complete in the pancreas 

of p48Cre+ mice (Figure 3-7A), pancreatic acinar and islets appear entirely normal by 

routine histology (Figure 3-7B). Sec24cFL/-p48-Cre+ also exhibit normal weight gain 

though 12 weeks of age compared to their littermate controls on either normal chow 

(Figure 3-8A,B) or high fat diet (Figure 3-9A,B).  Similar results were observed for the 

Albumin-Cre and Villin-Cre transgenes, though the levels of excision are not as complete 

for p48-Cre (Figure 3-7).   There were also no differences in plasma cholesterol or 

triglyceride levels in tissue-specific knockouts versus littermate controls on HFD for p48-

Cre, Albumin-Cre, and Villin-Cre transgenes (Figures 3-9, 3-10, 3-11) and insulin levels 

between Sec24cFL/-p48-Cre+ and corresponding littermate controls on HFD were also the 

same (Figure 3-9E). Sec24cFL/- SM22-Cre+ mice did not have any grossly apparent 

abnormalities were able to carry litters to term, and while excision of Sec24c in smooth 

muscle cells in SM22-Cre+ mice were not measured directly, it is expected to be 
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complete, based on previous reports [103].    Sec24cFL/- Meox2-Cre+ mice were not 

observed at 2-weeks of age (p<1.7x10-6, Table 3-6).  

 

DISCUSSION 

 Our results demonstrate that SEC24C is required for post-implantation embryonic 

development in the mouse, with SEC24C deficient embryos being lost in the 

developmental time points between implantation and E7.5.  The loss of Sec24cFL/- 

Meox2-Cre+ mice is consistent with these data, as Meox2-Cre is expressed ubiquitously 

beginning around embryonic day 5 [98]. Data from tissue-specific knockouts reveal that 

SEC24C is dispensable in a number cell types, including pancreatic cells, hepatocytes, 

intestinal epithelium, and smooth muscle cells, suggesting that the three remaining Sec24 

paralogs can compensate for the loss of SEC24C in these tissues.  These observations, 

along with the requirement for SEC23B in the mouse pancreas [78], the need for 

SEC24A in the liver to maintain normal plasma cholesterol levels [26], and SAR1B’s 

involvement in the efficient trafficking of chylomicrons in the gut [104], suggest that 

there is likely a partial overlap in function between the COPII paralogs, but that some 

cargoes require a specific COPII protein for exit out of the ER.  

 The normal phenotype of the Sec24c+/- mice, as well that of the Sec24c+/- 

Sec24d+/GT mice, demonstrates a tolerance for moderate quantitative changes in the levels 

of these two COPII components, consistent with previous reports of Sec24d+/GT mice [28] 

as well as Sec24a+/-Sec24d+/GT and Sec24a+/-Sec24b+/- mice exhibiting no abnormalities 

[26]. The milder phenotype observed for deficiencies in SEC24A/B compared to 

SEC24C/D is surprising, in light of a higher of sequence identity between the ancestral 

yeast paralog Sec24p and the SEC24A/B subfamily [75].  In contrast, the SEC24C/D 
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subfamily exhibits greater similarity to the non-essential yeast homologue Lst1p.  Yet, as 

in the case of SEC24D-defecient mice [28], the loss of Sec24c null embryos at early 

developmental stage suggests that there are critical cargoes that require SEC24C for exit 

from the ER that are no longer being secreted at sufficient levels to support embryonic 

survival.  Interestingly, SEC24A and SEC24B demonstrate some partial overlap in 

function, where in the absence of SEC24A, SEC24B, but not SEC24C or D, is able to 

recruit PSCK9 into COPII vesicles at low levels [26], likely due to the high level of 

sequence similarity within the SEC24A/B subfamily. The later survival and specific 

phenotypes of Sec24a and Sec24b mice allowed the identification of specific cargoes 

(PCSK9 and VANGL2, respectively) whose trafficking defects explain the mouse 

phenotypes [26,27].  Given the much earlier loss of mice deficient in either SEC24C or 

SEC24D, identification of precise cause of death and the specific cargoes responsible is 

far more difficult.  Much like SEC24D, SEC24C is essential for the recruitment of 

cargoes at the early stages of development, but our data demonstrate that some essential 

cargos reliant on SEC24D must not require SEC24C, as the SEC24C-deficient embryos 

are able to survive well beyond the time point at which Sec24d null embryos are lost.   

 The frequency of damaging SEC24C alleles in the African American and 

European American population is ~0.04%.   Given this, there are several explanations for 

the absence of any previously identified human SEC24C phenotypes. Humans deficient 

for SEC24C may also exhibit embryonic lethality, consistent with the phenotype found in 

mice, in which case they would never be observed.  SEC24C-deficiency in humans can 

also be the cause of a human disorder for which no genetic cause has been found. 

Alternatively, the humans without SEC24C may have a subclinical or no phenotype, 
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which would suggest differential functions of SEC24C between mouse and humans.  

Though the phenotype of zebrafish lacking SEC24C has yet to be reported, this 

phenomenon of varied phenotypes between species is also observed in the stark 

differences in phenotypes between SEC24D deficient mice and the bulldog mutant in 

zebrafish [28,31] and between humans with mutations in SEC23B and mice deficient for 

the same paralog [78,105].  

 In assessing the expression pattern of Sec24c in the mouse using RT-PCR, it 

became apparent that there were in fact two species of Sec24c mRNA, Sec24c-1 and 

Sec24c-2.   Sec24c-2 is not annotated in the genome browser, and contains an additional, 

in-frame exon between exons 6 and 7, which encodes 23 amino acids (Figure 3-1A).  We 

were unable to detect a third splice variant with a truncated exon 4 and exon 5 currently 

found in the genome browser, suggesting it is an extremely rare variant.  Sec24c-2 is 

restricted to the heart, brown fat, brain, and skeletal muscle (Figure 3-1B,C), and 

expression of the two splice forms is nearly mutually exclusive, suggesting tissue-specific 

splicing factors may be involved regulating this exon skipping event.  Tissue-specific 

alternative splicing is common, with one report finding that 10-30% of alternatively-

spliced human transcripts to have some tissue-specific forms[106].  Brain is known to 

have a high level of alternative splicing, with many tissue-specific splice factors found in 

the brain as well as skeletal muscle and the heart [107]. Also of note are reports that 

brown fat and skeletal muscle arise from a common progenitor [108], raising the 

possibility that they may share some common splice factors that may contribute to this 

alternative splicing event in Sec24c. The additional exon provides an additional 23 AA to 

the N-terminus of SEC24C, between Pro330 and Ile331, just upstream of the conserved 
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zinc-finger domain, which appears to be a repeat of an upstream motif containing I/L-

DPD-A/S-IPSP.  It is possible that these residues may provide a binding site for a subset 

of cargoes expressed in these tissues.  Alternatively, given the proximity of these 

additional residues to the binding site of IxM (the t-SNARE ER exit signal for syntaxin 5 

and membrin) on SEC24C, it is possible that this peptide sequence could compete for 

syntaxin 5 membrin binding at this site, as seen in the case of SEC24B’s hypervariable 

region competing with t-SNARE binding [23].   Though it remains to be tested, it is 

feasible that SEC24C-2 may have the capacity to bind to and recruit a different subset of 

clients into the budding COPII vesicle than SEC24C-1.   

 We sought to test whether exogenous SEC24C would be able to rescue the lethal 

phenotype observed in the Sec24c-/- mice. Though transgene mRNA expression could be 

detected in all or most adult tissues examined (Figure 3-6B), the level and/or 

developmental timing of this expression appears to be insufficient to replace that of 

endogenous Sec24c or Sec24d genes.  These results are in contrast to the previously 

reported rescue of SEC24D deficient mice by BAC transgenes spanning the Sec24d locus 

[28], suggesting that there is some critical regulatory element that is present in the BAC 

transgenes that is absent in our chicken β-actin promoter driven constructs.  These data 

highlight a critical advantage that BAC transgenes have over standard transgenes – a 

properly chosen BAC will likely include the promoter and regulatory elements of a 

particular gene and will more faithfully recapitulate the endogenous expression pattern of 

the gene of interest [109].  

  Together, the ubiquitous expression, markedly different phenotypes, and the lack 

of dosage defects in heterozygous and double heterozygous mice, suggest that each 
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SEC24 paralog has a unique function, and that while there may be overlap in cargo 

specificity, it is likely that many cargos require a particular mammalian SEC24 to 

mediate their exit from the ER.   This specificity may be the result of an intrinsic cargo 

selectivity of the SEC24 proteins or it may be a function of a particular spatio- or 

temporal expression pattern of a given SEC24.  While a Sec24c mutant zebrafish has yet 

to be reported, a growing body of evidence suggests that the multiple paralogs of the 

COPII components each have carved out a distinct role for themselves over evolutionary 

time.  These paralogs strike a fine balance between functional redundancy and having 

completely unique functions, allowing for mammals to efficiently meet the various 

demands secretory pathway in so many different cellular contexts, as evidenced by the 

diversity of the phenotypes observed in humans, mice, and zebrafish with mutations in 

genes encoding components of the COPII coat.  While there are still many fundamental 

questions remaining about the specific functions of the COPII paralogs, the availability of 

genetic models for deficiency in COPII component genes should open the door for many 

future studies of COPII function in vivo. 
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Figure 3-1: Identification of an alternative splice form of Sec24c 

(A) Schematic of the two Sec24c splice forms observed in mice.  Arrows indicate primers 
used to detect the presence of the alternative exon (6*).   Shaded region in exons 4 and 5 
represents exonic sequence present in Sec24c-2 but missing from the second splice form 
annotated in genome browser.  (B) Protein sequence alignment beginning at Thr306 of 
SEC24C-1 and SEC24C-2 showing additional 23 amino acids encoded in exon 6* found 
in SEC24C-2.   (C) RT-PCR data showing presence of two forms of Sec24c mRNA using 
primers V and W to generate a 249bp product from Sec24c-2 and a 180bp product from 
Sec24c-1. 
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Figure 3-2: Generation of Sec24c conditional and null alleles 

(A) Schematic of the original Sec24cGT allele.   FLPe mediated excision yields the 
conditional Sec24cFL allele and subsequent Cre mediated excision gives rise to the null 
Sec24c- allele.  Primers used for genotyping are indicated.  (B) Long range PCR confirms 
the targeting of the original Sec24cGTallele.  Primers are located on either side of the 
homology arms, so PCR product is only expected in the Sec24c+/GT mice and not in wild 
type samples.  Primers were used to amplify a 6234bp product around the 5’ homology 
arm in the Sec24cGT allele, and a 6648bp product around the 3’ homology arm within the 
Sec24cGT allele.  Neither set of primers will yield a band in the Sec24cwt allele. (C) 
Genotyping PCR assay is able to distinguish between the wild type (308bp), gene-trap or 
floxed (278bp), and null allele (225bp) using primers A, Ex, and E.   
 
 
 
 
 
 
 



 68 

                                  
 

Figure 3-3: Histological analysis of E7.5 Sec24c-/- embryos 

H&E staining of E7.5 embryos resulting from a Sec24c+/- intercross.   E7.5 embryos were 
fixed, sectioned and stained in the context of the decidual swelling.  Images are 
representative of the 3 classes of developmental states observed in 10 embryos (1= egg 
cylinder remnants, 2=delayed gastrulation, 3=normal gastrulation). 
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Figure 3-4: Sec24c+/- mice are phenotypically normal 

Growth curves of female (A) and male (B) mice indicate no difference in body weights 
between heterozygous mice and wild type littermate controls, with p >0.05 at all time 
points.  Error bars represent standard deviation. (C) H&E staining of Sec24c+/- tissues 
does not reveal any abnormalities in a panel of tissues including adrenal gland (i), 
intestine (ii), heart (iii), pancreas (iv), kidney (v), liver (vi), lung (vii), and spleen (viii).  
Scale bar = 0.25µm. 
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Figure 3-5: Sec24c+/- Sec24d+/GT mice are phenotypically normal 

Growth curves of female (A) and male (B) mice indicate no difference in body weights 
between heterozygous mice and littermate controls, with p >0.05 at all time points.  Error 
bars represent standard deviation. “Double het” = Sec24c+/- Sec24d+/GT. (C) H&E staining 
of Sec24c+/- Sec24d+/GT tissues does not reveal any abnormalities in a panel of tissues, 
including adrenal gland (i), intestine (ii), heart (iii), pancreas (iv), kidney (v), liver (vi), 
lung (vii), and spleen (viii).  Scale bar = 0.25µm. 
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Figure 3-6: Early ubiquitous transgenic expression of Sec24c and Sec24d 

(A) Diagram of the pCAG3zS-Sec24c or -Sec24d transgenic construct, adapted from 
[99], including transcription start site, initial ATG, and polyadenylation signal.   CMV IE 
= Cytomegalovirus Immediate-Early Enhancer, UTR = Untranslated Region, SV40 poly 
A = Simian Virus 40 Polyadenlyation signal.  Primer F represents the forward primer 
present in exon 2 of the promoter used for RT-PCR and primer R represents the reverse 
primer present in either Sec24c or Sec24d cDNA used for RT-PCR (B) Transgene 
expression in a panel of tissues for founder lines 24c-271, 24d-264, 24d-426, 24d-469.  
Heart and brain –RT samples were carried out in the absence of reverse transcriptase to 
account for any DNA contamination.  
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Figure 3-7: Tissue-specific Cre mediated excision of Sec24cFL allele 

(A) Genotyping for Cre mediated excision in the pancreas (P), liver (L), spleen (S), 
intestine (I) and tail (T) in Sec24c+/FL and Sec24cFL/- mice carrying the p48-Cre, 
Albumin-Cre, or Villin-Cre transgene. The floxed allele is excised to generate the null 
allele in the pancreas, liver, or intestine, respectively, but is preserved in other tissues.  
(B) H&E staining of pancreatic tissue from p48-Cre+ mice, liver tissue from Albumin-
Cre+ mice, and intestine from Villin-Cre+ mice show no abnormalities in cells lacking 
SEC24C.  Scale bar = 0.25µm. 
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Figure 3-8: Loss of SEC24C in the pancreas, liver, or intestine has no effect on 
growth 

Body weight analysis over 12 weeks of Sec24cFL/-p48-Cre+ mice (A,B), Sec24cFL/- 
Albumin-Cre+ mice (C,D), and Sec24cFL/-Villin-Cre+ mice  (E,F) with  corresponding 
litter mate controls in females and males.  Insets show individual body weights at 12 
weeks. p >0.05 at all time points.  Error bars represent standard deviation. 
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Figure 3-9: Sec24cFL/-p48-Cre+ mice display normal diet-induced obesity 

Sec24cFL/-p48-Cre+ and littermate controls show no difference in weight gain over 12 
weeks on high fat diet (HFD) for females (A) and males (B), with p >0.05 at all time 
points.  Error bars represent standard deviation.  Cholesterol levels (C), triglyceride levels 
(D) and insulin levels (E) are normal when compared to littermate controls after 12 weeks 
on HFD.  All p-values > 0.05 and error bars represent standard deviation.   
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Figure 3-10: Sec24cFL/-Albumin-Cre+ mice display normal diet-induced obesity 

Sec24cFL/-Albumin-Cre+ and littermate controls show no difference in weight gain over 
12 weeks on high fat diet (HFD) for females (A) and males (B), with p >0.05 at all time 
points.  Error bars represent standard deviation.  Cholesterol levels (C), triglyceride levels 
(D) and insulin levels (E) are normal when compared to littermate controls after 12 weeks 
on HFD.  All p-values > 0.05 and error bars represent standard deviation.  
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Figure 3-11: Sec24cFL/-Villin-Cre+ mice display normal diet-induced obesity 

Sec24cFL/-Villin-Cre+ and littermate controls show no difference in weight gain over 12 
weeks on high fat diet (HFD) for females (A) and males (B), with p >0.05 at all time 
points.  Error bars represent standard deviation.  Cholesterol levels (C), triglyceride levels 
(D) and insulin levels (E) are normal when compared to littermate controls after 12 weeks 
on HFD.  All p-values > 0.05 and error bars represent standard deviation.  
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Table 3-1: Results of Sec24c+/GT intercrosses and backcrosses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24c+/+ Sec24c+/GT Sec24cGT/GT p-value 

Sec24c+/GT x 
Sec24c+/GT expected: 25% 50% 25%  

2-weeks of age (n=67)  36% (24)  64% (43) 0%  p < 2.3x10-06 

Sec24c+/GT x Sec24c+/+ 

expected: 50% 50% --  

2 weeks of age (n=100)  53% (53) 47% (47) -- p > 0.54 
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Table 3-2: Results of Sec24c+/FL intercross 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24c+/+ Sec24c+/FL Sec24cFL/FL p-value 

Sec24c+/FL x 
Sec24c+/FL expected: 25% 50% 25%  

2-weeks of age  
(n= 102)  26% (26) 42% (43) 32% (33) p > 0.08  
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Table 3-3: Results of Sec24c+/- intercrosses and backcrosses.  

*All Sec24c-/- embryos from E9.5-E11 were absent, but yolk sacs were able to be isolated 
for genotyping.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24c+/+ Sec24c+/- Sec24c-/- p-value 

Sec24c+/- x Sec24c+/- 

expected: 25% 50% 25%  

2-weeks of age (n=184) 40% (73) 60% (111) 0% p < 4.9x10-15 

E10.5-E11 (n=26) 12% (3) 73% (19) 15% (4*) p > 0.25 

E9.5 (n=21) 38% (8) 48% (10) 14% (3*) p >0.25 

E8.5 (n=7) 29% (2) 57% (4) 14% (1) p >0.51 

E7.5 (n=11) 9%(1) 73% (8) 18% (2) p > 0.60 

Blastocyst (n=47) 30% (14) 40% (19) 30% (14) p > 0.42 

Total (n=170) 29% (50) 58% (99) 13% (21) p < 1.4x10-04 

Sec24c+/- x Sec24c+/+ 

expected: 50% 50% --  

2 weeks of age (n=146) 57% (83) 43% (63) -- p >0.09 
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Table 3-4: Complete blood count analysis of mice from Sec24c+/- x Sec24d+/GT 
intercrosses 

Tail bleeds were carried out at 8-12 weeks of age.  Values were adjusted back to correct 
for 10-fold dilution.  Data from males and females were pooled after confirming no 
significant difference between males and females of the same genotypes.  
 
 
 
 
 
 
 
 
 
 
 

 Genotype 
Parameter Sec24c+/+ Sec24c+/- Sec24d+/GT Sec24c+/- 

Sec24d+/GT 
WBC (x 103 

cells/µL) 7.4 + 0.9 8.2 + 1.3 9.9 + 1.4 9.0 + 1.1 

RBC (x 106 
cells/µL) 8.7 + 0.8 9.5 + 0.3 9.7 + 0.2 9.9 + 0.3 

HGB (g/dL) 12.2 + 1.0 12.2 + 0.5 13.3 + 0.2 13.0 + 0.5 

HCT (%) 45.2 + 2.6 45.7 + 1.5 48.5 + 0.7 48.4 + 1.3 

MCV (fL) 48.8 + 0.6 48.1 + 0.5 49.8 + 0.4 49.1 + 0.4 

MCH (pg) 13.1 + 0.3 12.6 + 0.2 13.6 + 0.1 13.1 + 0.1 

MCHC (g/dL) 26.9 + 0.7 26.3 + 0.5 27.2 + 0.4 26.8 + 0.4 

RDW (%) 13.5 + 0.3 13.5 + 0.2 13.9 + 0.5 14.0 + 0.6 

PLT (x 103 
cells/µL) 976.0 + 171.7 1221.7 + 53.3 1186.7 + 80.9 1076.3 + 73.0 

MPV (fL) 5.3 + 0.6 5.0 + 0.2 4.8 + 0.2 5.1 + 0.2 
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Genotype: Sec24c+/+ 

Sec24d+/+ 
Sec24c+/-

Sec24d+/+ 
Sec24c+/+ 

Sec24d+/GT 
Sec24c+/-

Sec24d+/GT p-value 

Expected 
Ratio of F1 

progeny 
25% 25% 25% 25%  

Observed F1 
progeny 
(n=94) 

32% (30) 26% (24) 24% (23) 18% (17) p >0.121 

 

Table 3-5: Results of Sec24c+/- Sec24d+/GT intercross 

Mice are genotyped at 2 weeks of age.  Sec24d+/GT mice are on C57BL/6J background 
(>N18). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genotype: Sec24c+/FL  Sec24c+/FL 

Cre+ Sec24cFL/- Sec24cFL/-

Cre+ p-value 
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Table 3-6: Results of tissue-specific knockout of Sec24c 

Mice are genotyped at 2 weeks of age.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Expected 
Ratio of test 

cross progeny 
25% 25% 25% 25%  

Cre line:           

p48-Cre 20.9% (31) 25.7% (38) 27.7% (41) 25.7% (38) p>0.65 

SM22-Cre 32.5% (13) 15.0% (6) 22.5% (9) 30% (12) p>0.46 

Villin-Cre 28.7% (41) 22.4% (32) 26.5% (38) 22.4% (32) p>0.46 

Albumin- Cre 23.6% (29) 31.7% (39) 26.0% (32) 18.7% (23) p>0.10 

Meox2-Cre 37.7% (26) 20.3% (14) 42.0% (29) 0% (0) p<1.7 x10-6 
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Primer Name Sequence (5’ to 3’) 
Genotyping and LR-PCR primers 

Sec24c-A AAGGCGCATAACGATACCA 
Sec24c-C CTTGAGGCAAGAATGCAAAACAAGAATC 
Sec24c-D GTACTAGGTGAGCCTGAAATCAATG 
Sec24c-E ACTAAGATGGGTCCACAAAAGAGC 

FLP1 GGTCCAACTGCAGCCCAAGCTTCC 
FLP2 GTGGATCGATCCTACCCCTTGCG 

Cre-fwd TTACCGGTCGATGCAACGAGT 
Cre-rev TTCCATCAGTGAACGAACCTGG 

24c-GF3 GCTGATACTGATACTAGGATCCACGGACAG 
24c-GR4 GCACTGCTAACAGTTCGCTATTCCTTCCG 

RAF5 fwd CACACCTCCCCCTGAACCTGAAAC 
Primer 7F AAATCTGTGCGGAGCCGAAATCTG 
Primer 7R GCATGAACATGGTTAGCAGAGGCT 

RT-PCR primers 
GAPDH-QFwd3 TGTGATGGGTGTGAACCACGAGAA 
GAPDH-QRev3 ACCAGTGGATGCAGGGATGATGTT 

24c primer F GTGTGACCGGCGGCTCTA 
24c primer R GGGGCTGCAGGTCCTGGTTG 
24d primer F TTGGCAAAGAATTCCTCGACCTG 
24d primer R ATCTTTGAGGAGGATGGCCTGGA 

Primer V GCCCTCAACCTAATTATGAGAGCCCA 
Primer W CCCGTACACCAGTAACAAATGGCT 
Primer X TCTCAGCAGTTTGGTCCT CCATTG 
Primer Y TTTGCTGCAGCTGATAAC CAGG 

Primers for transgene construction 
EA053 GAATACTCAAGCTTGCATGCCTGCAGGTCG 

EA065 AGAGCATGCATGAGATCACCGGTCATCACCGTG
GCGGCCGCTCATAATCAGCCATAC 

EA056 ACGTACACCGGTGCTCTCATAATGAATG 

EA061 CTAGTCTGCGGCCGCTTAGCTCAGTAGCTGCCG
GATC 

EA054 ACGTACACCGGTATTTTCATCATGAGCC 
EA059 TCGCTAGGCGGCCGCTCAGTTAAGCAGTTG 

 

Table 3-7: List of primers used in Chapter 3 

All sequences are listed 5’ to 3’. 
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Notes 
 
 
This chapter is in preparation for submission under the title “Mammalian COPII 

Component SEC24C Is Required For Embryonic Development In Mice” by Elizabeth J. 

Adams, Xiao-Wei Chen, K. Sue O’Shea, and David Ginsburg.    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85 

 

 

Chapter IV:  EXAMINING THE OVERLAP IN FUNCTION BETWEEN MOUSE 
SEC24C AND SEC24D 

 
 

ABSTRACT 

 SEC24 is the COPII component thought to be primarily responsible for the 

recruitment of transmembrane cargoes or cargo adaptors into newly forming COPII 

vesicles on the ER membrane.  Mammalian genomes encode four Sec24 paralogs 

(Sec24a-d), though little is known about their comparative functions and cargo-

specificities. Based on protein sequence, SEC24A/B are more closely related to one 

another than they are to SEC24C/D.  Sec24b, Sec24c, and Sec24d knockout mice exhibit 

embryonic lethality, while Sec24a knockouts have low cholesterol levels due to reduced 

secretion of PCSK9.  To test the potential overlap in function between SEC24C/D, we 

employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in 

which the SEC24C coding sequence has been largely replaced with SEC24D.  Crossing 

mice with the Sec24cc-d allele to Sec24c demonstrates that SEC24D, when its expression 

is driven by Sec24c regulatory elements, can rescue Sec24c null mice from embryonic 

lethality. However, Sec24cc-d /c-d mice die shortly after birth suggesting that the overlap in 

function between SEC24C and SEC24D is incomplete. 
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INTRODUCTION 

 In eukaryotic cells, transmembrane or secretory proteins must traverse the 

secretory pathway before reaching their final intracellular or extracellular destinations 

[1,2].  The first step of this fundamental process is the concentration and packaging of 

newly synthesized proteins into vesicles on the surface of the ER at specific ER exit sites 

[3].  At these sites, cytosolic components assemble to form the COPII complex [4,5], a 

protein coat that generates membrane curvature and promotes the recruitment of cargo 

proteins into nascent COPII buds [10,72].  Central to this process is SEC24, the COPII 

protein component primarily responsible for interaction between transmembrane cargoes 

and cargo-bound receptors and the coat[73].  This critical component of the COPII inner 

coat forms a complex with SEC23 in the cytosol, and the SEC23/SEC24 heterodimer is 

drawn to ER exits sites upon activation of the GTPase SAR1[11] by its cognate ER 

membrane bound GEF SEC12 [110].   Once recruited to the ER membrane, SEC24 can 

interact with ER exit signals on protein cargoes via cargo recognition sites and facilitate 

vesicle formation.  

 There are four SE24 paralogs encoded in mammalian genomes (Sec24a-d).  While 

all four contain a number of highly conserved domains at their C-termini, a hypervariable 

region is present in the most N-terminal third of the protein sequence.  Based on protein 

sequence identity, the four mammalian SEC24s can be further sub-divided into two 

subgroups, SEC24A/B and SEC24C/D [93].  Murine SEC24A and B share 58% identity 

with each other and murine SEC24C and D share 60% identity with each other, yet 

between the two subgroups there is only 25% sequence identity (Figure 1-3), suggesting 

an ancient duplication and divergence of these genes.   Mice with deficiencies in the 
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various SEC24 proteins present with a wide range of phenotypes.  SEC24A-deficient 

mice have markedly low plasma cholesterol levels, which was recently reported to be the 

result of impaired secretion of PCSK9, a regulatory protein involved in LDL receptor 

degradation and cholesterol homeostasis [26].   SEC24B-deficient mice exhibit 

embryonic lethality due to a neural tube closure defect attributed to improper trafficking 

of the planar-cell-polarity protein VANGL2 [27].  Loss of SEC24C in the mouse causes 

embryonic lethality, though at a much earlier time point, with SEC24C deficient mice 

dying around E7.5 (Adams et al., unpublished).  Finally, SEC24D is absolutely required 

for early embryonic development, as SEC24D null mice fail to develop beyond the 8-cell 

stage, and are completely absent by E3.5 [28].   

 The expansion of the number of COPII paralogs over evolutionary time possibly 

originated as a response to the need for variation in the secretory capacity of particular 

cell types or temporal contexts.   Given that the mammalian Sec24s are broadly expressed 

[28,86,87], there are a few possible factors that may provide each paralog with its own 

particular niche in functionality: its precise expression pattern or its paralog specific 

interactions with a subset of cargo molecules, or perhaps other functions beyond cargo 

recognition.   There have been a number of reports suggesting that there are particular 

cargo repertoires for each SEC24 paralog, including VANGL2 [27] and PCSK9 [26], as 

mentioned above.  The serotonin receptor (SERT) was reported to be an exclusive cargo 

of SEC24C, with this specificity mediated by an export signal at the N-terminus of SERT 

[56]; mutation of the export signal on SERT can alter its preference from SEC24C to 

SEC24D [57].  Likewise, the GABA1 transporter directly interacts with SEC24D for ER 

export [58].  Yet at the same time, a number of reports have suggested that an overlap in 
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function exists between the mammalian paralogs of Sec24, particularly within the 

subfamilies by demonstrating that some cargo exit motifs can be recognized by multiple 

forms of SEC24, including the DxE signal on VSV-G, and the IxM motif on syntaxin 5, 

both of which confer a specificity for human SEC24A/B [23].  Additionally, the human 

transmembrane protein p24-p23 is reported to have a preference for SEC24C or SEC24D 

and is thought to be a cargo receptor for GPI-anchored CD59, which via its interaction 

with p24-p23, also has specificity for SEC24C/D [111].   

 To gain a better understanding of the degree of functional overlap between 

SEC24C/D in vivo, we employed a novel technique called dual recombinase mediated 

cassette exchange (dRMCE) [112], which facilitates the efficient re-engineering of 

existing alleles that contain heterotypic recombination sites, such as the FRT and LoxP 

sites found in many of the “knock-out first” alleles available from the European Mouse 

Mutagenesis program (EUCOMM).  Modification is carried out via co-transfection of 

embryonic stem cells (ESCs) containing these sites with a plasmid carrying the 

corresponding recombinases, along with a dRMCE replacement vector containing a 

custom sequence flanked by the same recombination sites [113]; replacement of 

endogenous sequence between with recombination sites with sequence provided in the 

dRMCE replacement vector can occur with high efficiency (reported ranges of 13% to 

69%) [112] to generate a newly modified allele. 

  Given the high degree of amino acid sequence identity between SEC24C and D 

(58%), and previous examples of similar exit motif recognition between these two 

paralogs, we carried out dRMCE to facilitate the targeted knock-in of the coding 

sequence of SEC24D into the Sec24c locus to test the ability of SEC24D to functionally 
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replace SEC24C. In this report, we demonstrate that SEC24D is able to partially rescue 

the lethality observed in SEC24C-deficient mice.  This in vivo analysis sheds light on the 

overlap in function found between SEC24C and SEC24D, consistent with previous 

reports, and highlights the importance of both expression pattern and protein function to 

the specific role of each mammalian Sec24 paralog.  

 

MATERIALS AND METHODS 

Cloning of Sec24c-d dRMCE construct 

 The Sec24c-d replacement construct (Figure 4-1) was cloned into the pUC19 

vector backbone.  The endogenous Sec24c intron 2 splice acceptor sequence was 

amplified from mouse genomic DNA, and an upstream FRT sequence and SphI 

restriction site for cloning was added via PCR.   The SV40 polyA sequence present in the 

Sec24cGT allele (Adams et al., unpublished) was amplified from genomic DNA of a 

Sec24c+/GT mouse, and a downstream LoxP sequence and SalI site for cloning was added 

using PCR.  The partial Sec24d coding sequence (from G120 to A3099 in cDNA sequence) 

was fused to the SV40-polyA-LoxP using PCR with a “bridge primer” (half the primer 

sequence complimentary to the polyA-LoxP and half complimentary to the Sec24d 

sequence) to generate the Sec24d-SV40pA-LoxP fragment.  This partial construct was 

stitched downstream of the FRT-Sec24c intron2 SA fragment again using a second bridge 

primer to connect the two pieces and not to introduce any additional nucleotides between 

the key components of the construct.  The entire cassette was inserted into pUC19 via 

SalI and SphI digests, and the integrity of the sequence was confirmed via DNA 

sequencing.  
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Plasmid purification and microinjections 

 pDIRE, the plasmid directing dual expression of both iCre and FLPo [112] was 

obtained from Addgene (Plasmid 26745).  Plasmids pCAGGS-iCre and pCAGGS-Flpo 

(made at the transgenic core) contain the CAG promoter/enhancer [101], which drives 

recombinase expression of iCre or Flpo in fertilized mouse eggs [114].  All plasmids, 

including the Sec24c-d replacement construct described below, were purified using the 

Machery-Nagel NucleoBond® Xtra Maxi EF kit, per manufacture’s instructions.  All 

microinjections were carried out at the University of Michigan Transgenic Animal Model 

Core.  Co-injections of the Sec24c-d construct with pDIRE were done on zygotes 

generated from the in vitro fertilization of C57BL/6J oocytes with sperm from Sec24+/- or 

Sec24cFL/- male mice (Adams et al., unpublished).  For each microinjection, 5ng/µl of 

circular recombinase plasmid mixed with 5ng/µl of circular donor plasmid was 

administered, as described previously [115,116].  The pCAGGS promoter/enhancer [101] 

drives recombinase expression in fertilized mouse eggs [114].  Microinjected zygotes 

were then transferred to pseudopregnant foster mothers, and tail clips for genomic DNA 

isolation were obtained at 2 weeks of age.    

Transient electroporation of ES cells 

 ES cell clone EPD0241-2-A11 for Sec24ctm1a(EUCOMM)Wtsi  (Sec24cgt allele, Adams 

et al., unpublished) was expanded and co-electroporated with the Sec24c-d construct and 

either pDIRE or pCAGGS-iCre and pCAGGS-FLPo.  After 1 week, ES cell colonies 

were picked to six 96 well plates, 3 for the “Sec24c-d + pDIRE” and 3 for “Sec24c-d + 

pCAGGS-iCre and pCAGGS-Flpo” condition to compare dRMCE efficiencies using 

pDIRE versus the CAG driven recombinases.  Frozen stock plates and DNA plates were 
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generated in duplicate, as well as an additional plate for G418 screening.   To test for 

G418 sensitivity, cells were fed G418 containing media for 1 week, were then fixed, 

stained, and evaluated for growth. Genomic DNA was prepared from each ES cell clone 

as previously described [117] and resuspended in TE to serve as template for genotyping.  

Genotyping Assays 

 Genotypes of potential transgenic mice and ES cell clones were determined using 

a series of PCR reactions at the Sec24c locus.  All primers used in this study are listed in 

Table 4-1, and expected band sizes can be found in Table 4-2.   Primers S, T, and U used 

to amplify a fragment of DNA unique to the Sec24c-d replacement construct in Figure 4-

1 to determine the presence or absence of the replacement construct, either at the Sec24c 

locus (targeted insertion) or elsewhere in the genome (random insertion).  To verify a 

targeted insertion had occurred, a primer outside the boundary of the replacement 

construct (C for 5’ and H,J for 3’) and a primer contained within the replacement 

construct (D,R for 5’ and I,F for 3’) were used to amplify a product of a particular size 

only if the targeted insertion of the replacement construct occurred and was mediated by 

the recombinases.  Primers pairs for additional genotyping at the Sec24c locus to confirm 

dRMCE with outermost FRT and LoxP sites on the Sec24cgt allele include primers K-

N,A and E (Figure 4-1). Primers iCre10F and iCre10R and Flpo8F and Flpo8R were used 

to detect integration of either the pCAGGS-iCre or pCAGGS-Flpo or pDIRE.  Mice 

carrying the Sec24dgt allele were genotyped as describe previously [28].   
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Generation of Sec24c+/c-d mice  

 ES cell clones were cultured as described previously [80] and expanded for 

microinjection.  ES cell-mouse chimeras were generated as described [81] and then bred 

to B6(Cg)-Tyrc-2J/J (JAX stock #000058) to achieve germ-line transmission.  ES-cell 

derived F1 black progeny were genotyped using primers that will detect the targeted 

(Sec24cc-d) or wild type (Sec24cwt) allele (primers G, E, and F, Figure 4-3).  The Sec24cc-d 

allele was maintained on the C57BL/6J background by continuous backcrosses to 

C57BL/6J mice.  Initial generations were also genotyped for iCre and Flpo insertions to 

confirm the lack of random integrations in backcross progeny.  

Long-Range PCR 

 Genomic DNA from Sec24c+/+ and Sec24c+/c-d mice were used as templates for a 

long-range PCR spanning the original arms of homology used for construction of the 

Sec24cgt allele (Adams et al., unpublished).  PCR was carried out using Phusion Hot Start 

II DNA Polymerase (Thermo Scientific), and products were fractionated on a 0.8% 

agarose gel.  For amplification of the 5’ region, primers 24c-GF4 and U were used to 

detect the expected 7593bp product in genomic DNA containing the Sec24cc-d allele, and 

for the 3’ primers 24c-GR4 and RAF5 fwd primers were used to amplify a 5798bp 

product. Neither set of primers will yield a band in the Sec24cwt allele.   

RT-PCR 

 Total RNA was isolated from a tail clip of Sec24c+/c-d or Sec24c+/+ littermate mice 

using the RNAeasy kit (Qiagen) per manufacturer’s instructions, with the optional DNasI 

digest step included. cDNA synthesis and PCR were carried out in one reaction using 

SuperScript® III One-Step RT-PCR System with Platinum®Taq (Invitrogen) following 



 93 

manufacturer’s instructions.  Forward primers (qF1, qF2) located in Sec24c exon 2 and 

reverse primers (qR1, qR2) located in the Sec24d exons 3 and 4, respectively, were used 

to detect the product of proper splicing from endogenous splice donor of exon 2 in 

Sec24c into the intron 2 splice acceptor engineered into the replacement cassette.  

Timed Matings  

 Timed matings were carried out by intercrossing Sec24c+/c-d mice. Embryos were 

harvested at E17.5 for genotyping and histological analysis.  Genotyping was performed 

on genomic DNA isolated from tail clip.   

Animal Care 

 All animal care and use complied with the Principles of Laboratory and Animal 

Care established by the National Society for Medical Research.  The University of 

Michigan’s University Committee on Use and Care of Animals (UCUCA) approved all 

animal protocols in this study. 

Statistical Analysis 

 To determine if there is a statistical deviation from the expected Mendelian ratios 

of genotypes from a given cross, the p-value reported is the χ2 value calculated using the 

observed ratio of genotypes compared to the expected ratio.   

 

RESULTS 

Low efficiency of dRMCE by microinjection 

 Of the 117 total zygotes that were generated from a cross between Sec24c+/- males 

and C57BL/6J females, and co-microinjected with pDIRE and the Sec24c-d replacement 
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construct, 65 were heterozygous for the Sec24c- allele, which contains the FRT and LoxP 

sites required for dRMCE to occur.  While these 65 oocytes each carried one copy of this 

dRMCE FRT/LoxP “landing pad” none of them underwent targeted recombination to 

generate the desired Sec24cc-d knock-in allele.  Using primers to detect Sec24d cDNA 

present in the dRMCE Sec24c-d construct, we found that while no targeted insertions 

were observed, 20 (17%) out of the 117 zygotes that were co-microinjected carried 

random insertions of the dRMCE replacement vector. 

Identification and subcloning of 6-H9 

 A screen of 288 ES cell clones co-electroporated with pDIRE and the Sec24c-d 

targeting construct did not yield any properly targeted insertions, but did identify 18 

random insertions of the Sec24c-d construct (6.25%, Table 4-3).  However, in the second 

set of 288 ES cell clones treated with pCAGGS-iCre and pCAGGS-Flpo instead of 

pDIRE, we identified 1 potential targeted insertion of the dRMCE replacement construct 

into the Sec24c locus via the FRT and LoxP sites present in the parental Sec24cgt allele 

(Table 4-3) and 7 random integrations of the replacement construct.  Proper targeting of 

this clone, 6-H9, was confirmed by PCR genotyping using primers flanking the 

recombination sites on both the 5’ and 3’ end.   

 Additional genotyping at the Sec24c locus was necessary because the parental ES 

cells were heterozygous for the Sec24cgt allele, which can undergo recombination when 

exposed to the iCre and Flpo recombinases; thus a series of PCRs were run to distinguish 

the various states of the Sec24c locus after co-electroporation which demonstrated that 

clone 6-H9 contained a mixed population of cells, some of which were properly targeted 

with recombinations occurring at the outermost FRT and LoxP sites, and others that still 
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contained the parental Sec24cgt allele, consistent with the mixed resistance to G418 

observed with this clone (Table 4-3).  Given the possibility that the pCAGGS-iCre or 

pCAGGS-Flpo can themselves randomly insert into the genome, this clone was also 

genotyped for the presence of these “transgenes” and was found to contain both iCre and 

Flpo (data not shown).  After one round of subcloning, six different clones (12271-

12275) consisting of a pure population of properly targeted ES cells were identified, each 

with one wild type Sec24c allele and one targeted allele in which the sequence between 

the outermost FRT and LoxP sites in the Sec24cgt allele was replaced by our dRMCE 

Sec24c-d insert (Figure 4-2A). None of these clones had random insertions of either iCre 

or Flpo. 

 Three of these clones (12273,12274, and12275) were microinjected to generate 

chimeras, and germline transmission of the targeted Sec24cc-d allele was obtained for 

clone 12275.   The expected mendelian ratio of Sec24c+/c-d mice was observed in the 

black F1 progeny of chimeras and B6(Cg)-Tyrc-2J/J (p <0.3), as well as in N2 progeny of 

subsequent backcrosses to C57BL/6J mice (p <0.3, Table 4-3).   RT-PCR analysis of 

Sec24c+/c-d RNA indicates that the predicted splice product from the dRMCE Sec24c-d 

allele is produced.  Primer sets flanking modified Sec24c intron 2 in the Sec24c-d allele 

produce the expected product from the expected splicing from exon 2 of Sec24c into the 

splice acceptor engineered upstream of the Sec24d coding sequence (Figure 4-2B).  This 

splice product is only observed in mice heterozygous for the Sec24c-d allele and is absent 

in the wild type mice, as expected.  
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The SEC24C-D fusion protein can partially rescue the loss of SEC24C 

 Table 4-3 also shows the results of intercrosses between Sec24c+/c-d mice.  

Sec24cc-d/c-d mice were not observed at 2 weeks of age (n=16, p~0.02), yet a close 

examination of newborn F2 litters revealed that a number of P0 progeny were dying 

shortly after birth (Figure 4-4).  Genotyping analysis revealed that 100% of the dead pups 

found at P0 were Sec24cc-d/c-d, indicating the presence of a perinatal lethality in the 

Sec24cc-d homozygotes (p<<0.0001).   At E17.5, Sec24cc-d/c-d embryos are found at the 

expected ratios, yet are smaller than their littermate controls (Figure 4-4).  

 

DISCUSSION 

 Our data demonstrate that SEC24C and SEC24D have a partial overlap in 

function, and that within the context of Sec24c gene regulatory sequences, SEC24D can 

partially rescue the embryonic lethality observed in the SEC24C deficient mice.   Loss of 

SEC24C results in embryonic lethality around E7.5, suggesting that from E7.5 to ~E17.5, 

SEC24C-D is able to functionally substitute for SEC24C during that developmental 

period to enough of an extent to prolong survival.  However, the SEC24C-D chimeric 

protein expressed under the Sec24c promoter is unable to fully replace SEC24C in these 

mice, as Sec24cc-d/c-d pups die shortly after birth, though currently the precise cause of 

death is unknown.  

 The inability of SEC24D to completely compensate for the loss of SEC24C 

suggests that functional differences exist between the two proteins, yet the SEC24D 

protein sequence downstream of Val 41 (Figure 4-1B) is unable to functionally replace 

the corresponding SEC24C protein sequence (with which it shares 57.5% identity), 
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supporting the notion that these two proteins have differing affinities for various cargoes, 

consistent with the paralog-specific interactions of PCSK9 [26]and VANGL2 [27].  A 

close analysis of the protein sequence alignment between SEC24C-D, the two splice 

forms of SEC24C, SEC24C-1 and SEC24C-2 (Adams et al., unpublished) and SEC24D 

(Figure 4-5) identifies a motif present in SEC24C-1 and SEC24D (I/L-DPD-A/S-IPSP) 

that is duplicated in SEC24C-2.  The function of this duplication remains unclear, but it is 

possible that these additional 23 amino acids provide a platform for cargo binding, and in 

the absence of this sequence (as in the case of Sec24c-/- mice and Sec24cc-d/c-d mice), 

recognition and ER export of a particular protein or set of cargo proteins is diminished to 

a level not consistent with survival.  Further analysis of the Sec24cc-d/c-d embryos is 

necessary to determine cause of death; a detailed investigation into the precise phenotype 

of these mice may reveal some information about a critical cargo or pathway that has 

been affected by the lack of SEC24C.   

 The delayed lethality of the Sec24cc-d/c-d mice also suggests that the precise 

expression pattern (spatio- or temporal and/or levels) of Sec24c is plays a critical role 

between E7.5 and E17.5; the presence of SEC24D (driven by its endogenous promoter) 

in Sec24c-/- mice does not compensate for the SEC24C-deficinecy and mice are lost 

around E7.5, yet placing it under the regulatory control of Sec24c allows the mice to 

survive longer.  Two possible explanations arise in light of this observation: (1) the 

precise expression profiles of Sec24c and Sec24d are different; SEC24D is able to 

functionally replace SEC24C in one context but not the other, or (2) the Sec24c-d mini-

gene generated by dRMCE is hypomorphic, and either the SEC24C-D protein is not 

expressed in precisely the same pattern as endogenous SEC24C would be, or the 
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SEC24C-D protein is not fully functional given its chimeric nature.  In either case, the 

Sec24cc-d cannot function as a full replacement for Sec24c and is unable to completely 

rescue mice from SEC24C-deficency.  

 Based on our data from both microinjections and ESC electroporation, the 

efficiency of dRMCE targeting of the Sec24c locus without selection is calculated to be 

less than 1.5% for microinjections and less than 0.2% for ES cells, both of which are 

much lower than the previously reported rate of targeted insertions for ES cells with 

selection [112].   The addition of a selectable marker has its advantages in boosting 

efficiency in ES cells, but once a targeted clone is identified, extra steps are then 

necessary to remove the selectable marker from the genome either by another round of 

electroporation or additional crosses to transgenic mice to introduce a third recombinase.    

 As an alternative to introducing a selectable marker into the Sec24c-d replacement 

construct, carried out a version negative selection using G418 treatment on a duplicate 

plate of cells to test for the presence of the neomycin cassette that is found in the parental 

Sec24cgt allele.  Theoretically, those cells with our dRMCE mediated targeted 

replacement would be sensitive to G418 as the neomycin cassette is recombined out of 

the locus, while those that did not undergo recombination were G418 resistant.  

Interestingly, cells co-electroporated with pCAGGS-iCre and pCAGGS-Flpo exhibited a 

higher percentage of G418 sensitivity, suggesting that the pCAGGS promoter drives 

more robust expression than the promoters contained within pDIRE.  Many of the clones 

had intermediate G418 sensitivity (including 6-H9), likely due to a mixed population of 

cells within that well.  



 99 

 Aside from low efficiencies without selection, dRMCE has another critical 

drawback, in that it relies on the presence of two recombination sites whose location will 

govern where the targeted modification or insertion can occur.  In this report, the location 

of the FRT site in intron 2 of Sec24c dictated what the resulting fusion protein would 

contain, since exons 1 and 2 of Sec24c will still be transcribed in the modified allele, thus 

resulting in the formation of a Sec24c-d mini gene encoding the chimeric SEC24C-D 

protein.  Given recent advances in genome-editing technologies, it appears that the 

disadvantages of dRMCE mentioned above are causing it to fall out of favor and 

investigators are instead turning to the more precise clustered regularly interspaced short 

palindromic repeats, or CRISPR, system [118], which allows the user to make specific 

mutations at virtually any location in the genome.  In contrast to dRMCE, which has not 

had much success in the generation of mice carrying modified alleles, the CRISPR-Cas 

system is developing rapidly and has already been used to in a number of studies to 

correct disease alleles in the mouse via pronuclear injection [119,120,121].   

 To further address the contributions of expression pattern and protein properties 

in determining the function of SEC24C and SEC24D, mouse crosses are underway to 

introduce Sec24c+/c-d into the Sec24dGT background to test if SEC24C-D is able to rescue 

the very early embryonic lethality seen in Sec24dGT/GT mice [28].  If Sec24c driven 

SEC24C-D can rescue or delay the lethality of these mice, this would support the notion 

differences in expression between Sec24c and Sec24d are not as critical as differences in 

the characteristics of the proteins themselves in defining paralog-specific functions.  

However, if SEC24C-D is unable to rescue the loss of SEC24D, this could be explained 

by either insufficient expression or some loss of function of the SEC24C-D compared to 
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SEC24D due to the first 57 amino acids of the chimeric protein originating from 

SEC24C.   In either case, these data, in combination with the partial rescue of Sec24c null 

mice, will shed more light on the in vivo roles of these two Sec24 paralogs.  These studies 

and future in vivo investigations on the contributions of the various COPII components 

will contribute to our understanding of the complexity of the fundamental process of 

COPII mediated ER to Golgi transport. 
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Figure 4-1: Design and generation of the chimeric Sec24cc-d allele 

(A) Schematic representation of dRMCE process to generate Sec24cc-d allele.   The 
replacement vector contains the Sec24c intron 2 splice acceptor (purple), the Sec24d 
coding sequence beginning with G120 (gray), and a stop codon followed by a poly A 
signal sequence (magenta). Arrows represent primers used for initial genotype screen to 
identify properly targeted clones (black) as well as those used for RT-PCR to detect 
proper splicing into the Sec24c-d cDNA from Sec24c exon 2 and wild type transcript 
(blue). (B) Depiction of the SEC24C-D fusion protein encoded by the re-engineered 
Sec24cc-d allele, which contains the first 57 amino acids of SEC24C followed by the 
SEC24D sequence corresponding to the remaining SEC24C sequence after Val58.  The 
residue Val58/41 (Val58 in SEC24C, Val41 in SEC24D) serves as the junction point for 
this chimeric protein.  
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Figure 4-2: Identification of re-engineered clone and detection of proper splicing of 
Sec24cc-d mRNA 

(A) PCR results for dRMCE subclone 12275. Correct targeting was observed for the 5’ 
recombination site (lanes 1 and 2) and the 3’ recombination site (lanes 3 and 4).  
Additionally, the presence of the Sec24d cDNA (lanes 5,6), LoxP and FRT sites was 
confirmed (lanes 7,8). The Sec24c+ allele was detected in lane 9, confirming that ESC 
clone 12275 is heterozygous for the Sec24cc-d allele and do not carry any random 
insertions of pCAGGS-iCre (lane 10) or pCAGGS-Flpo (lane 11).  (B) Sec24cc-d mRNA 
transcript detected by RT-PCR analysis with primers flanking splice site between Sec24c 

exon 2 and the Sec24d cDNA insert in Sec24c+/c-d mice (lanes 4-8) but absent in wild 
type littermates (lanes 1-3).  Note: all primer locations for Figure 4-2 can be found in 
Figure 4-1.   
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Figure 4-3: Genotyping at the Sec24c locus & Long Range PCR 

(A) Genotyping PCR assay to distinguish between the wild type and Sec24cc-d allele 
using primers E, F, and G.  (B) Long range PCR confirms the targeting of the original 
Sec24cGTallele was not disrupted during dRMCE process.  Primers were located outside 
the homology arms and within the Sec24d cDNA, so neither set of primers will yield a 
band in the Sec24cwt allele.  
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Figure 4-4: Sec24cc-d/c-d mice exhibit perinatal lethality and growth defects at E17.5 

 (A) P0 pups from Sec24c+/c-d intercross.  Sec24cc-d/c-d pups were dead at birth. (B) E17.5 
embryos from Sec24c+/c-d intercross. Sec24cc-d/c-d embryos are markedly smaller than wild 
type and heterozygous littermates.   
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Figure 4-5: Multiple sequence alignment analysis of SEC24C-D 

Alignment of the N-terminal third of SEC24C-D with the two splice forms of SEC24C 
(SEC24C-1 and -2) and SEC24D.  Arrow depicts the Val58/41 junction residue present in 
SEC24C-D.   Red indicates conserved resides and grey indicates location of 
insertions/deletions.  The additional 23 amino acids included in SEC24C-2 are in 
lowercase. Repeat sequence is bracketed.  
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Table 4-1: List of primers used in Chapter 4 

All primer sequences listed 5’ to 3’.  
 

 
 
 
 
 
 

Primer Name Sequence (5’ to 3’) 

Genotyping and Long Range PCR primers 

A AAGGCGCATAACGATACCA 
C TGAAGGCGCATAACGATACCACGA 
D CTGGCCTGACGCATAAGAGGGTGCCACACT 
E ACTAAGATGGGTCCACAAAAGAGC 
F GGTGGGAAGTCCACACTCTC 

F9 CTTCGTATAGCATACATTATACG 
G GTACTAGGTGAGCCTGAAATCAATG 
H TCCTTCCCGTTTCCTCCTTAGCAT 
I TCGTACGTGGATTTCCTCTGCTGT 
J TGAGTTTGAGGTCCAACCTGGTCT 
K GCTACCATTACCAGTTGGTCTGGTGTCA 
L CTGACCACAAGGGACCTGTGCTGCAGAGGC 
M CCTGCGTGCAATCCATCTTGTTCAATGGC 
N CACAACGGGTTCTTCTGTTAGTCC 
R ATGGCTTCATCACGCCTAAGGGTA 

R7 CCTATACTTTCTAGAGAATAGGAAC 
S GGTGCACAGATGTCTTACCCAGGAG 
T CATTCACACAGCTGCAGAATCCGCACTGATA 
U GAATCCGCACTGATAGCGCCGTCCGCCT 

iCre10F AGATGCTCCTGTCTGTGTGCAGAT 
iCre10R AGGGACACAGCATTGGAGTCAGAA 
Flpo8F TGATGAGCCAGTTCGACATCCTGT 
Flpo8R AGCATCTTCTTGCTGTGGCTGTTG 

24c-GF4 CAGCTGATACTGATACTAGGATCCACGGAC 
24c-GR4 GCACTGCTAACAGTTCGCTATTCCTTCCG 

RAF5 CACACCTCCCCCTGAACCTGAAAC 
RT-PCR primers 

qF1 GTGGGCAACCAGGACCTGCAGCCCCTGCTACTC 
qF2 ACCAGTCAGCTCCACCTGTTCCACCATATGGGC 
qR1 CTGGCCTGACGCATAAGAGGGTGCCACACTAT 
qR2 GGAGCAGCTGAAGGCCCCAATGGCTTCATC 
qF3 TCTCAGCAGTTTGGTCCTCCATTG 
qR3 TTTGCTGCAGCTGATAACCAGG 
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Table 4-2: Expected PCR products from various Sec24c alleles 

Primer pairs listed correspond to assays carried out either screening PCRs of ESC clones, 
genotyping of mice potentially carrying the Sec24cc-d allele, and long range PCRs 
confirming the genomic location of the modified Sec24c locus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primer Paris Sec24c+ Sec24cc-d Sec24cgt Type 
C+D -- 563 -- Screening PCR 
C+R -- 727 -- Screening PCR 
F+H -- 689 -- Screening PCR 
I+J -- 993 -- Screening PCR 
S+T -- 484 -- Screening PCR 
S+U -- 468 -- Screening PCR 
F9+E -- 103 103 Screening PCR 
A+R7 -- 106 106 Screening PCR 
G+E 308 -- 308 Genotyping 
F+E -- 568 -- Genotyping 

qF1+qR1 -- 266 -- RT-PCR 
qF2+qR2 -- 196 -- RT-PCR 
qF3+qR3 238 -- -- RT-PCR 

24c-GF4+U -- 7593 -- Long range PCR 
RAF5+ 24c-GR4 -- 5798 6647 Long range PCR 
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Table 4-3: Summary of ESC co-electroporation results 

Results of co-electroporation of Sec24c+/GT ESCs with the Sec24c-d replacement 
constructs and either pDIRE or pCAGGS-iCre and pCAGGS-Flpo.  G418 resistant clones 
have not undergone recombination to remove the neomycin cassette present in the 
parental Sec24cGT allele.  One targeted clone identified (*=6-H9) was originally screened 
as a mixed population of G418 sensitive and resistant ESCs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recombinase 
Source 

G418 
Sensitive 

G418 
Resistant 

Mixed 
Targeted 
Insertion 

Random 
Insertions 

    Sec24c+/c-d  

pDIRE 
(plates 1-3) 

31 
(10.7%) 

247 
(85.8%) 

10 
(3.5%) 

0 
18/288 
(6.25%) 

pCAGGS 
(plates 4-6) 

42 
(14.6%) 

157 
(54.5%) 

89 
(30.9%) 

1* 
7/288 
(2.4%) 

Total 
73 

(12.7%) 
404 

(70.1%) 
99 

(17.2%) 
1 

(0.0017%) 
25 

(4.3%) 
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Table 4-4: Results of Sec24c+/c-d backcrosses and intercrosses 

Genotypes shown for chimera F1only include those of black chimera/ B6(Cg)-Tyrc-2J/J 
F1 progeny.  
 
 
 

 

 

 

 

 

 

 

 

 

           Cross                        Genotypes 

Sec24c+/c-d X Sec24c+/+ Sec24c+/+ Sec24c+/c-d   

      Expected 50% 50% p-value  
Observed: chimera F1 

(n=38) 58% (22) 42% (16) p >0.3  
C57BL/6J N2 (n=37) 43% (16) 57% (21) p >0.4  

Total 50.6% (38) 49.4% (37) p >0.8  
     

Sec24c+/c-d intercross Sec24c+/+ Sec24c+/c-d Sec24cc-d/c-d  

     Expected 25% 50% 25% p-value 
Observed:  P14 (n=43) 28% (12)  72% (31) 0 <1.6x10-4 

E17.5 (n=8) 25% (2) 50% (4) 25% (2) > 0.99 
Dead at P0 (n=6) 0 0 6 <<0.01 
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CHAPTER V: CONCLUSIONS  
  

 Protein trafficking in the intracellular secretory pathway is carefully regulated to 

ensure the proper sorting and delivery of a diverse range of cargo proteins to many 

different cellular environments.  The transport of proteins through the early secretory 

pathway is a critical cellular function that is tightly regulated and highly conserved.   This 

process begins in the ER with the recruitment of newly synthesized proteins into COPII 

coated vesicles for transport to the Golgi apparatus, where they undergo further 

processing and sorting to their final destinations.  Central to ER exit via COPII vesicles is 

the selective recruitment of proteins into the nascent vesicles via SEC24.  The work 

described in this dissertation aims to understand the specific roles of the mammalian 

paralogs of Sec24 (Sec24a-d) and to what extent their functional and expression 

differences play a role in determining their selective interactions with cargo proteins.   

Essential role for SEC24D in early embryonic development 

 In Chapter II, we demonstrated that SEC24D plays a critical role in early 

embryonic development in the mouse.  We generated two independent lines of SEC24D-

deficient mice using gene trap alleles designated Sec24dgt and Sec24dgt2.  In both gene 

trap lines, Sec24d null mice were absent when the offspring of F1 intercrosses were 

genotyped at two weeks of age.  Genotypic analysis at the blastocyst stage showed a 

complete lack of Sec24dgt/gt embryos in the Sec24dgt line, indicating a requirement for 

SEC24D at this very early stage of development.  Surprisingly, Sec24dgt2/gt2 blastocysts 
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were observed in expected numbers.  Further investigation into this phenomenon revealed 

that Sec24dgt2 is a hypomorphic allele, attributed to a very low level (less than 1%) of 

normal pre-mRNA splicing around the gene trap cassette producing a small amount of 

wild type Sec24d transcript sufficient to bypass lethality at the blastocyst stage, but not 

enough to sustain later stages of development (some point between E10.5 and E13.5).  

The delay in lethality observed is the Sec24dgt2/gt2 suggests that prior to E10.5, reduced 

levels of SEC24D-mediated ER exit are tolerated, likely due to compensation by 

SEC24A-C; however, at around E10.5, these low levels of SEC24D are insufficient for 

the faithful secretion of essential SEC24D-dependant cargo or cargoes whose transport 

from the ER is absolutely required for later embryonic survival.   

Determining the time point of Sec24d null embryonic lethality 

 Loss of SEC24D results in embryonic lethality prior to the blastocyst stage, 

indicating an essential role for SEC24D in very early stages of mammalian development, 

and suggesting the possibility that SEC24D is absolutely required at the single cell level.  

Analysis at the 8-cell stage of embryonic development revealed the presence of a single 

embryo that was Sec24dgt/gt. The latter could be the result of maternal contribution of 

Sec24d mRNA, which can persist during the first few stages of embryonic development 

[122]. Furthermore, given that <1% of normal levels of Sec24d transcript are sufficient to 

delay the lethality observed in Sec24d null mice, even a small amount of maternal Sec24d 

mRNA could allow for the passage of a null embryo beyond the first several rounds of 

cell division.  
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Essential role for SEC24C in embryonic development 

 The experiments described in Chapter III revealed a requirement for the related 

paralog, SEC24C, during embryonic development.  Using embryonic stem cells (ESCs) 

carrying the Sec24ctm1a(EUCOMM)Wtsi (Sec24cgt ) allele, we generated two versions of 

SEC24C-deficient mice, and in both lines, SEC24C-deficient mice were absent when the 

offspring of intercrosses were genotyped at two weeks of age. A more detailed analysis 

of the embryonic requirement for Sec24c was carried out using the Sec24c null (Sec24c-) 

allele.  In contrast to what was observed in Sec24dgt/gt blastocysts, Sec24c-/- embryos were 

present in the expected Mendelian ratio at the blastocyst stage, with loss at approximately 

E7.5.  While the exact cause of this lethality is unknown, it is likely a manifestation of a 

block in ER export of a cargo or set of cargoes that rely preferentially on SEC24C for 

recruitment into nascent vesicles, and in the absence of SEC24C, are retained in the ER 

unable to carry out their normal cellular function.  

Normal appearance of Sec24c+/- and Sec24d+/gt and Sec24c+/-Sec24d+/gt mice 

 Heterozygosity for either Sec24c or Sec24d results in no phenotypic 

abnormalities, as mice with both genotypes exhibited normal growth and fertility.  

Indeed, compound heterozygote (Sec24c+/- Sec24d+/gt ) mice also appear phenotypically 

normal. Electron microscopic analysis of highly secretory liver and pancreatic tissues, as 

well as mouse embryonic fibroblasts derived from Sec24d+/gt embryos, failed to 

demonstrate ER dilation due to a loss of COPII function.  These data, as well as the low 

levels of normal Sec24d needed to extend the lifespan of Sec24d null embryos, 

demonstrate that loss of a substantial amount of either SEC24C or SEC24D is 

surprisingly well tolerated.  
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Identification of a tissue-specific alternative splice form 

 While evaluating the mRNA expression profile of Sec24a-d in mouse tissues 

using RT-PCR, we discovered the presence of an alternative splice form of Sec24c in a 

select set of tissues, including the brain, heart, skeletal muscle, and brown fat.  

Interestingly, the expression of the two Sec24c splice forms appears relatively mutually 

exclusive; in tissues expressing Sec24c-2, very little Sec24c-1 transcript is detected, and 

vice versa.  The 23 additional amino acids present in the SEC24C2 appear to be a repeat 

of an upstream motif containing I/L-DPD-A/S-IPSP (Figure 4-5).  The function of this 

duplication remains unclear, but it is possible that these additional 23 amino acids 

provide a platform for cargo binding, or have a role in regulating SEC24C’s interaction 

with accessory proteins or other components of the COPII coat.  Other work  from our 

lab found that all four mouse SEC24s were able to bind to both SEC23 paralogs in an 

overexpression system; experiments are currently underway to determine if an N-terminal 

FLAG tagged version of SEC24C-2 has a preference for SEC23A or SEC23B.   The 

identification of Sec24c-2 is the first demonstration of tissue-specific alternative splicing 

in a mammalian COPII gene.  However such alternative splicing is thought to be 

widespread across the genome [106,107].  Preliminary analysis of the human genome and 

RNA-seq data suggest that the Sec24C-2 alternative exon is conserved, though more 

investigation is necessary to determine the tissue-specific expression patterns of the two 

Sec24c splice forms in humans.  Future experiments to determine the function of the two 

splice forms will be discussed in a later section.   
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Tissue-specific knockouts reveal that SEC24C is dispensable in a number of tissues 

 Our tissue-specific knockout experiments revealed that SEC24C is not required 

for the proper maintenance and function of a number of tissues, including highly 

secretory tissues such as pancreas and liver, as well as intestine and smooth muscle.  

Phenotypic analysis of Sec24cFL/-Cre+ mice (p48-Cre for the pancreatic acinar cells, 

albumin-Cre for hepatocytes, villin-Cre for intestinal epithelium, and SM22-Cre for 

smooth muscle) did not identify any abnormalities compared to Sec24c+/FL Cre+ 

littermate controls, despite a relatively high level of Cre-mediated excision in the 

expected tissues.  The extent of excision seen, combined with the cell autonomous 

function of SEC24, suggests that, in all of these cell types, none of the essential proteins 

traversing the early secretory pathway require SEC24C and are able to rely on the three 

remaining SEC24 paralogs for sufficient ER export. 

Examining the overlap in function between SEC24C and SEC24D 

 The cause of the early embryonic lethality in both the Sec24c and Sec24d null 

mice is unknown.  An absence of either SEC24C or SEC24D likely leads to a cargo-

specific defect in protein sorting and secretion of proteins with paralog-specific 

requirements, though it could also result in a more global disruption of the export of 

cargo proteins out of the ER.  In either case, the lethality observed suggests that the 

remaining paralogs of SEC24 are unable to compensate for loss of SEC24D at any point, 

and are only able to compensate for the absence of SEC24C for a relatively short window 

during early embryonic development.  However, a key question is whether the 

phenotypes we observe in these embryos is the result of a paralog specific function, or a 
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manifestation of differential temporal or tissue-specific expression patterns for SEC24C 

and D?    

 While expression of the four SEC24 paralogs has been detected in all tissues 

tested in the adult and in embryos from E10.5 and beyond, the precise developmental 

timing and expression level of each paralog at earlier stages are still unknown.  

Additionally, the analysis of expression pattern in the adult is at the level of whole 

tissues, and further investigation into the cell-type specific expression would provide 

additional insight into the level of functional overlap among the four SEC24 paralogs.  

Unfortunately, attempts to make anti-peptide antibodies against SEC24C and D in our lab 

were unsuccessful and commercial antibodies available against the human SEC24 

paralogs are unable to recognize the corresponding mouse proteins.  While this limits our 

ability to carry out immunohistochemistry, future studies could potentially use in situ 

hybridization to evaluate expression in various cell types within a given tissue.  Mining 

of growing databases of RNA-seq data (from the Encyclopedia of DNA Elements 

(ENCODE) and other projects) provides another source of information about the levels of 

SEC24 paralog mRNA expression across a wide variety of tissues and cell types and at 

early developmental time points.  

 In Chapter IV, we took a genetic approach to address this central question of how 

much functional overlap exists between the four SEC24 paralogs.  I used a recently 

developed technique called dual recombinase mediated cassette exchange (dRMCE) 

[112] to direct a targeted insertion of Sec24d coding sequence into the Sec24c locus.  This 

modified locus should drive expression of Sec24d under the regulatory control elements 

of Sec24c and test its ability to rescue the loss of SEC24C-deficient embryos.  This new 



 116 

Sec24cc-d allele was tested for its ability to functionally replace endogenous SEC24C.  

The perinatal lethality observed in Sec24cc-d/c-d mice suggests that SEC24C-D, in the 

expression context of Sec24c, is able to functionally replace endogenous SEC24D to an 

extent that is consistent with embryonic survival, but is unable to fully function in place 

of endogenous SEC24C. This may also be due to some loss of function of the SEC24C-D 

compared to SEC24D due to the first 57 amino acids of the chimeric protein originating 

from SEC24C Current work to generate an N-terminal FLAG tagged version of the 

SEC24C-D protein is ongoing to test its interactions with SEC23A/B in the setting of an 

in vitro over-expression system.    

Can SEC24C-D rescue the loss of SEC24D? 

 To further address the contributions of expression pattern and protein properties 

in determining the function of SEC24C and SEC24D, I have crossed Sec24c+/c-d into the 

Sec24dGT background to test if SEC24C-D is able to rescue the very early embryonic 

lethality seen in Sec24dgt/gt mice (See Chapter IV and [28]).  A cross of compound 

heterozygous mice (Sec24c+/c-dSec24d+/gt), to Sec24d+/gt mice is currently in progress. If 

Sec24c driven SEC24C-D can rescue or delay  lethality in these mice, this would support 

the notion that differences in expression between Sec24c and Sec24d are not as critical as 

differences in the characteristics of the proteins themselves in defining paralog-specific 

functions.  However, if SEC24C-D is unable to rescue the loss of SEC24D, this could be 

explained by either insufficient expression or again, some loss of function of the 

SEC24C-D compared to SEC24D.   In either case, these data, in combination with the 

partial rescue of Sec24c null mice, will shed more light on the in vivo roles of these two 

SEC24 paralogs.  
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Testing the temporal requirement for SEC24 

 The early embryonic lethality of Sec24d and Sec24c null embryos precludes the 

study of SEC24C or SEC24D function later in development or in the adult mouse with 

standard gene trap alleles, however the availability of a conditional allele for Sec24c 

allows us to explore the role of SEC24C beyond the critical embryonic time point of 

E7.5, when Sec24c null embryos are lost.  

 Using mice carrying a ubiquitous, tamoxifen inducible Cre transgene, we can 

bypass the embryonic lethality to test whether SEC24C is required more broadly in the 

adult mouse, beyond the cell types tested by our tissue specific Cre transgenes (Chapter 

III).  I a preliminary experiment, I found that 6 days after initial administration of 

tamoxifen to adult mice, these mice quickly develop a seemingly neurological phenotype, 

their health rapidly declines, and they die within 24 hours of initial symptoms (data not 

shown).  The severity of the phenotype is directly correlated with the level of excision 

observed across a wide range of tissues.  These data, while still preliminary, clearly 

indicate that there is more than just an embryonic requirement for SEC24C, though the 

precise cause of death and the cargoes responsible for this phenotype remain to be 

identified.  Future work to carefully examine the behavior of these mice prior to 

expiration, as well as detailed histopathological study, is necessary to be able to conclude 

anything about the precise role of SEC24C in the adult mouse and what cargoes may 

require SEC24C for efficient ER export.   

Future studies of SEC24 function in vivo 

 Traditional manipulation of the mouse genome to generate modified alleles via 

homologous recombination has historically been a time consuming process filled with 
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technical challenges that often limit their utility.  However, recent advances have made 

the in vivo study of complex questions in cell biology much more approachable than ever 

before.  The era of using standard transgenes or bacterial artificial chromosomes (BACs) 

to introduce humanized or mutated alleles into mice may be coming to an end, as 

advances such as dRMCE (Chapter IV), zinc-finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs), and most recently the clustered regularly 

interspaced short palindromic repeats/Cas 9 (CRISPR/Cas system) are becoming more 

commonplace [123].    

 For my study of the overlap in function of SEC24C/D, I used dRMCE for a 

number of reasons: (i) our Sec24c alleles contained the required recombination sites 

necessary for dRMCE, (ii) it seemed feasible that translating the method from ESC 

electroporation to pronuclear injection would be successful and ultimately take less time 

than traditional BAC recombineering or homologus recombination techniques, (iii) and at 

the time, ZFNs and TALENs were only beginning to be used in the mouse, and the 

CRISPR/Cas system had not been developed yet.  While we ultimately were able to 

successfully generate the Sec24cc-d allele via co-electroporation in ESCs, our attempt at 

dRMCE using pronuclear injection was not as robust as we had hoped. Attempts at 

microinjecting in vitro translated mRNAs for iCre and Flpo were made to address a 

potential delay in recombinase expression from a plasmid; however, only a handful of 

injected zygotes survived and none carried the targeted allele.  At around the same time 

we identified clone 6-H9 in our parallel ESC electroporation, leading us to abandon the 

microinjection of mRNA in favor of sublconing 6-9H and using ESCs to generate our 

Sec24c-d mouse.    
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 As discussed previously, one major disadvantage of dRMCE is that the location 

of the FRT and LoxP sites dictate where targeted insertions can be made.  Conversely, 

the CRISPR/Cas system allows for precise genome editing and targeted insertions at 

virtually any location in the genome [123].  In just the span of about one year, many 

reports of successful use of CRISPR/Cas to modify the mouse genome using 

microinjection have appeared [118,120,121].  Thus, future experiments to look at the role 

of the SEC24 paralogs will likely be undertaken using CRISPR/Cas instead of dRMCE.  

 Given the potential caveats that come with the chimeric SEC24C-D fusion 

generated by dRMCE, the use of CRISPR/Cas to direct the insertion of the entire 

SEC24D coding sequence into the Sec24c locus at the ATG has clear advantages.  This 

allows for a true replacement of SEC24C with SEC24D, which may potentially clarify 

the extent of functional overlap of these two highly related proteins.  However, it remains 

possible that this new mini-gene would still disrupt critical regulatory elements within the 

Sec24c locus (introns).  To control for this, it would be crucial to also generate a Sec24c 

mini-gene that could also be knocked into the Sec24c locus.  If mice homozygous for this 

allele were phenotypically normal it would demonstrate that at least the minimal 

regulatory elements are maintained following CRISPR/Cas mediated editing at the 

Sec24c locus.   

 Reciprocal experiments could be carried out to generate mice carrying Sec24c 

mini-genes under the control of the Sec24d promoter, but in doing so, the two alternative 

splice forms must be considered, as it is unclear if either or both of these splice forms are 

necessary for the survival of the mouse.  One could potentially engineer the Sec24c mini-

gene to include intron 6-7 where the alternative exon resides, to allow for either form of 
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Sec24c to be transcribed; however, this would generate a very large insertion cassette 

(>5kb), which may decrease the efficiency of targeted insertion.  Alternatively, one could 

engineer the transgene to contain the appropriate splice signals sufficient to generate 

either splice form, and in that way reduce the size of the insertion template down to 

approximately 3.5kb.   

 To further address the role of these alternative splice forms of SEC24C, 

CRISPR/Cas could be used to mediate the removal of the splice signals associated with 

exon 6* and generate a mouse that could only produce Sec24c-1 transcripts in all tissues.  

Alternatively, one could modify the region containing exons 6,6* and 7 of Sec24c using 

CRISPR/Cas to create a mouse in which only Sec24c-2 transcript is present.   At this 

point, the precise role of these additional 23 amino acids is unclear; answering this 

question will likely require experiments both in vivo using these engineered mice as well 

as in vitro studies evaluating the interactions between these two splice forms of SEC24C 

and potentially identifying cargoes with splice-form specific requirements for ER exit.  

Uncovering additional SEC24 paralog-specific cargoes 

 When we began our tissue-specific Sec24c knockout study, we envisioned that if 

we were able to identify a tissue in which SEC24C was not required, it would provide 

material from which to generate primary cell lines that do not express SEC24C. 

However, recent advances in genome-editing technologies have provided alternative 

approaches for generating SEC24C- or SEC24D- deficient cell lines for the identification 

of paralog-specific cargoes.   The CRISPR/Cas system could be used to generate cell 

lines deficient in a particular paralog, and from these lines (if viable), one could 

potentially identify proteins that require a specific SEC24 paralog for efficient ER export.  
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Stable isotope labeling by amino acids in cell culture (SILAC) [124] could be used to 

differentially label individual cell lines to allow for a direct, quantitative comparison of 

the export of a particular protein or set of proteins using MS/MS analysis.  Depending on 

the fractionation technique used, one could potentially identify plasma membrane 

proteins, proteins destined for various intracellular compartments, or those secreted into 

the media, that have binding preferences for a particular SEC24 paralog.  

 In the case of SEC24D, where data from the mouse suggest that the complete loss 

of SEC24D results in death at the single cell level, an inducible knockdown approach, in 

combination with SILAC, may be a more appropriate choice to find paralog-specific 

cargoes. This approach could be used to potentially identify those proteins that exhibit a 

reduction in ER exit when a particular SEC24 paralog is knocked down.  

 Additional efforts to understand the overlap in cargo repertoires for each SEC24 

paralog in our lab have been met with technical challenges.  To identify additional 

proteins that interact with SEC24A-D, including transmembrane cargoes and cargo 

adaptors, as well as unidentified cytosolic regulatory factors, immunoprecipitation 

followed by mass spectrometry (IP-MS) was carried out.  Initial attempts were plagued 

with low signal to noise ratios, such that it was even difficult to detect the presence of 

SEC24’s known binding partner, SEC23, above the high background.  Potential 

explanations include the high background of the RFP tag used on SEC24A-D, as well as 

the transient nature of a SEC24-cargo protein interaction.  Future studies will use FLAG 

tags, which have less background binding than RFP, as well as crosslinking, to help 

capture more transient interactions occurring at the site of vesicle formation.   Results 

from these experiments could help to define the cargo clientele for each SEC24 paralog, 
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and potentially allow for the discovery of novel ER export motifs that may confer 

paralog-specificity.  Taken together, these experiments to uncover SEC24-cargo 

interactions could provide enormous insight into role of individual SEC24s in cargo 

recognition and recruitment.  

A proteomics approach to understanding SEC24 behavior 

 Recent analysis of SEC24A-deficient mice revealed that in the absence of 

SEC24A, the steady state levels of SEC24B are increased; however the levels of 

SEC24C/D remain the same [26].  Sec24b mRNA levels are unchanged in these mice, 

suggesting that this increase in SEC24B results from a decrease in degradation rather 

than an increase in expression.  Given this, one could speculate that perhaps SEC24A/B 

and SEC24C/D are maintained in different cytoplasmic pools, and in the absence of 

SEC24A, a larger portion of SEC24B remains in a heterodimeric state with SEC23A/B, 

preventing its degradation.   If true, this represents a previously uncharacterized level of 

COPII vesicle regulation.  

 To test this hypothesis, we set out to examine the half-lives of the mammalian 

COPII components in the cell, which is currently unknown, and then determine if the 

stability of these components are altered when particular paralogs are knocked out.  

Using SILAC, we carried out a “pulse-chase” experiment in which we fully labeled HeLa 

cells by growing them in lysine-deficient media supplemented with non-radioactive 

“heavy” 13C6-lysine for seven doublings.  At that point, we switched them back to media 

containing “light” 12C6-lysine, and collected cell lysates at various time points to measure 

the ratio of heavy:light peptides for a given protein by mass spectrometry.  Analysis of 

these lysates is ongoing, but we expect to be able to determine the half-life of a given 
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protein in the sample by looking at the decrease in the ratio of heavy-light labeled 

peptides as a function of time.    

 Once we have established a steady-state half-life for SEC24A-D, we can repeat 

this experiment in cell lines that are deficient in a single paralog and determine what the 

half-lives of the remaining COPII proteins are in that context.   Given what was seen in 

the SEC24A-deficient mice, one might expect that the half-life of SEC24B is increased in 

cells where SEC24A has been knocked out, and vice versa.  Likewise, one might expect 

the loss of SEC24C would have an impact on the half-life of SEC24D, if indeed these 

two subgroups were maintained in distinct cytoplasmic pools.   This proteomics based 

method of determining the half-lives of SEC24A-D may provide new insight into the 

regulation and behavior of the SEC24 paralogs, and may at the same time serve as a 

model for the study of protein behavior that can be extended to the entire proteome.  

   

 In summary, this dissertation has focused on defining the specific roles of the 

mammalian paralogs SEC24C and SEC24D and determining the features that contribute 

to their differential functions.  These studies provide new insight into the degree of 

overlap in function and regulation of SEC24A-D, though many questions still remain.  

With the amplification of COPII paralogs in mammals, how do these proteins behave in a 

combinatorial fashion to respond to the dynamic needs of the cell? Do different classes of 

COPII vesicles exist, perhaps containing either SEC24A/B or SEC24C/D or some other 

combination?  If so, are there particular classes of COPII vesicles involved in the 

trafficking of larger, bulkier cargo such as pro-collagens? Future investigations will shed 

light on specific contributions of SEC24 paralogs and their specialized interactions, 
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which will lead to a deeper understanding of the complex, fundamental process of 

selective ER export and COPII vesicle biogenesis. 
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