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2.9 Examples of the learned pair-wise things relationships are visualized
in panel (a,b). The grayscale color code indicates to what degree
the relationship is encouraged (white means it is encouraged, black
means it is not encouraged and suppressed). Our model learned that
(a) a car is likely to be in front of a bus, and a car is unlikely to be
below a bus, (b) a car is likely to be behind a person. (c) Prediction
accuracy of the objects co-occurrence for each type of relationship
averaged over 5-fold validations. The first and last columns show the
accuracy before and after applying inference on our full ACRF model,
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middle two columns which are all inferior then our results. . . . . . 34
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2.11 3D pop-up models from Stanford dataset. Videos related to above
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3.2 (a) Reconstructed point cloud taken from the corner of the room.
Ground truth ‘wall ’ is highlighted with a red mask. Reconstructing
reliable 3D geometry from noisy point cloud is a challenging task. (b)
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3.4 (Best visible in a high resolution) (a) A detected plane using [13] is
highlighted with the blue mask. Its convex hull is drawn with the
yellow polygon and it includes both visible and occluded region of a
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3.7 (a) RGB image. (b) 3D Reconstruction with V-CRF. (c) Seman-
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embedding the Caltech-256 dataset is consistent with our theoretical
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ABSTRACT

Unified Models for Recovering Semantics and Geometry from Scenes

by

Byung-soo Kim

Chair: Prof. Silvio Savarese

Understanding contents of an image, or scene understanding, is an important yet

very challenging problem in computer vision. In the last few years, substantially

different approaches have been adopted for understanding “things” (object categories

that have a well defined shape such as people and cars), “stuff ” (object categories

that have an amorphous spatial extent such as grass and sky), and the “geometry”

of scenes.

In this thesis, we propose coherent models for the simultaneous recognition of

things, stuff, and geometry. The key contributions are i) to model their individual

properties as well as relative properties, and ii) to propose a coherent framework

that efficiently solves complicated tasks for scene understanding. We demonstrate

that each task can be improved by also solving the other tasks in a joint fashion.

The proposed models are capable of handling different types of inputs such as RGB,

RGB-D, or hierarchically organized images.

We have carried out extensive quantitative and qualitative experimental analy-

sis to demonstrate the effectiveness of our theoretical findings and showed that our

xvii



approaches yield competitive performances with respect to state-of-the-art methods.
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CHAPTER I

Introduction

In this chapter, we introduce the scene understanding problem and relevant chal-

lenges in Sec. 1.1. The previous efforts for scene understanding are summarized in

Sec 1.2. We highlight our contributions toward solving the scene understanding prob-

lem in Sec. 1.3.

1.1 Scene Understanding Problem

The goal of scene understanding is to develop an automated recognition system

that can recognize a scene as effectively as humans do. This problem has been studied

by the early vision community [11, 77, 109] due to its potential use in a number of

applications such as robotics, human computer interaction, and autonomous driving.

Automatically understanding a scene from images is an extremely challenging

problem; as the adage “A picture is worth a thousand words” says, there are an

exponential number of ways to interpret a scene based on the observer’s interest and

criteria. In order to make the problem tractable, researchers have identified a number

of key recognition sub-tasks: i) object detection to localize an object, ii) classification

to identify a semantic label of the region of interest, iii) semantic labeling to classify

each pixel, and iv) geometry estimation to understand the physical structure of the

scene. For example, while looking at Fig. 1.1, one is able to localize object (detection)
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Figure 1.1: This figure highlights different sub-tasks of the scene understanding prob-
lem. Within a second, human can localize objects (detection) such as pedestrians or
cars (classification), as well as to understand its background as a sidewalk or building
(semantic labeling) and the geometric structure this scene is composed of (geometry
estimation).

such as a pedestrian (classification), identify the background as sidewalk (semantic

labeling), and determine the orientation of the building facade (geometry estimation).

A number of methods have been proposed for each of these tasks (Sec. 1.2), and

there have been meaningful achievements in areas such as pedestrian detection and

image classification. While most of these works solve these tasks in isolation, we

believe that an integrated approach where detection, segmentation, and geometry

estimation can be solved jointly can be highly beneficial. For example, in Fig. 1.1, by

segmenting an image (labeling each pixel as building, crosswalk, or street), geometric

properties (vertical facade of building or horizontal support of street and crosswalk)

can be inferred. Similarly, by solving the detection problem (cars and pedestrian), we

can estimate geometric properties (empty space or occupied) or solve segmentation
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problem (street or crosswalk).

Modeling the correlation between different recognition tasks is of the main objec-

tive of this thesis, and we propose unified models to understand scenes by focusing

on various subtasks with different types of sensor data. Specifically, we first pro-

pose a coherent model based on Conditional Random Fields (CRF) where object

detection and semantic labeling problems are solved in a joint fashion. Our models

are evaluated on the cluttered images, which are extremely challenging for models

that consider detection and semantic labeling separately. Second, the CRF model

is extended to represent 3D space so that it can jointly reconstruct a 3D scene and

perform semantic labeling tasks, in the case of using RGB-D data. As key building

blocks for such holistic models, we have also proposed methods that enable accurate

object localization in 3D, and that exploit semantic hierarchies to recognize objects

at various degrees of semantic granularity.

1.2 Previous Works

We categorize previous efforts for scene understanding based on based on whether

they focus on semantic inference or geometry estimation.

1.2.1 Semantic understanding

The problem of semantic understanding aims at generating semantic labels for

a region of interest. Although the domain of semantic labels can be extensive, we

follow definition introduced by [39, 63, 81], and divide semantic labels into two cat-

egories: things and stuff. Things indicate object classes having rigid shape such as

cars or pedestrians, whereas stuff indicates classes having more amorphous shapes

such as streets or buildings. Different strategies are proposed for each things and stuff

recognition.

Things recognition. An object that belongs to thing class often occupies a limited
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spatial extent in an image space, such as a region in a bounding box. Therefore, one

paradigm for things recognition is to search for a location in an image space where

the observation and the pre-trained model of a specific object class closely match

[36, 37, 41, 87, 127]. When more than one thing class exists in the scene, several

methods have been proposed in order to balance confidence in the different classes

[28, 105].

Compared to detection methods, classification methods are typically used in the

case when a region of interest is given, for example, a bounding box or whole image

space. A variety of different techniques have been proposed with sequential steps

for classification; feature extraction [6, 24, 89, 119], pooling [86, 124, 128], modeling

[14, 15, 19, 100], and training [32, 121, 129].

Stuff recognition. Since the spatial extent of stuff type classes is less rigid than

thing type objects, the detectors for thing type objects cannot be used to recognize

stuff. Instead, a number of methods are proposed to associate each image element

(e.g., pixel or super-pixel) with a specific object class label by looking at its appear-

ance as well as the appearance of the surrounding area.

A majority of these methods ([58, 72, 76]) are built as conditional random field

(CRF) models, where image elements are represented as vertices in a graph and

adjacency among image elements is represented using edges.

1.2.2 Geometric understanding

For many applications such as robotics or autonomous navigating system, under-

standing the geometry within an unknown environment is required. Early works such

as [29, 50] proposed methods to build and update a map and keep the track of camera

location. However, these methods can only be used with sensors such as laser, Lidar,

sonar sensor, or multiple 2D cameras.

Structure from motion (SfM) techniques based on multiple 2D single-view RGB
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Figure 1.2: The relationship between things and stuff, as well as the relationship
between pairs of things are incorporated. Such relationships are highlighted with the
arrows this this figure. Our model achieves the improvement on both detection and
segmentation task as described in Chap. II.

images have been proposed [26, 106]. These techniques find correspondences between

images by matching consistent features. 3D structure and camera motion can be

reconstructed using trajectories of the imag features.

Understanding geometry from a single 2D RGB image is another field of interest

in computer vision. Different methods are proposed by using 3D indoor layout priors

[59, 85], or 3D primitive shape as priors for objects in the scene [53, 57]. The context

among objects or between objects and layout has also been studied recently [22, 60].

1.3 Our Contribution

1.3.1 A model for understanding things and stuff

We propose a framework for scene understanding that models both things and stuff

using a joint representation (Fig. 1.2). This representation allows us to enforce so-

phisticated geometric and semantic relationships between thing and stuff categories in

a single graphical model. We use the latest advances in the field of discrete optimiza-

tion to efficiently perform maximum a posteriori (MAP) inference in this model. We
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Figure 1.3: The VCRF model (Chap. III) finds the best configuration of semantic
labels and geometric properties for 3D space represented by a set of voxels. In the
figure, red corresponds to ‘wall’, green to ‘floor’, orange to ‘table’ and yellow to
‘picture’.

evaluate our method by comparing it to state-of-the-art methods for object segmen-

tation and detection on public datasets such as Stanford dataset and the challenging

PASCAL’09 segmentation dataset. This framework is described in Chap. II.

1.3.2 A Voxel-CRF based model

In the past few years, researchers have taken advantage of the recent diffusion of

depth-RGB (RGB-D) cameras to help simplify the problem of inferring scene seman-

tics. However, while the added 3D geometry is certainly useful for segmenting out

objects with different depth values, it also adds complications. The 3D geometry is

often incorrect because of noisy depth measurements, and the actual 3D extent of the

objects is usually unknown because of occlusions. We propose a new method that
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Segmentation Hypotheses

Figure 1.4: Find an accurate 3D location of object from RGB-D data is challenging
task. We propose a new framework to obtain accurate localizations of objects in 3D
by exploring segmentation hypotheses of the object in 2D.

allows us to jointly refine the 3D reconstruction of the scene (raw depth values) while

accurately segmenting out the objects or scene elements from the 3D reconstruction

(Fig. 1.3). This is achieved by introducing a new model which we called Voxel-CRF.

The Voxel-CRF model is based on the idea of constructing a conditional random field

over a 3D volume of interest which captures the semantic and 3D geometric relation-

ships among different elements (voxels) of the scene. This model allows us to jointly

estimate (1) a dense voxel-based 3D reconstruction and (2) the semantic labels asso-

ciated with each voxel even in the presence of partial occlusions using an approximate

yet efficient inference strategy. We evaluated our method on the challenging NYU

Depth dataset (Version 1 and 2). Our method is described in Chap. III.
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1.3.3 A model for understanding things in 3D

We focus on the problem of finding objects in 3D from RGB-D images, and propose

a novel framework that explores the compatibility between segmentation hypotheses

of an object in the image and the corresponding 3D map (Fig. 1.4). Our framework

allows us to discover the optimal location of the object in 3D using a generalization

of the structural latent SVM formulation in 3D as well as the definition of a new loss

function defined over 3D space which penalize the amount of incorrect 3D localiza-

tion during training. We evaluate our method using two existing RGB-D datasets.

Extensive quantitative and qualitative experimental results show that our proposed

approach outperforms the state-of-the-art as well as a number of baseline methods for

both 3D and 2D object recognition tasks. Our framework is described in Chap. IV.

1.3.4 A model for understanding things in 2D

Using semantic hierarchies of object labels for visual categorization has been shown

to have a number of important benefits. The hierarchies allow us to recognize objects

at different levels of semantic granularity. Moreover, they enable significant gains in

efficiency (e.g., logarithmic with the number of categories [48, 93]) or the construction

of a more meaningful distance metric for image classification [98]. A critical question,

however, still remains controversial: would structuring data in a hierarchical sense

also help classification accuracy? In this work we address this question and show

that a hierarchically structured database can be indeed successfully used to enhance

classification accuracy using a sparse approximation framework. We propose a new

formulation for sparse approximation where the goal is to discover the sparsest path

within a hierarchical data structure that best represents the query object. Extensive

quantitative and qualitative experimental evaluation on a number of branches of the

Imagenet database [27] as well as on the Caltech-256 [48] demonstrate our theoretical

claims and show that our approach produces better hierarchical categorization results
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than competing techniques. This approach is described in Chap. V.

1.3.5 Themes

In this thesis, the following themes appear throughout many chapters.

Graphical model. We solve the scene understanding problem by representing the

2D/3D space with graphical models, where each vertex represents image elements

and edges connect adjacent elements. Depending on the problem, variations of condi-

tional random fields (CRF) model are proposed as in Chap. II (ACRF) and Chap. III

(VCRF). Specifically, ACRFs model the things and stuff using 2D image represen-

tations, where each image element represents a pixel or a super-pixel. On the other

hand, VCRFs model voxels in 3D space.

Training strategies. The complexity of the labeling space for the scene under-

standing problem makes the training process highly challenging. We adopt state-of-

the-art machine learning techniques such as structural support vector machine [121]

to learn linear weights balancing the importance of different factors. The training

methods proposed in this thesis are discriminative approaches in the presence of a

training set. In other words, we have assumed that testing and training data have

similar properties. Notice however, that during the training process, training param-

eters are being regularized so that the model can avoid severe bias toward a training

set.

Inference strategies. The proposed CRF models are built on top of highly con-

nected graph structures. While this allows us to handle richer interactions among

image elements, it makes the inference task challenging. We propose several methods

to efficiently solve the complex inference problems. For example, in Chap. II, we pro-

pose to approximate the energy function so that the optimization can be efficiently

performed using a graph-cut method while preserving the model’s semantic and geo-

metric properties. In Chap. II, iterative approaches are introduced to efficiently infer
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the best configuration of random variables representing semantic labels and geometric

status.

Experimental evaluation. In order to evaluate our models and compare them

with state-of-the-art baseline methods, we conduct experiments on public available

dataset such as Stanford dataset [44], PASCAL dataset [30], and NYU Depth dataset

[97, 111]. When necessary, we augmented existing dataset with additional labels; for

example, pixelwise annotation for thing classes are added to the Stanford dataset.

For the NYU Depth dataset, we created top-view semantic floor map as described in

Chap. III.

10



CHAPTER II

Relating Things and Stuff via Object Property

Interactions

In the last few years, substantially different approaches have been adopted for

segmenting and detecting “things” (object categories that have a well defined shape

such as people and cars) and “stuff” (object categories which have an amorphous

spatial extent such as grass and sky). While things have been typically detected by

sliding window or Hough transform based methods, detection of stuff is generally

formulated as a pixel or segment-wise classification problem. This work proposes a

framework for scene understanding that models both things and stuff using a common

representation but still preserves their distinct nature by using a property list. This

representation allows us to enforce sophisticated geometric and semantic relationships

between thing and stuff categories in a single graphical model. We use the latest

advances made in the field of discrete optimization to efficiently perform maximum a

posteriori (MAP) inference in this model. We evaluate our method on the Stanford

dataset by comparing it against state-of-the-art methods for object segmentation and

detection. We also show that our method achieves competitive performances on the

challenging PASCAL’09 segmentation dataset.
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Figure 2.1: Our goal is to segment the image into things (e.g., cars, humans, etc)
and stuff (e.g., road, sky, etc) by combining segmentation (bottom) with object de-
tection (top). Results from different variants of our method (capturing a subset of
critical contextual relationships) are shown from left to right columns. At the top
of each column, we show the top 4 probable bounding boxes, where light and dark
boxes denote the confidence ranking from high to low. Instance-based segmentation
are shown in each bottom column, where different colors represent different object
instances. Notice that our final ACRF captures the key relationships and recovers
many missing detections and segmentation labels. Thing-Stuff and Thing-Thing re-
lationships are indicated by color-coded arrows connecting pairs of things. Different
color codes indicate different types of relationships.

2.1 Statement

A number of methods have been proposed for recognizing things and stuff. For

detecting things, we find that methods based on pictorial structures (i.e., Felzenszwalb

et al. [35]), pyramid structures (i.e., Grauman and Darrell [47]), generalized Hough

transform [5, 41, 87, 92, 116], or multi-view model [114, 127] work best. These

representations are appropriate for capturing shape or structural properties of things,

and typically identify the object by a bounding box. The second category of methods

aim at segmenting the image into semantically consistent regions [58, 72, 110] and

work well for stuff, like sky or road.

In order to coherently interpret the depicted scene, various types of contextual

relationships among objects (stuff or things) have been explored. For example, co-

occurrence relationships (e.g., cow and grass typically occur in the same image) have

been captured in [80, 102], 2D geometric relationships (e.g., below, next-to, etc) have

been utilized in [28, 52, 62], 2.5D geometry relationships (e.g., horizon line) have
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been incorporated by Hoiem et al. [65] and Bao et al. [3]. The use of such contextual

relationships have inspired the development of robust algorithms for various object

recognition tasks. For instance, many segmentation methods [44, 80, 125] have been

proposed to capture stuff-stuff relationships in a random field formulation. Simi-

larly, thing-thing relationships have been incorporated into a random field for jointly

detecting multiple objects (Desai et al. [28]).

Recently, researchers have proposed methods to jointly detect things and seg-

ment stuff. Gould et al. [45] proposed a random field model incorporating both

stuff-stuff, thing-stuff, and thing-horizon relationships. One limitation of their ap-

proach is that it cannot capture 2D geometric and co-occurrence relationships be-

tween things. Moreover, inference is computationally very demanding and typically

takes around five minutes per image. To overcome this limitation, some authors have

proposed inference procedures which leverage existing approaches for detection and

segmentation and use the output of such approaches as input features in an iterative

fashion [63, 66, 115]. Unfortunately, optimality is not guaranteed for most of these

approaches.

We propose a novel framework for jointly detecting things and segmenting stuff

that, for the first time, can coherently capture many known types of contextual re-

lations between thing-thing, stuff-stuff, and thing-stuff categories. Our contributions

are three-fold. First, the model infers both geometric and semantic relationships de-

scribing the objects (i.e., object x is behind object y) via object property interactions.

Second, the model enables instance based segmentation (see color coded segments in

Fig. 2.1(d)) by associating segments of thing categories to instance-specific labels. Fi-

nally, the special design of model potentials allows efficient inference which takes a few

seconds per image in average and is performed using a combination of state-of-the-art

discrete optimization techniques.

Object hypothesis and property lists. Our framework extends the basic con-
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ditional random field (CRF) formulations for scene segmentation (i.e., stuff recogni-

tion) [72, 110] by introducing the concept of a generic object instance hypothesis.

Every object instance hypothesis is described by a property list (Fig. 2.2-Top). This

list includes semantic properties, such as the object categorical label l. Further, de-

pending on the category label (stuff or thing), the hypothesis can also be characterized

by some geometric properties, such as the 2D location (u, v), and the distance from

the camera (depth) d.

We augment the above-mentioned CRF formulation with object hypothesis indi-

cator variables which capture the presence or absence of an object hypothesis (see

Fig. 2.2(a)-Top). We refer to our model as the augmented CRF, or ACRF, to high-

light the newly added object hypothesis indicator variables. The indicator variables

can take only two states: 0 or 1 which represents the absence or presence of an hy-

pothesis, respectively. The key benefit of the object indicator variables is that they

allow us to easily encode sophisticated semantic and geometric relationships between

pairs of object hypotheses. For instance, simple pairwise potentials defined over ob-

ject indicator variables can allow to incorporate i) 2D geometric relationships such

as “above” which model the property that one hypothesis lies above the other (e.g.,

a person sitting on a bike), ii) depth and occlusion relationships such as “in-front”

which model the property that one hypothesis lies in front of the other (e.g., a person

standing in front of a car), and iii) support relationships which model the property

that one hypothesis is supported by another hypothesis (e.g., pedestrians walking on

a road). More sophisticated relationships such as a composition of these basic 2D

or 2.5D relationships can also be supported. Critically, the ACRF model generalizes

Ladicky et al.’s model [80] which captures stuff-stuff co-occurrence contextual rela-

tionships only. In contrast, our model can not only encode relationships between stuff

categories that depend on their geometrical properties such as (orientation, depth)

but can also encode geometrical and semantic properties between stuff and things as
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well as things and things. Our model can also handle multiple instances of thing ob-

ject categories and, thus, also generalizes the work of Barinova et al. [5]. We illustrate

the efficacy of our approach in Fig. 2.1. As seen in the figure, detections typically

do not agree with the segmentation results (Fig. 2.1(b)) if the detection and segmen-

tation are applied separately. A model capturing thing-stuff relationships ensures

consistency between detection and segmentation results (Fig. 2.1(c)). Finally, when

thing-thing relationships (e.g., next-to, behind, same plane, etc) are included, even

small objects, that are hard to detect and segment, can be discovered (Fig. 2.1(d)).

Learning. Relationships encoded by our model are regulated by a number of model

parameters that we learn from training data. The relationships can be both attractive

(e.g., a person is likely to sit on a motorbike) and repulsive (e.g., car and airplane

are unlikely to co-occur), and are enforced by adding positive or negative costs to the

energy of the model. We formulate the problem of learning these costs as a Structured

SVM (SSVM) [121] learning problem with two types of loss functions related to the

segmentation loss and detection loss, respectively (see Sec. 2.5 for details).

MAP Inference. Jointly estimating the segmentation variables X and object in-

dicator variables Y (Fig. 2.2(c)) is challenging due to the intrinsic difference of the

variable space and the complex types of pair-wise relationships between thing-thing,

and thing-stuff. We design an efficient graph-cut-based move making algorithm by

combining state-of-the-art discrete optimization techniques. Our method is based on

the α-expansion move making approach [17], which works by projecting the energy

minimization problem of segmentation variables X into a binary energy minimization

problem to have the same space as the indicator variables Y . We use the “probing”

approach similar to the one described by Rother et al. [104] to handle the non-

submodular function related to pair-wise object relationships (i.e., thing-thing). Our

MAP inference algorithm takes only a few seconds per image in average as opposed

to five minutes by Gould et al. [45].
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2.2 Related Work

Our method is closely related to the following three formulations which all can

be considered as special cases of our model. Desai et al. [28] propose a CRF model

capturing thing-thing relationships and show that object detection performance can

be consistently improved for multiple object categories. Their model can be consid-

ered as a special case of our model when no segmentation variable X exists. Both

Ladicky et al.’s methods [80, 81] extend the standard CRF model to incorporate more

sophisticated relationships. Ladicky et al. [81] incorporate thing-stuff relationships

and demonstrate that the information from object detection can be used to improve

the segmentation performance consistently across all object categories. Their model

can be considered as a special case of our model when no thing-thing relationship is

incorporated. Ladicky et al. [80] propose to capture co-occurrence types of object

relationships and demonstrate that the co-occurrence information can be used to im-

prove the segmentation performance significantly. Their model can also be considered

as a special case of our model when no thing-thing relationships are established and

no geometric property interactions (i.e., above, same horizon, etc) are introduced.

Finally, [80] cannot be used to assign segments to object instances or localize object

instances. Our results on the Stanford dataset demonstrate that our model achieves

superior performances than [80, 81].

The Semantic Structure From Motion (SSFM) proposed by Bao et al. [2] also

jointly model object instances and regions. However, unlike our method which uti-

lizes one single image, their approach utilizes the correspondences of object instances

and regions established across multiple images to improve the object detection and

segmentation performance. Li et al. [88] proposes a uniform model to jointly clas-

sify the scene, recognize the class of each segment, and annotate the image with a

list of tags. However, the model cannot localize each object instances. Hence, the

thing-thing and thing-stuff interactions are not incorporated in the model.
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Figure 2.2: Our Augmented CRF model (ACRF). In panel (a), we show an image
and the indicator variables corresponding to the different object hypotheses present
in it. The instance hypotheses for ‘thing’ categories such as person and bike have
geometric properties (e.g., spatial and depth). These properties are absent for stuff
categories such as building and road. In panel (b), we demonstrate how relationships
(e.g., behind, above, etc) are selected given a pairs of property lists. In panel (c),
the figure shows the label space of the segmentation variables X and the indicator
variables Y and the interaction between them. In panel (d)-Bottom, the figure shows
the pairwise and higher order interactions among segmentation variables X which are
present in standard CRF formulations. In panel (d)-Top, the figure shows the pairwise
interactions among indicator variables Y which can encode different geometric and
semantic relationships. The two edges connected to the stuff indicators which end
in the dashed separator line indicate that stuff indicators are interacting with thing
indicators with only category property.

2.3 Augmented CRF

We now explain our Augmented Conditional Random Field (ACRF) model. ACRF

jointly models object detection and segmentation (Fig. 2.2 (a)), and can incorpo-

rate contextual relationships between things and stuff, and between multiple things

(Fig. 2.2 (b)).

Object segmentation, like other image labeling problems, is commonly formulated

using Conditional Random Fields (CRF). The conventional CRF model is defined

over a set of random variables X = {xi}, i ∈ V where V represents the set of image

elements, which could be pixels, patches, super-pixels, etc (Fig. 2.2 (c)-Bottom). Each

random variable xi is assigned to a label from a discrete label space L, which for the

task of object-category segmentation, is considered the set L of object categories such

17



as grass, road, car and people.

The energy (or cost) function E(X) of the CRF is the negative logarithm of

the joint posterior distribution of the model and has the following form: E(X) =

− logP (X|E) = − log φeRF (X|E) + K =
∑

c∈CX ψc(Xc) + K, where E is the given

evidence from the image and any additional information (e.g., object property lists),

φeRF (X|E) takes the form of a higher order CRF model defined over image elements

(Fig. 2.2 (d)-Bottom). φeRF (X|E) can be decomposed into potential ψc which is a

cost function defined over a set of element variables Xc (called a clique) indexed by

c ∈ CX ; CX is the set of cliques for image elements, and K is a constant related to

the partition function. The problem of finding the most probable or maximum a

posteriori (MAP) assignment of the CRF model is equivalent to solving the following

discrete optimization problem: X∗ = argminX∈L|V| E(X).

The standard CRF model mostly relies on bottom-up information. It is con-

structed using unary potentials based on local classifiers and smoothness potentials

defined over pairs of neighboring pixels. Higher-order potentials such as the ones

used in [72] encourage labels of groups of image elements to be the same. This classic

representation for object segmentation has led to excellent results for the stuff object

categories, but has failed to replicate the same level of performance on the thing ob-

ject categories. The reason for this dichotomy lies in the model’s inability to explicitly

encode the relationship between the shape and relative positions of different parts of

structured objects categories such as the head and the torso of a person.

Part-based models such as Pictorial Structures [37], Latent SVM (LSVM) [35],

and Hough transform based models [5, 87] have shown to be much more effective

at detecting ‘things’. One of our contributions is proposing a unified framework to

incorporate all instance hypotheses from these methods as additional object-instance

evidences. In our model, every piece of object-instance evidence is characterized by

the property lists. These properties include the category of the object lj, the spatial
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location in the image (uj, vj) at which the object is seen, and the depth or distance

dj of the object instance from the camera.

In addition to the variables representing image elements, our model contains a

set of indicator variables (later referred as indicators) Y = {yj ∈ {0, 1}} for every

possible configuration j ∈ Q̂ of an object (Fig. 2.2 (c)-Top). The configuration set

Q̂ is a Cartesian product of the space of all possible object category labels L, all

possible spatial locations U ×V in the image, and all depth or distance values within

a range [0, D]. For example, a configuration j ∈ Q̂ specifies that an instance of

the object category lj ∈ L exists at location (uj, vj) in the image at a distance dj

away from the observer. We also associate with each object instance a segmentation

mask Vj which is the set of image elements associated with the object. In order to

handle uncertainty in location and distance from the camera for stuff (e.g., a grass

region may have a large spatial extent and it may be at a range of distances from

the camera) and thing categories which are not detected, we allow a configuration j

including general hypothesis specified by lj only (i.e., without specifying the location

of the hypothesis).

As mentioned earlier, variables X representing the image elements in the classical

CRF formulation for object segmentation take values from the set of object categories

L only. In contrast, in our framework, these variables take values from a set of all

possible object configuration xi ∈ L = Q̂ (refer as augmented labeling space). On the

one hand, this allows us to obtain segmentations of individual instances of particular

object categories which the classical CRF formulations are unable to handle. On

the other hand, the space Q̂ of all possible detections is clearly huge, which makes

learning and inference much more challenging. We will come back to this issue later.

The joint posterior distribution of the segmentation X and indicator variables Y

can be written as:P (X, Y |E) ∝ φeRF (X|E) φoRF (Y |E) φcon(X, Y |E). The functions

φoRF take the form of a CRF model defined over object indicator variables as follows:
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φoRF (Y |E) =
∏

c∈CY eϕc(Yc), where the potential ϕc(Yc) is a cost function defined over

a set of indicator variables Yc indexed by c ∈ CY , and CY is the set of cliques of

indicators. The potential function φcon enforces that the segmentation and indicator

variables take values which are consistent with each other (Fig. 2.2 (c)). The term

is formally defined as: φcon(X, Y |E) =
∏

j∈Q̂ e
Φ(yj ,X), where Φ(yj, X) is the potential

relating each indicator yj with a specific set of elements Vj in X. Hence, the model

energy can be written as:

E(X, Y ) =
∑
c∈CX

ψc(Xc) +
∑
j∈Q̂

Φ(yj, X) (2.1)

+
∑
c∈CY

ϕc(Yc) . (2.2)

The first term of the energy function is defined in a manner similar to [72]. We now

describe other terms of the energy function in detail in the following subsections.

Implicit representation of inactive object configurations. It is easy to see

that the space Q̂ of all possible configurations is huge, which would make learning

and performing inference in the above model completely infeasible. However, in real

world images, only a few possible configurations are actually present. Thus, most

indicator variables yj, j ∈ Q̂ are inactive (take value 0), and similarly the label set

for the segmentation variables is typically quite small. We use an object detector that

has been trained on achieving high recall rate to generate the set of plausible object

configurations Q instances that are likely to be present in any given image. In this

way, we reduce the problem into a manageable size for the inference algorithm.

2.3.1 Relating Y and X

The function Φ(yj, X) (Fig. 2.2(c)) is a likelihood term that enforces consistency

in the assignments of the jth indicator variable yj and a set of segmentation variables
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X. It is formally defined as:

Φ(yj , X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf if yj �= δj(X)

γlj · |Vj | if yj = δj(X) = 1

0 if yj = δj(X) = 0

, (2.3)

where j is any possible object configuration inQ, the function δj(X) indicates whether

the indicator j shares a consistent object category label with image elements in Vj,

and is defined as:

δj(X) =

⎧⎪⎪⎨
⎪⎪⎩
1 if Rj(X) =

|Vj(X)|
|Vj | ≥ R(lj)

0 otherwise

, (2.4)

where |Vj(X)| = |{i; xi = lj for i ∈ Vj}| is the number of elements in Vj assigned

with label lj, |Vj| is the total number of elements in Vj, Rj(X) is the consistency

percentage, and R(lj) ∈ [0 1] is an object category-specific consistency threshold.

Hence, the first condition in the above function ensures that yj = 1 if and only if the

detection j shares an object label with at least R(lj) percent of the pixels (or image

element) in Vj (i.e. Rj(X) ≥ R(lj)). The remaining conditions in Eq. 2.3 shows that

this potential is an Occam razor or MDL prior, similar to [5, 80] so that the model is

penalized by γlj · |Vj| when yj = 1.

2.3.2 Object Indicator CRF

The object indicator CRF potential ϕc(Yc) in Eq. 2.2 can be decomposed into two

terms as follows,
∑

c∈CY ϕc(Yc) =
∑

j∈Q1
ϕu(yj) +

∑
(j,k)∈U ϕp(yj, yk), where Q1 ⊂ Q

is the set of thing indicators with geometric properties and U is the set of pairs of

indicators, which interact with each other.
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The term ϕu(yj) is the unary potential for the thing indicator, defined as:

ϕu(yj) =

⎧⎪⎪⎨
⎪⎪⎩
βj · |Vj |, if yj = 0

0, if yj = 1

, (2.5)

such that the cost of suppressing hypothesis j (i.e., label yj as 0) is βj · |Vj| (propor-

tional to the detection confidence).

The term ϕp(yj, yk) (black edges in Fig. 2.2 (d)-Top) represents the interactions be-

tween any pair of indicator variables. Depending on the types of properties associated

with the pair of indicator variables, this term can represent a number of relationships.

It can not only model spatial relationship in 2D such as the ones learned and employed

in the approach proposed by [28], but also model behind and in-front relationships

given the depth property. The term can also encode co-occurrence relationships [80]

for pairs of indicators with only category properties.

For any pair of indicators j, k ∈ Q, the term is formally defined as:

ϕp(yj, yk) = w
rjk
lj ,lk

(yj, yk) ·max(|Vj|, |Vk|) , (2.6)

where rjk is the type of relationship that we want to enforce between the pair of

object instances j and k, and is a subset of the overall relationship set R, which is

defined as: R = {co-occur, above, below, next-to, in-front, behind, or the composition

of them}.

The pseudo-boolean function w
rjk
lj ,lk

(yj, yk) : {0, 1}2 → R specifies the cost of all

4 possible joint assignments of yj and yk under the relationship rjk for a pair of

object categories lj, lk. As a result, the potential can capture both attractive (i.e.,

w(0, 0)+w(1, 1) ≤ w(0, 1)+w(1, 0)) and repulsive interactions (i.e., w(0, 0)+w(1, 1) ≥

w(0, 1)+w(1, 0)). For example, a person usually is sitting on a motorbike (attractive),

and cars do not overlap with each other in 3D (repulsive).
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The relationship rjk is specified by the properties associated with the detection

instances j and k. For instance, if the object indicators i and j have only object

category properties, the relationship rjk models the co-occurrence cost of the object

categories. In this case, we assume

wco
j,k(yj, yk) =

⎧⎪⎪⎨
⎪⎪⎩
γlj ,lk if yj = yk = 1

0 otherwise

, (2.7)

where γlj ,lk is the co-occurrence cost for object categories lj and lk. From the above

definition, it is easy to see that our model generalizes both CRF models proposed in

[28, 80].

2.4 Inference

We now show that the MAP inference problem in our ACRF model can be solved

by minimizing the energy function using an efficient graph cut based expansion move

making algorithm [17].

Standard move making algorithms repeatedly project the energy minimization

problem into a smaller subspace in which a sub-problem is efficiently solvable. Solving

this sub-problem produces a change to the solution (referred to as a move) which

results in a solution having lower or equal energy. The optimal move leads to the

largest possible decrease in the energy.

The expansion move algorithm projects the problem into a Boolean label sub-

problem. In an α-expansion move, every segmentation variable X can either retain its

current label or transit to the label α. One iteration of the algorithm involves making

moves for all α in L successively. Under the assumption that the projection of the

energy is pairwise and submodular, it can be exactly solved using graph cuts [12, 73].

We derive graph construction only for energy terms related to indicator variables Y ,
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for all other terms, the constructions are introduced in [17, 72].

2.4.1 Functions of indicator variables Y with only category property.

The energy terms related to the indicator variables, whose only property is a

category label, are Φ(yj, X) in Eq. 2.3 and ϕp(yj, yk) in Eq. 2.6 and 2.7. Observe that

we can represent the combination of these terms as a function, F : L ⊂ L → R as

F(L(Y )) = min
X

∑
j∈Q2

Φ(yj , X) +
∑

(j,k)∈U2

ϕp(yj , yk) , (2.8)

where L(Y ) = {lj; k ∈ Q2, yj = 1} is a set of existing object categories (i.e., yj = 1),

Q2 is any subset of the indicator variables, whose only property is a category label,

and U2 is a subset of U such that j, k ∈ Q2. From the definition of the term in

section 2.3.1 and 2.3.2, we can see that F({lj}) = γlj |Vj|. Furthermore, F({lj, lk}) =

F({lj}) + γlk |Vk| + γlj ,lk ; F({lj, lk, lq}) = F({lj, lk}) + γlp |Vp| + γlj ,lp + γlk,lq . It can

be easily seen that the above function satisfies the properties of the co-occurrence

potential:

L1 ⊂ L2 =⇒ F(L1) ≤ F(L2) , (2.9)

proposed by [80] allowing us to use their graph construction for minimizing this energy

function.

2.4.2 Functions of indicator variables Y with instance properties.

The energy terms related to the instance indicator variables are Φ(yj, X) in Eq. 2.3

and ϕp(yj, yk) in Eq. 2.6. Since ϕp(yj, yk) in Eq. 2.6 captures both repulsive and at-

tractive pair-wise relationships, it can not be combined with Φ(yj, X) in Eq. 2.3 to

form a co-occurrence potential satisfying Eq. 2.8. However, Φ(yj, X) can be approx-
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imated as:

Φ(yj, X) = γj(yj
1−Rj(X)

1−R(lj)
+ (1− yj)

Rj(X)

R(lj)
) . (2.10)

The detailed derivation and the corresponding α-expansion move energy for this term

is described in the Sec. 2.4.3.

The graph construction of the pair-wise instance indicators in Eq. 2.6 is equivalent

to the construction of binary variables which is clearly described in [17]. However,

since we would like to capture both attractive (i.e., both indicators having the same

labels) and repulsive (i.e., both indicators having different labels) interactions, some

functions could be submodular and some could be non-submodular in (yj, yk), re-

spectively. Since each indicator only interacts with other nearby indicators, a simple

“probing” approach similar to the one described in [104] can effectively handle the

non-submodular function related to pair-wise object-instance interaction. As a result,

our inference algorithm does not rely on sophisticated techniques such as QPBO [104]

which requires more memory and computation time.

2.4.3 Functions of Thing Indicators Y
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Figure 2.3: Comparison between the original function Φ(y,X) (blue line) and the
approximated function (red lines) in Eq. 2.12 and 2.11. The left panel shows the case
when y = 1. The right panel shows the case when y = 0. Notice the dash blue lines
indicate the sharp transition from finite values to infinite values.
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We observe in Eq. 2.3, when yj = 1

Φ(yj, X) =

⎧⎪⎪⎨
⎪⎪⎩
inf if δj(X) = 0

γj if δj(X) = 1

≈ γj
1−Rj(X)

1−R(lj)
. (2.11)

When yj = 0

Φ(yj, X) =

⎧⎪⎪⎨
⎪⎪⎩
inf if δj(X) = 1

0 if δj(X) = 0

≈ γj
Rj(X)

R(lj)
. (2.12)

Hence, Φ(yj, X) becomes,

Φ(yj, X) = γj(yj
1−Rj(X)

1−R(lj)
+ (1− yj)

Rj(X)

R(lj)
) . (2.13)

The effect of the approximation in Eq. 2.12 and 2.11 are shown in Fig. 2.3. Instead

of imposing an infinite cost when δ(X) �= y, our approximation imposes an cost which

is linearly proportional to the consistency percentage R(X). When y = 1, the ratio

between the consistency percentage and the consistency threshold R(X)/R(l) are

encouraged to be large, which means the more elements in X are labeled as l, the

better (Fig. 2.3-Left). On the contrary, when y = 0, the ratio between the consistency

percentage and the consistency threshold R(X)/R(l) is encouraged to be small, which

means the less elements in X are labeled as l, the better (Fig. 2.3-Right).
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2.4.3.1 α-expansion move energy

We first define the transformation function Tα(xi; ti) for the α-expansion move

which transforms the label of a random variable xi as:

Tα(xi, ti) =

⎧⎪⎪⎨
⎪⎪⎩
α, if ti = 0

xi, if ti = 1

(2.14)

The corresponding α-expansion move energy for the term in Eq. 2.13 can be

written as: Φ(yj, Tα(X, T )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γj(
yj

1−R(lj)
(1−Rj(X) +

∑
i∈Vj(X)

(1−ti)
|Vj | )

+
1−yj
R(lj)

(
∑

i∈Vj(X)
(ti)
|Vj |)), if α �= lj

γj(
1−yj
R(lj)

(Rj(X) +
∑

i∈Vj\Vj(X)
(1−ti)
|Vj | )

+
yj

1−R(lj)
(
∑

i∈Vj\Vj(X)
(ti)
|Vj |)), if α = lj

(2.15)

where Vj \ Vj(X) is the remaining set of elements in Vj with labels (i.e.,{xi �= lj; i ∈

Vj}). Notice that when α �= lj the function is submodular in (yj, ti), but when α = lj

it is submodular in (yj, ti), where yj = 1− yj is the negation of yj.

After the transformation, the first two terms of the original model energy (Eq. 2.2)

becomes a pairwise and submodular function of T , Y , and Y as follows,

E(T, Y, Y ) =
∑
c∈CX

ψc(Tc) +
∑
j∈Q̂1

Φ(yj, T ) +
∑
j∈Q̂2

Φ(yj, T ) .

where Q̂1 = {yj; lj �= α} and Q̂1 = {yj; lj = α}. Therefore, we will construct

the graph using T , partially using indicator yj, and partially using the negation of

indicator yj depending on whether lj = α.
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2.5 Learning

The full CRF model in Eq. 2.2 contains several terms. In order to balance the

importance of different terms, we introduce a set of linear weights for each term as

follows,

WTΨ(X.Y ) =
∑
c∈C

wcψc(Xc) +
∑

(j,k)∈U1

w
rjk
lj ,lk

(yj , yk) (2.16)

+
∑
j∈Q1

wu(lj)(Φ(yj , X) + ϕu(yj))

+ wco(
∑

(j,k)∈U2

ϕp(yj , yk) +
∑
j∈Q2

Φ(yj , X)) , (2.17)

where wc models weights for unary, pair-wise, and higher-order terms in X. wu(l)

is the object category specific weight for unary term in y, wco is the weight for

stuff-object-instance indicators, and w
rjk
lj ,lk

is the pair-wise weights for a specific co-

occurrence type rjk related to the pair of object categories lj, lk in Eq. 2.6. Recall

from Sec. 2.3.2 and 2.4 that Q1 and Q2 are the set of indicator variables for things

and stuff respectively. Similarly, U1 and U2 are the subset of U such that j, k ∈ Q1

or j, k ∈ Q2 respectively. Since all these weights are linearly related to the energy

function, we formulate the problem of jointly training these weights as a Structured

SVM (SSVM) learning problem [121] similar to [28].

Assume that a set of example images, ground truth segment object category labels,

and ground truth object bounding boxes {In, Xn, Y n}n=1,...,N are given. The SSVM

problem is as follows,

minW,ξ≥0 W TW + C
∑
n

ξn(X,Y ) (2.18)

s.t. (2.19)

ξn(X,Y ) = max
X,Y

(
(X,Y ;Xn, Y n) (2.20)

+W TΨ(Xn, Y n)−W TΨ(X,Y )), ∀n ,

where W concatenates all the model parameters which are linearly related to the
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potentials Ψ(X, Y ); C controls the relative weight of the sum of the violated terms

{ξn(X, Y )} with respect to the regularization term; 
(X, Y ;Xn, Y n) is the loss func-

tion that generates large loss when the X or Y is very different from Xn or Y n.

Depending on the performance evaluation metric, we design different loss functions

as described in the Sec. 2.5.1

Following the SSVM formulation, we propose to use a stochastic subgradient

descent method to solve Eq. 2.18. The subgradient of ∂W ξ
n(X, Y ) can be cal-

culated as Ψ(Xn, Y n) − Ψ(X∗, Y ∗), where (X∗, Y ∗) = argminX,Y (W
TΨ(X, Y ) −


(X, Y ;Xn, Y n)). When the loss function can be decomposed into a sum of local

losses on individual segments and individual detections, (X∗, Y ∗) can be solved using

graph-cut similar to the inference problem (Sec. 2.4). For other complicated loss func-

tions, we found that it is effective to set (X∗, Y ∗) approximately as argminX,Y W
TΨ(X, Y ),

when the loss is bigger than a threshold.

The remaining model parameters are set as follows. The object category-specific

R(l) in Eq. 2.3 are estimated using the median values observed in training data. The

γ involved in Eq. 2.8 are estimated from the MSE as described in [80]. The β in

Eq. 2.5 are set to be the detection confidence.

2.5.1 Loss Function

For the experiment on Stanford dataset, since the performance is measured by

the average classification accuracy across different object categories, we define the

following loss function. The overall loss function 
(X, Y ;Xn, Y n) is decomposed

into sum of the segmentation loss 
(X;Xn) and the detection loss 
(Y ;Y n).

The segmentation loss 
(X;Xn) is defined as


(X;Xn) =
1

Q

∑
i∈V

1{xi �= xni }cx(li) , (2.21)
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where V captures the indices for the set of segments, 1{STATEMENT} is 1 if the

STATEMENT is true, cx(li) is the object category li dependent cost (used to re-

weight the loss contributed from different object categories), and Q =
∑

i∈V cx(li).

Therefore, the overall segmentation loss can be decomposed into a sum over local loss

for each segment 1
Q
1{xi �= xni }cx(li).

The detection loss 
(Y ;Y n) is defined as


(Y ;Y n) =
1

M

∑
i∈B

1{yi �= yni }cy(li) , (2.22)

where B captures the indices for the set of detections,M =
∑

i∈B cy(li). Similarly, the

overall detection loss can be decomposed into a sum over local loss for each detection

1
M
1{yi �= yni }cy(li).

For the experiment on PASCAL dataset, since the segmentation performance is

measured by true positive
true positive+ false positive + false negative

, the overall loss function
(X, Y ;Xn, Y n)

is decomposed into sum of the segmentation loss 
(X;Xn) and the detection loss


(Y ;Y n). The segmentation loss is 1-segmentation performance and the detection

loss is the same as before. Since the segmentation loss cannot be decomposed into a

per segment loss, we obtain (X∗, Y ∗) approximately as argminX,Y W
TΨ(X, Y ), when


(X∗, Y ∗;Xn, Y n) is bigger than a threshold.

2.6 Experiments

We compare our full ACRF model with [44, 80, 81, 95, 118] on Stanford Back-

ground (referred as to Stanford) dataset [44] as well as with several state-of-the-art

techniques on PASCAL VOC 2009 (referred as to PASCAL) dataset [31]. As opposed

to other datasets, such as MSRC [110], the Stanford dataset contains more cluttered

scenes and more “things” object instances per image. Hence, segmenting and detect-

ing “things” is particularly challenging. Conversely, the PASCAL dataset contains
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(a) Global Accuracy
[118] [44] [95] [81] [80] ACRF
77.5 76.4 76.9 80.2 80.0 82.4

(b) Back- Motor- Bi-
ground Car Person bike Bus Boat Cow Sheep cycle Global Avg

CRF 77.4 49.1 39.9 15.3 76.3 18.9 65.0 70.4 17.3 79.9 47.7
C+D 77.1 56.7 61.7 9.3 69.7 36.9 88.1 62.8 64.2 82.0 58.5
ACRF 77.2 74.9 60.1 17.2 79.4 36.9 88.6 58.2 64.7 82.4 61.9

Figure 2.4: Segmentation performance comparison on the Stanford dataset. (a)
Global segmentation accuracy of our ACRF model compared with state-of-the-art
methods, where “Global” is the overall percentage of pixels correctly classified. (b)
System analysis of our model. The CRF row shows the results by using only the stuff-
stuff relationship component (first term in Eq. 2.2) of our ACRF model. The C+D
row shows results by adding independent detections indicators to the CRF model
(first two terms in Eq. 2.2). The last row shows results of the full ACRF model.
Notice “Avg.” is the average of the percentage over eight foreground classes and one
background class.

larger number of “things” labels with a single “stuff” label, with limited number of

object instances in each image.

For all the experiments below, we use the same pre-trained LSVM detectors [35] to

obtain a set of object-instance hypotheses for “things” categories (e.g., car, person,

and bike). The object depths are inferred by combining both cues from the size

and the bottom positions of the object bounding boxes similar to [3, 65, 115]. The

responses from off-the-shelf stuff classifiers are used as the unary stuff potentials in

our model. We model different types of pair-wise stuff relationships using a codebook

representation similar to [16].

The following geometric pair-wise thing relationships are used for the experiments

to incorporates geometric spatial relationship between two bounding boxes: next-to,

above, below, in-front, behind. On top of that, we have one additional geometric

relationship based on horizon lines agreement between two detections.

Geometric spatial relationships are determined by following steps. To establish

the geometric relationship given a pair of detection bounding boxes, we firstly set

one of them as a reference box. Then, we draw an additional box with respect to a
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Below
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DepthY
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(a) (b)

Reference Next-to

Figure 2.5: (a) Pairwise things relationships can be determined by drawing an addi-
tional box with respect to a reference box. (b) In this example, a person (right) is
‘next-to’ a person on the left side.

reference bounding box for a certain spatial relationship (i.e. above: draw on top of

a box; next-to: draw on left or right side of a box, etc. See Fig. 2.5 for details). If

a drawn box overlaps more than 50% with the other detection bounding box which

is not selected as a reference box, we can specify a relationship to the given pair of

boxes. This procedure is repeated for all geometric relationships.

The additional geometric spatial relationship is based on whether two horizon

lines from two bounding boxes are in agreement. In specific, horizon lines for two

boxes are estimated assuming objects’ average heights, similar to [65]. If two lines are

close to each other within a certain range, which is a function of the specific class (i.e.

person or car have smaller variance, boat have a larger variance), they are having a

same horizon line.

Stanford dataset. The Stanford dataset [44] contains 715 images from challenging

urban and rural scenes. On top of 8 background (“stuff”) categories, we annotate

9 foreground (“things”) object categories - car, person, motorbike, bus, boat, cow,

sheep, bicycle, others. We follow the 5-fold cross-validation scheme which splits the

data into different 572 training and 143 test images. We use the same STAIR Vision

Library [46] used in [44] to obtain the stuff unary potentials. Pixel-wise segmentation

performance is shown in Fig. 2.4. Our ACRF model outperforms all state-of-the-
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Ground truth Segmented labels Segmented instances(a) Original image
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Figure 2.6: (a) Typical thing segmentation results on the Stanford dataset. Notice
that our model can obtain instance-based segmentations (last column) due to the
ability to reason in the augmented labeling space Q̂. (b) Recall v.s. FPPI curves
of our ACRF and LSVM on Stanford dataset. Our ACRF achieves better recall at
different FPPI values.
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Figure 2.7: The segmentation accuracy of different variants of our model (i.e., CRF,
CRF+ Detection, and full ACRF models) on PASCAL dataset.
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Figure 2.8: Segmentation accuracy of our ACRF model compared with other state-
of-the-art methods on PASCAL dataset.

art methods [44, 80, 81, 95, 118] 1 (Fig. 2.4(a)). A system analysis of our model

(Fig. 2.4(b)) shows that the performances of most foreground classes (seven out of

eight) are significantly improved when additional components are added on top of the

baseline CRF model, while the performance of the background classes remain almost

unchanged. As a result, the full ACRF model obtains the best performance for six

out of eight foreground classes and a 14.2% average improvement over the baseline

1We implement [80, 81] by ourselves and evaluate the performance.
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(a) Car wrt Bus

Car: In Front

Car: In Front

(b) Car wrt Person

Car: Next-to

Car: Behind

Next-to Next-to
In front

Above

Below

Behind

Next-to Next-to
In front

Above

Below

Behind

(c) Before BL1 BL2 ACRF
next-to 5.4% 25.9% 32.2% 92.5%
above/below 6.1% 51.72% 61.2% 76.2%
in-front/behind 5.7% 50.0% 60.4% 72.3%
different horizon 0.1% 38.5% 15.0% 60.0%

Figure 2.9: Examples of the learned pair-wise things relationships are visualized in
panel (a,b). The grayscale color code indicates to what degree the relationship is
encouraged (white means it is encouraged, black means it is not encouraged and
suppressed). Our model learned that (a) a car is likely to be in front of a bus,
and a car is unlikely to be below a bus, (b) a car is likely to be behind a person. (c)
Prediction accuracy of the objects co-occurrence for each type of relationship averaged
over 5-fold validations. The first and last columns show the accuracy before and after
applying inference on our full ACRF model, respectively. Notice that there is a
consistent improvement across all types. The performance of two baseline methods
are reported in the middle two columns which are all inferior then our results.

model. Typical results are shown in Fig. 2.10-Top. We highlight that our model

can generate object instance-based segmentations due to the ability to reason in the

augmented labeling space Q̂ (Fig. 2.6(a)). Our method can predict the numbers of

object instances per image accuractely with an average errors of 0.27.

Another advantage of using our model is to improve detection accuracy. We

measured detection performance in terms of Recall v.s. False Positive Per Image

(FPPI) in Fig. 2.6(b), where detection results from 5-fold validations are accumulated

and shown in one curve. The performance of the proposed model is compared with

the pre-trained LSVM [35]. Our model achieves consistent higher recall than the

LSVM baseline as shown in Fig. 2.6(b).

PASCAL dataset. This dataset contains 14, 743 images with 21 categories including

20 thing categories and 1 stuff category. Only a subset of images have segmentation
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labels, and we used the standard split for training (749 images), validation (750

images), and testing (750 images). A system analysis of our model (Fig. 2.7) shows

that the performances of most classes were improved when additional components

are added on top of the baseline CRF model. Notice that the baseline CRF has a

fairly low performance, since we use only the pixel-wise unary responses from the first

layer of the hierarchical CRF [80]. However, our ACRF model is able to significantly

boost up the performance and achieves competitive accuracy compared other teams

in the challenge (ranked in 4th in Fig. 2.8) Moreover, the average in predicting the

error of numbers of object instances per image is only 0.06. Typical results are shown

in Fig. 2.10-Bottom.

2.6.1 Relationship Analysis

The learned model parameters for a few typical pair-wise things relationships are

visualized in Fig. 2.9(a,b). In Fig. 2.9(c), we compare the accuracy of predicting

the correct relationship of objects before (i.e., raw detections from LSVM [35]) and

after applying inference on our ACRF. A relationship of objects is considered correct

if both their object bounding boxes overlap more than 50% with the ground truth

bounding boxes. The accuracy reported in Fig. 2.9(c) is the percentage of correct

pairs of objects for each type of relationship. Notice that a significant improvement

is achieved by our ACRF model over two baseline methods.

Our baseline methods BL1 and BL2 are defined as follows:

BL1 uses only the detection confidence to prune out detections. In specific, for

each pair of bounding boxes with a certain relationship, we assign a score as a sum

of scores for both bounding boxes from LSVM. Then, we sample p% of pairs with

highest scores, where p is the percentage of correct ratios for a certain relationship

from the training set.

BL2 incorporates pairwise object interactions and prune out detections. Again,
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for each pair of bounding boxes with a certain relationship, we assign a score as a

sum of detection scores for both bounding boxes. Then, we sample pairs within top

p(c1, c2)%, where p(c1, c2) is a class-pair specific percentage of correct ratios from the

training set, and c1 and c2 is classes corresponding to two bounding boxes.

Using the inferred relationships we can provide high level geometrical description

of the scene and determine properties such as: object x is behind object y. Finally,

we can obtain 3D pop-up models of the scene from a single image as in Fig. 2.11
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Figure 2.10: Typical results on Stanford (top 4 rows) and PASCAL datasets (bottom
4 rows). Every set of results compare ground truth annotation, disjointed model
(disjointedly applied object detection and segmentation), CRF+Det, ACRF, from
left to right, respectively. The odd rows show the top K object hypotheses (color-
coded bounding boxes representing the confidence ranking from light to dark), where
K is the number of recalled objects in the ACRF result. The even rows show the
segmentation results (color-code is shown at the bottom).37



Ground Truth CRF+Det ACRF

Ground Truth CRF+Det ACRF

Ground Truth CRF+Det ACRF

Figure 2.11: 3D pop-up models from Stanford dataset. Videos related to above 3D
pop-up models can be found in the project page.

2.7 Conclusion

We have presented a unified CRF-based framework for jointly detecting and seg-

menting “things” and “stuff” categories in natural images. We have shown that our

framework incorporates in a coherent fashion various types of (geometrical and seman-

tic) contextual relationships by using property list. Our new formulation generalizes

previous results based on CRF where the focus was to capture the co-occurrence be-

tween stuff categories only. We have quantitatively and qualitatively demonstrated

that our method: i) produces better segmentation results than state-of-the art on the
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Stanford dataset and competitive results on PASCAL’09 dataset; ii) improves the re-

call of object instances on Stanford dataset; iii) enables the estimation of contextual

relationship among things and stuff. Extensions for future work include incorporating

more sophisticated types of properties.
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CHAPTER III

3D Scene Understanding by Voxel-CRF

In the past few years, researchers have taken advantage of the recent diffusion of

depth-RGB (RGB-D) cameras to help simplify the problem of inferring scene seman-

tics. However, while the added 3D geometry is certainly useful to segment out objects

with different depth values, it also adds complications in that the 3D geometry is often

incorrect because of noisy depth measurements and the actual 3D extent of the objects

is usually unknown because of occlusions. In this work we propose a new method that

allows us to jointly refine the 3D reconstruction of the scene (raw depth values) while

accurately segmenting out the objects or scene elements from the 3D reconstruction.

This is achieved by introducing a new model which we called Voxel-CRF. The Voxel-

CRF model is based on the idea of constructing a conditional random field over a

3D volume of interest which captures the semantic and 3D geometric relationships

among different elements (voxels) of the scene. Such model allows to jointly estimate

(1) a dense voxel-based 3D reconstruction and (2) the semantic labels associated with

each voxel even in presence of partial occlusions using an approximate yet efficient

inference strategy. We evaluated our method on the challenging NYU Depth dataset

(Version 1 and 2). Experimental results show that our method achieves competitive

accuracy in inferring scene semantics and visually appealing results in improving the

quality of the 3D reconstruction. We also demonstrate an interesting application of
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Figure 3.1: Given a single depth-RGB image, our proposed Voxel-CRF (V-CRF)
model jointly estimates (1) a dense voxel-based 3D reconstruction of the scene and
(2) the semantic labels associated with each voxel. In the figure, red corresponds to
‘wall’, green to ‘floor’, orange to ‘table’ and yellow to ‘picture’.

object removal and scene completion from RGB-D images.

3.1 Statement

Understanding the geometric and semantic structure of a scene (scene understand-

ing) is a critical problem in various research fields including computer vision, robotics,

and augmented reality. For instance, consider a robot in the indoor scene shown in

the Fig. 3.1. In order to safely navigate through the environment, the robot must

perceive the free space of the scene accurately (geometric structure). Moreover, in

order for the robot to effectively interact with the environment (e.g., to place a bottle

on a table), it must recognize the objects in the scene (semantic structure).

Several methods have been proposed to solve the problem of scene understanding
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Figure 3.2: (a) Reconstructed point cloud taken from the corner of the room. Ground
truth ‘wall ’ is highlighted with a red mask. Reconstructing reliable 3D geometry from
noisy point cloud is a challenging task. (b) Point clouds do not completely describe
the 3D scene. For example, the wall behind the tv cannot be reconstructed from
depth map.

using a single RGB (2D) image. For instance, in [70, 72, 79, 110], the problem

is formulated in terms of the estimation of a consistent set of semantic labels of

local image regions (patches or pixels) assuming a flat image world. Although the

results were promising, such methods do not provide information about the geometric

structure of the scene. Recently, attempts have been made to jointly estimate the

3D and semantic properties of a scene using a single image or multiple images [2, 22,

53, 61, 64]. The efficacy of such methods in perceiving the scene geometry, however,

is limited due to the inherent geometric ambiguity in a single image. To overcome

the ambiguity, researchers have considered using depth and RGB image data for

scene understanding [75, 96, 112]. Instead of labeling local 2D image regions, these

methods provide semantic description of 3D elements (point clouds) acquired by a

RGB-D camera [94]. However, they rely on the assumption that the 3D structure

from the RGB-D device is accurate. This is not always the case due to photometric

interference, discretization error, etc (see Fig. 3.2 for typical noisy reconstruction).

In this work, we propose a method to jointly estimate the semantic and geometric
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structure of a scene given a single RGB-D image. Unlike [75, 96, 112] where the true

geometric structure is assumed to be given and fixed, we represent a scene with a set

of small cubic volume (voxel) in the space of interest. We jointly estimate both the

semantic labeling and 3D geometry of voxels of the scene given a noisy set of inputs.

This allows us to i) correct noisy geometric estimation in input data and ii) provide

the interpretation of non-visible geometric elements (such as the wall occluded by the

table in Fig. 3.1). Our method is based on a voxel conditional random field model

which we have called Voxel-CRF (V-CRF). In our V-CRF model, each node represents

a voxel in the space of interest. A voxel may or may not include one or multiple

points acquired by the RGB-D sensor. The state of each voxel is summarized by two

variables, occupancy and semantic label. An auxiliary variable visibility is introduced

to help relate voxels and 2D RGB or depth observation (Sec. 3.3). Semantic and

geometric interpretation of a scene is achieved by finding the configuration of all

variables that best explains the given observation.

The configuration of variables in the V-CRF model needs to be consistent with

certain important geometric and semantic rules that ensure stable and more accurate

3D reconstruction and classification of the elements in the scene. This includes rela-

tionships such as ‘supported by ’ or ‘attached to’ (Sec. 3.4.2). Geometric and semantic

relationships based on higher-level elements such as certain groups of voxels which

belong to the same plane (or object) are encoded using interactions between groups

of voxels. These relationships are especially useful for consistent labeling of voxels in

an occluded space (Sec. 3.4.3). The parameters associated with the above-mentioned

interaction functions are learned from training data.

Given our V-CRF model, we solve the scene understanding problem by minimizing

the energy function associated with the V-CRF. Instead of assuming that the true

3D geometry is given, we jointly estimate the geometric and semantic structure of the

scene by finding the best configuration of all occupancy and semantic label variables of
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all voxels in the space. Our inference algorithm iterates between 1) deciding voxels to

be associated with observations and 2) reasoning about the geometric and semantic

description of voxels. In each iteration, we obtain an approximate solution using

graph-cuts based inference [17].

In summary, the contributions of this work are 5 folds. 1) We propose a new

voxel based model for 3D scene understanding with RGB-D data that jointly infers

the geometric and semantic structure of the scene (Sec. 3.3). 2) We improve struc-

ture estimation given noisy and incomplete 3D reconstruction provided by RGB-D

sensors. 3) Geometric and semantic rules are proposed and modeled in the V-CRF

model (Sec. 3.3&3.4). 4) An efficient iterative method is proposed for performing in-

ference in the V-CRF model (Sec. 3.5). 5) We demonstrate (through qualitative and

quantitative results and comparisons on benchmarks) that V-CRF produces accurate

geometric and semantic scene understanding results (Sec. 3.6). Some applications

enabled by the V-CRF model are discussed in Sec. 3.6.4.

3.2 Related Work

Our model is related to [53, 68] in that blocks are used to represent 3D space. On

the other hand, unlike [53, 68], our blocks are defined at a fine resolution that enables

us to understand scenes (such as cluttered indoor environments) in more detail. The

methods proposed in [55, 61, 107] are also relevant to our work. These methods

analyze geometric properties of the underlying scene and infer free space. However,

our model can produce more fine grained labeling of geometric and semantic structure

which is important for cluttered scenes. The approaches for scene understanding

described in [56, 75, 96, 112] are based on RGB-D data. Similar to our method, these

methods assign semantic labels to image elements such as 3D points or super-pixels.

However, image elements in these works are defined only over visible elements. Also,

it is assumed that image elements are already correctly localized in 3D space. In
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Camera 
Image 

(a) (b) 

Figure 3.3: Ambiguity of assigning image observations to the voxels in a view ray.
Five voxels with green outline are the ground truth voxels in a correct place. (a)
For the successful cases, the voxel can be reconstructed from a depth data. (b)
Unfortunately, due to noisy depth data, incorrect voxels are reconstructed in many
cases.

contrast, our model can reason about the labeling of both visible and occluded image

elements.

Our work is also closely related to [8, 82] in the use of a random field model

for joint semantic labeling and geometric interpretation. [82] encouraged consistent

semantic and geometric labeling of pixels by penalizing sudden changes in depth or

semantic labeling results. [8] showed that the joint geometric-semantic labeling model

helps in geometry estimation. Similar to our occlusion reasoning, they showed that

the depth of fully occluded regions can be inferred by having stereo images. However,

they did not consider a complete reconstruction of the scene. The problem of labeling

occluded regions is also discussed in [51], where relative relationships between objects

and background are used to infer labels of the occluded region. However, the lack of a

voxel representation restricts [51] to reconstruction of the foreground and background

layers. In contrast, in theory, our model can reconstruct any number of layers in the

scene.

3.3 Voxel-CRF

We now describe the Voxel-CRF (V-CRF) model. We represent the semantic and

geometric structure of the scene with a 3D lattice where each cell of the lattice is a
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voxel. V-CRF is defined over a graph G = (V , E , C), where V are vertices representing

voxels, edges E connect horizontally or vertically adjacent pairs of vertices, cliques C

are groups of voxels which are related, e.g., voxels on the same 3D plane, or voxels that

are believed to belong to an object (through an object detection bounding box). The

state of each voxel is described with a structured label �i = (oi, si) and the visibility

vi. The first variable oi represents voxel occupancy; i.e., it indicates whether voxel

i is empty (oi = 0) or occupied (oi = 1). The second variable si indicates the index

of semantic class the voxel belong to; i.e., si ∈ {1, · · · , |S|} if the voxel is occupied

(oi = 1), or si = ø if oi = 0, where |S| is the number of semantic classes (e.g.,

table, wall, ...). Estimation of the structured label L = {�i} over the V-CRF model

produces a geometric and semantic interpretation of the scene.

The variable vi encodes the visibility of a voxel i where vi = 1 and vi = 0 indicate

whether the voxel is visible or non-visible, respectively. Any given ray from the camera

touches a single visible (occupied) voxel. Due to the high amount of noise in the RGB-

D sensor, it is difficult to unambiguously assign 2D observations (image appearance

and texture) to voxels in 3D space (see Fig. 3.3 for an illustration). The visibility

variables vi allow us to reason about this ambiguity. Provided that we know which

single voxel is visible on the viewing-ray, we can assign the 2D image observation to

the corresponding voxel. Since visibility is a function of occupancy, and vice versa,

we infer the optimal configuration of the two in an iterative procedure.

V-CRF can be considered as a generalization of existing CRF-based models for

scene understanding in 3D [75, 96, 112], where {oi} and {vi} are assumed to be given,

and semantic labels {si} are inferred only for visible and occupied scene elements. In

contrast, V-CRF model is more flexible by having oi and vi as random variables, and

this enables richer scene interpretation by i) estimating occluded regions, e.g., (oi,

si)=(occupied,table), vi= occluded, and ii) correcting noisy depth data.
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3.4 Energy Function

Given a graph G, we aim to find V ∗ = {v∗i } and L∗ = {�∗i } that minimize the energy

function E(V, L,O), where O = {C, I,D}, C is the known camera parameters, I is

the observation from a RGB image, and D is the observation from a depth map. The

energy function can be written as a sum of potential functions defined over individual,

pairs, and group of voxels as: E(V, L,O) =

∑
i

φu(vi, 	i, O) +
∑
i,j

φp(vi, 	i, vj , 	j , O) +
∑
c

φc(Vc, Lc, O) (3.1)

where i and j are indices of voxels and c is the index of higher-order cliques in a

graph. The first term models the observation cost for individual voxels, while the

second and third terms model semantic and geometric consistency among pairs and

groups of voxels, respectively.

3.4.1 Observation for Individual Voxels

The term φu represents the cost of the assignment (vi, �i) for a voxel i. We model

the term for two different cases, when voxel i is occupied (oi = 1) and when it is

empty (oi = 0).

φu(vi, �i, O) =

⎧⎪⎪⎨
⎪⎪⎩
k1 if oi = 1, si �= ø

k2 if oi = 0, si = ø

(3.2)

where k1 and k2 are defined as k1 =:

wu
1vi logP (si|O)− wu

2 log fs(di − dmr(i))− wu
3 log

|Pi|
|Pmax

i | (3.3)

and k2 = −wu
4 log(1− fs(di − dmr(i)))− wu

5 log(1−
|Pi|

|Pmax
i |). (3.4)

When the voxel i is occupied (oi = 1), it is composed of three terms. The first

term incorporates the observations P (si|O) from an image if it is visible (vi = 1), to
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estimate a structured label of the voxel. The second term models the uncertainty in

the depth value from the RGBD image through a normal distribution fs ∼ N (0, σ2).

Larger the disparity between depth according to the data map value dmr (i), which

is value associated with a ray r(i) for a voxel i, and the voxel i’s depth di, more

likely it is to be labeled as an empty state. The third term models the occupancy

based on density of 3D points in a voxel i. Note that there can be more than one

image pixel corresponding to a voxel. We measure the ratio |Pi|/|Pmax
i |, which is the

ratio between the number of detected points in 3D cubical volume associated with

a voxel i over the maximum number of 3D points in a voxel i, i.e., the number of

rays penetrating through a voxel i. If there is an object at voxel i, and the surface is

perpendicular to the camera ray, the number of points is the largest. If this ratio is

small (i.e. few points), the energy function encourages oi = 0.

In the case the voxel i is empty (oi = 0), the energy models the sensitivity of the

sensor (first term) and the density of point clouds (second term). Different terms are

balanced with weights wu
{·}, which are learned from the training dataset as discussed

in Sec. 3.5.

3.4.2 Relating Pairs of Voxels

The pairwise energy terms penalize labeling results of pairs of voxels that are

geometrically or semantically inconsistent. Two different types of neighborhoods

are considered to define pairwise relationships between voxels: i) adjacent voxels in

3D lattice structure, and ii) adjacent voxels in its 2D projection. The pairwise costs

depend on visibility, spatial relationship, and appearance similarity of a pair of voxels.

Appearance similarity between a pair of voxels (e.g., color) is represented by cij which

is a discretized color difference between voxels i and j, similar to [43]. If voxel j is

empty or occluded, we use ci, i.e. in this case the cost is the function of the color of

the visible voxel i. The pairwise cost on the labeling of voxels also depends on their
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visibility and is defined as:

φp(vi = 1, �i, vj = 1, �j) = wpw
1 (sij, cij)T [�i �= �j] (3.5)

φp(vi = 0, �i, vj = 1, �j) = wpw
2 (sij, cj)T [�i �= �j] (3.6)

φp(vi = 1, �i, vj = 0, �j) = wpw
3 (sij, ci)T [�i �= �j] (3.7)

φp(vi = 0, �i, vj = 0, �j) = wpw
4 , (3.8)

where T [·] is the indicator function, sij is a spatial relationship between voxels i

and j. i and j are chosen differently for 2D and 3D cases as discussed below. These

functions penalize if �i and �j are inconsistent. The exact penalty for inconsistent

assignments depends on the relative spatial location sij and colors cij of the voxel

pairs. wpw
{·}(sij, cij) are weights that are learned from the training data.

Adjacent pairs in 3D. For all adjacent pairs of voxels, we specify their spatial

relationship sij, where sij ∈ {vertical, horizontal}. The color difference between i

and j is also used to modulate the cost wpw
{·}(·), where we cluster color difference

between two voxels as in [43], cij is the index of a closest cluster.

Adjacent pairs in 2D. On top of adjacent voxels in 3D, the adjacency between a

pair of voxels in the projected 2D images is formulated as pairwise costs. For example,

occlusion boundaries are useful cues to distinguish voxels that belong to different

objects; if two voxels are across a detected occlusion boundary (when projected in

the view of the camera), they are likely to have different semantic labels. On the

other hand, if two voxels across the boundary are still close in 3D, they are likely to

have a same semantic label. The relationship of voxels are automatically indexed as

follows. First, we extract pairs of 2D pixels from 2D RGB images which are on the

opposite side of the occlusion boundaries. The pair of 2D pixels are then projected

into 3D voxels. From the training data, we collect the relative surface feature between
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voxels i and j1 and cluster them to represent different types of corners, depending on

their geometric properties in 3D. Finally, the spatial index sij indicates a cluster ID.

We learn different weights for different cluster automatically from the training data.

3.4.3 Relating Groups of Voxels

We now introduce higher-order potentials that encode the relationship among

more than two voxels. The potentials enforce semantic and geometric consistency

among voxels in a clique c ∈ VC of voxels that can be quite far from each other.

The relationships for a group of voxels can be represented using the Robust Pott’s

model [72]. Different types of 3D priors can be used, e.g., surface detection, object

detection, or room layout estimation; however, in this work, we consider two types of

voxel groups VC , 1) 3D surfaces that are detected using a Hough voting based method

[13] and 2) categorical object detections [36] as follows2.

3D Surfaces. The first type is the group of voxels that belong to a 3D surface

(wall, tables etc). From the depth data and its projected point clouds, we can identify

3D surfaces [13] and these are useful to understand images for two reasons. First, a

surface is likely to belong to an object or a facet of the indoor room layout, and there

is consistency among labels of voxels for a detected plane. Second, the part of the

plane occluded by other objects can be inferred by extending the plane to include the

convex hull3 of the detected surface (See Fig. 3.4). According to the law of closure of

Gestalt theory, both visible and invisible regions inside this convex hull are likely to

belong to the same object.

Object Detections. Object detection methods provide a cue to define groups of

voxels (bounding box) that take the same label, as used for 2D scene understanding

in [70, 81], where we grouped a set of visible voxels which fall inside in the object

1The surface feature for adjacent regions i and j is composed of surface norm, color, and height.
2Room layout estimation is not used due to heavy clutter in the evaluated dataset.
33D plane with smallest perimeter containing all the points associated with a detected surface.
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(a) (b) (c)

Figure 3.4: (Best visible in a high resolution) (a) A detected plane using [13] is
highlighted with the blue mask. Its convex hull is drawn with the yellow polygon
and it includes both visible and occluded region of a planar surface. (b) A group
of voxels associated with the detected planar surface (top) and a group of voxels
associated with the convex hull (bottom). The voxels in the convex hull not only
enforce consistency for visible voxels, but also for occluded voxels. (c) V-CRF result:
our model not only allows the labeling of visible voxels for TV (top), but also the
labeling of the occluded region corresponding to the ‘wall’. For visibility, we removed
the voxels corresponding to the TV. (bottom).

bounding box. We use off-the-shelf detectors, e.g., proposed in [36], to find 2D object

bounding boxes and then find the corresponding voxels in 3D to form a clique.

3.4.4 Relating Voxels in a Camera Ray

V-CRF model enforces that there is only one visible voxel for each ray from a

camera. This is enforced by the following energy term.

φc(Vcr , Lcr , O) =

⎧⎪⎪⎨
⎪⎪⎩
0 if

∑
i∈c vi = 1

∞ otherwise

(3.9)

where cr is indices of voxels in a single ray.

3.5 Inference and Learning

In this section, we discuss our inference and learning procedures. We propose an

inference method where structured labels {�i} and visibility labels {vi} are iteratively
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updated (Sec. 3.5.1). The parameters of the model are learned using Structural SVM

framework [69] (Sec. 3.5.2).

3.5.1 Inference

We find the most probable labelling of L and V under the model by minimizing

the energy function Eq. 3.1. Efficiency of the inference step is a key requirement for

us as V-CRF is defined over a voxel space which can be much larger than the number

of pixels in the image. We propose an efficient graph-cut based approximate iterative

inference procedure that is described below.

In the tth iteration, we estimate the value of the visibility variables Vt from Lt−1 by

finding out the first occupied voxel in each ray from a camera. Given Vt, we solve the

energy minimization problem argminLE(Vt, L,O) instead of Eq. 3.1, and update Lt.

This procedure is illustrated in Alg. 1. Note that, by fixing Vt, the energy (Eq. 3.1)

becomes independent of V and can be minimized using graph-cut [17, 72].

Algorithm 1: Iterative inference process for L and V .

0. Initialize Vt, t = 0.;
1. Build a V-CRF with unary, pairwise and higher-order potential terms, by
fixing Vt.;
2. (Scene understanding) Solve Lt+1 = argminLE(Vt, L,O) with the graph-cut
method;
3. (Updating visibility) From Lt+1, update Vt+1;
4. Go back to Step. 1.;

3.5.2 Learning

The energy function introduced in Sec. 3.4 is the sum of unary, pairwise, and

higher-order potentials. Since the weights W = (wu
{·}, w

pw
{·}, w

g
{·}) are linear in the

energy function, we formulate the training problem as a structural SVM problem

[69].
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Specifically, givenN RGB-D images (In, Dn)n∈1∼N and their corresponding ground

truth labels Ln, we solve the following optimization problem:

min
W,ξ≥0

W TW + C
∑
n

ξn(L) (3.10)

s.t. ξn(L) = maxL(Δ(L;Ln) + E(Ln|W )− E(L|W ))

where C controls the relative weights of the sum of the violated terms {ξn(L)}

with respect to the regularization term. Δ(L;Ln) is the loss function for the visible

voxels according to its structured label that guarantees larger loss when L is more

different from Ln. Note that the loss function can be decomposed into a sum of local

losses on individual voxels, and the violated terms can be efficiently inferred by the

graph-cut method. Similar to [70], stochastic subgradient decent method is be used

to solve Eq. 3.10.

3.6 Experiments

We evaluate our framework on two datasets [111, 112].

3.6.1 Implementation Details

Appearance Term. For the appearance term P (si|O) for visible voxels in

Sec. 3.4.1, we incorporate responses of [79] and [103], which are state-of-the-art meth-

ods using 2D and 3D features, respectively.

3D Surface Detection. We find groups of voxels composing 3D surfaces using

off-the-shelf plane detector [13], which detects a number of planes from point clouds

by hough voting in a parameterized space. Different types of parameterized space can

be used; in this work, we used Randomized Hough Voting. Please see [13] for details.

Object Detection. We use pre-trained DPM detector [36] Release 4 [38] to

provide detections for higher-order cliques. Among various semantic classes, we used
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[79] [103] U U+PW U+PW+G

Geo 76.6 80.0 85.8 87.4 87.7
S,1st 19.1 38.3 40.4 41.1 41.6
S,5th - - 41.7 43.7 44.6

Table 3.1: Top-view analysis for NYUD-V1. Different columns are for benchmark
methods [79, 103] and different components of our model (U :only unary terms, U +
PW :unary and pairwise, and U + PW + G:full model). Geometric accuracies are
reported in the first line. Semantic accuracies (2nd and 3rd lines) is measured after
1st and 5th iterations of inference steps. By having more components, our model
gradually improves the accuracy, and iterative procedure further helps. Full model
V-CRF achieves the state-of-the-art performance of 87.7% and 44.6% for geometric
and semantic estimation accuracy, respectively. The typical examples can be found
from Fig. 3.5.

reliable detection results from sofa, chair, and tv/monitors.

Voxel Initialization. To build V-CRF model, the 3D space of interest is divided

with voxels having size of (4cm)3 for testing. For training, voxels are divided into

(8cm)3 for efficiency. Since the difference in resolution is small we could use the

relationships learned from the training set on the test set with reasonable results.

Initialization is performed by assigning appearance likelihood for each point in a

cloud to a voxel. Note that more than one point from a cloud can be associated with

a single voxel; for simplicity, we used averaged appearance likelihood responses from

multiple points for Eq. 3.2.

3.6.2 NYU DEPTH Ver. 1

We first evaluate our framework on the NYU Depth dataset Ver. 1 (NYUD-V1)

[111], where pixelwise annotations are available for 13 classes. The dataset contains

2347 images from 64 different indoor environments. We used the same 10 random

splits of training and testing set used in [103] and compared the performance against

[79, 103] as well as variants of our model.

The proposed framework solves semantic and geometric scene understanding jointly.

Yet, evaluating the accuracy in 3D is not an easy task because of the lack of ground
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truth geometry due to the noisy depth data and incomplete region of occluded part.

We propose two metrics for evaluating accuracy - one based on a top view analysis

and one evaluating only the visible voxels.

Metric 1: Top-view analysis. Similar to [61, 107], top-view analysis can help

understand the results of the framework and perceive the free space of the scene as

well as the occluded regions. While [111] only provides frontal view annotation, we

annotated top-view ground truth labels as depicted in Fig. 3.5 (d), where free space

and object occupancy as well as semantic labeling can be evaluated. We propose a

novel user interface for efficient top-view annotation [101]. Specifically, 1320 images

from 54 different scenes are annotated4, where the labeling space is {empty, bed, blind,

window, cabinet, picture, sofa, table, television, wall, bookshelf, other objects}.

Fig. 3.5 shows typical examples of scene understanding from single view RGB-D

images from the proposed V-CRF. Note that our model improves reconstruction errors

in depth map as well as semantic understanding against a benchmark method, e.g.,

[103]. Fig. 3.6 illustrates the results for different number of iterations; we observe

that most of minor errors are corrected in the first iteration, whereas more severe

errors are gradually improved over the iterative inference process.

Quantitative results can be found in Table. 3.1. The free space estimation accuracy

is measured by evaluating binary classification results for occupancy (empty/non-

empty) from the top-view of the image (Table. 3.1, 1st line ‘Geo’). The occupancy

map from the top-view is an important measure and relevant to a number of ap-

plications such as robotics. Compared to [103], our method achieves 7.7% overall

improvement. Especially, our unary potential gives 5.8% boost over [103] (pairwise

potentials and higher-order potentials further improves the accuracy). Note that our

unary potential not only models appearance but also models geometric properties of

the occupancy. This allows V-CRF model to achieve better performance even with

4Bedroom, kitchen, livingroom, office scenes are annotated.
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[79] [103] U U+PW U+PW+G

S,5th 42.8 65.55 69.5 69.9 70.0

Table 3.2: Visible voxel analysis for NYUD-V1. Semantic labeling accuracies of the
visible voxel, after 5th iteration of the inference. Full V-CRF (U+PW+G) model
achives the best performance compared against [79, 103] and variants of our models
(U, U+PW).

the simple unary model, compared to [103].

We also observe that semantic labeling accuracy is simultaneously improved in

Table. 3.1, the second and the third lines. Here, we analyze i) the effect of different

energy terms and ii) the effect of the iterative procedure. It shows that our full

model with larger number of iterations achieves the state-of-the-art average accuracy

of 44.6%, which is 6.3% higher than the projected results from [103]. The typical

examples can be found in Fig. 3.5.

Metric 2: Visible voxels. The accuracy of semantic labels for visible voxels is

presented in Table. 3.2. For this evaluation, we used the original labeling over 2347

images with 13 classes annotations [111]. Compared to the state-of-the-art method

[103], our full model achieves 4.5% improvement in average recall rate.

3.6.3 NYU DEPTH Ver. 2

The NYU Depth dataset Ver. 2 (NYUD-V2) [112] contains 1449 RGB-D images

collected from 464 different indoor scenes having more diversity than NYUD-V1. We

split the data into 10 random sets for training and testing and evaluate performance

for top-view labeling, and for visible voxels, as in NYUD-V1. The experimental

results show that the accuracy is worse than that of NYUD-V1 due to diversity of the

dataset, but still full V-CRF model achieves the best performance compared against

[79, 103].

5This number is equivalent to 2D semantic labeling accuracy 76.1% reported in super-pixel-based
evaluation [103]. 2D super-pixel-based evaluation cannot address the accuracy of 3D scene labeling
and tends to penalize less for inaccurate labeling for distant 3D regions.
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[79] [103] U U+PW U+PW+G

Geo (top) 73.2 78.2 85.0 87.1 87.1
S,5th (top) 16.3 23.9 31.0 32.9 33.6

S,5th (visible) 38.6 53.7 61.3 63.2 63.4

Table 3.3: The evaluation results on NYUD-V2. The first two lines are for top-view
analysis, and the third line is the analysis for visible voxels. The accuracy is worse
than that of NYUD-V1 due to diversity in the dataset. Still, our methods achieves
the highest accuracy for both geometry estimation and semantic labeling tasks.

Metric 1: Top-view analysis. We annotated top-view with the same label-

ing space used for NYUD-V1. This consist of 762 images from 320 different indoor

scenes. The first and the second rows in Table. 3.3 show the performance of geom-

etry estimation and semantic labeling from the top view, respectively. Our model

achieves the best performance in both semantic and geometric accuracy (9.7% and

8.9% improvement over [103]).

Metric 2: Visible voxel. The third row in Table. 3.3 shows semantic labeling

accuracy for visible voxels. Our full model achieves 63.4% (9.7% improvement over

[103]).

3.6.4 Augmented Reality: Object Removal.

One interesting application is an augmented reality scenario where one can remove

or move around objects. This is not possible in most of conventional augmented

reality methods [122] where one can put a new object in a scene but cannot remove

the existing objects, since it requires a model to i) identify semantic and geometric

properties of the objects, ii) estimate occluded region behind the object. In contrast,

V-CRF model can solve this problem. Fig. 3.7 shows that our model can be used

to detect, say, a TV set in the scene and remove it. Note that the occluded region

behind the TV is reconstructed using pairwise relationships among voxels as discussed

in Sec. 3.4.2 and the concept of 3D surface prior as introduced in Sec. 3.4.3.
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3.7 Conclusion

We have presented the V-CRF model for jointly solving the problem of semantic

scene understanding and geometry estimation that incorporates 3D geometric and

semantic relationships between scene elements in a coherent fashion. Our formulation

generalizes many existing 3D scene understanding frameworks. Experimental results

indicate that our method quantitatively and qualitatively achieves good performance

on the challenging NYU Depth dataset (Version 1 and 2).
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(a) RGB image (b) Depth map (c) Point cloud
(d) Ground
Truth (e) [103] (f) V-CRF

Figure 3.5: Four typical examples show that the 3D geometry of the scene is suc-
cessfully estimated by solving V-CRF model. Given (a) a RGB image and (b) a
depth map, (c) reconstructed 3D geometry (top view) suffers from noise and may
not produce realistic scene understanding results. (d) Annotated top-view structured
labels (occupied or not, semantic labels). (e) Results from other methods, e.g., [103].
(f) V-CRF achieves labeling and reconstruction results that are closer to the ground
truth than [103]. For instance, the empty space (hall) in the first image is successfully
constructed with V-CRF, whereas [103] fails. Even with the error due to reflection of
the mirror on the third example, V-CRF is capable of reconstructing realistic scenes
along with accurate semantic labeling results. We draw a grid to visualize voxels from
top view for the first example only.
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Ground
Truth

V-CRF,
1stIter

V-CRF,
2ndIter

V-CRF,
5thIter

Ground
Truth

V-CRF,
1stIter

V-CRF,
2ndIter

V-CRF,
5thIter

Figure 3.6: Examples show that the iterative inference process improves scene under-
standing (Sec. 3.5.1). We visualize joint geometric and semantic scene understanding
results from its top view. (1,5th column) The annotated top-view ground truth la-
beling. (2,6th column) V-CRF results after 1st iteration, (3,7th column) after 2nd
iteration, (4,8th column) and after 5th iteration. Clearly, as the number of iterations
increases, both geometry estimation accuracy and semantic labeling accuracy are im-
proved, as highlighted with blue circles and green circles, respectively. Red circles
highlight areas that have been better reconstructed across iterations.

(a) (b) (c) (d) (e) (f)

Figure 3.7: (a) RGB image. (b) 3D Reconstruction with V-CRF. (c) Semantic labeling
results. (d) Associated voxels for detected ‘television’ is removed. Note that the region
behind the TV is labeled as wall by modeling energy terms for pairwise voxels and
planes. (e) As an augmented reality application, TV is removed and voxels are colored
with the same color as the adjacent voxels with label ‘wall’. (f) All the foreground
objects are removed. The occluded region behind the bag is not well reconstructed
since there was no plane found behind it. More examples can be found at [101].
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CHAPTER IV

Accurate Localization of 3D Objects from RGB-D

Data using Segmentation Hypotheses

In this work we focus on the problem of finding objects in 3D from RGB-D images.

We propose a novel framework that explores the compatibility between segmentation

hypotheses of the object in the image and the corresponding 3D map. Our framework

allows to discover the optimal location of the object in 3D using a generalization of the

structural latent SVM formulation in 3D as well as the definition of a new loss function

defined over 3D space in training. We evaluate our method using two existing RGB-

D datasets. Extensive quantitative and qualitative experimental results show that

our proposed approach outperforms state-of-the-art as well as a number of baseline

methods for both 3D and 2D object recognition tasks.

4.1 Statement

The problem of detecting objects from images that are registered with depth

maps (in short, RGB-D images) is receiving increasing interest in computer vision.

This is coupled with recent widespread diffusion of depth sensors [94] which allows to

accurately measure the distance between the camera and a point in 3D for each image

pixel. Researchers have shown that the associated depth information can enhance
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detection performances [67, 83] and that, in general, the ability to reason in the

3D physical space provides critical contextual information that does facilitate object

detection [2, 54, 65]. However, most of these approaches aim at localizing objects in

the image and ignore the problem of estimating object location in the 3D space (we

refer to this problem as to 3D object localization) (Fig. 5.1). This capability is critical

in applications related to robotics, object manipulation, safe driving application and

video games.

In this work we focus on the 3D object localization problem and propose a new

method that is capable of jointly detecting objects in 2D images and the 3D physical

space using RGB-D images. Instead of searching for objects in 3D as in [40], which

is known to be computationally demanding and prone to false alarms, our approach

leverages existing detection methods [36, 99] which identify object proposals in the

image by means of bounding boxes. Starting from these bounding box proposals,

we introduce a novel framework that explores the compatibility between hypothe-

ses of the object in the bounding box and the corresponding 3D map associated to

the pixels within the bounding box. These object hypotheses are generated using

hypotheses of object foreground vs background segmentation masks (HFMs) within

the bounding box along with the corresponding 3D maps. The intuition is that the

ability of combining appearance and corresponding depth values within the HFMs

allows constructing more discriminative features for 2D and 3D localization than if

such features are extracted from bounding boxes only (Fig. 4.2). Object models are

learnt using a latent max-margin formulation whereby the latent variables are the

object part locations in 3D. Features are extracted from appearance cues within the

HFM and 3D descriptors computed on the associated 3D point cloud. The defor-

mation costs, or penalty costs, for the relative distance between object parts and the

object root position, are calculated in 3D space, where a novel efficient 3D matching

strategy is proposed. The proposed framework is illustrated in Fig. 4.3. This method
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... ...

... ...

Segmentation Hypotheses

Figure 4.1: In this work we propose a new framework to obtain accurate localizations
of objects in 3D by exploring segmentation hypotheses of the object in 2D.

is computationally inexpensive compared to object detection schemes based on sliding

bounding cubes in 3D space.

Related work and Contributions. Our overall approach of incorporating

depth map to improve image recognition is related to several previous works [40,

67, 74, 83, 97]. For example, [74, 97] built a CRF model using depth map, and

showed that RGB-D is useful for indoor scene understanding. [83] used 3D features

and obtained improvement in detection performance, and [40, 67] used 3D feature to

achieve accurate 2D detection performance. [10] proposed depth map based kernel

features for image classification. However, using RGB-D for contextual segmentation

or object recognition is still considered as a challenging problem.

The idea of relating detection and segmentation problems in 2D image is connected

to works such as [70, 81, 91], where these problems are solved in a joint fashion, which

are computationally expensive to process data and to infer the model. However, in

this work, we use foreground segments as initial hypotheses efficiently as in [20] and
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(a) 3D Localization with a bounding box

(b) 3D Localization with the optimal HFM

Figure 4.2: (a) Detecting an object in 3D (using RGB-D data) from a 2D bounding
box is not a trivial problem: the bounding box may include areas of the image that
are not related to the foreground object and that correspond to different portions
of 3D points in the RGB-D map that are located at completely different distances
from the camera. This makes it hard to accurately localize the object position and
pose in 3D. (b) In this work we argue that by using segmentation hypotheses for
the foreground object (the HFMs), we have the opportunity to identify points in 3D
that are only relevant to the object and therefore enable much more accurate 3D
localization capabilities.

find out the optimal hypothesis using our novel formulation.

[40] tried to localize objects directly in 3D space using a simple bag-of-words model

with linear weights within a branch-and-bound framework. However, the method is
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Hypothetical

Foreground

Masks

Corresponding

Point clouds

Feature

Extraction

3D DPM
 - Best Mask

 - 3D location

Figure 4.3: This figure shows the process of generating HFM and features from cor-
responding 3D point clouds. From each bounding box, multiple hypothetical object
foreground masks are generated. For each mask, corresponding point clouds as well
as features encoding 3D properties of point clouds are generated. From these features,
the object’s best foreground mask as well as its 3D location are estimated using our
structural SVM formulation.

computational expensive since the search space is still large despite the efficiency gain

achieved using branch-and-bound.

Our attempt to use a latent structural SVM formulation in 3D is clearly related

to [36] as well as to recent work [99] which propose to model an object as collection

of 3D parts. [36, 99], however, just seeks to detect objects in 2D images.

65



Contribution. Our main contributions are four-fold: i) we introduce HFM to

help extract more descriptive 3D features, leading to a more robust 3D localization

(Sec. 4.2.1); ii) we propose a novel matching process in 3D, integrating responses

from deformable parts in 3D (Sec. 4.2.3). iii) we use our structural SVM scheme for

joint 3D object localization and selection of the best segmentation hypothesis; finally,

iv) we provide annotations for 3D object locations on top of existing RGB-D datasets

(Sec. 4.3.1).

4.2 Accurate 3D Object Localization with Hypothetical Fore-

ground Masks

In this section, we introduce our framework for accurate object detection and

localization in 3D with RGB-D data from a single view. Our main idea is to use

HFMs for achieving both efficiency and accuracy in 3D.

4.2.1 Hypothetical Foreground Masks

Bounding boxes. Bounding boxes have been widely used to generate hypotheses

of object location in 2D from which features such as HOG can be extracted [36,

123]. The fact that a bounding box contains not only the foreground object but also

the portions of the background scene is not necessarily an issue when it comes to

object detection. The reason being that the appearance of the background is often

correlated to the foreground object (think about a cow sitting on grass) and therefore

the combination of the two can enhance object detection. This is much less of a case

when RGB-D images are considered and features are extracted from both 2D and 3D

point clouds. In such a case, the 3D content associated to portions of a bounding box

outside the foreground object can be fairly uncorrelated with the object itself (See

Fig. 4.2(a)).
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Hypothetical Foreground Mask. In this work we propose to associate each

bounding box hypothesis (a HBB) to a set of hypotheses for the foreground object

segment (or mask) - the HFM. Specifically, each 2D HBB yb,2D with a height H and a

widthW is associated with an HFM ym ∈ {0, 1}H·W , which is a set of binary variables

for all pixels where 1 indicates foreground pixels and 0 is for background. If the mask

ym tightly covers an objects itself, we can map the mask into 3D space as shown in

Fig. 4.2(b).

Jointly estimating an accurate yb,2D and ym is computationally more challenging

than estimating yb,2D only. To resolve the problem, we narrow down the searching

space for ym using a discrete top-K object foreground masks extracted using [20]. The

typical results of top-K masks are illustrated in Fig. 4.4. To this end, we introduce

an auxiliary indexing variable im where ymim indicates imth mask among K masks.

Feature Extraction From an HFM and the associated HBB, we extract two

types of features. First, we extract 3D features from the projected 3D point clouds

within the HFM. Designing a 3D feature is out of scope for this work; for our work,

we used the modified version of features introduced in [10], which capture 3D prop-

erties, i.e., size, norm, etc. Details of our implementation can be found in Sec. 4.3.2.

Refer to [25, 71, 113] for examples of possible features that can be used along with

our framework. On top of that, HOG features are extracted from a HBB and con-

catenated.

3D Localization We localize object in 3D space by projecting pixels within

the HFM into 3D points to produce accurate localization results. Fig. 4.2 (a) and

(b) show localization results from an estimated HBB and HFM, respectively. As the

figure shows, when the correct HFM is used, the corresponding 3D point cloud enables

much more accurate localization results than if an HBB is used. In Sec. 4.3.7, we

quantitatively and qualitatively show that the proposed scheme significantly improve

the 3D localization performance.
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I Hypothetical Masks

Figure 4.4: The first column is the RGB image inside bounding box. Remaining
columns show top K foreground segmentation hypothesis when K = 10. The hy-
potheses highlighted with green lines indicate the segmentation which is closest to
the ground truth.

4.2.2 Part Based Model in 3D

Inspired by the deformable part based model (DPM) presented in [36] which

estimates object bounding boxes and their latent part locations in the 2D image, our

framework determines the optimal 3D location of the object y∗ = (yb,2D∗, ym∗
im ) as

well as its parts location h∗ in 3D as (y∗, h∗) = argmax(y,h)
〈
β,Ψ(I, yb,2D, ymim , h)

〉
.

The feature vector Ψ(I, yb,2D, ymim , h) concatenates features for M components of the

mixture model, which encode 2D and 3D appearance cues, 3D distances between

root and part filters and a offset value. The linear classifier β is learned using the
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Figure 4.5: This figure shows the process of 3D matching (Fig.(b)) compared with
matching in 2D (Fig.(a)). By applying 3D matching, possible false alarms (black
circles in Fig.(a)) can be suppressed if 3D distances between root and part filters are
large. For 3D matching, part responses are firstly mapped into 3D space, and 3D
distance transform is applied to efficiently calculate deformation costs between root
and part filters. Details for the 3D matching can be found in the text.

Structural LSVM framework (Sec. 4.2.4).

4.2.3 3D Matching

The procedure to estimate the root and part location is referred to as matching

[36], which takes into account the 2D Euclidean distance between filter locations [34],

as shown in Fig. 4.5(a). On the other hand, our framework discovers the best 3D

root and part locations, and this process is referred to as 3D matching. By looking

at 3D distance between root and part filters, this process suppresses false alarms in

identifying the object parts if 3D distance between root and part is large, even if they

appear close in 2D image. As a result, possible false alarms in results of 2D matching

(Fig. 4.5(a)) are removed by using 3D matching (Fig. 4.5(b)).

For 3D matching, first, we project response map into the 3D point cloud by

associating a confidence value of a pixel to its corresponding point in 3D. Then, we

define a score function which is obtained as the summation of the root and parts
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responses, with respect to their deformation costs in 3D. This score function gives a

highest score at its optimal location and is expressed as follows:

score(x0, y0, z0, l0) = R0,l0(x0, y0, z0)

+
∑

Di,l0−λ(2(x0, y0, z0) + vi) (4.1)

Ri,l(·) is filter responses projected into 3D space for a part i at scale l. The

variable i indicates part index if i > 0, or it indicates root if i = 0. vi is the relative

anchor position the part i. λ is the scale difference between root and part filters. The

transformation Di,l(·) is used to allow for spatial uncertainty in parts location in 3D,

Di,l(x, y, z) = max
dx,dy,dz

(Ri,l(x+ dx, y + dy, z + dz)− d(x, y, z)) (4.2)

where d(x, y, z) = di · φ(dx, dy, dz) is the weighted Euclidean distance.

CalculatingDi,l(·) over 3D space is computationally expensive, which takesO(N3),

where N is the size of the searching space for 1D. Note that [34] showed that this

transformation can be efficiently calculated in case of 1D for a quadratic cost function.

For 3D matching, our cost function is 3D Euclidean distance, which is a quadratic

function over (x, y, z). Thus, we can efficiently obtain the transformation in 3D by

iteratively applying the 1D distance transform as follows:

Di,l(x, y, z) = max
dx′,dy′

(Ri,l|dz′(x+ dx, y + dy)− d|dz′(x, y))

= max
dx′ (Ri,l|dy′,dz′(x+ dx)− d|dy′,dz′(x)) (4.3)

which makes computational time into O(N).

Once the root location is found in 3D, parts locations also can be found by looking

up the optimal displacements, similar to the 2D case [36].
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4.2.4 Structural LSVM in 3D

To train model weights β, we propose to use Structural Latent SVM (StLSVM)

framework [69] by considering 3D objects locations as their labeling space. This

can improve the precision of decision boundaries of trained classifier since it penalizes

inaccurate 3D localization predictions during the training process. In the following, we

describe how the labeling space in 3D is formulated, and also introduce an appropriate

loss function.

Labeling Space with Foreground Mask and Associated 3D Ellipsoid.

Our training data is equipped with object class label yl and the object foreground

mask ym, i.e., y = (yl, ym). To help associate the mask with 3D locations, we use ys

which is equivalent to ym with different parametrization; ys = {(u1, v1), ..., (uS, vS)} is

indicating pixels of the object foreground mask where ym(u, v) = 1. S is the number

of pixels belonging to the foreground region. yl ∈ {−1, 1, ..., C} is the class of the

depicted object or −1 for background. The location of 2D bounding box, yb,2D, is

determined from ys, by retaining the minimum and maximum indices over the image

axes u and v. On top of that, we obtain 3D object location by projecting ys to point

clouds ys,3D as follows.

ys,3D = g(ys,Depth,Camera)

= {(u′1, v′1, z′1), ..., (u′S , v′S , z′S)} (4.4)

where g(·) is the projection function given the depth map and camera parameters.

(u′i, v
′
i, z

′
i) is the 3D location of a point cloud. We use 3D ellipsoids capturing point

cloud ys,3D to identify objects in 3D space. 3D ellipsoids are defined using a 9 −

parameter model. As we will discuss in Sec. 4.3.1, ellipsoids are more convenient
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(than bounding cubes) for annotating objects in 3D. In specific,

yb,3D = Ellipsoid(ys,3D)

= [cx, cy, cz, v1, v2, v3, d1, d2, d3] (4.5)

where {cx, cy, cz} is the center, {v1, v2, v3} major axes, and {d1, d2, d3} are radii of the

ellipsoid.

Training. The training data is {(Ii, yi)}1,...,N , where {I} is the set of images, and

{yi = (yli, y
s
i )} are labels. The model learns the parameter by solving the following

latent max-margin optimization problem,

min
β,ξ

1

2
‖β‖2 + C

N∑
i=1

ξi (4.6)

s.t. ∀i, Ii, ȳ �= yi : max
hi

〈β,Ψ(Ii, yi, hi)〉

−max
h

〈β,Ψ(Ii, ȳ, h)〉 ≥ Δ(yi, ȳ)− ξi

where ȳ is the most violating prediction. Note that, since y contains information

of 3D ellipsoid location, it is able to take the localization accuracy into account for

designing Δ(yi, ȳ).

Finding the Most Violating Sample. Obtaining the most violating sample ȳ

is not easy because |ȳm| = 2H·W , where H and W are the bounding box height and

width, respectively. With a set of HFMs {ymim}, we resolve this issue by efficiently

finding im which gives most violating ȳmim among ∀im ∈ 1 ∼ K.

Loss Function in 3D. We design the loss function Δ(yi, ȳ) depending on both

2D and 3D localization accuracies. Similar to [99],

Δ(yi, ȳ) =

⎧⎪⎨
⎪⎩

0, if yli = ȳl = −1

1− [yli = ȳl]A(yi∩ȳ)
A(yi∪ȳ) , otherwise

(4.7)
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A(y1 ∩ y2) and A(y1 ∪ y2) are the intersection and union of two object locations,

respectively. We calculate the two values as a weighted sum of intersection and union

in 2D and 3D as follows:

A(y1 ∩ y2) = w1A(y
b,2D
1 ∩ yb,2D2 ) + w2A(y

b,3D
1 ∩ yb,3D2 ) (4.8)

A(y1 ∪ y2) = w3A(y
b,2D
3 ∪ yb,2D2 ) + w4A(y

b,3D
1 ∪ yb,3D2 ) (4.9)

where A(yb,2D1 ∩ yb,2D2 ) is the intersecting area between two 2D bounding boxes, and

A(yb,3D1 ∩ yb,3D2 ) is the intersecting volume between two 3D ellipsoids1. The union

A(y1∪ y2) is calculated in a similar fashion. During the experiments, we set w1,2,3,4 =

0.5.

4.3 Experiments

In the following, we describe the experimental settings and results. We evaluate

our framework using two datasets (Washington RGBD (WRGBD) and Berkeley 3D

Object (B3DO) datasets) and provide annotations of 3D object locations for learning

and for providing ground truth information.

4.3.1 Annotation

While many 3D datasets [42, 67, 83, 97] have appeared in last few years, none

of them provide annotations that allow to localize objects in 3D (with the expection

of [42]). For example, [67, 83] annotated locations of objects in 2D space with 2D

bounding boxes, without 3D location. Objects in [97] contain pixel-wise labeling

for object instances, but objects are often too small or contain severe occlusions or

truncations. [42] include range data along with accurate location with 3D cubes, the

range data for training set is not provided.

1See the supplementary material for the method to calculate intersecting volume between two
ellipsoids.
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In our work, we parameterize object location using 3D ellipsoids. 3D ellipsoids are

good to capture the size with 3 major axes of the object, and also describe objects’

location in 3D space accurately. Also, they are easy to use for annotation. At that

end, we have created an easy and efficient labeling tool. Using this tool, the annotator

can simply draw a polygon capturing object foreground, the 3D points corresponding

to the pixels enclosed by the polygon are used to calculate the centroid and the

principal axes of the tightest ellipsoid enclosing such 3D points. Principal axes are

calculated using PCA on the point cloud. Statistics related to our annotated ellipsoids

and its comparison with other statistics can be found from a supplementary material.

Typical examples of the annotation results can be found in the second column of

the Fig. 4.11. In our framework, overlap ratio between ground truth and estimated

ellipsoids are used to calculate the loss function for training StLSVM model, as well

as for evaluating 3D localization performance.

4.3.2 Implementation Details

For the experiments with the B3DO dataset, we concatenated HOG features cal-

culated from deformable parts [36] with 3D features proposed in [10]. For the exper-

iments with the WRGBD dataset, we further concatenated HOG features extracted

from depth map as proposed by [83].

4.3.3 Foreground Mask Accuracy

There is a trade-off between the computational complexity and the number of

hypothetical masks. By using a larger number of hypotheses, there is a higher chance

to pick up the correct one. This is at the expense of the added computational time

that is required to calculate features and apply the object model.

In Fig. 4.6, we measured the accuracy as function of the number of HFMs. Ac-

curacy is measured using the best F-measure criterion F = 2RP
P+R

, where P and R are
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Figure 4.6: This figure shows F-measure as a function of the number of HFMs aver-
aged over each object class for both B3DO (marked with ‘x’) and WRGBD (marked
with ‘o’) datasets.

the precision and recall of pixels in a segment relative to the ground truth [1]. From

the curve, we can see that the accuracy increases as function of the number of HFMs.

Notice that when this number is greater than 10, the performance gain becomes neg-

ligible. In the experiments we discuss next, we set the number of hypothetical masks

K as 10.

4.3.4 Berkeley 3D Object Dataset

We first evaluated our proposal with the Berkeley 3D Object Dataset (B3DO)

[67]. Among available object classes in the dataset, we tested 8 classes for which [67]
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evaluated the performance of 2D localization. 3D localization was not tested in [67],

so we use several baseline methods to evaluate our framework.

4.3.5 3D Detection Performance

Accuracy is computed by using 3D ellipsoids as discussed in Sec. 4.3.1. Similar to

Pascal Challenge criteria, localization is counted as correct if the overlapping volume

between estimated ellipsoid and the ground truth ellipsoid is more than a threshold.

Otherwise, it is counted as wrong. In our experiments, we set the threshold to be

25%.2 We compare our method with the following baselines:

DPM+FillMask. For a detected 2D bounding box, we project all the pixels in-

side that bounding box. The ellipsoids are generated to capture all the corresponding

to 3D points.

DPM+1stMask. Among K hypothetical masks, we choose the top-ranked mask

from [20] as a foreground mask. The score corresponding that mask is used to evaluate

the detection.

DPM+SizePrior. From a depth map and a bounding box, object location,

width and height of the object are estimated. The depth of the object is set to a

mean value that is computed by averaging out ground truth object depths for each

class in the training set.

Results. Fig. 4.7 shows the average precisions of 3D localization results of pro-

posed method, compared with all the baselines methods. Our method achieved the

best performance for 7 out of 8 categories, and on average, it attains at least 6.2%

higher average precision than baseline methods. For the class cup, DPM+SizePrior

and our method achieve similar performance. The reason may stem from the fact that

since there is small variance in the size of objects in the cup class, DPM+SizePrior

can successfully capture its 3D location well. On the other hand, for classes having

2While 2D detection often use 50% as a threshold, 3D localization is more challenging and 25%
is a reasonable threshold for evaluation. For more details, see the supplementary material.
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Figure 4.7: Average precisions of 3D object localization for 8 classes in B3DO dataset.
Our method achieves best results compared the a number of baselines.

large variances in their depth due to different poses (for example, monitor or key-

board), our method works better than all baselines. Typical 3D localization results

can be found in Fig. 4.11.

4.3.6 2D Detection Performance

We also show that our method improves 2D detection accuracy. Fig. 4.8 shows the

average precisions of the detection results in 2D using the B3DO dataset. We compare

our performances with DPM [36] and two methods proposed in [67]. The first method

is called pruning, where detected results are pruned out if the approximated object

size (bounding box diagonal times mean depth) is different from the statistics of the
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Figure 4.8: Average precisions of 2D object localization from DPM, two methods
proposed in [67] and our method on B3DO dataset. Note that our proposed method
consistently achieves better average precision over [67].

dataset. The second method is called rescoring, in which linear SVM is trained with

additional features of approximated object size [67].

Note that we achieve better results for 6 out of 8 categories. This confirms that

using HFM and associated 3D features is beneficial even for a 2D detection task.

Notice that there is no improvement for the chair category. This may be due to

severe occlusions that occur for the chair category in the dataset and that are not

well characterized using our model.
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4.3.7 Washington RGB-D Object Dataset

We also evaluated the proposed method using the Washington RGB-D Object

Dataset (WRGBD) [83]. Note that in order to make the comparison with [83] fair,

the features are extracted from RGB, depth map as well as estimated object size as

in [83].

3D Detection Performance Fig. 4.9 shows the average precision for 4 classes,

coffee mug, cap, soda can, and flashlight, in the WRGBD dataset. Again, we achieve

best accuracy compared to the baseline methods discussed in Sec. 4.3.5. We notice

that the objects in this dataset have small variance in their size and pose, so that the

baseline DPM+SizePrior already achieves a good 3D localization performance. Note

that our framework further improves the accuracy by roughly 3%.

2D Detection Performance Fig. 4.10 shows average precisions of our method,

and of baseline methods. Although, as discussed earlier, the features used for baseline

methods already contains information extracted from both RGB and depth map, our

framework achieves the best performance compared to them.

4.4 Conclusions and Future work

In this work we proposed a new approach for localizing objects in 3D using RGB-

D images. We explored the idea of using segmentation hypotheses for the foreground

object to guide the process of accurately localizing the object in 3D. Extensive exper-

imental analysis has demonstrated our theoretical claims. Directions for future work

include the ability to integrate segmentation hypotheses in both 2D and 3D.
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Figure 4.9: Average precisions of 3D object localization in the WRGBD dataset. Our
method achieves best results compared with all baselines.
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Figure 4.10: Average precisions of 2D object localization from DPM (with features
proposed in [83]) and our method on the WRGBD dataset. Our proposed method
consistently achieves better average precision over [83].

81



Ground Truth (2D) Ground Truth (3D) DPM+SizePrior Ours

Failure cases

DPM+1stMaskDPM+FillMask

Figure 4.11: This figure shows typical examples of object localization in 3D obtained
using the proposed model and baseline methods. Each column represents ground
truth bounding boxes in 2D, ground truth bounding boxes in 3D, 3D localization
results using 3 baseline methods, and 3D localization results using our method, re-
spectively. The localization results are drawn with black ellipsoids and green is used
for ground truths. First four rows shows good examples. Notice the ellipsoids es-
timated by our framework is very close to ground truth ellipsoids, whereas baseline
methods give less well localized ellipsoids. The last row shows failure cases. More
typical examples can be found in the supplementary material.
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CHAPTER V

Hierarchical Classification with Sparse

Approximation

Using image hierarchies for visual categorization has been shown to have a number

of important benefits. Doing so enables a significant gain in efficiency (e.g., logarith-

mic with the number of categories [48, 93]) or the construction of a more meaningful

distance metric for image classification [98]. A critical question, however, still remains

controversial: would structuring data in a hierarchical sense also help classification

accuracy? In this work we address this question and show that the hierarchical

structure of a database can be indeed successfully used to enhance classification ac-

curacy using a sparse approximation framework. We propose a new formulation for

sparse approximation where the goal is to discover the sparsest path within the hier-

archical data structure that best represents the query object. Extensive quantitative

and qualitative experimental evaluation on a number of branches of the Imagenet

database [27] as well as on the Caltech-256 [48] demonstrate our theoretical claims

and show that our approach produces better hierarchical categorization results than

competing techniques.
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5.1 Statement

Recent advances in computer vision and machine learning have enabled the design

of recognition methods that are capable of classifying images into large number of

visual categories (typically, hundreds) [23, 30, 49, 84]. In one of the current paradigms

for image categorization, image classes are organized in a flat structure and the prob-

lem is to discover the class (among all those in the flat structure) that best represents

(in term of a distance function) the visual content of a given query image.

Recently, researchers have explored the idea of organizing visual data in a hi-

erarchical structure rather than in a flat one. This paradigm addresses some of the

limitations of the flat structure: i) it allows for a significant gain in efficiency, typically

logarithmic with the number of categories, as addressed by Marszalek and Schmid [93]

and Griffin and Perona [48]; ii) it enables the construction of a more meaningful dis-

tance metric for image classification; iii) it echoes the way how humans organize data,

as addressed by Palmer [98]. However, a critical question still remains controversial:

would structuring data in hierarchical sense also help classification accuracy? Up to

date there is no definite answer to that question. For instance, top-down classification

schemes (applied on hierarchical structures) proposed by Marszalek and Schmid [93]

and Griffin and Perona [48] have produced inconclusive evidence as for whether hier-

archy has a beneficial effect on classification accuracy. Classification methods based

on Hierarchical Support Vector Machines can be used to trade off accuracy against

speed as in Griffin and Perona [48] or employed to increase classification accuracy as

originally proposed by Tsochantaridis et al. [121] and utilized for image classification,

as suggested by Binder et al. [7]. Although [7] has shown promising results, it is com-

putationally very demanding as the number of categories becomes larger than 30∼50.

Finally, methods based on combining models from different levels of the hierarchy

proposed by Zweig and Weinshall [130] have also shown positive results but are yet

to be validated on deeper and larger hierarchical structures.
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In this work we attempt to address the issues discussed above and show that the

hierarchical structure of a database can be successfully used to enhance classification

accuracy using a sparse approximation framework. The key idea is to introduce

a distance function that takes into account the hierarchical structure of the visual

categories (Figure 5.1) and to identify two images to be similar if they share a similar

path in the hierarchy. We show that this distance function (or similarity metric) is

equivalent to the Hamming Distance (HD) for vectors that encode the hierarchy. This

allows us to cast the categorization problem as the one of discovering the category

in the tree structure that has the smallest HD from the query category label. We

solve this problem via sparse approximation and introduce a new formulation of the

sparse approximation problem which we call hierarchical sparse approximation. In

the typical sparse approximation problems, [21, 120, 126], a query image can be

identified as the sparsest representation over the set of training images, as proposed

by Wright et al. [126] or basis functions, as proposed by Mairal et al. [90] for all object

classes; that is, the sparsest solution is one (or a combination of a few) image out of

all possible images in the dataset. We call this the flat sparse approximation problem.

The key novelty of our approach relies on the idea that the sparse representation is

not constructed over a flat structure of object classes (as in the classic sparse sensing

problem) but rather by enforcing that the solution must be one (or a combination of

a few) path out of all possible paths on a given hierarchy of object classes (training

set). Moreover, classification accuracy is measured in hierarchical sense (that is, by

considering the HD between the query path and the ground truth one). Since our

method relies on the sparsity of the representation, our approach is suitable for large

scale classification problems; i.e., the conditions underlying the sparsity assumptions

are best verified when the dataset is large and distribution of visual categories is

diversified. In this work we present sufficient conditions under which our hierarchical

sparse formulation can be used with success and small error bounds are guaranteed.
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Figure 5.1: (a) Organizing images in a hierarchical structure (tree) enables more
descriptive methods for characterizing images: the image of a dog can be described by
class labels associated to each node of the (green) path in the tree. (b) Misclassifying a
dog with a cat is not as bad as misclassifying a dog with a stapler. If data are organized
in a tree, it is possible to relate object classification errors with objects with locations
in the tree. For instance dog, cat and stapler categories are associated with the green,
red and blue paths (respectively) in the tree. The error in misclassifying a dog with
a cat can be measured as the Hamming Distance (HD) between the corresponding
paths. HD captures the similarity between two paths in the tree (see Section 5.3.1
for details). The HD is 1 in this case. Note that misclassifying a dog with a stapler
leads to a larger HD (that is, 5). (c) It is desirable to classify multiple objects at the
same time. If an image contains a dog, a human and a vacuum, our algorithm can
discover three paths (green, orange and blue respectively) in the tree, one for each
query object.

Furthermore, a crucial property of our classification framework is that it is capable of

classifying multiple object categories at the same time if more than one (dominant)

object appears in the query image (Figure 5.1 (c)).

We have carried out extensive quantitative and qualitative experimental evalu-

ation on a number of branches of the Imagenet database [27] as well as Caltech-

256 [49]. Each branch comprises hundreds of visual categories organized in the hi-

erarchical structure. All the experiments demonstrate that our hierarchical approx-

imation framework yields much better hierarchical classification accuracy over flat
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sparse approximation. Evaluation was carried out by comparing average precision

measured in terms of HD as well as by measuring the actual classification accuracy

at each level of the hierarchy. Our method achieves a performance increase ranging

from 5% to 10% for the most critical levels of the hierarchy. Additional experiments

on multi-category classification also show very promising results.

The rest of this work is organized as follows. In Section 5.2, we will briefly review

how sparse approximation can be applied to image classification problem. The formal

definition of hierarchical classification and our proposed embedding is provided in

Section 5.3.1. A number of experiments are carried out to validate our scheme in

Section 5.4. Finally, we summarize our work in Section 5.5.

5.2 Image Classification using Sparse Approximation

In this section, we describe our image representation and introduce the basic

formulation of the flat image classification problem based on sparse approximation.

We assume a database of images is available. Furthermore, we assume that such a

database comprises a large number of categories and each category has a large number

of image instances. We assume that each image has a dominant object instance

with some level of background clutter as in Caltech-256 [49] or the ImageNet [27].

In classification, we assume that the query image (with unknown category label)

contains one (or multiple) dominant object(s) whose category label is represented by

the dataset. Of course, the query object instance itself is not necessarily included in

the dataset. The classification problem can be solved by seeking, among all the images

(object instances) in the database, the one that is closest to the query object(s).

The category such image belongs to is the classification result. If the query image

contains multiple dominant objects, the classifier must return multiple category labels

associated to all of the dominant objects in the query image.
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5.2.1 Object representation and distance function

Assessing whether an image is “close” to another one relies on the construction

of a distance function which depends on the way how the visual content of an im-

age is represented. Following a common representation used in computer vision, we

describe an image using a normalized histogram of codewords (i.e., the bag of words

representation, also named BOW) [23] or, equivalently, a histogram capturing a spa-

tial pyramid of codewords [47, 84]. In either cases, we denote such histogram by a

vector x. Codewords are drawn from a learnt dictionary of vector quantized features

as described in [23, 47, 84]. The size of the dictionary is denoted by K. Thus x is a

column vector of size K, if we use a simple histogram of codewords to represent the

image. Notice that other types of representations are also possible. The similarity

between two images represented by xi and xj can be measured by computing the ln

norm distance between xi and xj, where n can be 0, 1, etc. Similar images will have

small distances.

5.2.2 Model matrix

Let us stack all the histograms of images in the database as columns of the matrix

H. Thus, H will be K × N , where N is the number of images in the dataset. We

call this matrix H the flat model matrix. Under the assumption that the database

is sufficiently large, any query image can be represented as a superposition of one or

more images in the training data with small error e such that x = Hm + e. Note

that N × 1 vector m is called the mixing vector and consists of a few non-zero entries

associated to the images in the database that contribute to represent the query image

by superposition. Note that the error e captures background clutter and the intra-

class variability. A similar representation was introduced in [126] and was shown to

be suitable for face recognition problems. We argue that is also a reasonable model

for the generic object classification problem. As long as the training set is large
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enough the image representation will yield satisfactorily discriminative features for

classifying object classes as demonstrated in [49, 84]. In order to further justify the

model, we show empirical evidence that mixing vectors m are both fairly sparse and

concentrated using a number of datasets in the following Section 5.2.3.

5.2.3 Empirical evidence for sparse approximation

In this section, we provide empirical evidence of the assumption that a query image

x can be both sparsely and accurately represented by a few linear combinations of

BOW descriptors of the same category. The following experimental evaluation is

carried out by using the hierarchical Caltech-256 dataset with ‘dog’ category. See

Section 5.4 for more details about the structure of this dataset. Let us denote the

K × C matrix Hs as the matrix that is formed by taking the columns in H that

correspond to the same category as x. Thus, C is the number of images in a category.

Note that, K = 4200 and C = 30 for this particular dataset and also that K > C.

Then, we empirically show that x = Hsms + e has a solution m̂s that is sparse and

gives a small approximation error ‖x−Hsm̂s‖2.

To compute m̂s for a given x we solve,

min
ms

‖x−Hsms‖2 + λ‖ms‖1,

which is also known as the least absolute shrinkage and selection operator (LASSO)

[117]. The first term of the cost function ensures that the approximation error is

small and the second term ensures that the solution is sparse. Figure 5.2 shows an

example of a plot of m̂s obtained by solving the above minimization problem. We

can see that m̂s is indeed sparse with only two non-zero coefficients and has a small

approximation error of 0.58.

In order to demonstrate that such behavior is common across most queries x, we
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repeat the above for a large number of queries x that belong to different categories

and evaluate how sparse and accurate the solutions are by computing ‖m̂s‖1
‖m̂s‖2 and

‖x−Hsm̂s‖2, respectively. We note that 1 ≤ ‖ms‖1
‖ms‖2 ≤

√
30 and the closer this fraction

is to 1 the sparser the m̂s and vice versa. The average value of ‖m̂s‖1
‖m̂s‖2 and ‖x−Hsm̂s‖2

for a large number of trials are 2.41 and 0.52, respectively, which show that x can

indeed be sparsely and accurately represented by the columns of the same category.

Next we show that for a large number of queries, x is best represented by the

columns of the same category than by those of other categories. In the Caltech-

256 dataset there are in total 256 categories. For each query x, we solve the above

minimization problem for all 256 categories, where each category has a different Hs

that is constructed by taking the appropriate columns inH. Then for all 256 solutions,

we evaluate ‖m̂s‖1
‖m̂s‖2 and ‖x−Hsm̂s‖2 as a measure of sparsity and accuracy. To asses

whether or not x is better represented by the columns of the true category, we compute

how many other categories resulted in a representation m̂s that gave 10% better

performance in terms of the two measures simultaneously. We repeat this procedure

for 512 different query images that belong to different categories and plot in Figure 5.2

the histogram of the number of categories that resulted in a better representation than

the true category. Out of 512 trials for exactly 327 query images, the true category

was able to better represent x than others. This and the fact that this histogram

exhibits a high concentration close to zero shows that for most queries, the true

category provides more sparse and accurate representations than other categories.

5.3 Classification

Clearly m contains the information that allows us to estimate the class label of

the query image. Therefore, the classification problem (what is the object class? ) is

recast into the problem of estimating the vector m (where is a non-zero entry? ). Fur-

thermore, this formulation allows us to discover multiple dominant object categories
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Figure 5.2: (left) An example of a reconstruction of m̂s. In this example, m̂s has only
two non-zero coefficients and ‖x−Hsm̂s‖2 = 0.58. (right) Histogram of the number
of categories that provided more sparse and accurate representations than the true
category for 512 trials.

in the image. Suppose the image contains three objects as in Figure 5.1 (c), then the

query image may be expressed as a superposition of s = 3 training histograms and

the non-zero entries of m will return the 3 classes appearing in x (i.e, dog, human and

vacuum). Solving m is challenging because the system is under-determined (N � K)

and has an infinite number of solutions. Because we postulate or seek a s-sparse mix-

ing vector m, we can formulate this problem as a sparse approximation problem and

seek to find the sparsest solution that best approximates (in �0 error) the observed

instance. Notice that the pseudo-norm ‖ · ‖0 counts the number of non-zero entries

in a vector.

Problem 0. min ‖m‖0 subject to ‖Hm− x‖2 ≤ ε.

Unfortunately, the above problem is an NP-hard problem in general (given an

arbitrary matrix H and an arbitrary vector x). We can, however, solve this problem

in polynomial time with appropriate geometric assumptions on H; if the maximum

entry of the matrix |H∗H − I|, or the coherence1 μ(H), of the matrix is small, then

1An equivalent definition of μ(H) is the maximum dot-product of different columns of H, μ(H) =
maxi �=j |〈Hi, Hj〉|.
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Figure 5.3: Visualization of the embedding. (a) Examples of T and T ′. (b,c) As
a result of the embedding E, the flat mixing matrix m is mapped into l. In this
example, when m shows a non-zero entry corresponding to image 13, the embedded l
shows non-zero entries corresponding to image 13 as well as to its ancestors categories
(nodes) A,B and D. These are on the path to the root from image 13.

there are several algorithmic solutions. Let us assume for now that the training set

contains the query image x. As proposed by [18, 126], one method is to observe that

Problem 0 is an optimization problem with a non-convex objective function and that

a convex relaxation of this problem yields a problem which can be solved efficiently

with standard optimization techniques [21],

Problem 1. min ‖m‖1 subject to ‖Hm− x‖2 ≤ ε.

A second algorithmic approach is to use a greedy algorithm, one that identifies

image instances iteratively, such as Orthogonal Matching Pursuit (OMP). See [120]

and the references therein for details on this algorithm. In Section 5.4.3 we show that

the coherence between individual images decreases as a function of their hierarchical

distance; thus, while the overall coherence μ(H) is high, with high probability, the

coherence between any two images is quite small and OMP can distinguish among

these images and choose a representation close to the ground truth.

5.3.1 Hierarchical Classification with Sparse Approximation

While the model x = Hm + e is reasonable and empirical evidence suggests

that it is fairly accurate, it fails to take into account any hierarchical information
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amongst the classes. Furthermore, the error metrics for typical sparse approximation

algorithms [108, 120] do not take into account structural relationships amongst the

columns of H. Indeed, a small error in the mixing vector ‖m̂−m‖2 or in the recon-

struction of the observation x does not necessarily guarantee hierarchical similarity

between m̂ and m. For instance, suppose the ground truth label of a query image is

“dog”. Assume two possible classification results are generated: “stapler” and “cat”.

These two results would be associated to the same flat classification error ‖m̂−m‖2

if the model in x = Hm+e were employed, whereas the classification error associated

to “cat” would be smaller than that associated to “stapler” if the error function were

defined in hierarchical sense (Figure 5.1).

In this section, we assume that object categories are structured in a (rooted,

labeled, recursive) tree T that reflects the semantic (parental) relationships among

object categories. Note that each node of T contains all of the images representative

of the visual category label associated to that node. A schematic illustration of

such a data structure is given in Figure 5.1 and Figure 5.3. We define T ′, the data

structure induced by the semantic tree, that contains two types of nodes, category

labels and individual column vectors of H (images) (Figure 5.3). It encodes the

semantic relationship amongst the categories and the assignment of columns of H

to those categories, but, unlike the tree T , both categories and individual columns

of H make up the nodes. A key contribution of our work is to introduce a suitable

encoding matrix E that embeds the flat model matrix H into a hierarchical (tree)

model matrix Φ and to show that the resulting hierarchical sparse approximation is

solvable and appropriate for classification.

5.3.2 Hierarchical embedding

The encoding matrix E is constructed so as to map the mixing vector m into an

embedded mixing vector � = Em, whose non-zero entries correspond to the paths in
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T ′ from the image to the root of the tree (Figure 5.3). More concretely, we define E

to be the (N + C) ×N matrix that embeds a column of H and its path to the root

in the tree T ′. Without loss of generality, we can permute the rows of E so that E

has the following structure E = [I LT ]T where I is the N ×N identity matrix and

the C ×N matrix L consists of the hierarchical labels of each image. Each row of L

corresponds to a category and each column to a training image; Li,j = 1 if category

i is on the path to the root from training image j. Each row encodes which training

images are descendants of category j. Note that the length of � is N+C. If we denote

E† the pseudo-inverse of E, then we define Φ = HE†.

5.3.3 Hierarchical sparse approximation

The hierarchical embedding allows to reformulate Problem 1 as a hierarchical

sparse approximation problem and find a solution for � given x:

Problem 2. min ‖�‖1 subject to ‖Φ�− x‖2 ≤ ε

Unlike the original sparse approximation problem, in this problem, the sparsity

pattern of the vector � is constrained to lie on a single path (or subtree) of the tree T ′.

While the embedding Em = � increases the number of non-zeros in � (as compared

to that of m), it also enforces a model that these non-zero entries must follow; they

must lie on paths from individual columns of H to the root of the tree T ′. Because

the sparsity of � follows a model and Φ has more columns than rows, this problem

has the structure of a model-based compressive sensing problem [4].

Problem 2 can be solved efficiently by a greedy algorithm called Tree-OMP [78],

which is a special case of the more general algorithm Model-CoSaMP [4], assum-

ing that Φ satisfies a geometric condition, referred to as model-Restricted Isometry

Property (model RIP). (See Algorithm 2.) Tree-OMP is similar to the OMP algo-

rithm with the additional step that for all non-zero components in the vector �, the

algorithm enforces that all the components that correspond to ancestors in the tree
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Algorithm 2: TREE-OMP [78]

Input: Φ, x, ε, θ
Output: �̂
Initialize the the counter k = 0, the vector �̂k = 0, the residual rk = x, and the
index set Λk = ∅.;
while !done do

z = Φ∗rk;

Sk = {λ
∣∣∣|zλ| > θ};

// Form a candidate set of columns of Φ which have inner products with

the residual larger than the threshold θ.

ik = argmini∈Sk
‖x− Pspan{φl:l∈Fi}‖2;

// Search among the candidate set Sk for the item that together with its

family Fi (i.e., all ancestor items) maximizes the reduction of

residual.

Set Λk+1 = Λk ∪ Fik .;
�k+1 = Pspan{al:l∈Λk+1}x;
Update the residual, rk+1 = x− �k+1.;
if ‖rk+1‖22 < ε then done;
;
else k = k + 1.;
;

end

are non-zero. This constraint guarantees that the estimated solution �̂ corresponds

to one (or more) physical path(s) in the tree.

5.3.4 Theoretical analysis

In this subsection, we show that the hierarchical embedding in Section 5.3.1 pro-

duces a matrix Φ that, on average, satisfies the model RIP. We also show that �̂, the

output of Tree-OMP, is close to the ground truth embedded vector � = Em not

only in l2 error, but, more importantly, in HD. These results are summarized in the

following theorem. Moreover these results enable the construction of a classification

algorithm that we call Sparse Path Selection (SPS) (see Figure 3).

Theorem 1. Given a normalized test image x (‖x‖2 = 1) which is sd-sparse with

background “noise” n, we can solve Φ� = x + n for the embedded mixing vector �
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Algorithm 3: Sparse Path Selection (SPS)

TRAINING
Input: Images with known hierarchy
Output: Encoded model matrix Φ, threshold value η

Form the matrix H of training vectors collected from all images in the dataset;
Encode: � = Em, Φ = HF , where F = E†;
Normalize the columns of Φ to have unit l2-norm.;
Learn the threshold value η;

TESTING
Input: Encoded model matrix Φ, query image, threshold value η
Output: Class labels

Form a vector x from the query image.;

Estimate mixing vector �̂ =Tree-OMP(Φ, x, ε, θ);

Truncate small elements in �̂ by learned threshold values η and return the
labels of the remaining non-zero entries; i.e., the classification results.;

with Tree-OMP. After T > log(sd) iterations, the output vector �̂ has at most Td

non-zero entries and satisfies

‖�− �̂‖2 ≤ 2−T + C‖n‖2.

In addition, if the noise ‖n‖2 ≤
√
Td(η − 2−T ) is small enough compared to a learnt

threshold η (See SPS algorithm), then HD(�̂, �) = 0; i.e., we correctly identify all the

categories on the ground-truth hierarchical path.

Proof. First, we note that the embedded vector � = Em follows a model-sparse

pattern as defined in [4].

Lemma 1. If m is a s-sparse vector, then � = Em has a sparse tree structure; that

is, it encodes a rooted tree with s leaves.

Proof. From [4], a signal model Mk is the union of mk canonical k-dimensional sub-

spaces Mk =
⋃mk

m=1 χm where each k-dimensional subspace χm = {y
∣∣∣y|Ωc

m
= 0}

contains all signals y with support in Ωm. The model Mk is defined by the set of
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possible k-sparse supports Ω1, . . . ,Ωmk
and, if we restrict ourselves to those sets that

are defined by a rooted tree structure, we have a model-sparse signal. Our embed-

ding, by construction, yields such a vector �; it is model k ≤ sd sparse (where d is

the depth of the tree T ′).

Lemma 2. The matrix Φ is well-approximated by an iid (sub-)Gaussian random

matrix.

Proof. We model2 the label matrix L as an iid random Bernoulli matrix; each entry

Li,j = 1 with probability p and 0 with probability 1− p. Let

Ẽ =
1

2

[
I L̃T

]T

where L̃i,j = 1
Cp(1−p)

(Lj,i − p) is a centered version of the transpose of L. Observe

that, on average, Ẽ = E†, as

E

(
(L̃L)j,l

)
= E

( C∑
k=1

L̃j,kLk,l

)
=

C∑
k=1

1

Cp(1− p)
E

(
Lk,j − p

)
E(Lk,l) = 0

and

E

(
(L̃L)j,j

)
= E

( 1

Cp(1− p)

C∑
k=1

(Lk,j − p)(Lk,j)
)
=

1

Cp(1− p)

C∑
k=1

p(1− p) = 1.

Then, on average,

Φ = HẼ =
1

2

[
H HL̃T

]T
2In practice, the assignment of labels to training images is deterministic and we have more

descendant images for a category the higher in the tree it is. The indexing of the columns is,
however, arbitrary so we can order them at random initially and fixed throughout the remainder of
the algorithm. A more realistic model is to change the probability p as a function of the depth of
the category in the tree. The root has p = 1 and a deep category has p close to 0.
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and the entries in the columns corresponding to the HL̃ block are

(HL̃)j,l =
N∑
k=1

Hj,kL̃k,l =
N∑
k=1

Hj,k
1

Cp(1− p)
(Lk,l − p)

approximately iid Gaussian random variables as they are (large) sums of bounded

random variables with mean 0.

This analysis describes the average behavior of Φ only. Any instance of E† has

non-zero entries in the off-diagonal terms. These entries are also bounded random

variables, and, hence, the product Φ = HE† consists of entries that are approximately

Gaussian random variables.

From Lemma 1 and 2, we can conclude that Φ satisfies a model-RIP property [9].

Furthermore, we can use the result in [4] to conclude that after T iterations of Tree-

OMP, the output �̂ contains at most Td non-zero entries and satisfies ‖� − �̂‖2 ≤

2−T + C‖n‖2. While the l2 distance between two vectors is meaningful, it does not

tell us how close the path(s) corresponding to the vector �̂ are compared to the ground-

truth vector �, it conflates the paths with the coefficients on those paths. The error

bound tells us what the average error in �̂ is and, as long as it is below our learned

threshold, 1√
Td
(2−T +‖n‖2) < η, we will not introduce spurious nodes in the path nor

miss them and hence, HD(�̂, �) = 0.

5.3.5 Sparse Path Selection Algorithm (SPS)

After solving Problem 2, we obtain an estimate of the path � in the hierarchical

database associated to the query image. However, � cannot be used directly for image

classification. Ideally, the sparsest solution of Problem 2 should return a vector of

“1” and “0” where the non-zero elements in � allows to estimate the category labels

of the query object as well as its parents. Unfortunately, this is not always the case

and values between “0” and “1” can be also found because of the estimation noise.
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To solve this issue, we perform a post processing step. The idea is to introduce a

threshold η and interpret it as a positive response any value that is above η (and as

negative response, otherwise). Finding this threshold, however, is not trivial as it may

vary with different datasets. Thus, in our experiments, we propose to automatically

learn this thresholds using a binary MAP estimator trained using a validation set.

Such evaluation set is then removed from the dataset so as to avoid contamination

during testing. Our entire classification scheme is summarized in the Algorithm 3.

We call this algorithm SPS.

5.3.6 Classifying multiple categories

As discussed in the previous sections, if the input vector x describes an image

comprised of s categories, the mixing vector m is a s-sparse vector and the corre-

sponding embedded mixing vector � defines a subtree composed of s paths. Each of

these paths is associated to one of the categories in x. (Figure 5.1) Thus, solving

Problem 2 and obtaining an estimate m̂ of m allows us to simultaneously discover the

presence of multiple categories in the image. Even if this appears to be an appealing

property, one critical question must be addressed. How many categories s can we

simultaneously handle until the conditions (i.e. sparsity, etc) underlying the solution

of Problem 2 are violated? The bounds in [4] suggest that we need at least O(sd)

rows in the histograms, where d is depth of hierarchical tree and Section 5.4.7 gives

some empirical evidence that multiple category classification is possible with these

algorithms.

5.4 Experiments

In this section, we present quantitative and qualitative experimental results to

validate our theoretical claims. We test our algorithm using different hierarchical

databases. These are: i) 3 branches of the ImageNet [27] each comprising hundreds
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of categories; ii) The hierarchical Caltech-256 dataset [48]. We use different metrics

to evaluate the performances of our algorithm: i) Overall average Hamming Dis-

tance (HD); ii) Average classification accuracy for each levels of the hierarchy. We

benchmark our results using competitive classification methods SRC, the sparse ap-

proximation technique introduced by [126]. Our experiments include classification of

a single dominant object category as well as multiple categories. In each of the single

category classification experiments we used 16 patches on a grid with step 8 pixels

to generate SIFT descriptors. BOW histograms are constructed using 500 codewords

generated from K-means clustering. Finally, we used SPH (Spatial Pyramid His-

togram) up to the resolution level 4 to represent each image. In each experiment we

sample (at most) 100 images for each node of the working database and use these

for learning (i.e. to build the H matrix). For example, for the domestic Animal

sub-tree of ImageNet, we collected about 21, 000 images for training. We sample an

additional 10 images per node for testing. This way, testing images are guaranteed

to be different from those in the training set.

5.4.1 ImageNet Subsets

ImageNet [27] is a hierarchical image database with 10 million images and over

10, 000 categories. It organizes different classes of images according to the WordNet

[33] structure, and “IS-A” relationship exists between parents and children. In the

experiments, we used 3 different branches from the ImageNet: Home Appliances,

Domestic Animals, and Fruits. These subsets are chosen so as to observe the effect

of different dataset sizes (48, 21, 320 respectively) and structures (domestic animal is

a deeper tree than home-appliances) on the classification results.
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5.4.2 Hierarchical Caltech-256

The Caltech-256 is rearranged in a hierarchy according to best matches in the

WordNet. In this Hierarchical Caltech-256, all images are associated to a leaf node,

hence there are no images in the internal nodes.

5.4.3 Dataset coherence properties

In this subsection, we analyze the coherence properties of different subsets of the

datasets. We do not necessarily use all instances of every category but instead we

pick two instances uniformly at random to obtain a statistical perspective on the

coherence values of the derived H matrices.

Experimental results show that if we use all object instances, the matrix H is

quite coherent and that the value of μ(H) is close to 1. A straightforward application

of the previous theoretical results would suggest that neither the greedy algorithm

nor the convex relaxation is appropriate for identifying a single instance of an object

category. Notice that the case of multiple categories would be even more problematic.

These theoretical results are, however, too pessimistic and do not explain all of our

empirical observations3. We note that if we choose two objects independently and

uniformly at random from the learned database, the coherence between these two

objects decreases as a function of their distance in the hierarchical tree.

Figure 5.4 shows the relationship between the coherence of two objects (on average

for objects chosen uniformly at random) and their distance (path length) in the

hierarchical tree for the ImageNet dataset. This analysis suggests that the coherence

measure is too fine a measure with which to evaluate our learned database; instances

of the same object category are too similar while instances of different categories are,

with high probability, dissimilar. Instead of tweaking the parameters of the “flat”

3In our experimental results, we can see that a sparse representation that does not take into
account any structure amongst the instances is surprisingly successful, albeit far from the best
solution.
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sparse approximation in hopes of a small improvement, we should search for a sparse

approximation that takes into account the hierarchical structure amongst the objects

(and their categories).
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Figure 5.4: (left) Mean coherence for objects chosen uniformly at random as a function
of their distance in the tree; (right) Distribution of coherence values for objects with
distance 6 in the tree.

In practice, our data are not randomly generated. To test whether or not our data

are consistent with our theoretical analysis, we show in Figure 5.5 a QQ-plot, which

shows a simlilarity between two probablity distributions, for both a normal distribu-

tion and the entries of the matrices H (left) and Φ (right), respectively. Specifically,

if samples are concentrated at diagonal lines, two distributions are similar. Thus, the

plots show that the Φ distribution is closer to a normal distribution than H is but

somewhat more skewed to negative values as compared to a normal distribution.

5.4.4 Benchmarks

The sparse approximation technique introduced by [126] (SRC) is used. We use

Problem 1 (Section 5.2) to find the solution m via sparse approximation (similarly

to [126]). We use the post-processing procedure in [126] to estimate the final class

label. Notice that this method does not exploit the hierarchical structure of the
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Figure 5.5: The QQ-plot can be used to verify that the matrix Φ obtained from
embedding the Caltech-256 dataset is consistent with our theoretical observation that
Φ is well-approximated by an iid random Gaussian matrix. The plot on the left is
the QQ-plot for the original matrix H; the plot on the right is the QQ-plot for the
matrix Φ. Observe that Φ is more consistent with a Gaussian random matrix than
H is, although somewhat skewed compared to the normal.

database and “sees” the database as flat. Notice that SRC returns a single class

label (not a path in the tree) which can be used to form the mixing vector mSRC.

In order to compare SRC results with ours, we embed m into its corresponding path

�SRC = EmSRC. Notice that classifying � correctly is as challenging as classifying m

correctly since we don’t know in advance the depth of the ground truth path.

5.4.5 Hierarchical Similarity Verification

In this section, we show classification results in terms of HD (which is a natural

distance function to compare the similarity of two paths in a tree). Thus, if the

ground truth path and the estimated path are similar, the HD will be small. In

Figure 5.6 we show average HD between ground truth paths and estimated path for

all our testing images using our approach (SPS). In the same figure we also report the

HD distance between ground truth path and path estimated by SRC (i.e., �SRC). Note

that the HD associated to our approach is systematically smaller for all the datasets.

This result supports our argument that the proposed framework yields smaller HD

bounds. Also, notice that when the hierarchical structure is relatively flat, the effect
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Figure 5.6: Average Hamming Distance (HD) for different subcategories is drawn.

of encoding (and thus the advantage from our framework) becomes less significant.

5.4.6 Effect on Different Hierarchy Levels

HD returns a global measurement of path similarity regardless of the level and

position in the tree. In this experiment we explore the performance of our framework

at different levels of the tree. Figure 5.7 plots the accuracy versus the levels of the

hierarchy for different datasets (see caption for details). Notice that the root node

is always classified correctly. As we go down toward the bottom of the tree, the

likelihood of classifying nodes correctly becomes smaller and smaller. Also, note that

this graph is always monotonically decreasing because whenever the estimation of

the child category is correct, parent category estimation is correct too. When the

hierarchical level is low, the performance of our SPS is similar to SRC. Interestingly,

the plot shows that two algorithms yield equivalent performances in classifying images

belonging to the leaf nodes. However, when the hierarchical level increases the gap

between our SPS and SRC become much larger. This demonstrates the ability of

our method to yield higher rates in classifying ancestors of the query object category.

Anecdotal examples of paths returned by our SPS algorithm compared with those

returned by SRC are shown in Figure 5.8. Note that estimated parent nodes returned

by SRC are much less accurate than those returned by SPS. Paths are reported in

text format.
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Figure 5.7: Average accuracy of classification for different hierarchical levels. We
tested on five different categories, Caltech-256, Fruits, Domestic animals, Home ap-
plications and Domestic animals (leaves only). Average accuracy captures the average
number of correctly estimated nodes (categories) for each level (x-axis) for all testing
images. A node j is estimated correctly if the ground truth path evaluated at j is
equal to the estimated path at j for a given test image. Consider the example in
Figure 5.3 (b). In this case, the accuracy is calculated over 3 levels. Suppose the
ground truth query image is 13 and the ground truth m is associated to class labels
A,B,D. If the estimated m returns class labels A,B,E, the accuracy for three levels
is 1, 1, 0. If the estimated m returns the class labels A,C, the accuracy for three levels
is 1, 0, 0. If the estimated m just returns the class labels A, the accuracy for three
levels is still 1, 0, 0.

5.4.7 Multiple Category Classification

We report anecdotal examples demonstrating that our framework is able to classify

images containing multiple categories. In such examples the histogram representing

the query image can be expressed as a superimposition of multiple object category

histograms. So, as discussed in the technical section, our SPS method will return mul-

tiple paths – a path for each of category in the query image. Examples in Figure 5.9

show some successful cases. Paths are reported in text format. The numerical results

showing how accurately the algorithm is capable of retrieving multiple categories are

shown in the Figure 5.10.

5.5 Conclusion

In this work, we introduced a novel framework for hierarchical classification us-

ing a new formulation of the sparse approximation problem. We demonstrated, for
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the first time (up to our knowledge), that the hierarchical structure of a large and

complex database can be indeed successfully used to enhance classification accuracy.

Experimental results on several large scale dataset were used to support our claims.
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Figure 5.8: The hierarchical path is estimated as non-zero entries in the encoded
mixing vector l. Note that the path estimated by SPS (ours) is closer to ground truth
path than SRC is. Each response (non zero entry) corresponds to a classified category
label for different levels of hierarchy. All these responses define the path l (=mixing
matrix). For instance, look at the top left example. Ground truth path is domestic
animal, domesticated animal > dog, domestic dog, Canis familiaris > working dog
> watchdog, guard dog > pinscher > affenpinscher, monkey pinscher, monkey dog.
Each category label, e.g., working dog corresponds to a non-zero entry in the mixing
matrix l. working dog is a category within the third level of the hierarchy. Notice
that the SPS (our algorithm) returns the correct path (each category for each level is
correctly estimated). Conversely, SRC estimates the first two levels correctly, but it
returns the wrong estimation starting from the third level.
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Figure 5.9: Multi objects recognition examples. Each test image contains two object
categories. A level-zero pyramid histogram of codewords is used to represent the
image in this case. Our SPS algorithm returns a mixing matrix where two paths can
be identified. Each path is associated to a different object category. In top example,
the estimated path associated to apple (i.e., fruit > edible fruit > apple) is indicated
in red; the estimated path associated to gooseberry (i.e. fruit > edible fruit > berry
> currant > gooseberry) is indicated in green.
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(a) Retrieval/Classification performance for Hierarchical Caltech-256
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Figure 5.10: Numerical results showing how accurately the algorithm is capable to
retrieve multiple images at the same time (in this case we assume query images are also
contained in the database; we point out that in all the other classification experiments
presented in this work, test images are not contained in the database). Here x is a
superposition of (up to) 10 histograms, and the goal is retrieve the ground truth paths
given x. In this experiment, in order to simulate the effect of background clutter and
intra-class variability, we added Gaussian noise on top of query image so as to have
SNRdB from 3 to 10. As expected retrieval performances decrease as the number of
categories increases, or the noise ratio increases. This analysis is interesting as it can
be related with our theoretical findings.
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CHAPTER VI

Conclusion

In this thesis, we have proposed a number of models for understanding images by

recognizing different components of the image (things, stuff, and geometry) in a joint

fashion. Unlike current approaches that recognize each of these components indepen-

dently, the proposed models incorporate relationships between components as well as

their individual properties. This allows us to achieve state-of-the-art performances in

many challenging computer vision problems. Here we summarize the contributions

and discuss future work.

First, in Chap. II, we proposed a framework that recognizes things and stuff in

a joint fashion. Various types of co-occurence between things and stuff have been

utilized for scene understanding, and we have shown experimental results that support

our model. Second, in Chap. III, we have proposed the model for understanding a 3D

scene from a RGB-D image. With the proposed voxel-based CRF (V-CRF) model,

we estimate not only the semantic labels of a 3D space, but also the occupancy of

the 3D space. By having 3D priors for planar surface region, we recover geometric

and semantic properties of occluded regions. Experimental results show that V-CRF

model successfully understand a 3D scene, and the model has the potential to be

used for 3D applications such as augmented reality. Third, a method for accurate 3D

object localization using a RGB-D image is introduced in Chap. IV. By training the
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discriminative model with 2D/3D features extracted from multiple foreground object

masks, it was able to accurately localize the object in 3D space; furthermore, the

2D object localization performance has been improved. Finally, in Chap. V, we have

proposed the model for image classification from a hierarchically organized dataset.

The model finds sparse paths in a hierarchical structure that corresponds to a query

image by matching features from candidate paths with features from a testing image.

Compared to an image classification method based on images without structures, it

achieves significant improvement in classification accuracy. In addition, the model

was able to identify more than two objects in a single image.

A number of possible future works is considered. First, we plan to incorporate

accurate 3D priors such as 3D CADmodels for scene understanding. This will allow us

to recover details when a subset of objects is occluded or depth data is contaminated.

Second, we plan to use more flexible representation such as meshes or octrees on top

of voxels for scene understanding in a finer resolution. Third, we are interested in

real-time 3D scene understanding where one must manage a difficult balance between

complexity and computational cost.
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