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 Abstract 

Over the past two decades, organic light emitting diodes (OLEDs) have been 

leading the research and development in organic semiconductors, and representing a 

primary driving force in information display as well as solid-state lighting innovations. In 

organic semiconductors, excitons (i.e. bound electron-hole pair excited states) are 

responsible for optical transitions, and are thus central to the operation of all organic 

optoelectronic devices. This dissertation aims at understanding the fundamental physics 

of exciton interactions and their effects on the performance of OLEDs. We show that 

managing exciton interactions based on exciton physics results in significantly improved 

device characteristics. 

Organic light emitting diodes based on singlet (i.e. spin anti-symmetric) and 

triplet (spin symmetric) exciton emission are called fluorescent OLEDs and 

phosphorescent OLEDs (PHOLEDs), respectively. The first part of this dissertation 

studies exciton interactions in fluorescent OLEDs. We begin by identifying singlet-triplet 

annihilation (STA) as a loss mechanism in fluorescent efficiency, and thus propose a 

triplet management strategy to de-excite the detrimental non-emissive triplet. This 

strategy leads to more than 100% improvement in fluorescent OLED efficiencies, and 

also a more than 100-fold increase in lasing duration in organic semiconductor lasers 

(OSLs), thus allowing for the first observation of the continuous-wave threshold in OSLs. 



 

xiv 

 

Further, since triplet-triplet annihilation (TTA) contributes to fluorescent emission, we 

analyze the trade-off between STA and TTA, and propose optimal fluorescent material 

properties needed for high fluorescent efficiency. 

The second part of this work focuses on exciton interactions in PHOLEDs. 

Triplet-triplet annihilation is studied through transient photoluminescence, and Dexter-

type triplet diffusion is identified as the dominant mechanism leading to TTA. Thus, 

minimizing the Stokes shift between the molecular emission and absorption is introduced 

as a route leading to high efficiency PHOLEDs at high luminance. Indeed, exciton 

interactions are important for not only OLED efficiency but also operational lifetime. 

Based on the understanding that triplet-polaron annihilation (TPA) is a fundamental 

intrinsic degradation mechanism in blue PHOLEDs, we designed a novel OLED whose 

phosphorescent emitter concentration is varied linearly with position. This doping profile 

results in a low and uniform exciton density and thus a higher efficiency and suppressed 

TPA, leading to a significantly extended operational lifetime over conventional blue 

PHOLEDs. 
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Chapter 1  

Introduction to Organic Semiconductors 

In this chapter, we identify some unique features that distinguish organic 

semiconductors from conventional inorganic semiconductors. Following that, we discuss 

the process and deposition techniques for organic materials. Then, we cover four 

representative types of organic electronic devices: organic light emitting diodes (OLEDs), 

organic semiconductor lasers (OSLs), organic solar cells (OSCs), and organic field effect 

transistors (OFETs). Emphasis will be given to OLEDs and OSLs, as they illustrate 

background and provide motivation for this dissertation. This chapter is not intended as a 

comprehensive review of organic materials or devices, and readers interested in more 

details are referred to the references listed in each section. 

1.1 The Unique Features of Organic Semiconductors 

 The building blocks of conventional inorganic semiconductors are atoms such as 

silicon (Si), germanium (Ge), gallium (Ga), and arsenic (As), which are covalently 

bonded to form ordered crystalline structures. In contrast, the building blocks of organic 

semiconductors are carbon-containing small molecules or polymers, which are bonded 

through weak van der Waals forces, and are often amorphous. Small organic molecules 

have well-defined molecular structures with a typical molecular weight of < 1000, and 
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polymers are comprised of long chains of repeating molecular units without a definite 

molecular weight. This thesis is based on small molecules, which will also be the focus of 

this introduction. 

Figure 1.1 shows a structural comparison between crystalline Si and an 

amorphous archetype small molecule, tris(8-hydroxyquinoline)aluminum (Alq3). 

Compared to the periodic repeating unit cells in crystalline inorganic semiconductors, 

molecules in amorphous organic semiconductors are randomly distributed and oriented. 

Table 1.1 A comparison of bulk physical properties between crystalline 

silicon and amorphous Alq3 

Physical properties silicon Alq3 

Density (g/cm
3
) 2.33 [1] 1.51 [5] 

Young’s modulus (GPa) ~180 [7] ~1 [9] 

Refractive index at 650 nm 3.85 [1]  1.72 [10]  

Absorption coefficient (cm
-1

) at 400 nm 1×10
5
 [1] 4.5×10

4
 [12] 

Electron mobility (cm
2
V

-1
s

-1
) 1400 [1] ~1×10

-5
 [15] 

Hole mobility (cm
2
V

-1
s

-1
) 450 [1] ~5×10

-8
 [15] 

 

 
Figure 1.1 (a) Structure of crystalline silicon viewing from the [100] 

direction (b) Structure of amorphous organic semiconductor with the 

inset showing the chemical structure of tris(8-hydroxyquinoline) 

aluminum (Alq3) 
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A comparison of their basic mechanical, optical, and electrical properties is given in 

Table 1.1. 

Due to the low bonding strength and their resulting amorphous structure, organic 

thin films are “softer” than inorganic thin films for the same geometric size. For example, 

the Young’s modulus for crystalline Si is ~180 GPa compared to ~1 GPa for Alq3 (Table 

1.1). Such a unique feature of organics allows for curved [16], flexible [17-19], and 

stretchable [20-22] electronic and optoelectronic devices. For example, Fig. 1.2 (a) shows 

the curved smart phone released by Samsung in October 2013.  

 The oscillator strength (i.e. the probability of optical transitions) [23] of organics 

is significantly higher than inorganic semiconductors. This results in high absorption 

coefficient and luminescent quantum yield in organics desirable for optoelectronic 

applications [24]. Also notably, the optical refractive index for organics typically ranges 

from 1.5 to 2, as compared to > 3 for inorganic semiconductors. As a result of their low 

refractive index, organics are advantageous for developing optical devices such as 

transparent OLEDs [25] and photovoltaics [26]. For example, Fig. 1.2 (b) shows 

 

Figure 1.2 (a) Samsung's Galaxy Round smart phone using a curved 

OLED display (b) A transparent OLED lighting panel manufactured by 

Phillips 
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transparent OLED light panels released by Philips. 

 Due to their morphologies, charge transport in amorphous organics is via hopping 

between localized molecular orbital levels [27], while in crystalline inorganic materials, 

charge transport is through delocalized energy bands [1]. Thus, the charge mobility in 

amorphous organic materials can be as much as 6 to 8 orders of magnitudes lower than 

that of crystalline inorganics. For example, the electron mobility for Si is 1400 cm
2
V

-1
s

-1
, 

while for Alq3 is approximately 1×10
-5

 cm
2
V

-1
s

-1
 (Table 1.1). Therefore, to achieve a 

reasonable operational voltage, the thickness of organic devices is often on the order of 

100 nm, much thinner than their inorganic counterparts. Significantly higher charge 

mobility in organics has been achieved through crystalline structures [28-30]; however, a 

deposition technique for crystalline films compatible with a large number of organic 

molecules and also with adequate control of film thickness is yet to be demonstrated. 

Another important but often undesired feature of organic materials is that they are 

generally air-sensitive which results from a combination of vulnerability of chemical 

reactions of organic molecules with oxygen and/or water, and ambient-induced film 

morphology changes. Therefore, hermetic packaging [31] is essential to ensure the long 

term reliability of organic devices. Interestingly, researchers have utilized the 

environmental sensitivity of organic devices in developing chemical sensors [32, 33]. 
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1.2 Process and Deposition Techniques for Organic Materials 

 Purity of organic source materials used for devices is essential for achieving low 

impurity organic film growth [34]. Because impurities can act as both charge trapping 

and excited state quenching centers, low impurity films are important for achieving high 

device performance [35]. For example, Fig. 1.3 shows the OLED external quantum 

efficiency (EQE, defined by the ratio of the number of input electrons to the output 

photons from the OLED front surface) comparison between purified and unpurified 

rubrene host material, which differs by almost a factor of 2. The structure of the device is 

the same as reported in ref. [36] (also see Chapter 7).  

Gradient sublimation is an effective and widely adopted method to purify small 

molecular weight organic materials [34]. The basic setup for gradient sublimation is 

shown in Fig. 1.4. Typically, a quartz boat is loaded with several grams of raw organic 

material available from a commercial source such as Sigma-Aldrich or Lumtec Taiwan. 

The boat is then positioned at the closed end of a long (~60 cm) quartz tube, followed by 

inserting two to three quartz sleeves in the middle of the tube.  The tube is evacuated 

 

Figure 1.3 External quantum efficiency (EQE) as a function of current 

density of an OLED using rubrene as the host material in the emissive 

layer. There is a two-fold difference in EQE between the purified and 

unpurified rubrene. 
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through its open end using a two-stage mechanical and turbo pump combination to 

achieve pressure lower than 10
-6

 Torr. Subsequently, a horizontal three zone furnace is 

gradually ramped up, with a high temperature zone close to the quartz boat, an 

intermediate temperature zone near the sleeves, and a low temperature zone near the tube 

opening. Once sublimation of the organics is observed, the temperature of each zone is 

kept constant, typically ranging between 200
o
C and 500

o
C. The purification process 

usually lasts approximately one week. In the end, the purified organics crystallized on the 

 

Figure 1.4 Setup for gradient sublimation purification of organic 

materials 

 

Figure 1.5 Setup and operation of vacuum thermal evaporation (VTE)  
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quartz sleeve are collected, while the volatile impurities condensed near the tube opening, 

and non-volatile impurities remaining in the boat are discarded. 

A variety of deposition techniques are available for organic film deposition, 

including vacuum thermal evaporation (VTE) [24, 34, 37], organic vapor phase 

deposition (OVPD) [29, 38, 39], organic vapor jet print (OVJP) [40, 41], spin-cast, inkjet 

printing [42], physical vapor growth [28, 43], etc. Here, we will focus on VTE since all 

organic thin films and devices studied in this thesis were grown by this method. A brief 

discussion of OVPD and OVJP will be given since they are superior to VTE in terms of 

material utilization, film crystalline order tuning, and mask-free patterning.  

Vacuum thermal evaporation is by far the most widely used organic film 

deposition technique for both research and large scale manufacturing purposes. As shown 

in Fig. 1.5, during VTE, organic source materials are loaded in a baffled evaporation boat 

made of tungsten or molybdenum positioned in the bottom of the vacuum chamber, and 

the substrate is placed at the top of the chamber facing down. Substrate rotation is usually 

enabled to achieve high film thickness uniformity. Quartz crystal monitors are used to 

read the film deposition rate, which also provide feedback to the current though the 

evaporation boat for deposition rate control. Multiple organic sources can be co-

evaporated simultaneously, with individual crystal monitors to control the rate and thus 

the concentration of each. Pressure in the range of 10
-6

 - 10
-7

 Torr during deposition is 

required to achieve low impurity levels [34] necessary for device operation, and it has 

been shown that ultrahigh vacuum (with pressure < 10
-9

 Torr) is beneficial for both 

OLED efficiency and reliability [35].  
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The material utilization efficiency (i.e. the weight ratio of material deposited on 

the substrate vs. all the evaporated material) is dependent on the geometry of both the 

substrate and the chamber. For example, in a VTE chamber typical for academic research, 

if a 3.5-inch-diameter substrate is 60 cm above the source, assuming a uniform source 

evaporation profile within 90
o
, the utilization efficiency is approximately 1%. In contrast, 

industrial VTE chambers often use in-line linear sources [44] and large area substrates 

(up to 1 m ×1 m), resulting in > 50% utilization efficiency [45]. The VTE deposited film 

is typically amorphous, while high substrate temperature and low deposition rate can 

result in crystalline structures [34, 46] for some molecules.  

As illustrated in Fig. 1.6, organic vapor phase deposition (OVPD) [38] is a 

deposition technique where the organics are first evaporated into a hot carrier gas, and 

then flow through a path with heated walls to reach a cooled substrate. Due to complete 

elimination of material deposition on the hot chamber walls, OVPD can potentially 

achieve higher materials utilization efficiency  [39] than VTE. Note that the utilization 

 

Figure 1.6 Setup and operation of organic vapor phase deposition 

(OVPD) 
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efficiency of OVPD also significantly depends on source and substrate geometry. In 

addition, a variety of crystalline film morphologies can be achieved through tuning the 

source temperature, carrier gas flow rate, chamber pressure and substrate temperature [29, 

39]. 

Organic vapor jet printing (OVJP) [40] is a deposition technique based on the 

same principles as OVPD, where the principal difference is that the organic vapor reaches 

the cooled substrate surface through a heated nozzle. In contrast to the use of shadow 

masks in VTE for organic film patterning, OVJP growth can be directly patterned on the 

substrate with <10 µm resolution [41]. At the same time, OVJP offers superior material 

utilization efficiency because the deposition occurs in the near field with < 1 mm 

substrate-to-nozzle distance, and also there is no material loss due to shadow masks. 

Although industrial fabrication of organic devices (i.e. OLED displays and light panels) 

is presently solely through VTE, OVPD and OVJP have the potential to replace VTE in 

the near future. 

1.3 Organic Light Emitting Diodes 

 Research on OLEDs can be dated back to half a century ago when 

electroluminescence from organic crystals was first observed. Most notably, in 1963, 

Pope et al. [47] observed light emission from 10-micron-thick tetracene doped anthracene 

crystals when the applied voltage was higher than 400 V, corresponding to 100 µA/cm
2
 

current density. During the 1970s and 1980s [37, 48-50], organic electroluminescence 

research gradually shifted from single crystals to polycrystalline and amorphous films. In 

particular, in 1987, the work of Tang and VanSlyke [37] on a bi-layer Alq3 and 1-bis[4-
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[N,N-di(4-tolyl)amino]phenyl]-cyclohexane (TAPC) device grown on an indium-tin-

oxide (ITO) coated glass substrate marked the birth of modern OLED technology. The 

concept of the electron transport layer (ETL) and hole transport layer (HTL) in the Tang 

device is still used in state-of-the-art OLEDs today. The next giant leap in OLED 

technology happened in the late 1990s, when phosphorescent OLEDs were demonstrated 

by the groups led by Forrest and Thompson [51, 52], which led to OLEDs with ~100% 

internal quantum efficiency (IQE) [53].  

 Figure 1.7 illustrates the basic structure and operation of an OLED. Typically, a 

bottom emitting OLED is grown on transparent substrates such as glass or plastic, with 

an ITO anode, and an aluminum cathode on top. The organic layers sandwiched between 

the electrodes typically have a total thickness of 100-200 nm. During operation (i.e. when 

current is turned on), holes are injected from ITO and transported through the HTL to 

 

Figure 1.7 Structure and operation of an organic light emitting diode 

(OLED) consisting of an anode, a hole transport layer (HTL), a emissive 

layer (EML), an electron transport layer (ETL), and a cathode. The 

arrows show representative organic molecules used for different layers. 

The processes of 1-5 are electron injection, hole injection, electron 

transport, hole transport, and electron-hole recombination, respectively.  
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reach the emissive layer (EML); electrons are injected from aluminum and transported 

through the ETL to reach the EML. When an electron and a hole reach each other inside 

the EML, they combine to form a bound excited state called exciton. OLED emission 

results from radiative decay of the excitons.  

Depending on the total spin quantum number of the exciton, it is either a triplet 

(spin number = 1) or a singlet (spin number = 0), and the formation ratio of singlets vs. 

triplets was shown to be 1 vs. 3 [54, 55], following the spin degeneracy statistics. OLEDs 

utilizing singlets for emission are called fluorescent OLEDs, in which triplet transitions 

are spin forbidden and hence non-emissive. Therefore, the maximum internal quantum 

efficiency, IQE (i.e. the ratio of the number of the input electrons and the generated 

photons) of fluorescent OLEDs is only 25%. Recently, it was discovered that by utilizing 

 

Figure 1.8 (a) A prototype flexible phone from LG, (b) A tablet 

computer from Samsung, (c) A smart watch from Samsung, (d) A TV 

from LG. All these electronic devices use OLED displays. 
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triplet-triplet annihilation, the theoretical limit of fluorescent OLED IQE can, in principal, 

be increased to 62.5% [36, 56, 57], which will be discussed in detail in Chapter 6. 

OLEDs utilizing triplets for emission are called phosphorescent OLEDs in which singlets 

undergo rapid intersystem crossing to form triplets; thus, the theoretical maximum IQE of 

phosphorescent OLEDs is 100% [51-53]. After the demonstration of phosphorescent 

OLEDs, it was shown that phosphorescence-sensitized fluorescent OLEDs could also 

reach 100% IQE [58, 59]. 

 OLEDs are by far the most widely used organic electronic devices, and the main 

applications are divided into displays and lighting. It is worth noting that all commercial 

OLEDs are based on small molecules rather than polymers due to their superior 

efficiency and operational stability. 

As shown in Figure 1.8, OLED displays have been adopted in mobile phones, 

electronic tablets, watches, cameras, computer monitors, TV screens, etc. According to 

DisplaySearch (http://www.displaysearch.com/), the global market of OLED displays 

was $8 billion in 2013, with mobile displays making up well more than half of the 

revenue. The most well-known OLED displays are the ones used in Galaxy smart phones 

made by Samsung. The advantages of OLED displays over conventional liquid crystal 

displays (LCDs) include light weight, high contrast ratio, fast response, large color gamut 

[60] (especially for the green sub-pixel), high mechanical flexibility, and low power 

consumption. However, the drawbacks for OLED displays compared to LCDs include 

high fabrication cost and limited operational lifetime. The lifetime issue for OLEDs is 

most significant for blue phosphorescent emission (among red, green and blue sub-pixels 

for displays), and in Chapter 8, we will show that significant improvement in blue 
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phosphorescent OLEDs lifetime can be achieved by a combined material and device 

architecture approach.  

Compared to OLED displays, OLED lighting is still gaining momentum to be 

fully commercialized. In comparison to its strong competitor, LED lighting, OLED 

illumination has the advantage of mechanical flexibility, low heat generation, and color 

tunability. Although the high cost of the OLED light panel is the main hurdle for its wide 

application, the fabrication cost can significantly decrease with the increase of 

manufacturing scale. Both OLED and LED lighting panels have superior power 

efficiency [61], environmental impact (i.e. material toxicity), operational lifetime, as well 

as color purity when compared to conventional incandescent or fluorescent lighting. 

 One interesting but undesired feature of OLED operation is that its efficiency 

decreases as the output luminance increases, often called efficiency roll-off. Although 

inorganic LEDs also suffer efficiency roll-off [62], the on-set current density for roll-off 

is much higher (> 10 A/cm
2
) for inorganic LEDs than for OLEDs (~ 0.1 A/cm

2
). Note 

that the OLED efficiency roll-off can be compensated by a large emissive area, which is 

difficult to achieve using inorganic LEDs. A significant portion of this thesis (i.e. 

Chapters 3, 4, 6, and 7) is devoted to understanding the physics related to such a 

phenomenon and pursuing solutions. 

1.4 Organic Semiconductor Lasers 

 Similar to OLEDs, research on organic semiconductor lasers (OSLs) has a long 

history. The first demonstration of an optically pumped organic liquid dye laser was by 
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Sorokin et al. at IBM Watson Research Center in 1966 in chloro-aluminum pthalocyanine 

(ClAlPc), only 6 years after the first demonstration of the ruby crystal laser. Liquid dye 

lasers have the advantage of wavelength tunability, low cost, self-repairable (due to liquid 

circulation), and the capability of achieving ultrafast pulses (<10 fs). However, the 

disadvantages are the operational lifetime of dyes (which require frequent change of dye 

and solution), and their toxicity.  

Significant breakthroughs in organic thin film lasers occurred in the 1990s, when 

amplified spontaneous emissions (ASE) were demonstrated by Heeger’s group and 

Friend’s group using poly-phenylenevinylene (PPV) [63, 64], and unequivocal lasing was 

reported by Forrest’s group using Alq3 doped with 4-(dicyanomethylene)-2-methyl-6-(4-

dimethylaminostyryl)-4H-pyran (DCM) [65]. Because these materials systems are 

organic semiconductors, these organic lasers are also called organic semiconductor lasers 

(OSLs) [66].  In all cases, they required an optical pump. In the late 1990s and early 

2000s, organic thin film laser researchers were encouraged by the rapid development of 

OLEDs, and it was envisioned that an electrically pumped OSL would soon be 

demonstrated [67, 68]. Unfortunately, it has not yet been demonstrated to date. In 

 

Figure 1.9 Chemical structures of organic semiconductor laser materials: 

(a) Alq3, (b) 4-(dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4H-

pyran (DCM2), and (c) poly[9,9-dioctylfluorene-co-9,9-di(4-methoxy-

phenyl)fluorene] (F8DP) 
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Chapters 5 and 9, we will discuss the difficulties in achieving an electrically pumped 

OSL, and our effort towards its demonstration. 

Two essential components of any laser are the gain medium and the feedback 

structure. In Fig. 1.9, we show common organic semiconductor lasing materials. Alq3 

(Fig. 1.9 (a)) doped 4-(dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4H-pyran (DCM2, 

Fig. 1.9 (b)) were among the earliest demonstrated OSL systems [10]. Figure 1.9 (c) 

shows poly[9,9-dioctylfluorene-co-9,9-di(4-methoxy-phenyl)fluorene] (F8DP) [13], 

which holds the lowest reported threshold record among all OSLs of 36 nJ/cm
2
. The 

optical gain from OSL materials originates from the population inversion in a four-level 

system made arising from the vibronic levels in the singlet excited state and the ground 

state. The physics leading to laser action will be discussed in Chapter 2.  

Figure 1.10 shows common feedback structures for OSLs. The planar waveguide 

structure (Fig. 1.10 (a)) depends on reflections from the organic film and air interface to 

 

Figure 1.10 Three different feedback structures for OSLs: (a) planar 

waveguide, (b) vertical cavity, and (c) distributed feedback. The black 

arrows show feedback directions and the red arrows show lasing (i.e. 

out-coupling) direction. 
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provide feedback, leading to an edge emitting device. It typically has a high lasing 

quantum efficiency (>70% was demonstrated by the Forrest group [65]) due to its 

multimode nature. The vertical cavity structure (Fig. 1.10 (b)) depends on the top and 

bottom mirrors (using silver or dielectrics) for feedback, and is thus surface emitting. The 

feedback mechanism in a distributed feedback (DFB) structure (Fig. 1.10 (c)) is 

diffraction from an integrated grating, which can be conveniently fabricated through 

interference lithography [69] (see Chapter 5). Depending on the diffraction order, the 

emission from DFB lasers can be either from the surface or from the edge. 

Conventional optically pumped OSLs require a pump pulse shorter than 20 ns, 

which is caused by the temporal increase of losses associated with the non-emissive 

triplet excitons. Giebink et al. [4] and Lehnhardt et al. [70] studied the transient 

intensities of OSLs pumped by long pulses (>100 ns), and found that both triplet 

absorption and interactions between singlets and triplets limits the OSL operation to only 

the nanosecond pulsed mode. In Chapter 5 we will show that such triplet induced losses 

can be suppressed through the mixing of “triplet manager” [71] molecules into the gain 

medium. Furthermore, we theoretically demonstrate that a continuous-wave operation 

regime exists for OSLs, which is supported by the transient emission data from OSLs 

using “triplet managers”.  
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1.5 Organic Solar Cells 

At approximately the same time when Tang et al. published the first OLED 

structure with respectable efficiency (i.e. approximately 1% EQE), another work from 

Tang reported an organic thin film solar cell with 1% power conversion efficiency (PCE, 

defined as the ratio of the maximum generated electrical power to the incident solar 

power) [72]. The reported solar cell employed a bi-layer donor-acceptor type of 

heterojunction, where excitons split into electrons and holes at the bi-layer interface, thus 

generating current. After nearly 30 years of research, still using the same donor-acceptor 

concept, PCEs close to or higher than 11% have been achieved in organic solar cells 

(OSCs) using either small molecules or polymers [73, 74]. 

As illustrated in Fig. 1.11, the basic structure [72] of a planar OSC includes an 

ITO anode, an electron donor layer, an electron acceptor layer, and a cathode. The 

 

Figure 1.11 Structure and operation of an organic solar cell (OSC) made 

of donor and acceptor bi-layer organics, the arrows show representative 

organic molecules used for donors and acceptors. The processes of 1-5 

are photon absorption (or exciton formation), exciton diffusion, exciton 

splitting, hole diffusion, and electron diffusion, respectively. 
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operation of OSCs can be regarded as the inverse process of OLED operation. Sunlight 

incident from the transparent ITO side is absorbed by the donor and acceptor layers. 

Excitons are formed following absorption, which diffuse to the donor-acceptor interface 

and split into electrons and holes that are subsequently collected at the electrodes.  

For the same reason (i.e. high structural disorder) as low charge mobility 

mentioned in Section 1.1, the exciton diffusion length in organics is also low, leading to 

loss of excitons in planar OSCs. Use of bulk and nanocrystalline mixed heterojunctions 

(i.e. comprised of a mixed donor and acceptor layer) [75, 76] moves the exciton splitting 

interface closer to the exciton generation site, and thereby eliminates the need for long 

diffusion.  This has been shown effective in yielding higher PCEs.  

Wide commercialization of OSCs is still challenging due to their low efficiency, 

short operational lifetime, and high cost compared to inorganic solar cells. However, the 

unique features of OSCs such as their mechanical flexibility and optical transparency can 

potentially push OSCs to the market and fill roles that inorganic solar cells cannot 

accomplish. For example, Fig. 1.12 shows curved organic solar panels installed in bus 

 

Figure 1.12 Curved OSCs installed on the bus shelters in San Francisco. 
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shelters in San Francisco. 

1.6 Organic Thin Film Transistors 

 The first organic thin film transistor (OTFT) was demonstrated by Tsumura et al. 

[77] in 1986 using a polythiophene thin film with a carrier mobility of 10
-5

 cm
2
V

-1
s

-1
 and 

a current on-off ratio of less than three orders of magnitudes. Through use of crystalline 

organic thin films, the performance of OTFTs can surpass that of amorphous silicon, with 

the calculated carrier mobility as high as 10 cm
2
V

-1
s

-1
 (note that these high mobilities are 

likely due to charge transport on organic surface and can differ significantly from organic 

bulk mobilities) [28, 78] and the current on-off ratio larger than 10
8
 [79]. 

 The basic structure of an OTFT and the representative organic molecules used are 

shown in Fig. 1.13. The current-voltage relationship between the drain and source 

electrodes (IDS-VDS) of an OTFT can be modulated by the voltage applied through the 

gate and source electrodes (VGS). As illustrated in Fig. 1.14 (left), the IDS-VDS 

 

Figure 1.13 Basic structure of an organic thin film transistor (OTFT), 

and common organic molecules used in OTFTs, pentacene, rubrene, and 

alpha-sixithiophene (α-6T).  
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characteristics of a transistor are typically divided into a linear region and a saturation 

region. The linear region (when VDS < VGS) is a result of Ohm’s law, and the saturation 

region (when VDS ≈ VGS) happens when the electric field near the drain electrode vanishes 

and the accumulation region width approaches zero [1]. Transistors typically operate in 

the saturation region when IDS is solely modulated by VGS. 

Compared to inorganic thin film transistors, OTFTs have advantages in terms of 

cost and mechanical flexibility; however, the reliability [80] and carrier mobility in 

OTFTs still need improvement in order to compete with inorganic transistors. 

Applications of OTFTs include the backplanes for flexible and/or transparent OLED 

displays, radio frequency identification tags (RFID), chemical sensors, etc. Another 

interesting application of OTFTs is to make electronic paper (Fig. 1.14 (right)) [81], 

where the switch of OTFTs controls the status of electronic ink capsules, and thus the 

color of the pixels.   

  

 

Figure 1.14 (left) Drain-source current-voltage characteristics (IDS-VDS) 

modulated by the gate-source voltage (VGS) (right) An electronic paper 

prototype by SONY. 
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Chapter 2  

Physics of Organic Semiconductors 

Following the introduction to the general features of organic semiconductors, 

their processing techniques, and applications in Chapter 1, we discuss in this chapter the 

physics of organic semiconductors. This chapter is divided into three sections. In Section 

2.1, we discuss the electrical properties of organic semiconductors, covering the 

processes of charge injection, transport, and recombination. In Section 2.2, we focus on 

the photophysics of organic materials, covering the concepts of excitons, exciton transfer, 

and exciton interactions. In Section 2.3, the influence of exciton interactions on OLED 

efficiency is discussed. 

2.1 Electrical Properties of Organic Semiconductors 

2.1.1 Charge Injection 

The electron and hole transport states in organic semiconductors are called the 

LUMO (lowest unoccupied molecular orbital) and HOMO (highest occupied molecular 

orbital) respectively. The absolute values of the orbital energies are referenced to the 

vacuum energy level. Ultraviolet photoelectron spectroscopy (UPS) and inverse 

photoelectron spectroscopy (IPES) [82, 83] can be used to measure the HOMO ( HOMOE ) 
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and LUMO ( LUMOE ) energies respectively. Molecular orbital energy levels are 

conceptually comparable to the conduction and valence band extrema in inorganic 

semiconductors; however, it is worth noting that intrinsic organic semiconductors have a 

very low free carrier concentration (< 10
5
 cm

-3
) due to the large bandgap (ELUMO-EHOMO > 

2 eV). Moreover, due to film morphology, disorder and interactions between charges and 

their local environments (for example, phonons or molecular dipoles), molecular orbitals 

are highly localized [84]. 

Charge injection in organics is the process of charge moving from the Fermi 

surface of the metal electrodes to the frontier molecular orbitals of an organic 

semiconductor. As shown in Fig. 2.1 (a), an electron injected from the metal Fermi level,

FE  into the organic LUMO level, LUMOE , needs to overcome a built-in barrier height of 

LUMO FV E E   . The earliest physical model for such type of injection is thermionic 

emission described by Richardson [85]: 

 

Figure 2.1 (a) Illustration of the barrier height for current injection from 

metal contact to organics (b) Barrier height reduction due to the 

interfacial electric field 
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where J  is the current density, e  is the electron charge,  em  is the electron mass, Bk  is 

the Boltzmann constant,   is the reduced Planck’s constant, and T  is the temperature. 

 The Richardson model was later improved by Schottky [86] to include the effect 

of barrier height reduction,  , due to the interface electric field (Fig. 2.1 (b)). Emtage et 

al. [87] further derived expressions relevant to insulators (or organic semiconductors) 

with low charge mobility, which simplifies to the following equations under the limit of 

low electric field and high electric field respectively: 

 exp( )low e

B

V
J N eF

k T



        (2.2) 
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 
   (2.3) 

where eN  is the electron density of states,   is the mobility, F  is the electric field at 

the metal/insulator interface, and   is the dielectric constant of the insulator. 

 More recent improvements of the thermionic emission model relevant to the 

injection into organics was from Scott and Malliaras [88], which included an organic-to-

metal interface reverse recombination current in addition to the metal-to-organic injection 

current. This model was later used to understand charge injection in OLEDs [89, 90]. 

 Besides thermionic emission, another method for modeling current injection in 

organics is by Fowler and Nordheim [91] of electron tunneling through the injection 



 

24 

 

barrier. Fowler-Nordheim tunneling results directly from solving Schrödinger’s equation 

for a triangular barrier, 
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m V
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eF

 
  

  

     (2.4) 

where B  is a tunneling pre-factor. This model was also successfully applied to modeling 

charge injection OLEDs [92, 93]; however, the barrier reduction effect due to the 

interface electric field is not considered by Eq. (2.4), which could cause significant 

overestimate of the tunneling efficiency. 

 The drawback for applying the thermionic emission or tunneling model is that 

neither considers the energetic disorder in organic semiconductors. To include such 

disorder in organics, Arkhipov et al. [94] and Baldo et al. [95] considered the Gaussian 

distribution of the molecular orbital energies, and the Miller-Abraham type [96] hopping 

between the metal and organic interface, 
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A V

  
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

 

     (2.5) 

where R  is the hopping probability between sites with an energy barrier of V , and 0A  

is the maximum hopping rate determined by the molecular orbital overlap. Then, the total 

injection current density is the integral over all possible states, 
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where IU  and OU  are the disorder energies of the metal-organic interface states, and the 

organic bulk respectively, I  and O  are the standard deviations of the Gaussian energy 

distributions, f  is the distribution of the interface states, and  a  is the average 

intermolecular spacing. By modeling the J-V characteristics in a broad selection of 

organic semiconductors and temperature range using Eq. (2.6), Baldo et al. [95] 

suggested that the current density in organics is often limited by interface injection rather 

than organic bulk transport. However, mechanisms determining the J-V characteristics in 

organics are still under intense research investigation.  

2.1.2 Charge Transport 

 When a molecule in organics is charged, due to both electron-phonon coupling 

and the polarization of the surrounding molecules by the charge, its configuration is 

distorted and energy is relaxed to a lower level than its molecular orbital energy [47]. 

This newly formed quasi-particle is called a polaron, and charge transport in organics is 

through polaron hopping between discrete molecular sites.  

 The earliest model for charge transport in organics was the space charge limited 

current (SCLC) model introduced by Mott and Gurney [97], and Rose [98], which 

assumed the charge injection from electrodes into organics is efficient (i.e. the contact is 

Ohmic). The derivation of the SCLC J-V relation starts from the Ohm’s law and Gauss’s 

law, 

 J ep F         (2.7) 
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0r

dF ep

dx  
         (2.8) 

where p  is the hole density (and the same expression applies to the electron density n), 

r  is the relative permittivity of the insulator, and 0  is the vacuum permittivity. 

Integrating Eq. (2.7) after plugging in Eq. (2.8) yields,  

0 0

2

r r

J xJ
dx FdF F

     
    .     (2.9) 

Then, integrating one more time yields the quadratic Mott-Gurney J-V relationship, 
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If there are trap states within the bandgap of the organics which have an 

exponential distribution in energy, ( )TN E  relative to the molecular orbital energies (for 

example, LUMO), 

( ) expLUMO LUMO
T

B T B T

N E E
N E

k T k T

 
  

 
     (2.11) 

where LUMON  is the trap density at the LUMO energy, TT  is a trap distribution 

temperature, Rose also derived the following expression for trapped charge limited 

current (TCLC). 
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where CN  is the density of states at the LUMO energy, and /Tl T T . Equation (2.12) 

was applied to a large selection of organic materials [99-103], with the factor l  typically 

in the range of 6-10.  

 Interestingly, it was pointed out by Lampert [104] that the J-V characteristic of 

insulators with Ohmic contacts is confined to a triangular area illustrated in Fig. 2.2 

(when both the J and V axes are in a log scale) defined by three limiting curves: Ohm’s 

law, SCLC, and TCLC. This theory has been routinely and successfully applied to 

organic semiconductors [105, 106]. 

 

Figure 2.2 The current density-voltage (J-V) triangle (shaded) formed by 

three charge transport mechanisms in organics: Ohm’s law, space charge 

limited current (SCLC), and trapped charge limited current (TCLC) 
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2.1.3 Charge Recombination 

Charge recombination occurs when the electrons and holes coexist in the same 

spatial location but at their respective energies. The recombination rate, R, in organics is 

generally modeled following the treatment of Langevin assuming that electrons and holes 

move towards each other under the influence of their mutual Coulomb interaction, 

0

( )n p

L

r

e
R np k np

 

 


        (2.13) 

where n  and 
p  are electron and hole mobilities, respectively, and Lk  is the Langevin 

recombination rate. Following recombination, the electron and hole form a bound excited 

state, or exciton, which plays a central role in the photophysical properties of organic 

semiconductors. 

2.2 Photophysical Properties of Organic Semiconductors 

2.2.1 Excitons: Types and Definitions 

When organic molecules are excited, an electron from the HOMO is promoted to 

the LUMO, leaving a hole in the HOMO, and the resulting electron-hole pair is bound 

through Coulomb interaction to form an exciton. 

As shown in Fig. 2.3, depending on the spatial extent of excitons, they can be 

divided in three different types [107, 108]: Frenkel excitons, charger transfer excitons, 

and Wannier-Mott excitons. The most common excitons in amorphous semiconductors 

are of the Frenkel type, which has the most localized (usually confined to a single 
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molecule) wave function and the highest binding energy BE  (~ 1 eV) among the three. 

Charge transfer excitons have a broader spatial extent than Frenkel excitons, and are 

often reported in organics with local crystalline order [47]. Frenkel and charge transfer 

excitons may also exist in the same organic material [109]. The delocalized Wannier-

Mott exciton has a small BE  (< 10 meV), and is generally observed in high dielectric 

constant crystalline inorganic semiconductors. 

The energy of an exciton relative to the molecular ground state can be solved 

through its Hamiltonian, Hex, which is the summation between the single excited electron 

Hamiltonian He, and the electron-electron interaction, Uee, 

 ex e ee e e eeH H U T U U          (2.14) 

where Te and Ue are the single electron kinetic and potential energies, respectively. Under 

the Born-Oppenheimer approximation [110], He can be calculated by solving the electron 

energy in a stationary molecular nuclear configuration. The discrete eigen-energies of He 

for the molecular ground and excited states in the configuration coordinate scheme [110] 

are illustrated in Fig. 2.4. The energy spacings between the eigen-energies in the same 

 

Figure 2.3 Three type of excitons determined by their spatial extent. 
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state are approximately the same due to the parabolic shape in Ue close to the energy 

minimum. 

The interaction in Eq. (2.14) is given by 
0 12

1

4
ee

e
U

r
 , where 12r  is spatial 

separation between the excited electron in the LUMO and the unpaired electron left in the 

HOMO. Then, the eigen-energies for eeU  can be calculated through ee eeE U  , 

where   is the spatial wave function of the two-electron system. 

Depending on the symmetry of the spin wave functions, excitons can be either 

spin anti-symmetric singlets or spin symmetric triplets. The total wave function of an 

exciton is the product of the spin wave function and the spatial wave function. Since 

electrons are Fermions whose total wave function is anti-symmetric, the singlet spatial 

wave function S  is symmetric and the triplet spatial wave function T  is anti-

symmetric:  

 

Figure 2.4 Ground state and excited state energies in the molecular 

configuration coordinate. The numbers (0-3) are the indexes for different 

vibronic states. 
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where HOMO  and LUMO  are the wave functions for the HOMO and LUMO respectively, 

and 1 and 2 are indices for the two electrons. Thus, interaction energies for singlets (ES) 

and triplets (ET) are 
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where  J and K are the Coulomb and exchange energies, respectively: 
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Therefore, the molecular singlet energy is higher than triplet by 2K. 

 Optical transition (i.e. absorption and emission) rates in organics can then be 

calculated through dipole transitions between a molecular ground state and excited state 

using the Fermi’s Golden rule, 
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where iS  and fS  are the spin wave functions of the initial and final states, i  and f   

are the spatial wave functions of the initial and final states,   H = dF is the transition 

Hamiltonian, where   d  is the dipole moment, and ( )fE  is the density of the final state 

with the energy 
fE . Clearly, the spin symmetries of the initial and final states need to be 

the same for   to be non-zero, which is called the dipole transition selection rule. 

Because most molecules have a spin symmetric ground state due to the filled HOMOs, 

only singlet excitons are responsible for absorption and emission in fluorescent organic 

molecules. The absorption and emission processes in an archetype organic molecule 

 

Figure 2.5 (left) Emission and absorption spectra of a prototype 

fluorescent molecule, anthracene (the chemical structure is shown in the 

inset) dissolved in cyclohexane, and the corresponding transitions (right) 

between the singlet excited state and ground state. The energy of triplet 

is lower than singlet by ΔEST= 2K (see Eq. (2.19)), and the triplet is non-

emissive. 
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anthracene are illustrated in Fig. 2.5, and the vibronic spectral peaks are explained by 

transitions between discrete levels in the ground and singlet excited states. 

 Early demonstrations of OLEDs [37] were based on fluorescent emission from 

singlets; however, electron-hole recombination in OLEDs forms both singlets and triplets 

with a ratio of 1:3 [55] determined by the spin degeneracy. Since triplets are non-

emissive due to the dipole transition selection rule, the maximum internal quantum 

efficiency (IQE) in fluorescent OLEDs is only 25%. Fortunately, the selection rule can be 

broken by the strong spin-orbit coupling in phosphorescent molecules due to the mixing 

of singlet and triple states, usually effected by insertion of a metal atom with high orbital 

angular momentum into the molecule. The Hamiltonian, SOH  for spin-orbit interaction is 

[110], 
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08
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e
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H l s

m c r
        (2.21) 

where Ze is the charge of the nucleus, me is the electron mass, c is the speed of light, r is 

the electron-nucleus distance,   l  and   s  are the electron orbital and spin angular 

momentum, respectively. To see how HSO mixes singlets and triplets, apply 

1, 1, 2, 2,1 2

1, 2, 1, 2, 1, 2, 1, 2,1 2 1 2
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z z z zSO z
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   (2.22) 

to 1,0 0,0SO z
H  . Since, 1, 2, 1, 2,1 21,0 ( ) ( ) 0,0 0z z z zA l A l s s   ,  
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  (2.23) 

where 1,0  is a triplet with zero spin in the z direction, and 0,0  represents a singlet 

wavefunction. From Eq. (2.23), it is evident that SOH  breaks the transition rules between 

singlets and triplets, thus allowing singlet-to-triplet intersystem crossing as well as triplet 

emission. 

 Since r
3
 is proportional to 1/Z

3
, Eq. (2.21) implies that HSO is then proportional to 

Z
4
. Thus, the spin-orbit coupling effect is significantly stronger for a nucleus with a large 

atomic number. This concept guided the early discovery of efficient triplet emitters based 

on heavy metal (such as iridium and platinum) complexes, and thus the demonstration of 

 

Figure 2.6 Chemical structure and emission spectrum (when doped at 2 

vol% in Alq3) of an archetype phosphorescent molecule, platinum-

octaethyl-phorphyrin (PtOEP). 
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efficient phosphorescent OLEDs (PHOLEDs) [51, 52]. Figure 2.6 shows the chemical 

structure and emission spectrum of platinum-octaethyl-phorphyrin (PtOEP), based on 

which the first PHOLED was demonstrated. 

 

2.2.2 Exciton Transport 

Exciton transport refers to both the individual exciton energy transfer and the 

collective behavior of exciton diffusion. We first discuss the mechanisms for exciton 

transfer, and then show how exciton diffusion relates to the individual transfers. 

Exciton transfer occurs from a donor (D) to an acceptor molecule (A, which may 

or may not be a different type from D). The rate of exciton transfer can also be calculated 

by Eq. (2.20) using *

i D A    and 
*

f D A   , where the wave functions, D  and A  

represent the donor and acceptor ground states, and *

D  and *

A  are the donor and 

acceptor excited states. 

If the transfer Hamiltonian in Eq. (2.20) is a dipole-dipole interaction, 

3 2
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1 1 3
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4
AD ADD A D Adipole

AD AD

H d d d R d R
R R

 
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 
  (2.24) 

where   RAD  is the vector from the donor to the acceptor,   d D  and   d A  are the dipole 

moments of the donor and acceptor, respectively. Förster [111] first solved this 

Hamiltonian, deriving the Förster transfer rate, F  
given by: 
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is the Förster radius, D  is the donor exciton lifetime, ( )DF E  is the donor emission 

spectrum normalized to the photoluminescence quantum yield PL  by ( )D PLF E dE  , 

and ( )A E  is the acceptor absorption cross section.  

Due to the dipole transition selection rule, Förster transfer between fluorescent 

molecules is only allowed for singlets; however, Förster transfer of triplets from 

phosphorescent molecules is allowed [58] for the same reason as triplet emission is 

allowed – i.e. due to strong spin-orbit coupling (see Eq. (2.23)). The emissive layer of 

fluorescent OLEDs typically utilizes the host-dopant architecture, where charge transport 

and recombination are through the host, and excitons on the host subsequently Förster 

transfer to the dopant for emission to occur. The Förster radius for such host-dopant 

system with strong emission and absorption overlap is typically 3 - 5 nm [10].  

 Hamiltonians containing other than dipole-dipole interactions in Eq. (2.20) can 

also give rise to exciton transfer. Most notably, Dexter [112] considered the electron-

electron exchange interaction, whose matrix element is: 
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          (2.27) 

where S  and   are the spin and spatial wave functions respectively. After calculating 

Eq. (2.20) using Eq. (2.27), the Dexter transfer rate is: 
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( ) ( )D exchange D AH F E E dE


   .    (2.28) 

 Note that Dexter exciton transfer only requires separate spin conservation in the 

two initial states and the two final states (a result of Eq. (2.27)); therefore, triplet transfer 

in fluorescent molecules is allowed by the relatively short-range Dexter transfer. 

 The collective motions of incoherent exciton transfer results in exciton diffusion, 

described by [113],  

 
   

¶N (r,t)

¶t
= G(r,t) -

N (r,t)

t
+ DÑ2N (r,t)     (2.29) 

where    N (r,t)  is the exciton concentration,    G(r,t) is the exciton generation rate,   is 

the exciton lifetime, and D  is the exciton diffusivity. Assuming simple cubic lattice 

exciton diffusion sites and diffusion through only nearest neighbors, D  can be calculated 

from the nearest neighbor exciton transfer rate nn  through: 
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38 

 

where a is the lattice constant. The exciton diffusion length DL D  is then defined by 

the average diffusion distance of an ensemble of excitons within their lifetime. 

2.2.3 Exciton Interactions 

 Exciton interactions that result in annihilation are a special type of exciton 

transfer, where energy is transferred from an exciton to another excited state (exciton or 

polaron). The transfer Hamiltonian, and thus the rate for exciton interaction, can be 

calculated from Fermi’s Golden rule (Eq. (2.20)). Common exciton interactions [47, 114, 

115] in organics include singlet-polaron annihilation (SPA) [115], triplet-polaron 

annihilation (TPA) [116, 117], singlet-triplet annihilation (STA) [4, 118], triplet-triplet 

annihilation (TTA) [116, 119], etc.  

When annihilation involves a singlet, its energy transfer is typically dominated by 

Förster type interactions (Eq. (2.25) and (2.26)), because the long-range dipole-dipole 

interaction has a significantly higher rate than the Dexter type interaction (Eq. (2.27) and 

(2.28)). In contrast, triplet annihilation usually follows Dexter type interactions.  

The exciton annihilation rate depends on the relative distance between the energy 

donor and acceptor, which is constantly changing as a result of exciton diffusion. 

Therefore, as illustrated in Fig. 2.7, the description of collective exciton annihilation 

should also involve exciton diffusion. For example, one type of TTA occurs through, 

0 0

nT T T S T S           (2.31) 

where T  is a triplet, 
nT  is a hot triplet (i.e. a spin symmetric exciton with a higher 

energy than T ), and 0S  is the molecular ground state. Singlet formation during TTA is 
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neglected by Eq. (2.31), and is treated by Eq. (2.41) in the next section. Thus, a 

description of triplet dynamics 
   
T r,t( )  considering both triplet diffusion and annihilation 

is: 
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(2.32) 

where TD  is the triplet diffusivity, T  is the triplet lifetime, and  TTU r  is the interaction 

rate between two triplets. Although an analytical solution does not exist for Eq. (2.32), 

under the assumption that Eq. (2.31) occurs when two triplets are within a capture radius 

RC following Smoluchowski [113], Eq. (2.31) can be simplified to, 

 
   

¶T (r,t)

¶t
= D

T
Ñ2T (r,t)       (2.33) 

 

Figure 2.7 Annihilation between excitons (red filled circles) 

considering both exciton diffusion (dashed arrows) and exciton-

to-exciton energy transfer (solid arrow). The open circles are the 

available transport site for excitons. 
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with the boundary condition  , 0
Cr R

T r t


 .  

Now, Eq. (2.33) can be solved in spherical coordinates with   0, 0T r t T  : 
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Then, the triplet flux at the boundary Cr R  in the frame of motion of a center triplet as 

the annihilation center is: 
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 . (2.35) 

After considering 0T  of such triplets all acting as annihilation centers: 
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where the factor of 2 comes from the doubled diffusivity as a result of the relative motion 

of the participating triplets. Thus, when using a simple TTA rate, 8TT T Ck D R , triplet 

density dynamics considering both the triplet natural decay and TTA is then: 
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    .      (2.37) 

 Similarly, exciton density decay due to bimolecular annihilation is generally 

calculated by the product of the densities of the energy donors and acceptors, and an 

annihilation rate. 
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2.3 Exciton Interactions in Organic Light Emitting Diodes 

Exciton interactions result in a non-linear dependence of exciton density on 

current density (J), thus contributing to change of OLED external quantum efficiency 

(EQE) vs. J. The functions of J-V (as discussed in section 2.1) and EQE-J are the two 

most important characteristics of an OLED. To model EQE-J in a fluorescent OLED, we 

consider the following exciton interactions, 

Singlet-triplet annihilation (STA) 
0 0

nS T T S T S      (2.38) 

Singlet-polaron annihilation (SPA) 
0 0

nS p p S p S      (2.39) 

Singlet-singlet annihilation (SSA) 
0 0

nS S S S S S      (2.40) 

Triplet-triplet annihilation (TTA-S) 
0 0

nT T S S S S      (2.41) 

Triplet-triplet annihilation (TTA-T) 
0 0

nT T T S T S      (2.42) 

Triplet-polaron annihilation (TPA) 
0 0

nT p p S p S      (2.43) 

where S ,  T , and p  are the singlet, triplet, and polaron, and 
nS ,  

nT , and 
np  are the 

intermediate hot singlet, triplet, and polaron (i.e. S ,  T , and p  are excited to higher 

energy states). The bimolecular interaction rates for Eq. (2.38) – (2.43) are kST, kSp, kSS, 

kTT-S, kTT-T, and kTp, respectively. Assuming a uniform exciton formation rate in the OLED 

active region of thickness d, the singlet and triplet density dynamics are, 

 2 21

4
S SS ST Sp TT S

dS J
k S k S k ST k Sp k T

dt ed
         (2.44) 
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 2 23
2

4
T TT S TT T Tp

dT J
k T k T k T k Tp

dt ed
         (2.45) 

where the factors of ¼ and ¾ in the generation terms are determined by the formation 

ratio of singlet and triplet during charge recombination. If we only consider exciton 

natural decay and STA, and neglect all other interactions, under equilibrium condition, 

 ( )
4 3

T

T S ST

Jk
S t

edk k k J
 


.      (2.46) 

Then, we can determine the EQE(J) in the fluorescent OLED as, 

 
( )

( )
/ 4 3

S S T
out PL out PL

T S ST

k S t d k k ed
EQE J

J e edk k k J
   


 


  (2.47) 

where out  is the optical out-coupling efficiency, and PL  is the radiative efficiency of the 

emitter. From (2.47), it is evident that EQE(J) is a decreasing function of J, meaning that 

the OLED is less efficient if operated at high J (or high luminance). 

 Similarly, assuming efficient inter-system crossing and only TTA (Eq. (2.42)) in a 

phosphorescent OLED, the triplet density dynamics are determined by, 

 
2

T TT T

dT J
k T k T

dt ed
   .      (2.48) 

Then, the EQE(J) in the phosphorescent OLED is 

 
2 4

( )
2

T TT T
out PL T

TT T

edk k J
EQE J k

Jk ed
  



 
  

 
    (2.49) 
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which can be simplified to 0

0

8
( ) 1 1

4
out PL

J J
EQE J

J J
 

 
    

 
 with 

2

0

2 T

TT

edk
J

k
 . 

Therefore, ( )EQE J  is also a decreasing function of J. Previously, Baldo et al. [116] 

pointed out that EQE(J) drops to 50% of the peak EQE when J=J0. 

 In Figure 2.8, we plot the calculated EQE(J) based on Eq. (2.47) and Eq. (2.49) 

for the fluorescent OLED and the phosphorescent OLED respectively. In these 

calculations, we used the following parameters that are typical for organics: kS =3×10
8
 s

-1
, 

kT =1×10
5
 s

-1
, kST =2×10

-10
 cm

3
s

-1
, kTT-T =3×10

-12
 cm

3
s

-1
, and d =30 nm. It is thus clear that 

exciton interactions can strongly affect OLED efficiency, especially at high luminance. 

This dissertation is focused on understanding these interactions, and thus providing 

solutions through exciton management to enhance the desired interactions and suppress 

the detrimental interactions.   

 

Figure 2.8 Calculated EQE(J) for a fluorescent OLED with STA (Eq. 

(2.47)) and a phosphorescent OLED with TTA (Eq. (2.49)) using 

parameters described in text.  
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Chapter 3  

Singlet-Triplet Annihilation in  

Fluorescent Organic Light Emitting Diodes 

Electron-hole recombination (Eq. (2.13)) in OLEDs generates both singlets and 

triplets. As discussed in section 2.2.3, once a singlet collides with a triplet, the triplet can 

be temporarily excited to a hot triplet state, and then rapidly relaxed to its original triplet 

state. This is a process known as singlet-triplet annihilation (STA), in which the singlet 

energy is non-radiatively dissipated. Since singlets are responsible for fluorescent 

emission, STA leads to a loss of fluorescent OLED efficiency. In this Chapter, we 

introduce the dynamics of STA in fluorescent OLEDs, and then apply the dynamics to 

explain electroluminescence (EL) transient turn-on decays in two prototype fluorescent 

OLEDs. Finally, we discuss a strategy of de-exciting the detrimental triplets through the 

use of a phosphorescent dopant which results in decreased STA and thus can potentially 

improve fluorescent OLED efficiencies. 

3.1 Dynamics of Singlet-triplet Annihilation (STA) 

Figure 3.1 shows the basic structure of a bottom emitting OLED on glass 

substrate. The organic layers consist of an emissive layer (EML) sandwiched between an 
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electron transport layer (ETL) and a hole transport layer (HTL). Electrons and holes 

injected from the electrodes recombine in the EML, and the OLED emission is the out-

coupled light from singlet radiative decay. In this section, we model the singlet and triplet 

dynamics after the charge recombination. It is shown that STA leads to singlet density 

transient decays following the fluorescent OLED turn-on. 

Triplet density dynamics in fluorescent OLEDs are determined by the processes 

of triplet non-radiative decay, triplet-triplet annihilation (TTA), and triplet polaron 

annihilation (TPA). Of these, TTA occurs through two routes [115], 

0T T S S   ,       (3.1) 

and 
0T T T S   ,       (3.2) 

where T  is triplet, S  is singlet, and 
0S  is the ground state. Considering spin statistics, 

when two triplets annihilate, the result is the fractional production of 3/4 triplet excited 

 

Figure 3.1 Structure of a bottom emitting OLED on glass substrate 
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states, 1/4 singlet excited state, and 1 molecular ground state [114]. Also, TPA is 

described by, 

0T n S n   ,       (3.3) 

where n  is the polaron [120]. The polaron density arises both from injected charge 

determined by current density at time ,t, ( )J t , and interfacial charge due to the junction 

capacitance [115]. Then, assuming Langevin recombination, 

  

dn

dt


J (t)

ed
  n2 ,       (3.4) 

where d is the width of the exciton formation region which is approximately equal to the 

width of the EML, and 
Lk  is the Langevin recombination rate [89] , given by: 

 
0

L h e

r

e
k  

 
         (3.5) 

Here, 2.9r   
is the relative permittivity of the EML, 0  is the permittivity of free space, 

and h  and e  are the mobilities of holes and electrons in the EML, respectively. 

Equation (3.4) neglects the charge transit time from the electrodes to the EML. A 

complete treatment of the charge injection and transit can be found in [89]; our 

approximation allows for a simplified analytical treatment. 

According to Eq. (3.1) to (3.5), the triplet density dynamics are given by: 

2 23 5

4 4
L T TT TP

dT
k n k T k T k nT

dt
    ,    (3.6) 
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where Tk  is the triplet non-radiative decay rate, TTk  is the TTA rate, and TPk  is the TPA 

rate. The factors of 3/4 and 5/4 arise from the spin statistics of triplet generation and TTA, 

respectively.  

The singlet density dynamics are a function of the singlet decay rate, as well as 

STA. Now, STA occurs via [4]: 

0 0nS T T S T S     ,      (3.7) 

where 
nT  is the intermediate hot triplet. This interaction is significant when the 

absorption spectrum of T  overlaps the emission spectrum of S  due to the Förster 

transfer mechanism as in Eq. (2.26) [4]. According to Eq. (3.1), (3.4), and (3.7), the 

singlet density dynamics are then described by:  

2 21 1

4 4
L S TT ST

dS
k n k S k T k ST

dt
    ,     (3.8) 

where Sk  is the singlet decay rate and STk  is the STA rate. The factors of 1/4 arise from 

spin statistics similar to Eq. (3.6).  

Using Eq. (3.4), (3.6), and (3.8), the simulated singlet, triplet, and polaron 

densities are plotted in Fig. 3.2 using reaction rates and other parameters typical of many 

doped fluorescent systems. The current density J = 0.8 A/cm
2
 is chosen for the 

calculation so that it is consistent with the J for transient EL measurements in the next 

section. It can be seen that after the polaron density reaches equilibrium according to Eq. 

(3.6), the triplet lifetime which is reduced by TPA (at rate
 
k

TP
n ), governs the triplet 

dynamics. Before the triplet density becomes significant, the singlet density is determined 
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by the decay constant, Sk . As the triplet density increases over time, STA suppresses the 

continued increase of the singlet density. This results in a peak in singlet density. As the 

triplet density increases further, the STA term in Eq. (3.8) dominates, ultimately resulting 

in a decrease in the singlet density. Since the light output in fluorescent OLEDs is 

proportional to singlet density, STA leads to transient EL turn-on decays. 

3.2 Transient Electroluminescence Turn-on Decay Due to STA 

To observe the predicted EL transients, OLEDs were grown on commercially pre-

coated indium-tin-oxide (ITO) on glass substrates cleaned as described previously [121]. 

Organic layers are deposited in a vacuum thermal evaporation chamber with base 

pressure < 5×10
-7

 Torr. A 40 nm thick 4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-

 

Figure 3.2 Simulated density dynamics according to the model in text for 

a device at 0.8A/cm
2
 injection current density using the parameters 

listed. 
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biphenyl (NPD) was first deposited as the hole transport layer (HTL), followed by a 

25nm thick emission layer (EML), and a 30 nm thick bis(2-methyl-8-quinolinolate)-4-

(phenylphenolato)aluminum (BAlq) electron transport layer (ETL). The host, tris(8-

hydroxyquinoline) aluminum (Alq3), was doped with the red emitting fluorphore, 4-

dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 9,10-

Di(naphth-2-yl)anthracene (ADN) was doped with the blue emitting 2,5,8,11-tetra-tert-

butylperylene (TBP) for the OLED EMLs. The chemical structures of these molecules 

are shown in Appendix A. The four OLEDs studied consist of the following dopant 

concentrations: 3 vol% DCM:Alq3 (Device A1), 8 vol% DCM:Alq3 (A2), 3 vol% 

TBP:ADN (B1), and 8 vol% TBP:ADN (B2). All devices were completed with a 0.8 nm 

thick LiF layer followed by an 80 nm thick aluminum cathode deposited through a 

shadow mask to form 1 mm
2
 square devices. The structures of the four OLEDs are 

illustrated in Fig. 3.3.  

 

Figure 3.3 Structures for red emitting OLEDs A1 and A2 (left), and blue 

emitting OLEDs B1 and B2 (right). The short name of each layer is 

explained in text and also in Appendix A. 
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After deposition, current-voltage-luminance (I-V-L) characteristics were measured 

in atmosphere using an HP4155 parameter analyzer with a calibrated Si photodiode 

following the standard procedures [122] (see Fig. 3.4 left). The OLED emission spectra 

were measured using a fiber-coupled OceanOptics USB4000 spectrometer (see Fig. 3.4 

right). The device was then loaded into a N2 chamber where the transient EL was 

measured by excitation with rectangular current pulses at a repetition rate of 5Hz and 

width of 100 µs from a HP8114A pulse generator. Emission was collected by a Si 

avalanche photodiode (APD, Hamamatsu C5460), and monitored by an oscilloscope 

(Tektronix 3054B).  

Figure 3.5 shows the EL turn-on for devices A1 and B2 as functions of time and 

current pulse amplitude. The ratio of peak-to-steady-state EL increases with drive current. 

Also, the rise time (< 1 µs) is significantly shorter than the decay time (~ 20 µs). For 

DCM:Alq3 devices (A1 and A2), the shape of the transient EL only weakly depends on 

the dopant concentration, while for the TBP:ADN device (B1 and B2), the EL turn-on 

 

Figure 3.4 (left) Setup for OLED density-voltage-luminance (J-V-L) 

characterization. A parameter analyzer is used to measure the current 

(IOLED) and voltage (VOLED) through the OLED, and the current (IPD) 

through a calibrated photodetector. (right) Setup for OLED emission 

spectrum measurement. 
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peak increases with doping concentration.  

Fits to the data according to Eq. (3.4), (3.6), and (3.8) using the parameters in 

Table 3.1 are indicated by solid lines. We note that the exciton formation region for the 

four devices is located at the interface between the HTL and EML [123, 124].  Hence, 

only the electron mobility is required in Eq. (3.5), which is extracted from the transient 

EL turn-on delays in Fig. 3.5. Furthermore, triplet non-radiative decay and TTA in Eq. 

(3.6) are neglected since these processes are negligible compared to TPA during the 

device turn-on. 

In the fits In Fig. 3.5, we assume that TPk  and STk  are independent of pulse 

amplitude. The steady state current density range for the model fit is from 0.1 A/cm
2
 to 

 

Figure 3.5 Transient electroluminescence (EL) of devices with 3% DCM:Alq3 (left, 

device A1) and 8% TBP:ADN (right, device B2) in response to 100 µs current pulses of 

different amplitudes. The steady state current density is indicated. Solid lines are the fits 

to the STA model, which determine the STA rate of 1.9×10
-10

 cm
3
/s and 1.2×10

-10
 cm

3
/s 

for A1 and B2, respectively. Similar fits are obtained for all four devices with results 

summarized in Table 3.1. 
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1.0 A/cm
2
, over which the EL peaks are prominent. The predicted EL slightly deviates 

from the experiment for the initial 1 µs due to our neglect of the charge transit time in Eq. 

(3.4). From Table 3.1, the STA rates are unchanged for a given guest-host combination, 

regardless of doping concentration. This is expected since STA is a Förster type 

interaction (Eq. (2.26)) that only depends on the absorption spectrum of the triplet and the 

emission spectrum of the singlet [4]. Note that our value for the DCM:Alq3 STA rate is in 

agreement with values obtained from optical excitation (1.9×10
-10

 cm
3
/s) of this mixture 

[4]. Furthermore, the ~ 50% decrease in the STA rate from 3% TBP:ADN to 8% 

TBP:ADN results since TBP acts as a triplet or polaron trap, which decreases the triplet-

polaron collision probability as the TBP density decreases.  

The turn-on peak recovery following the double pulse with varying delay times is 

shown in Fig. 3.6 (a) for device B2. We observe that a > 600 µs delay is necessary for the 

full recovery of the EL peak intensity. Fits of the data in Fig. 3.6 (a) to Eq. (3.4), (3.6), 

and (3.8) provide the triplet density as a function of delay time shown in Fig. 3.6 (b). A 

Table 3.1 Fitting parameters for transient ELs from the OLEDs 

EML τ
S
(ns) k

TP
(cm

3
/s) k

TS
(cm

3
/s) µ (cm

2
/V/s) 

3% DCM:Alq3 1.20.1 (5.60.4)×10
-13

 (1.90.2)×10
-10

 (1.20.2)×10
-5

 

8% DCM:Alq3 1.10.1 (6.30.5)×10
-13

 (1.80.2)×10
-10

 (1.20.2)×10
-5

 

3% TBP:ADN 2.30.1 (132)×10
-13

 (1.10.2)×10
-10

 (1.60.3)×10
-5

 

8% TBP:ADN 2.10.1 (7.40.3)×10
-13

 (1.20.1)×10
-10

 (1.60.3)×10
-5
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similar measurement was used to study device A1, and its peak recovery (> 900 µs) was 

slightly longer than for device B2.  

The time required for recovery of the EL turn-on peak during the double pulse 

experiments is determined by temporal relaxation of the triplet density. When the double 

pulse delay is short compared to the triplet decay time, the triplet density remains large at 

the beginning of the second pulse, and STA suppresses the turn-on peak. It is worth 

noting here that the triplets are confined in the EML due to the large energy barriers of 

the adjacent HTL and ETL. That is, the NPD (2.29 eV) and BAlq (2.18 eV) triplet 

energies are higher than the triplet energies of the hosts, Alq3 (2.03 eV) and ADN (~1.8 

eV) [56, 125, 126]. Figure 3.6 (b) shows the triplet density as a function of time for 8% 

 

Figure 3.6 (a) Recovery of the turn-on peaks under double pulse current 

injection for device B2. All pulses are 100 µs in width. The data 

correspond to double pulse intervals (beginning from the lowest pulse) of 

20, 40, 70, 100, 150, 200, 280, 350, 590 s. The fits are obtained using 

the model described in text. All parameters used in the fits are listed in 

Table 3.1.  (b) Triplet density as a function of time following the device 

turn-off. This density decay is due to triplet-triplet annihilation (TTA). 
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TBP:ADN (device B2) after the end of the first current pulse. By fitting the triplet density 

following the device turn-off (solid line in Fig. 3.6 (b)), TTA rates of 2.4×10
-15

 cm
3
/s and 

3.3×10
-15

 cm
3
/s are extracted for A1 and B2, respectively. 

As expected from TTA, delayed fluorescence following the device turn-off was 

observed, and is shown in Fig. 3.7 for devices A1 and B2. By fitting the delayed 

fluorescence according to Eq. (3.4), (3.6), and (3.8) at J=0 and the corresponding initial 

polaron and exciton densities, TTA rates of 2.2×10
-15

 cm
3
/s and 3.0×10

-15
 cm

3
/s are 

extracted for A1 and B2. The TTA rates from the independent experiments of both peak 

recovery (Fig. 3.6) and delayed fluorescence are in agreement. 

The TTA rates confirm the assumption that TTA is less efficient than TPA during 

device turn-on. Taking device B2 as an example and using the conditions in Fig. 3.5, the 

 

Figure 3.7 Delayed fluorescence from devices A1 and B2 after the turn-

off of a current pulse with 100µs width. The steady state EL is 

normalized at the pulse onset. Lines are fits to TTA described in text.   

TTA rates of (2.20.2)×10
-15 

cm
3
/s and (3.0 0.3)×10

-15 
cm

3
/s are 

extracted for fits to the data for device A1 and B2, respectively. 
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TPA rate, TPk nT  (1.5×10
24

/cm
3
/s), is approximately ten times larger than the TTA rate, 

25

4
TTk T  (1.3×10

23
/cm

3
/s). Similar conclusions can be drawn for all four devices. 

The turn-on decay in an analogous device to A1 and A2 here [127] was 

previously attributed to recombination between injected holes and pre-trapped electrons 

on the dopant molecules. Since the hole mobility in the HTL is several orders of 

magnitude higher than the electron mobility in ETL [128].  For that case,  the EL turn-on 

decay in the doped device is expected to be shorter than in un-doped devices, which was 

not observed [127]. Moreover, since the EL transients are unaffected by an applied 

reverse bias offset of up to 10V, we conclude that the density of trapped electrons must 

be insufficient to cause the observed fall-off in intensity. Alternatively, Ruhstaller et al. 

[90] explained the EL turn-on decay in an un-doped OLED based on the temporal 

imbalance of charges in the EML. However, the EL peak-to-steady-state intensity ratio 

inferred from their model (~1.2) is much smaller than observed here (2), and does not 

anticipate the double pulse peak recovery time. 

3.3 Use of a Phosphorescent Dopant to Reduce STA 

To further test the importance of triplet-mediated annihilation, we fabricated a 

device where the EML consists of the near infrared emitting phosphorescent dopant, 1% 

vol Pt-tetraphenyltetrabenzoporphyrin (Pt(TPBP)) [129] (see Appendix A for the 

chemical structure) co-doped with 8 vol% TBP in the ADN host. The lifetime and energy 

of Pt(TBPB) triplet is 50µs and < 1.7eV, respectively [129]. The transient EL response 

and spectrum of this device, along with that of device B2 at the same steady state light 
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intensity are given in Fig. 3.8 (a). Here, Pt(TBPB) traps triplets in the fluorescent OLED 

EML, thereby lowering the triplet density. From Fig. 3.8 (a) it is evident that the EL turn-

on peak is substantially lower in the co-doped device than in the control at the same 

steady state EL output, consistent with our model. The spectral peak at a wavelength of 

λ= 760 nm in the co-doped device (Fig. 3.8 (b)) confirms the triplet energy transfer from 

to Pt(TBPB). 

Ideally, the steady-state EQE of the co-doped device should be higher than in 

device B2 due to reduced STA; however, as seen in Fig. 3.8 (a), the doped device  EQE is 

only 25% that of device B2. This is due to the narrow transport gap of Pt(TBPB) [129], 

and hence this molecule also acts as a polaron trap and non-radiative recombination 

center.  Hence, the requirements for an ideal triplet-trapping phosphor are: 1. The triplet 

 

Figure 3.8 (a) Electroluminescence transient of 1% Pt(TBPB) and 8% 

TBP co-doped with the host and, and the control device (8% TBP:ADN, 

device B2) measured at the same steady state light output. (b) Spectra of 

these two devices. 
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energy of the phosphor is lower than the host or the dopant; 2. The transport gap of the 

phosphor is no less than that of the host; 3. The phosphor does not strongly absorb the 

fluorescent emission; and 4. the lifetime of the phosphor is short compared to the triplet 

decay time in the host. When co-doped in the fluorescent OLED EML, such a phosphor 

is expected to both suppress the STA and improve the device efficiency.  

To conclude this chapter, electroluminescence transient turn-on peaks in doped 

fluorescent OLEDs are observed and quantitatively attributed to STA. The transient EL 

of DCM:Alq3 and TBP:ADN OLEDs with different doping concentrations are fit to a 

model that includes STA, TTA and TPA. The STA rate is found to be independent of 

doping concentration, which confirms the Förster transfer nature of this interaction. By 

studying the recovery of the peak, the triplet density decay is found to follow the TTA 

after the current turn-off, which is further confirmed by the device delayed fluorescence. 

By co-doping a near infrared phosphor along with the fluorescent dopant in the EML, we 

observed a decrease the STA, and thus eliminated the turn-on intensity transient. This 

device architecture can potentially lead to increased EQE of fluorescent OLEDs at high 

luminance. 
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Chapter 4  

Managing Triplets in Fluorescent OLEDs 

We see from Chapter 3 that singlet-triplet annihilation (STA) in fluorescent 

OLEDs results in electroluminescence (EL) transient turn-on decay, thus contributing to a 

loss mechanism to efficiency. Although co-doping of a phosphor into the fluorescent 

OLED EML reduces the transient EL decay, the overall OLED efficiency is reduced as a 

result of charge and exciton trapping, as well as absorption due to the phosphor. In this 

chapter, it is shown that both suppressed STA and improved OLED efficiency can be 

achieved by a triplet management strategy, i.e. co-doping of a fluorescent molecule, 

called the triplet manager, in the fluorescent OLED EML. In section 4.1, we introduce the 

concept of triplet management in fluorescent OLEDs, followed by an experimental 

demonstration of this strategy in sections 4.2 and 4.3. 

4.1 Concept of Triplet Management 

Efficiency loss in fluorescent organic light emitting diodes (OLEDs) has been 

variously identified as resulting from singlet-polaron annihilation (SPA) [115, 130], 

charge imbalance [131], and singlet-triplet annihilation (STA) [118]. In the case of STA, 

according to Eq. (3.8), the efficiency reduction is proportional to the product of the triplet 
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density and the annihilation rate. Since 75% of the injected charge results in the 

formation of non-radiative triplets [55] with relatively long lifetimes (typically > 1 ms) 

compared to radiative singlets (~1-10 ns), triplets in fluorescent OLEDs can reach a high 

density (> 10
18

 cm
-3

). Also, fluorescent OLEDs often utilize a laser dye as the emitter 

[123], which usually has a overlap between the singlet emission and triplet absorption 

spectra, leading to a large STA rate [4]. The combined large triplet density and high STA 

rate can reduce the OLED efficiency [118].  

The conventional emission layer (EML) of a fluorescent OLED consists of a 

conductive host and an emissive guest. Because the guest often has lower singlet and 

triplet energies than the host, both excitonic species formed on the host upon electrical 

excitation transfer to the guest where STA occurs. One strategy [118] to reduce 

quenching is to blend a third molecule called a “triplet manager” into the EML to collect 

triplets, as shown in Fig. 4.1. If the triplet manager has a higher singlet and lower triplet 

energy than the guest, it facilitates Förster transfer of singlet excitons to the guest, and 

 

Figure 4.1 (a) Proposed singlet (S) and triplet (T) energy transfers in a 

fluorescent OLED using a T manager. Here, singlets (circles) and triplets 

(triangles) are generated on both the host and T manager. Singlets 

Förster-transfer (solid lines) to the guest, and triplets Dexter-transfer 

(dashed lines) to the manager. The shaded regions on the T manager 

indicate the required energy level ranges. 
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Dexter transfer of triplet excitons from the guest to the manager, thereby eliminating 

guest STA. 

Therefore the requirements and the corresponding rationales for an ideal triplet 

manager are: 1. The triplet energy of the manager is lower than the host or the emissive 

guest so that triplets can exothermically transfer to the manager; 2. The transport gap of 

the manager is no less than that of the host so that the manager does not act as traps for 

charge transport; 3. To maintain the high guest fluorescent yield, the manager should 

have negligible absorption of the guest emission; and 4. To ensure vacant managers to 

collect detrimental triplets, the triplet lifetime of the manager should be short compared 

to the triplet decay time in the host or the dopant. 

4.2 Suppressed EL Turn-on Decay through Triplet Management 

To demonstrate the effectiveness of such a strategy, we fabricate OLEDs with 

EMLs comprising a tris(8-hydroxyquinoline)aluminum (Alq3) host, doped with 2 vol% of 

the red emitting guest, 4-(dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4H-pyran 

(DCM2). Various concentrations (0 ≤ x ≤ 70 vol%) of 9,10-di(naphtha-2-yl)anthracene 

(ADN) are blended in the EML for triplet management.  

The OLEDs were fabricated in vacuum (~ 10
-7

 Torr) by thermal evaporation on 

pre-patterned indium-tin-oxide (ITO)-coated glass substrates following standard 

procedures [131]. The 25 nm EML is sandwiched between a 35 nm 4,4’-bis[N-(1-

naphthyl)-N-phenyl-amino]-biphenyl (NPD) hole transport layer (HTL), and a 25 nm 

bathocuproine (BCP) electron transport layer. The chemical structures for these 
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molecules are shown in Appendix A. The array of 1 mm
2
 devices is completed by 

depositing 0.8 nm thick LiF and 100 nm thick Al through a shadow mask to define the 

cathodes. The steady state current density-voltage-luminance (J-V-L) characteristics were 

measured at < 0.3 A/cm
2
 using a parameter analyzer and a calibrated Si photodetector. At 

higher currents of 0.1-2.5 A/cm
2
, the electroluminescence (EL) intensity was measured 

using a pulse generator (100 µs pulse width) and an avalanche photodiode whose signal 

was monitored by an oscilloscope.  

Figure 4.2 (a) shows the photoluminescence (PL) spectra of ADN and Alq3 films, 

and the EL spectra for OLEDs with EMLs with x=0 and 50% ADN. The PL spectral 

overlap with the DCM2 absorption (shaded box), and the pure DCM2 OLED emission 

confirm the complete Förster transfer of singlets to the guest. Since the emissions of the 

 

Figure 4.2 (a) Photoluminescence (PL) spectrum of ADN (squares) and 

Alq3 (circles) film, and electroluminescence (EL) spectrum of organic 

light emitting diodes with emission layers consisting of 2% DCM2 

doped Alq3 (solid line) and ADN (50%)/Alq3 (50%) (dashed line). The 

absorption range of DCM2 is in the shaded region. (b) Sensitized triplet 

emission from Alq3, DCM2, and ADN measured at 14 K, the fits are to 

double-peak Gaussian for Alq3 and single-peak Gaussians for the rest. 
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three molecules are from their singlets, their singlet energies are consistent with the 

illustration in Fig. 4.1. 

Due to the negligible triplet emission from the three fluorescent molecules, two 

triplet sensitizers: tris(2-phenylpyridine)Ir(III) (Ir(ppy)3), T = 2.4 eV) [132] and bis(2-

phenylquinoline) (acetylacetonate)Ir(III) (PQIr), T = 2.1 eV) [133] are co-doped with 

these molecules to probe their triplet energies. These sensitizers enable efficient transfer 

of photo-generated triplets to the fluorescent molecules, thereby overcoming the low 

intersystem crossing rate in fluorescent molecules [126]. Photoluminescence at 14 K 

from the blend films: Alq3 (25 vol%)/ Ir(ppy)3 (75 vol%), DCM2 (50 vol%) / PQIr (50%), 

and ADN (50%)/ Ir(ppy)3 (50%) using a N2 pump laser (1 ns pulse) are measured using a 

streak camera. The delayed emission spectra from triplets at 0.4 ms to 9 ms after the 

pump pulses are shown in Fig. 4.2 (b). Triplet energies of Alq3 (1.99 eV), DCM2 (1.74 

eV), and ADN (1.69 eV) are extracted from fits to Gaussians (solid lines). The Alq3 

triplet energy is consistent with that obtained by Tanaka, et al [126].  Therefore, these 

energy assignments are consistent with the requirements in Fig. 4.1. 

Figure 4.3 (a) shows the transient ELs for a series of OLEDs with different ADN 

fractions, x, following the onset of a J = 2 A/cm
2 

current step. For the control device (x = 

0), the EL rapidly reaches a peak and then decays to a steady state intensity ~50% of its 

initial value during the following 20 μs. Since the EL intensity is proportional to the 

singlet density, the transient decay is an indication of STA as discussed in Chapter 3 

[118]. Following the onset of the current pulse, the singlet density rapidly approaches its 

peak in the absence of triplets. As current is maintained, the long lifetime (~ms) triplet 

density increases, resulting in increased STA, and thus a decreased singlet density. 
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Finally, when the guest triplet density approaches steady state, STA also stabilizes, 

giving rise to a reduced singlet density. 

In the presence of the triplet manager, the magnitude of the EL transient decay 

reduces with increasing x, and disappears for x ≥ 50%, indicating the complete 

suppression of STA. Figure 4.3 (b) shows the EL intensity peak-to-steady-state ratio, ρ(J) 

for OLEDs in Fig. 4.3 (a). We find that ρ(J) decreases with increased manager 

concentration, and ρ(J) = 1 for x ≥ 50%, corresponding to zero transient decay. 

Two processes dominate energy transfer in OLEDs with triplet managers, namely 

guest STA, 0G GS T S T    ( 0S  is the ground state), and host-to-guest triplet Dexter 

transfer, H GT T  (where HT  includes both Alq3 and ADN triplets). We model the EL 

using: 

 

Figure 4.3 (a) Electroluminescence (EL) transients of OLEDs at various 

concentrations of ADN as a triplet manager pumped at 2A/cm
2
 using 

rectangular current pulses. Lines are fits to the model. (b) Intensity peak-

to-steady-state ratio (  on left axis) as a function of current density for 

OLEDs with different triplet manager concentrations. The corresponding 

guest triplet densities ( GTN  on right axis) are calculated as in text. 

 


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   (4.3) 

where  is the charge imbalance factor [131],  is electron charge,  the EML 

thickness assuming that excitons are uniformly distributed across this layer,  is the 

singlet natural decay lifetime, and  is the STA rate.  Also, HGk  and L  are the host-to-

guest triplet transfer rate coefficient and van der Waals radius, respectively, and ( )GTN J  

is the saturation guest T population; i.e. when ( ) ( )G GTT t N J , the transfer stops and 

0GdT dt  .  This treatment assumes 25% of injected charges form singlets [55].  The 

exponential factors are due to diffusive transfer of excitons between molecules consistent 

with the Dexter process [134].  Eventually, HT  saturates due to triplet-triplet annihilation 

(TTA) and natural decay, but these processes are much slower [118] (~1 ms) than the 

time window of interest (~30 μs), and are thus neglected. Singlet-singlet annihilation is 

not considered since it is negligible at such low densities [135, 136].  Finally, SPA is also 

possible; however, it cannot result in the  observed EL transients since the polaron 

density reaches steady state within tens of ns following the onset of the current pulse 

[118].  

Assuming the boundary condition that TG = 0 at t = 0, and TG = NGT as t®∞ in 

Eq. (4.1), ρ(J) is: 

b e d

S

STk
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( ) 1 ( )S ST GTJ k N J     

    

(4.4) 

The external quantum efficiency roll-off is then given by 0( ) ( ) ( )C TEQE J J J   , where 

0  is EQE with perfect charge balance and no singlet quenching, ( )C J  is the roll-off due 

to charge imbalance and SPA, and  ( ) 1 ( )T J J   is the roll-off due to STA. 

From the PL transients measured for 50nm thick films using a N2 laser pump, τs = 

1.5 ± 0.2 ns for DCM2, independent of the manager concentration. For a 2 vol% DCM2 

concentration, L ≈ 3 nm as determined from the average distance between dopant 

molecules. With the constraint on )(JNGT  given by Eq. (4.4), and for perfect charge 

balance (b = 1), the EL transients are fit by Eq. (4.1) - (4.3) as shown by the solid lines in 

Fig. 4.3 (a). From the fits, STk = 1.5×10
-10 

cm
3
/s, independent of host and manager 

concentrations, and is similar to previous values obtained [4, 118] for DCM:Alq3. Also, 

we find HGk = 2.5×10
7 
s

-1
 for x = 0 and 10%, and HGk = 3×10

8 
s

-1
 for x = 30% ADN. 

With these fits, we obtain GTN  using Eq. (4.4), with results also indicated in Fig. 

2(b). Clearly, the introduction of the triplet manager substantially reduces GTN .  For 

example, at J =0.5-2.5 A/cm
2
, ( )GTN J

 
is reduced from 4×10

18 
cm

-3
 (x= 0) to < 3×10

17 

cm
-3 

(x=30%) and 0 cm
-3

 (x ≥ 50%).  

 

4.3 Enhanced OLEDs Efficiency through Triplet Management 

Since transient EL turn-on decay and thus STA are suppressed by using ADN as a 

triplet manager, it is expected that the fluorescent OLED efficiency should be improved 
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as a result. Figure 4.4 (a) shows EQE(J) for different ADN concentrations. For x = 0-50%, 

the EQEs at low J (< 10
-4

 A/cm
2
) are similar at ~3%, while the EQE roll-off with J is 

reduced at higher x.  At high currents (J = 0.1-2.5 A/cm
2
), the EQE at x = 50% is 

enhanced by more than 100% from x = 0 due to reduced roll-off. The separate 

contributions from polaron- and triplet-induced roll-off are plotted in Fig. 4.4 (b). Here, 

ηT(J) is obtained from ρ(J), while ηC(J) is solved assuming η0 = 3% obtained at J ®0 . 

From Fig. 4.4 (b), reduced STA is the major contribution for the enhanced EQE at x = 

50%, while polaron-induced roll-off is also slightly reduced at x = 50% due to bipolar 

charge transport in ADN. That is, while both ADN and Alq3 are good electron 

transporting materials, ADN has a higher hole mobility [137]. This can result in more 

efficient recombination, and thus a smaller free carrier density in the EML.  In turn, this 

reduces the SPA and thus slightly increases ηC(J). 

 

Figure 4.4 (a) External quantum efficiency (EQE) of triplet-managed 

OLEDs vs. of ADN concentration (x). The filled symbols are from 

steady-state measurements, and open symbols are from transient 

measurements. (b) Triplet (ηT) and polaron (ηC) induced EQE roll-off for 

x=0 and 50% OLEDs obtained from Eq. (4.4). 
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In contrast, EQE decreases when x increases from 50% to 70%, though in both 

cases, ρ = 1. This is attributed to reduced ηC(J) at x=70% due to charge imbalance. Since 

the NPD lowest unoccupied molecular orbital (LUMO) energy is at 2.3 eV [124], the 

electron blocking barrier at the HTL/EML interface is smaller for ADN (with a LUMO at 

2.6 eV) than that of Alq3 (LUMO = 3.1eV).  Thus at high ADN concentrations, electrons 

preferentially transport on ADN and more readily escape from the EML without 

recombination. Thus, the host (Alq3) cannot be completely replaced by triplet manager to 

ensure that charge balance is maintained.  

Liu et al. [138] have used ADN and rubrene as co-hosts in an OLED based on the 

fluorophore, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-

pyran (DCJTB), doped into Alq3 to reduce the high intensity, steady state EQE roll-off.  

In that work, the enhanced EQE was explained by reduced SPA.  Our analysis differs 

from that of Liu, et al. due to the measurement of the transient efficiency.  This shows the 

 

Figure 4.5 (a) EL transients for OLEDs with different rubrene 

concentrations (x%) as a triplet manager measured at 2 A/cm
2
. (b) EQE 

of the triplet managed devices. 
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reduced STA is the principal cause of the enhanced EQE. Indeed, it is the transient EL 

data that provides the essential insights that lead to the triplet management concept 

presented here. 

Rubrene has a triplet energy of 1.1 eV [139], which also satisfies the requirement 

as a triplet manager. Figure 4.5 shows the result of using rubrene at different doping 

concentrations in the EMLs of the same architecture as for ADN. From the transient EL 

(Figure 4.5 (a)), the EL turn-on decay is reduced with increasing the rubrene 

concentration. Also, EQE for triplet managed devices show significant improvement over 

the control device, consistent with our model. 

In conclusion, we have demonstrated that triplet managers blended into the EML 

of conventional fluorescent OLEDs can lead to a significant increase in quantum 

efficiency at high current density. The manager molecules promote efficient triplet 

transfer from the guest, thereby reducing STA. Such a management strategy can be 

generally applied to fluorescent OLEDs that suffer STA to achieve very high luminance.  
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Chapter 5  

Organic Semiconductor Lasers (OSLs) With  

a Continuous-wave Threshold 

Following the demonstration of suppressed STA and thus improved EQE in 

fluorescent OLEDs through triplet management in Chapter 4, we show in this chapter that 

the same strategy leads to a significantly extended lasing duration in organic 

semiconductor lasers (OSLs). Indeed, triplets in OSLs not only annihilate with singlets 

(thus decreasing the cavity gain) but also absorb the lasing photons (thus introducing an 

additional cavity optical loss). Therefore, triplet-induced losses are more detrimental in 

OSLs than in fluorescent OLEDs. In section 5.1, we derive the existence of a continuous-

wave (CW) lasing threshold unique to OSLs based on the saturation of triplet-induced 

losses. Then, experiments on OSLs with extended lasing durations through triplet 

management are presented. Finally, using the triplet management strategy, we show an 

experimental demonstration of a triplet managed OSL operating above the CW lasing 

threshold. The work presented in this chapter solves a long existing problem of triplet 

losses, thus removing a significant barrier toward the demonstration of an electrically 

pumped organic laser. 
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5.1 Theory for Continuous-wave (CW) Lasing in OSLs 

Optically pumped organic semiconductor lasers (OSLs) with low thresholds and 

wide spectral tuning ranges have attracted interest since their demonstration 15 years ago 

[63-65, 140]. A variety of pulsed optical pump sources has been adopted; such as 

nitrogen laser [65, 140-142], pulsed Nd:YAG lasers [14, 63, 64, 143, 144], inorganic 

laser diodes and LEDs [6, 141]. However, a significant obstacle to the application of 

OSLs has been their limitation to only pulsed operation with a maximum duration of 

several tens of nanoseconds [4, 66, 67]. This limitation is imposed by the build-up of 

non-emissive triplet excitons in the gain region that are generated from intersystem 

crossing (ISC) of radiative singlet excitons [4, 70, 115]. Since the relaxation from triplet-

to-ground state is quantum mechanically forbidden [134], the lifetime of triplets is large 

(~ms) compared to singlets (~ns) and the triplet density can accumulate over time. The 

high triplet density, together with overlapping singlet emission and triplet absorption, 

results in singlet triplet annihilation (STA) and photon absorption that ultimately shut 

down lasing. 

To understand the lasing duration limitation in OSLs, we model the lasing 

dynamics through the following coupled density dynamics of singlets (S), host triplets 

(TH), guest triplets (TG), and lasing mode photons (P), 

,    (5.1) 

,    (5.2) 

,     (5.3) 
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,    (5.4) 

where t is time,  is the fraction of the pump emission absorbed by the organic film,  is 

the pump intensity,  is the pump photon energy,  is the OSL gain medium thickness, 

 is the guest S natural decay rate,  is  the host ISC rate,  is the guest S-T 

annihilation rate,  is the gain,  is the stimulated emission cross-section,  

is the speed of light, and neff and  are the effective refractive index and optical 

confinement factor for the waveguide structure [145].  Also,  is the host-guest Dexter 

transfer coefficient,  is the guest-host van der Waals radius,  is the guest triplet 

saturation density,  is the cavity loss without contributions from triplet absorption, 

TT, and  is the guest triplet absorption cross-section, and  is the 

spontaneous emission factor [146]. 

Then, the lasing condition for an OSL is calculated by its net gain, 

    (5.5)  

thereby determining the threshold singlet density dynamics, S(t)= STH(t). In Fig. 5.1 (a), 

 CAV TT G S

eff

dP c
T P k S

dt n
       
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Table 5.1 Parameters for the lasing threshold calculation in Figure 5.1 

d (nm) 200 L (nm) 1 

kS (s
-1

) 6.7×10
8
 N0 (cm

-3
) 9.2×10

17
 

kISC (s
-1

) 1.3×10
7
 αCAV (cm

-1
) 10.4 

kST (cm
3
s

-1
) 2×10

-12
 Γ 0.69 

neff 1.6 σTT (cm
2
) 4.1×10

-17
 

kHG (s
-1

) 5×10
15

 σstim (cm
2
) 2.3×10

-16
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we calculate STH(t) using Eq. (5.1) – (5.5) and parameters given in Table 5.1. It is evident 

that STH(t) is an increasing function of time, as expected from the dynamics of TG(t). 

Interestingly, two distinct threshold singlet densities emerge, with a CW threshold 

density ( ) occurring at a density larger than that needed for pulsed lasing ( ). As t

0, triplet loss , giving . With time,  increases, 

concomitantly increasing the associated loss until . Finally,  reaches its 

saturation density, , at which point the triplet loss can no longer increase, giving 

.  

Neglecting the change in singlet density due to stimulated emission (see Eq. (5.1)), 

the CW threshold is approximately:  

CWS PSS

® TT G CAVT    PS CAV stimS    GT

TT G CAVT   GT

0N

   0CW CAV TT stimS N    

 

Figure 5.1 (a) Calculated singlet density threshold STH as a function of 

time after the turn-on of a step optical pump for parameters listed in 

Table 5.1. Note that two quasi-stable threshold densities exist: the pulsed 

threshold density SPS and the continuous-wave threshold density SCW. (b) 

Calculated lasing duration as a function of pump intensity.  
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compared to the pulse threshold 0( 0)PS CWI I N  . From Eq. (5.6),  is a quadratic 

function of guest triplet saturation density:  is from STA that reduces the gain; and 

 is due to triplet absorption increasing loss. From the parameters in Table 5.1, 

ICW = 2.4 kW/cm
2
. Figure 5.1 (b) calculates the lasing duration as a function of pump 

intensities for an OSL with parameters in Table 5.1, and the existence of the two 

thresholds is evident from the plot. 

 We note that the CW threshold described by Eq. (5.6) is general to all OSLs due 

to the temporal increase and saturation of triplet induced losses. However, no observation 

of CW lasing in OSLs was reported, due to the large ICW (> 30 kW/cm
2
) in conventional 

OSLs caused by a large triplet saturation density. As we show in the next section, this 

limitation can be overcome by use of triplet management in the gain medium of an OSL.  

5.2 Fabrication and Measurement of OSLs 

Organic lasers were fabricated by depositing organic thin films on grating 

substrates formed on SiO2-on-Si substrates using interference lithography followed by a 

wet etch process. The workflow for grating substrate fabrication is as follows. The first 

step is to spincast diluted photo resist (S1805 diluted with thinner at 1/6 ratio) at a 

spinning rate of ~ 5000 rpm onto a 2µm-SiO2-on-Si substrate. The thickness of the photo 

resist is 30 - 50 nm. The second step is expose the substrate to an interference setup using 

CWI

0STk N

0TT N
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an Argon ion laser and Lloyd mirror at the wavelength λ = 457 nm and the intensity of 

approximately 1 mW/cm
2
. The third step is to develop the photo resist in the developer 

MF-319 for 6 sec. The fourth step is to wet-etch the substrate in buffered oxide etchant 

(JTB5334-03) for 50 sec and rinse with de-ionized water. The final step is to rinse the 

substrate in acetone and then isopropanol to remove the photo resist. Atomic force 

microscope (AFM) images of representative gratings before and after the web-etch 

process is shown in Fig. 5.2.  

Figure 5.3 shows the interference setup. The single wavelength output of the 

Argon ion laser is first filtered with a spatial filter to yield a clean optical wave-front. 

Subsequently, the direct beam interferes with the reflected beam (by a Lloyd mirror [69]) 

at the surface of the substrate under exposure, and the fringe period   is determined by 

 

Figure 5.2 Atomic Force Microscope (AFM) images of the grating 

substrate before (a) and after (b) the wet-etch process. 
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2sin




  , where   is the laser wavelength, and 2 is the angle between the 

interference beams. 

As illustrated in Fig. 5.4 (a), the OSL on 2
nd

 order distributed feedback (DFB) 

grating is pumped through an ultraviolet laser at approximately 30
o
 angle from the 

substrate normal direction. The emission from the OSL is measured by a photodetector or 

a spectrometer.  

5.3 Extended Lasing Duration in OSLs with Triplet Management 

The concept of triplet management in OSLs is identical to fluorescent OLEDs as 

discussed in section 4.1. For this demonstration, we use identical host, guest, and triplet 

manager molecules as in Chapter 4. The OSLs gain medium consists of the manager, 

 

Figure 5.3 Interference exposure setup using an Argon ion laser and a 

Lloyd mirror for grating fabrication. 
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9,10-di(naphtha-2-yl)anthracene (ADN), co-deposited into the conventional guest-host 

gain medium consisting of 2 vol% of the red emitting 4-(dicyanomethylene)-2-methyl-6-

julolidyl-9-enyl-4H-pyran (DCM2) in  tris(8-hydroxyquinoline) aluminum (Alq3). The 

chemical structures for these molecules are shown in Appendix A. 

The manager concentration in (100-x) vol% Alq3 is x vol% ADN (x=0, 10, 30, 50, 

70, 100). Blended films were deposited by thermal evaporation in high vacuum (~ 10
-7

 

Torr) on quartz, Si, and 2 μm thick SiO2-on-Si substrates for characterizing absorption, 

photoluminescence (PL), and triplet absorption, respectively. The same films were 

deposited on gratings with a period of (430 ± 5) nm and a 50 nm depth on the SiO2-on-Si 

to form DFB OSLs. Output from a 0.6 W laser diode at wavelength λ=405 nm was 

focused to a 150 μm x 250 μm spot to optically pump the thin film. Alq3 and ADN pure 

film absorption coefficients were measured to be 4.8×10
4
 cm

-1
 and 9.1×10

-4
 cm

-1
 at λ= 

405 nm, and are assumed to contribute to the total blend film absorption proportionate to 

 

Figure 5.4 (a) Structure and operation of the organic semiconductor laser 

(OSLs) deposited on 2
nd

 order SiO2-on-Si distributed feedback grating. 

(b) Setup for measuring triplet absorption in an organic thin film. 
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their volume. All measurements were performed in N2 ambient to minimize film 

degradation. 

Figure 5.5 shows the representative PL, amplified spontaneous emission (ASE), 

and lasing spectra from the gain medium with no triplet manager (x = 0), and mixing of 

triplet manager only has a minor effect on these spectra. The gain spectrum of OSLs 

closely resembles the ASE spectrum [147], and the period Λ of the grating substrate (430 

nm) for OSLs is chosen to match the peak of the ASE spectrum through [66], 

2 effm n           (5.7) 

where m = 2 is chosen to achieve a second order surface emitting OSL. 

To confirm the reduction of detrimental triplets on DCM2 through triplet 

management, we measure triplet absorption through spatially separated pump probe 

experiment proposed by Lehnhardt et al. [148] (see Fig. 5.4 (b)). The pump pulse from a 

 

Figure 5.5 Photoluminescence (PL), amplified spontaneous emission 

(ASE), and lasing spectra of 2 vol% DCM2 doped Alq3 thin film. 
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λ= 405 nm laser diode has 50 μs duration, saturating the guest triplet; the probe pulse 

from a N2 (1.5 ns width) laser is applied 100 ns after the turn-off of the pump. The film 

PL is collected from the film edge by either a streak camera (Hamamatsu C4334) for 

absorption spectrum αTT(λ) measurement, or through a λ = 680±5 nm band-pass filter by 

 

Figure 5.6 Probe pulse PL spectrum with and without the pump pulse for 

x=0 (a) and x=70 (b) films. The 200nm film was grown on SiO2 

(2μm)/Si substrate. 

 

Figure 5.7 Absorption coefficient calculated for x = 0 and 70 from the 

data in Fig. 5.6. 
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an avalanche photodiode (C5658) for αTT near the lasing wavelength with a smaller error. 

Figure 5.6 shows the PL intensity from the probe with and without the pump pulse for x= 

0 and 70 films. We can see the triplet absorption is significantly reduced with introducing 

the triplet manager. From Fig. 5.6, two similar broad and featureless αTT(λ) are obtained 

in Fig. 5.7, confirming that the absorptions are from the same excited state (guest triplet). 

Figures 5.8 (a) and (b) show the PL and lasing transients pumped at 1.6 kW/cm
2
, 

respectively. From Fig. 5.8 (a), the Alq3 host undergoes a 55% reduction in PL to its 

steady state value within 30 μs of the onset of the pump. Similar to the transient 

electroluminescence decay discussed in Chapter 3 and 4, this intensity roll-off is due to 

singlet quenching from STA. [4, 118] That is, following the onset, the singlet density 

rapidly reaches a peak and subsequently decays due to annihilation by the slowly 

 

Figure 5.8 (a) PL and (b) lasing transients measured at 1.6 kW/cm
2
 pump 

intensity for different host blends. The PL transients are normalized by 

the peak intensities, and lasing transients are normalized to 1 for x = 0, 

10, and 30 ADN blends, and to 5 for x = 50 and 70. The fits are obtained 

by the model described in section 5.1 with parameters summarized in 

Table 5.2. Inset: Lasing spectrum of an x = 70 OSL. 
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increasing triplet density [118]. The existence of the long-term steady state PL intensity 

below its peak suggests saturation of the guest triplets. By including the ADN manger 

into the host blend with x = 10 to 70, the PL transient quenching is reduced to 17%. 

Further increasing to x > 70 can eliminate quenching entirely. We infer, therefore, that 

triplets are transferred from Alq3 to DCM2, while the transfer from ADN to DCM2 is 

forbidden. Note, however, that morphology degradation under high pump intensity 

occurs for x > 50, consistent with the previous observation of morphological instability of 

ADN [149].  

In Fig. 5.8 (b), more than a ten-fold increase in lasing durations (from 

approximately 400 ns to 4.5 μs) is observed when x increases from 0 to 70.  Lasing is not 

observed for x = 100 due to degradation. The threshold pulsed pump intensity, PSI

(characterized by an abrupt spectral narrowing from > 30 nm to < 0.5 nm, and a 

significant increase in the slope efficiency) was obtained using a 30 ns pump pulse (Table 

5.2). 

To understand quantitatively the PL and lasing dynamics, we fit the transients in 

Fig. 5.8 to Eq. (5.1) – (5.4), using the parameters provided in Table 5.2. Free parameters 

, , , and are used in fitting the PL transients in Fig. 5.8 (a). For all films, 

kST = 2.0×10
10

 cm
3
/s, as expected for guest STA due to resonant energy transfer that is 

only dependent on DCM2 singlet emission and triplet absorption. As x increases, fewer 

triplets are transferred from Alq3 to DCM2 and more are trapped on ADN; thus  

decreases from 5.0×10
18 

cm
-3

 to 9.2×10
17 

cm
-3

 when x = 70, leading to decreased PL 

transient roll-off. The ~10
5
 increase in kHG seems surprising, however, the Dexter transfer 

STk ISCk HGk 0N

0N
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rate is determined by 3

0

2 1
expDex HG

G

k k
L N T

 
  

 
. Thus, for TG =0.7No, Dexk  only 

increases from 7.6×10
4
/s (x=0) to 4.4×10

5
/s (x=70), consistent with the shorter PL 

quenching time for higher x.  

To model the lasing transients in Fig. 5.8 (b), three additional parameters: , 

, and  are required. Here, 0TT TT N   is shown in Table 1 at λ= 680 nm. 

Furthermore, , where ( )PS PS p SS I e dk  is the pulse threshold singlet 

density, where triplet build-up under short excitation pulses is negligible. With these 

TT

stim CAV

CAV stim PSS  

Table 5.2 Parameters for analyzing the PL and lasing transients 

Common fixed fit parameters 

d (nm) 200 L (nm) 1 neff 1.6 

kS (s
-1

) 6.7×10
8
 Γ 0.69   

Parameters for PL transient fits in Fig. 5.5 (a) 

 x=0 x=10 x=30 x=50 x=70 

kST (cm
3
s

-1
) 2.0×10

-12
 2.0×10

-12
 2.0×10

-12
 2.0×10

-12
 2.0×10

-12
 

N0 (10
18 

cm
-3

) 5.0±0.4 3.9±0.3 2.8±0.3 1.5±0.2 0.92±0.08 

kHG (10
10 

s
-1

) 4.0 3.5 13 3.0×10
3
 3.0×10

5
 

kISC (10
7 
s

-1
) 3.3 2.6 2.3 1.7 1.3 

Parameters for the lasing transient fit in Fig. 5.5 (b) 

 x=0 x=10 x=30 x=50 x=70 

σTT (cm
2
) 4.0±0.3 3.8±0.3 3.6±0.4 4.3±0.6 4.1±0.4 

σstim (cm
2
) 1.9 2.0 2.4 2.1 2.3 

Measured pulsed lasing and calculated CW lasing thresholds 

 x=0 x=10 x=30 x=50 x=70 

IPS (kW/cm
2
) 0.93 0.75 0.72 0.45 0.43 

ICW (kW/cm
2
) 32 19 8.8 3.7 2.2 
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measurements and assumptions, the lasing transients are fit using only a single free 

parameter . We note that the effect of ADN as a triplet manager lies in its ability to 

decrease , while  and remain unchanged since they are intrinsic to DCM2.  

5.4 Observation of the CW Threshold in an OSL 

From the parameters in Table 5.2, and Eq. (5.6), the CW threshold can be 

calculated for the OSLs: ICW = 32, 19, 8.8, 3.7, and 2.2 kW/cm
2
 for x =0, 10, 30, 50, and 

70 respectively. Thus, due to organic film damage at high optical pump intensity, the 

high ICW for the conventional OSL (i.e. x = 0) explains the lack of previous report on CW 

lasing in OSLs. In contrast, for OSLs with triplet management, ICW can be significantly 

reduced, thus allowing for a direct observation. 

To test the existence of this CW regime, we excited an x= 70 OSL at 2.4 kW/cm
2
, 

or just above the calculated value of  = 2.2 kW/cm
2
. Figure 5.9 shows a streak 

camera image of this emission over 20 s duration. Lasing intensity becomes weaker 

with time (leading to the apparent spectral narrowing) but does not turn off at the end of 

the long pulse, consistent with CW lasing theory. Indeed, we observed nearly 100 μs 

lasing duration when pumped by a single pulse, although film degradation due to high 

optical pump intensities ultimately limits the lasing duration. Hence, while this OSL has 

clearly exceeded its CW threshold, the laser operates quasi-CW due to material 

degradation. 

stim

0N STk TT

CWI
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Interestingly, the lasing wavelength shows blue-shift from 688.1 nm to 687.7 

nm during the lasing period. Wavelength shifts have been observed in liquid dye lasers 

[150] where they have been attributed to the competition of triplet absorption with the 

gain spectrum. In thin film single mode DFB OSLs where the triplet absorption is largely 

 

 

Figure 5.9 Lasing transients at a pump intensity I = 2.4 kW/cm
2
 (above 

the CW threshold) measured by a streak camera. The two figures are 

measurements from two OSLs with x=70 and slightly different organic 

film thickness (~200 nm), thus explaining the slightly different lasing 

wavelength. 
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constant, the shift is more likely due to changes in the effective refractive index with 

increasing T density.  

We note that  can be further reduced and the lasing time extended by using a 

more stable, lower triplet energy manager, and with a better match between the manager 

emission and the guest absorption than is achieved with ADN.  Then, the smaller 

saturation guest triplet density contributes negligible loss, in which case CW PSI I . The 

design concept can be applied to the eventual development of electrically pumped 

organic semiconductor lasers, where 75% of the injected electrons result in triplets [55] 

compared to only a few percent in optical pumping. 

In conclusion, we show the existence of a CW threshold at a higher pump 

intensity than the pulsed threshold observed in all previous OSL studies. Based on our 

analysis, we demonstrate a lasing duration of up to 100 μs by introducing a triplet 

manager into the OSL gain medium. The reduced triplet-induced loss of the triplet 

managed OSL decreases  from 32 kW/cm
2
 to a more practical value of 2.2 kW/cm

2
 

observed here.  

  

CWI

CWI
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Chapter 6  

Triplet Contributions to Fluorescent OLED Efficiency 

In Chapters 3 and 4, it is shown that non-radiative triplets in fluorescent OLEDs 

can lead to decreased efficiency due to singlet-triplet annihilation (STA). In contrast, 

triplet-triplet annihilation (TTA) results in the generation of radiative singlets, thus 

improving the fluorescent OLED efficiency. In this chapter, we study the trade-off 

between the two processes in a fluorescent OLED comprising a 

tetraphenyldibenzoperiflanthene (DBP) doped rubrene emissive layer with efficient TTA. 

In Section 6.1, we show experimental observation of both STA and TTA in the 

fluorescent OLED through transient electroluminescence, which are analyzed by the 

exciton dynamics model. The high OLED peak external quantum efficiency of 6.7% and 

rapid efficiency roll-off with current density are quantitatively explained by TTA and 

STA, respectively. In section 6.2, we introduce the concept of effective triplet current 

density as a figure of merit to evaluate the role of triplets in fluorescent OLEDs. The 

model suggests optimal materials properties needed for achieving high efficiency at high 

brightness in fluorescent OLEDs. 
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6.1 Fluorescent OLEDs with both STA and TTA 

Recently, two types of exciton interactions, triplet-triplet annihilation (TTA), and 

singlet-triplet annihilation (STA) were separately found to significantly influence the 

efficiency of fluorescent OLEDs. TTA [119, 151] can generate singlets, thus increasing 

the theoretical limit of the IQE from 25%, to a maximum of 62.5% [57, 152-154]. On the 

other hand, STA [4, 155] reduces the singlet density, thereby lowering the efficiency by 

as much as 50% at high brightness [118, 156]. However, the relative importance of these 

two effects has not, to our knowledge, been studied, and the role of triplets remains 

largely unexplained.  

Here, we study both TTA and STA in a fluorescent OLED based on its 

electroluminescence (EL) transients. We find that triplets can increase OLED efficiency 

via TTA at low current density (J), while it decreases the efficiency by STA at high J.  

Triplet-triplet annihilation follows one of two pathways [107, 157, 158]:  

       (6.1) 

       (6.2) 

where T  is the triplet, S  is the singlet,  is the molecular ground state. By 

conservation of total spin angular momentum, formation of quintets is also an allowed 

process in TTA; however, since the quintet energy is usually significantly higher than 

twice the triplet energy, it is typically forbidden at room temperature [56, 157, 158]. The 

rates governing the relative importance of processes (6.1) and (6.2) are  and 

, respectively, where  is the fraction of annihilation events that follow 

processes (6.1) vs. (6.2),  is the TTA rate constant. Process (6.1) contributes to 

0T T S S  

0T T T S  

0S

TTk

(1 ) TTk 

TTk
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fluorescent OLED efficiency by creating additional singlets from non-radiative triplets. 

Several recent reports [56, 57, 152] have shown > 0, resulting in fluorescent OLEDs 

whose IQE exceed the 25% spin-statistical limit [55].  

Additionally, STA is governed by [107]:  

.       (6.3) 

with the rate constant of . Process (6.1) occurs at rate 
2

TTk T ; process (6.2) at rate 

2(1 ) TTk T ; and process (6.3) at rate STk ST . Thus, the singlet and triplet density 

dynamics are described by: 

    (6.4) 

,     (6.5) 

where  is the charge balance factor [89, 131], e is the electron charge,  is the 

charge recombination layer  (i.e. emissive layer) thickness, and  and  are the singlet 

and triplet natural decay rates. In steady state, the external quantum efficiency, EQE can 

then be calculated from  to give: 

,     (6.6) 

where  is the out-coupling efficiency [53] and  is the radiative efficiency of the 

singlet.  

In rubrene (Fig. 6.1), the singlet energy (ES ~2.2 eV) is twice the triplet energy 

(ET ~1.1 eV), thereby enabling a high, resonant TTA (through process (6.1)) efficiency 

[56, 159]. Hence, in this work, tetraphenyldibenzoperiflanthene (DBP) [160, 161] is 

doped at 1 vol% in rubrene as the OLED emissive layer. During operation, excitons are 



0T S T S  

STk

2( )
4

S ST TT

dS J
J k S k ST k T

dt ed
    

23
( ) (1 )

4
T TT

dT J
J k T k T

dt ed
    

( )J d

Sk Tk

( , )S t J

( , )
( )

( )

S
OUT S

k S t J
EQE J

J ed
 

 


OUT S
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formed on rubrene. Then, singlets can resonantly (by Förster process as in Eq. (2.25)) 

transfer to DBP and emit. Triplets are trapped on rubrene because its triplet energy is 

~0.2 eV lower than DBP [56]. The 1 mm
2
 square OLEDs were grown on indium-tin-

oxide (ITO, as the anode) coated glass substrate by thermal evaporation of organic 

molecules [34] at a base pressure < 5x10
-7

 Torr. The OLED consists of a 40 nm thick 

4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl hole transport layer, a 35 nm thick 

emissive layer, a 40 nm thick rubrene electron transport layer, a 5 nm thick 

bathophenanthroline electron injection layer, and a 0.8 nm thick LiF layer followed by a 

80 nm thick Al cathode. The chemical structures for the molecules are shown in 

Appendix A.  

The EL transients following current density steps of magnitudes ranging from 4 

mA/cm
2
 to 57 A/cm

2
, and with rise and fall times of < 20 ns, were measured by an 

avalanche photodetector and an oscilloscope with < 5 ns time resolution. The current 

pulse widths were monotonically decreased from 100 µs at  = 4 mA/cm
2
 to 5 µs at = J J

 

Figure 6.1 Energetics of a DBP doped rubrene mixture.  In rubrene, the 

singlet energy, ES, is twice that of the triplet (2ET).  In this case, singlet 

formation through triplet-triplet annihilation (TTA) is a resonant process. 

The use of a DBP dopant allows the Förster transfer of singlets from 

rubrene to DBP, which dominates over rubrene singlet fission. 
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57 A/cm
2
 to ensure the OLED EL intensity reached steady state, but did not undergo 

thermal or electrical breakdown. The emission intensity at = 4 mA/cm
2
 was calibrated 

using a Si photodetector whose area is significantly larger than that of the OLED [122]. 

All measurements were performed under N2 ambient. 

The OLED shows a peak  = 6.7% at = 75 mA/cm
2
 (Fig. 6.2 (a)), clearly 

exceeding the spin statistically limited  = 5% [162] assuming a random orientation 

of molecular dipoles. The  undergoes a rapid roll-off with increasing , decreasing 

to only 0.9% at 57 A/cm
2
. The EL spectrum of the OLED shows pure DBP emission with 

J

EQE J

EQE

EQE J

 

Figure 6.2 (a) External quantum efficiency (EQE, squares) and charge 

balance factor (  , circles) vs. current density, J for the organic light 

emitting diode (OLED). The lines correspond to the calculated EQE 

from the model described in text; i.e. with both TTA and singlet-triplet 

annihilation (STA) present (solid line), in the absence of TTA (dotted 

line), and in the absence of STA (dashed line). (b) Emission spectra for 

the OLED at different J. 
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a peak wavelength of = 610 nm [161], as shown in Fig. 6.2 (b), with almost no change 

over the entire range of  studied.   

To understand the high peak  followed by a rapid roll-off, we investigated 

the transient EL response. Figure 6.3 shows three representative EL transients at 0.023, 

11.5 and 49 A/cm
2
. The EL turn-on transients have distinct behaviors at low (Fig. 6.3 (a), 

J

EQE

 

Figure 6.3 Electroluminescence (EL) turn-on (left graphs) and turn-off 

(right graphs) transients (grey squares) for the DBP doped rubrene 

OLED under a current density pulse at (a) J=0.023 A/cm
2
; (b) J=11.5 

A/cm
2
; and (c) J=49 A/cm

2
. The red dashed lines are EL intensities 

assumed to be proportional to the singlet densities, and black solid lines 

are the corresponding triplet densities. 
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left) vs. high (Fig. 6.3 (c), left) current densities. At low J, the EL intensity gradually 

increases to a steady state over tens of microseconds. This is consistent with TTA since 

the triplet density slowly increases over this time scale. In contrast, the transient in Fig. 

6.3 (c) rapidly peaks and then gradually decays to a steady-state intensity approximately 

70% of its peak value. This is a signature of STA [118], whereby the singlet density 

decreases with increasing triplet density. Figure 6.3 (b), left shows a mixture of both TTA 

and STA. The EL turn-off transients for all current densities show delayed fluorescence 

(right graphs in Fig. 6.3) due to TTA [56, 118]. The steady-state EL intensity, SSEL , and 

the initial delayed fluorescence intensity, TTAEL  (see Fig. 6.3 (a), right), are related by the 

ratio, ( ) /TTA SSJ EL EL   (as plotted in Fig. 6.4), which characterizes the fraction of TTA-

generated-emission relative to the total emission intensity.  

To quantitatively determine the relative contributions of TTA and STA, Eq’s. (6.4) 

and (6.5) are fit to the experimental EL transients (where EL intensity is proportional to 

) over 4 mA/cm
2
 < < 57 A/cm

2
. In these fits, the variables ,

 
 , and , are 

unknown, while , , and  can be independently measured. Here, = 

(2.6±0.1 ns)
-1

 is obtained from the transient photoluminescence data for a 1% DBP: 

rubrene film [163]. Also, the rate  = (35±5 s)
-1

 is determined from the triplet 

lifetime, equal to twice the EL decay time constant at = 4 mA/cm
2
 at >50 μs from the 

current turn-off when TTA is much less efficient than the triplet natural decay [119]. 

Finally,  is obtained from  (see Fig. 6.4) using Eq’s. (6.4) and 

(6.5): 

S J ( )J
STk TTk

Sk Tk  1/S Sk 

1/T Tk 

J

0.53  ( ) 0.51J  
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2

2 2

3
( )

(1 ) 3

TT

T TT TT

k T
J

k T k T k T




 


  
     (6.7) 

where, as ,  is negligible, leading to
 

. 

According to Giebink, et al. [131],  decreases with increasing ; hence we 

assume at J = 4 mA/cm
2
. From these measurements and assumptions, we can 

accurately determine , , and  by fitting the EL transients for all . 

The modeled EL transients closely follow the data in Fig. 6.3. By including both 

TTA and STA, the model fits the entire EL transient rather than just the turn-off, as in 

J 
Tk T

3
lim

4 1J









( )J J

( ) 1J 

( )J
STk TTk J

 

Figure 6.4 Calculated singlet (S) and triplet (T) densities (left axis), 

experimental (squares) and calculated (solid line) ratios of the delayed 

fluorescence EL to total EL ( , right axis), and the ratio  of the 

effective triplet current density ( ) to . Inset: Maximum internal 

quantum efficiency (IQEmax) for fluorescent OLEDs vs. the TTA 

generation ratio ( ). The square shows IQEmax for the DBP doped 

rubrene OLED of this work. 
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previous reports [56, 57, 153]. From the fits, we find = 7.110
-11

 cm
-3

s
-1

, = 

6.010
-14

 cm
-3

s
-1

, and  whose values are shown in Fig. 6.2 (a) (open circles). Since 

triplets are trapped on rubrene, DBP singlets are efficiently quenched by rubrene triplets. 

Also, since TTA is a short-range Dexter interaction, the high  in rubrene suggests a 

high triplet diffusivity [107]. Finally, we find  ≈ 1 except at  > 1 A/cm
2
, after 

which it decreases due to charge leakage through the emissive layer, and field-induced 

exciton dissociation [131]. The leakage is evident in Fig. 6.2 (b), where the emission 

spectrum shows noticeable increase in the contribution from rubrene (at = 550nm) [164] 

at J = 62 A/cm
2
. We note that exciton-polaron annihilation [107, 115, 118] is also 

possible in fluorescent OLEDs; however, since inclusion of the process is not needed in 

the fits to the data, it is not anticipated to play a significant role.   

With these experimentally determined rates, steady-state values for  and  are 

calculated and shown in Fig. 6.4. The model  in Fig. 6.2 (a) is then derived from 

 according to Eq. (6.7) using % obtained from the magnitude of 

. The peak  > 5% is a result of TTA, the scale of which can be 

characterized by , also shown in Fig. 6.4. At < 0.1 A/cm
2
,  is comparable to   

and increasing with , resulting in the monotonic increase of . At > 1 A/cm
2
,  

 and thus  saturates according to Eq. (6.7). In general, the upper limit of 

IQE is set by, IQEmax =  = , as plotted in the inset of Fig. 6.3. For the 

OLED in this work, =0.53, corresponding to IQEmax = 51%. When = 1, 

STk TTk

  g (J )

TTk

  g (J ) J

S T

( )EQE J

S
  
h

OUT
h

S
= 17.3

( )EQE J EQE

 J
TTk T Tk

J ( )J J
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IQEmax=62.5%, consistent with the result of Kodakov, et al. [56]. This upper limit can 

only be reached for kTTT<<kT and negligible STA.  

6.2 Evaluation of the Role of Triplets in Fluorescent OLEDs 

To evaluate the overall contribution of triplets to fluorescent OLED efficiency, we 

put both TTA and STA into the same context and define the effective triplet current 

density as: 

.      (6.8) 

Then, Eq. (6.4) can be simplified to  ( ) 1
4

S

dS J
J k S

dt ed
     using the ratio, 

. TJ  (and also  ) can be either positive or negative, depending on whether 

TTA or STA dominates. Note that when  = 1, 25 (1 )%IQE    . Then, TJ  (and 

also  ) can generally be used as a figure-of-merit to evaluate the role of triplet in 

fluorescent OLEDs. 

The calculated   for the OLED studied is shown in Fig. 6.4. With increasing J , 

 is initially positive and increases due to TTA to a peak of 0.53 at = 50 mA/cm
2
; 

and then decreases due to the increased rate of STA. A critical current density, CJ  can be 

defined when  =0, and thus the effects of TTA and STA are equal. Above = 2.2 

A/cm
2
,   becomes negative and triplets lead to a decrease in quantum efficiency. 

 24

( )
T TT ST

ed
J k T k ST

J



 

/TJ J 

( )J

 J

CJ


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The dependence of 
 
on  changes with  and . In Fig. 6.5 (a),  vs.  

is calculated for different  while keeping other parameters constant. As  increases, 

 decreases, as does . In contrast, with increasing , both  and  increase (Fig. 

6.5 (b)). Thus, besides requiring that ES ≤ 2ET to achieve a large  [56], fluorescent 

OLEDs with high  at high brightness also require a large  and small . Now 

 J
STk TTk  J

STk STk

CJ 
TTk 

CJ



EQE
TTk STk

 

Figure 6.5 Ratio  vs. , as a function of the (a) STA rate  and (b) 

TTA rate  , keeping other parameters as found for the DBP doped 

rubrene OLED. Here, “0” indicates the contour where triplets show no 

net contribution to OLED efficiency. Also,  changes by 0.15 between 

adjacent contours. 

 

 J
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is proportional to the triplet diffusivity [107] which increases with crystalline order 

[165], and is proportional to the overlap between the singlet emission and triplet 

absorption spectra, [4, 107] providing guidance in choosing materials that can lead to a 

high efficiency. 

Based on , two limiting cases of   in Fig. 6.2 (a) are calculated; one for 

=0 (where TTA does not generate singlets according to Eq. (6.1)), and the other for 

=0 (no STA). The differences between these calculated ’s and the data show the 

relative effects of TTA and STA that are responsible for the high peak  and rapid 

roll-off with , respectively. 

Singlet fission is a process in which one singlet shares its energy with a 

neighboring ground state, and both are converted into triplets [107, 166]. It requires that 

ES ≥ 2ET. For each absorbed photon, two electron-hole pairs can be harvested, and thus 

fission has the potential of doubling the efficiency of excitonic solar cells [166-169]. In 

contrast, TTA through Eq. (1) is the reverse process of singlet fission, where we require 

that ES ≤ 2ET. For rubrene, the singlet and triplet energies are in resonance, i.e. ES = 2ET 

(Fig. 6.1). In this case, both efficient TTA and singlet fission can co-exist and compete 

[170]. When a rubrene-only emissive layer is used, then EQE < 0.2%, indicating that 

singlet fission dominates over rubrene emission. On the other hand, resonant (Förster) 

singlet transfer from rubrene to DBP suppresses rubrene singlet fission, and thus the use 

of DBP as a dopant yields a peak EQE of 6.7%. From another prospective, fast Förster 

transfer of singlets represents a significant loss mechanism for singlet fission in excitonic 

solar cells, and should be avoided in those devices. 

TTk

STk

TJ EQE



STk EQE

EQE

J
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In conclusion, we develop a model that accurately describes singlet and triplet 

density dynamics in fluorescent OLEDs over more than four decades of current density. 

Based on this model, the dependence of the internal quantum efficiency limits of 

fluorescent OLEDs on TTA is obtained, explaining the high peak efficiency of 6.7% 

experimentally observed. The overall effect of triplets, including TTA and STA, is 

understood by introducing the concept of an effective triplet current density that is used 

to describe the efficiency roll-off at high current densities and brightness. Our model 

provides guidance for the appropriate design of molecules and device structures that can 

be used for high efficiency fluorescent OLEDs as well as organic photovoltaics 

employing singlet fission. 
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Chapter 7  

Triplet Annihilation in Phosphorescent OLEDs: 

Dexter-Mediated Triplet Diffusion 

Although triplet-triplet annihilation (TTA) improves the efficiency of fluorescent 

OLEDs by generating singlets, it severely reduces the efficiency of phosphorescent 

OLEDs at high brightness. In this chapter, we study TTA in phosphorescent organic 

emitters by transient photoluminescence (PL) experiment. Previously, two distinct 

physical processes are used to explain the mechanism of TTA, namely, diffusion 

dominated TTA and triplet-to-triplet energy transfer dominated TTA. In section 7.1, by 

fitting PL to these two processes, we find that TTA in three representative 

phosphorescent emitters is diffusion dominated. Further, we show in section 7.2 that 

triplet diffusion in phosphorescent emitters occurs through Dexter-type exchange 

interactions, suggesting triplet radiative decay and TTA are independent processes. Based 

on the model, it is suggested in section 7.3 that minimizing the PL and absorption 

spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, 

and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at 

high brightness. 
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7.1 Transient Photoluminescence in Phosphorescent Emitters 

As shown in section 2.3, phosphorescent OLEDs (PHOLEDs) suffer efficiency 

roll-off (i.e. a decrease in external quantum efficiency (EQE) when the current density J 

increases) due to exciton interactions. Although some recent reports demonstrated 

PHOLEDs with reduced efficiency roll-off [61, 171-173], significant effort is required to 

reduce the efficiency roll-off at > 3000 cd/m
2
 required in high intensity applications such 

as lighting [174]. OLED displays also require low efficiency roll-off to compensate for 

losses due to limited pixel aperture ratios, luminance losses due to the use of circular 

polarizers and color filters, and losses due to the low light out-coupling for OLEDs 

deposited on large area substrates. 

Factors causing PHOLED efficiency roll-off include charge imbalance, 

bimolecular triplet-polaron annihilation (TPA), and triplet-triplet annihilation (TTA) [52, 

116, 117]. Among them, TTA has been identified as an intrinsic limit associated only 

with the phosphorescent emitter. In section 2.3, we show OLED efficiency drops to 50% 

of the peak value due to TTA when at a critical current density, 

2

0

2 T

TT

edk
J

k
 , where e is 

the electron charge, d is the OLED emissive layer width, kT is the triplet decay rate, and 

kTT is the TTA rate. Although TTA in phosphorescent systems has been studied by many 

[116, 117, 175, 176] in the past 15 years, there is not a clear path on how it is related to 

the phosphorescent emitter’s photophysical properties. Thus, a simple emitter design rule 

to achieve low TTA does not exist.  

In emitters with rapid singlet-to-triplet intersystem crossing, a single TTA event 

follows Eq. (2.42): 
0 0

nT T S T S T     , where the first triplet T  transfers its 
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energy to the second triplet, exciting it to 
nT , which rapidly relaxes back to T , and 0S

represents the ground state. Since the rate of this reaction is a decreasing function of the 

distance between the two interacting triplets, a description of cumulative TTA events 

should include both triplet diffusion and triplet-to-triplet energy transfer.  

Previously, Baldo et al. [116] analyzed TTA in phosphorescent thin films doped 

with archetype Pt and Ir complexes using a diffusion-based model. That analysis has been 

widely adopted in studying the photoluminescence (PL) transients and PHOLED 

efficiency roll-off. More recently, Staroske et al. [177] proposed a triplet-to-triplet energy 

transfer model that is consistent with PL transients in octaethylporphine platinum (PtOEP) 

doped in 4,4'-N,N'-dicarbazole-biphenyl (CBP) at low concentrations. Here, we evaluate 

the relative dominance of the two processes. Using PL transient data, we find that TTA is 

primarily the result of triplet diffusion for emitter concentrations practical for high 

efficiency PHOLEDs.  

We adopt the model of Baldo et al. [116] for diffusion dominated TTA, which 

results from Smoluchowski’s theory of coagulation [113] (see Eq. (2.33) – (2.37)): 

21

2
TT

dT T
k T

dt 
   ,       (7.1) 

where T is the triplet density, t is time,  is the triplet natural lifetime, and TTk is the 

TTA rate constant. Equation (7.1) assumes that the triplet-to-triplet energy transfer rate is 

infinite when two triplets are within a capture radius, CR , and zero outside [113]. The 

quadratic dependence of TTA on triplet density arises from counting the flux of triplets 
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onto the capture radius of each other during diffusion. Then, TTk is related to triplet 

diffusivity, D, via  [113]: 

8TT Ck R D .        (7.2) 

In the case of energy-transfer-dominated TTA where triplets are assumed to be 

immobile, Staroske et al. [177] and Engel et al. [178] derived a time dependent 

expression for TTk from Förster transfer of energy between triplets, 

32
( )

3
TT FTTk t R

t


 


        (7.3) 

where FTTR  is the Förster radius for energy transfer from one triplet to another triplet, 

determined by, 

 

1/6
4 4

4 4

3 1
( ) ( )

4
FTT T T

c
R F E E dE

n E




 
  
 

     (7.4) 

where  is the reduced Planck constant, c is the speed of light, E  is the photon energy, 

n  is the refractive index, ( )TF E  is the triplet emission spectrum normalized to its PL 

efficiency, PL  (or ( )T PLF E dE  ), T(E) is the triplet absorption cross-section (in 

cm
2
) calculated through its molar absorptivity via 206.02 10T     M

-1
cm

-1
. 

 However, Eq. (7.3) in these previous reports is inaccurate due to inconsistencies 

in the derivations. For example, the derivation in [178] follows exciton donor-to-acceptor 

energy transfer dynamics first solved by Förster [179] and reviewed by many [180-182], 

in which the excited donor density ( )DN t  following a pulsed excitation are given by: 

3

0

4
( ) exp

3
D DA A

D

t t
N t n R N




 

 
   

 

,    (7.5) 
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where 0n  is the initial excited donor density, D  is its lifetime, DAR  is the donor-to-

acceptor Förster radius (corresponding to the FTTR  for triplet-to-triplet energy transfer), 

and AN  is the density of acceptor sites which is time independent. Starting from Eq. (7.5), 

the authors of Ref. [178] assert a time dependent density of acceptor sites whereby

A DN N , leading to inconsistencies in their annihilation model. Such inconsistency is 

evident by solving Eq. (7.1) using Eq. (7.3) and (7.5) and setting n(t) = T(t), which yields, 

1
left-hand side ( ) ( ) ( ) 2 ( )

dT
T t t T t t t

dt
 



 
     

 
,   (7.6) 

 
1

right-hand side ( ) ( ) ( )T t t T t


 
    

 
.    (7.7) 

Equation (7.7) differs from Eq. (7.6) by a factor related to 
dT

dt
.  

To derive triplet density dynamics of the triplet-to-triplet Förster transfer process, 

we assume triplets are evenly distributed on cubic lattice. The de-excitation rate of one 

triplet due to all other triplets is: 

     

6

6 6 6

1 6 12 8
...

1 2 3

FTT
FTT

T

R
k

a

 
          
 

  

,   (7.8) 

where Ta  is the average lattice constant given by 31/Ta T . The series in Eq. (7.8) 

counts the contributions from the six nearest neighbors, the twelve second nearest 

neighbors, etc., and rapidly converges. Thus:  

  
31

2
TT

dT T
T

dt



   ,      (7.9) 

where   
68

TT FTTR


         (7.10) 
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is the annihilation constant calculated from Eq. (7.8). In the following discussion, we 

refer to Eq. (7.1) as the diffusion model, and Eq. (7.9) as the triplet-to-triplet transfer 

model. 

To compare the predictions of Eq. (7.1) and (7.9), we study three archetype 

phosphorescent emitters: tris (2-phenylpyridine) iridium (Ir(ppy)3) [51, 183], bis (2-

phenylpyridine) (acetylacetonate) iridium (Ir(ppy)2(acac)) [53, 183] and octaethyl-

porphine platinum (PtOEP) [52], doped into a 4,4'-N,N'-dicarbazole-biphenyl (CBP) host. 

The chemical structures of these molecules are shown in Appendix A. A total of twelve 

40 nm thick films with volume emitter concentrations C = 2%, 4%, 8%, and 16% of each 

dopant were grown by vacuum thermal evaporation at base pressure < 5×10
-7

 Torr on 

quartz substrates., The films were excited using the output of a 20 Hz repetition rate, and 

1 ns pulse width nitrogen laser at a wavelength of = 337 nm under an ultrahigh purity 

nitrogen environment. The laser beam focused on the films had a Gaussian profile with a 

full width at half maximum of 300 µm, and its intensity was controlled by neutral density 

filters. The resulting PL transients were measured by a streak camera (Hamamatsu C4334) 

with a temporal resolution of 1 ns. 

 The PL transients for all twelve films with varied pump intensities are measured, 

and Fig. 7.1 show representative transients for 8% Ir(ppy)3 doped in CBP. The PL 

transient at the lowest pump intensity shows no TTA (corresponding to only a mono-

exponential decay transient), while at the highest pump intensity, only negligible host 

emission is observed. An initial 2-D Gaussian triplet distribution results from the pump 

beam profile following: 
2 2/2

00( ) rT r T e   . Under our experimental conditions, this 

corresponds to the peak triplet density, 00T , varied from 1×10
16 

cm
-3

 to 2×10
18

 cm
-3

. 
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For the time (>> 1 ns) and triplet density range studied, triplets only reside on the 

phosphorescent emitters due to the high CBP triplet energy of 2.6 eV compared to 

Ir(ppy)3 (2.4 eV), Ir(ppy)2(acac) (2.4 eV) and PtOEP (1.9 eV) [53, 132]. When using the 

diffusion or transfer model to fit the transients, we average the PL transients over the 

Gaussian profile. From Eq. (7.1), the PL transient is given by: 

 

 

00

00

2
( ) ( 0)

exp( ) 1

1
ln 1 1 exp( )

2

TT

TT

PL t PL t
T k t

T k t

 

 

   


 
   

 

    (7.11) 

and from Eq. (7.9), the PL transient is: 

 

Figure 7.1 (a) Photoluminescence (PL) transients from 8% Ir(ppy)3 

doped in CBP with two different initial peak triplet densities. The solid 

lines are fits to the diffusion-dominated triplet-triplet annihilation (TTA) 

model. (b) and (c) show the residues of the fits based on diffusion and 

transfer models, respectively. 
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,  (7.12) 

where ( )PL t is the PL intensity proportional to total triplet population at time, t. We 

restrict the fit parameters  , TTk  (diffusion model) or TT  (transfer model) to be 

constant for a given film under different initial triplet densities, 00T . The fit results from 

all films are summarized in Table 7.1. Figure 7.1 (b) (c) show representative residues of 

Table 7.1 Parameters for the PL transients fits using the diffusion and 

transfer models 

Vol

% 

τ 

(µs) 

kTT 

(10
-13

 cm
3
s

-1
) 

βTT 

(10
-30

 cm
6
s

-1
) 

RFTT 

(nm) 

Ir(ppy)3 in CBP 

2% 1.22±0.01 13±1 1.9±0.3 8.1 

4% 1.19±0.01 21±1 3.3±0.4 8.9 

8% 1.08±0.01 25±2 7.2±0.9 10.0 

16% 0.94±0.01 36±4 17±3 11.2 

Ir(ppy)2(acac) in CBP 

2% 1.41±0.01 23±2 4.7±0.3 9.7 

4% 1.22±0.01 32±2 8.9±1.1 10.5 

8% 1.02±0.01 39±3 9.3±2.0 10.3 

16% 0.67±0.01 50±5 28.1±4.0 11.5 

PtOEP in CBP 

2% 98±2 0.13±0.02 (4.7±1.6)×10
-3

 6.2 

4% 95±1 0.23±0.02 (7.7±1.5)×10
-3

 6.7 

8% 88±1 0.41±0.03 (13±2)×10
-3

 7.2 

16% 84±1 0.52±0.05 (9.4±2)×10
-3

 6.8 
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the fits to Eq. (7.11) and (7.12), respectively.  The residues are small in both cases, and 

hence the two models cannot be distinguished based only on the fits. 

7.2 Diffusion vs. Transfer Dominated Triplet Annihilation 

From the transfer model results in Table 7.1, FTTR  can be calculated from  and 

 

Figure 7.2 Triplet absorption cross-section spectra for Ir(ppy)3 (top) and 

PtOPE (bottom) doped at different concentrations in CBP. 
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TT  using Eq. (7.10), and is also shown in Table 7.1. The two Ir complexes show 

comparable FTTR  ranging from 8 nm to 12 nm, while the Pt complex shows a somewhat 

smaller FTTR  ≈ 7nm. In all three cases, there is an increasing trend in FTTR  with doping 

concentration.  

To understand the fit results, FTTR  can be estimated from Eq. (7.4) using the 

triplet emission and triplet absorption spectra. Figure 7.2 shows the triplet absorption 

spectra of Ir(ppy)3 and PtOEP doped at different concentrations in CBP measured using 

the spatially separated pump-probe method [184]. Note that the PtOEP triplet absorption 

spectrum is similar in shape to that reported by Ponterini, et al. [185] for PtOEP in 

tetrahydrofuran solution, and close to the estimation of Staroske, et al. [177]. The spectra 

overlap between the triplet emission and absorption are plotted in Figure 7.3. Thus, using 

 

Figure 7.3 Molar absorptivity of triplets of Ir(ppy)3 (open square) and 

PtOEP (open circle),  as well as the corresponding PL spectra (lines). 

The spectra are measured from films at 8% doping concentration in CBP, 

although they are insensitive to doping (see Fig. 7.2). 
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literature values for ΦPL  (~100% for the Ir-complexes [53, 186, 187] and ~25% for 

PtOEP [52, 55]), the Förster radius is calculated from Eq. (7.4) to be FTTR  = 3.1 nm for 

Ir(ppy)3 and 2.7 nm for PtOEP.  

Both the PL and triplet absorption are insensitive to doping concentrations [188]. 

Hence, the concentration dependence of FTTR  in Table 7.1 cannot be understood from the 

Förster transfer theory in Eq. (7.4). Furthermore, FTTR  obtained from the PL transient fits 

(Table 7.1) is larger than the calculation (in the previous paragraph) by a factor of 2 to 3, 

leading to 100-1000 times discrepancy in 6 or ~FTT TT FTTk R  (c.f. Eq. (7.10)). We note 

that although the cubic lattice model in Eq. (7.8) is an approximation, the significant 

difference between our fit and calculated FTTk  clearly invalidates the transfer model. 

Even at emitter concentrations as low as 0.1%, Staroske et al. [177] observed a factor of 

1.44 discrepancy in Förster radii calculated from Eq. (7.4) and directly measured from PL 

transients, leading to nearly 10 times difference in Förster transfer rate. This large 

discrepancy was not considered significant by those authors. 

The exciton diffusion model is based on triplet hopping from an excited to an 

unexcited emitter molecule. Two energy transfer mechanisms can be responsible for such 

hopping, Förster or Dexter-type [112, 163, 180], leading to two corresponding 

expressions for diffusivity:  

62
2 F

F FH

Ra
D a k

a

 
   

 
      (7.13) 

and 
2 2 2

expD DH

a
D a k a KJ

L

 
   

 
 ,     (7.14) 
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where FD  and DD  are diffusivities due to Förster and Dexter transfer respectively, FHk  

and DHk  are the corresponding hopping rates to a nearest neighbor, a is the dopant lattice 

constant related to  C through 31/a CN , where N = 10
21

 cm
-3

 is the film molecular 

density,  FR  is the triplet-to-ground-state Förster radius, K is related to exchange 

interaction Hamiltonian, J  is the density of states for energy transfer, and L is the 

effective Bohr radius. It is clear that the two mechanisms lead to significantly different 

functional dependence of D on a.  

The experimental dependence of D  on a can be derived from Eq. (7.2) and TTk  

(see Table 7.1). Assuming CR  is independent of a, then Eqs. (7.2), (7.13), and (7.14) 

 

Figure 7.4 Comparison between two triplet diffusion mechanisms, 

Förster transfer (with 1/a
6
 dependence) and Dexter transfer (exponential 

dependence on a). The TTA rate constants, TTk , are obtained from PL 

transient fit parameters in Table 7.1. The hopping rates, Hk , on the right-

hand ordinate are calculated assuming a capture radius of 1 nm. Note 

that the data for PtOEP are multiplied by 50. 
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suggest that 2/TTk a  ~ 
61/ a  for Förster-mediated diffusion, and follows an exponential 

function for Dexter diffusion. A comparison of the behavior of kTT vs. a for the two 

mechanisms is shown in Fig. 7.4. For all three emitters, the data are consistent with 

Dexter diffusion; a conclusion consistent with Namdas, et al. [189] and Ribierre, et al. 

[176] for TTA in Ir-cored dendrimers. Assuming CR = 1 nm, we also calculate the 

hopping rate 
2

6

8

TT
H

k
k

a
  on the right-hand ordinate of Fig. 7.4. From this we can estimate 

the average number of hopping steps that a triplet makes before collision with a second 

triplet by Hk  [176].  This process varies between 3 and 30 steps, depending on the 

doping concentration. 

7.3 Emitter Design for High Brightness PHOLEDs 

Interestingly, from Eq. (7.14), DD  and thus TTk  should be independent of  ; 

however, TTk  for the two Ir-complexes is ~100 times greater for the Ir-complexes than 

for PtOEP, while their radiative lifetimes are only 1% of the PtOEP lifetime. This inverse 

correlation can be understood by evaluating J  in Eq. (7.14) given by [112, 134]: 

 
0

( ) ( )T SJ F E E dE        (7.15) 

where 
0
( )S E  is the absorption cross-section of the emitter molecular ground state. 

Figure 7.5 shows absorption of a solution of Ir(ppy)3, Ir(ppy)2acac, or PtOEP 

dissolved in toluene at a concentration of 10
-5

 M. Here, diluted solution is adopted 

because a direct measurement of emitter absorption in host/emitter thin films is difficult, 
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and photophysical properties for these phosphorescent emitters’ solutions typically 

resemble the amorphous films [190-192]. From the PL and absorption spectral overlaps 

(inset of Fig. 7.5), we find that 3(Ir(ppy) ) 50 (PtOEP)J J  . Since TTk    DD    K J  

(Eq. (7.2) and (7.14)), then the difference in J  between Ir(ppy)3 and PtOEP must 

contribute to the observed ~100 times differences in the corresponding TTk . On the other 

hand, Ir(ppy)3 and Ir(ppy)2acac have very similar spectral overlaps, which is consistent 

with their comparable kTT values (Table. 7.1). That is, J for PtOEP is significantly smaller 

compared to that of the Ir-complexes because its absorption due to 0S T  transition is 

weaker as a result of its reduced metal-ligand-charge-transfer (MLCT) contribution to the 

optical transitions characteristics of planar Pt compounds [51, 52, 190, 192].  

 

Figure 7.5 Absorption spectra of Ir(ppy)3, Ir(ppy)2acac, and PtOEP 

dissolved in toluene, shown only in the wavelength range of their 

corresponding PL spectra. The spectral overlap (or the product of the 

absorption and PL spectra at each photon energy) between the thin film 

PL and absorption in solution are shown in the inset. 
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Since the “onset” current density for the roll-off in OLED efficiency at high 

current densities due to TTA is proportional to  21 TTk (see section 2.3 or [116]), the 

Dexter diffusion mechanism (Eqs. (7.2) and (7.14)) suggests that improved performance 

at high brightness is possible if   and TTk  can be independently minimized. Figure 7.6 

shows the calculated efficiency roll-off from Table 7.1 through Eq. (2.49) due to TTA for 

three PHOLEDs with 30 nm of EMLs consisting of (1) 8% Ir(ppy)3:CBP, (2) 8% 

PtOEP:CBP, and (3) an ideal EML with τ of 8% Ir(ppy)3:CBP and kTT of 8% PtOEP:CBP. 

It is evident that simultaneous minimization of   and TTk  is desirable for PHOLEDs 

operating at high current density (or luminance). 

One means to accomplish this requires a high MLCT contribution to emission 

(leading to low  ) [134, 183] with a correspondingly large Stokes shift in the MLCT 

 

Figure 7.6 Calculated PHOLED efficiency roll-off due to TTA based on 

the parameters in Table 7.1. The ideal case is for an PHOLED emissive 

layer with triplet lifetime of 8% Ir(ppy)3 in CBP and triplet-triplet 

annihilation rate of 8% PtOEP in CBP. 
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absorption (leading to low TTk ). Previously [183], the importance of this Stokes shift has 

not been emphasized in phosphorescent emitter design since self-absorption is 

insignificant in PHOLEDs with doping concentrations and film thicknesses optimized for 

high efficiency emission.  

The results here are in stark contrast to that of Staroske et al. [177], who conclude 

that TTA is dominated by triplet-to-triplet energy transfer, and proposed minimizing TTA 

through reducing the phosphorescent emitter PL and triplet-triplet absorption (from T  to 

a higher triplet excited state) spectral overlap. Although at low emitter concentrations (< 

1%), triplet-to-triplet energy transfer is more likely to dominate due to suppressed 

diffusion, the calculated [177] triplet-to-triplet transfer rate is off by nearly a factor of 10. 

 In conclusion, transient PL measurements in three prototype phosphorescent 

emitters suggests that TTA is dominated by triplet diffusion, and that direct triplet-to-

triplet energy transfer [177], plays a considerably smaller role. Further, the diffusion of 

triplets follows the Dexter exchange interaction, in which the TTA rate is independent of 

triplet lifetime. Therefore, while maintaining the low triplet lifetime desirable for low 

efficiency roll-off in PHOLEDs, a reduced TTA rate can be achieved through decreasing 

the spectral overlap between the phosphorescent emitter absorption and emission. This 

understanding of energy transfer can be used to design efficient PHOLED emitters with 

reduced efficiency roll-off at high brightness. 

 

 

 



 

114 

 

Chapter 8  

Controlling Triplet Dynamics to Extend the 

Operational Lifetime of Blue PHOLEDs 

In previous chapters we studied exciton-exciton annihilation and its effects on the 

efficiency of OLEDs. Besides efficiency, operational lifetime is another significant 

figure-of-merit for OLED technology to gain commercial acceptance. Phosphorescent 

OLEDs (PHOLEDs) can harvest 100% of the electrical excitations, thereby having a 

significantly higher efficiency than fluorescent OLEDs. Unfortunately, the blue sub-

pixels in OLED displays employ fluorescent OLEDs due to the short operational lifetime 

in blue PHOLEDs. In Section 8.1, we introduce the topic of OLED lifetime and review 

previous research on the degradation mechanisms of blue PHOLEDs. It has been 

suggested by Giebink et al. [193, 194] that triplet-polaron annihilation (TPA) between a 

triplet on the phosphorescent dopant and a polaron on the conductive host is the primary 

source of intrinsic degradation in blue PHOLEDs. In section 8.2, a novel PHOLED 

architecture is designed where the emissive layer (EML) consists of a linearly graded 

concentration phosphorescent dopant concentration profile. Grading results in low 

exciton density and thus suppressed TPA, leading to a significantly extended operational 

lifetime over conventional blue PHOLEDs. When two blue PHOLEDs are placed in a 
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series stack, as shown in section 8.3, this strategy leads to a 10-fold operational lifetime 

improvement over a conventional blue PHOLED. 

8.1 Blue PHOLEDs Operational Lifetime: an Introduction 

When an OLED operates under constant current with an initial luminance of L0, 

its operational lifetime (TX(L0)) is defined by the degradation time for the device 

efficiency to drop to X% of the initial efficiency. During the OLED luminance decay, its 

operational voltage continuously increases. Also, TX(L0) decreases as L0 increases. 

Early reported OLED lifetimes based on Alq3 as emitters are short. For example, 

Van Slyke et al. [195] reported a T60(510 cd/m
2
) ≈ 3000 hrs, and Aziz et al. [196] 

Table 8.1 Commercial OLED efficiency and lifetime 

 CIE Efficiency (cd/A) T50 (1000 cd/m
2
) 

Phosphorescent OLEDs* 

Deep Red [0.69, 0.31] 17 250,000 

Red [0.64, 0.36] 30 900,000 

Yellow [0.44, 0.54] 81 1,450,00 

Green [0.31, 0.63] 85 400,000 

Cyan [0.18, 0.42] 50 20,000 

Fluorescent OLEDs** 

Red [0.67, 0.33] 11 160,000 

Green [0.29, 0.64] 37 200,000 

Blue [0.14, 0.12] 9.9 11,000 

*data from Universal Display Corp. http://www.udcoled.com/ (2014) 

**data from Idemitsu http://www.idemitsu.com/ (2014) 

http://www.udcoled.com/
http://www.idemitsu.com/
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reported a T50(1050 cd/m
2
) ≈ 1000 hrs. After more than a decade of research, significant 

breakthroughs in green and red OLEDs lifetime have been achieved, with reported 

T50(1000 cd/m
2
) exceeding 10

6
 hr [197-200]. Table 8.1 summarizes commercially 

produced OLED efficiencies and lifetimes. It is evident that red and green PHOLEDs are 

superior to analogous fluorescent OLEDs in both efficiency and lifetime. In contrast, 

progress in the improvement of blue PHOLED lifetime has been slow. For example, a 

T50(1000 cd/m
2
)  of only several hours has been reported for a PHOLED with the blue 

emitting iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C
2’

] picolinate (FIrpic) [201] 

as the emitter [202]. As a result, relatively inefficient blue fluorescent OLEDs remain 

dominant in OLED displays.  

Factors leading to OLED degradation [31, 194, 196, 203] can be divided into two 

categories: extrinsic and intrinsic. Extrinsic factors include impurities in the molecules 

used for device fabrication, water and/or oxygen residues in the evaporation chamber 

(when pressure > 5×10
-8

 Torr), air leakage into the device package post-fabrication, etc. 

Intrinsic factors include molecular degradation (for example, bond cleavage) and organic 

film morphology change caused by charge transport, exciton non-radiative decay, 

Table 8.2 Common molecular bond energy [3] 

Bond Energy (eV) Bond Energy (eV) 

C-C 3.64 N-N 1.69 

C-H 4.28 N-O 2.08 

C-O 3.71 N-H 4.05 

C-N 3.04 O-O 1.51 

C-F 5.03 H-H 4.52 

 



 

117 

 

exciton-exciton annihilation, and exciton-polaron annihilation. Table 8.2 lists common 

molecular bond energies. It is clear that these energies (for example C-C, C-H, C-N) 

exceed 3 eV, which is higher than the first excited singlet or triplet energies typical in 

OLED materials. However, during exciton interactions (i.e. exciton-exciton or exciton-

polaron annihilations), there is a possibility that twice the exciton energy can be 

thermally relaxed simultaneously onto a molecule, thereby breaking the bond.  

 Previously, Giebink et al. studied the degradation of a blue PHOLED with 

iridium (III) tris[3-(2,6-dimethylphenyl)-7-methylimidazo[1,2-f] phenanthridine] 

(Ir(dmp)3) doped in 4,4’-bis(3-methylcarbazol-9-yl)-2,2’-biphenyl (mCBP) as the 

emissive layer (EML). It was found that bimolecular triplet-polaron annihilation (TPA) is 

the intrinsic degradation mechanism in the blue PHOLED. As illustrated in Fig. 8.1, 

during TPA, the high energy blue triplet on Ir(dmp)3 transfers its energy to a polaron on 

mCBP, thereby exciton the polaron to a higher energy (i.e. as high as 6 eV) hot polaron 

 

Figure 8.1 Illustration of triplet-polaron annihilation (TPA) and the 

formation of hot polaron. The hot polaron has approximately twice the 

triplet energy, which is enough to break molecular bonds. 
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state. The hot polaron, on thermalization, can break bonds on the molecule on which it 

resides, thus forming a defect in the EML, which can subsequently quench excitons as 

well as trap charges. The quantitative analysis of TPA induced PHOLED degradation is 

discussed in Section 8.3.  

Due to their high triplet energy, excess energy dissipated through TPA in blue 

PHOLEDs is significantly higher than for red or green PHOLEDs, explaining the more 

rapid degradation in the former case. Furthermore, while blue fluorescent devices are by 

no means immune to this degradation path, their lower triplet energy leads to a 

proportionately greater probability for destructive exciton-polaron annihilation events to 

occur in phosphorescent devices. 

8.2 Management of the Exciton Profile in PHOLEDs 

While little progress has been made since these fundamental mechanisms were 

identified, it is possible that a route to reduce degradation via TPA is to decrease the 

exciton density in the PHOLED exciton formation zone. Recently, Erickson and Holmes 

[204] have demonstrated increased efficiency by the extension of the exciton formation 

zone in a green PHOLED from 15 nm to > 80 nm through graded mixing of electron and 

hole transporting host molecules. No lifetime data were reported in that work.  

Furthermore, the selection of stable host materials with high triplet energies for blue 

PHOLEDs is limited. Use of continuously or stepwise graded phosphorescent dopant 

profile in OLEDs was previously reported [205-207] to improve the OLED efficiency; 
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however, it is unclear whether the OLEDs exciton formation zones were extended in 

these reports and lifetime data were also unavailable.  

In this section, we show that grading the blue dopant in the emitting layer (EML) 

of a PHOLED significantly extends the lifetime of the device by extending the exciton 

formation zone. The broadening of the exciton distribution, and hence the device lifetime, 

is further increased by using a sufficiently high dopant concentration, and with the dopant 

highest occupied molecular orbital level (HOMO) chosen above that of the host to allow 

for holes to conduct directly on the dopant. To our knowledge, this is the first report of an 

OLED with a graded doping profile that extends the distribution of excitons within the 

EML, thus significantly impacting device operational lifetime. 

For this demonstration, we use the previously reported [194] blue dopant and host 

combination of Ir(dmp)3 and mCBP, respectively. We compare three PHOLEDs (shown 

in Fig. 8.2) with the structures of 120 nm ITO/ 10 nm HATCN/ 50 nm X/ 5 nm mCBP/ 

30 nm Alq3/ 1.5nm Liq/ 100 nm aluminum: 

in D1, X is 20 nm NPD/ 30 nm 13 vol% Ir(dmp)3 doped in mCBP; 

in D2, X is 50 nm 13 vol% Ir(dmp)3 doped in mCBP; 

in D3, X is 50 nm 188 vol% graded Ir(dmp)3 doped in mCBP; 

where ITO (indium-tin-oxide) is the anode, HATCN (hexaazatriphenylene 

hexacarbonitrile) is the hole injection layer (HIL), NPD (4,4’-bis[N-(1-naphthyl)-N-

phenyl-amino]-biphenyl) is the hole transport layer (HTL), Ir(dmp)3 doped mCBP is the 

EML, mCBP is the hole blocking layer (HBL), Alq3 (tris(8-hydroxyquinolinato) 

aluminum) is the electron transport layer (ETL), Liq (8-hydroxyquinolinato lithium) is 

the electron injection layer (EIL), aluminum is the cathode. Device D4 is a two-unit 
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stacked OLED (SOLED) with the structure: 120 nm ITO/ 10 nm HATCN/ 50 nm EML/ 5 

nm mCBP/ 5 nm Alq3/ 70 nm 2 vol% Li doped Alq3/ 10 nm HATCN/50 nm EML/ 5 nm 

mCBP/ 25 nm Alq3/ 1.5 nm Liq/ 100 nm aluminum, where the EMLs of the PHOLEDs 

comprising the stack are analogous to D3 

Devices D1-D4 were deposited by thermal evaporation on pre-cleaned indium tin 

oxide (ITO)-on-glass substrates in a system with a background pressure of ~5×10
-7

 Torr. 

The PHOLEDs are packaged in an ultrahigh purity N2-filled glovebox with < 0.5 ppm 

 

Figure 8.2 Structures of the blue phosphorescent organic light emitting 

diodes (PHOLEDs). Hexaazatriphenylene hexacarbonitrile (HATCN), 

4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (NPD) and tris(8-

hydroxyquinolinato)aluminum (Alq3) are used for the hole injection 

(HIL), hole transport (HTL), and electron transport layer (ETL) 

materials, respectively. The EMLs of both D1 and D2 employ a 13 vol% 

doping concentration, and D2 replaces the HTL in D1 with EML. D3 has 

an EML with the doping concentration graded from 18 to 8 vol% with a 

maximum at the EML/HIL interface. D4 is a stacked OLED with two 

EMLs identical to D3. 
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oxygen and water concentration without exposure to air following film deposition, by 

attaching a glass lid to the substrate using an epoxy seal around the perimeter. Here, D1 is 

almost identical to the blue PHOLED reported previously [194], and serves as the control 

device. 

 

Figure 8.3 Performance characteristics of the blue PHOLEDs. (a) 

Current density-voltage (J-V, scattered markers) and luminance-voltage 

(L-V, line-connected markers) characteristics for D1-D4, where D4 is a 

stack of two blue emitting PHOLED whose EMLs are identical to D3. 

(b) External quantum efficiency (EQE) v.s. J (left axis) and emission 

spectra (right axis) for D1-D4. 
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Current density-voltage-luminance (J-V-L) characteristics were measured using a 

parameter analyzer (HP4145, Hewlett-Packard) and a calibrated photodiode (FDS1010-

CAL from Thorlabs) following standard procedures [122]. Emission spectra were 

measured with a calibrated fiber-coupled spectrometer (USB4000, Ocean Optics) at J = 

10 mA/cm
2
. The J-V-L, external quantum efficiency (EQE), and emission spectral 

characteristics of the four devices are shown in Fig. 8.3, and are summarized in Table 8.3. 

Replacing the HTL in D1 with an EML in D2 results in an increase in the operating 

voltage, as expected. Also, use of a graded doping profile in the EML (D3) decreases the 

voltage compared to the uniformly D2. Further, the emission spectra of all three devices 

are comparable, with the EQE of D1 and D2 being almost identical above 1 mA/cm
2
. The 

EQE of D3 is more than 10% higher than those of D1 and D2. As expected for a stacked 

OLED [208], D4 has approximately double the voltage and EQE compared with D3; for 

example, at 10 mA/cm
2
, D4 operates at a voltage of 17.4 V and EQE = 17.2% compared 

 

Figure 8.4 Ultraviolet photoelectron spectroscopy (UPS) data from 

molecules in the blue PHOLED emissive layer (EML) 
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to 8.5 V and 9.3% for D3.  This indicates a slight but measurable loss in the stacked 

device due to inefficiencies in charge generation in the layers between the stacked 

elements, and in the optical field distribution within the stack [209].  

To understand the charge transport characteristics in the various EMLs, ultraviolet 

photoelectron spectra (UPS) were measured in an ultrahigh vacuum (UHV) analysis 

chamber using the illumination from the He Iα line with 21.2 eV of energy. Figure 8.4 

shows the UPS from 50 nm thick layers of mCBP and Ir(dmp)3 on ITO, and 50nm-

Ir(dmp)3-on-50nm-mCBP on ITO. The highest occupied molecular orbital energies 

(HOMOs) of mCBP and Ir(dmp)3 are 6.0±0.1 eV and 4.6±0.1 eV respectively. A dipole 

energy shift of ~0.4 eV is observed when Ir(dmp)3 is deposited on mCBP, and thus the 

HOMO of Ir(dmp)3 is 5.0±0.1 eV on mCBP.  

Table 8.3 Characteristics at L0 = 1000 cd/m
2
 for blue emitting PHOLEDs

*
 

 

L0=1000 cd/m
2
 

CIE
**

 

 

EQE 

(%) 

J 

(mA/cm
2
) 

V 

(V) 

T80 

(hr) 

T50 

(hr) 

D1 [0.16, 0.31] 8.5±0.1 6.2 6.9±0.2 56±3 510±15 

D2 [0.16, 0.31] 8.5±0.2 6.2 8.7±0.3 - - 

D3 [0.16, 0.31] 9.5±0.1 5.7 7.7±0.2 213±5 1500
†
/1600

‡
 

D4 [0.15, 0.29] 18.0±0.2 2.9 14.3±0.1 616±10 3500
†
/3700

‡
 

* errors for EQE and V are standard deviations from at least 6 devices, errors for T80 

and T50 are standard deviations from 3 devices 

** Measured at 10 mA/cm
2
 

† Estimated from extrapolations using the triplet-polaron annihilation (TPA) model 

‡ Estimated from extrapolation using the adjusted exponential (empirical) model 
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To further evaluate the electron and hole transport characteristics in the EMLs, 

hole-only (hO) devices with the structure: ITO/10 nm NPD/60 nm EML/10 nm NPD/100 

nm Al, and electron-only (eO) devices with the structure: ITO/10 nm Alq3/60 nm 

EML/10 nm Alq3/1.5 nm Liq/100 nm Al were fabricated. The EMLs for these devices 

consisted of Ir(dmp)3 doped mCBP at volume concentrations of 0% (hO0 and eO0), 8% 

(hO1 and eO1), 13% (hO2 and eO2), and 18% (hO3, hO3). Prior to the organic film 

depositions, the ITO-coated-glass substrates for hO0-hO3 were treated with UV-ozone 

for 10 min, whereas eO0-eO3 were not pre-treated. 

The J-V characteristics for these devices are shown in Fig. 8.5. Clearly, J of hO 

devices increase with the increasing doping concentration of Ir(dmp)3. This is consistent 

with the UPS result that hole transport in the EMLs is through Ir(dmp)3. On the other 

hand, J of eO devices stays approximately the same at different Ir(dmp)3 concentrations, 

suggesting that electron transport in the EMLs is through mCBP.  

 

Figure 8.5 J-V characteristics of the hole-only (left) and electron-only 

(right) devices. 
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In this unusual architecture, as shown in Fig. 8.6 (a) recombination occurs 

between an electron in the lowest unoccupied molecular orbital (LUMO) of mCBP, and a 

hole in the Ir(dmp)3 HOMO, resulting in an exciplex. Since the PHOLED emission is 

solely from the phosphorescence of Ir(dmp)3, the intermediate exciplex state rapidly 

transfers its energy to the Ir(dmp)3 triplet. Note that the thermalization loss when an 

electron on mCBP recombines with a hole in Ir(dmp)3 HOMO is 1.0 eV less than for a 

 

Figure 8.6 Energetics and exciton density profiles in the PHOLED EML. 

(a) Electron and hole transport and recombination energetics in the blue 

PHOLED EMLs. (b) Exciton density profile in the EMLs of D1-D3 

calculated from “probe” devices employing iridium (III) bis(2-phenyl 

quinolyl-N,C
2’

) acetylacetonate (PQIr) in the red light emitting sensing 

layer. The profiles are normalized to integrated exciton densities in the 

EMLs of unity. Also, the exciton density profile of D4 is calculated from 

the D3 profile. 
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hole in the mCBP HOMO, contributing to the relatively high operational stability in the 

blue PHOLEDs observed previously[194], and in D1 (see below). 

The hole conductivity in the graded EML of D3 increases as the distance to the 

HIL/EML interface is decreased due to the increasing concentration of Ir(dmp)3. In the 

opposite direction toward the EML/HBL interface, the hole conductivity decreases while 

the electron conductivity stays approximately constant. Thus, in contrast to the abrupt 

hole blocking by the EML/HBL interface in D1 and D2, in D3 the holes are gradually 

blocked by the hole conductivity gradient. As a consequence, exciton formation in D3 

occurs over a more extended distance as compared to either D1 or D2. 

To determine the hole blocking efficiency and thus the shape of the exciton 

formation zones in D1-D3, we fabricated a series of PHOLEDs with a thin, red emitting 

“sensing” layer using the dopant, iridium (III) bis(2-phenyl quinolyl-N,C
2’

) 

acetylacetonate (PQIr) whose relative emission intensity can provide information about 

the spatial distribution of excitons in the EML. Here, PQIr is co-doped at 2 vol% at 

different positions separated by 5 nm in the EMLs of D1-D3, with a doping layer width 

of 1.5 nm. The HOMO and LUMO energies of PQIr are at 5.0 eV and 2.7 eV relative to 

the vacuum level, respectively [210]. Due to the low doping concentration and 

narrowness of the sensing layers, it should not significantly affect the charge transport or 

recombination properties in the EML. This is confirmed by the almost identical J-V 

characteristics between devices with and without sensing layers. 

Local exciton densities N(x) in the EMLs can be calculated from the measured 

emission spectra, external quantum efficiency, EQE(x), and the calculated out-coupling 
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efficiency ( )R x  (at a wavelength of 595 nm corresponding to the peak in the PQIr 

emission spectrum), from PHOLEDs with PQIr sensing layer at position x using: 

 
( ) 1

( ) ( )
( ) ( ) ( )

out

R

out out

R B R

N x
N x A EQE x

N x N x x
 


.   (8.1) 

Here, A is a normalization factor such that ( ) 1
EML

N x dx  , ( ) ( )out out

R BN x N x  is the out-

 

Figure 8.7 (top) Emission spectra from probe devices for D2 at J = 10 

mA/cm
2
. (bottom) Parameters for calculating the exciton density profiles 

(see Eq. 8.1). 
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coupled photon number ratio from PQIr versus Ir(dmp)3, obtained from the ratio of red 

(IR) and blue (IB) peaks of the emission spectra through 
( ) 595nm

( ) 466nm

out

R R

out

B B

N x I

N x I
 .  

Representative emission spectra are shown in Fig. 8.7 (a) from the devices for the EML 

employed in D2. In Fig. 8.7 (b), we show EQE(x) (at J = 10 mA/cm
2
), 

( )
( )

( ) ( )

out

R

out out

R B

N x
r x

N x N x



 (at J = 10 mA/cm

2
), and ( )R x (calculated following Celebi et 

al. [211]) for the sensing OLEDs for D1-D3.  

The calculated N(x) from Eq. (8.1) is shown in Fig. 8.6 (b). In D1 (i.e. the 

conventional blue PHOLED), significant exciton accumulation occurs at the EML/HBL 

interface. In D2 where there is no HTL, the exciton density at the HIL/EML interface is 

reduced due to a correspondingly low concentration of holes. However, because of the 

reduced hole transport efficiency, electrons penetrate deep into the EML, resulting in a 

peak exciton density near the HIL/EML interface.  In contrast, both efficient hole 

transport near the HIL/EML interface and the gradual hole blocking in the EML in D3 

lead to a more uniform exciton distribution (and hence higher EQE) compared to D1 and 

D2, with a peak density near to the center of the EML. Since the EMLs of D3 and D4 are 

identical, also shown in Fig. 8.6 (b) is the exciton density profile of D4, estimated at 53% 

of the exciton density in D3 (at 10 mA/cm
2
) due to the almost double EQE.  
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8.3 Ten-fold Improvement in the Lifetime of Blue PHOLEDs 

Figure 8.8 shows the time evolution of the luminance, L, and the change in 

voltage from its initial value, ΔV = |V(t=0)-V(t)|, for D1, D3, and D4 tested at room 

temperature and a constant current density for two initial luminances: L0 = 1000 and 3000 

cd/m
2
. Also, we show these same characteristics for D2 tested at L = 3000 cd/m

2
. The 

lifetimes show an increasing trend from D1 through D4. For example, T80(3000 cd/m
3
) = 

11.5, 24.5, 39, and 106 hr, respectively, for D1-D4, consistent with the broadened exciton 

formation zone of the latter two devices (Fig. 8.6 (b)). Note that T80 for the control is 

consistent with similar results for this device reported previously
6
, and is only ~29% that 

of the graded device, D3. Further, T80(1000 cd/m
2
)= 616±10 hr for D4, representing a 

more than 10 times improvement from the previously investigated [194] control, D1. The 

improvement in T50 for D4 is slightly less significant than T80, leading to an 

approximately seven-fold increase from D1. 

To establish a quantitative relationship between the exciton density profiles and 

operational lifetimes, we model L and ΔV as functions of time, t, following the model of 

Giebink et al. [194]. The model considers trap (with density Q(x, t)) formation due to 

TPA, and subsequent interactions with electrons with density n(x, t), holes with density 

p(x, t), and excitons with density N(x, t): 

( ) ( , ) ( , ) ( , ) ( , ) 0L QnG x k n x t p x t k Q x t n x t       (8.2) 

( ) ( , ) ( , ) ( , ) ( , ) 0L QpG x k n x t p x t k Q x t p x t       (8.3) 

1
( , ) ( , ) ( , ) ( , ) 0L QT

N

k n x t p x t k Q x t N x t


 
   
 

   (8.4) 
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where kL is the Langevin recombination rate, kQn is the trap-electron interaction rate, kQp 

is the trap-hole interaction rate, kQT is the trap-triplet annihilation rate, N  is the triplet 

lifetime, and and G(x) is the local recombination rate, calculated from the local exciton 

density N(x) using
( )

( )
( )

J N x
G x

e N x dx



, where e is the electron charge. Current densities 

at L0 = 1000 cd/m
2
 are provided in Table 1, and at 3000 cd/m

2
 are J = 21, 21, 17.5, and 

9.1 mA/cm
2
 for D1, D2, D3, and D4, respectively. Trap formation is attributed to TPA at 

a rate of kQ using: 

 

Figure 8.8 Time evolution of the normalized luminance, L, of blue PHOLEDs 

and change in operating voltage ΔV (offset to zero) at the initial luminance of L0 

= 3000 cd/m
2
 ((a) and (b)) and 1000 cd/m

2
 ((c) and (d)). The data are fit to a 

triplet-polaron annihilation (TPA) model using the exciton density profiles in 

Fig 3 (b). The luminance for L0 = 1000 cd/m
2
 (c) are also fit to the adjusted 

exponential (empirical, or EMP) model to estimate T50 (i.e. degradation time 

leading to 50% decrease in L0). 
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( , )

( , ) ( , )Q

dQ x t
k N x t n x t

dt
       (8.5) 

Then, the OLED degradation can be calculated through, 

 ( ) ( , ) ( )BL t B N x t x dx        (8.6) 

0

( ) (0) ( , )
e

V t V xQ x t dx


          (8.7)  

where B  is a normalization factor, ( )B x  is the calculated out-coupling efficiency (for 

Ir(dmp)3 emission peaked at 466 nm),  = 3 is the relative permittivity, and 0  is the 

vacuum permittivity. 

 The model is fit to the degradation of D1-D4 with kQ and kQT as free parameters; 

all other parameters are as previously determined for this materials combination [194] 

(see Table 8.4). Yamamoto et al. [212] reported that water contamination of organic films 

during deposition leads to an accelerated initial degradation when the deposition 

background pressure is > 5×10
-8

 Torr for PHOLEDs almost identical to D1. In our case, 

organic films were deposited in a system with a base pressure of 5×10
-7

 Torr.  However, 

the TPA model ignores extrinsic effects such as water contamination. To account for 

these effects in our fits, t = 0 corresponds to a normalized luminance of 0.95, and the 

initial value of ΔV was chosen to be nonzero (i.e. (0)V  = 0.2 V (at 3000 cd/m
2
) and 0.3 

V (at 1000 cd/m
2
) for D1-D3, and 0.1 V (at 3000 cd/m

2
) and 0.15 V (at 1000 cd/m

2
) for 

D4.). 

From Table 8.4, kQ and kQN in D1 and D2 are almost identical, suggesting that 

improvement of the operational lifetime from D1 to D2 is simply a result of changes in 
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the exciton density profile. In D3, the significant increase in lifetime is due to the 

increase in EQE (leading to a decrease of J to achieve a given L0), as well as to the 

significant spreading of the exciton formation zone compared to the former devices. Note 

that the TPA model considers degradation in the thin film bulk, but not at the interface 

[213]. Indeed, the low exciton density at the EML/HBL interface in D3 may also 

contribute to the observed increase in lifetime by reducing the rate of damage at this 

interface. 

To estimate T50(1000 cd/m
2
) for D3 and D4, we extrapolate the times obtained 

from the TPA model fits. In addition, an empirical method often employed to model 

OLED degradation uses the adjusted exponential decay function: [214] 

  
L(t) = exp - t / t( )

bé
ëê

ù
ûú

.  Here,   and   are phenomenological parameters. This model 

also results in reasonable fits to the degradation data (Fig. 8.8 (c)), and provides 

extrapolated values for T50(1000 cd/m
2
) similar to those obtained from the physics-based 

TPA model (Table 8.3). From these fits, T50(1000 cd/m
2
) = 3500 hr for D4, which 

Table 8.4 Lifetime fitting parameters for blue emitting PHOLEDs 

 D1 D2 D3 D4 

Triplet-polaron annihilation (TPA) model 

Fixed parameters kQn = 1.44×10
-13

 cm
3
s

-1
, kQp = 4.8×10

-14
 cm

3
s

-1
, 

kL= 1.7×10
-13

 cm
3
s

-1
, τN = 1.1 µs 

kQ (10
-11

 cm
3
s

-1
) 1.0±0.1 1.1±0.1 0.95±0.1 0.9±0.1 

kQT (10
-24

 cm
3
s

-1
) 7±1 7±1 6±1 7±1 

Adjusted exponential (empirical) model 

τ (10
3
 hrs) 1.03±0.01 - 2.96±0.04 6.74±0.10 

β 0.54±0.01 - 0.58±0.01 0.63±0.01 

 



 

133 

 

approaches that of blue fluorescent OLEDs with T50(1000 cd/m
2
) ~ 10

4
 hr (Table 8.1). 

Note that the emission from D1-D4 is light blue (although more saturated than the cyan 

color of FIrpic). However, color tuning to achieve more saturated blue emission is 

commonly achieved in fluorescent blue display sub-pixels through the use of 

microcavities[215, 216] and/or color filters. For example, a 70 nm thick anode of indium-

tin oxide (ITO) yields Commission Internationale d’Eclairage chromaticity coordinates of 

[0.16, 0.26], compared to [0.16, 0.31] for a 120 nm thick ITO layer due to weak 

microcavity effects. 

Although the blue PHOLED lifetime reported here remains substantially less than 

that of red and green PHOLEDs at similar luminances, blue sub-pixels in displays operate 

at a considerably lower luminance than either the red or green sub-pixels. For example, 

the required luminance to achieve an sRGB color gamut [217] for green is 9.9 times the 

luminance for blue. Thus, a comparison between blue and green PHOLED lifetimes for 

displays suggests that the blue PHOLED sub-pixel luminance needs to be only ~10% that 

of the green. Under such conditions, the TPA model estimates the blue PHOLED lifetime 

is T50(100 cd/m
2
) ≈ 70,000 hr. Also, adopting a degradation acceleration factor that 

relates luminance to lifetime [214], viz. 

2
2 2

50 50 2

1000cd/m
(100 cd/m ) (1000 cd/m )

100cd/m

n

T T
 

   
 

 and n = 1.55, the extrapolated blue 

PHOLED lifetime is T50(100 cd/m
2
) ≈ 1.3×10

5
 hr. These extrapolated lifetimes approach 

the commercial green PHOLED lifetime of T50(1000 cd/m
2
) . 

In summary, we demonstrated a ten-fold increase in blue PHOLED lifetime 

employing an extended exciton formation zone achieved by grading the concentration 

profile of the hole conducting phosphorescent dopant in the EML. Considering the 
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different color sub-pixel luminances used in displays, the improved blue PHOLED 

lifetimes achieved in stacked devices approaches that of green PHOLEDs under normal 

operating conditions.  The novel device architecture employed is based on a fundamental 

physical understanding of the relationship between energy-driven triplet-polaron 

annihilation and device degradation, and hence should be generally applicable to a wide 

range of phosphorescent and fluorescent devices. Further lifetime improvements are 

anticipated by finding dopant/host combinations with conduction properties similar to the 

materials used here, and that minimize interactions between triplets on the dopant and 

polarons on the host molecules, therefore decreasing the probability of occurrence for 

high energy TPA interactions that lead to molecular decomposition.  
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Chapter 9  

Future Work 

The field of organic electronics is still in its infancy compared to the mature field 

of inorganic semiconductors. Many unique features of organics can be utilized for 

applications that are difficult or impossible to achieve with inorganic materials. This 

chapter explores the feasibility of two novel organic optoelectronic devices: a singlet 

fission organic coating for photovoltaics and an electrically pumped organic 

semiconductor laser. 

9.1 A Singlet Fission Organic Coating for Photovoltaics 

Singlet fission is a process where one singlet with high energy is converted to two 

triplets with lower energy [166], and is the reverse (Auger-like) process of triplet-triplet 

annihilation (TTA in Eq. 2.41). It is highly efficient in some organic materials and has the 

potential of doubling the external quantum efficiency (EQE) and thus increasing the 

power conversion efficiency (PCE) of organic photovoltaics (OPVs). However, although 

OPVs with PCE > 10% [73] have been demonstrated over the past two years, they are 

still far behind the inorganic PV performance. 
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A viable approach to combine the unique singlet fission process in organics and 

achieve a high PCE in inorganic PVs is shown in Fig. 9.1. Here, a organic “fission 

coating” is deposited on the front surface of an inorganic solar cell. The organic thin film 

consists of two types of molecules, a singlet fission sensitizer doped with a 

phosphorescent emitter. The fission sensitizer has a singlet energy higher than twice its 

triplet energy to facilitate resonant exothermic singlet fission [166], and the 

phosphorescent emitter has a lower triplet energy than the sensitizer. During operation, 

the ultraviolet (UV) and blue part of solar spectrum is absorbed by the sensitizing layer, 

where one singlet undergoes fission to form two triplets. The triplets on the sensitizer are 

transferred to the phosphorescent emitter and then decays radiatively, resulting in red or 

infrared (IR) emission subsequently absorbed by the inorganic PV. The green, red, and IR 

 

Figure 9.1 Structure (a) and operation principle (b) of the proposed 

singlet fission organic coating for photovoltaic applications.  
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part of the solar spectrum transmits through the organic film and is directly absorbed by 

the inorganic PVs. 

To evaluate the impact of this approach, we calculate the PV efficiency 

improvement based on the singlet fission coating. The calculation is based on the detailed 

balance approach of Shockley and Queisser [2] assuming that the organic film absorbs 

100% of the solar spectrum above its bandgap of ESF, and emits photons with the energy 

of ½ESF at 200% photoluminescence quantum efficiency. Also, the inorganic solar cell 

bandgap is EG, and the organic film is transparent to photon energies below ESF. The 

calculated PCE limit as a function of EG is shown in Fig. 9.2 for different ESF. It is 

evident that the conventional SQ limit of 33.7% (black line) for single junction solar cell 

can be improve to as high as 42% (blue line) for the case of ESF=2.2 eV and EG=1.1 eV. 

Interestingly, this optimized inorganic band gap is the same as the bandgap of silicon. 

 

Figure 9.2 Calculated maximum power conversion efficiency (PCE) 

based on detailed balance theory [2] using an organic fission sensitizer 

with the singlet energy of ESF on an inorganic photovoltaic (PV) cell 

with a band gap of EG. 

 



 

138 

 

The next question is whether such a combination of organic fission sensitizer and 

phosphorescent emitter already exists in the literature. Some promising combinations 

include the use of diphenylisobenzofuran (ES=2.8 eV, ET=1.4 eV) [218] or diphenyl 

tetracene (ES=2.5 eV, ET=1.2 eV) [191] as the fission sensitizer, and platinum complexes 

such as tetraphenyltetranaphtho platinum porphyrins (ET=1.4 eV) [219, 220] as the 

phosphorescent emitter. Indeed, although there are many efficient phosphors for visible 

emission, highly efficiency infrared phosphorescent emitters are rarely reported in the 

literature. This is possibly due to a lack of motivation for synthesizing such emitters up to 

this time. 

9.2 Feasibility of an Electrically Pumped OSL 

Optically pumped organic semiconductor lasers (OSLs) were demonstrated more 

 

Figure 9.3 Proposed structure for an OLED-pumped-OSL 
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than 15 years ago [63-65] and it was predicted more than 10 years ago [67, 68] that an 

electrically pumped OSL could soon be realized. However, there has been no credible 

report of such a device so far. Difficulties associated with the demonstration of an 

electrical pumped OSL include significant losses from singlet-polaron annihilation (SPA), 

singlet-triplet annihilation (STA), large resistivity in organic films, and cavity loss due to 

electrodes. 

A different approach to realize an all-organic electrically pumped laser is to use a 

high intensity OLED as an optical pump to excite a separate OSL section integrated with 

the OLED. This method could resolve the problems of SPA and electrode loss, because 

the spatially separated OSL is optically pumped and there is no charge transport process 

in its operation. A schematic of such an integrated organic laser is shown in Fig. 9.3. 

Here, the OSL gain medium is deposited on a DFB grating formed on quartz substrate. 

Then, a low index spacer is spin-cast on top of the OSL to planarize the surface. Lastly, a 

 

Figure 9.4 Transient current density and emission from a blue emitting 

OLED driven by a voltage pulse of 100 V 
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blue or green emitting OLED with a semitransparent bottom electrode and a reflective 

top electrode is grown on top of the spacer. 

To evaluate the feasibility of such an approach, the maximum light output power 

from the OLED needs to be compared with the minimum optical pumping threshold from 

the OSL. Table 9.1 summarizes the reported thresholds for optically pumped thin film 

OSLs. Most notably, , Karnutsch et al. demonstrated a threshold as low as 4 W/cm
2
 in an 

OSL using poly[9,9-dioctylfluorene-co-9,9-di(4-methoxy-phenyl)fluorene] (F8DP) with 

a mixed order distributed feedback (DFB) structure as the gain medium. Although F8DP 

requires a UV optical pump, similar improvements in threshold can be expected from the 

same feedback structure, and thus a similar threshold can be expected from gain media 

such as Dow Red F (a proprietary polymer) or ADS233YE (a polyfluorene with structure 

available from  http://www.adsdyes.com/). 

To estimate the maximum light output from an OLED, we fabricate an blue 

emitting OLED on ITO-coated-glass substrate using 3 vol% 4,4'-bis(9-ethyl-3-

carbazovinylene)-1,1'-biphenyl (BCzVBi) doped in 4,4'-bis(N-carbazolyl)biphenyl (CBP) 

Table 9.1 Literature report on low threshold OSLs 

Gain medium Feedback 
Pump 

Wavelength 

Threshold 

(W/cm
2
) 

Ref. 

Alq3:DCM2 2
nd

 order DFB 350 nm 700 [4] 

ADS233YE 2
nd 

order DFB 450 nm 217 [6] 

Dow Red F 2
nd

 order 2d DFB 540 nm 110 [8] 

BN-PFO 1
st 

order DFB 390 nm 13 [11] 

F8DP Mixed order DFB 390 nm 4 [13] 

Y80F8:20F5 2
nd

 order DFB 390 nm 30 [14] 

 

http://www.adsdyes.com/
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as the emissive layer (the chemical structures for these molecules are in Appendix A) 

following Sun et al. [221]. When operated using microsecond pulses, as shown in Fig. 9.4, 

the OLED output can reach 2.5 W/cm
2
 at a 100V voltage. If we further consider the light 

out-coupling improvement in the structure of Fig. 9.3 due to direct harvesting of glass 

modes [222], the optical power to reach the OSL can exceed 4 W/cm
2
. Also, more 

efficient blue OLEDs [223] are available using new emitter materials, which can further 

increase the maximum power.  

In addition, since the OLED emissive area can be significantly larger than the 

OSL active area, optical focusing can further increase the pump intensity from the OLED 

on the OSLs. The focusing strategy may be used for microcavity OLEDs [216], where the 

angular emission profile is concentrated towards the substrate normal direction. Thus, 

although a direct electrically pumped OSL may not be available in the near future, an 

OLED-pumped-OSL is feasible given the state-of-art of both high intensity OLEDs and 

low threshold OSLs. 

To summarize, the unique features of organic semiconductors will be 

continuously utilized in future electronic and optoelectronic devices to accomplish goals 

that conventional materials cannot achieve. The demonstration of transparent, curved, 

flexible, and stretchable organic devices with performance comparable to, or even 

surpassing their inorganic counterparts is just a beginning of the era of organic 

semiconductors. Further, the superior photophysical properties of organic semiconductors 

can be combined with the desirable electrical properties of inorganic semiconductors in 

hybrid organic-inorganic devices [6, 108, 224, 225], which are important from both 

fundamental and practical perspectives.  
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Appendix A  

Chemical Structures for Organic Molecules 

Short name Full chemical name Chemical structure 

ADN 9,10-Di(naphth-2-yl)anthracene 

 

Alq3 tris(8-hydroxyquinoline)aluminum 

 

BAlq bis(2-methyl-8-quinolinolate)-4-

(phenylphenolato)aluminum 

 

BCP Bathocuproine 
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CBP 4,4'-N,N'-dicarbazole-biphenyl 

 

DCM 4-dicyanmethylene-2-methyl-6-(p-

dimethylaminostyryl)-4H-pyran 

 

DCM2 4-(dicyanomethylene)-2-methyl-6-

julolidyl-9-enyl-4H-pyran 

 

HATCN hexaazatriphenylene hexacarbonitrile 

 

Ir(dmp)3 iridium (III) tris[3-(2,6-

dimethylphenyl)-7-

methylimidazo[1,2-f] phenanthridine] 
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Ir(ppy)3 tris (2-phenylpyridine) iridium 

 

Ir(ppy)2acac bis (2-phenylpyridine) 

(acetylacetonate) iridium 

 

Liq 8-hydroxyquinolinato lithium 

 

mCBP 4,4’-bis(3-methylcarbazol-9-yl)-2,2’-

biphenyl 

 

NPD 4,4’-bis[N-(1-naphthyl)-N-phenyl-

amino]-biphenyl 

\ 

PQIr bis(2-phenylquinoline) 

(acetylacetonate)Ir(III) 
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PtOEP octaethylporphine platinum 

 

Pt(TPBP) tetraphenyltetrabenzoporphyrin 

platinum 

 

Rubrene rubrene 

 

TBP 2,5,8,11-tetra-tert-butylperylene 

 

 



 

146 

 

Appendix B  

List of Publications, Conference Presentations and 

Patents 

Publications 

1. Yifan Zhang, Jaesang Lee, and Stephen R. Forrest, “Ten-Fold Increase in the 

Lifetime of Blue Phosphorescent Organic Light Emitting Diodes”, submitted 

(2014) 

2. Yifan Zhang and Stephen R. Forrest, “Triplet Diffusion Leads to Triplet–Triplet 

Annihilation in Organic Phosphorescent Emitters”, Chemical Physics Letters 590, 

106 (2013) 

3. Michael Slootsky, Yifan Zhang, and Stephen R. Forrest, “Temperature 

Dependence of Polariton Lasing in a Crystalline Anthracene Microcavity”, 

Physical Review B 86, 045312 (2012) 

4. Yifan Zhang and Stephen R. Forrest, “Triplets Contribute to Both an Increase and 

Loss in Fluorescent Yield in Organic Light Emitting Diodes”, Physical Review 

Letters 108, 267404 (2012) 

5. Yifan Zhang and Stephen R. Forrest, “Existence of Continuous-Wave Threshold 

for Organic Semiconductor Lasers”, Physical Review B 84, 241301 (2011) 
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6. Yifan Zhang, Michael Slootsky, and Stephen R. Forrest, “Enhanced efficiency in 

high-brightness fluorescent organic light emitting diodes through triplet 

management”, Applied Physics Letters 99, 223303 (2011) 

7. Yifan Zhang, Matthew Whited, Mark E. Thompson, and Stephen R. Forrest, 

“Singlet–triplet quenching in high intensity fluorescent organic light emitting 

diodes”, Chemical Physics Letters 495, 161 (2010) 

Conference Presentations 

1. (Oral Presentation) Yifan Zhang and Stephen R. Forrest, “Accurate Modeling of 

Triplet Annihilations in PHOLEDs”, MRS Fall Meeting, Boston, MA (2013) 

2. (Poster Presentation) Yifan Zhang and Stephen R. Forrest, “Triplet-triplet 

Annihilations in Phosphorescent Organic Light Emitting Diodes”, SPIE Optics + 

Photonics, San Diego, CA (2013) 

3. (Poster Presentation) Yifan Zhang and Stephen R. Forrest, “Excited State 

Interactions in High Intensity Organic Light Emitting Diodes”, Department of 

Energy, Solid State Lighting Workshop, Long Beach, CA (2013) 

4. (Oral Presentation) Yifan Zhang and Stephen R. Forrest, “Triplet Management in 

Continuous-Wave Organic Semiconductor Lasers”, SPIE Optics + Photonics, San 

Diego, CA (2012) 

5. (Oral Presentation) Yifan Zhang, Michael Slootsky, and Stephen R. Forrest 

“Triplet Management in Fluorescent Organic Light Emitting Diodes and Organic 

Lasers”, The Conference on Lasers and Electro-Optics (CLEO), San Jose, CA 

(2012) 
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6. (Oral Presentation) Yifan Zhang and Stephen R. Forrest, “Continuous-Wave 

Organic Semiconductor Lasers”, SPIE Optics + Photonics, San Diego, CA (2011) 

7. (Oral Presentation) Yifan Zhang and Stephen R. Forrest, “Singlet-Triplet 

Quenching in High Intensity Organic Light Emitting Diodes”, 8
th

 International 

Conference on Electroluminescence and Organic Optoelectronics (ICEL), Ann 

Arbor, MI (2010) 

8. (Oral Presentation) Yifan Zhang, Stephane Kena-Cohen, and Stephen R. Forrest, 

“Ultra-high Intensity Stacked Organic Light Emitting Diodes under Pulsed 

Conditions”, MRS Fall Meeting, Boston, MA (2009) 

Patents 

1. Stephen R. Forrest, Yifan Zhang, and Mark E. Thompson, “Ultra-bright 

fluorescent organic light emitting diodes with triplet sinks”, Patent # 8456081, 

Issue date: 06/04/2013 

2. Stephen R. Forrest and Yifan Zhang, “Continuous-wave organic semiconductor 

lasers by triplet managers”, Patent # 8654806, Issue date: 02/18/2014 

3. Stephen R. Forrest, Yifan Zhang, Kevin Bergemann, “Ultra-high efficiency 

(125%) phosphorescent organic light emitting diodes using singlet fission”, filed 

in March 2012 

4. Stephen R. Forrest and Yifan Zhang, “High efficiency hybrid organic/inorganic 

photovoltaics using singlet fission organic sensitizer”, filed in March 2012 

5. Stephen R. Forrest and Yifan Zhang, “High efficiency and brightness fluorescent 

organic light emitting diodes by triplet-triplet fusion”, filed in March 2012 
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6. Stephen R. Forrest and Yifan Zhang, “Phosphorescent organic light emitting 

diodes with high efficiency at high brightness”, filed in March 2013 

7. Stephen R. Forrest and Yifan Zhang, “Extended OLED Operational Lifetime 

Through Doping Profile Management”, filed in November 2013 
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