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ABSTRACT

Effects of Random Manufacturing Errors on the Performance of Contemporary
Coherent Radiation Sources

by

Ian M. Rittersdorf

Chair: Yue Ying Lau

The traveling wave tube (TWT) is a linear beam microwave vacuum electron

device (MVED) and is a key element in telecommunication systems, satellite-based

transmitters, military radar, electronic countermeasures, and communication data

links. Variations in TWT performance due to random errors in the manufacturing

process can drive up the cost. These errors provide a proportionately larger pertur-

bation to the circuit as the frequency increases into the sub-millimeter wavelength

regime and beyond. Previous studies calculated the standard deviation in the small-

signal gain and phase of a TWT in the presence of small random, axially varying

perturbations in the circuit phase velocity, but assumed zero space charge effects and

synchronous interaction. This work relaxes the latter assumptions and calculates the

ensemble-average gain and phase by two analytic approaches as well as a numerical

calculation. The analytic theory resolved a previously unexplained puzzle where a

significant fraction of samples with random circuit errors show a higher gain than

an error-free tube. The effects of multiple internal reflections are also presented and
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their effects on the small-signal gain and phase are shown to be significant. Due to in-

terest in the absolute instability of TWTs with such internal reflections, the absolute

instability in a dielectric waveguide is investigated.

The magnetron is another type of MVED in a crossed-field configuration that

is promising to deliver GWs of power in the GHz frequency range. The peer-to-

peer configuration is an attractive method of phase-locking a large number of very

efficient, lower power magnetrons. This thesis advances the theory a step further

by examining the viability of peer-to-peer locking when two magnetrons in a peer-

to-peer configuration suffer from a frequency chirp or contain a low frequency noise

component. An argument is made that the analysis of temporal locking is analogous

to the spatial locking experimentally observed in neighboring wires in z-pinch arrays.

A framework for the interpretation of spatial locking found in these experiments is

provided.
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CHAPTER 1

Introduction

1.1 Random Fabrication Errors and Random Noise in Mi-

crowave Sources

Microwave sources are a class of device that have a wide range of impactful appli-

cations, including telecommunications, satellite-based transmission systems, military

radars, electronic countermeasures, and communication data links [1–3]. The current

interest with this technology is to push these microwave sources to higher frequencies,

in the terahertz range, and to higher powers, deep into the gigawatt range [2, 4]. One

challenge that arises when trying to realize these goals is that random variations due

to error tolerances in the manufacturing process or random noise in a device during

operation can effect the performance of the microwave source. This thesis explores

such phenomena in two specific microwave sources: the traveling wave tube (TWT)

and the magnetron.

The TWT is the prime candidate for a high power, coherent THz radiation source,

with the ultimate goal of being integrated in microwave power modules (MPMs). The

MPM is a miniature, complete amplifier package containing a TWT, integrated power

conditioner, and solid state amplifier [5]. These miniature and efficient amplifiers, at

sub-THz frequencies, have been deployed for airborne and space applications where
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small size, low weight, and minimal power consumption are advantageous [6]. The

use of terahertz radiation is thought to be an important tool in counter-improvised

explosive device (C-IED) sensing techniques [7]. Currently, the most advanced THz

TWT was developed by Kreischer’s group at Northrop Grumman, producing 67 mW

at 0.850 THz, using an electron beam of 11.7 kV, 2.5 mA in a folded waveguide cir-

cuit [8]. As the millimeter and sub-millimeter wavelength regimes are approached,

the feature size of TWTs will approach that of the tolerances of modern manufac-

turing methods. This leads to performance degrading perturbations. This thesis will

investigate such effects.

Some of the primary applications for high power magnetrons are radar systems,

power beaming, and industrial heating [9]. For radar systems, the maximum detection

range scales as P 1/4, where P is the power, therefore significant gains in the high power

output of magnetrons is of interest [10]. One appealing way of creating high power

microwaves would be to combine the output of several, medium power magnetron

sources together in a configuration known as peer-to-peer locking. Even though a

magnetron has a characteristic operating frequency, in practice there is some finite

spread in the output signal spectrum or some noise component to the frequency

output. Magnetron noise has been known to be an important issue from the outset,

and numerous attempts to reduce it have been made [11]. This thesis investigates

the effects of frequency chirps, where the output frequency of one magnetron drifts

upward (or downward) as a function of time, and random noise in the output signal of

two magnetrons that are locked in a peer-to-peer configuration. Similar phenomena

is observed in adjacent optical waveguides of CO2 lasers [12]. In such an experiment,

the coupling was provided by radiation leaking through a ZnSe plate that separated

the two waveguides and locking was only observed when the individual lasers were

operating on the same transition. Further, it is noticed that the temporal locking of

two such oscillators is similar to the spatial locking that is observed on the ablation
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structure of neighboring wires in z-pinch array plasmas. This thesis also offers an

interpretation of this spatial locking phenomenon that is analogous to that of the

temporal locking of magnetrons.

1.2 Description of Coherent Radiation Sources Discussed in

this Thesis

1.2.1 Traveling Wave Tubes

The traveling wave tube is a linear beam device [1, 10]. It is capable of delivering

kilowatts of power in the tens of gigahertz frequency range by converting the kinetic

energy of a DC electron beam into RF energy. Although the initial experiments were

performed on the TWT by Kompfner in 1947 [13], the theory of TWTs was largely

founded by J. R. Pierce of Bell Telephone Laboratories in the late 1940s [14]. The

Pierce theory of TWTs is still widely used in the analysis of TWTs (and other sources

such as free electron lasers and gyrotrons) to this day and will be the basis of the

analysis performed in this thesis. There are several types of TWTs: helix, coupled-

cavity, folded waveguide, ring bar, and ladder. The standard Pierce theory, to be

described in Section 2.3, is applicable to all types in the basic description.

The general model of a TWT, with a few key components, is shown in Fig. 1.1 [1].

An electron beam is produced from the electron gun. This beam travels down the axis

of the vacuum envelope and into the collector, where some of the kinetic energy of the

beam is recovered to improve overall efficiency. While the collector can exist in many

configurations, they all operate on the principle of applying on a negative voltage bias

such that the electrons slow down before being collected on the structure wall. The

beam is confined inside the vacuum envelope by a magnetic field supplied by a magnet

structure outside of the vacuum envelope. The RF signal to be amplified is injected

into the TWT at the input and travels down a slow wave circuit in the form of a
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Figure 1.1: The basic components of a typical traveling wave tube. The labeled com-
ponents are the electron gun, the RF input, the magnetic field, the atten-
uator, slow wave circuit (helix type shown here), the RF output, and the
collector. All of these components are inside the TWT vacuum envelope.
Image from [1].

helix or other structure and is collected at the RF output. The slow wave structure

slows the axial speed of the RF signal to approximately that of the electron beam

so the two may interact continuously as they co-move down the axis of the TWT.

During this continuous interaction, the electron beam gives up its kinetic energy to

the RF wave and RF amplification occurs. An attenuator is sometimes used to damp

out the backward wave which may cause feedback oscillations of TWTs. Typically,

the TWT may be described by the linear theory in the first 85 percent of the axial

length. Non-linear saturation, when it occurs, takes place only at the last 15 percent

of the axial length. This thesis, therefore, adopts Pierce’s linear theory of TWTs as

described in Section 2.3.

When an RF signal is injected into a TWT it usually generates four waves: three

waves traveling in the forward direction (from input to output) and one traveling in

the backward direction (from output to input). In the analysis performed in Chap-

ter 2, the backward wave is ignored although its effects are discussed in Chapter 3. Of

the three forward waves, one wave grows exponentially in space as it travels down the
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axis and provides the gain in the amplifier. The second of the waves decays exponen-

tially in space as it travels down the axis, and the third forward wave maintains its

amplitude as it travels down the axis in a lossless circuit. This input power injected

into the TWT must be split between these three waves, leading to a phenomenon

known as launching loss [1, 14].

The fractional difference between the velocity of the electron beam and the axial

component of the circuit phase velocity is one of the most important parameters

in the operation of the TWT because it is a measure of the degree of synchronism

between the circuit wave and the beam’s motion. In the case of the helix slow wave

structure, it is the geometry of the helix that determines the axial circuit phase

velocity. The dimensions of the helix can change in the presence of manufacturing

tolerances, slightly changing the axial circuit phase velocity and thus altering the

synchronous interaction in a TWT, affecting the gain and the phase in the output

signal.

1.2.2 Magnetrons

The magnetron is a crossed-field device, meaning that the electric field and the

magnetic field within the device are perpendicular to each other. The magnetron is a

very robust microwave source that is capable of generating GWs of power in the GHz

frequency range [2, 10]. The earliest demonstrations of the magnetron were performed

by Arthur Hull around 1920 at General Electric’s Research Laboratory. The cavity

magnetron was first introduced by Randall and Boot of the University of Birmingham

in 1940 during the push for radar technologies in World War II. After the war, many

theoretical contributions on magnetrons came from some major scientists including

Buneman, Hartree, Lamb, and Slater. One of the greatest appeals of the magnetron

as a microwave source is its extremely high efficiency, ranging from 50% upwards

to 90%, and how inexpensive it is to manufacture; the kilowatt oven magnetron,
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Figure 1.2: A schematic of an eight cavity magnetron highlighting all of the major
components. Original image from [1].

most commonly used in household appliances, only costs around $7 to manufacture

[9]. While the prevalence of the magnetron has led to extensive study, there is no

comprehensive theory for the operation of the magnetron [15]. For example, to-date

there is no generally accepted theory which gives the voltage-current characteristics

of a magnetron; the proper interpretation of the Buneman-Hartree condition, which

is the basic design rule for magnetrons, has been recently questioned [16].

A schematic of a cylindrical magnetron is shown in Fig. 1.2 [1]. The electrons

are emitted from the cathode via thermionic emission and the magnetic field confines

the electrons within the interaction space between the cathode and the anode. A

slow wave structure on the anode is created by periodic placement of cavities and

vanes. This slow wave structure sets up vacuum RF modes, some of which will

have resonance and become excited by the interaction between electrons with the RF

modes. The electrons will then form “spokes” which will oscillate in and out of the

RF cavities. The onset of these oscillations is known as start-up. The RF signal is

extracted through one of the cavities by the RF extractor. Table 1.1 lists the typical
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operating parameters of a conventional high power magnetron [17].

Parameter Conventional Value
Voltage ≤ 100 kV
Current ∼100 A

Cathode Type Thermionic & Secondary Emission
Pulse Duration ≥ 1µs

Risetime ≤ 200 kV / µs
Power ≤ 10 MW

Efficiency 50% − 90%

Table 1.1: List of typical operating parameters for a conventional high power mag-
netron [17].

1.2.3 Wire Array Z-Pinches

The z-pinch is a different type of source of electromagnetic radiation. Since this

thesis also considers spatial locking observed in the ablated wires in a z-pinch, we give

a brief description of the z-pinch here. The contemporary z-pinch is used to produce

high energy x-rays instead of microwaves [18–20]. The conventional z-pinch consists

of a plasma column through which an intense current is passed that is sufficient to

create an azimuthal magnetic field that provides an inward Lorentz force to compress

and confine the plasma. This confinement proves to be insufficient for thermonuclear

fusion due to the surface instabilities that the z-pinch suffers from, which include the

magneto-Rayleigh-Taylor (MRT) instability, and the sausage and kink instabilities,

as seen in Fig. 1.3 [21]. Even though the z-pinch plasma is insufficient for thermonu-

clear fusion, it is a powerful high energy x-ray source [18–20]. Unfortunately, the

instabilities mentioned above reduce the x-ray yield of z-pinches as well.

In recent years, the z-pinch plasma is created by a circular array of wires made

of high-Z materials, typically tungsten [20, 22]. An intense current on the order of

20 MA is passed through this array, causing all of the wires to ablate into plasma.

The ablated plasma, and the wires themselves, are then accelerated to the center of

the array where it stagnates and the hot, dense plasma emits x-rays. These x-rays
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Figure 1.3: An example of the (a) sausage and (b) kink instabilities on the surface of
a current carrying plasma column. Image from [21].

are used to drive Inertial Confinement Fusion (ICF) targets, experimental studies of

equations of state, or for x-ray diagnostics [23]. The ablation structure of a wire in the

middle of a current pulse can be seen in Fig. 1.4 [24]. In this figure, the sausage-like

instability is apparent in the ablation structure.

It has been found that the ablation structure of two such wires in a z-pinch wire

array will correlate when the distance between the two wires becomes sufficiently

small [25]. This thesis attempts to use the phenomenon of the temporal locking of

magnetrons in the peer-to-peer configuration to describe this spatial locking behavior

[26].

1.3 Prior Work

1.3.1 Effects of Random Errors on TWTs

Some of the earliest investigations of fabrication errors in the performance of a

helix slow wave TWT were made by D’Agostino and Paoloni [27]. In these early
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Figure 1.4: A front-lit preshot image (left) and a laser backlit image (right) at 92 ns
during a shot of a tungsten wire array pulsed with intense current from
a 1 MA driver. Figure from [24].

works, the effects of the mechanical tolerance of the dielectric rods that hold the

helix circuit in place were investigated. Specifically, the effects of altering the three

different dimensions that define a T-shaped rod (Fig. 1.5), a very common rod shape,

were investigated and showed that the circuit phase velocity would change most sig-

nificantly to variation in the width of the dielectric rods. Following this, D’Agostino

and Paoloni went on evaluate the effect this would have on the small-signal gain of

the TWT [28]. They developed a method by which the electrical parameters of the

slow wave circuit can be calculated quickly and accurately. The small-signal gain

was then determined by using the standard Pierce theory [14]. The parameters are

assumed to be uniform and constant over the entire tube so that the standard Pierce

theory may be applied on each sample. The purpose of this method was to be able to

quickly evaluate many TWTs with small variations in the dimensions of the dielectric

support rods as a design tool to understand the sensitivity of the rod dimensions to

TWT performance. Their calculations were validated by comparison to experimental

data.

D’Agostino and Paoloni next extended their investigation to the tolerances of the

helix wire dimensions and their effect on the TWT small-signal gain [29]. Here, a five
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Figure 1.5: A schematic showing T-shaped dielectric rods holding a TWT helix circuit
in place. The three dimensions varied by D’Agostino et al. [27] are
labeled. Image from [27].

section TWT with an operational bandwidth of 10 - 13 GHz was considered. When

the dimensions of the helix in each of the five sections were allowed to vary by ±10%,

it was found that variations in the gain as large as 8 dB could occur. The effects of the

helix pitch tolerance, i.e., period length, for a multi-segment TWT were also studied

[30]. A key result of this study showed that just a ±5% tolerance to the helix pitch

value produced less than 10% of simulated TWTs with both less than 1 dB variation in

the average gain and less than 6% flatness to the gain curve. The effects of dimensional

variations in a 94 GHz folded-waveguide TWT were investigated as well by Wilson

and Chevalier [31]. In their work, only dimensional variations in the period of the

slow wave structure were considered and the TWT performance was simulated by

the 2-D NASA Coupled-Cavity TWT Code. The period length as a function of axial

position was then optimized to the average power for three different configurations:

the nominal period and the nominal period plus/minus the dimensional tolerance. It

was found that this optimization technique produced designs that were significantly

less sensitive to dimensional tolerance variations than standard design techniques in

the limit of high frequencies, i.e., short period lengths. In the limit of long period

lengths the optimization algorithm produced similar results to that of standard design

techniques.
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Figure 1.6: Previous works of Pengvanich et al. showing the gain distribution of 500
simulated TWTs, each with unique, random perturbations to the circuit
phase velocity. Note that while the mean gain of the distribution (green
line) is less than the error-free gain (red line), a significant number of
samples show a power gain greater than 647, the gain for the error-free
tube. Original image from [32].

A key assumption in previous investigations by D’Agostino and Paoloni (and also

by Wilson and Chevalier), is that each section had a uniform, fixed geometry so that

the Pierce theory for uniform tubes may be applied to that section in each amplifier.

The uniform circuit phase velocity was allowed to fluctuate around some mean value.

This circuit phase velocity would then vary amongst all of the simulated traveling

wave tubes. This crucial assumption was relaxed by Pengvanich et al. [32, 33]. In

this work, the fabrication errors are allowed to vary randomly at all axial positions

along the entire tube. The distribution of gain for a set of 500 simulated TWTs in

the presence of such errors is shown in Fig. 1.6. These fabrication errors were applied

through random variations in the standard Pierce parameters: the velocity mismatch

parameter b, the gain parameter C, and the cold-tube circuit loss parameter d. These

parameters, as defined by Pierce, are described in detail in Section 2.3. The effects

of these randomly distributed errors on the small-signal gain and phase were then

studied [32]. Note that Pierce’s gain formula for a uniform tube can no longer be used
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because Pierce parameters are now random functions of axial position. Pengvanich

devised a statistical analysis, showing that the standard deviations in the output

gain and phase from the error-free value due to fabrication errors are linear in the

standard deviation of the perturbations in the Pierce parameters. This work also

showed that it was variations in the circuit phase that provided the greatest impact

on the output gain and phase variations. A peculiar feature of Pengvanich’s results

is that a significant fraction of the samples with random errors show an output gain

higher than that of the error-free free tube (Fig. 1.6), something that is not expected

among manufactured TWTs. The resolution of this puzzling feature is a main part

of this thesis [34].

The analysis performed by Pengvanich et al. considered only the three forward

propagating modes inside the TWT. The effects of the Pierce “space charge” term

(Section 2.3), QC, were also neglected. Most recently, these effects in the presence

of fabrication errors have been considered. Sengele et al. [35] first adapted the

analysis and technique of Pengvanich et al. [32] and included the effects of the Pierce

space charge term. This work found that the presence of the space charge term

reduced the significance of fabrication errors. Sengele then considered the effects

of the backward wave in the presence of both random errors and the space charge

term [36]. It was found that the random variations had a more significant effect in

reducing the backward wave gain than the forward gain [36]. Since it is the backward

wave that can cause oscillations in a traveling wave tube, it is thought that the

significance of this result is that the random fabrication errors can damp the backward

wave gain at a faster rate than the forward wave gain, thus making the amplifier

more stable to oscillations. The backward wave, in the absence of space charge term

effects, was considered by Chernin et al. [37]. This work emphasized the effects of

multiple internal reflections due to the fabrication errors. These internal reflections

were neglected by Sengele et al. [35, 36]. It was found that the presence of multiple
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Figure 1.7: A schematic of the experiment of Price et al. [38] of a cavity vircator
driven by a relativistic magnetron. Original image from [38].

internal reflections increased the mean and standard deviation in both the gain and

phase from the error-free case compared to the results of the forward wave model.

It was also found that multiple internal reflections lead to a small-signal gain ripple

across the band of operation [37].

1.3.2 Locking of Magnetrons

Some of the earliest experiments on the phase locking using relativistic magnetrons

were performed by Physics International Company. Price et al. first investigated the

phase locking of a vircator by the injection of microwaves from a relativistic magnetron

[38, 39]. A schematic of this experiment is shown in Fig. 1.7. The vircator, or virtual

cathode oscillator, is a device that operates by injecting an electron beam through

a foil or mesh anode into a resonant cavity. When the current is sufficiently high
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that the limiting current is exceeded, the space charge passes through the anode and

creates what is a known as a virtual cathode, a mass of space charge that reflects

electrons, inside of the resonant cavity. The electrons from the virtual cathode are

then subject to oscillations in the microwave frequency range, enhanced by the tuned

resonant structure of the cavity. It was found that when the vircator would operate

without the injected microwave signal, there was a frequency chirp that was present in

its output. The experiments showed that when the relativistic magnetron signal was

injected into the vircator cavity, the frequency would lock to that of the magnetron

in 3 − 5 ns and remain at that frequency [38, 39]. Furthermore, the power output

of this configuration was 100− 500 MW, a factor of 2− 3 times higher than that of

the vircator alone. A theory was developed by Woo et al. to describe the temporal

frequency evolution by way of the classical Van der Pol oscillator equation [40]. The

numerical solutions of Woo et al. in the presence of large priming power were found

to be in agreement with the experimental results of the viractor injection locking.

The results of Woo et al. were also found to agree with the results of coupled

relativistic magnetron experiments. These experiments by Benford and Sze et al.

may be considered as the early peer-to-peer locking experiments with relativistic

magnetrons [41, 42]. In these experiments, a small section of waveguide was used

to couple a cavity of one magnetron to a cavity in the second magnetron. The

coupling between the two relativistic magnetrons was found to be dependent on the

length of this waveguide; the greatest locking was found to occur when the length

of the waveguide was a multiple of the half wavelength [41]. The two oscillators,

with power levels of approximately 1.5 GW each, would lock on the order of 5 ns

producing around 3 GW of output power. This result was notable as it was three

orders of magnitude higher than the power level of previous magnetron work at the

time. Direct measurements of the radiation field showed evidence of the coherence

enhancement of the output power. Sze et al. also investigated the peer-to-peer locking
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of two vircators [43].

RF priming, where a low level external RF source is injected to more quickly

build up the oscillations in a higher power RF source, was investigated by White

et al. for a relativistic magnetron at the University of Michigan [44]. White et al.

performed experiments in which a 100 kW pulsed 1.3 GHz magnetron was used to

prime a 5− 100 MW, 1.2 GHz relativistic magnetron pulsed with a 300 kV, 2− 8 kA

beam that lasts from 300 − 500 ns. This investigation explored RF priming under

conditions that both did and did not satisfy the classical Adler locking condition [45].

The Adler locking condition describes the power and frequency requirements for the

phase locking of two magnetrons when one of the magnetrons (known as the “master”)

drives the other (known as the “slave”), as shown in Eq. (4.1). It was found that

RF priming was successful at decreasing mode competition from the nearest mode

(the 2π/3 mode for this six cavity relativistic magnetron) even without satisfying the

Adler locking condition. While successful, it was found that priming the magnetron

via cathode priming [46], where the cathode is manufactured to emit current in a

geometry conducive to π-mode startup or achieved by use of multiple cathodes [47],

or magnetic priming [9, 11, 48, 49], where an azimuthally varying magnetic field is

used for preferential selection of the π-mode, were more successful. The “transparent

cathode”, a hollow cathode with longitudinal strips removed, was invented at the

University of New Mexico [50] and is another form of cathode priming.

These previous studies were all performed with relativistic magnetrons. Peng-

vanich and Neculaes et al. explored both the theoretical and experimental injection

locking of two CW oven magnetrons [33, 51]. The model this work was derived from

represented the oscillator as an RLC circuit and includes a magnetron specific elec-

tronic conductance and a frequency pulling parameter. This work explored injection

locking in three different regimes: full locking, where the oscillator fully oscillates at

the drive frequency; partial locking, where the oscillator tends to oscillate at both
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the drive frequency and at its own free-running frequency; and zero locking, where

the oscillator is not effected or marginally effected by the driver [51]. It was found

that there was no locking when the drive power was far from the Adler locking condi-

tion and that full locking was achieved when the Adler condition was satisfied. The

partial locking case was observed when the drive power was close to satisfying the

Adler locking condition. In this case, the dominant frequency was either the driver

frequency or close to it and sidebands in the magnetron spectrum would be observed.

Using the model of [51], Pengvanich et al. explored the effects of a frequency chirp

on injection locking [52]. It was found that complete phase locking of the oscillator

cannot be achieved in the presence of a frequency chirp, in either the driver or the

oscillator. What was observed, however, was that a high degree of locking will occur

over a major duration of the frequency chirps.

The peer-to-peer locking of CW oven magnetrons was also theoretically studied

by Pengvanich et al. [53]. Modeling the oscillators as RLC circuits connected through

a general admittance matrix, a theoretical condition for the peer-to-peer locking of

two magnetrons was derived. Experiments performed later by Cruz et al. validated

the condition for peer-to-peer locking of Pengvanich [54]. These experiments used

two kilowatt magnetrons and found, depending on the coupling network between

them, that the oscillators would not necessarily lock to a frequency that lie between

the free-running frequencies of the two magnetrons. It was also found that if the

locking condition of [53] was not satisfied, beating of the frequency was apparent in

the magnetron spectra, although the beat frequency was not necessarily the difference

between the free-running frequencies of the two oscillators.

1.4 Thesis Organization

This thesis provides an extension of some of the above studies. In Chapter 2

the effects of TWT performance in the presence of random manufacturing errors is
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investigated using a model that considers only the three forward propagating waves.

Two analytic formulas are presented and compared to numeric computations. In

Chapter 3, validation of the algorithm used to study TWT performance with the

inclusion of the backward wave in the presence of random manufacturing errors is

presented. A consideration of the presence of absolute instabilities inside of a slow

wave structure is included as well. Chapter 4 explores the temporal and spatial locking

of nonlinear oscillators. The temporal locking of peer-to-peer locked magnetrons in

the presence of a frequency chirp and low frequency noise is investigated. A framework

for interpreting locking in the spatial domain that is analogous to locking in the

temporal domain is presented. Chapter 5 contains conclusions of this research and

recommendations for future work.
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CHAPTER 2

Effects of Random Errors in a Traveling Wave

Tube: Three Wave Model

2.1 Introduction

The traveling wave tube is a key element in telecommunication systems, satellite-

based transmitters, military radar, electronic countermeasures, and communication

data links [1, 3, 14, 55, 56]. Variations in performance due to finite fabrication

tolerances in the manufacturing process can lower the fraction of TWTs that meet

specifications and drive up the cost of manufacturing [57, 58]. Errors as large as 5 µm

on 50 µm features have been reported in the fabrication of TWTs in the hundreds of

GHz range using modern manufacturing techniques [33, 56]. One consequence of such

errors is that it will alter the phase velocity of the circuit, which degrades the TWT

performance significantly. These errors produce proportionately larger perturbations

to the circuit as the circuit size is reduced. Their effects on the small-signal gain and

output phase have been studied by Pengvanich et al. [32] who considered the evolution

of the three forward waves in a TWT in which the Pierce parameters (Section 2.3)

vary randomly along the tube axis. A peculiar feature of the results in [32] is that,

in the statistical evaluation of a large number of samples with random errors in the

circuit phase velocity, a significant number of these samples show an output gain that
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is higher than the corresponding error-free tube (Fig. 1.6). It is this intriguing feature

that prompted the analysis of the expectation values of the gain and phase reported

in this thesis [34]. As we shall see shortly, an explanation of this statistical feature

is provided in this chapter. Pengvanich et al. [32] is also extended to include AC

space charge effects and non-synchronous interactions. We shall ignore the effects of

the reverse propagating circuit wave, which we also recently analyzed [37]; some of

these results will be discussed in further detail in Chapter 3. In Chernin et al. [37],

we found that reflections from local errors may significantly increase the statistical

effects on the gain and the output phase. Effects on the TWT backward-wave mode

[59] by random manufacturing errors were also recently analyzed [36].

The standard deviations in the gain and in the output phase, which were ana-

lytically calculated in Pengvanich et al. [32], required only an account of the first

order effects of random errors. The expected mean of the output gain and phase,

which is the focus here, requires consideration of the second order effects of random

errors, and is therefore much more difficult to evaluate. Since deviation from the

mean (a second order effect) is much less than the standard deviation (a first order

effect), a significant number of the samples in a statistical analysis would naturally

show an output gain that is higher than the corresponding error-free tube, as shown

in Fig. 1.6. Three approaches are used to analyze this problem. The first approach

is analytical where successive perturbations are applied on all three forward waves.

The second approach is also analytical where only the dominant, growing mode is

included in the analysis. The third approach is purely numerical where the governing

differential equation is numerically integrated (at least) 5000 times, each time with

unique, random variation in the coefficients that represent random axial variations in

the circuit phase velocity. Comparison of these three approaches is presented.
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Figure 2.1: The basic schematic of a TWT. It consists of a few components: electron
gun, collector, and slow wave structure. Image from [1].

2.2 Basic Description of the TWT

The basic operation of a TWT was discussed briefly in Section 1.2.1. Here we

quantify some of the features of Fig. 2.1, which shows an electron beam that travels

down the axis of a helix TWT with a velocity of v0 =
√

2eV/me, where e is the

electron charge, me is the electron mass, and V is the voltage applied to the cathode

via an external power supply. Pierce adopted a non-relativistic description for TWTs,

which is adequate for beam energy . 40 keV. At the end of the TWT, the beam is

dumped into a collector and some of the kinetic energy of the spent beam is recovered.

Typically, a multistage depressed collector is used to apply a bias that slows the

velocity of the electron down before it is collected at the wall. Collectors can cause

the efficiencies of TWTs to be upwards of 70% [60]. Since the beam travels at a

velocity less than the speed of light, for the beam to synchronously interact with an

electromagnetic wave, the wave speed in the axial direction needs to be slowed down.

This is accomplished through the use of a slow wave structure, e.g., a helix slow wave

structure as shown in Fig. 2.1. Other slow wave structures include folded wave-guide,

coupled-cavity, and ladder circuits [1, 61–63]. To the lowest order, the RF signal
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Figure 2.2: The geometry of a helix slow wave structure with the key dimensions
labeled. Here, d is the diameter of the helix, p is the helix pitch (or
period), ψ is the helix pitch angle, and dh is the wire diameter. Original
image from [1].

propagates along the helix wire at the speed of light. The projected signal velocity

along the tube axis can then be reduced to be less than c, so that this z-directed phase

velocity can be of the order of the electron beam drift velocity. This axial velocity

is known as the cold circuit phase velocity, vp. For a helix, this axial phase velocity

is simply vp = c(p/
√
p2 + (πd)2), where p is the helix pitch (period) and d is the

helix diameter (Fig. 2.2). A very important feature of this phase velocity is that it is

independent of frequency. For this reason, the helix TWT can offer bandwidths up to

3 octaves, where an octave is a doubling of frequency [5]. Attenuators, commonly in

the form of a carbon film coating on the dielectric support rods (see Fig. 1.5) [1], can

be inserted into the interaction area to give the amplifier stability from oscillations

[64] and an external magnetic field, typically through the use of periodic permanent

magnets (PPM), is applied to confine and focus the electron beam and prevent it

from intercepting the slow wave circuit [65].

When the beam velocity (v0) and the axial component of the circuit wave velocity

(vp) are approximately equal, v0 ≈ vp, the electrons can continuously interact with

the wave. If the electrons spend more time in the decelerating phase of the wave,

such that they give up their kinetic energy, then amplification of the wave can occur

as the two co-move down the axis of the TWT. In the absence of the beam, the RF
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Figure 2.3: The vacuum electric field of an RF signal on a helix slow wave structure,
in the frame of the wave. The electrons will experience the strong axial
component of this field and bunch in regions A and deplete regions B.
Image from [1].

signal on the helix circuit sets up the vacuum electric field, similar to that shown

in Fig. 2.3. This field has a strong axial component, and it is this component that

interacts most strongly with the electron beam. In Fig. 2.3, the electric field lines

point along the axis, away from regions A and towards regions B. This electric field

velocity modulates the beam and causes the electrons to deplete in regions B and

bunch in regions A. This bunching of space charge enhances the electric field on the

helix by inducing more current on the circuit. This amplitude increase in the helix

field in turn causes greater bunching of the electron beam. It is this interaction that

is the mechanism for amplification of an input RF signal. The output power is then

determined from the product of the AC voltage and the AC induced current at the

RF extraction [55].

From the axial fields shown in Fig. 2.3, assuming that the electron beam travels

from left to right, electrons to the left of regions A will be accelerated towards regions

A and electrons to the right of regions A will be decelerated towards regions A. If the
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Figure 2.4: The transmission line model of the slow wave circuit used by Pierce.
Image from [14].

electrons are accelerated they take energy from the RF wave, but if the electrons are

decelerated they give up energy to the wave. From this picture we can see that if the

electron beam travels faster than the wave phase velocity, the electrons spend more

time in the decelerating phase resulting in a net transfer of energy to the wave.

2.3 Pierce Theory of TWTs

In this section we present the standard TWT theory of Pierce. Pierce modeled the

slow wave circuit of the TWT as a transmission line that extends infinitely in the z-

direction, as shown in Fig. 2.4 [14]. A narrow electron beam carrying an AC current,

i, passes close to the circuit at a speed that is approximately matched with the wave

speed of the circuit. The beam induces a current, I, and voltage, V , on the circuit.

The electron beam experiences the voltage on the circuit and the electrons become

further modulated. It is assumed that the electrons in the beam all experience the

same AC field and that the electron beam is monoenergetic in the unperturbed state.

Pierce further assumes that there is an infinite magnetic field confining the electrons

to 1-dimensional motion in the z-direction.

The equations for electronic motion and for excitation of the circuit wave can be

combined to determine the propagation characteristics of the waves. Pierce linearizes

these equations. This assumption is valid only in the small signal regime of the

amplifier, where certain quantities do not have a significant role when the signal
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amplitude is small. This results in a wave-type solution, so we assume that the

solutions have ejωt−jβz dependence, where β is the propagation constant which needs

to be determined for an input signal of frequency ω.

The linearized force law describes the displacement (s) of an electron fluid element

from its unperturbed position in response to the electric field,

(
∂

∂t
+ v0

∂

∂z

)2

s = −ω2
ps−

e

me

Ec. (2.1a)

The left-hand side (LHS) of Eq. (2.1a) represents the acceleration where v0 is the elec-

tron velocity in the unperturbed (DC) state. The right-hand side (RHS) of Eq. (2.1a)

represents the combined force due to the space charge field, represented by ω2
p, and the

circuit electric field, represented by Ec. The plasma frequency of the electron beam,

ωp, includes the “reduction factor” which accounts for the beam and the circuit ge-

ometry [55, 66]. In the absence of the circuit field, Ec = 0, and Eq. (2.1a) gives the

familiar space charge wave dispersion relation for an electron beam: (ω−βv0)2 = ω2
p.

For a signal of frequency ω, Pierce re-writes Eq. (2.1a) as

[(
∂

∂z
+ jβe

)2

+ β2
q

]
s = a, (2.1b)

where a = −eEc/(mev
2
0) represents the circuit field, βe = ω/v0 is the propagation

constant which characterizes the beam’s DC velocity v0, and βq = ωp/v0 is the reduced

space-charge wavenumber that characterizes the beam’s AC space charge effects. In

the absence of the AC space charge effects, βq = 0, and Eq. (2.1b) is identical to

Eq. (1) of Pengvanich et al. [32].

The slow wave circuit equation of Pierce describes the circuit’s response to the

AC current on the electron beam. It reads

(
∂

∂z
+ jβp + βeCd

)
a = −j (βeC)3 s, (2.2)
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where βp = ω/vp is the cold circuit wavenumber, and vp is the cold circuit phase

velocity, that is the phase velocity of the wave on the circuit in the absence of the

electron beam. Equation (2.2) is the corrected form of Eq. (2) of Pengvanich et al.

[32]. The third term on the LHS of Eq. (2.2) should read βeCd instead of βpCd, a typo

in Pengvanich et al. [32] that has propagated through the literature. Equation (2.2)

describes the excitation of the circuit electric field (a) by the AC current on the

electron beam, represented by the RHS of Eq. (2.2). The beam’s AC current, in the

linear theory, is proportional to the electronic displacement, s, and to the DC beam

current which is proportional to C3 in the RHS of Eq. (2.2), where C is defined in

Eq. (2.3) below [1, 14, 55]. In the absence of the beam current, C3 = 0 and Eq. (2.2)

yields a forward propagating circuit wave, a = (const.)×e−jβpz−βeCdz, where d denotes

the resistive loss on the circuit. We assume, as Pierce does, that by writing Eq. (2.2),

we neglect the backward wave that is present on the circuit. This is justified since

the backward wave does not experience the cumulative interaction with the electron

beam as the forward circuit waves do. Thus, Eq. (2.2) admits one propagating circuit

wave in the positive z-direction, whereas Eq. (2.1b) represents two beam modes, also

propagating in the positive z-direction. This constitutes the three-wave theory of

Pierce.

The interaction of the three forward waves is characterized by four (4) dimension-

less parameters: C, b, QC, and d, defined below. These are known as the Pierce

parameters. The first of these parameters is the Pierce dimensionless gain parameter,

C, and it characterizes the coupling between the beam modes, Eq. (2.1b), and the

circuit mode, Eq. (2.2),

C3 =
1

4

KIb
Vb

, (2.3)

where K is the interaction impedance of the circuit, Ib is the DC current of the

electron beam, and Vb is the electron beam voltage. The interaction impedance, K,
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is roughly the AC voltage induced on the circuit by 1 A of AC current on the beam.

Thus, to increase coupling between the beam and the wave, either the interaction

impedance of the circuit or the beam current should be increased. The Pierce gain

parameter, C, typically has a value between 0.01 to 0.2.

The next dimensionless parameter is known as the velocity mismatch or detune

parameter, b,

b =
1

C

(
v0 − vp
vp

)
. (2.4)

The difference between the DC beam velocity, v0, and the circuit wave phase velocity,

vp, is measured by b. When the electron beam is synchronous with the cold circuit

phase velocity, b = 0. Of the four Pierce parameters (C, b, QC, and d), it is the

velocity detune parameter, b, to which the output of the TWT is the most sensitive.

Typically, vb differs from vp by not more than ±10%; and −2 < b < 2.

Pierce introduces his space charge parameter, QC, to describe the electrostatic

repulsion among the space charges on the beam. He defines his space charge parameter

as

QC =
1

4

β2
q

β2
eC

2
. (2.5)

The effect of the QC term is to reduce the gain that the TWT can achieve by limiting

how tightly a bunched beam can be formed. Since QC ∝ ω2
p/ω

2, it is expected that

this value will be quite small in the terahertz regime. In terms of the beam current

(Ib), both C and QC are proportional to I
1/3
b .

Finally, Pierce describes the loss on the circuit of the TWT through his dimen-

sionless loss parameter, d, which he defines as

d = 0.0184 l/C, (2.6)
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where C is the gain parameter and l is the resistive loss on the circuit in units of dB

per wavelength.

Combining Eqs. (2.1b) and (2.2) and assuming e−jβz dependence for a and s,

results in a third order algebraic equation for the propagation constant β, shown in

Eq. (2.7) below. Each β corresponds to the propagation constant associated with the

three forward propagating waves that can be excited in the TWT. Assuming that the

Pierce parameters are constant, this result is known as the Pierce dispersion relation

and it reads, after substituting Eqs. (2.3) - (2.6) [1, 14, 55],

(
δ2 + 4QC

)(
δ + jb+ d

)
= −j, (2.7)

where δ = −j(β − βe)/Cβe is Pierce’s incremental propagation constant. There

are three solutions in Eq. (2.7) for the propagation constant, δ, representing the

three forward waves in the Pierce three-wave theory of TWTs that can be excited by

some input signal. Of these three waves, as determined by Eq. (2.7), one will grow

exponentially as a function of distance, one will exponentially decay as a function of

distance, and one will have a constant amplitude in the absence of circuit losses.

The incremental propagation constant, δ, is in general complex. The real and

imaginary parts of δ, from the solution to Eq. (2.7), gives important information

about the waves. The real part, Re(δ), shows how the amplitude of the wave changes

as it propagates. If Re(δ) > 0, then the wave exponentially grows in amplitude as

it propagates in the z-direction whereas, if Re(δ) < 0, then the wave decays as it

propagates in the z-direction. The imaginary part, Im(δ), indicates the phase speed

of the wave relative to that of the electrons. If Im(δ) > 0, the wave travels faster than

the electrons and if Im(δ) < 0, the wave travels slower than the electrons. Figure 2.5

shows the real and imaginary parts of the solution to Eq. (2.7), δ = Re(δ) + jIm(δ),

for the growing mode only as a function of the Pierce velocity mismatch parameter,

b, for a case with zero circuit loss (d = 0) and zero AC space charge effects (QC = 0).
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Figure 2.5: Real and imaginary parts of the propagation constant, δ = Re(δ) +
jIm(δ), for the growing mode in the absence of loss or space charge effects
(d = 0, QC = 0).

In this case we can see that Re(δ) is positive for a wide range of b. Figure 2.5 also

shows that Im(δ) is negative where there is amplification, so the wave travels more

slowly than the electron beam, even when the electron beam is slower than the cold

tube circuit phase velocity, b < 0. This occurs because the electrons need to travel

faster than the wave for amplification to occur. In this case, no gain occurs for values

of b > 2.

2.4 Three Wave Model with the Inclusion of the QC Term

and Nonzero b

We follow the model of Pengvanich et al. [32] which is based on Pierce’s theory

except that the assumption of axial uniformity in the circuit parameters has been

relaxed. When the quantities βp, C, or d are allowed to vary axially, Eq. (2.7) is no

longer applicable. Returning to Eqs. (2.1b) and (2.2) and relaxing the assumption

that βp, C, or d are constant, a third-order ordinary differential equation that governs
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the evolution of the input signal in the TWT can be derived. It reads

d3f(x)

dx3
+jC (b− jd)

d2f(x)

dx2
+4QC3df(x)

dx
+jC

(
4QC3 (b− jd) + C2

)
f(x) = 0, (2.8)

where x = βez is the normalized axial distance, and f(x) = ejxs(x) represents Pierce’s

three-wave solution to the third-order ordinary differential equation (2.8). In the

absence of AC space charge effects, QC = 0, and Eq. (2.8) reduces to Eq. (5) of

Pengvanich et al. [32]. We solve Eq. (2.8) subject to the initial conditions at the

TWT input (x = 0),

f(0) = 0, (2.9a)

f ′(0) = 0, (2.9b)

f ′′(0) = 1, (2.9c)

which represent, respectively, zero AC current, zero AC velocity, and an arbitrary

amount of initial AC electric field, which we choose to be unity in the present linear

theory. The change in the amplitude gain, G1 in e-folds, and in the phase, θ1 in

radians, due to random errors is given by,

eG1+jθ1 =
f ′′(x) + 4QC3f(x)

f ′′0 (x) + 4QC3f0(x)
, (2.10)

where f0 represents the solution to Eq. (2.8) for an error-free tube and the prime

denotes differentiation with respect to x. From Eq. (2.1b), we see that Eq. (2.10)

is simply a(x)/a0(x), where a0(x) is the error-free solution of the normalized circuit

wave complex amplitude, a(x).

Finally, we revise the standard deviation of gain and phase variations calculated

in Pengvanich et al. [32] to include the space charge effects (QC 6= 0). In terms of the
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standard deviation of b, σb, the standard deviation in the gain G1 and in the phase

θ1 is given by, respectively,

σGb = SGbσb, SGb =

√
x

N

√√√√√ x∫
0

ds
∣∣∣gbr(x, s)∣∣∣2 (2.11a)

and

σθb = Sθbσb, Sθb =

√
x

N

√√√√√ x∫
0

ds
∣∣∣gbi(x, s)∣∣∣2, (2.11b)

where gbr and gbi are the real and imaginary parts, respectively, of gb, given by

gb(x, s) = −jC
(
4QC3f0(s) + a0(s)

)
a0(x− s)/a0(x). (2.12)

In the absence of space charge, i.e., QC = 0, Eq. (2.12) reduces to Eq. (A15) of

Pengvanich et al. [32], whose Eq. (A4) defines the error-free solutions f0 and a0.

Equations (2.11) show that the standard deviations in the gain and phase are linear

in σb. It will be shown in Eqs. (2.13) and (2.14) below that the ensemble averaged

quantities, 〈G1(x)〉 and 〈θ1(x)〉, are both quadratic in σb, and their magnitudes are

therefore much less than the standard deviations. This contrast between the standard

deviation, and the deviation in the mean from the error-free tube, was also apparent

in Fig. 1.6.

2.4.1 Second-Order Perturbation Analysis

The random manufacturing errors enter the Pierce parameters b, d, and C. It has

been shown that the effects of random errors in the velocity parameter, b, dominates

those of random errors in d and C [32], so we only consider random errors in b in

this thesis. Random errors are assigned to b(x) as a set of Gaussian random variables
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Figure 2.6: Sample velocity mismatch profile with a mean value of b0 of a TWT of
length L.

uniformly spaced in x, each with a mean of b0 and a specified standard deviation,

σb, as illustrated in Fig. 2.6. We define the correlation length as ∆ = L/N , where

N is the number of uniformly spaced nodes over the normalized length (L) of the

TWT. The random variation in neighboring segments have no correlation to each

other. That is, the random variation in one segment has no “memory” beyond the

correlation length.

This work differs from the previous work of Pengvanich et al. by applying the

random Gaussian errors directly to the parameter b, instead of to the circuit phase

velocity vp through a dimensionless quantity q(x) = (vp(x) − vp0)/vp0, where vp0 is

the circuit phase velocity of the corresponding error-free tube. The random function

q(x) had a specified standard deviation σq. The velocity parameter b is related to q

by b(x) = (1/C)[Cb0 − q(x)]/(1 + q(x)) and the standard deviations in b and q are

approximately related by σb = (σq/C)(1+Cb0). Due to the non-linear relationship be-

tween b and q, a Gaussian random error profile assigned to q(x) is no longer Gaussian

for b(x). Our numerical integration of Eq. (2.8) over many 5000-sample calculations

shows that this subtle difference led to quantitatively different results. One reason

is that the mean deviation is a second order effect in the random error, as we have

already mentioned, and this subtle difference is important. In this work, all random

errors are characterized by a Gaussian distribution in b(x) with a standard deviation
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of σb.

Pengvanich et al. showed analytically that the standard deviations in the gain

and in the output phase from an error-free TWT are first order in σb (cf. Eqs. (2.11)

above). In this work, we need to carry out the analysis to second order in the effects

of the random errors. With only perturbations in b, we show in Appendix A (cf.

Eq. (A.16)),

〈G1(x) + jθ1(x)〉 = −1

2
C2σ2

b∆

{[
4QC3

3∑
l=1

τl
Cδl

+
3∑

k=1

τkCδk

] x∫
0

Q1(x, s)ds

a0(x)

+
3∑
l=1

3∑
k=1

(τlCδl) (τkCδk) e
C(δl+δk)x

x∫
0

Q2(x, s)ds

a20(x)

}
,

(2.13)

where 〈G1(x) + jθ1(x)〉 is the ensemble-average deviation in gain and in phase from

the error-free tube due to random errors, δk(k = 1, 2, 3) are the three roots to the

Pierce dispersion relation (2.7), τk(k = 1, 2, 3) which depends only on δk, is defined by

Eq. (A5) of Pengvanich et al. [32], and Q1(x, s), Q2(x, s) depend only on the error-free,

three-wave solution. The expressions for Q1(x, s), Q2(x, s) are given in Appendix A

in Eqs. (A.17), (A.18). Use of Eq. (2.13) will be referred to as the perturbation

method. It is emphasized once more that the deviation from the mean, for both gain

and phase as given by Eq. (2.13), is second order in σb.

2.4.2 Nonlinear Formulation of Complex Wavenumber

In addition to the perturbation method, another analytic approach to predict the

ensemble average deviation in gain and phase was developed by Professor Tom An-

tonsen, Jr. at the University of Maryland [34]. This approach consists of a nonlinear

formulation of the complex wavenumber for only a single wave (the growing mode).

The result of this formulation yields
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〈G1(x) + jθ1(x)〉 = −ρ(γ)

2

(
C

1 + Cb0

)2

σ2
bx∆, (2.14)

where ρ(γ) is a complex value that is determined by the value of the error-free mis-

match parameter, b0, and can be solved for using

ρ(γ) ≡ 2γ2 (α− jγ)

[1 + 2γ2 (α− jγ)]2
(2.15)

where α ≡ b0/(1 + Cb0). The details on how Eq. (2.14) was obtained can be found

in Rittersdorf et al. [34]. The value of γ is determined by solving the dispersion

relationship

γ

[(
γ +

ib0
1 + Cb0

)2

+ 4QC

]
= j, (2.16)

which is essentially the Pierce dispersion relation Eq. (2.7), assuming d = 0, and

written in a slightly different form. Physically, Eq. (2.16) represents the coupling

between the forward circuit wave (represented in the LHS by the first term γ) and

the two forward beam modes including space charge effects, QC (represented by the

square brackets in the LHS). Use of Eq. (2.14) will be referred to as the Riccati

method. The details of Antonsen’s work can be found in Appendix B of [34]. Note

that if b0 = 0 and QC = 0, then α = 0, γ3 = j, and ρ is real by Eq. (2.15), in which

case 〈θ1〉 = 0 by Eq. (2.14), as in the example in Fig. 2.9 below. It is important to

note that Eq. (2.14) is also second order in σb, similar to Eq. (2.13).

2.4.3 Numerical Solution

For a specified value of σb, we may also integrate Eq. (2.8) numerically using a

Runge-Kutta method 5000 times, each time with a unique, random profile for the cir-

cuit phase velocity. Previous work [32] showed that performing only 500 integrations

would be sufficient. That work, however, was only focused on calculating the stan-
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Figure 2.7: Mean values of the (a) power and (b) phase at the output relative to
the unperturbed values at the output for a synchronous beam velocity as
a function of the standard deviation of the error profile, σb, for several
different sample sizes. Here, x = 100, b0 = 0, C = 0.05,∆ = 1, d = 0, and
QC = 0.

dard deviation in gain and phase, which is first order in σb (Eqs. (2.11)). While 500

integrations are sufficient to calculate these standard deviations, significantly more

are required to calculate the mean accurately, since the deviation from the mean is

second order in σb (Eqs. (2.13), (2.14)). Figure 2.7 shows the mean gain and phase

variation as a function of σb for sample sizes ranging from 500 up to 25,000. As can
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be seen from Fig. 2.7, 5,000 samples provides converged results, meaning increasing

the number of samples does not significantly change the result. It is also worth noting

that 500 samples is sufficient for the calculation of the mean variation in the gain; the

phase, however, requires 5,000 samples for convergence. Calculations performed in

this manner will be designated as numerical. One important note is that this numer-

ical calculation is dependent on the random number seed used in these calculations.

Different seed values do not produce a difference in the mean gain output, however,

the exact values for the output phase will be different albeit of the same order. In

all of the following calculations, the seed used for the random number sequence has

been fixed.

2.5 Results

Figure 2.8: Gain of a TWT as a function of the dimensionless Pierce velocity param-
eter, b. The peak gain occurs at a value of b0 = 0.314. At synchronism,
b0 = 0, the gain is 647, or 28.1 dB.

We start with the TWT base case with length x = L = 100 where b0 = d = QC =

0, and C = 0.05. This could correspond, for example, to a microwave power module

TWT that has a 21.6 cm circuit length, a beam voltage of Vb = 5 kV, a beam current
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of Ib = 260 mA, and is operating at a frequency of 3 GHz [56]. This was also the base

case studied by Pengvanich [32]. Equation (2.8) yields an error-free power gain of

28.1 dB and an output phase of -5872◦. Random errors are then introduced into the

velocity parameter, b, as shown in Fig. 2.6. The value at each node is an independent

Gaussian random variable with a mean of b0 and a specified standard deviation, σb. A

correlation length of ∆ = 1 has been used in all calculations, meaning that each node

of the Gaussian random error profile would correspond to x = 1, 2, . . . , L in the TWT.

It is worth noting that this base case of b0 = 0 does not provide the maximum amount

of gain for this set of TWT parameters. We can see from Fig. 2.8, which shows TWT

gain as a function of b, that the optimum gain occurs at a point b0 = 0.32. This

implies that the beam velocity v0 is 1.6% larger than the cold circuit phase velocity

vp. See also Fig. 2.5.

Figure 2.9a shows the gain variations for the numerical, perturbation, and Riccati

methods. All three methods show good agreement. The phase calculation is shown

in Fig. 2.9b. The perturbation method shows good agreement with the numerical

results. It should be noted that in this case 〈θ1(x)〉 = 0 for the Riccati method (cf.

the second to last sentence in Section 2.4.2). This result is consistent with those from

the perturbative analysis and the numerical solution to Eq. (2.8), in that the phase

variations 〈θ1(x)〉 due to random errors, measured in radians, is found to be negligible

compared with the amplitude variations 〈G1(x)〉, measured in e-folds, in this case.

This case is identical to the one considered by Pengvanich et al. [32].

Figure 2.10 shows two cases where the velocity mismatch is nonzero. For C = 0.05,

b0 = ±1 corresponds to a difference of ±5% between the beam velocity and cold

circuit phase velocity. All three methods are in reasonable agreement even when the

velocity mismatch is allowed to be nonzero. Looking at the phase output (Fig. 2.10b)

it appears that the perturbation method is more accurate than the Riccati method.
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Figure 2.9: Mean values of the (a) power and (b) phase at the output relative to the
unperturbed values at the output for a synchronous beam velocity, b = 0.
The points are the results of numerically integrating Eq. (2.8). The solid
and dashed lines show the perturbation and Riccati formulas, Eqs. (2.13)
and (2.14), respectively. Here, x = 100, C = 0.05,∆ = 1, d = 0, and
QC = 0.

37



Figure 2.10: Mean values of the (a) power and (b) phase at the output relative to
the unperturbed values at the output for non-synchronous beam veloc-
ities of ±0.05vp (b = ±1). The points are the results of numerically
integrating Eq. (2.8). The solid and dashed lines show the perturba-
tion and Riccati formulas, Eqs. (2.13) and (2.14), respectively. Here,
x = 100, C = 0.05,∆ = 1, d = 0, and QC = 0.
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2.5.1 Mean Variations in the Presence of the Space Charge Term

Figure 2.11: Mean values of the power at the output relative to the unperturbed
values for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25, and (d) QC =
0.35 for the synchronous velocity case, b0 = 0.The points are the results
of numerically integrating Eq. (2.8). The solid and dashed lines show the
perturbation and Riccati formulas, Eqs. (2.13) and (2.14), respectively.
Here, x = 100, C = 0.05,∆ = 1, and d = 0.

Figures 2.11 and 2.12 show how the gain and phase are affected by the inclusion

of the QC term, increasing it from 0 to 0.35 for the synchronous case, b0 = 0. When

QC 6= 0, both the perturbation and Riccati methods predict a larger variation in

gain and phase than shown by the numerical analysis. The Riccati method tends

to predict smaller variations than the perturbation method, but neither prediction

shows agreement with the numerical data. Figures 2.13 and 2.14 show the gain and

phase variations for QC again increasing from 0 to 0.35, this time for the b0 = 1 case.
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Figure 2.12: Mean values of the phase at the output relative to the unperturbed values
for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25, and (d) QC = 0.35
for the synchronous velocity case, b0 = 0.The points are the results of
numerically integrating Eq. (2.8). The solid and dashed lines show the
perturbation and Riccati formulas, Eqs. (2.13) and (2.14), respectively.
Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.13: Mean values of the power at the output relative to the unperturbed val-
ues for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25, and (d) QC = 0.35
for the non-synchronous velocity case, b0 = 1.The points are the results
of numerically integrating Eq. (2.8). The solid and dashed lines show the
perturbation and Riccati formulas, Eqs. (2.13) and (2.14), respectively.
Here, x = 100, C = 0.05,∆ = 1, and d = 0.

In this case, the Riccati method shows good agreement with the numerical data for

gain. Neither analytical method shows agreement with the numerical phase data in

this case. The b0 = −1 case could not be calculated reliably because the TWT would

not amplify for any significant values of QC.

One explanation of the disagreement among the perturbation, Riccati, and nu-

meric results could stem from the fact that the presence of the space charge term

reduces the range over b in which there will be gain. Figure 2.15 shows the real and

imaginary parts of the propagation constant, δ, as a function of b over several dif-
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Figure 2.14: Mean values of the phase at the output relative to the unperturbed values
for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25, and (d) QC = 0.35 for
the non-synchronous velocity case, b0 = 1.The points are the results of
numerically integrating Eq. (2.8). The solid and dashed lines show the
perturbation and Riccati formulas, Eqs. (2.13) and (2.14), respectively.
Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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ferent values of QC. As Fig. 2.15 shows, increasing QC shrinks the region of b, and

also shifts the region of b, over which gain occurs as well as reduces the magnitude of

x, when compared with Fig. 2.5. As less amplification occurs, the amplitude of the

growing wave can become comparable to those of the other two forward propagating

waves. This violates the initial assumption of a single dominant growing wave in the

Riccati analysis.

Figure 2.15: The effect of the space charge term, QC, on the propagation constant of
the dominant, exponentially growing mode with no losses. The dashed
lines represent the fast and slow space charge waves that can be excited
in the beam for the corresponding values of QC, showing that it is
the bunching associated with the slow space charge wave that produces
amplification. Image from [1].

2.5.2 Standard Deviations in the Absence of the Space Charge Term

(QC = 0)

Ignoring the AC space charge effects by setting QC = 0, we show in Figs. 2.16 -

2.18 the analytical standard deviation calculation from the perturbation method,

Eqs. (2.11a) and (2.11b), and compare with the statistical standard deviation as cal-

culated from the numerical integration of Eq. (2.8). Both calculations are in agree-
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ment over a range of velocity mismatch parameters. (The standard deviation in the

Riccati method has not been derived.) Figures 2.16, 2.17, and 2.18 show, respectively,

the results of these calculations when the velocity mismatch parameter is fixed at a

value of b0 = −1, 0, and 1.

Figure 2.16: Mean values and standard deviation of the (a) gain and (b) phase at
the output relative to the unperturbed values for QC = 0 for the non-
synchronous velocity case, b0 = −1. The circles are the results of numer-
ically integrating Eq. (2.8). The diamonds are the standard deviation
results from numerically integrating Eq. (2.8). The dashed line is the
analytic standard deviation as calculated from Eqs. (2.11a) and (2.11b).
Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.17: Mean values and standard deviation of the (a) gain and (b) phase at
the output relative to the unperturbed values for QC = 0 for the non-
synchronous velocity case, b0 = 0. The circles are the results of numer-
ically integrating Eq. (2.8). The diamonds are the standard deviation
results from numerically integrating Eq. (2.8). The dashed line is the
analytic standard deviation as calculated from Eqs. (2.11a) and (2.11b).
Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.18: Mean values and standard deviation of the (a) gain and (b) phase at
the output relative to the unperturbed values for QC = 0 for the non-
synchronous velocity case, b0 = 1. The circles are the results of numer-
ically integrating Eq. (2.8). The diamonds are the standard deviation
results from numerically integrating Eq. (2.8). The dashed line is the
analytic standard deviation as calculated from Eqs. (2.11a) and (2.11b).
Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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2.5.3 Standard Deviations in the Presence of the Space Charge Term

(QC 6= 0)

Figures 2.19 - 2.22 show the analytical standard deviation as calculated by Eqs. (2.11a)

and (2.11b) with the space charge modified expression for gb from Eq. (2.12), as well as

the statistical standard deviation calculation from the numerical method. In Fig. 2.19

we show the gain and in Fig. 2.20 we show the phase for a synchronous case (b0 = 0)

in the presence of space charge effects. In Fig. 2.21 we show the gain and in Fig. 2.22

we show the phase for a nonsynchronous case (b0 = 1) in the presence of space charge

effects. With the inclusion of the space charge term, QC, Eqs. (2.11a) and (2.11b) are

no longer in agreement with the statistical calculation. The difference between the

two increases with increasing values of QC. As was the case for the mean variation

(Section 2.5.1), the QC term reduces the gain in the TWT because it represents the

space charge force that debunches the beam. In such a case, all three waves can have

comparable amplitudes. The b0 = −1 case could not be calculated reliably because

the TWT would not amplify for any significant values of QC.
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Figure 2.19: Mean values and standard deviation of the gain at the output relative to
the unperturbed values for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25,
and (d) QC = 0.35 for the synchronous velocity case, b0 = 0. The circles
are the results of numerically integrating Eq. (2.8). The diamonds are
the standard deviation results from numerically integrating Eq. (2.8).
The dashed line is the analytic standard deviation as calculated from
Eqs. (2.11a) and (2.11b). Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.20: Mean values and standard deviation of the phase at the output relative to
the unperturbed values for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25,
and (d) QC = 0.35 for the synchronous velocity case, b0 = 0. The circles
are the results of numerically integrating Eq. (2.8). The diamonds are
the standard deviation results from numerically integrating Eq. (2.8).
The dashed line is the analytic standard deviation as calculated from
Eqs. (2.11a) and (2.11b). Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.21: Mean values and standard deviation of the gain at the output relative to
the unperturbed values for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25,
and (d) QC = 0.35 for the non-synchronous velocity case, b0 = 1. The
circles are the results of numerically integrating Eq. (2.8). The diamonds
are the standard deviation results from numerically integrating Eq. (2.8).
The dashed line is the analytic standard deviation as calculated from
Eqs. (2.11a) and (2.11b). Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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Figure 2.22: Mean values and standard deviation of the phase at the output relative to
the unperturbed values for (a) QC = 0, (b) QC = 0.15, (c) QC = 0.25,
and (d) QC = 0.35 for the non-synchronous velocity case, b0 = 1. The
circles are the results of numerically integrating Eq. (2.8). The diamonds
are the standard deviation results from numerically integrating Eq. (2.8).
The dashed line is the analytic standard deviation as calculated from
Eqs. (2.11a) and (2.11b). Here, x = 100, C = 0.05,∆ = 1, and d = 0.
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2.5.4 Evaluation of a G-Band Folded Waveguide Traveling Wave Tube

Figure 2.23: Phase velocity for the error-free pitch and interaction impedance as a
function of frequency for a G-Band TWT. Figure from [37].

Figure 2.24: Pierce’s velocity parameter and gain parameter as a function of frequency
for a G-Band TWT. Figure from [37].

Finally, as a concrete example, we consider the G-band (210 GHz) folded waveg-

uide TWT recently studied by Chernin et al. [37], with a beam voltage of Vb = 11.7

kV, a beam current of Ib = 120 mA, a length of 1.2 cm, and an average circuit pitch

of 0.02 cm. The interaction impedance, K, and C3 are related by C3 ≡ KIb/(4Vb)
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(Eq. (2.3)). These parameters correspond to a normalized length of x = 240, and we

take a correlation length of ∆ = 4. For this example we assume QC = 0 and consider

the specific case using Figs. 2.23 and 2.24 to calculate C = 0.0197 and b0 = 0.36

[37]. Figure 2.25 shows both the gain and phase variation of this G-Band-like TWT

accurately predicted by both the perturbation and Riccati methods. The statistical

standard deviations in gain and phase and their analytic formula are also presented

in Fig. 2.25, showing good agreement also.

Figure 2.25: Mean values and standard deviation of the (a) gain and (b) phase at
the output relative to the unperturbed values for a G-Band-like TWT.
Results from the statistical, perturbation, and Riccati calculations for
mean as well as analytic and statistical results for standard deviation are
plotted. Here, x = 240,∆ = 4, C = 0.0197, b0 = 0.36, and QC = d = 0.
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Figure 2.26: The twenty velocity parameter profiles for a TWT with 2 segments that
produce the highest gain. Here, x = 100, C = 0.05, b0 = 0, σb = 1.7 and
QC = d = 0.

2.6 Optimization of Velocity Parameter Profile

The results in Section 2.5 have shown how it is possible to statistically achieve

simulated TWTs that exhibit higher gain in the presence of random errors. This result

would suggest that the profile of the velocity parameter might not be optimized for

a given TWT. This leads us to consider the optimization of the velocity parameter,

b(x), profile. Here, we examine the types of b-profiles that yield the highest gain.

To increase (decrease) b in a helix TWT, the pitch (period) of the helix is decreased

(increased). The nature of this problem lends itself easily to parallel computing, so

the forward integration code was parallelized and used to compute the optimal b(x)

profile by simulating 106 samples, where the value of b in each segment was sampled

randomly, and observing the profiles that result in the highest gain. This approach

was used to optimize TWTs for various evenly spaced segments, N . The number of

segments from N = 2 to N = 100 were considered.

We find that in the case of two segments (N = 2) the twenty velocity profiles

that yield the highest gain appear to be some constant value across the length of the
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Figure 2.27: The twenty velocity parameter profiles for a TWT with 5 segments that
produce the highest gain (811 units vs 647 units of power gain for an
error-free tube as in Fig. 1.6). Here, x = 100, C = 0.05, b0 = 0, σb = 1.7
and QC = d = 0.

TWT, as shown in Fig. 2.26. For this two segment case that value is around b = 0.32.

This result is reasonable because this optimum value of b gives the peak gain of a

pristine TWT, i.e., b = 0.314, as shown in Fig. 2.8. When the number of segments is

increased from 2, however, a peculiar feature arises in the velocity parameter profile.

It is seen that there is a parabolic shape to the velocity profile with a drop in value

of b in the middle section of the TWT along the axis. This can be seen for a case

with five segments (N = 5) in Fig. 2.27. This feature exists for three segments all

the way up to 20 segments (see Fig. 2.28), although the features become obscure to

the point of unrecognizable as the number of segments is increased beyond N = 20.

The resulting optimized b(x) profile for 100 segments can be seen in Fig. 2.29. It is

possible that this obscuring is due to the fact that 106 samples is not enough as the

number of segments increases.

The b(x) profile in Fig. 2.27 means that vb > vp near the input end (x ' 0) and

output end (x ' 100), while vb < vp in the central region of the circuit (x ' 50).
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Figure 2.28: The twenty velocity parameter profiles for a TWT with 20 segments that
produce the highest gain. Here, x = 100, C = 0.05, b0 = 0, σb = 1.7 and
QC = d = 0.

Figure 2.29: The twenty velocity parameter profiles for a TWT with 100 segments
that produce the highest gain. Here, x = 100, C = 0.05, b0 = 0, σb = 1.7
and QC = d = 0.
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Figure 2.30: The phase as a function of TWT length, x. The smooth, green curve is
the phase for the single segment calculation where the velocity profile b =
0 is constant. The blue curves are the results of the calculations made
using the top 20 highest gain producing profiles for N = 5 segments, as
shown in Fig. 2.27.

This can achieved physically by making the helix more tightly wound near the input

and output ends, and loosely wound in the central region of the circuit. The phase

for these 20 profiles are shown in Fig. 2.30. While the difference between these 20

circuits and the single segment case is 66◦ at the output, the standard deviation in

the phase at the output among these 20 samples is only 6.6◦. Furthermore, note

that the phase velocity of the helix slow wave structure is insensitive to frequency.

The optimal b(x) profile for one frequency, therefore, would also be the optimal b(x)

profile for all frequencies on the helix, to the lowest order. The possible existence of

an optimal b(x) profile, together with its frequency dependence, remains to be studied

in the future.

2.7 Summary and Conclusions

Two different formulas were derived to predict the deviations in gain and phase

in a traveling wave tube in the presence of errors randomly distributed along the
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axis: a second-order perturbation analysis that accounts for all three forward prop-

agating waves and a Riccati analysis that includes only the amplifying wave. We

have compared both of these models against a numerical integration of the governing,

third-order linear differential equation for cases with nonzero b and the inclusion of

AC space charge effects. We have found that the perturbation analytic model shows

good agreement with the numerical analysis for non-synchronous beam velocities, i.e.,

nonzero b, in the absence of space charge effects (QC = 0). We have also found that

the analytic models do not accurately predict the TWT behavior in the presence of

AC space charge effects (QC 6= 0). A possible explanation is that a nonzero QC

would enlarge the range of b in which the amplifying wave would have a reduced or

even zero gain, in which case all three waves would have comparable amplitudes.

Since we have shown that the standard deviation is much larger than the deviation

in the mean from an error-free tube, we have essentially solved the puzzle as to why

random variations in b(x), presumably caused by manufacturing errors, could lead to

a higher gain in a significant fraction of the samples simulated, as shown in Fig. 1.6.

Identification of the types of random errors that would lead to higher gain awaits

further study, while some preliminary assessment has been made.
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CHAPTER 3

Effects of the Reflected Wave in a Traveling Wave

Tube and a Consideration of the Absolute

Instability

3.1 Introduction

In the previous chapter, the effects of random errors in a traveling wave tube were

considered in the absence of the backward wave. The backward wave, however, can

play a significant role on the performance of the traveling wave tube [67–69]. In the

presence of the backward wave, reflections due to a mismatch at the output can cause a

gain ripple across the operation band which is characteristic of regenerative oscillation.

The helix TWT is particularly susceptible to interaction with the backward wave due

to the relatively linear dispersion characteristics of the circuit [67]. In the presence

of random errors in the circuit of the TWT, there are many sources for the backward

wave to arise [37]. In this chapter, we discuss the effects of the backward wave in the

presence of internal reflections due to random circuit fabrication errors on the slow

wave circuit of the TWT.

An instability is required for gain in any amplifier. In the case of stable gain in

a TWT, this instability is known as convective instability, meaning that the signal

amplifies as it co-propagates with the beam [70]. The absolute instability exists if the
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gain (beam current) is so high that the reverse propagating mode of the circuit can be

excited internally, so that oscillation occurs even in a perfectly matched TWT [71, 72].

The absolute instability leads to oscillations in a traveling wave tube that can spread

to all locations in the system. Briggs [71] and Bers [72] devised a criterion, known as

the Briggs-Bers criterion, that distinguishes absolute and convective instability from

the dispersion relation. The latter part of this chapter investigates the threshold of

the absolute instability in the traveling wave tube model using a dielectric waveguide

for which the exact dispersion relation is analyzed by the Briggs-Bers criterion, as

described in Section 3.6. The Briggs-Bers criterion distinguishes an amplifying wave

from an absolute instability [71, 72].

3.2 Effects of Multiple Internal Reflections Due to Random

Manufacturing Errors

In Chapter 2, we discuss the effects of small random variations in the circuit

properties of a TWT in the absence of the backward wave. To analyze the effects of

backward waves, the effects of loss and “AC space charge” effects are neglected here,

e.g., d = 0 and QC = 0. With the inclusion of the backward wave, Eq. (2.1b) remains

the same and reads, in the absence of space charge effects (QC = 0, βq = 0),

(
∂

∂z
+ jβe

)2

s = a, (3.1)

where s is the displacement of an electron fluid element from its unperturbed posi-

tion, a represents the circuit field, and βe = ω/v0 is the propagation constant which

characterizes the beam’s DC velocity v0.

To include the reverse propagating mode on the circuit, operate Eq. (2.2) by

(∂/∂z − jβp) and approximate this operation by multiplying −2jβp to the RHS to

obtain
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(
∂2

∂z2
+ β2

p

)
a = −2βpβ

3
eC

3s (3.2)

where βp = ω/vp is the cold circuit wavenumber, vp is the cold circuit phase velocity,

that is the phase velocity of the wave on the circuit in the absence of the electron

beam, and C is the Pierce gain parameter (Eq. (2.3)). Equation (3.2) is exactly

Eq. (2) of Chernin et al. [37], although a different normalization of the axial electric

field is used. The two can be related by the expression a = β2
eE. Note also that

Eq. (3.2) is the same as Eq. (14) on p. 150 of Chodorow and Susskind [73]. In the

absence of the beam (C = 0), Eq. (3.2) gives two cold tube solutions of a, e−jβpz and

e+jβpz, that travel with phase velocity vp in the ±z directions. Following the notation

in Section 2.4, we define x = βez as the normalized axial distance and f(x) = ejxs(x)

is the solution to the fourth-order ordinary differential equation

∂4f(x)

∂x4
− 2j

∂3f(x)

∂x3
+ bC(2 + bC)

∂2f(x)

∂x2
+ 2C3(1 + bC)f = 0. (3.3)

Equation (3.3) is derived from combining Eqs. (3.1) and (3.2) in the same manner as

the formulation of Eq. (2.8). It is a fourth order ordinary differential equation because

of the inclusion of the reverse propagating circuit wave. The Pierce parameters b and

C in Eq. (3.3) may be functions of axial distance, x, as a result of manufacturing

errors on the circuit.

Similar to the analysis of Chapter 2, we divide the interaction space of the TWT

into N equal length sections. Within each section, we assume b and C to be constants.

The general solution to Eq. (3.3), if xi denotes the right-hand side of the ith section,

may be written as [37]

f (i)(x) =
4∑

k=1

f
(i)
k eλ

(i)
k x, (3.4)

where λ
(i)
k are the four roots of the dispersion relation, which reads (cf. Eq. (3.3)),
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Figure 3.1: Depiction of the two types of reflections that can occur at the interface
of two sections within the model of [37]. Image from [37].

D(λ) ≡ λ4 − 2jλ3 + b(i)C(i)
(
2 + b(i)C(i)

)
λ2 + 2C(i)3

(
1 + b(i)C(i)

)
= 0. (3.5)

Here, λ = Cδ = −j(β−βe)/βe is the root to the fourth degree polynomial (3.5) in each

section (cf. Eq. (2.7) for the three-wave formulation), and b(i) and C(i) are the Pierce

parameters in section i, which remain constant over the entirety of that section. In

Eq. (3.4), k = 1, 2, 3, 4 represents the kth mode, where modes k = 1, 2, 3 are the three

forward propagating modes and mode k = 4 is the reverse propagating mode. We can

readily see by dropping the fourth order term from Eq. (3.5) that we can recover the

three wave dispersion relation, Eq. (2.7), by writing λ = Cδ, δ = −j(β − βe)/(Cβe),

β being the propagation constant, and by assuming that bC � 1.

Chernin analyzed two types of reflections [37], shown in Fig. 3.1. The first type

(referred to as ‘Type I’) results from three forward propagating waves in section i

approaching a discontinuity in b due to random errors, causing a reflected wave in

section i and three forward propagating waves in the next section, section (i + 1).

The second type (referred to as ‘Type II’) results from a reverse propagating wave in

section (i+1) encountering a discontinuity in b at the interface, causing three forward

propagating waves in section (i + 1) and a reverse propagating wave in section i.

Chernin [37] provided a complete solution, which is outlined below.

We require initial four conditions to solve Eq. (3.3). However, only three are given
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at the input, x = 0, and the fourth one is at the output, x = xN . Similar to the three

wave model in Section 2.4, we assume that the beam enters the interaction region

with zero AC current, zero AC velocity, and unit input electric field. This results in

three boundary conditions at x = 0 that read

f(0) =
4∑

k=1

fk = 0, (3.6a)

d

dx
f(0) =

4∑
k=1

λkfk = 0, (3.6b)

and

3∑
k=1

λ2kfk = 1. (3.6c)

Equations (3.6) are exactly the same as the three boundary conditions (2.9) used

in the analysis in Chapter 2. These boundary conditions make no mention of the

backward wave. They do, however, imply that the backward wave does not originate

at the input. The three forward propagating waves, however, do originate at the

input (Eq. (3.6c)).

Finally, it is assumed that there is a perfect match at the output, i.e., no reflection

at x = xN . This is assumed to be true even in the presence of beam loading, the

ability of the presence of a beam to alter the circuit characteristics. This allows the

final boundary condition to be written as

f
(N)
4 = 0. (3.6d)

Due to the fact that the last boundary condition is at the output of the TWT, we

can no longer integrate Eq. (3.3) forward from the input. Chernin solved the problem

exactly using matrix algebra, however. See Chernin et al. [37] for the details of
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Chernin’s matrix algorithm. In Section 3.3 we report the validation of Chernin’s

solution from the data he obtained. In particular, his data yields f(0), f ′(0), f ′′(0),

and f ′′′(0) once the piecewise constant random function b(x) is specified (Fig. 3.2).

We then use these initial values to integrate Eq. (3.3) to compare with Chernin’s

solution for all x. This validation is reported next.

3.3 Validation of Backward Wave Matrix Calculation Algo-

rithm

The numerical algorithm derived by Chernin yields the mode amplitudes in all

sections, including the input section, of the TWT. The following cases show the

validation of Chernin’s matrix algorithm.

3.3.1 Validation Case 1

Figure 3.2: The profile for the Pierce velocity parameter, b(x), for the first validation
case.

For the first validation case, the standard parameters of C = 0.05, d = 0, N = 100,

and TWT length of xN = 100 were chosen. This is the base case of Pengvanich et al.
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[32] and could correspond, for example, to a microwave power module TWT that has

a 21.6 cm circuit length, a beam voltage of Vb = 5 kV, a beam current of Ib = 260

mA, and is operating at a frequency of 3 GHz [56]. The random profile for b(x)

for this simulated TWT example is shown in Fig. 3.2. Table 3.1 shows the results

from the matrix calculation algorithm. Using the values for f and its derivatives

at the input (Table 3.1), the forward integration code of Eq. (3.3) can be used to

validate this method. The results of this calculation are found in Table 3.2. By

comparing Tables 3.1 and 3.2, it is shown that the direct integration validates the

matrix mode amplitude method out to at least 4 decimal places. Although a large

amount of precision is shown, accuracy to so many places is not required. It was

found, however, that round off error in the calculation of a single segment would be

compounded when the number of error segments, N , was large. For example, with

just 1% error in the calculation of the pristine TWT (a single segment), error in the

calculation from the forward integration code for a TWT with N = 100 errors could

be as large as 10%. Such errors are not present here.
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Parameter Value

f(0) −7.2724604117× 10−12 − j1.4447887331× 10−12

f ′(0) 1.9830784150× 10−13 − j8.2520226546× 10−14

f ′′(0) 1.7838376836− j1.5662689903

f ′′′(0) 3.1490879491 + j1.5653291201

f(xN) 2.3822212200× 103 − j9.6745552297× 102

f ′(xN) 1.0916583251× 102 − j1.0351072389× 102

f ′′(xN) 2.9764737113− j4.9043443725

f ′′′(xN) 1.3210160645× 10−1 − j1.2758698580× 10−1

Table 3.1: Mode amplitude values at the input and output of the TWT as calculated
from Chernin’s matrix algorithm [37].

Parameter Value

f(xN) 2.3822210039× 103 − j9.6745568468× 102

f ′(xN) 1.0916581938× 102 − j1.0351072596× 102

f ′′(xN) 2.9764727731− j4.9043442418

f ′′′(xN) 1.3210159568× 10−1 − j1.2758749225× 10−1

Table 3.2: Mode amplitude values at the output of the TWT as calculated from the
direct integration of Eq. (3.3).
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3.3.2 Validation Case 2

Figure 3.3: The profile for the pierce velocity parameter, b(x), for the second valida-
tion case.

For the second validation case, the standard parameters of d = 0 and N = 100 are

the same, but the values of the Pierce gain parameter and TWT length are different

than those of the first validation case. Here, we take C = 1.3744556891 × 10−1 and

xN = 5.0598638525× 101. The random profile for b(x) is shown in Fig. 3.3. Table 3.3

shows the results from the matrix calculation algorithm. Using the the values for f

and its derivatives at the input (Table 3.3), the modified forward integration code

can be used to validate this method. The results of this calculation are found in

Table 3.4. By comparing Tables 3.3 and 3.4, it is shown that the direct integration

validates the matrix mode amplitude method out to at least 7 decimal places. Again,

the high level of precision shows that the effect of multiple error segments, N , is not

increasing the error in the overall calculation.
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Parameter Value

f(0) 2.2649937481× 10−12 + j3.2303049124× 10−12

f ′(0) 4.3891001673× 10−13 − j7.6364655159× 10−14

f ′′(0) 6.4052562294× 10−1 + j3.2440680707× 10−1

f ′′′(0) −6.6351740029× 10−1 − j7.8183592825× 10−1

f(xN) −5.6961867836× 103 + j1.4978518619× 103

f ′(xN) −5.2551795558× 102 + j6.7168531938× 102

f ′′(xN) −1.7214451750 + j1.2283799270× 102

f ′′′(xN) 1.1669721466× 101 + j1.4434271185× 101

Table 3.3: Mode amplitude values at the input and output of the TWT as calculated
from Chernin’s matrix algorithm [37].

Parameter Value

f(xN) −5.6961867846× 103 + j1.4978518639× 103

f ′(xN) −5.2551795553× 102 + j6.7168531971× 102

f ′′(xN) −1.7214451419 + j1.2283799274× 102

f ′′′(xN) 1.1669721471× 101 + j1.4434271186× 101

Table 3.4: Mode amplitude values at the output of the TWT as calculated from the
direct integration of Eq. (3.3).
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3.3.3 Validation Case 3

The final validation calculation compares the direct integration code of the three-

wave theory against the analytic results of those of Pierce in the case of a TWT that

contains a lossy sever region. The loss profile is shown in Fig. 3.4. The local increase

in the loss, d, is to damp the electromagnetic waves (for stability) while preserving

the AC current on the beam [1]. In this calculation, we take values of b = 1.023,

C = 0.078, and QC = 0.114 (Eqs. (2.3) - (2.5)).

Figure 3.4: The profile for the Pierce loss parameter, d(z), for the third validation
case.

The results of the direct integration code compared to the analytic theory of Pierce

can be seen in Fig. 3.5. The analytic theory of Pierce, called ‘prc3’ in Fig. 3.5, was

performed by Chernin. As Fig. 3.5 shows, the gain as a function of distance between

both methods is in excellent agreement.
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Figure 3.5: Gain as a function of distance, z, for both the direct integration calcula-
tion (Rittersdorf code) and the analytic theory of Pierce (prc3).

3.4 Key Results from the Backward Wave Study

Having validated the numerical scheme, this section presents some of the key

findings on the effects of reflected waves as reported in Chernin et al. [37]. Let us

first consider the standard case, a TWT of length x = 100, b0 = 0, C = 0.05, and

d = QC = 0. The TWT is broken up into N = 100 segments and the profile b(x)

is sampled from a Gaussian distribution with a mean of b0 and a standard deviation

of σb. Figure 3.6 shows both the mean variation from the error-free value and the

corresponding standard deviations of those variations for both the three-wave model

(from numerical integration of the governing equations) and the inclusion of the effects

of internal reflections as a function of σb.

As Fig. 3.6 shows, the deviation from the error-free value increases with the in-

clusion of internal reflections within the model for increasing values of σb. Another
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Figure 3.6: The mean variation and standard deviation from the error-free value for a
TWT with random pitch errors as a function of σb. The dashed curves are
the results of the calculation of the third-order model, i.e., in the absence
of internal reflections. The solid curves are the results of the calculation of
the fourth-order model, i.e., in the presence of internal reflections. Here,
x = 100, N = 100, C = 0.05, and b0 = 0 [37].
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Figure 3.7: The small-signal gain as a function of frequency for different values of the
standard deviation in the random pitch errors [37].

feature of Fig. 3.6 is that the increase in the mean variation due to internal reflec-

tions is much less than the corresponding increase in the standard deviations of those

variations.

Figure 3.7 shows the small-signal gain as a function of frequency inside of the

G-Band for different amplitudes of random error for a TWT with a beam voltage of

Vb = 11.7 kV, a beam current of Ib = 120 mA, a circuit length of 1.2 cm, and an

average circuit pitch of 0.02 cm. Typical Pierce parameter values in this tube are

C = 0.0197 and b = 0.36 (see Fig. 2.24 and Chernin et al. [37]). Here, the amplitude

of errors is measured in percentage and is defined by the standard deviation in the

pitch divided by the average pitch. In the absence of random errors, the small-signal

gain exhibits no gain ripple across the band. In the presence of pitch errors, a gain

ripple forms and grows larger with increasing pitch error. At only a 5% pitch error the

gain ripple is around 8 dB and regenerative oscillation, caused by internal feedback,

becomes a distinct possibility [67].
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Figure 3.8: The small-signal gain as a function of frequency for a fixed standard devi-
ation in the random pitch errors. The solid curve represents the calcula-
tion where the random pitch errors are evenly spaced. The dashed curve
represents the calculation where the random pitch errors are distributed
randomly along the axis of the TWT [37].
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Figure 3.8 shows the same small-signal gain as a function of frequency, this time

for a fixed pitch error of 3%, where the random errors are distributed evenly and then

spaced at random intervals. When the pitch errors are randomly distributed along

the axis of the TWT, the amplitude of the gain ripple is shown to be reduced.

3.5 Absolute Instability on an Electron Beam Inside a Di-

electric Waveguide

In Section 3.4, we saw that a random distribution of b can cause internal wave

reflections that lead to large gain ripples. An important question is whether such

random internal reflections can lead to oscillations in a TWT. This generic question

is very difficult to answer. Instead, we ask a more fundamental question: whether

the dispersiveness in a slow wave structure can make a TWT undergo an absolute

instability if the beam current is sufficiently high, even if such a TWT is pristine,

i.e., an error-free tube. Absolute instability may occur even in a perfectly matched

tube without reflection, as described more fully in the next paragraph. It turns out

that this simpler question has not been adequately answered either1 [74]. This section

attempts to answer this simpler question by treating the exact dispersion relation of a

sheet beam inside a dielectric waveguide. That is, the slow wave structure is provided

by the dielectric medium. Despite its practical limitations, the dielectric waveguide

does yield an exact dispersion relation that contains the reverse propagation mode.

Such an exact formulation is not possible for the complicated helix structure, where

the use of simplified governing equations for the helix structure, Eqs. (3.1) and (3.2),

gave erroneous predictions on absolute instability1 [74].

This is a general description of oscillation in a traveling wave tube amplifier [75].

1Lau showed that an absolute instability always exists according to the dispersion relation that
is constructed from the simplified governing equations (3.1) and (3.2). The absolute instability,
according to this simplified mode, cannot be stabilized even with the addition of cold-tube loss in
these governing equations. This is contrary to intuition. It strongly suggests that a proper study of
absolute instability requires accurate formulation of the dispersion relation.
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Figure 3.9: An electron sheet beam with thickness τ propagating through a dielectric
waveguide in the ẑ-direction along an infinite magnetic field.

“Oscillations (in TWT amplifiers) are generally caused by either an external or an

internal feedback process. The external feedback is provided by reflections at both

ends of the interaction region. If the amplitude of the reflected signal reaches a

certain level that the loop gain exceeds unity, the wave amplification processes become

regenerative and oscillation consequently takes place. The internal feedback is a result

of the dispersiveness of the unstable medium. Under certain conditions, the wave

may grow locally without propagating axially out of the system. As a result, large

amplitude waves can simply grow from noise level perturbations”. Unlike those caused

by end reflections, oscillations produced by internal feedback processes may occur in

tubes that are perfectly matched at the input and output, and these oscillations are

called absolute instability [71, 72]. The absolute instability was predicted and was

later discovered in the gyrotron traveling wave amplifier [75].

We shall now consider the absolute instability of a sheet electron beam propagating

in a smooth dielectric, planar waveguide, as shown in Fig. 3.9. The sheet beam has a

small finite thickness τ , of density n0, drifting at speed v0, and guided by an infinite

magnetic field in the z-direction. With ejωt−jkzz dependence, the space charge wave

inside this dielectric waveguide satisfies the dispersion relation [66],
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D(ω, kz) = 0, (3.7)

where

D(ω, kz) ≡ (ω − kzv0)2 + ω2
p

(τ
b

)
pa tan(pa), (3.8)

p2 = ω2εµ0 − k2z , (3.9)

where ωp = (e2n0/meε)
1/2. The derivation of Eq. (3.8) is shown in Appendix B, where

we choose b = 2a in Fig. 3.9 for simplicity.

Note that Eqs. (3.7) and (3.8) may also be written in the familiar form of the

beam mode,

(ω − kzv0)2 = ω2
pR(ω, kz), (3.10)

where R(ω, kz) = −(τ/b)pa tan(pa) is known as the “plasma reduction factor”, that

contains the beam and the waveguide geometries. R is singular when ω and kz satisfy

the cold tube dispersion relation of the dielectric waveguide, cos pa = 0, yielding

k2z = ω2εµ0 −

((
m− 1

2

)
π

a

)2

, m = 1, 2, 3, . . . (3.11)

From Eq. (3.11), the cutoff frequency, ωc, of the dielectric waveguide is given by

ωca
√
εµ0 =

(
m− 1

2

)
π, m = 1, 2, 3, . . . (3.12)

The beam mode, ω = kzv0, and the circuit mode, Eq. (3.11), are shown in Fig. 3.10.

The TWT may operate at points A and B in this dispersion diagram, on which

the beam velocity v0 is equal to the circuit wave phase velocity ω/kz. It is postulated

76



Figure 3.10: The dispersion diagram for the beam mode, ω = kzv0, the dielectric
waveguide circuit modes, Eq. (3.11), and the light line, c = 1/

√
εµ0.

that v0 > 1/
√
εµ0 so that synchronism is possible (Fig. 3.10).

3.6 Briggs-Bers Criterion

Briggs and Bers [71, 72] derived a mathematical procedure that identifies absolute

instability (assuming ejωt−jkzz dependence) according to a general dispersion relation

D(ω, kz) = 0 (Eq. (3.7)). An absolute instability occurs and oscillates at a natural

frequency ωs with Im(ωs) < 0, if (ωs, ks) satisfies

D(ωs, ks) = 0, (3.13)

and

∂D

∂k

∣∣∣∣∣
ω=ωs
k=ks

= 0. (3.14)

Equations (3.13) and (3.14) are two equations which may be solved for the two un-

knowns, ωs and ks. Equation (3.13) is the dispersion relation D(ω, kz) = 0. Equa-
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tion (3.14) is the condition for zero group velocity, ∂ω/∂k = 0, when ω cannot

be expressed as a function of kz explicitly from the dispersion relation. Note that

if the dispersion relation ω = ω(kz) obtained from the general dispersion relation

D(ω, kz) = 0 is analytic at kz = ks, then for ω ' ωs, Eqs. (3.13) and (3.14) implies

ω − ωs ' (const)× (kz − ks)2 , (3.15)

i.e., two roots of ks corresponding to one root of ωs. Thus, k = ks is a saddle point

at which ∂ω/∂k = 0, i.e., zero group velocity.

The Briggs-Bers test of whether (ωs, ks) corresponds to an absolute instability

follows. Start with ω = ωs. Allow ω to move downward to −i∞ in the complex

ω-plane (Fig. 3.11a) and solve for kz(ω) from D(ω, kz) = 0 (Eq. (3.7)). If the double

root ks splits into the upper and lower half of the complex k-plane as ω → −i∞, as

in the case of ks1 in Fig. 3.11b, then an absolute instability exists. Otherwise, the

convective instability exists, allowing spatial amplification of the amplifier, as in the

roots ks2 and ks3 in Fig. 3.11b. Thus, at the onset of absolute instability, if there

is one, it is obtained for real values of ωs that satisfy Eq. (3.13) and (3.14). At the

transition to absolute instability, Im(ωs) = 0. This substantially narrows the search

for the threshold current for the onset of absolute instability.

In the normalization variables with c ≡ 1/
√
εµ0,

ω ≡ ωa

c
, (3.16a)

k ≡ ka, (3.16b)

v0 ≡
v0
c

= v0
√
εµ0, (3.16c)

p ≡ pa, (3.16d)

n ≡ ω2
p

(τ
b

) a2
c2
. (3.16e)
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Figure 3.11: The Briggs-Bers stability criterion on the saddle points (ωs, ks). The
root (ωs, ks1) corresponds to an absolute instability. The roots (ωs, ks2)
and (ωs, ks3) correspond to convective instabilities.
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Here, n is a measure of the coupling which is proportional to C3 because both n and

C3 are proportional to the beam current. The dispersion relation, Eq. (3.7), can then

be written as D(ω, k) = 0, where,

D(ω, k) =
(
ω − kv0

)2
+ np tan p. (3.17)

To determine the existence of (or nonexistence of) the absolute instability we find

the points (ω, k) = (ωs, ks) that satisfy the dispersion relation, D(ω, k) = 0, and

∂ω/∂k = 0.

It is useful to define f(ω, k) ≡ p tan p, such that the dispersion relation reads

D(ω, k) =
(
ω − kv0

)2
+ nf(ω, k). (3.18)

Taking the differential of Eq. (3.18) yields

2(ω − kv0)(dω − v0dk) = −n
(
∂f

∂ω
dω +

∂f

∂k
dk

)
. (3.19)

Equation (3.19) is of the form Adω−Bdk = 0, where A and B are the coefficients

that result from casting Eq. (3.19) in this form. The zero group velocity condition

implies that the coefficient B = 0. This implies that

2v0(ω − kv0) = n
∂f

∂k
. (3.20)

From Eq. (3.18) by (3.20), we eliminate n to yield

g(ω, k) ≡ ∂f/∂k

f
− 2v0

(ω − kv0)
= 0. (3.21)

By evaluating the derivative of f

∂f

∂k
= −k

(
sec2 p+

tan p

p

)
, (3.22)
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we can, after some trigonometry, express g(ω, k) as

g(ω, k) ≡ k(ω − kv0)(1 + sinc p cos p)− 2v0p sin p cos p. (3.23)

The procedure for solving this problem, assuming real ωs for the onset of absolute

instability, is to solve Eq. (3.23) for the corresponding value of ks. Given this (ωs, ks)

pair, the value of n can be obtained from Eq. (3.18),

n = −(ωs − ksv0)2

f(ωs, ks)
. (3.24)

It is required that the corresponding value of n is purely real and positive for the

answer to be physical. Thus, we scan over a large range of real values of ωs and

determine the minimum value of n so obtained.

The final step is to then test to see if the n’s so obtained correspond to the onset

of absolute instability. Letting the imaginary part of the frequency go to negative

infinity, ωi → −∞, we look at the splitting of the roots of k and subject them to the

Briggs-Bers criterion [71, 72] as shown in Fig 3.11. If the roots of k do not split in

the complex k-plane as ks2 and ks3 do in Fig. 3.11b, the solution (ω, k) corresponds

to a convective instability. If the roots of k split into the half k-planes, as ks1 does in

Fig. 3.11b, the solution (ω, k) corresponds to an absolute instability. We identify the

lowest value of n determined this way to give the threshold current beyond which the

TWT amplifier is unstable with respect to absolute instability.

One set of threshold values of n as a function v0 using the above algorithm is

shown in Fig. 3.12. This curve was obtained with the help of Derek Hung. For this

set, the oscillation frequencies are close to the cutoff frequency given by Eq. (3.12)

with m = 1. Other sets of values of n as a function of v0 have also been obtained;

the corresponding values of oscillation frequency are always at the cutoff frequencies,

i.e., given by m = 1, 2, 3, . . . in Eq. (3.12). Even for m = 1, additional calculations
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Figure 3.12: Threshold value of n as a function of v0 for the onset of absolute insta-
bility.

have shown that it is possible for smaller values of n compared to those in Fig. 3.12

to exist, but we are not certain whether they are artifacts due to numerical tolerances

or meaningful values at this time.

3.7 Summary and Conclusions

The effects of the backward wave due to internal reflections that result from ran-

dom manufacturing errors in the slow wave circuit of a TWT have been investigated.

The circuit equation was modified such that the governing equation becomes a fourth

order equation, giving rise to the backward wave in the model. An algorithm to

calculate the mode amplitude in all segments of the TWT was developed [37] and

validated by the numerical integration code. The effects of the internal reflections

were shown to increase the mean variation and the standard deviation of the gain

and phase from the error-free value from the results of the traditional Pierce model

that contained only three forward waves. The increase in the standard deviation is

much larger than the corresponding increase in the mean variation due to the internal
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reflections. Finally, the effects of the random pitch errors were investigated on the

effects of a G-Band TWT and they are shown to cause a gain ripple across the band.

The absolute instability of a TWT in a dielectric waveguide is investigated. A

derivation of the exact dispersion relation for an electron beam in a dielectric wave-

guide is given. From the exact dispersion relation, an algorithm detailing how to

determine the presence of the absolute instability is outlined. For a fixed, real fre-

quency ωs, the dispersion relation is solved to determine the complex wavenumber,

ks = kr−iki, representing growth or decay in the spatial coordinate. The root (ωs, ks)

is then subject to the Briggs-Bers stability criterion, which determines the presence

of either the convective or absolute instability. The threshold condition for the onset

of absolute instability is determined for this idealized model.

83



CHAPTER 4

Temporal and Spatial Locking of Nonlinear

Systems

4.1 Introduction

Phase-locking is utilized today in many important applications, ranging from small

scale devices such as cardiac pacemakers [76] to large scale devices such as radar [10].

The well-known configuration is the “master-slave,” where the driver, known as the

“master,” is unaffected by the driven oscillator, known as the “slave” [45, 77]. In this

configuration, the condition for locking of the “slave” oscillator to the frequency of

the “master” is given by the Adler locking condition [45],

|ωd − ω0|
ω0

<
ρ

2Qext

, (4.1)

where ωd is the frequency of the driver (master), ω0 is the frequency of the free-running

oscillator (slave), ρ is the ratio of injected (driver) signal voltage to driven oscillator’s

output voltage, and Qext is the external quality factor of the output oscillator. This

expression describes the condition for the phase locking of high power microwave

oscillators in general, including the magnetron, although it has recently been shown

that the injection power in certain high power microwave oscillators need not be

limited by Adler’s locking condition [78].
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An alternate is the peer-to-peer configuration, where each oscillator acts as a driver

of, and a slave to, the other oscillator [53, 54]. The latter is attractive when locking a

larger number of oscillators is desired, because far fewer expensive components, such

as isolators or circulators, are required. The condition for peer-to-peer locking of two

nonlinear oscillators was recently derived [53], and experimentally verified using two

kilowatt oven magnetrons [54]. In this chapter, we shall advance the theory a step

further. We examine the viability of peer-to-peer locking when both oscillators suffer

a frequency upchirp, or contain a low frequency noise component [26].

Phase locking of two oscillators in the (ω, t) domain (ω = frequency, t = time)

was recently found to have an analogue in the phase locking of two spatial modes in

the (k, z) domain (k = wavenumber, z = axial direction). In z-pinch experiments

performed at the Sandia National Laboratories [18, 20, 22, 79], Cornell University

[80–83], and the University of Michigan [25, 84, 85], current on the order of 10− 100s

of kiloamperes is made to pass through each metallic wire in a wire array. The

diameter of the wires is typically tens of microns and the axial length is of order 1

cm. The intense current ablates the wire and the current-carrying plasma column

always exhibits a sausage-like instability along the wire with a certain characteristic

wavelength. When the separation of the wires is large, the axial perturbation on each

wire is independent of its neighbor. However, when the wires are placed sufficiently

close to each other, it is experimentally observed that the “sausage” modes on the

wire become axially correlated (See Fig. 4.10 below). The spatial correlation of the

axial modes that appeared on two (and more) ablated wires has been systematically

studied [25]; it is of substantial interest to the Sandia National Laboratories’ “Z”

machine [86–90]. This chapter will treat this spatial locking as the spatial analog of

peer-to-peer locking of nonlinear oscillators. The (ω, t) space is replaced by (k, z)

space, even though the coupling mechanisms for the two cases are entirely different.

Here, k is the characteristic wave number of the instability mode on a single, isolated
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Figure 4.1: Geometry of a cylindrical magnetron with the cathode in the center. A
vane slow wave structure is depicted on the anode.

wire [85, 87, 91, 92].

Section 4.2 outlines the model for peer-to-peer locking of two magnetrons and

presents the condition of locking [53]. This paved the way for Section 4.3, where we

consider the effects of a frequency chirp on the locking of two oscillators. The fre-

quency chirp extends beyond the local locking range. Section 4.4 considers the effect

of a background noise on peer-to-peer locking. Bounds on the output phase varia-

tions are derived analytically and compared favorably with numerical computations.

Section 4.5 considers locking of axial modes on two closely ablated wires. Section 4.6

summarizes this chapter.

4.2 Peer-to-Peer Locking of Two Magnetrons

A conventional oven magnetron is employed in the cylindrical geometry, although

the planar magnetron works on similar physical principles. Commercial magnetrons

typically operate at few kV all the way up to 100 kV. Current is emitted thermionically

from the cylindrical cathode at the center. An axial magnetic field is imposed. The

emitted electrons experience an electric field in the radial direction that causes them
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Figure 4.2: A schematic showing two magnetrons connected to a two-port network
for the peer-to-peer locking configuration. Figure from [53].

to E ×B drift in the azimuthal direction (Fig. 4.1).

As the electrons flow in the azimuthal direction around the cathode, they experi-

ence electric field perturbations from the slow wave structure, an example is shown

in Fig. 4.1 with a vane structure. When the E × B drift velocity is approximately

equal to the azimuthal phase velocity of the slow wave on the structure, the electrons

will continuously interact with the wave as they travel around the interaction space

of the magnetron. Electron spokes are formed, in which the electron drifts toward the

anode, converting their potential energy into RF energy [1]. The RF wave is typically

coupled out of the structure at the end of one or several vanes.

We now consider the locking of two such magnetrons, 1 and 2, schematically

shown in Fig. 4.2. To study the effects of a frequency chirp and of noise on peer-

to-peer locking, we need to describe the model for noise free magnetrons, following

[53]. Each operating magnetron is a free-running oscillator. The theory of peer-to-

peer locking of nonlinear oscillators is modeled by considering the two magnetrons

being connected through a two-port admittance matrix, Y, as shown in Fig. 4.2.

Each magnetron is modeled by a parallel RLC circuit as shown in Fig. 4.3. From the

conservation of current, it can be shown that

V2
R2

+
V2
jωL2

+ jωC2V2 + YB2V2 = −I2. (4.2)

When I2 = 0, the magnetron is in its free-running state. That is, I2 represents an

external current that is used to drive magnetron 2. In the “master-slave” injection

87



Figure 4.3: Magnetron 2 modeled as an RLC circuit. I2 and V2 are output current
and voltage, respectively. The resistance, inductance, and capacitance are
R2, L2, and C2, respectively. YB2 is the admittance due to beam loading,
e.g., YB2 = 0 in the absence of the beam. Figure from [53].

locking configuration, the current I2 is a constant quantity. In the case of peer-to-peer

coupling, the current I2 is no longer constant; the combination of magnetron 1 and

the coupling between magnetrons 1 and 2 gives rise to the value of I2, which may be

time varying.

Since we are interested in temporal effects, we write Eq. (4.2) in the time domain

form [53],

d2V2
dt2

+
ω2

Q2

[
1− |V2|

V02

]
dV2
dt

+ ω2
2V2 = − 1

C2

dI2
dt
, (4.3)

where ω2 is the free-running frequency of magnetron 2, V02 is the free-running voltage

amplitude of magnetron 2, and C2 is the capacitance of magnetron 2. The solution

of magnetron 2 in the free-running state, e.g., I2 = 0 is simply V2(t) = V02e
jω2t−jφ,

where φ is an arbitrary phase. When connected to magnetron 1, e.g., I2 6= 0, the

voltage is modified to read (if locking occurs),

V2(t) = V2e
jωt+jθ2 , (4.4)

where θ2 is the phase of magnetron 2 relative to magnetron 1, ω is the locked frequency,
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and V2 is the amplitude of magnetron 2. The analysis for magnetron 1 is exactly the

same with subscripts 1 and 2 reversed. Since we assume that the two magnetrons are

coupled together through a two-port admittance matrix, as in Fig. 4.2, we write [53]

I1
I2

 =

Y11 Y12

Y21 Y22


V1
V2

 . (4.5)

The admittances in Eq. (4.5) are, in general, allowed to be complex and are defined

as

Ymn = |Ymn|ejpmn = Re(Ymn) + jIm(Ymn), (4.6)

where pmn is the phase of element mn. Substituting Eqs. (4.4) and (4.5) into Eq. (4.3)

yields

−ω2V2 +
ω2

Q2

[
1− |V2|

V02

]
jωV2 + ω2

2V2 = − 1

C2

d

dt
(Y21V1 + Y22V2) . (4.7)

Assuming that the admittances Y21, Y22 slowly vary in time such that V dY/dt�

Y dV/dt, we write

(
ω2
2 − ω2

)
V2 +

ω2

Q2

[
1− |V2|

V02

]
jωV2 = − 1

C2

(
Y21

dV1
dt

+ Y22
dV2
dt

)
. (4.8)

Factoring ω2 from Eq. (4.8) allows the first term to be written as ω2(ω2
2/ω

2−1). Since

the ratio of ω2/ω is close to unity for locking, let us define ε = ω2/ω−1, where ε� 1.

This allows us to make the approximation

(ω2

ω

)2
= (1 + ε)2 ≈ 1 + 2ε. (4.9)

After substituting Eq. (4.9), evaluating the derivatives, and some algebra we express

Eq. (4.8) as
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2jC2(ω2 − ω)− ω2

Q2

[
1− |V2|

V02

]
= Y21

V10
V20

ej(θ1−θ2) + Y22. (4.10)

It is convenient to express the three circuit parameters R2, L2, and C2 as three

measurable cold-tube quantities. These quantities are the natural frequency ω02, the

quality factor Q02, and the shunt impedance Z2. In the absence of the beam loading

term, YB2, shown in Fig. 4.3, they are defined as

ω02 =

√
1

L2C2

, (4.11a)

Q02 = ω02R2C2, (4.11b)

Z2 = R2/Q02. (4.11c)

The presence of beam loading gives rise to the hot natural frequency, ω2, and the hot

quality factor, Q2. The shunt impedance remains approximately unchanged in the

presence of beam loading [55]. Substituting Eqs. (4.11) into Eq. (4.10) yields

2jC2(ω2 − ω)− 1

Z2Q2

[
1− |V2|

V02

]
= Y21

V10
V20

ej(θ1−θ2) + Y22. (4.12a)

Similarly for magnetron 1

2jC1(ω1 − ω)− 1

Z1Q1

[
1− |V1|

V01

]
= Y12

V20
V10

ej(θ2−θ1) + Y11. (4.12b)

Taking the real part of Eqs. (4.12) yields

|V2|
V02

= 1 +Q2Z2

[
Re(Y22) + Re(Y21)

V10
V20

cos(p21 + θ1 − θ2)
]
. (4.13a)

Similarly for magnetron 1

|V1|
V01

= 1 +Q1Z1

[
Re(Y11) + Re(Y12)

V20
V10

cos(p12 + θ2 − θ1)
]
. (4.13b)

90



Taking the imaginary part of Eqs. (4.12) yields

ω −
(
ω2 −

1

2
ω2Z2Im(Y22)

)
= −1

2
ω2Z2|Y22|

V10
V20

sin(p21 + θ1 − θ2), (4.14a)

ω −
(
ω1 −

1

2
ω1Z1Im(Y11)

)
= −1

2
ω1Z1|Y11|

V20
V10

sin(p12 + θ2 − θ1). (4.14b)

Let

Ω1 = ω2 −
ω1

2
Z1Im(Y11), (4.15a)

Ω2 = ω2 −
ω2

2
Z2Im(Y22), (4.15b)

and

α1 =
ω1

2
Z1|Y12|

V20
V10

, (4.16a)

α2 =
ω2

2
Z2|Y21|

V10
V20

. (4.16b)

Equation (4.14) then becomes, for both magnetron 1 and 2

ω − Ω1 = −α1 sin(p12 + θ2 − θ1), (4.17a)

ω − Ω2 = −α2 sin(p21 + θ1 − θ2). (4.17b)

Subtracting Eq. (4.17b) from Eq. (4.17a) yields

Ω2 − Ω1 = α2 sin(p21 + θ1 − θ2)− α1 sin(p12 + θ2 − θ1). (4.18)

Since only the relative phase between magnetron 1 and magnetron 2 is important, we

can, without loss of generality, set θ1 = 0. By doing so, Eq. (4.18) can be expressed
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as

Ω2 − Ω1 = α2 sin(p21 − θ2)− α1 sin(p12 + θ2) (4.19)

We require that the solution to θ2 be purely real. We can show the condition for

purely real solutions of θ2 if we define

p̄ ≡ 1

2
(p12 + p21), (4.20a)

φ ≡ δp+ θ2 − θ1, (4.20b)

δp ≡ p̄− p21 = p12 − p̄. (4.20c)

We can then see that Eq. (4.19) is of the form

c = a sinφ+ b cosφ, (4.21)

where a = −(α1 +α2) cos p̄, b = −(α2−α1) sin p̄, and c = Ω2−Ω1. For real values of

a, b, and c, Eq. (4.21) then only admits real solutions for φ, that is to say θ2, if and

only if c2 < a2 + b2. Substituting Eqs. (4.20) into Eq. (4.21) yields

α2
1 + α2

2 + 2α1α2 cos(p12 + p21) > (Ω2 − Ω1)
2 , (4.22)

which is the peer-to-peer locking condition [53]. Equation (4.22) states that if the

free-running frequencies Ω1 and Ω2 of the two oscillators are far apart, it is impossible

to lock at a fixed coupling strength, α1 and α2.

The locking condition Eq. (4.22) was verified in experiments [54].
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4.3 Effects of Frequency Chirping on Peer-to-Peer Locked

Magnetrons

Consider first the peer-to-peer locking of two nonlinear oscillators in the presence

of a frequency chirp. In complex notation, we represent the signal on the ith oscillator

(i = 1, 2) as Vi(t)e
jωt−jθi(t), where ω is the frequency; Vi and θi are, respectively, the

amplitude and phase of signal i, both assumed to be slowly time-varying compared

with ω. The governing equation for the phases may be written as (cf. Eqs. (4.17a)

and (4.17b))

dθ1
dt

+ Ω1 − ω = α1 sin(p12 + θ2 − θ1), (4.23a)

dθ2
dt

+ Ω2 − ω = α2 sin(p21 + θ1 − θ2), (4.23b)

where Ω1 (Ω2) is the free-running frequency of oscillator 1 (oscillator 2) when the

other is turned off, α1 (α2) is the effect on oscillator 1 (oscillator 2) by oscillator 2

(oscillator 1) because of the coupling, and p12 and p21 represent the phase advances on

the coupling paths. When oscillator 2 is turned off, α1 = 0 and ω = Ω1 on oscillator

1 according to Eq. (4.23a); the phase θ1 on oscillator 1 is an arbitrary constant, as

expected of any free-running oscillator. The free-running oscillator 1 is assumed to

have a fixed amplitude V1. Similarly, oscillator 2 has a free-running frequency Ω2, a

fixed amplitude V2, and an arbitrary phase θ2.

When Ω1 and Ω2 are constants, the two oscillators are locked to a common fre-

quency (ω) if the locking condition, Eq. (4.22), is satisfied [53]. This condition was

validated in experiments performed by Cruz et al. using two kilowatt-magnetrons

[54], for which the parameters α1, α2, p12, and p21 were obtained from the admittance

matrix that described the electromagnetic coupling between the two magnetrons. For

the following calculations, we chose values for these parameters from a deeply locked
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Figure 4.4: Frequency profiles for magnetron 1 (dashed green) and magnetron 2 (solid
blue). The frequency of magnetron 1 is held constant while a linear
frequency chirp begins in magnetron 2 at t = 5 µs. The two black dashed
horizontal lines show the boundaries of the locking range as predicted by
Eq. (4.22).

case from the Cruz experiments [54]. These values are listed in Table 4.1.

Parameter Experimental Value
Ω1/2π 2.44953 GHz
Ω2/2π 2.44807 GHz
α1 1.442 ×10−3 GHz
α2 9.347 ×10−4 GHz
p12 -0.202979 rad
p21 0.745879 rad

Table 4.1: List of values used in the calculations in this chapter as determined exper-
imentally by Cruz et al. [54].

How the locking is altered if there are frequency chirps in the free-running frequen-

cies Ω1 and Ω2 can readily be answered by subtracting Eq. (4.23a) from Eq. (4.23b),

d(θ2 − θ1)
dt

+ (Ω2 − Ω1) = α2 sin(p21 + θ1 − θ2)− α1 sin(p12 + θ2 − θ1), (4.24)
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which is a single equation for the phase difference (θ2−θ1). It is clear from Eq. (4.24)

that this phase difference (θ2− θ1) cannot be a constant if (Ω2−Ω1) is time-varying.

Therefore, strictly speaking, there is no locking in the phase if there is a frequency

drift between the free-running frequencies Ω1 and Ω2. Furthermore, since only the

frequency difference (Ω2 − Ω1) enters in Eq. (4.24), we may pretend that Ω1 is a

constant but let Ω2 vary with time. For simplicity, we shall write this linear frequency

chirp in the free-running frequency of magnetron 2 as

Ω2(t) = Ω20 + (t− ts)
dΩ2

dt
, (4.25)

where Ω20 is the constant frequency, ts is the time at which the frequency chirp

begins, and dΩ2/dt is the chirping rate, which is zero when t < ts and is assumed

to be constant when t ≥ ts. Additionally, the chirping rate is assumed to be slow in

comparison to Ω20. Figure 4.4 shows an example of a linear chirp in Ω2, which allows

us to pinpoint the drift in the relative phase (θ2 − θ1) as the frequency difference

(Ω2−Ω1) moves across the locking range, Eq. (4.22) [52]. Here, we chose a moderate

value for the frequency chirp of Ω2/dt = 2π× 5.5× 1011 GHz/s which begins at time

ts = 5 µs.

Figure 4.5 shows the instantaneous drift rate of the relative phase, dφ/dt, where

φ = θ2 − θ1. It is obtained by solving Eq. (4.24) using the linear chirp in Fig. 4.4.

From Fig. 4.5, we see that this instantaneous drift rate is close to zero but not exactly

equal to zero, when the frequency difference (Ω2 − Ω1) lies within the locking range.

Thus, while perfect phase locking cannot be achieved if there is a frequency drift

between the two nonlinear oscillators, approximate phase locking can be attained if

the locking condition (4.22) is satisfied locally in time. In Fig. 4.5, during the flat

portion of the locking range, |dφ/dt| < 4× 105 rad/s.
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Figure 4.5: dφ/dt during the linear frequency chirp. Here, Ω1/2π = 2.4496 GHz and
the linear chirp in Ω2 starts at t = 5 µs. The dashed lines show the
boundaries of when the locking condition is satisfied. The magnitude of
|dφ/dt| is less than 4× 105 rad/s inside of the locking range.
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Figure 4.6: Profile of random frequency fluctuations between magnetron 1 and 2 with
200 nodes over the range shown. The two black dashed horizontal lines
show the boundaries of the locking range as predicted by Eq. (4.22).
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Figure 4.7: Phase with random frequency fluctuations shown in Fig. 4.6. The phase
reaches a steady-state value of -0.0593 rad before the frequency fluctua-
tions begin at t = 5 µs.

4.4 Effects of Random Noise on Peer-to-Peer Locked Mag-

netrons

Also of interest is the phase variation when the free-running frequencies contain a

low frequency noise component. Figure. 4.6 shows a random sample of (Ω2−Ω1) which

lies within the locking range. The numerical solution to Eq. (4.24) using this random

sample is shown in Fig. 4.7. From this example, we see that the phase fluctuations

do not exceed 0.3 rad.

The spectrum of the phase fluctuations in the presence of small random frequency

fluctuation can be calculated analytically. Substituting Eqs. (4.20) into Eq. (4.24),

we obtain

dφ

dt
+ (Ω2 − Ω1) = α1 sin(p̄+ φ)− α2 sin(p̄− φ). (4.26)

Next, let us add a perturbation to the frequency such that ∆Ω ≡ Ω2−Ω1 = ∆Ωm+δΩ
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and φ = φ0 + δφ, where ∆Ωm is the mean difference in frequencies, δΩ is the random

fluctuation, φ0 is the unperturbed phase, and δφ is the perturbed phase caused by

the perturbation in the frequency. Substituting this into Eq. (4.26) yields

d

dt
(φ0 + δφ) + ∆Ωm + δΩ = α1 sin(p̄+ φ0 + δφ)− α2 sin(p̄− φ0 − δφ). (4.27)

For small δΩ and δφ, Eq. (4.27) is linearized to give

dδφ

dt
+ δΩ = α1δφ cos(p̄+ φ0) + α2δφ cos(p̄− φ0). (4.28)

Taking the Fourier transform of Eq. (4.28) yields

δ̃φ(ω) =
δ̃Ω(ω)

[α1 cos(p̄+ φ0) + α2 cos(p̄− φ0)]− iω
, (4.29)

where δ̃φ(ω) and δ̃Ω(ω) are, respectively, the Fourier transforms of δφ and δΩ. The

spectral density of the phase noise can then be related to the spectral density of the

frequency fluctuations,

∣∣∣δ̃φ(ω)
∣∣∣2 =

∣∣∣δ̃Ω(ω)
∣∣∣2

[α1 cos(p̄+ φ0) + α2 cos(p̄− φ0)]
2 + ω2

. (4.30)

When locking is nearly satisfied, the term [α1 cos(p̄+ φ0) + α2 cos(p̄− φ0)]
2 becomes

much less than ω2. Eq (4.30) can then be approximated as

∣∣∣δ̃φ(ω)
∣∣∣ ≈

∣∣∣δ̃Ω(ω)
∣∣∣

ω
. (4.31)

Figure 4.8 shows the LHS and the RHS of Eq. (4.31) as a function of frequency,

ω. The LHS is calculated by numerically taking the fast Fourier transform of φ(t);

the RHS is calculated by numerically taking the fast Fourier transform of ∆Ω(t) and

98



0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 x 10−3

t/2/ [GHz]

A
m

pl
itu

de
 [N

or
m

al
iz

ed
]

 

 

|bq|
|b1|/t

Figure 4.8: Numerical evaluation and comparison of the LHS and RHS of Eq. (4.31).

dividing by ω. The signals are noisy when they are close to ω = 0. Both sides of

Eq. (4.31) seem to show agreement. Figure 4.9 shows a zoomed view of the same plot

around 35 MHz. The two curves can be seen to have similar shape to them and show

reasonable agreement.

4.5 Extension of Temporal Locking to Spatial Locking of

Nonlinear Modes

This section considers phase locking of spatial modes on wire z-pinches. As an

intense current passes through the metallic wire, it heats it up such that the wire

evolves into a hot liquid and vapor metal core with a surrounding, coronal plasma.

Sausage-like modes are prevalent on each of the ablated wires (Fig. 1.3). When the

wires are sufficiently close to each other, correlation between the ablation structures

of neighboring wires can be observed [25, 86–88], as shown in Figs. 4.10 and 4.11.

Figure 4.10 shows that when two wires are close by, the sausage-like modes are phase

locked spatially. When the wires are far apart, no correlation of the phase is observed
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Figure 4.9: A zoomed view of Fig. 4.8 around 35 MHz.

in the sausage-like modes (Fig. 4.11).

We now apply the technique of temporal locking in (ω, t) domain to spatial locking

in (k, z) domain. An isolated wire is known to develop a sausage like instability

which manifests as axial variations in the form Seikz−jp where S is the amplitude, k

is the axial (z) wave number, and p is the phase of the perturbation of the ablated

plasma boundary [91, 92]. S is analogous to the amplitude (V ) and k is analogous

to the frequency (ω) of the free-running magnetron oscillation mode. Referring to

Eqs. (4.23a) and (4.23b), we postulate that the governing equations for the phases p1

and p2 may be written as

dp1
dz

+ k1 − k = β1 sin(q12 + p2 − p1), (4.32)

dp2
dz

+ k2 − k = β2 sin(q21 + p1 − p2), (4.33)

where k1 (k2) is the axial wave number on wire 1 (wire 2) when the other is infinitely

far away, β1 (β2) is the effect on wire 1 (wire 2) by wire 2 (wire 1); both β1 and β2
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Figure 4.10: A false color radiograph with enhanced contrast (top) from a small in-
terwire spacing shot. The tungsten wires are 7.4 µm in diameter and
spaced 240 µm apart. This particular shot occurred at 93 ns and there
was 1.13 MA of driver current. The corresponding lineouts (bottom) of
the two wires shows the ablation correlation between them. Figure from
[25].

Figure 4.11: (a) An enhanced contrast radiograph taken by the COBRA-STAR imag-
ing system of ten tungsten wires with large interwire gap spacing with
7.4 µm diameters at 100 ns in time with 1.0 MA of drive current. (b)
The corresponding lineouts from wires highlighted in the radiograph.
Figure from [25].
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become small when the wire separation becomes large, and q12 and q21 is another pair

of constants associated with the coupling between the two wires. Thus, analogous

to Eq. (4.22), we arrive at the locking condition for the phase p1 and p2 on the two

wires,

β2
1 + β2

2 + 2β1β2 cos(q12 + q21) > (k2 − k1)2. (4.34)

Equation (4.34) implies that phase locking can be achieved only if the wires are

sufficiently close to each other. In the case of the experiments of Zier et al. [25],

locking was observed when the wires were 240 µm apart. This is quite analogous to

Huygen’s original observation that synchronization of two clocks occurred only if the

two clocks were placed sufficiently close to each other [76]. While the physical pro-

cesses that lead to spatial locking for the two ablating wires can be quite complicated

(just as the locking of Huygen’s clocks), what we have given here is a framework in

which spatial correlation may be interpreted in the same manner as temporal locking.

The transform pair (ω, t) in the time domain is totally analogous to the transform

pair (k, z) in the spatial domain. The study presented in this chapter of lockability

when ω has a finite width in the spectrum, e.g., frequency chirp or noise, such as

those studied in Sections 4.3 and 4.4, can similarly be adapted to the wave number

k in the spatial domain for nonmonochromatic k1 and k2.

4.6 Summary and Conclusions

In this chapter, the analytic condition for the peer-to-peer locking of two mag-

netrons was presented [53]. Using values from the experiments that validated the

locking condition [54], the effects on the peer-to-peer locking condition in the pres-

ence of both a frequency chirp and low frequency random noise were investigated [26].

It is found that complete phase locking cannot be achieved in either case. It is found,
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however, that as long as the locking condition is well satisfied instantaneously, a high

degree of locking occurs.

Experiments performed by Zier et al., separate to these studies, investigated the

spatial correlation of two current carrying wires that are placed sufficiently close

together [24, 25]. When the two wires are sufficiently far apart and pulsed with

10s − 100s of kiloamperes of current the plasma density from the ablated wires

is uncorrelated between the two. In the case where the two wires are ablated in

sufficiently close proximity, the density perturbations are correlated spatially. An

argument is made that the analysis performed in the time domain can be adapted

to this locking in the spatial domain, providing a framework for the interpretation of

these experiments by Zier et al.
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CHAPTER 5

Conclusions and Future Work

This thesis contains analysis of the effects of random perturbations, due to manu-

facturing processes or noise, on two microwave sources: the traveling wave tube and

the magnetron. The investigation of these effects was motivated, respectively, by the

desire to push microwave sources in the millimeter and sub-millimeter wavelength

regime, and by the appeal of generating high power microwaves from the peer-to-peer

locking of highly efficient, lower power magnetrons.

5.1 Investigation of Random Errors in TWTs

In Chapter 2, the effects on the gain and the phase of TWTs in the presence of

random manufacturing methods were investigated using the traditional three wave

model. This work was motivated by a peculiar feature in previous numerical studies

that reported a significant number of simulated TWTs that showed higher gain in

the presence of random errors compared to the error free case [32]. In this study we

presented two analytic formulations, the perturbation and Riccati analysis [34]. These

analytic formulas showed that the mean variation in the gain and phase is a small,

second order effect in the standard deviation of the errors, σb. It was found that the

analytic formulations showed reasonable agreement with the numeric methods over a

wide range of parameter space when the space charge effect (QC) is neglected.
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The analysis was then extended to account for the inclusion of a nonzero QC

term. It was found that in the presence of the QC term the perturbation analysis

and the Riccati analysis no longer accurately predicted the results of the numeric

analysis. One possible explanation of this is that the space charge term reduces the

range of b (the sensitive detune parameter in TWTs) over which gain occurs, if at all.

This violates the single-wave assumption behind the Riccati approach but doesn’t

fully explain the difference with the perturbation method. This unanswered question

about why the space charge term modifies the analytic results so much that they do

not agree with direct numerical integration of the governing equation is worthy of

future study.

The standard deviation is shown to be first order in σb while the mean variation

is shown to be second order in σb in both analytic approaches (perturbation and

Riccati). This causes the standard deviation to be larger than the mean variation,

which statistically explains why a significant number of simulated TWTs can exhibit

larger gain in the presence of errors. It also suggests that the b(x) profile is not

optimized. Preliminary results of the optimal b(x), determined by the highest gain

cases in one million samples, revealed an interesting feature. The profile in b(x)

exhibited a parabolic dip in the middle section of the profile, implying that the phase

velocity of the circuit wave in the mid-section of the tube needs to be faster than

the beam velocity for higher gain. This was particularly evident in cases with 3 to 8

error node segments. The feature is still evident in samples with up to 20 nodes but

becomes much less prominent as the number of nodes increases to 100. The case with

the N = 5 segment helix shows a 25% increase in gain. In the case of the microwave

power module operating at 3-18 GHz, the 21.6 cm long circuit produces around 200

W of power. These results suggest that this MPM could produce an extra 50 W of

power simply by varying the helix periodicity. The study of this optimization and

of these optimized b(x) profiles and their underlying physical nature is an interesting
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area of future study.

In Chapter 3, the TWT analysis was extended by including the effects of the back-

ward circuit wave. Due to the boundary conditions, this problem could no longer be

solved using the forward integration method that was utilized in the three-wave model.

A general method of solving this problem by solving for the mode amplitude in all

segments in the presence of random errors was presented in [37]. This algorithm was

numerically validated via the forward integration code originally developed for solv-

ing the three-wave problem (and modified to four-wave) and those validation results

were presented. It confirmed that the effects of the internal reflections increased the

mean variation and the standard deviation in the gain and phase in the presence of

random errors compared to that of the model with only three-waves. The effects of

random errors on a G-Band TWT were studied and shown to cause a ripple in the

gain across the band.

During this four wave investigation, the question of internal reflections being the

source of TWT oscillations arose. As this is a difficult question to analyze, we posed

the simpler problem of investigating the absolute instability in a dielectric waveguide.

Using the exact dispersion relation, the critical roots (ωs, ks) of the dispersion rela-

tion can be numerically solved for. The splitting of the double root ks is then tested

according to the Briggs-Bers criterion, which identifies the presence of absolute insta-

bility. Preliminary runs show that there is a threshold value of beam current beyond

which the absolute instability occurs. How to apply absolute instability analysis to

a practical TWT is an open question, because the dispersion relation cannot be ob-

tained exactly. Our study of the dielectric waveguide suggests that cutoff oscillations

(at kz = 0) are worthy of particular attention.
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5.2 Investigation of Locking of Nonlinear Oscillators

In Chapter 4, the phase locking of nonlinear oscillators is considered. First, the

locking of two magnetrons is considered in the peer-to-peer configuration. This config-

uration differs from the standard “master-slave” configuration in that each oscillator

acts as both master to and slave to the other. An analytic condition that describes

the conditions under which peer-to-peer locking occurs was previously derived [53],

and this condition was proved to be true experimentally [54]. In this thesis, we ex-

plore the question as to how the peer-to-peer locking of two magnetrons behaves in

the presence of both a frequency chirp and low frequency noise [26]. In the pres-

ence of a low frequency chirp, it was found that the rate of change of the difference

in phase between the two oscillators was greatly reduced but was not equal to zero

when the peer-to-peer locking condition was satisfied. A high degree of locking can

occur when the locking condition is satisfied in the presence of a frequency chirp,

but complete phase locking cannot be achieved. Next, the presence of low frequency

noise was investigated. Again, it was found that in the presence of low frequency

noise complete locking cannot be achieved. It was found, however, that as long as the

locking condition is well satisfied instantaneously, approximate locking occurs. In the

case presented, the difference between the phases of both oscillators never exceeded

0.3 radians in the presence of noise.

Only the peer-to-peer locking of two oscillators has been considered. The peer-

to-peer locking condition for three or more oscillators is a remaining problem that

is open for future work. In the experiments that validated the peer-to-peer locking

condition, it was found that the frequency of two peer-to-peer locked magnetrons

did not necessarily lie between the two free running frequencies of the oscillators

[54]. Due to the nature of the governing equations, there are two locking frequencies

that can result from the peer-to-peer locking. The investigation of why one of these

frequencies is more prevalent or stable than the other is still an open question for
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future investigation.

Separate to the research performed on the peer-to-peer locking, experiments were

performed that investigated the spatial correlation of the ablation structure of two

current carrying wires [25]. It is well known that a current carrying wire will exhibit

the sausage-like plasma instability. It was found that when two such wires were

placed sufficiently close together that the ablation structure between the two becomes

correlated spatially. As the wires are spaced further apart, the ablation plasma is no

longer correlated spatially. We interpret this phenomenon as locking in the spatial

domain. An argument is made that since the spatial locking is analogous to the

temporal locking problem that the phase equations that govern the two ablating

wires will be of the same form. From the phase equations for the wires, we formulate

a locking condition for the spatial locking of two current carrying wires. We have

provided a framework for the interpretation of spatial locking. We did not compare

directly to experimental data or attempt to resolve what the coupling coefficients in

our framework are. This will require an in-depth physical modeling of the complex

physics of an ablated plasma from wires.
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APPENDIX A

Second-Order Small-Signal Solution in the

Presence of Random Errors [34]

We derive the second-order perturbative solution to Eq. (2.13) when the Pierce

parameters C and d are constant and the parameter b contains small random pertur-

bations denoted as b1(x). We re-write Eq. (2.10) as,

a = a0e
G1+jθ1 , (A.1)

where a is the normalized electric field and a0(x) is the solution in the error-free tube

given by Eq. (A4) of [32]. To second order, we write a(x) = a0(x) + a10(x) + a11(x).

The first and second order perturbations are a10(x) and a11, respectively. Expanding

a(x) in Eq. (A.1) yields an expression for the modification of amplitude and phase of

G1 + jθ1 =
a10 + a11

a0
− 1

2

a210
a20
. (A.2)

This equation can be solved for the gain and phase change when the expressions for

a10 and a11 are substituted into Eq. (A.2). These quantities are to be derived in this

appendix.
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Equation (2.8) can be written as three coupled first-order differential equations

expressed in matrix notation as

dY

dx
= (M + M1) Y, (A.3)

in the presence of random variation b1(x), where M represents the error-free tube and

M1 is the modification due to b1,

M =


0 1 0

0 0 1

−jC (4QC3 (b− jd) + C2) 4QC3 −jC (b− jd)

 , (A.4)

M1 =


0 0 0

0 0 0

m31(x) 0 m33(x)

 , (A.5)

where m31 = −jC (4QC3) b1(x) and m33 = −jCb1(x). Equation (A.4) is a constant

matrix containing error-free tube parameters. We assume that there are no losses,

i.e., d = 0. We write

Y = Y0(x) + Y1(x) ≡


f0(x) + f1(x)

v0(x) + v1(x)

a0(x) + a1(x)

 , (A.6)

where quantities with subscript 1 are due only to random b1(x). The error-free solu-

tions are f0, v0, and a0 and are given by Eq. (A4) of [32].

Combining Eq. (A.6) with (A.3) yields, to second order

dY1

dx
−MY1 = M1Y0 + M1Y1. (A.7)

Ignoring the second order term M1Y1, the solution to Eq. (A.7) is Y1(x) = Y10(x),
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whose solution is given by Eq. (A10) of [32]. Next, let us approximate M1Y1 in

Eq. (A.7) as M1Y10(x), and write

Y1 = Y10(x) + Y11 ≡


f10(x) + f11(x)

v10(x) + v11(x)

a10(x) + a11(x)

 . (A.8)

Equation (A.8) then becomes

dY11(x)

dx
−MY11(x) ∼= M1(x)Y10(x), (A.9)

which is of the same form as Eq. (A7) of [32].

We may then express Y11 as Eq. (A10) from [32] to obtain

a11(x) =

x∫
0

ds (m31(s)f10(s) +m33(s)a10(s))P3(x, s), (A.10)

where

P3(x, s) = Ψ31(x)Ψ−113 (s) + Ψ32(x)Ψ−123 (s) + Ψ33(x)Ψ−133 (s), (A.11)

and Ψij(x) (i, j = 1, 2, 3) is defined by Eq. (A3) of Pengvanich et al. [32]. The

first order perturbations f10(x) and a10(x) are given by Eq. (A11) of Pengvanich et

al. [32], where the expression for Vk(s) now contains the AC space charge term in

m31(x). Substituting these into Eq. (A.10) yields
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a11(x) =

x∫
0

dsP3(x, s)

{
3∑
l=1

τl
Cδl

eCδls
s∫

0

ds′ e−Cδls
′[
f0(s

′)m31(s
′)m31(s)+

a0(s
′)m33(s

′)m31(s)
]

+
3∑

k=1

τkCδke
Cδks

s∫
0

ds′ e−Cδks
′×

[
f0(s

′)m31(s
′)m33(s) + a0(s

′)m33(s
′)m33(s)

]}
(A.12)

where δk(k = 1, 2, 3) are the three roots to the Pierce dispersion relation (2.7), and

τk(k = 1, 2, 3) which depends only on δk, is defined by Eq. (A5) of Ref. [32].

We next take the ensemble average of Eq. (A.12), assuming that 〈b1(s)b1(s′)〉 =

〈b21〉∆δ(s − s′), where ∆ is the correlation length and δ is the Dirac delta function.

With 〈b21〉 = σ2
b , we obtain

〈a11(x)〉 =

x∫
0

dsP3(x, s)

{
− C2σ2

b∆
(
4QC3

) 3∑
l=1

τl
Cδl

[
4QC3f0(s)

2
+
a0(s)

2

]

− C2σ2
b∆

3∑
k=1

τkCδk

[
4QC3f0(s)

2
+
a0(s)

2

]}
.

(A.13)

Similarly, squaring a10(x) and taking the ensemble average yields

〈
a210(x)

〉
= −C2σ2

b∆
3∑

k=1

3∑
l=1

(τkCδk) (τlCδl) e
C(δk+δl)x

x∫
0

ds e−C(δk+δl)s ×

[(
4QC3

)2
f 2
0 (s) + 2

(
4QC3

)
f0(s)a0(s) + a20(s)

]
.

(A.14)

Note that 〈a10(x)〉 = 0 since M1 is linear in b1(x) and therefore 〈Y10(x)〉 = 0 (cf.

Eq. (A10) of [32]).
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With this result, we obtain from Eq. (A.2),

〈G1(x) + jθ1(x)〉 =
〈a11(s)〉
a0(x)

− 1

2

〈a210〉
a20(x)

, (A.15)

where 〈a11(x)〉 is given by Eq. (A.13), a0(x) by Eq. (A4) of [32], and 〈a210(x)〉 by

Eq. (A.14). This can be written in the form

〈G1(x) + jθ1(x)〉 = −1

2
C2σ2

b∆

{[
4QC3

3∑
l=1

τl
Cδl

+
3∑

k=1

τkCδk

] x∫
0

Q1(x, s)ds

a0(x)

+
3∑
l=1

3∑
k=1

(τlCδl) (τkCδk) e
C(δl+δk)x

x∫
0

Q2(x, s)ds

a20(x)

}
,

(A.16)

which is Eq. (2.13) in chapter 2. In Eq. (A.16), Q1(x, s), Q2(x, s) are given by, with

the substitution λi = Cδi,

Q1(x, s) =

{[
λ21 (λ2 − λ3) eλ1(x−s) + λ22 (λ1 − λ3) eλ2(x−s) + λ23 (λ1 − λ2) eλ3(x−s)

]
×[

3∑
i=1

λiτie
λis + 4QC3

3∑
j=1

τj
λj
eλjs

]}/
[(λ1 − λ2) (λ1 − λ3) (λ2 − λ3)] ,

(A.17)

Q2(x, s) =

(
1

λ1λ2λ3

)2

e−(λk+λl)
[
τ1λ2λ3

(
4QC3 + λ21

)
eλ1s+

τ2λ1λ3
(
4QC3 + λ22

)
eλ2s + τ3λ1λ2

(
4QC3 + λ23

)
eλ3s
]
.

(A.18)

In the limit of zero space charge effects, Eq. (A.16) reduces to

〈G1(x) + jθ1(x)〉 =
1

2
C2σ2

b∆

x∫
0

dsA(x, s), (A.19)
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where

A(x, s) =
3∑
j=1

τjCδjP3(x, s)
a0(s)

a0(x)

+
3∑

k=1

3∑
l=1

(τkCδk) (τlCδl) e
C(δk+δl)xe−C(δk+δl)s

a20(x)

a20(x)
.

(A.20)
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APPENDIX B

Derivation of the Exact Smooth, Dielectric

Waveguide Dispersion Relation

The exact dispersion relation of an electron sheet-beam propagating through a

dielectric waveguide can be determined [66]. We begin by considering an electron

sheet-beam propagating through a smooth wave guide, as shown in Fig. B.1. Assume

an infinite magnetic field in the direction of propagation, ẑ. In general, we assume

that the electron sheet-beam has some small finite thickness, τ . The equilibrium

conditions are

~v = ẑv0, (B.1a)

ρ0 = σ0δ(x− a), (B.1b)

and

J0 = K0v0δ(x− a), (B.1c)

where v0 is the constant beam velocity, ρ0 is the charge density, σ0 = τρ0 is the surface

charge density, K0 = J0τ is the surface current, and δ is the Dirac delta function. Let

us consider an infinitesimally thin beam, such that τ → 0. We require that ρ0 →∞,
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Figure B.1: An electron sheet beam with thickness τ propagating through a dielectric
waveguide in the ẑ-direction along an infinite magnetic field.

such that σ0 and K0 remain finite. Introducing a perturbation to this system of the

form ejωt−jkzz where the subscript 0 denotes the unperturbed quantities while the

subscript 1 denotes the perturbation quantities, the velocity and density are now of

the form

v = v0 + v1e
jωt−jkzz, (B.2)

n = n0 + n1(x)ejωt−jkzz. (B.3)

This results in bunching of the electron beam. The perturbation electric field is of

the form

E = [x̂E1x(x) + ẑE1z(x)] ejωt−jkzz. (B.4)

Using Faraday’s law we can compute the perturbation magnetic field

∇× ~E = −µ0
∂ ~H

∂t
= −jωµ0

~H, (B.5)
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and show that it is of the form

~H1 = ŷH1y(x)ejωt−jkzz. (B.6)

First, the response of the beam to these perturbation fields must be calculated.

The force law reads

∂~v

∂t
+ ~v · ∇~v =

e

me

[
~E + ~v × ~B

]
, (B.7)

where e is the electronic charge and me is the electron rest mass. Only the force law in

the ẑ-direction needs to be considered since infinite magnetic field has been assumed

to be infinite in that direction, restricting motion in the ẑ-direction. Equation (B.7)

will be linearized; that is only terms that are first order in perturbation quantities

are kept. Substituting Eq. (B.2) into (B.7) and evaluating the derivatives yields

jωv1 − jkzzv0v1 =
e

me

E1z, (B.8)

which can be solved for v1,

v1 = − je

(ω − kzv0)me

E1z. (B.9)

The continuity equation reads

∂n

∂t
+∇ · (nv) = 0. (B.10)

Substituting the perturbation velocity and density (Eqs. (B.2) and (B.3)) into

Eq. (B.10) and linearizing yields

n1 =
kzn0

(ω − kzv0)
v1. (B.11)
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Substituting the expression for v1, Eq. (B.9), into Eq. (B.11) yields

n1 =
−jkzn0e

me(ω − kzv0)2
E1z. (B.12)

This expression for n1 can be used to calculate the perturbation surface charge density,

σ1 = en1τ , at the location of the beam, x = a. It reads

σ1 =
−je2kz(n0τ)

me(ω − kzv0)2
E1z(x = a). (B.13)

Using the normalized continuity equation, Eq. (B.13) can be used to express the

perturbation current as

J1 =
ω

τkz
σ1. (B.14)

The next step is to calculate the perturbation fields that are excited by the per-

turbations in the beam. Specifically, by solving for E1z(x = a) the dispersion relation

can be solved for by way of Eq. (B.14).

There are two distinct regions to consider when calculating the fields: Region I

(0 < x < a−) and Region II (a+ < x < b). In the vacuum region, Faraday’s and

Ampère’s Laws read

∇× ~E1 = −jωµ0
~H1 (B.15)

∇× ~H1 = jωε0 ~E1. (B.16)

Taking the curl of Eq. (B.16) and substituting ∇ · ~H1 = 0 yields

(
ω2

c2
+∇2

)
~H1 = 0. (B.17)

It is the TM mode that is set up in this geometry. By substituting Eq. (B.6) into

119



Eq. (B.17), it can be shown that

∂2H1y

∂x2
+

(
ω2

c2
− k2z

)
H1y = 0. (B.18)

Let

p2 ≡ ω2

c2
− k2z (B.19)

be a constant such that Eq. (B.18) reads as

∂2H1y

∂x2
+ p2H1y = 0. (B.20)

The solution to Eq. (B.20) is known [93]. In regions I and II,

H1y =


AI cos

[
p(x− CI)

]
, 0 < x < a−

AII cos
[
p(x− CII)

]
, a+ < x < b

. (B.21)

The vacuum electric field can then be solved for by substituting Eq. (B.21) into

Eq. (B.16) to show that

~E1 =
1

jωε0


[
x̂

(
jkzAI cos

[
p(x− CI)

])
− ẑ
(
AIp sin

[
p(x− CI)

])]
, 0 < x < a−[

x̂

(
jkzAII cos

[
p(x− CII)

])
− ẑ
(
AIIp sin

[
p(x− CII)

])]
, a+ < x < b

(B.22)

There are four unknowns in Eqs. (B.21) and (B.22); AI , AII , CI , and CII . We

require four boundary conditions, i.e., four equations, to solve for these coefficients.

The boundary conditions for this system are that ~E1 must be normal at the bottom

(x = 0) and at the top (x = b) of the waveguide (Fig. B.1), the tangential electric

field is continuous at the beam (x = a), and the normal electric field is discontinuous
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across the beam because of its sheet charge perturbation. These boundary conditions

give us the following four equations:

E1z(x = 0) = 0, (B.23a)

E1z(x = b) = 0, (B.23b)

E1z(x = a+) = E1z(x = a−), (B.23c)

E1x(x = a+)− E1x(x = a−) =
σ1
ε
. (B.23d)

Equations (B.23) can be used to solve for the coefficients AI , AII , CI , and CII in

terms of E1z(x = a). Equations (B.23a) and (B.23b) can be used to show that CI = 0

and CII = b. Solving Eqs. (B.23c) and (B.23d) gives solution to AI and AII . After

some algebra, it can be shown that axial electric field at the location of the beam is

given by

E1z(x = a) =
J1
jωε0

(τ
b

)
Z(ω, kz), (B.24)

where Z(ω, kz) is known as the interaction impedance and is defined as

Z(ω, kz) =
−pb sin(pa) sin[p(b− a)]

sin(pb)
. (B.25)

Substituting Eq. (B.25) into the expression for the perturbation current, J1, Eq. (B.14),

yields the dispersion relation for a beam in a dielectric waveguide. The dispersion

relation reads

(ω − kzv0)2 = ω2
p

(τ
b

)
Z(ω, kz) (B.26)

where ωp =
√
e2n0/meε is the plasma frequency. We express Eq. (B.26) as
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D(ω, kz) ≡ (ω − kzv0)2 − ω2
p

(τ
b

)
Z(ω, kz) = 0. (B.27)

Assuming b = 2a, Eqs. (B.25) and (B.27) yields Eq. (3.8) of the main text.
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