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Abstract

The objective of optical scatterometry is to determine the geometrical parameters of

a periodic structure, such as a surface-relief grating, from its ellipsometric spectrum.

There is particular interest in applying this technique to semiconductor metrology,

where it can be used for wafer-to-wafer process monitoring and control of lithographic

and etching processes.

In this thesis, immersion scatterometry is investigated to improve feature resolution

for nanoscale surface-relief gratings. Improved resolution may come in the form of

reduced uncertainty in estimated parameters, or reconstruction of previously unre-

solved features. The rationale behind immersion scatterometry is that increasing the

ambient refractive index reduces the effective wavelength, which means that scattered

modes that are evanescent in atmosphere may be propagating modes in the immersion

case. Additional propagating reflected modes create the potential for more features in

the specular-mode ellipsometric spectrum, which can convey additional information

about the sample under investigation.

Initial experimental results for immersion ellipsometry and topography extrac-

tion of gratings are reported. Potential sources of systematic error in immersion

ellipsometry are investigated. The effects of these error sources are quantified, and

mitigation strategies are evaluated. These strategies should also aid in reducing errors

in other applications of immersion ellipsometry, including electrochemistry, biology,

and medicine.
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Chapter 1

Introduction

The problem of grating topography extraction by spectroscopic ellipsometry, or scat-

terometry, is to determine the geometrical parameters (linewidth, profile, etc.) of

a periodic structure from its ellipsometric spectrum. There is particular interest

in applying this technique to semiconductor metrology, where it can be used for

wafer-to-wafer process monitoring and control of lithographic and etching processes.

The semiconductor industry is faced with an ongoing challenge to keep pace with

Moore’s law by scaling to ever shrinking feature sizes. This presents challenges to both

fabrication and metrology. On the fabrication side, immersion lithography has been

utilized to reduce the effective wavelength, and multiple patterning has been utilized

to exceed classical resolution limits. On the metrology side, optical microscopy was

used until critical dimensions and feature sizes shrank below the Rayleigh resolution

limit,

R = k1
λ

NA
,

where k1 is a constant characterizing the imaging system (k1 = 0.61 for ideal imag-

ing systems with circular pupils and on-axis illumination), λ is the wavelength of

the imaging light, and NA = n sinα is the numerical aperture, which measures the

light-collecting capability of the imaging system.

Once optical microscopy no longer had the capability to resolve the necessary

critical dimensions and feature sizes, scanning electron microscopy (SEM) took over

as the dominant metrology technique. SEM probes a sample with a focused beam
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of electrons and detects one or more signals generated by the interaction of those

electrons with the sample. Signals generated by this interaction include secondary

electrons (SE), backscattered electrons (BSE), characteristic X-rays, light generated by

cathodoluminescence (CL), specimen current, and transmitted electrons. By scanning

the probe beam over the sample, an image of the sample’s surface topography and/or

material composition can be formed. SEM can be used to image cross sections of

samples (cross-sectional SEM), or to estimate critical dimensions or feature sizes

from top-down or tilted column images (critical dimension SEM, or CD-SEM). Cross-

sectional SEM produces images that most closely resemble the ground truth, but the

sample must be cleaved to expose the feature to be imaged, making it an inherently

destructive measurement. CD-SEM does not require destructive sectioning of the

sample, but faces other measurement challenges such as charging (the build-up of

electrons on the sample, creating a time-dependent inhomogeneous electric field affect-

ing the measurement) [1] and photoresist shrinkage (the observation that photoresist

linewidths shrink after electron beam exposure) [2].

Scatterometry can estimate the topography of periodic microfabricated structures

with precision well exceeding classical resolution limits. The procedure for grating

topography extraction by scatterometry consists of two basic steps:

1. Collect experimental optical scattering data. This data may be ellipsometric
or reflectometric and it may be spectroscopic or angle-resolved. In the work
done for this thesis, we used specular-mode spectroscopic ellipsometry to acquire
optical scattering data.

2. Determine the geometry of grating that produces the scattering response that
best fits the experimental data. A parametrized model of the grating topogra-
phy is constructed for forward-scattering simulations. The forward-scattering
simulation may be used to pre-compute a library of scattering responses, or the
simulation may be driven by a data-fitting algorithm to search for the parameters
that best match the experimental data. In the work done for this thesis, we
used Levenberg-Marquardt regression to drive a rigorous coupled-wave analysis
(RCWA) grating diffraction simulation.

Scatterometry is an attractive metrology technique for semiconductor production
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because it offers feature shape resolution comparable to CD-SEM or atomic force

microscopy with high throughput, high repeatability, and less risk of damage to the

sample [3]. Huang and Terry [4] note several reasons why the scatterometry mea-

surement is able to extract feature shape information with resolution well beyond

the Rayleigh limit. First, we have a lot of prior information about the structure,

namely that it is periodic (and the period is known or can be determined with high

accuracy), and optical constants of the structure are also well known. This is a much

more constrained problem than image formation for an arbitrary scene. Second, we

have information collected across a wide spectral range. Third, the measurement

is sensitive to evanescent modes in the grating region which are not accessible to a

conventional optical imaging system.

1.1 Problem statement

In this thesis, immersion scatterometry is investigated to improve feature resolution.

Improved resolution may come in the form of reduced uncertainty in estimated pa-

rameters, or reconstruction of previously unresolved features. The rationale behind

immersion scatterometry is that increasing ambient refractive index n results in a

shorter effective wavelength

λ =
λ0
n
,

which enables more propagating backscattered modes, which are mode numbers m

and scattering angles θm that satisfy the grating equation

Λ(sin θm + sin θi) =
mλ0
n

.

The existence of more propagating backscattered modes creates the potential for more

features in the specular-mode ellipsometric spectrum, but enabling additional propa-
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gating modes from the grating equation is not a necessary condition for generating

additional features in the ellipsometric spectrum. Changing the coupling of energy

into existing propagating modes (by changing the geometry of the grating lines or

the optical properties of the grating material, for example) can also generate new

features. This, in turn, creates the potential to resolve geometrical features of the

sample that could not be resolved without immersion, or to reduce the uncertainty in

the estimated geometrical parameters. However, systematic errors may be present in

the immersion measurement that are not present when the measurement is performed

normally in atmosphere. Thus a significant component of this thesis is identifying

and characterizing potential sources of systematic error in the immersion case. In

this thesis, we identify three potential sources of systematic error in the immersion case:

1. Error in the angle of incidence on the sample in the immersion case,
2. Deviation of the refractive index of the immersion medium from published data

and models, and
3. Stress-induced birefringence in the windows that admit the probe beam and

transmit the scattered beam.

For each error source, we develop experiments to characterize this quantity and control

it to the extent possible with our current experimental setup.

1.2 Research accomplishments

The following original research accomplishments were achieved while performing the

work reported in this thesis:

� The first experimental demonstration of grating topography extraction by liquid-
immersion spectroscopic ellipsometry [5].

� The development of a novel dual-ambient strategy for grating topography ex-
traction using ellipsometric data collected in air and in liquid immersion [5].

� The development and characterization of a repeatable sample alignment proce-
dure to reduce systematic error due to small deviations in angle of incidence.

� The development of a procedure to estimate the refractive index of the liquid
ambient and reduce associated systematic error.

� The development of a procedure to estimate the stress-induced birefringence of

4



the sample cell windows in the immersion case and compensate for the associated
systematic error.

� The development of a procedure to mitigate systematic error in grating topogra-
phy extraction.

1.3 Outline of the thesis

In chapter 2 we review the background of grating topography extraction by scatterom-

etry. We review the scattering of electromagnetic waves, such as light, from planar

interfaces, thin films, binary gratings and surface relief gratings. Then we review the

technique of spectroscopic ellipsometry, which measures the polarization dependence

of the scattering of light from a sample. Finally we review strategies for grating

topography extraction from ellipsometric data.

In chapter 3 we present initial experimental results for immersion scatterometry.

We describe the modifications necessary to perform the immersion method, the samples

we used for our initial experiments, and the results of these experiments.

In chapter 4 we investigate three potential sources of systematic error in immersion

ellipsometry: error in the angle of incidence, error in the immersion refractive index,

and error introduced by stress-induced birefringence in the immersion cell windows.

We describe the samples that we use to characterize these errors, motivate the choice

of these samples using the results of computer simulations, and present experimental

results.

In chapter 5 we propose an improved measurement procedure for immersion scat-

terometry to try to mitigate the effects of the sources of systematic error considered

in chapter 4. We present experimental results and evaluate the performance of this

procedure.

Finally, in chapter 6 we summarize the results presented in this thesis and propose

avenues for future work.
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Chapter 2

Background: grating topography
extraction by scatterometry

Optical scattering from grating test structures has been used for some time to de-

termine the topography or critical dimension of micro- or nanofabricated devices.

Kleinknecht and Meier used measurements of the intensity of the first two diffracted

orders of HeNe laser light scattered from photolithographic masks or photoresist

gratings to determine the linewidth [6]. McNeil, Naqvi, and co-workers coined the

term scatterometry to describe the use of angle-resolved ellipsometric measurements

and rigorous coupled-wave simulations to determine the width and profile of subwave-

length gratings [7, 8]. Terry and co-workers [9] and Spanos and co-workers [10, 11]

independently proposed the use of specular spectroscopic ellipsometric measurements

instead of single-wavelength, angle-resolved measurements; the Spanos group coined

the name specular spectroscopic scatterometry for this technique.

In this chapter we review the basic theory of topography extraction by scatterome-

try. We begin by reviewing the theory of optical scattering from interfaces, thin films,

and surface-relief gratings. Then we review the principles of ellipsometry, which is

the experimental technique that we use to collect optical scattering data. Finally,

we review the data analysis techniques used to reconstruct grating topography from

ellipsometric data, namely Levenberg-Marquardt regression, and the models used to

represent the structures and materials under consideration.
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2.1 Optical scattering from interfaces and thin

films

2.1.1 Interfaces

The amount of light that is reflected or transmitted from a planar interface between

two media (figure 2.1) is given by the Fresnel coefficients, which are determined by

matching the components of the electric and magnetic fields that are parallel to the

interface. The Fresnel coefficients for reflection and transmission of p-polarized (TM)

and s-polarized (TE) light at an interface between a medium with complex refractive

index ñ1 = n1 − jκ1 and a medium with complex refractive index ñ2 = n2 − jκ2 at an

angle of incidence θ1 are given by [12, appendix C]

rp12 =
ñ2 cos θ1 − ñ1 cos θ2
ñ2 cos θ2 + ñ1 cos θ2

tp12 =
2ñ1 cos θ1

ñ2 cos θ1 + ñ1 cos θ2
(2.1)

rs12 =
ñ1 cos θ1 − ñ2 cos θ2
ñ1 cos θ1 + ñ2 cos θ2

ts12 =
2ñ1 cos θ1

ñ1 cos θ1 + ñ2 cos θ2
(2.2)

where the transmission angle θ2 is given by Snell’s law,

ñ1 sin θ1 = ñ2 sin θ2. (2.3)

2.1.2 Thin films

For simplicity, we consider a sample which is a thin film of refractive index ñ2 and

thickness d on a substrate of refractive index ñ3 and an incidence angle of θ1 in an

ambient refractive index ñ1 (figure 2.2). The total reflection from this film originates

from the reflection and transmission of light from the ambient-film interface and

the film-substrate interface. Then it can be shown [12, appendix C] that the total

7



Incident ray

H

E
θ1

rs12

ts12

θ2

ñ1
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(a) s-polarization (TE)
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H
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ñ1

ñ2

(b) p-polarization (TM)

Figure 2.1 Illustrating the Fresnel reflection and transmission coefficients from an inter-
face.

reflection coefficients of the film are

Rp =
rp12 + rp23 exp(−j2β)

1 + rp12r
p
23 exp(−j2β)

(2.4)

Rs =
rs12 + rs23 exp(−j2β)

1 + rs12r
s
23 exp(−j2β)

(2.5)

where

β =
2π

λ
dñ2 cos θ2. (2.6)

2.2 Rigorous coupled-wave analysis (RCWA) of

gratings

The grating equation

Λ(sin θm + sin θi) =
mλ0
n

. (2.7)

tells us in which directions light is diffracted (or scattered) from a grating, but it does

not tell us how much energy is coupled into each scattered mode. We need to know
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ñ2

ñ3

Figure 2.2 Geometry for analysis of reflection from a thin film.

more than the grating period Λ to study the energy properties of gratings—we need

the geometrical structure and optical properties as well. Then we can solve Maxwell’s

equations for the particular situation and determine the diffraction efficiency into each

scattered mode.

There are a variety of methods used to analyze electromagnetic diffraction from

gratings [13, 14, 15]. In the proposed work, we will use the method of rigorous coupled-

wave analysis (RCWA) described by Moharam, Gaylord, and co-workers [16, 17].

Moharam, Gaylord, and co-workers called their coupled-wave analysis “rigorous” be-

cause it provides a numerical solution to Maxwell’s equations without making any

theoretical approximations in its formulation. This distinguishes it from approximate

coupled-wave analyses, such as Kogelnik’s classic two-wave first-order coupled-wave

analysis of volume holographic gratings [18]. The formulation of RCWA presented in

[16] has convergence problems for TM polarization that were solved by a reformulation
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that was discovered independently by Lalanne and Morris [19] and by Granet and

Guizal [20]. The improved convergence of this reformulation was explained by Li [21].

2.2.1 Planar diffraction from binary gratings

In our experiments and simulations, the grating is in the planar diffraction configura-

tion, which means that both the incident and reflected wavevectors lie in the plane

formed by the normal vector to the grating and the grating vector (which points

in the direction of the periodicity of the grating). We begin by formulating RCWA

for binary gratings; later we will show how stacks of these gratings can be used to

approximate surface-relief gratings. We follow the notation of Moharam, Gaylord, and

co-workers [16] closely, albeit correcting the typographical errors and the convergence

problems for TM polarization. A binary rectangular-groove grating is shown in Figure

2.3. The grating occupies an infinite slab region separating two half-spaces. The

grating is illuminated by a monochromatic plane wave in half-space I propagating

with wavevector k. The light impinges upon the grating at an angle of incidence θ.

We align the z-axis with the normal to half-space I and the x-axis with the periodicity

of the grating.

The periodicity of the grating allows us to express the relative permittivity distri-

bution of the grating as a Fourier series

ε(x) =
∑
m

εm exp

(
j

2πmx

Λ

)
(2.8)

where εm is the mth Fourier component of the permittivity distribution and Λ is the

period of the grating. The relative permittivity distribution is related to the refractive

index distribution n(x) by the relation ε(x) = [n(x)]2. In particular the refractive

index of a binary grating consists of alternating regions with refractive indices nr
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Figure 2.3 Geometry of the binary grating diffraction problem in the planar diffraction
configuration.

(ridges) and ng (grooves), in which case the Fourier coefficients are explicitly given by

εm =


n2
rf + n2

g(1− f), m = 0(
n2
r − n2

g

) sin(πmf)

πm
, m 6= 0,

(2.9)

where f is the fraction of the period Λ occupied by the ridges.

For reasons that will become apparent later, we also need the Fourier series

expansion of the reciprocal relative permittivity distribution

ε̃(x) =
1

ε(x)
=
∑
m

ε̃m exp

(
j

2πmx

Λ

)
. (2.10)
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The Fourier coefficients are given by

ε̃m =


(

1
n2
r

)
f +

(
1
n2
g

)
(1− f), m = 0(

1
n2
r
− 1

n2
g

) sin(πmf)

πm
, m 6= 0.

(2.11)

The grating is illuminated by a plane wave at angle of incidence θ. In the TE case,

the plane wave is described by the electric field

Einc,y = exp[−jk0nI(sin θ x+ cos θ) z],

and in the TM case, the plane wave is described by the magnetic field

Hinc,y = exp[−jk0nI(sin θ x+ cos θ) z].

Incident and substrate regions

The periodicity of the grating allows the electric field in the incident and substrate

regions to be expanded in an angular spectrum of plane waves satisfying the Floquet

condition. In the TE case, we have

EI,y = Einc,y +
∑
i

Ri exp[−j(kxix− kI,ziz)],

EII,y =
∑
i

Ti exp{−j[kxix+ kII,zi(z − d)]},

and in the TM case, we have

HI,y = Hinc,y +
∑
i

Ri exp[−j(kxix− kI,ziz)],

HII,y =
∑
i

Ti exp{−j[kxix+ kII,zi(z − d)]},
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where Ri and Ti are the amplitude reflection and transmission, respectively, of the ith

diffracted order,

kxi = ko

[
nI sin θ − i

(
λ

Λ0

)]
,

and

k`,zi =


+k0

√
n2
` −

(
kxi
k0

)2
, k0n` > kxi,

−jk0
√(

kxi
k0

)2
− n2

` , kxi > k0n`

where ` ∈ {I, II}.

Grating region

The periodicity of the grating allows the electric and magnetic fields in the grating

region can expanded into space-harmonic fields to satisfy Floquet’s theorem (Bloch

theorem in one dimension). In the TE case, we have

Egy =
∑
i

Syi(z) exp(−jkxix),

Hgx = −j
√
ε0
µ0

∑
i

Uxi(z) exp(−jkxix),

and in the TM case, we have

Hgy =
∑
i

Uyi(z) exp(−jkxix),

Egx = j

√
µ0

ε0

∑
i

Sxi(z) exp(−jkxix),

where Si and Ui are the normalized amplitudes of the ith space-harmonic electric

and magnetic fields, respectively. The requirement that these fields satisfy Maxwell’s

equations results in a system of differential equations for the amplitudes of these
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harmonics. In the TE case we have

∂2Sy
∂(z′)2

= ASy, (2.12)

where

z′ = k0z,

A = K2
x − E,

Kx = a diagonal matrix with Kx,i,i = kxi/k0,

E = a matrix of permittivity harmonics Ei,p = ε(i−p).

In the TM case Moharam, Gaylord, and co-workers [16] have

∂2Uy

∂(z′)2
= EBUy, (2.13)

where B = KxE
−1Kx − I. This is a silent reformulation of the problem, because B

should actually be defined B = KxPKx − I, where P is a matrix of reciprocal permit-

tivity harmonics Pi,p = ε̃(i−p). This is a partial implementation of the refomulation

of the problem by Lalanne and Morris [19] and by Granet and Guizal [20] that was

subsequently explained by Li [21], which results in the matrix equation

∂2Uy

∂(z′)2
= P−1BUy, (2.14)

where

B = KxE
−1Kx − I. (2.15)

The explanation for the improved convergence of the new TM formulation is as

follows. In both the TE and TM formulations, we are trying to find a Fourier series or

pseudo-Fourier series expansion for a function h(x) = f(x)g(x) that is the product of
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two other functions, and we are trying to find the Fourier coefficients hn in terms of

the Fourier coefficients fn and gn. When f and g are piecewise-continuous, piecewise-

smooth, bounded periodic functions, the Fourier coefficients hn can be obtained from

fn and gn by Laurent’s rule

hn =
∞∑

m=−∞

fn−mgm =
∞∑

m=−∞

gn−mfm. (2.16)

Then h(x) has a Fourier factorization

h(x) =
∞∑

n=−∞

hn exp(jnx) =
∞∑

n=−∞

∞∑
m=−∞

fn−mgm exp(jnx).

The problem we are faced with here is whether Laurent’s rule applies when the series

are symmetrically truncated, that is, for a truncated Laurent’s rule

h(M)
n =

M∑
m=−M

fn−mgm, (2.17)

whether the truncated Laurent’s rule expansion

h(M)(x) =
M∑

m=−M

h(M)
n exp(jnx) (2.18)

converges to the truncated Fourier series expansion

hM(x) =
M∑

m=−M

hn exp(jnx). (2.19)

The truncated Laurent’s rule can be written as a matrix-vector product if we construct

a Toeplitz matrix JfK with elements JfKn,m = fn−m and a vector of Fourier coefficients

g, in which case we have

h = JfK g = JgKf . (2.20)
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In the TE formulation, we have the product εEgy, which is the product of a

discontinuous function ε and a continuous function Egy. This is what Li calls a type 1

product, that is, a product of two piecewise-smooth, bounded, periodic functions that

have no concurrent jump discontinuities. When h(x) = f(x)g(x) is a type 1 product,

it can be Fourier factorized by Laurent’s rule.

In the TM formulation, we have the products ε(x)Egx and 1
ε(x)

∂Hgy

∂x
, which are

both products of two piecewise-smooth, bounded, period functions that have only

pairwise-complementary jump discontinuities. These are what Li call type 2 products,

which cannot be Fourier factorized by Laurent’s rule, but can be Fourier factorized by

what Li calls the inverse rule:

h =

s
1

f

{−1
g. (2.21)

In words, wherever a Toeplitz matrix occurs in the product of Fourier coefficients, the

convergence is improved by replacing it with the matrix inverse of a Toeplitz matrix

of the reciprocal coefficients, i.e. JfK→
r

1
f

z−1
. In the context of the grating problem,

this means applying the substitutions P → E−1 and E → P−1. Moharam, Gaylord,

and co-workers [16] had partially implemented this when they replaced what should

have been B = KxPKx − I with B = KxE
−1Kx − I, and Lalanne and Morris [19] and

Granet and Guizal [20] completed this when they reformulated

∂2Uy

∂(z′)2
= EBUy

as

∂2Uy

∂(z′)2
= P−1BUy.
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Grating region modes

We can express the amplitudes of the space-harmonics in terms of the eigenvalues and

eigenvectors of the system of differential equations. These amplitudes are the modes

of the grating region (which is why RCWA is sometimes referred to as the “Fourier

modal method”), and the mode amplitudes are to be determined by the boundary

conditions. In the TE case and TM cases, we find the eigenvalues q2m and eigenvectors

wm of A and B, respectively. In both cases, we form the matrices

Q = a diagonal matrix with elements qm, which are the

positive square roots of the eigenvalues of A or B,

W = a matrix with elements wi,m, which is the ith element

of the eigenvector wm corresponding to eigenvalue qm,

V =


WQ (TE),

PWQ (TM).

The definition V = PWQ in the TM case replaces Moharam, Gaylord, and co-workers’

definition V = E−1WQ [16] to complete the convergence correction for the TM case.

Boundary counditions

We solve for the reflected and transmitted amplitudes in the incident and substrate

media, respectively, and also for the mode amplitudes in the grating region by enforcing

the electromagnetic boundary conditions at the interfaces separating these regions.

The electromagnetic boundary conditions result in a system of linear equations which

can be solved by standard numerical methods. In the TE case, we have at the incident
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boundary (z = 0)

 δi0

jnI cos θ δi0

+

 I

−jYI

R =

W WX

V −V X


c+
c−

 ,
and at the substrate boundary (z = d), we have

WX W

V X −V


c+
c−

 =

 I

−jYII

T ,
where

δi0 =


1 i = 0

0 i 6= 0

X = a diagonal matrix with Xi,i = exp(−k0qmd),

YI = a diagonal matrix with YI,i,i = (kI,zi/k0),

YII = a diagonal matrix with YII,i,i = (kII,zi/k0).

In the TM case, we have at the incident boundary

 δi0

j cos θ δi0/nI

+

 I

−jZI

R =

W WX

V −V X


c+
c−

 ,
and at the substrate boundary, we have

WX W

V X −V


c+
c−

 =

 I

jZII

T ,
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where

ZI = a diagonal matrix with ZI,i,i = (kI,zi/k0n
2
I),

ZII = a diagonal matrix with ZII,i,i = (kII,zi/k0n
2
II).

2.2.2 Planar diffraction from surface-relief gratings

Moharam, Gaylord and co-workers [17], among others, have extend the formulation of

RCWA for binary gratings to surface-relief gratings of essentially arbitrary topography.

This extension is achieved by discretizing the grating into a stack of binary gratings.

The geometry is illustrated in figure 2.4. The key to computational implementation

of this scheme is to choose an algorithm for boundary matching that is numerically

stable and efficient. Several algorithms have been reported, including the enhanced

transmittance matrix (T -matrix) approach [17], the scattering matrix (S-matrix) al-

gorithm [22], and the R-matrix algorithm [23]. In this work, we will use the enhanced

transmittance matrix approach.

The enhanced transmittance matrix approach is based on the standard transmit-

tance matrix approach, which matches the boundary conditions from the incident

medium to the substrate medium through the layers ` ∈ {1, 2, . . . , L}. In the TE case,

we have the equation

 δi0

jnI cos θ δi0

+

 I

−jYI

R =
L∏
`=1

W` W`X`

V` −V`X`


W`X` W`

V`X` −V`


−1  I

jYII

T ,
and in the TM case, we have the equation

 δi0

j cos θ δi0/nI

+

 I

−jZI

R =
L∏
`=1

W` W`X`

V` −V`X`


W`X` W`

V`X` −V`


−1  I

jZII

T ,
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Figure 2.4 Geometry for representing a surface-relief grating as a stack of 4 binary
gratings.

Direct solution of these equations, as written, is susceptible to numerical instability

because the eigenvalues q`,m that enter into the matrix X` tend to be complex-valued

with positive real parts. When the real part of q`,m is large and positive, the corre-

sponding element exp(−k0q`,md`) of the diagonal matrix X` will be very small. This

results in one or more columns of the matrix being inverted being virtually zero, which

may cause numerical failure or serious error in the matrix inversion routine.

The enhanced transmittance matrix approach stabilizes the numerical procedure by

factoring this numerically unstable matrix at each layer. Without loss of generality, we

will present the approach for the TM case. We motivate the approach by considering

the matrices for the last term in the matrix product, which correspond to solving the

boundary conditions for matrix ` = L. If we define fL+1 = I and gL+1 = jZII and
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factor the ill-conditioned matrix inverse, then we have

WL WLXL

VL −VLXL


WLXL WL

VLXL −VL


−1  fL+1

gL+1

T

=

WL WLXL

VL −VLXL


XL 0

0 I


−1 WL WL

VL −VL


−1  fL+1

gL+1

T (2.22)

We have factored the ill-conditioned matrix inverse into the product of two matrix

inverses, one of which is well-conditioned (the matrix containing blocks of W` and V`,

and one of which is still ill-conditioned when the elements of the diagonal matrix X`

are small. At this point, we introduce

aL
bL

 =

WL WL

VL −VL


−1  fL+1

gL+1

 ,
so we can write the matrix product for layer ` = L as

WL WLXL

VL −VLXL


XL 0

0 I


−1 aL

bL

T .
Now we stabilize the inversion of the diagonal matrix containing XL. Since this matrix

is diagonal, we can perform the inversion analytically and find that

XL 0

0 I


−1

=

X−1L 0

0 I


but there is still the problem of representing the diagonal elements of the inverse

matrix accurately with finite precision and the possibility of truncation errors. We

achieve this by introduction the substitution T = a−1L XLTL. Now we introduce fL and
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gL so we can write the matrix product for layer ` = L as

 fL
gL

TL =

WL WLXL

VL −VLXL


 I

bLa
−1
L XL

TL
Repeating this process for all layers, we can write the transmittance matrix equation

as  δi0

j cos θ δi0/nI

+

 I

−jZI

R =

 f1
g1

T1,

where

T =

(
L∏
`=1

a−1` X`

)
T1

We can now outline the implementation of the enhanced transmittance matrix

algorithm.

1. Set fL+1 = I.
2. Set

gL+1 =

{
−jYII TE,

JZII TM.

3. Starting from layer ` = L and working up to layer ` = 1:
(a) Calculate [

a`
b`

]
=

[
W` W`

V` −V`

]−1 [
f`+1

g`+1

]
.

(b) Calculate [
f`
g`

]
=

[
W` W`X`

V` −V`X`

] [
I

b`a
−1
` X`

]
4. Solve [

δi0
j cos θ δi0/nI

]
+

[
I

−jZI

]
R =

[
f1
g1

]
T1,

for the desired amplitudes R and/or T1. If the transmitted amplitudes are
desired, use T1 to calculate

T =

(
L∏
`=1

a−1` X`

)
T1.
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Figure 2.5 Schematic of a basic ellipsometer operating in the reflection mode. Light
from a source is collimated by optics L1, passes through a polarization state generator, and
reflects from the sample. The reflected light passes through a polarization state analyzer,
and is focused by optics L2 onto a detector.

2.3 Data collection: Ellipsometry

In this work, we will use ellipsometry to collect experimental optical scattering data.

Ellipsometry is a polarization-sensitive optical measurement technique. It uses the

differences in the optical response for different polarizations to deduce information

about an object. The basic operating principle of ellipsometry was developed by Drude

[24, 25], and the instrument that Drude developed was given the name “ellipsometer”

by Rothen [26]. Ellipsometry was originally applied to the measurement of interfaces

and thin films, but it has also been applied to gratings, rough surfaces, and other

structures. In this work, we use ellipsometry in the reflection mode, therefore we will

describe the technique in that context.

Figure 2.5 illustrates the basic configuration of an ellipsometer operating in the

reflection mode. Light is collimated and passes through a polarization state generator.

For simplicity, we will initially assume that the light is monochromatic; later, we will

consider the polychromatic case. It reflects from the sample and passes through a

polarization state analyzer. The transmitted light is focused onto a detector, which

measures the intensity.

In the reflection mode, ellipsometry determines the amplitude of the total reflection
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coefficients Rp of the p-polarization and Rs of the s-polarization from the observable

total power reflection coefficients Rp = |Rp|2 and Rs = |Rs|2. The total reflection

coefficients depend on the optical properties of the sample and ambient medium, and

the structure of the sample, particularly any structural features comparable to the

effective wavelength of the light impinging upon them.

We use complex numbers to represent the total reflection coefficients since an

object can affect the amplitude or phase of the electromagnetic waves that are reflected

from them. Then the ratio Rp/Rs is generally complex-valued, and can be represented

in complex-exponential form as

Rp

Rs

= xejy

where x and y are real numbers and j =
√
−1.

There are several alternative representations of the complex-valued ratio Rp/Rs

[27, sections 1.5 and 2.4.2]. One is the (Ψ,∆) format, defined by

(tanΨ)ej∆ =
Rp

Rs

(2.23)

The quantities Ψ and ∆ originate from the technique of null ellipsometry, which

is illustrated below. We follow the exposition of Tompkins [27, section 2.3]. The

polarizer consists of a rotatable linear polarizer followed by a quarter-wave plate

(abbreviated QWP and frequently referred to as the compensator) set at 45° with

respect to the plane of incidence. The analyzer consists of a rotatable linear polarizer.

The measurement principle is that the polarizer is rotated to an angle P such that the

polarizer and compensator generate an elliptical polarization state that the sample

converts into linearly polarized light. The analyzer is then rotated to an angle A such

that it extinguishes this linearly polarized light (the null). All angles are measured

positive counterclockwise from the plane of incidence when looking into the beam.

There are multiple combinations of the polarizer and analyzer angles in the transverse
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plane that will give the null, so we define several ellipsometric zones within which the

null angles are unique. For the configuration under consideration, it is typical to use

measurements in zones 2 and 4, defined as

Zone 2: −45° < P2 < 135° 0° < A2 < 90° QWP = 45°

Zone 4: −135° < P4 < 455° −90° < A4 < 0° QWP = 45°

Then the zone estimates for ∆ and Ψ are given by

∆2 = 270°− 2P2 ∆4 = 90°− 2P4

Ψ2 = A2 Ψ4 = −A4

If the compensator is ideal, either zone can be used individually to estimate ∆ and Ψ .

In the presence of compensator or other errors, averaging the two zone estimates can

cancel out errors due to inexact compensation.

In our work, we use a Sopra GESP-5 rotating-polarizer ellipsometer. For rotating-

element ellipsometers, it is convenient to represent ellipsometric quantities in (α, β)

format, which is related to (Ψ,∆) format by the relations

α = − cos(2Ψ) β = sin(2Ψ) cos∆.

For a rotating-polarizer ellipsometer, the quantities α and β are the Fourier coefficients

of the intensity signal

I(t) = I0{1 + α cos[2P ′(t)] + β sin[2P ′(t)]}

where P ′(t) = 2πft + Pc describes the angle from the sample p direction to the
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polarizer transmission axis, measured in a counterclockwise positive direction looking

toward the source, as a function of time [28]. We can calculate tanΨ and cos∆ from

these Fourier coefficients using the formulae

tanΨ =

∣∣∣∣∣
√

1 + α

1− α

∣∣∣∣∣ |tanA′|

cos∆ = β

∣∣∣∣∣
√

1

1− α2

∣∣∣∣∣ ,
where A′ is angle from the sample p direction to the analyzer transmission axis,

measured in a counterclockwise positive direction looking toward the source.

2.3.1 Spectroscopic ellipsometry

As mentioned in the previous section, the total reflection coefficients Rp and Rs

may depend both on the optical properties of the sample and ambient medium and

any structural features of the sample that are sensitive to the effective wavelength.

These, in turn, generally depend on the frequency of the incident radiation, which

suggests that by probing the sample with additional information may reveal additional

information about the sample structure and the optical properties of the sample or

ambient medium (or both). This is the premise of spectroscopic ellipsometry [12].

Most spectroscopic ellipsometers use an arc lamp as the light source in order to

provide significant energy over a broad range of frequencies. The spectrum of the

reflected light is measured either by using a scanning monochrometer to select narrow

frequency bands to excite a single photodetector, or be using a fixed dispersive element

(for example, a diffraction grating or a prism) to disperse the light onto an array of

photodetectors.
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2.3.2 Immersion ellipsometry

Ellipsometry may be performed on a sample in an ambient environment other than

atmosphere by enclosing the sample in a cell with windows that allow the polarizer and

analyzer beam to pass through them. McCrackin and co-workers [29] noted the use of

sample cells to enable ellipsometer measurements in vacuum and gaseous environments

and under liquids, and described the cell which they used for measurements under

liquids. This describes the usual case for immersion ellipsometry where the ambient

environment is an unavoidable consequence of the sample or process being measured,

as often arises in biology or electrochemistry. Deliberate immersion in index-matching

fluids in order to optically remove thin films was proposed by Moy [30] and has been

used widely by Irene and co-workers [31, 32].

2.4 Data analysis

2.4.1 Data fitting: Levenberg-Marquardt regression

Two approaches have been described for determining the grating parameters that best

match the measured data. The earliest approaches to scatterometry [11] generated a

database of scattering signatures for various choices for each of the grating parame-

ters. The most prominent drawback to this approach is that the database has to be

pre-computed, which can be time-consuming, and that changing the model requires

re-computing the entire database.

The other approach is to use an optimization routine such as a genetic algorithm

or the Levenberg-Marquardt algorithm [33, 34] to search for the parameters that best

match the experimental data. One apparent advantage of optimization methods is

that they do not require a pre-computed database, and therefore can immediately be

applied to different models for the grating topography. The disadvantages include
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possible slow convergence or convergence that is sensitive to starting conditions. In

this work, we will use Levenberg-Marquardt nonlinear regression.

We follow the exposition of the Levenberg-Marquardt regression in Press et al.[35,

chapter 15]. In Levenberg-Marquardt regression, we attempt to minimize the goodness

of fit χ2 for the experimental data yi with respect to a model y(x | p) that depends

on regression parameters p =

[
p1 p2 . . . pM

]T
:

χ2(p) =
∑
i

{
[yi − y(xi | p)]2

σ2
i

}
.

The minimum of the goodness of fit as a function of the model parameters p occurs

when

∇χ2(p) = 0.

Levenberg-Marquardt is a hybrid regression method that combines gradient-search

regression and a quasi-Newton method. For any arbitrary choice of the regression

parameters p0, the gradient ∇pχ
2(p0) points in the direction of most rapid increase in

χ2, therefore −∇pχ
2(p0) points in the direction of most rapid decrease. Thus we could

iteratively improve an initial guess p0 for the regression parameters p by adding a

multiple of the local downhill gradient −∇pχ
2(p0). This is the basis of gradient-search

regression. The difficulty with gradient-search regression is choosing the multiple of

the local downhill gradient, and the downhill gradient does not generally point directly

from the current guess for the regression parameters to the minimum. Gradient-search

tends to converge quickly when the current guess is far from the minimum, and slowly

near the minimum.

Suppose we approximated χ2 by a quadratic form

χ2(p0) ≈ γ − bT · p0 +
1

2
pT0 Ap0
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where b = ∇pχ
2(p0) and A is the Hessian matrix for χ2 with elements

Akl =
∂2χ2(p0)

∂pk∂pl
.

If this approximation is good, we can jump immediately from the current guess p0 to

the minimizing parameters

pmin = p0 + A−1[−∇χ2(p0)].

Quasi-Newton methods are based on applying this principle using approximations to

the Hessian. The iterates for p tend to converge quickly when the current estimate is

near the minimum and the χ2 function is well-approximated by a quadratic form, and

slowly far from the minimum.

Levenberg-Marquardt switches between gradient-search when the magnitude of the

gradient of χ2 is large (far from the minimum) and a quasi-Newton approach when

the gradient is small (near the minimum). The gradient of χ2 has components

∂χ2

∂pk
= −2

∑
i

yi − y(xi | p)

σ2
i

∂y(xi | p)

∂pk
.

The second derivatives of χ2 are

∂2χ2

∂pk∂pl
= 2

∑
i

1

σ2
i

[
∂y(xi | p)

∂pk

∂y(xi | p)

∂pl
− [yi − y(xi | p)]

∂2y(xi | p)

∂pk∂pl

]
.

It is conventional to eliminate the factors of 2 by defining

βk = −1

2

∂χ2

∂pk
, αkl =

1

2

∂2χ2

∂pk∂pl
,

where β = −1
2
∇χ2(p) and � = 1

2
A is called the curvature matrix.
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With these definitions, the quasi-Newton update formula can be written as

� δp = β,

At this point, we note that the exact second derivatives of χ2 depend on both the

first and second derivatives of the model y(x | p). It is conventional to neglect the

second derivatives of the model ∂2y(x | p)/∂pk∂pl because they tend to be small, and

they can destabilize the algorithm if the model fits badly or the data contain outliers.

Then the elements of the curvature matrix are

αkl =
∑
i

1

σ2
i

[
∂y(xi | p)

∂pk

∂y(xi | p)

∂pl

]
.

The gradient-search update formula can be written in the form

δpk = ckβk,

where ck is a scaling constant for the kth component of the gradient. Levenberg-

Marquardt scales each component using the diagonal elements of the curvature matrix

αkk and an adjustable scaling constant λ:

δpk =
1

λαkk
βk.

The Levenberg-Marquardt method combines these two formulas by defining a new

matrix

�′ = �+ λI.

and using the update formula

�′ δp = β.

When λ is large, �′ is diagonally dominant, and the method takes a step that is
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primarily determined by gradient search. When λ is small, �′ is approximately equal

to the curvature matrix, and the method takes a quasi-Newton step.

We can now outline the Levenberg-Marquardt algorithm in its entirety. Given an

initial estimate for the regression parameters p:

1. Compute χ2(p).
2. Pick an initial value for λ, e.g. λ = 0.001.
3. While the stopping criterion is not met, perform the following steps repeatedly:

(a) Solve �′ δp = β for δp and evaluate χ2(p+ δp).
(b) If χ2(p+ δp) ≥ χ2(p),

� increase λ (e.g. by setting λ← 10λ),
otherwise,
� decrease λ (e.g. by setting λ← λ/10), and
� update the estimate by setting p← p+ δp.

There are many reasonable choices for stopping criterion. Convergence to machine pre-

cision is overkill, since we are at best obtaining a statistical estimate of the regression

parameters p, so small changes in χ2 are not statistically meaningful. Furthermore,

the algorithm should be permitted to continue while χ2 increases more than trivially,

because it means that the current value of λ is suboptimal. A typical criterion is to

stop when either the absolute or relative decrease in χ2 is less than 0.001.

Once the algorithm has stopped, we can estimate the standard errors of the fitted

parameters p by setting λ = 0 and computing the covariance matrix

C = �−1.

Then standard error for the parameter pk is given by

σk =
√
Ckk.
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Figure 2.6 Illustrating the trapezoidal parameterization of grating profiles.

2.4.2 Grating profile parameterization

To keep the number of regression parameters managable, we parameterize grating

profiles as a stack of trapezoids, with the line boundary x as a function of depth z of

the ith trapezoid being described by

x(z) =

[
mi0 +mi1

(
z

hi

)]
Λ,

where mi0 is the normalized width, mi1 is the normalized sidewall slope, and hi is

the normalized height of the ith trapezoid. This geometry is illustrated in figure 2.6.

The stack of trapezoids can then be sliced into a stack of binary gratings for RCWA

simulation.
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Chapter 3

Immersion scatterometry:
preliminary results

This chapter describes our work demostrating the viability of liquid-immersion scat-

terometry [5]. There is some precedent for the idea of using liquid-immersion in optical

measurement in gratings. Lu et al.[36] reported immersion diffractometry, which

used a Littrow configuration to measure the pitch of diffraction gratings. A patent

application by ASML [37] also suggests the possibility of performing the measurements

under liquid immersion. This thesis is an experimental follow-up to a proposal and

simulation study by Terry and Bendik to perform scatterometry in immersion to

improve feature resolution [38].

To demonstrate and assess the viability of these methods, we use water as the

immersion medium. Water is an attractive choice for the immersion medium because

it is already used in many microelectronic fabrication and measurement processes,

and in particular has been used as an immersion medium to improve the performance

of optical lithography [39].
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3.1 Materials and methods

3.1.1 Samples

Silicon wafers with a uniform SiO2 film were used for reference measurements. Two

sets of photoresist (PR) gratings were used for scatterometry measurements. The first,

fabricated by Sony, was a 700-nm period (nominally 350-nm linewidth) photoresist

grating on a 31.7-nm thick SiO2 film on a silicon substrate that has been extensively

characterized in prior work [4]. The other grating sample, supplied by Clariant AZ,

Inc., was a 160-nm period (nominally 80-nm linewidth) photoresist grating on a

bottom antireflective coating (BARC) layer.

3.1.2 Ellipsometer

All ellipsometry measurements were made using a SOPRA GESP-5 rotating polarizer

ellipsometer with an ultraviolet-optimized prism/grating scanning monochrometer.

The measurements were made in tracking-analyzer mode and the data reported in

(α, β)-format. Data points were acquired every 5 nm over the 225 nm to 820 nm

wavelength range.

3.1.3 Cell

Immersion measurements were performed using a cell designed for 75◦ angle of inci-

dence. The cell was machined from aluminum with 3 mm thick fused-silica windows

mounted so that the incident and specularly-reflected beams entered and exited

nominally at normal incidence. The windows were cemented in place with silicone

rubber.

Measurements were taken for a variety of uniform thin-film and grating structures

and in the immersion cell without fluid to verify that the windows have no significant
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effect on the collected data. The angle of incidence for all measurements taken in the

cell was determined to be 75.06◦ by taking measurements on a bare silicon wafer over

the 500 nm to 820 nm wavelength range and fitting to the native oxide thickness and

the angle of incidence. All immersion measurements in this cell were performed with

the fluid stagnant, and no active temperature or ambient gas controls were used.

3.1.4 Optical properties of water

We measured the refractive index of the water by measuring a thick (∼ 2 µm) SiO2

film on a silicon wafer both dry and wet. We simultaneously fit the thickness of the

oxide and the refractive index of the water. The refractive index was modeled using

the 4-parameter dispersion formula of Tilton and Taylor [40]:

n2
t (λ) = a2t − ktλ2 +

mt

λ2 − l2t
(3.1)

where the refractive index n and the four parameters a, k, l, and m have all been

labeled with the subscript t to indicate that these quantities vary with temperature.

We also investigated allowing all 4 of the Tilton–Taylor parameters to freely vary

during regression.

To account for possible effects of atmospheric gas absorption, we used a Brugge-

mann effective-medium approximation (BEMA) [41, 42] mixture of Tilton–Taylor

water at 23◦C and voids. The BEMA uses the model of a spherical inclusions of

dielectric function εa and radius ra embedded in a medium of dielectric function εb.

In the Bruggeman effective medium approximation, neither phase a nor b are given

preference, but are considered as being embedded in the effective medium itself. This

is equivalent to choosing εh = ε in the general effective medium expression [42],

ε− εh
ε+ 2εh

= fa
εa − εh
εa + 2εh

+ fb
εb − εh
εb + 2εh

, (3.2)
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where ε and εh are the dielectric functions of the effective medium and the host

medium, respectively, and fa and fb are the volume fractions occupied by the phases

a and b, respectively. The result is the Bruggeman effective-medium expression (also

known as the Bruggeman effective-medium approximation)

0 = fa
εa − ε
εa + 2ε

+ fb
εb − ε
εb + 2ε

. (3.3)

The result of one of the refractive-index fits for an SiO2 film on a silicon wafer

is shown in figure 3.1. The unbiased estimator of error σ for all these fits was less

than 0.03. All three parameterizations yielded nearly identical results for our water.

In particular, the BEMA fit with 0.46% voids perfectly overlays the Tilton–Taylor

37.4◦C fit. Since it was not physically possible for our laboratory and the immersion

cell to be this hot, we rule out temperature variation as the major cause of our water

index variations. For the immersion fits for gratings, we used the BEMA model for all

results presented in this chapter.

We also investigated varying all four Tilton–Taylor parameters in the grating cases,

but this led to model over-parameterization and possibly nonphysical results for the

water index. The void fractions extracted in our fits were below those suggested by

O2 and N2 solubilities in H2O [43]. Changes in the water refractive index due to

contamination cannot be ruled out, but this seems unlikely based on the results of

studies of aqueous ion solutions [44]. Further, we see apparent reductions in the water

refractive index, whereas ionic contamination would tend to raise it. For example, the

refractive index of seawater can be described by the empirical dispersion formula of

Quan and Fry [45],

n(S, T, λ) = n0 + (n1 + n2T + n3T
2)S + n4T

2 +
n5 + n6S + n7T

λ
+
n8

λ2
+
n9

λ3
, (3.4)

where S is the salinity in parts per thousand (per mil, or h), T is the temperature in
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grating structures both on the standard sample stage and in 

immersion cell without fluid to verify that the windows 

had no significant effect on the collected data. The angle of 

incidence (AOI) for all measurements was 75.06°. The de-

viation from the nominal 75° setting was determined by 

measurements over the λ = 500–820 nm range on a bare Si 

wafer (fitting the native oxide thickness and AOI). 

 Uniform SiO
2
 on Si samples were used as reference 

measurements. Two sets of photoresist (PR) grating sam-

ples were used for scatterometry. The first was a 700 nm 

period (nominally 350 nm line/space) PR grating on 

31.7 nm SiO
2
 on Si sample we had previously extensively 

characterized [4]. The other was a 160 nm period (nomi-

nally 80 nm line/space) grating on a bottom antireflective 

coating (BARC) layer supplied by Clariant AZ, Inc. We 

had previously measured the optical constants of the 

700 nm resist on a similarly prepared uniform PR sample. 

The optical constants of the AZ resist and BARC layer 

were obtained by AZ from spectroscopic ellipsometry 

measurements. All grating measurements were done in the 

planar alignment configuration. 

 Immersion measurements were performed using high 

purity deionized water. The measurements were performed 

with the water stagnant, and no active temperature or am-

bient gas controls were used. 

 

 3 Results and discussion We measured the refrac-

tive index of H
2
O by measuring a thick (∼2 µm) SiO

2
 on Si 

wafer both dry and wet. We simultaneously fit the oxide 

thickness and water index using the 4 parameter formula-

tion of Tilton–Taylor [5]: 

( )2 2 2

2 2

.

m

n a k

l

λ λ

λ

= - +

-

 

 In Ref. [5], the authors also parameterize the variation 

of these 4 parameters with temperature. To account for the 

possible affects of atmospheric gas absorption (principally 

O
2
, N

2
), we used a Bruggemann effective media approxi-

mation (BEMA) mixture of Tilton–Taylor water at 23 °C  
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Figure 1 (online colour at: www.pss-a.com) Extracted water re-

fractive index (solid blue curve) and Tilton–Taylor reference 

data at 23 °C (dashed green curve). 

and voids. We also investigated allowing all 4 of the Til-

ton–Taylor parameters to freely vary during regression. 

The result of one of these fits is shown in Fig. 1. The unbi-

ased estimator of error, σ, for all these fit was <0.03. All 3 

parameterizations yielded nearly identical results for our 

water. In particular, the BEMA fit with 0.46% voids per-

fectly overlays the Tilton–Taylor 37.4 °C fit. Since it was 

not physically possible for our laboratory and the immer-

sion cell to be this hot, we would rule out temperature 

variation as the major cause of our water index variations. 

For the immersion fits for gratings, we used the BEMA 

model for all results presented in this paper. We also inves-

tigated varying all 4 Tilton–Taylor parameters in the grat-

ing cases, but this led to model over-parameterization and 

possibly nonphysical results for the water index. The ex-

tracted void fractions extracted in our fits were below those 

suggested by O
2
 and N

2
 solubilities in H

2
O [8]. Changes in 

the water refactive index due to contamination cannot be 

ruled-out, but this seems unlikely based on the results of 

studies of aqueous ion solutions [9]. Further, we see appar-

ent reductions in the water refractive index, whereas ionic 

contamination would tend to raise it. 

 The 700 nm PR grating samples were first character-

ized using measurements in air. The line topography was 

extracted using Levenberg–Marquardt-based regression 

analysis. The grating model used the Rigorous Coupled 

Wave Analysis (RCWA) algorthm [6] with continuity cor-

rections to improve the p-polarization (TM mode) conver-

gence [7]. For the 700 nm gratings, the line was divided 

into equal height trapezoids. First a single trapezoid was fit 

to the data. This best-fit result was used to seed a 2 trape-

zoid fit, then a 4 trapezoid fit, etc. We stopped at an 8 

trapezoid fit (further division would have led to over-

fitting). This yielded a 10 parameter (height +9 widths) fit 

as illustrated in Fig. 3 with results summarized in Table 1. 
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Figure 2 (online colour at: www.pss-a.com) Measured (blue 

solid curves) and fitted (dashed green curves) SE data for 700 nm 

PR grating measured in air. The unbiased estimator of error for 

this fit, σ, was ∼0.0478. 

Figure 3.1 Extracted effective-medium approximation (EMA) refractive index for water
(solid blue curve) and Tilton–Taylor reference data at 23◦C (dashed green curve). Ob-
serve that the curves for the EMA model, the Tilton–Taylor model for T = 37◦C, and
freely-varying Tilton–Taylor model overlap, but the Tilton–Taylor model for T = 23◦C does
not.

Celsius, and λ is the wavelength in nanometers. The coefficients have the following

values:

n0 = 1.314 05

n1 = 1.779× 10−4

n2 = −1.05× 10−6

n3 = 1.6× 10−8

n4 = −2.02× 10−6

n5 = 15.868

n6 = 0.011 55

n7 = −0.004 23

n8 = −4382

n9 = 1.1455× 106

The dispersion curves for the refractive index of Quan-Fry seawater at 10h and 5h
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Figure 3.2 Refractive index of Quan-Fry seawater at 10h(dashed blue curve) and
5h(dash-dot green curve) salinity compared to Tilton-Taylor water (solid red curve) at
25 ◦C.

salinity and 25 ◦C are plotted alongside the dispersion curve for the refractive index

of Tilton-Taylor water at 25 ◦C in figure 3.2. As expected, these curves show that

increasing salinity raises the index of refraction of water, which is the opposite of the

effect we observe in our refractive index fits.

3.2 Simulation of 100-nm period gratings

To motivate the use of immersion to improve the feature resolution, we use the RCWA

code to simulate the ellipsometric spectra of 100-nm period silicon gratings. Figures

3.3 and 3.4 show these ellipsometric spectra for linewidths of 16 nm, 20 nm and 24 nm

in air and deionized water, respectively. In air, there are no propagating backscattered

modes, and in deionized water, only the first-order backscattered mode is accessible

(λ0 < 267.4 nm). Despite this, both the atmospheric and immersion spectra show
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Figure 3.3 Simulated ellipsometric spectra for 100-nm period silicon gratings with
linewidths of 16 nm, 20 nm and 24 nm in air.

sensitivities to linewidths well below the Rayleigh limit. In this atmospheric case, this

sensitivity is essentially an effective-medium approximation of the grating ridges and

the grating grooves. To illustrate this, we simulated the ellipsometric spectra for a

100-nm period silicon grating with a 24-nm average linewidth for sidewall angles of

90°, 87.5° and 85° in both air (figure 3.5) and deionized water (figure 3.6). We see

that the atmospheric spectra have very little sensitivity to the sidewall angle over

the entire spectrum, whereas the immersion spectra have some additional sensitivity

near the cutoff of the first-order backscattered mode (λ0 ≈ 267.4 nm). Photoresist

gratings of comparable geometry would be even less sensitive to sidewall angle because

photoresists have smaller dielectric constants than silicon.
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Figure 3.4 Simulated ellipsometric spectra for 100-nm period silicon gratings with
linewidths of 16 nm, 20 nm and 24 nm in deionized water.
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Figure 3.5 Simulated ellipsometric spectra for 100-nm period, 24-nm average linewidth
silicon gratings with sidewall angles of 90°, 87.5° and 85° in air.
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Figure 3.6 Simulated ellipsometric spectra for 100-nm period, 24-nm average linewidth
silicon gratings with sidewall angles of 90°, 87.5° and 85° in deionized water.

3.3 Measurements on the 700-nm period gratings

Our initial experiments consisted of measurements on the 700-nm period gratings. The

first set of measurements were made in air. The line topography was extracted using

a computer program implemented in MATLAB which used Levenberg-Marquardt

regression to drive a RCWA-based forward scattering simulation of a parameterized

grating model. This program was originally implemented for previous work on scat-

terometry in our laboratory [46], and subsequently extended for simulation studies of

immersion scatterometry [38]. The grating model we used was a stack of trapezoids of

equal height. Initially, a single trapezoid was fit to the data. The parameters of the

best fit was used to seed a 2-trapezoid fit, whose best-fit parameters were used to seed

a 4-trapezoid fit, whose best-fit parameters were used to seed an 8-trapezoid fit. The

single-trapezoid and 8-trapezoid fits are shown in figures 3.7 and 3.8, respectively, and

the parameter fits and 95.4% confidence limits for the 8-trapezoid model are shown in
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Figure 3.7 Measured (blue solid curves) and best-fit (green dashed curves) spectroscopic
ellipsometric (SE) data for a single-trapezoid model of the 700-nm photoresist (PR) grating
measured in air.

figure 3.9. Figure 3.10 shows this fitted profile overlaid on a cross-sectional scanning

electron micrograph (SEM) of this grating, and there is excellent agreement between

the fitted profile and the SEM image. For these fits, 11 spatial orders were used in the

RCWA simulation (based on convergence tests) and a slicing algorithm that insured

no more than a 2-nm width change between each slice (resulting in 159 slices for the

8-trapezoid fit).

The sharp structure in this data arises from scattering of energy into non-specular

reflected and transmitted modes. For the 700-nm gratings measured in air, simulations

from the fitted structures show significant scattering into the m = 1 to 6 backscattered

modes (both reflected and transmitted). Forward scattering is insignificant for these

structures over the wavelength measured. Strong transmitted-mode scattering tends to

occur just before the allowed onset of the same-order reflected mode (as illustrated in

figure 3.11). This trend occurred for all photoresist grating structures studied. These

regions of strong diffraction are very sensitive to changes in the grating lineshape.
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Figure 3.8 Measured and best-fit SE data for an 8-trapezoid model of the 700-nm PR
grating measured in air.
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Figure 3.9 Fit results and 95.4% confidence limits for an 8-trapezoid grating model to
dry ellipsometric measurements of the 700-nm grating.

Figure 3.10 Comparison of best 8-trapezoid fit (blue outline) of the 700-nm grating
measured in air with cross-sectional scanning electron micrograph.
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Figure 3.11 Simulated m = 3 backscattered reflected (solid blue) and transmitted
(dashed red) energy for best-fit 8-trapezoid model of the 700-nm grating measured in air.

We applied the same procedure to measure the grating in water. The final

8-trapezoid immersion fit is shown in figure 3.12 and superimposed on the final 8-

trapezoid dry fit in figure 3.13. Since the dry data topography fit agrees well with

SEM observations, we must conclude that there is a systematic error in either the

immersion measurement or the ambient refractive index extraction. Our simulations

indicate that an angle of incidence error will not explain this variation. Also, mea-

surements of different thicknesses of SiO2 on Si show very good quality fits in both

dry and immersion measurements with the same oxide thickness. Variations in the

photoresist density were investigated (assuming an effective media mixing of voids with

the reference PR index data), but this too failed to explain our observed immersion

measurements. Also, including trapped air (bubbles) in the grating lines also failed to

prove valid.

To best fit our current experimental data, we simultaneously fit a single topography
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Figure 3.12 Measured and best-fit SE data for an 8-trapezoid model of the 700-nm PR
grating measured in water.

Figure 3.13 Comparison of the best fit from SE data for an 8-trapezoid model of the
700-nm PR grating measured in water (red) and air (blue).
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Figure 3.14 Comparison of the dry-only fit (blue) and dual dry/BEMA fit (red) for the
700 nm grating.

to both the dry and immersion data and also varied the water index using the BEMA

model. The topography extracted from this fit very closely overlay that of the dry-only

fit as shown in figure 3.14. The extracted void fraction of the water was 0.537±0.087%.

The values of the extracted topography parameters are very close to those shown in

figure 3.9. The confidence limits are slightly higher. The additional information in

the immersion measurement did not offset the additional uncertainty introduced by

adding an additional model parameter.

3.4 Measurements on the 160-nm period gratings

For the 160 nm photoresist gratings, only the first-order backscattered mode is acces-

sible (λ < 315 nm dry, 430 nm in H2O). This lack of allowed scattered modes reduces

the sensitivity to the lineshape. The measured data could be fit well using a single
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Figure 3.15 Measured and best-fit SE data for a single-trapezoid model of the 160-nm
PR grating measured in air.

trapezoid model as shown in figure 3.15 and with the parameter fits and confidence

limits shown in figure 3.17. The dual-ambient fit is very similar to a dry-only fit for

the single trapezoid shape model, as is shown in figure 3.16. Previous computational

studies showed that additional shape information should be obtainable from the extra

information in immersion data [38].

The problems posed by the apparent variation of water refractive indices prevented

us from experimentally demonstrating improved confidence limits in the extracted

topography parameters. However, in our attempts to gain more shape information

from the 160-nm gratings, we did find a strong indication that the extra information

in the immersion data may be helpful. We fit the data using increasing numbers of

equal-height trapezoids. As the number of trapezoids in the model increased, we found

that the dry fits would deviate into physically unreasonable structures while the dual

mode (dry/wet-BEMA) fits yielded physically reasonable resist shapes. An illustration

of this is found in figures 3.18 and 3.19 for a 16-trapezoid fit. Clearly, this is an

over-parameterization and the results may be nonphysical in both cases; however, it is
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Figure 3.16 Measured and best dual-ambient fit SE data for a single-trapezoid model of
the 160-nm PR grating measured in water.
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Figure 3.17 Fit results and confidence limits for a single-trapezoid grating model to
dual-mode (dry and wet) ellipsometric measurements of the 160-nm grating. σ = 2.5× 10−2

for this fit.

48



Figure 3.18 Measured and best-fit SE data for a 16-trapezoid model of the 160-nm PR
grating measured in air.

interesting to note that the dry-only fit is very improbable for a photoresist structure,

whereas the dual mode fit yields the commonly encountered case of a basically vertical

line with a “footer.” Due to the very small size of these features, we have not yet been

able to obtain cross-sectional electron micrographs to further investigate this result.
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Figure 3.19 Measured and best dual-ambient fit SE data for a 16-trapezoid model of the
160-nm PR grating.
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Chapter 4

Investigation of systematic errors
in immersion ellipsometry

The preliminary immersion scatterometry results in chapter 3 suggest that the resolu-

tion of topography extraction is limited by one or more sources of systematic error in

immersion ellipsometry. There is a surprising absence in the ellipsometry literature of

investigation of error sources in immersion ellipsometry. Based on our preliminary

experimental results, we have identified several potential sources of systematic error:

error in the angle of incidence in the immersion case, error in our estimate of the

immersion refractive index due to ambient conditions, and errors due to stress-induced

birefringence in the immersion case.

4.1 Errors in angle of incidence

One of the potential sources of systematic error in immersion ellipsometry are devia-

tions in the angle of incidence in the immersion case relative to the atmospheric case.

To illustrate the origin of these deviations, we consider the deviation of an oblique

ray incident upon an ideal plane-parallel window in air and in liquid immersion. The

geometry of this scenario is illustrated in figure 4.1. In air, a ray incident at angle θ1

emerges at angle θ1. In the case where the incident medium has refractive index n1
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Figure 4.1 Deviation of an oblique ray incident upon an ideal plane-parallel window.

and the exit medium has refractive index n2, the exit angle θ2 is given by

θ2 = arcsin

(
n1 sin θ1
n2

)
.

When the ambient refractive index is the same on both sides of the window (i.e.

n1 = n2), then the ray exits the window at the same angle as it impinges (i.e. θ1 = θ2).

However, when the ambient refractive index is different on either side of the window

(n1 6= n2) and the ray does not impinge upon the window at exactly normal incidence

(i.e. θ1 6= 0°), then the ray exits the window at a different angle than it entered. This

also results in the polarizer beam impinging upon the sample at a different angle in

the immersion case than in the atmospheric case.
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4.1.1 Simulation

To motivate our experimental work, we simulated the change in the ellipsometric spec-

trum for the immersion measurements of a variety of unpatterned thin-film samples

when different pairs of measurement parameters (e.g. angle of incidence, ambient

refractive index parameters, etc.) are varied. The error surface for immersion ellip-

sometry of a nominally bare silicon wafer (2 nm SiO2 on Si) in deionized water for

errors in the angle of incidence and ambient temperature is shown in figure 4.2. We

use Tilton and Taylor’s formula for the refractive index of water that interpolates for

both temperature and wavelength [40]:

n(t, λ) =

√
a220 − k20λ2 +

m20

λ2 − l220

−

{
B̄ − b(∆λ)3

λ−l

}
(∆t)3

(t+ D̄)× 107

−
{
Ā− a′∆λ

(
1 + a′′

λ−l

)}
(∆t)2

(t+ D̄)× 107

+

{
C̄ − c∆λ

(
1 + c′

λ−l

)}
∆t

(t+ D̄)× 107

where

a220 = 1.761 631 6

k20 = 0.011 988 2

l20 = 0.122 114 5

m = 0.006 442 77

Ā = 2352.12

B̄ = 6.3649

C̄ = 76 087.9

D̄ = 65.7081
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a′ = 143.63

a′′ = 0.4436

b = 10.562

c = 12 504

c′ = 0.084 30

From the contours of the error surface, we see that the measurement of nominally

bare silicon is very sensitive to angle of incidence and relatively insensitive to ambient

temperature (and its effects on the ambient refractive index). A relatively small (0.1°)

change in the angle of incidence results in a mean-squared error in the ellipsometric

signal of the same magnitude as a relatively large (> 5 ◦C) change in the ambient

temperature. Thus we can use immersion ellipsometry of a nominally bare silicon

wafer to bound the uncertainty in actual angle of incidence in the immersion case.

4.1.2 Materials and methods

Samples

To estimate the actual angle of incidence in the immersion case, we perform liquid

immersion measurements on a nominally bare silicon wafer. Simulation of the mean

square error of the ellipsometric signal as a function of the error in angle of incidence

and ambient refractive index shows that, in the case of bare silicon, the mean-squared

error is sensitive to angle of incidence and not to refractive index.

The samples used were p-doped silicon wafers. The native oxide thickness was

determined to be approximately 2 nm from ellipsometric measurements in air using

SOPRA Winelli software.
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Figure 4.2 Error surface for immersion ellipsometry of a nominally bare silicon wafer
(2 nm SiO2 on Si) in deionized water for errors in the angle of incidence (AOI) and ambient
temperature. The contours of the error surface show that immersion measurements of this
sample are relatively sensitive to angle of incidence and relatively insensitive to ambient tem-
perature, since a relatively small change in the angle of incidence results in a mean-squared
error comparable to a relatively large change in the ambient temperature.

Alignment procedure

To ascertain the repeatability of the angular estimation procedure, we replaced the

optical fiber to the monochromator with a fiber-coupled HeNe laser and used the

following alignment procedure before each measurement:

1. Remove the immersion cell from the stage.
2. Set the goniometer to 90°.
3. Set the analyzer to 45°.
4. Set the goniometer to the desired angle of incidence.
5. Place the immersion cell on the stage. Adjust the azimuthal orientation of the

cell to align both retroreflections as much as possible.
6. Repeat the following steps until the alignment is satisfactory:

(a) Adjust the stage height to bring the HeNe beam into alignment.
(b) Adjust the tip-tilt of the stage to bring the probe beam into alignment.
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Data analysis

Initial measurements were taken at the design angle of incidence to obtain an initial

estimate. The target angle was then perturbed until there was satisfactory agreement

between the goniometer settings and the estimates. Ellipsometric data were collected

from 300 nm to 800 nm at 5 nm intervals. The estimates were generated using SOPRA

WinElli for the following structural model:

� An ambient medium of Tilton-Taylor water at 23 ◦C.
� An SiO2 film of 2 nm nominal thickness on a crystalline silicon substrate.

The regression parameters were the angle of incidence and the thickness of the SiO2

film. The initial estimates pointed to a target angle of incidence of 74.85°.

4.1.3 Results and discussion

Representative ellipsometric spectra for a “bare” silicon wafer in air and in deionized

water are shown in Figures 4.3 and 4.4, respectively. In additional, measurements

were taken in the cell before and after it was anodized. Initial Levenberg-Marquardt

regression estimates of the angle of incidence from Sopra WinElli pointed to an actual

angle of incidence in deionized water of 74.8° for the unanodized cell. WinElli’s

estimates for the actual angle of incidence and the thickness of the native oxide when

the goniometer was set to 74.85° are tabulated in Table 4.1. The time evolution of

these estimates are plotted in figures 4.5 and 4.6. It is clear that the estimates in both

quantities is drifting over time, hence we decided to anodize the cell in case chemical

contamination due to the corrosion of the aluminum cell was responsible for this drift.

After the cell was anodized and reassembled, we repeated these calibration mea-

surements. Based on the initial Levenberg-Marquardt regression estimates of the

angle of incidence from Sopra WinElli pointed to an actual angle of incidence in

deionized water of 74.85° for the anodized cell. WinElli’s estimates for the actual angle

of incidence and the thickness of the native oxide when the goniometer was set to

56



300 350 400 450 500 550 600 650 700 750 800

0.7

0.8

0.9

1

α

2013−08−20/bare−si−dry−cell−1.mse

300 350 400 450 500 550 600 650 700 750 800−0.6

−0.4

−0.2

0

0.2

Wavelength [nm]

β

Figure 4.3 A representative ellipsometric spectrum from a “bare” silicon wafer in air in
(α, β) format.
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Figure 4.4 A representative ellipsometric spectrum from a “bare” silicon wafer in deionized
water in (α, β) format.
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Table 4.1 Angular repeatibility of immersion ellipsometric measurements of a nominally
bare silicon wafer in an unanodized aluminum cell.

Angle θ σθ SiO2 thickness t [nm] σt

74.797 180 0.000 100 1.415 214 0.179 018
74.748 793 0.000 106 2.841 189 0.186 097
74.763 854 0.000 114 2.321 740 0.200 218
74.751 652 0.000 112 3.116 431 0.214 318
74.759 372 0.000 090 2.623 408 0.157 480
74.648 450 0.000 111 3.859 357 0.191 702
74.698 102 0.000 142 3.583 165 0.248 172
74.664 070 0.000 078 4.443 099 0.134 375
74.677 718 0.000 112 4.554 183 0.197 924
74.597 925 0.000 071 4.410 603 0.123 032
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Figure 4.5 Estimated angle of incidence from ellipsometric measurements of a “bare”
silicon wafer in deionized water, taken in an unanodized aluminum cell over the course of
several weeks. The horizontal lines associated with each data point indicate the upper confi-
dence limit and lower confidence limit of the 95.4% confidence interval for each individual
measurement.
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Figure 4.6 Estimated SiO2 thickness from ellipsometric measurements of a “bare” silicon
wafer in deionized water, taken in an unanodized aluminum cell over the course of several
weeks. The vertical lines associated with each data point indicate the 95.4% confidence
interval for each individual measurement.

Table 4.2 Angular repeatibility of immersion ellipsometric measurements of a nominally
bare silicon wafer in an anodized aluminum cell.

Angle θ σθ SiO2 thickness t [nm] σt

74.858 351 0.000 081 2.124 043 0.143 860
74.860 406 0.000 078 2.052 209 0.137 471
74.864 992 0.000 079 2.119 181 0.139 126
74.805 860 0.000 066 2.949 611 0.115 441
74.861 111 0.000 092 2.471 062 0.163 022
74.865 824 0.000 108 2.474 316 0.188 884
74.839 214 0.000 102 1.849 462 0.184 642
74.872 679 0.000 091 2.774 831 0.159 937
74.886 235 0.000 100 2.603 019 0.176 643

θ̄ ± σ̂θ = 74.857 185 780°± 0.007 641 179°

t̄SiO2
± σ̂t = 2.379 748 222 nm± 0.121 890 830 nm

74.85° are tabulated in Table 4.2. There is excellent agreement between the estimated

angle of incidence and the goniometer set point, and a high degree of repeatability of

these estimates.
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Figure 4.7 Estimated angle of incidence from ellipsometric measurements of a “bare”
silicon wafer in deionized water, taken in an anodized aluminum cell over the course of a week.
The horizontal lines associated with each data point indicate the upper confidence limit and
lower confidence limit of the 95.4% confidence interval for each individual measurement.
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Figure 4.8 Estimated SiO2 thickness from ellipsometric measurements of a “bare” silicon
wafer in deionized water, taken in an anodized aluminum cell over the course of a week. The
vertical lines associated with each data point indicate the 95.4% confidence interval for each
individual measurement.
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4.2 Errors in ambient refractive index

4.2.1 Simulation

As in the case of angle of incidence, we motivate our experimental work by simulating

the change in the ellipsometric spectrum for the immersion measurements of a variety

of unpatterned thin-film samples when different pairs of measurement parameters (e.g.

angle of incidence, ambient refractive index parameters, etc.) are varied. The error

surface for immersion ellipsometry of a thick (2 µm) SiO2 film on Si in deionized water

for errors in the angle of incidence and ambient temperature is shown in figure 4.9.

From the contours of the error surface, we see that errors in angle of incidence and am-

bient temperature are highly correlated, so one cannot determine just from immersion

ellipsometry of a thick SiO2 film whether the observed systematic measurement error

is due to errors in the angle of incidence or the ambient temperature. However, if we

can bound the error in the angle of incidence (e.g. using measurements on nominally

bare silicon), then we can also bound the error in the ambient refractive index.

4.2.2 Materials and methods

Samples

To estimate the actual angle of incidence in the immersion case, we performed liquid

immersion measurements on a thick (≈ 2 µm) SiO2 film on a Si wafer. We used a

SOPRA reference wafer with a nominal SiO2 film thickness of 2.0037µm. Repeated

measurements of this wafer in air resulted in an estimated SiO2 thickness of 2.0025 µm.

Measurements

We did two measurements to assess different potential causes of ambient refractive

index effects. One was to monitor and log the temperature of the immersion cell
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Figure 4.9 Error surface for immersion ellipsometry of a thick (2 µm) SiO2 film on Si in
deionized water for errors in the angle of incidence and ambient temperature.

during the ellipsometric measurement. The second was to compare regression results

for a refractive index parameter for measurements performed at atmospheric pressure

and for measurements after sonic degassing at rough vacuum (∼150 torr). The cell

temperature was monitored using a Maxim DS18B20 one-wire digital thermometer.

The sensor values were read by an Arduino Uno microcontroller board and transmitted

by USB (Universal Serial Bus) to a laptop computer. The computer was running a

Processing script that received the data on this USB port and logged timestamps

and the observed temperature values to a comma-separated value (CSV) file. The

same Arduino microcontroller board was also used to drive a CUI CEM-1203(42)

magnetic buzzer for sonic degassing. The buzzer was driven at 2 kHz, and bubbles

were observed nucleating and detaching when the buzzer was active and the vacuum

pump was running.
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Data analysis

WinElli is not capable of incorporating arbitrary optical models such as the Tilton-

Taylor formula for water, so we adapted the MATLAB RCWA code to facilitate

inclusion of these models in our regression analyses. We ran Levenberg-Marquardt

regression for the angle of incidence and the ambient temperature for the following

structural model:

� An ambient medium of Tilton-Taylor water at 23 ◦C.
� An SiO2 film of 2.0025µm nominal thickness (determined by ellipsometric mea-

surements of the sample in air).
� A crystalline silicon substrate.

4.2.3 Results and discussion

Representative ellipsometric spectra for the SOPRA reference wafer with 2.0037µm

SiO2 on Si in air and water are shown in figure 4.10 and 4.11. Furthermore, we

collected data for in both undegassed and degassed deionized water, and logged the

temperature for the entire duration of each measurement under either condition. The

temperature was in the range 23 ◦C± 1 ◦C during all measurements. The estimated

parameters for the undegassed and degassed measurements are tabulated in table 4.3.

It is apparent that the ∼ 38 ◦C estimates for the ambient temperature T from both

the undegassed and degassed measurements are many standard deviations away from

the logged temperature of 23 ◦C. Thus it would appear that dissolved atmospheric

gases are not responsible for the systematic errors observed in the immersion mea-

surement, which is consistent with remarks by Tilton and Taylor [40] and Harvey and

co-workers [47] that the effect of dissolved air on the refractive index of water should

be |∆n| < 1× 10−5.
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Figure 4.10 Representative ellipsometric spectrum for SOPRA reference wafer with
2.0037 µm SiO2 on Si in air.
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Figure 4.11 Representative ellipsometric spectrum for SOPRA reference wafer with
2.0037 µm SiO2 on Si in deionized water.
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Table 4.3 Estimated ambient temperature T for ellipsometric measurements of the
2.0037 µm SiO2 SOPRA reference wafer in undegassed and degassed deionized water.

Condition T (◦C) σT (◦C)

Undegassed 38.490 908 70 1.068 799 07
37.918 067 39 1.002 989 93

Degassed 41.581 244 47 0.974 085 59
42.250 935 75 1.134 420 33
40.726 434 19 2.806 585 26

4.3 Errors due to stress-induced window birefrin-

gence

The inspiration to investigate stress-induced window birefringence was pure serendip-

ity. We noticed that when we seeded a geometric regression on immersion data for

the 700 nm Sony photoresist grating with the best-fit 8-trapezoid geometry from the

atmospheric case, the simulated α spectrum fit the experimental spectrum quite well,

but the simulated β spectrum appeared offset from the experimental spectrum, as

illustrated in Figure 4.12. Since

α = − cos(2Ψ) β = sin(2Ψ) cos∆,

systematic errors in β and not α imply errors in the phase ∆ and not in the amplitude

Ψ . Since the systematic error is only present in the immersion case and not in the

atmospheric case, the leading candidate for causing this error is stress-induced window

birefringence due to the hydrostatic pressure of the immersion fluid.

There is considerable work on modeling, measuring, and compensating for intrinsic

or stress-induced birefringence in ellipsometry cell windows, especially for measuring

samples in evacuated or pressurized environments. The usual model for the window

birefringence is the small-retardance waveplate (SRWP) [48, 49, 50, 51, 52]. Johs and

co-workers [53] decompose the retardance of the windows into an in-plane component
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Figure 4.12 Comparison of the dry and wet simulated ellipsometric spectra for the dry
best-fit profile for the 700 nm Sony photoresist grating. The wet β spectrum (bottom center)
shows an offset between the experimental data (solid blue) and the simulated spectrum
(green dashed) for the dry best-fit profile in the immersion case.

(which is a waveplate with the fast axis aligned in the plane of incidence) and an

out-of-plane component (which is a waveplate with fast axis at 45° relative to the plane

of incidence). The out-of-plane component can be determined by regression calibration

of the ellipsometer [54], leaving just the in-plane component to be determined by

regression analysis on a known reference sample. To first order, the dispersion formula

for the in-plane retardance is

∆w =
p

λ

for some constant p [55].

4.3.1 Simulation

As in the case of angle of incidence and ambient refractive index, we motivate our

experimental work by simulating the change in the ellipsometric spectrum for the
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Figure 4.13 Error surface for immersion ellipsometry of a nominally bare silicon wafer
(2 nm SiO2 on Si) in deionized water for errors in the angle of incidence and first-order
in-plane retardance parameter.

immersion measurements of a variety of unpatterned thin-film samples when different

pairs of measurement parameters (e.g. angle of incidence, ambient refractive index

parameters, etc.) are varied. The error surface for immersion ellipsometry of a nomi-

nally bare silicon wafer (2 nm SiO2 on Si) in deionized water for errors in the angle

of incidence and different values for the first-order in-plane retardance parameter is

shown in figure 4.13. For comparison, the error surface for immersion ellipsometry of

a thick (2 µm) SiO2 film on Si in deionized water for errors in the angle of incidence

and different values of the first-order in-plane retardance parameter is shown in figure

4.14.
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Figure 4.14 Error surface for immersion ellipsometry of a a thick (2 µm) SiO2 film on Si
in deionized water for errors in the angle of incidence and first-order in-plane retardance
parameter.

4.3.2 Materials and methods

Samples

To estimate the in-plane retardance parameter p, we performed liquid immersion

measurements on a SOPRA reference wafer with a nominal SiO2 film thickness of

2.0037 µm.

Data analysis

Ellipsometric data were collected from 225 nm to 800 nm at 5 nm intervals. We adapted

the MATLAB RCWA code to perform Levenberg-Marquardt regression for the oxide

thickness t and the first-order in-plane plane retardance parameter p. This analysis

was performed for the following structural model:

� An ambient medium of Tilton-Taylor water at 23 ◦C.
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Figure 4.15 Error surface for immersion ellipsometry of a a thick (2 µm) SiO2 film on
Si in deionized water for errors in the oxide thickness and first-order in-plane retardance
parameter.

� An SiO2 film of 2.0025µm nominal thickness (determined by ellipsometric mea-
surements of the sample in air).

� A crystalline silicon substrate.

To verify that the thickness and estimated retardance parameter are not strongly

cross-correlated, we ran thin-film simulations to determine the error surface for immer-

sion ellipsometry of a thick (2 µm) SiO2 film on Si in deionized water for errors in the

oxide thickness and different values for the first-order in-plane retardance parameter,

which is shown in figure 4.15.

4.3.3 Results and discussion

We took 5 measurements of the SOPRA reference wafer at a nominal angle of incidence

θ = 74.85°. The estimated parameters are tabulated in table 4.4. The estimated

thickness of the oxide is 2012.42± 0.49nm and the estimated retardance parameter is
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Table 4.4 Estimated oxide thickness t and in-plane retardance parameter p for ellipso-
metric measurements of the 2.0037 µm SiO2 SOPRA reference wafer in deionized water.

SiO2 thickness t [nm] σt Retardance parameter p [nm] σp

2012.82 0.52 33.23 4.24
2012.39 0.48 32.55 3.95
2012.44 0.54 34.82 4.40
2012.50 0.50 35.00 4.10
2012.42 0.49 34.96 3.96

t̄SiO2
± σ̂t = 2012.42 nm± 0.49 nm

p̄± σ̂p = 34.1 nm± 0.5 nm

34.1 nm± 0.5 nm, and the cross-correlation between these two parameters is 0.617 38.

The in-plane retardance spectrum corresponding to this estimate is plotted in figure

4.16. The in-plane retardance decays from approximately 9° at 225 nm wavelength to

approximately 2° at 820 nm wavelength, which is of the same order as the retardance

spectrum measured by Johs and co-workers for a standard 2-3⁄4” conflat vacuum

window [53].
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Figure 4.16 In-plane retardance spectrum estimated from ellipsometric measurements of
the 2.0037 µm SiO2 SOPRA reference wafer in deionized water.
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Chapter 5

Improved procedure of grating
topography extraction by
immersion scatterometry

Having identified and characterized several relevant sources of systematic error in

immersion ellipsometry, we are now in a position to improve the procedure for grating

topography extraction by immersion scatterometry.

5.1 Materials and methods

We attempt to mitigate systematic error in immersion scatterometry due to errors in

the immersion angle of incidence and stress-induced birefringence in the immersion

cell windows by applying the following measurement procedure:

1. Measure a “bare” silicon wafer in air to characterize its structure (native oxide
thickness).

2. Measure the “bare” silicon wafer in immersion to characterize the actual angle
of incidence and adjust the nominal angle of incidence to match the estimated
angle of incidence.

3. Measure a thick SiO2 film in air to characterize its structure (oxide thickness).
4. Measure the thick SiO2 film in immersion to characterize the stress-induced

birefringence.
5. Measure a grating in air and produce a best-fit geometry for reference.
6. Measure the grating in immersion and determine the best-fit geometry with and

without birefringence correction.
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5.2 Results and discussion

5.2.1 Atmospheric measurements of bare silicon

We took 5 measurements of a bare silicon wafer in air at a nominal angle of incidence

of 75° to estimate the native oxide thickness. The estimates of the angle of incidence θ

and the native oxide thickness t are tabulated in table 5.1. After averaging the individ-

ual measurements and computing the standard error, the estimated angle of incidence

is 75.0542°± 0.0047° and the estimated native oxide thickness is 1.916 nm± 0.036 nm.

Table 5.1 Atmospheric measurements of bare silicon used to estimate the native oxide
thickness.

Angle θ σθ SiO2 thickness t [nm] σt

75.051 006 0.000 062 1.89 0.04
75.052 164 0.000 059 1.91 0.04
75.056 818 0.000 059 1.97 0.04
75.069 870 0.000 065 2.00 0.04
75.040 987 0.000 061 1.80 0.04

θ̄ ± σ̂θ = 75.054 169 00°± 0.004 697 49°

t̄SiO2
± σ̂t = 1.915 739 800 nm± 0.035 543 639 nm

5.2.2 Immersion measurements of bare silicon

We took 9 measurements of the same bare silicon wafer in immersion at a nominal angle

of incidence of 74.85° to establish the immersion angle of incidence. The estimates

of the angle of incidence θ and the native oxide thickness t are tabulated in table

5.2. After averaging the individual measurements and computing the standard error,

the estimated angle of incidence is 74.857°± 0.008° and the estimated native oxide

thickness is 2.379 nm± 0.122 nm.
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Table 5.2 Immersion measurements of bare silicon to estimate the immersion angle of
incidence.

Angle θ σθ SiO2 thickness t [nm] σt

74.858 351 0.000 081 2.12 0.14
74.860 406 0.000 078 2.05 0.14
74.864 992 0.000 079 2.12 0.14
74.805 860 0.000 066 2.95 0.12
74.861 111 0.000 092 2.47 0.16
74.865 824 0.000 108 2.47 0.19
74.839 214 0.000 102 1.85 0.18
74.872 679 0.000 091 2.77 0.16
74.886 235 0.000 100 2.60 0.18

θ̄ ± σ̂θ = 74.857± 0.008°

t̄SiO2
± σ̂t = 2.38± 0.12nm

5.2.3 Atmospheric measurements of thick SiO2 film

We took 3 measurements of a SOPRA reference wafer (nominally 2.0037µm SiO2 on

Si) in air at a nominal angle of incidence of 74.85° to estimate the oxide thickness.

The estimates of the oxide thickness t are tabulated in table 5.3. After averaging the

individual measurements and computing the standard error, the estimated thickness

of the oxide is 2003.48 nm± 0.07 nm.

Table 5.3 Atmospheric measurements of SOPRA 2.0037 µm SiO2 reference wafer used to
estimate the oxide thickness.

SiO2 thickness t [nm] σt

2003.53 0.32
2003.35 0.35
2003.57 0.34

t̄SiO2
± σ̂t = 2003.48 nm± 0.07 nm
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5.2.4 Immersion measurements of thick SiO2 film

We took 5 measurements of the SOPRA reference wafer (nominally 2.0037 µm SiO2 on

Si) in immersion at a nominal angle of incidence of 74.85° to estimate the first-order

in-plane retardance parameter. The estimates of the angle of incidence θ and the

native oxide thickness t are tabulated in table 5.4. After averaging the individual

measurements and computing the standard error, the estimated thickness of the oxide

is 2012.42 nm± 0.49 nm and the estimated retardance parameter is 34.1 nm± 0.5 nm.

Table 5.4 Immersion measurements of SOPRA 2.0037 µm SiO2 reference wafer used to
estimate the oxide thickness and the first-order in-plane retardance parameter.

SiO2 thickness t [nm] σt Retardance parameter p [nm] σp

2012.82 0.52 33.23 4.24
2012.39 0.48 32.55 3.95
2012.44 0.54 34.82 4.40
2012.50 0.50 35.00 4.10
2012.42 0.49 34.96 3.96

t̄SiO2
± σ̂t = 2012.42 nm± 0.49 nm

p̄± σ̂p = 34.1 nm± 0.5 nm

5.2.5 Atmospheric measurements of 700-nm pitch Sony pho-
toresist grating

We took several measurements of the 700-nm pitch Sony photoresist grating in air and

used one to determine the 8-trapezoid best-fit geometry. Because we had issues with

poor fit quality, we also took measurements of uniform thin films of the photoresist

to measure their optical properties and correct for aging effects. A representative

ellipsometric spectrum for a uniform film of the Sony photoresist is shown in figure

5.1. SOPRA WinElli was then used to simultaneously fit the film thickness and

parameters for a mixed dispersion model consisting of two Lorentz oscillator terms and
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Figure 5.1 Measured SE data for a uniform film of Sony photoresist taken at θ = 75°.

two Cauchy terms. The 8-trapezoid best-fit geometry using this dispersion model is

shown in figure 5.2, and the parameter fits and 95.4% confidence limits are tabulated

in table 5.5. The quality of fit is significantly improved relative to the published dry

fit [5] (σ ≈ 0.036 compared to σ ≈ 0.048).

Table 5.5 Fit results and 95.4% confidence limits for an 8-trapezoid grating model to
dry ellipsometric measurements of the 700-nm grating with new photoresist data.

Parameter Fit (nm) 95.4% confidence

Height 789.92 2.33
Width 1 (top) 107.01 9.79
Width 2 206.44 11.76
Width 3 213.74 5.72
Width 4 240.80 5.99
Width 5 268.67 6.71
Width 6 284.71 8.68
Width 7 307.45 9.61
Width 8 316.79 8.82
Width 9 249.24 13.90
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Figure 5.2 Measured and best-fit SE data for an 8-trapezoid model of the Sony 700-nm
photoresist grating measured in air.

5.2.6 Immersion measurements of 700-nm pitch Sony pho-
toresist grating

We took several measurements of the 700-nm pitch Sony photoresist grating in deion-

ized water for two purposes:

1. To compare simulations of the dry best-fit geometry under immersion to experi-
mental data.

2. To determine the 8-trapezoid best-fit geometry in the immersion with and with-
out applying the birefringence correction determined using measurements on the
SOPRA reference wafer.

The wet 8-trapezoid best-fit geometry determined without applying the birefringence

correction is shown in figure 5.3, and the parameter fits and 95.4% confidence limits

are tabulated in table 5.6. The wet 8-trapezoid best-fit geometry determined with

first-order in-plane birefringence correction is shown in figure 5.4, and the parameter

fits and 95.4% confidence limits are tabulated in table 5.7. The quality of fit improved
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Table 5.6 Fit results and 95.4% confidence limits for an 8-trapezoid grating model to
wet ellipsometric measurements of the 700-nm grating without birefringence correction.

Parameter Fit (nm) 95.4% confidence

Height 810.91 2.31
Width 1 (top) 142.53 6.41
Width 2 141.85 8.09
Width 3 268.02 5.04
Width 4 162.07 7.09
Width 5 306.66 6.75
Width 6 243.57 7.74
Width 7 312.33 8.01
Width 8 284.27 8.32
Width 9 277.96 13.69

slightly with the birefringence correction from σ ≈ 0.051 to σ ≈ 0.049. The uncor-

rected wet fit exhibits several strong reentrant features which are less prominent in the

corrected fit. RCWA forward simulation for this geometry in air deviates significantly

with the atmospheric data (figure 5.5), suggesting that these features are artifacts,

possibly due to overcorrecting the angle of incidence based on the results of the bare

silicon measurement.

Reexamination of figure 4.13 suggests that it may be possible to extract both

the angle of incidence and the first-order in-plane birefringence parameters from

measurements of a thick SiO2 film, which might also suppress these reentrant features.

One possible measurement procedure is as follows:

1. Measure a thick SiO2 film in air to characterize its structure (oxide thickness).
2. Measure the thick SiO2 film in immersion.

(a) Use the α (or Ψ) spectrum to determine the angle of incidence.
(b) Use the β (or ∆) spectrum to characterize the stress-induced birefringence.

3. Adjust the nominal angle of incidence to match the estimated angle of incidence,
and repeat the immersion measurement of the thick SiO2 film until the estimates
of the angle of incidence and stress-induced birefringence stabilize.
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Figure 5.3 Measured and best-fit SE data for an 8-trapezoid model of the Sony 700-nm
photoresist grating measured in deionized water with no birefringence correction.
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Figure 5.4 Measured and best-fit SE data for an 8-trapezoid model of the Sony 700-nm
photoresist grating measured in deionized water with birefringence correction from thick
SiO2 data.

79



Table 5.7 Fit results and 95.4% confidence limits for an 8-trapezoid grating model to
wet ellipsometric measurements of the 700-nm grating with birefringence correction.

Parameter Fit (nm) 95.4% confidence

Height 814.07 2.33
Width 1 (top) 124.29 6.43
Width 2 149.13 7.82
Width 3 260.53 4.85
Width 4 168.29 6.86
Width 5 300.14 6.76
Width 6 254.04 7.77
Width 7 303.45 7.79
Width 8 303.39 7.92
Width 9 249.42 12.70
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Figure 5.5 Comparison of the simulated dry ellipsometric spectra (green dashed) for
the 8-trapezoid wet best-fit profile (without birefringence correction) for the 700 nm Sony
photoresist grating with experimental data (solid blue).
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Chapter 6

Conclusion and future work

6.1 Summary

In this thesis, we have presented the first experimental results for grating topography

extraction by immersion scatterometry [5]. The resolution of those measurements was

limited by systematic error of unknown origin, so we investigated several potential

sources of error in immersion ellipsometry: error in the angle of incidence in the case of

immersion, error in the refractive index of the immersion medium, and error introduced

by stress-induced birefringence in the immersion cell windows. We motivated the

selection of reference samples to characterize these sources of systematic error using

computer simulations of thin-film optics, then performed the experiments. The results

suggest that stress-induced birefringence in the immersion cell windows and error in

the angle of incidence in the immersion case are the dominant sources of error. With

this knowledge, we proposed a measurement procedure to correct for these systematic

errors and report the results of applying this procedure. The new procedure did

improve the quality of the regression fits and suggests that immersion scatterometry

may still have the potential for improved resolution, but that potential has not yet

been realized. However, the knowledge gained regarding the error sources that are

present certainly puts us in a better position to attempt to realize that potential in

the future.
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6.2 Future work

The motivating question of this work remains unanswered: “Can the resolution of

grating topography extraction by scatterometry be improved by immersion in a high-

index medium?” The results reported in this thesis suggest that this goal may still

be achievable if the sources of systematic error can be controlled. The dominant

error source seems to be stress-induced birefringence in the immersion cell windows.

The first avenue of future work is both to reduce this effect and to improve the

method of correction. The magnitude of the effect can be reduced by using thicker

windows or windows of different design, as was done by Studna and co-workers for

vacuum applications of ellipsometry [56]. The method of correction can be improved

by characterizing the out-of-plane retardance in addition to the in-plane retardance

[55].

Another limitation seems to be the cross-correlation of difference sources of

systematic error—a correlation that thus far cannot be broken with spectroscopic

measurements of a single sample at a single angle of incidence. In the shorter term,

there is additional work that can be done to explore, in simulation and in experiment,

the pairwise interactions between various error sources in the immersion measurement

for various choices of reference sample. In the longer term, it is worth investigating

whether angle-resolved spectroscopic measurements at multiple angles of incidence

can break this correlation and allow us to simultaneously fit to the geometry and

the sources of systematic error. This is not possible with our current immersion cell

design, but it may be possible with different cell designs, such as a the immersed

light-guide design proposed by Benjamins and co-workers [57].
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