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Abstract 
 

Humans generally tend not to spend more energy than necessary when they 

perform a task.  However, subjective factors, such as the comfort associated with 

a movement, have a significant impact on how humans behave. Some studies 

have used constrained optimization to explain the decision making process for 

movement, the effect of ergonomic factors, or even diet choice.  A task’s goal 

represents a constraint on possible behavior, and the chosen, or optimal, 

behavior is determined to be that which minimizes some cost function.  In 

biomechanics, researchers often assume costs related to energy or kinematic 

variability, which may miss some important subjective motivations for behavior.  

In this work, we leverage the optimization approach to predict and control 

behavior based on a more general subjective cost. However, we objectively 

quantify the subjective cost function in terms of mechanical work, which 

represents the trade-off in economy that subjective factors incur. More complete 

knowledge and the ability to control decisions for muscle use could benefit 

motor learning research, rehabilitation, and strength training. 

 

We use an implicit approach to uncover the subjective costs associated with a 

number of exercise tasks. We alter task constraints, and their associated 

subjective costs, by unevenly weighting limb power toward a goal sum of this 

weighted power during exercise. The unknown subjective cost function may thus 

be characterized by sampling the preferred strategies for a range of different 

constraints. This method can be used to both characterize subjective costs of 
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exercise in terms of objective quantities such as work, and to provide a 

framework with which we may create tasks which direct effort toward specific 

limbs. 

 

Results indicate that healthy subjects split effort between limbs based on more 

than economy alone.  Factors of the exercise task, such as grip type, or reach 

length, can alter the subject’s effort distribution toward greater use of arms or 

legs by about 15% of the mean net power performed. We found that implicit 

feedback could be used to unveil each subject’s trade-off between mechanical 

power generated beyond the minimum required and factors beyond economy.  

The implicitly weighted feedback also allowed control of the distribution of effort 

to allow shifts in effort toward arms or legs up to 37% of the mean net power 

during an exercise task. We found that the feedback could be supplied in 

multiple ways.  We tested the use of both implicit and explicit feedback provided 

either through visual feedback or by changing resistance in response to the 

combination of implicit weights and the subject’s limb use. Subjects reduced 

error by 74% relative to their feedback goals and were able to perform 

simultaneous cognitive tasks 4.2% faster when they used implicit feedback to 

direct effort, rather than explicit feedback. Finally, subjective costs inform 

behavior outside of multi-limb exercise.  In a drop landing experiment, subjects 

who dropped on cushioned surfaces performed up to 32% less excess work than 

those who landed on stiff surfaces, which allowed us to quantify the subjective 

cost of a more comfortable landing in terms of mechanical work.  
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Introduction 
 

Humans make complex decisions on how to move their bodies when performing 

a task.  The decision making process may be subconscious or active, but much of 

the time, people seek out the easiest way to accomplish their goals. For example, 

preferred step width while walking, and the way people swing their arms have 

been seen to coincide with the minimum expenditure of metabolic energy, 

compared with alternative widths or swing methods [1], [2]. However, there may 

be factors such as goal-setting [3], or the influence of fatigue [4], which are quite 

subjective and cause people to move in ways which are not economical. 

Moreover, subjective causes of uneconomical behavior are difficult to 

characterize.  Qualitative surveys and scales are used to measure their influence 

[5], [6]. Unfortunately, comparisons or descriptions of the trade-offs between 

them are difficult without a common measure of them all.  Here we describe a 

way to objectively quantify and compare between the factors that influence 

behavior. We use a constrained optimization approach to quantify the cost of 

subjective factors in terms of excess mechanical work and energy generated 

during exercise tasks.  Similar approaches have been used previously in human 

factors research to explain choice of diet [7], or propose a method people use to 

choose when to use stairs vs. an escalator [8]. We aim to use the approach to 

allow prediction and control of behavior to encourage desired limb use for future 

application in areas such as strength training and motor rehabilitation, even if 

those factors are subjective or not directly related to energy expenditure. For 

example, patients in motor rehabilitation often suffer from weakened limbs due 
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to illness or disease.  Their preference for distribution of effort between limbs has 

been affected by their condition.  They act according to many influences, 

including altered perceived exertion, lack of neurological control, and reduced 

physiological capacity.  By measuring the effect of all of these factors on work 

output from the limbs, we may gain insight into how their effort has been 

influenced by their condition.  We may even alter the rehabilitation exercises to 

better encourage use of the patient’s weak limbs, such that the patient may 

regain strength and functional ability. 

 

We first confirmed that behavior during the experimental recumbent stepping 

exercise was the result of decisions beyond the maximization of economy.  

Instead, we hypothesized that the nature of an exercise (e.g. related comfort, 

kinematics, or power requirements) may alter the effort distribution among limbs, 

away from the distribution that may result in the lowest energy expenditure.  We 

compared metabolic rate with different distributions of effort between limbs.  

Then we measured mechanical power in each subject’s preferred limb distribution 

for conditions which altered grip type, reach length, and power generation 

method. (Chapter 1).  

 

Next, we offered an implicit approach to uncover the subjective cost function 

using a constrained optimization approach. Visual feedback was used to 

purposefully alter the work division among limbs toward a target distribution.  

The approach assigns weighted multiples of limb group power unevenly toward a 

goal of the sum of this weighted power from all the limbs.  The more heavily 

weighted limb groups receive more credit toward the task’s goal such that the 

use of these limbs reduces the actual overall required mechanical power.  The 

weighting will alter the subject’s sense of effort by incrementally changing the 
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amount of extra power required to maintain their preferred, perhaps 

uneconomical, combination of limbs. We will thereby uncover a trade-off 

between the minimization of mechanical power and the subjective factors that 

enter into each person’s decision making process on how to split effort between 

limbs. This function is quantified in terms of mechanical power, but will reflect all 

the factors that lead the subject to their choices (Chapter 2). 

 

We compared our implicit feedback method against an equivalent form of 

explicit feedback. If successful, implicit weights could be used to steer effort 

toward specific limb groups, which could prove useful in motor rehabilitation.  

However, for our methods to be adopted, we would like to show that they have 

the potential to be as successful as traditional methods to encourage the use of 

targeted limbs, such as different forms of explicit feedback.  Furthermore, we 

quantified additional benefits that implicit feedback affords, such as lower 

attentional demands and easier tracking of feedback goals.  We compared each 

feedback mode’s ability to predictably and consistently steer effort toward 

targeted limb groups, as well the interaction effects with simultaneous cognitive 

tasks (Chapter 3). 

 

We may convey information about the implicit task constraints visually, or with 

altered resistance to motion. Tasks that alter resistance in response to implicit 

weights and the user’s limb choice may be a simpler, and more direct form of 

feedback than visual feedback of summed weighted powers. We expect that 

lower amounts of resistance are preferred, even if we create weighted tasks in 

which lower resistance exercise is more costly in terms of required mechanical 

power.  We tested whether preference for low resistance is able to alter effort 

distributions in exercise, with or without the aid of visual feedback (Chapter 4).  



 4 

 

Uneconomic behavior extends beyond effort distributions in exercise.  In other 

areas of biomechanics, people still base their behavior on more than just 

economy.  For example, the desire for stability during walking or competitive 

drive during sporting events have been studied as possible motivators for 

uneconomical behavior [9], [10]. Uneconomical behavior in other activities, such 

as drop-landing, may provide people with non-work benefits such as comfort 

and injury prevention if they spend extra energy to cushion their drop.  Stiff, 

straight-legged drops are the most economical, but may not be preferred 

because of their association with greater amounts of pain [11]. We expected that 

when the landing surface is cushioned, people will prefer to reduce the active 

muscle work they perform at collision, becoming more economical.  The 

reduction of extra work subjects perform when they drop onto cushioned 

surfaces will allow us to indirectly measure the benefit the cushion provides and 

form predictions regarding the subject’s future behavior (Chapter 5). 

 

Our work here aims to yield a greater understanding of the interaction between 

difficult to measure subjective factors and human decision-making. Implicit 

feedback can be used in combination with constrained optimization approaches 

to motivate limb use in strength training or for patients in neuromotor 

rehabilitation.  Such feedback may promote specific limb use without the need 

for explicit feedback and help alleviate burdens on the therapist and patient. 
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Chapter 1.  

 

Condition-dependent Preferences for Power Distribution 

in Exercise May Allow for the Control of Effort among 

Limbs 

 

Introduction 

There is often a conflict between short and long term goals in exercise. In the 

long term, people wish to increase strength and coordination, but in the short 

term they are inclined to make the exercise feel easier.  Athletes in training 

exercise to gain increased strength and coordination in the long-term, but their 

short-term desire for ease may lead to exercising with poor form, or for a shorter 

duration.  Likewise, for patients in motor rehabilitation, the long-term goal is to 

recover strength lost due to injury or disease such as stroke or spinal cord injury.  

However, in the short term, patients may compensate for their weakness by 

finding ways to make the task less difficult.  Unaffected limbs may perform the 

majority of the work necessary to fulfill a given task, which promotes learned 

disuse of the weakened side, and creates further asymmetry in strength [12]–[14].  

Better rehabilitation may be possible if the short-term goal of ease could be 

aligned with the long-term goals of proper form and increased strength. 

 

A person’s sense of ease may be informed by a variety of factors.  Humans often 

prefer to perform tasks, such as locomotion, in an energetically economical 
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manner [1], [15]–[17].  However, there are many instances in which factors 

beyond economy influence how people complete a task and their sense of ease.  

Powerful incentives for changes in behavior include goal setting [18], anticipated 

duration and intensity of exercise [3], [19], [20], avoidance of pain [21], preference 

for stability while walking [9], and the effects of fatigue [4], [22]. These factors 

may have energetic components, but they do not always lead to the most 

economical movements.  Therefore, it may be possible to use the non-energetic 

components of each factor to drive people to use specific limbs, although it may 

be less economical.  The use of factors beyond economy to steer effort might be 

useful in rehabilitation.  If patients can be compelled to use weaker limbs, they 

may increase strength and symmetry between their limbs.  In turn, greater 

strength of affected limbs may reduce learned disuse, and lead to greater 

functional outcomes. 

 

We explored three factors that we hypothesized would alter the effort 

distribution between limbs subjects choose in exercise.  We used a recumbent 

stepping machine (NuStep, Ann Arbor, MI) to test how people distribute power 

among limbs under different conditions.  Specifically, we examined the effects of 

grip type, kinematic configuration, and different power generation methods. 

There may be components of each condition that alter the economy of exercising 

with a given distribution.  However, we also believe that factors beyond economy, 

such as comfort or habit, will inform each subject’s choice for their distribution of 

effort.  We expected that less comfortable grips with the hands will lead the 

subject to use their arms less.  Likewise, we expected a change in the length of 

the machine’s telescoping arms would alter how people directed their effort 

among limbs. This may be because muscle forces depend on their contractile 

velocities and length, which will be altered when reach is increased or decreased 
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[23].  There are also differences in economy depending on the spatial 

configuration and rate of power generation of the muscles [24].  However, in 

addition to energetic concerns, some configurations of the body may feel more 

or less comfortable or natural.  Both energetic and subjective factors may play a 

role in how people decide to divide effort among their limbs. Finally, we expected 

that the way in which a subject generated power will alter their preferred 

distribution of effort.  We found it reasonable to believe that the arms or legs 

may be better suited, or used more regularly, to generate power at increased 

speed or against a larger resistance.  People may prefer to exercise in a manner 

consistent with their everyday experiences. 

 

Consistent relationships may exist between the experimental variables and each 

subject’s preferred distribution of effort.  If so, an exercise task could be 

constructed to control how people distribute effort among their limbs.  Such 

methods could be used in strength training or coordination tasks to encourage 

use of muscles in correct combinations to produce proper form.  Exercise tasks 

could also be altered to promote specific effort distributions to help rehabilitate 

the weakened limbs of patients, directing more effort toward the limbs that need 

it most.  Moreover, if the naturally preferred power distribution could be altered, 

target effort distributions could be driven spontaneously, without the need for 

explicit instruction or feedback. Therapists and trainers spend considerable time 

to reinforce exercise goals through verbal explicit feedback. Both could benefit 

from autonomous direction of effort toward limbs that require exercise. 
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Methods 

We explored the relationships between exercise task modifications and limb 

effort distribution.  We quantified limb effort with arms and legs power 

measurements as we varied the exercise task.   

 

The recumbent stepper was instrumented to measure the distribution of work 

produced by the limbs (Figure 1.1 A).  We provided visual feedback of the task’s 

power goal and current performance with an LCD display (Figure 1.1 B). Individual 

limb power was calculated via measurements from custom load cells and 

gyroscopes.  All information was recorded via a microcontroller (Arduino, Italy) 

sampling at around 60Hz. 

 

We calculated the effort distribution as a function of each experimental factor to 

assess whether these factors could steer power generation toward the arms or 

legs.  We reported power generation in each condition for all limbs.  We also 

combined the powers of arms and legs, and then calculated arm use as the ratio 

of the net work performed by the arms (Figure 1.2).  The ratio is a normalized 

quantity to allow direct comparison between conditions with different power 

outputs.   

 

                  
     

           
                         (Equation 1.1) 

 

Six healthy adult subjects (4 male and 2 female, aged 21 ± 1.5 years (mean ± 

standard deviation)) participated in our study.  We recorded anthropomorphic 

data including leg length (0.96 ± 0.069m) and body mass (69 ± 11kg). All subjects 

provided written informed consent according to University procedures. 
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Figure 1.1: Experimental Setup 

A: Adjustments of the NuStep exercise machine: The machine arms could be adjusted to be 

shorter or longer, or turned upside down.  The magnetic load, which resists motion, could be 

increased or decreased.  B: Instrumentation of the experimental hardware to measure power from 

each individual limb and provide visual feedback. C: Visual feedback provided for all experiments 

showing target power level and current contribution. D: Representative data collected at each 

individual limb.  Torque was measured via load cells and knowledge of the kinematics of the 

machine.  Angular velocity was measured via gyroscopes.  The dot product of torque and angular 

velocity yielded power, which is cyclical in nature because of the stepping motion.  A low-pass 

filter was applied to the power which yielded the current contribution. 

First, we fit each subject to the machine and defined a consistent nominal seating 

position. We ensured that each subject could drive the machine through its entire 

range of motion without overextending their joints. We set the position of the 

NuStep’s telescoping arms to a nominal position, which was determined using 

the subject’s arm length after seat adjustment.   

 

Next, we familiarized subjects to the visual feedback, which aided them to 

generate certain levels of power. The feedback presented a power goal, as well as 

the subject’s current performance.  Subjects received information about their 

current power generation from their arms and legs in the form of a moving 

power bar (Figure 1.1 C).  Their goal was to raise the displayed power bar to a 

prescribed target level.  They were to maintain the power at the target, while the 

instrumentation recorded the power from each of their individual limbs.   
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Figure 1.2: Individual and Grouped Limb Power Used to Calculate Power Distribution  

Each individual limb power is combined into arm and leg grouped power.  Next, the overall power 

distribution is calculated via the ratio of arm power to net power (Equation 1.1). Power is low-pass 

filtered to smooth cyclical data due to stepping during the exercise.  For many of the conditions 

studied, the mean limb power and Arm Power Ratio is calculated over seconds 40-85. 

We explored the metabolic cost of exercise on the NuStep. We measured each 

subject’s metabolic rate during exercise on the NuStep with different 

combinations of arms and legs.  We reported the result as the net metabolic rate 

beyond resting. Each subject generated approximately 70W of power with a 

variety of 5 different power distributions between arms and legs for 6 minutes.1  

Net metabolic rate was determined from oxygen and carbon dioxide 

measurements (CareFusion, San Diego, USA), and averaged for the last 3 minutes 

of collection to estimate steady state energy consumption.  Net metabolic rate 

was non-dimensionalized for each subject using their mass, gravity, and leg 

length.  The net metabolic cost for 70W of mechanical power was reported, 

linearly scaled from the amount of power the person actually generated. We 

reported arm and leg power for each condition. We further tested linear and 

quadratic fits which related the contribution from the arms to total power output 

                                                        
 

 

1 The experiments were meant to be performed at constant power, but after further calibration, 

the power and distribution results were updated to reflect the more accurate final calibration. 

Actual powers are reported. 
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to net metabolic rate to determine if different power distributions resulted in 

different net metabolic cost. 

 

After we determined the metabolic cost of exercise using the NuStep, we began 

exploration of the altered exercises. The experimental factors were as follows: 

 

Grip Type 

We changed the grip type used with the stepper’s handles and measured 

differences in the preferred power distribution among limbs. We expected that 

each grip type would change how they used their arms during the exercise. Grip 

type should not significantly alter the amount of mechanical power required to 

fulfill the task goal as it does not change the dynamics of the exercise.  However, 

each kind of grip will change the subject’s level of comfort during exercise.  We 

supplied four conditions in which the subjects performed the exercise.  The 

subjects used the handles to push and pull, push and pull while the handles were 

upside-down, only push, and only push with their fists.  While the subjects 

generated approximately 90W of power for 90 seconds, we measured individual 

limb use and reported arm and leg power, and the mean Arm Power Ratio over 

seconds 40-85.  We used repeated measures analysis of variance (repeated 

measures ANOVA) to determine if there were significant differences between 

conditions.  Where significant differences were found, we performed a set of 

paired t-tests under the Holm-Sidak step-down procedure to test for significant 

differences between individual pairs of conditions. 

 

Reach 

The distance the subject must extend their arms to reach the machine may also 

alter the preferred power distribution between their arms and legs. We adjusted 
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the machine’s telescoping arms to the nominal length as well as two lengths 

shorter and two lengths longer than the nominal position set at the beginning of 

the experiments. We set the lengths as a proportion of the subject’s arm length 

(10% and 20% - which typically produced a range of about 0.3m from shortest to 

longest condition). We measured limb use for 90 seconds during a task in which 

the subject was guided by visual feedback to generate approximately 90W of 

power.  The task was repeated, in random order, and included two trials of each 

reach length condition. We reported arm and leg power under each condition, 

and each subject’s mean Arm Power Ratio over seconds 40-85. Linear and 

quadratic fits related reach length to Arm Power Ratio. 

 

Power Generation 

Finally, we tested whether different methods of power generation (via differences 

in speed and resistance) would alter preferred work distributions between arms 

and legs.  We altered the amount of required power with accompanying changes 

in required speed of stepping or by changing resistance to motion.  A third 

method consisted of generating constant power, in which we simultaneously 

increased resistance and decreased speed or vice versa. We measured arm and 

leg power, as well as the change in the mean Arm Power Ratio from the overall 

average Arm Power Ratio for each subject among all their trials for each task.2 We 

created linear fits relating the three variables of speed, resistance, and power 

generation. 

                                                        
 

 

2 Speed and power performance could not always be made constant under all conditions.   

Therefore, to isolate the change in arm contributions under mixed variable conditions, we 

performed post-processing to subtract the effect of the difference in speed or power from their 

nominal values.  The population’s fit for the constant resistance trend was used to calculate the 

adjustment in Arm Power Ratio reported in the constant speed and power trends.  
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For all statistical tests, the threshold for significance was set at ɑ = 0.05. 

 

Results 

Preferences for power distribution changed depending on a variety of factors.  

Metabolic rate during exercise was found to be similar across different levels of 

contribution from the arms, and yet subjects preferred to use their limbs in only a 

small range of arm contributions.  Furthermore, our data (N = 6) suggest that 

limb power distribution was significantly affected by all of the experimental 

factors.  Changes in grip type shifted up to 17.9% of the net work toward the 

legs.  Changes in the reach length could steer 12.6% of the net work away from 

the arms when the machine arms set further away from the subject or close to 

the subject.  Finally, power generation at different speeds or at different 

resistances shifted limb use away from the nominal distribution of limb work by 

up to 19.2% or 11.8% of the net work, respectively.  

 

The net metabolic rate during exercise generally may be dependent on the 

distribution of effort among limbs.  However, in our recumbent stepping exercise, 

we found no significant change in net metabolic rate across the tested 

distributions.  Subjects used their arms to produce between 24% and 91% of 67.8 

± 10.6W of power during exercise (Figure 1.3). After normalization, all 

combinations of arms and legs had a similar metabolic rate (Quadratic fit, p = 

0.63, 95% confidence interval (CI) for quadratic term including zero (-1.07e-

5/2.39e-5), indicating we could not identify a minimum/maximum. Linear fit, p = 

0.56, demonstrating no minimum of net metabolic rate using either all arms or all 

legs).  However, when we examined data from trials with no constraint on effort 
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Figure 1.3: Limb Use and its Effect on Metabolic Rate 

A: Limb power from arms and legs as a function of the intended arm contribution. B: Net 

metabolic work rate (beyond resting rate), normalized to 70W of mechanical power generation 

and non-dimensionalized with subject mass, leg length, and gravity.  We found no trend in 

metabolic economy with respect to limb power distribution, implying that all combinations of 

arms and legs are equally metabolically costly for this exercise. However, subjects have a 

preferred arms contribution (preferred arm use during normal exercise indicated as standard 

deviation range). 

distribution at similar power levels, we found that subjects prefer to exercise on 

the stepper using a mean arm contribution of 36.3% of net power and only vary 

with a standard deviation of 15.0%. Preferred distributions do not seem to be 

uniformly distributed, as we could have expected from equal net metabolic rate 

across all distributions of effort.  

 

Grip Type 

Grip type affected how subjects preferred to use their arms in exercise. When 

subjects changed their grip type, they displayed significant differences in the 

amount of power generated by the arms (repeated measures ANOVA, p = 1.8e-4) 

(Figure 1.4).  Subjects generated 88.0 ± 6.2W of power across conditions.  
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Figure 1.4: The Effect of Grip Type on Power Contributions 

A: Arm and leg power for each of four grip types.  B: The ratio of arm power to net power is 

reported for each configuration. Significant differences between grip types were found (* denotes 

significant differences between conditions, p < 0.05). 

However, when subjects pushed on the machine’s grips with fists, they produced 

significantly less arm power than when they were allowed to push and pull, either 

with the handles right side up or upside down.  In trials in which subjects only 

pushed on the handles with their fists, we observed 15.8 ± 13.9W (Δ Arm Power 

Ratio, ΔA = 0.18 ± 0.16) less power with arms than in the nominal case (pushing 

and pulling with the handles right side up) (p = 0.0024).  Subjects also performed 

10.2 ± 8.7W (ΔA = 0.12 ± 0.10) less arms power pushing with fists than when the 

handles were upside down (p = 0.0019). 

 

Reach 

The distance between the subject and the machine arms affected their preferred 

power distribution.  Subjects produced 91.0 ± 7.4W across conditions, but used 

their arms less with both a shorter and longer reach to the handles than in the 

nominal case (Figure 1.5).  We modeled the overall relationship between reach 

length and Arm Power Ratio. The modeled trend consisted of a quadratic fit to 

the complete set of data (F-statistic of quadratic fit’s p-value = 2.3e-4).  The linear 
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Figure 1.5: The Effect of Reach Length on Power Distribution 

A: The machine’s telescoping arms were lengthened and shortened from their nominal position.  

Reach length is defined by the difference from nominal, calculated via a percentage of the 

subject’s arm length. B: For each reach length, arm, leg and total power is plotted.  Each subject’s 

data is indicated with a unique color. C: Finally, mean Arm Power Ratios for each reach length is 

plotted, along with the standard deviation.  Arm use is reduced relative to the nominal length as 

the machine arms gets shorter or longer (** denotes p = 2.3e-4 for the F-statistic on the quadratic 

fit, indicating confidence that the fit has a maximum). 

and quadratic terms have 95% confidence intervals excluding zero, indicating 

confidence that the fit has a maximum.  Subjects reduced their arm power by 

13.1W ± 13.7W (ΔA = 0.13 ± 0.13) when the machine arms were fully shorted 

relative to the nominal condition.  Similarly, subjects reduced their arm power by 

4.0W ± 10.9W (ΔA = 0.04 ± 0.09) when the machine arm length was fully 

lengthened. 

   

Power Generation 

Speed of stepping and resistance to motion during exercise influenced how 



 17 

 

Figure 1.6: The Effect of Power Generation Method on Power Contributions 

Arm and leg power, reported as a function of power generation method.  In addition, we reported 

the change in the Arm Power Ratio as functions of speed, resistance and power level relative to 

the overall mean Arm Power Ratio for each method of power generation.  The graphs show the 

isolated effects of each alternative.  A: Arm and leg power as well as change in Arm Power Ratio 

as a function of speed. If subjects increase power generation by increasing speed, they direct 

more of the overall effort towards the legs at higher power outputs.  B: Arm and leg power as 

well as change in Arm Power Ratio as a function of resistance level. If subjects maintain the same 

speed but produce more power by steeping against an increased internal resistance of the 

machine, they tend to increase the use of their arms as a percentage of the net work.  C: Arm and 

leg power as well as change in Arm Power Ratio when resistance and speed are changed inversely 

to one another. If resistance is increased while speed is decreased to maintain constant power 

generation, there is no change in effort distribution as resistance increases. (***p < 0.0001)  

subjects distributed effort among limbs.  We found that subjects significantly 

increased arm use when they stepped more slowly against a constant resistive 

load, or when they generated more power by stepping against a high resistance 

level (Figure 1.6, A, B).  However, when speed and resistance were varied inversely 

to one another, preserving constant power, subjects did not change their 

distribution of power (Figure 1.6, C).   
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Speed of stepping influenced preferred arms use.  When internal resistance was 

fixed, increased power generation was achieved via increased stepping speed.  In 

these conditions, subjects used their arms less when more power was required 

and used their arms more when less power was required (p = 6.1e-7).  The trend 

indicated that at slow speeds, when subjects produced 25W of power, they would 

use their arms to generate 17.6% more net power than on average.  At fast 

speeds, around 125W, subjects would use their arms to generate 19.2% less of 

the net power than average. 

 

Differences in resistance to motion also altered each subject’s preferred power 

distribution. When speed of stepping was constant, increased power was 

produced by stepping against a higher internal resistance of the machine.  At 

higher resistances (higher power at constant speed), subjects tended to use their 

arms more, and at lower resistances (lower power), subjects used their arms less 

(p = 8.0e-8).  The linear trend indicated that at low resistance (at 25W) subjects 

would use their arms to generate 11.8% less net power than their average 

contribution, while at high resistance (at 125W) subjects would use their arms to 

generate 11.8% more of the net power than average. 

 

We found it interesting that when the amount of power was held constant, such 

that speed and resistance varied inversely to one another, no differences in the 

Arms Power Ratio were found (p = 0.43).   

 

In terms of absolute work, power generation method influenced preferred limb 

use. When resistance was held constant, the amount of work performed by the 

arms generally increased as total power increased (p = 0.030).  However, leg 

power increased to an even greater degree (p < 0.0001), such that the 
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percentage of work done by the arms significantly decreased (as reported above).  

When speed was held constant, we noticed a similar finding. Both arm and leg 

power increased as total power generation increased (both p < 0.0001).  

However, arm power increased to a greater degree than that of legs, enough 

that, as a percentage, arms power significantly increased as a function of power 

generation (as reported above). 

 

Discussion 

We have shown there are numerous effective ways to redistribute effort between 

arms and legs.  Furthermore, different proportions of effort between the arms 

and legs can be encouraged without modification of the exercise device.   

 

We believe that subjects may allocate effort between limbs based on a desire to 

minimize an overall subjective cost associated with the task. Subjective cost 

includes a tendency to avoid expending more work or energy than is necessary to 

complete the task.  However, there is the understanding that an individual’s 

assessment of such costs is subjective, and that a variety of other costs such as 

comfort or goal-setting may also be important.  

 

We may intuit some information about the subjective cost function.  Consider a 

hypothetical subjective cost function that generally increases with the power from 

the arms and legs (Figure 1.7 A). We presume that there exist multiple 

combinations of arm and leg power that a person perceives as equally preferred. 

Because there may be factors other than mechanical power that contribute to a 

person’s preference, these combinations might not be equal in mechanical 

power. For example, one may find it equally preferable to perform 25W of 
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Figure 1.7: Potential Subjective Cost Functions 

A: Hypothetical subjective indifference curves, as a function of power from the legs and arms. A 

power task may be viewed as a constraint line that may be achieved with some combination of 

arms and legs (denoted by dashed red line). Subjects are expected to prefer a limb combination 

(denoted by dark line segment) where the indifference curve is tangential to the task constraint, 

equivalent to minimizing their subjective cost. B: A number of potential Subjective Cost Functions 

for a given subject and condition.  Each function yields a different preferred solution to the 75W 

power task. We may infer that changes to the exercise task may alter each subject’s subjective 

cost associated with that task and individual.  Completing the task will thereby lead to a 

difference in their chosen power distribution. 

exercise with only the arms as it is to perform 30W with only the legs. We treat 

these as tasks of equal subjective cost (individual contours, termed Indifference 

Curves, in Figure 1.7 A).  In terms of limb power, the subject’s preferred task 

strategy may be interpreted as a constrained optimization problem. The preferred 

strategy is determined by the intersection of the task constraint (such as 

generating 75W of power) with the contour line of minimum subjective cost.  

 

We hypothesize that people will prefer to perform different tasks with different 

proportions of limb power. Different kinds of tasks may alter the subjective effort 

associated with different combinations of limb power.  Therefore, a unique 

Subjective Cost Function would exist for each pair of subject and task. For 
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example, if subjects only chose to minimize their mechanical power output to 

satisfy the task, there would be no preference for power distribution between 

limbs and all combinations that satisfied the power task could be chosen 

arbitrarily (Figure 1.7 B, upper left).  However, subjects could prefer to use limbs 

in combination because it felt more natural, or they could hope that by using 

their limbs in combination they could prevent fatigue.  In this case, subjects may 

exhibit indifference curves which are associated with a larger amount of power if 

both limb groups are used in combination than when limb groups are used alone 

(Figure 1.7 B, upper right).  Another possibility is that they could prefer the use of 

arms to generate power to a greater extent than the use of their legs.  We found 

subjects had a bias toward the use of arms when greater power generation was 

required at constant speed.  This would again skew the subjective cost 

indifference curves, and the resultant preferred distribution (Figure 1.7 B, lower 

left).  Finally, the subjects may prefer to use their legs more than arms under 

certain conditions.  We found this to be true when subjects gripped the machine 

with in uncomfortable ways, were required to reach very far or short distances, or 

had to generate more power at constant resistance.  The bias toward leg use 

would again appear in the subject’s Subjective Cost Function (Figure 1.7 B, lower 

right). 

 

There also may be psychological reasons to split effort uneconomically. 

Probability matching is a generalizable suboptimal strategy in which choices are 

made in proportion to the choices’ probability of success.  If people wanted to 

maximize the expected value of their choices over time, they instead would learn 

to choose only the highest probability option [25], [26].  Similarly, in some 

exercises (e.g. arms and legs cycling ergometry), one might gain the greatest 

economic benefit by relying only on the more economical limb group to provide 
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all the work [27].  It might even be expected that people would forgo the 

uneconomical group of limbs completely if they truly were to optimize for 

economy.  In contrast to this expectation, limbs are often observed to be used in 

combination.  The difference may be partially explained by the psychological 

factors that lead to such phenomena as probability matching. Perhaps if limb 

groups generate power in some proportion to their capacity, they may hold in 

reserve some energy for unknown future changes in power requirements or 

prevent fatigue over a long period of exercise. Quantification of effort 

distribution preferences may allow us to learn more about psychological 

motivations of behavior. 

 

Another possible explanation for why people sometimes choose to distribute 

effort uneconomically involves the physiological capacity for the limbs to do 

mechanical work.  If a single limb group was unable to provide the task’s required 

power, the subject would be required to rely on the recruitment of additional 

muscle groups. It would not matter if they would enjoy a metabolic benefit when 

using only one group.  Near maximal tasks could therefore necessitate an 

uneconomical division of power among limbs.  Furthermore, it is possible that 

people do not suddenly change their behavior when maximal tasks are 

presented.  Rather, they may scale their power output among limbs in some way 

according to the ultimate capacities of those limbs or the feeling of effort 

associated with limb work. In accordance with other research, we believe that the 

perception of effort scales with capacity for work from each limb group [28]–[30].  

The impression of difficulty may play an important role in the division of effort 

among limbs.  
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As we consider applications to rehabilitation, we may not expect the factors 

studied here to affect patient populations in the same way or to the same degree 

as healthy subjects. We designed our exercise to avoid maximal capacity limits of 

the individual limbs, so we believe work capacity does not play a role in 

determining effort distributions in our experiment. However, for stroke patients, 

who often exhibit discrepancies between their left and right limbs, an inherent 

bias toward use of one side of their body or the other might be apparent.  

Similarly, spinal cord injury patients may have extreme weakness of their legs. 

Therefore, issues of capacity may begin to play a role.  

 

Our results suggest that therapists could manipulate a patient’s effort distribution 

through simple changes in exercise. Patient and therapist attention is valued at a 

premium during the rehabilitation of weakened limbs. Here we showed that there 

are many options available on common exercise machines to enable the shift of 

power output from one limb group to another spontaneously, without the need 

for explicit instruction. Such changes may outweigh the desire to act only in 

accordance to the maximization of economy of motion.  Furthermore, implicit 

methods may help promote specific limb use without the need for explicit 

feedback and help alleviate the attentional burdens that exist for the therapist 

and patient. 
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Figure 1.8: Subjective Cost Function 

We propose that people make decisions for action based upon the minimization of a subjective 

cost function.  In addition to economy, factors such as those associated with perceived exertion, 

and even more subjective factors such as mental state or goal setting can alter chosen behavior.  

Here is one possible categorization of some of these factors, which all are reflected in each 

person’s Subjective Cost Function for a task. 

Supplementary Material 

Considerable research has explored the many factors that affect our metabolic 

costs, perception of effort, and mechanical work output.  Many of these factors 

are seen to directly influence the preferred mechanical work distributions in 

multi-muscle activities.   

 

The factors may explain some of the differences between demonstrated behavior 

and a simpler explanation, such as the behavior which would results from the 
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maximization of economy.  However, many factors interact and are not 

independent of one another.  Therefore, economy often plays a role in our 

perception of effort, as well as comfort and fatigue, for example.  Here we 

present some of the factors that have been studied.  

 

Factors which Affect Economy: 

Metabolic costs of limb use [27], [31]–[33], minimization of mechanical work used 

to explain walking and running [34]–[36], muscle activation [37], and muscle 

coordination [38] 

 

Factors which Affect Perceived Effort (as developed by Borg [5]): 

Anticipation of exercise duration and intensity [20], general attitude or outlook 

[39], competition [18], the influence of visual feedback [40], hypnotic 

perturbations of perceived effort [41], power and work capacities due to cardiac 

output [42], training [43], and fatigue [4], [22], [44] 

 

Other Factors which Affect Effort Distribution: 

Cycling at difference cadences [45], [46], comfort [11], desire for stability while 

walking [9], goal-setting/pacing [3], and neural coupling between limbs [47], [48] 
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Chapter 2.  

 

A Reward System to Alter the Distribution of Effort in 

Multi-Limb Exercise 

 

Abstract 

It is unknown how an exercise can be constructed in which there exists an 

inherent motivation to use specific limb groups.  Explicit feedback can be used to 

encourage specified limb use, but a person’s natural tendency might be to use 

their limbs in a different distribution. 

   

Here we demonstrate that implicitly weighting limb power contributions unevenly 

toward a scalar power task can affect healthy subjects’ preferred effort 

distribution.  

   

In an experimental study, limb group power was weighted unevenly, ranging 

between credit given only for arm power and credit given only for power from 

the legs. Under each condition we measured the amount of performed 

mechanical power from each of the subject’s limbs. We found a consistent 

relationship between the amount of credit given to a limb group and that group’s 

contribution towards the task.  Its consistency allowed us to predict and alter 

their performed power distribution as a function of how much credit we gave to 

each limb group. 
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We believe that, in addition to healthy subjects, patients will also demonstrate a 

predictable relationship between the weighting of limb power and their 

performed power distribution.  Such relationships could be used to steer motor 

rehabilitation patients toward exercising their weakened limbs to a predictable 

degree without the need for explicit instruction or guidance from the physical 

therapist. 

 

Introduction 

Rehabilitation is often employed to encourage exercise and strengthen weakened 

limbs. Persons with hemiparesis, partial paralysis from spinal cord injury, or other 

conditions may chronically prefer to use their unaffected limb, to the point that 

atrophy and learned disuse or nonuse occur [49]. One of the tasks of physical 

therapists and strength trainers is to discourage these tendencies, typically 

through resistance training performed on exercise machines. The therapist 

coaches the patient explicitly to encourage use of the patient’s weakened limbs. 

Unfortunately, the therapist does not always have access to information about 

patient effort, and so proper coaching may be difficult.  In addition, in some 

cases, physical interaction with the patient is required for the patient to complete 

the task, increasing the burden on the therapist, and adding to the cost and time 

involved with therapy. 

 

One of the more successful ways to reduce reliance on the unaffected limb is the 

low-technology approach of constraint-induced therapy [50]. Restriction of the 

unaffected limb offers the patient little alternative but to practice with the 

affected limb. However, although highly effective, it may not be applicable for all 
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patients. For example, some stroke patients with poor function may be unable to 

perform exercise without some assistance, which the unaffected side could 

provide. This is especially true for locomotor tasks, in which one leg cannot be 

substituted for both. The drawback is that, once the unaffected limbs are allowed 

to participate, they may again be favored to the exclusion of the affected limbs. 

 

Some robotic interventions have been developed to lessen the assistance and 

feedback required from therapists. The Lokomat robot provides locomotor 

assistance by moving the patient’s legs though a walking motion [51]. Similarly, 

the MIT Manus robot assists the patient’s upper extremity through a reaching 

motion [52]. The remaining concern with such devices is that, with automated 

guidance or assistance, the patient may have little incentive to exert their own 

effort, which is the point of exercise [53][54]. Furthermore, robotic training often 

does not provide benefit beyond those which assure patient effort by the 

elimination of assistance, or training in which effort is required before robotic 

assistance is provided [55]. Perhaps outcomes could be improved if rehabilitation 

and exercise devices could be designed to encourage proper use of the affected 

limbs in addition to providing assistance. 

 

Another manner of eliciting patient participation is by making the task self-driven 

[56]. However, there still remains the hurdle of giving a patient incentive to 

exercise a weakened limb, especially when only using stronger limbs may fulfill 

the exercise task.  

 

Some recent technologies have been proposed to give greater feedback to the 

patients to enforce effort. Pedaling machines can provide explicit feedback about 

the contribution of each side of the body (Motomed, Germany). Walking assist 
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robots can also provide the patient with explicit feedback regarding symmetry, 

limb motion, and effort [54]. Although these approaches are promising, a 

drawback of many feedback systems is the complexity of information presented 

to the patient [57][58][59]. Many patients may be cognitively taxed by a display of 

multiple graphs or other plots. Explicit feedback shows promise, but with the 

drawback of requiring attention.  

 

The involvement of the affected limb might be encouraged without explicit 

feedback or as great of a cognitive burden if the task could be designed to take 

advantage of a patient’s natural tendencies.  The challenge is therefore to gain 

sufficient knowledge of a person’s tendencies—their preference to use one group 

of limbs or another in combination—to permit their exploitation. In the present 

study, we attempt to quantify the tendencies of healthy adults performing a 

multi-limb, recumbent stepping exercise. We then test whether such 

quantification can predict the preferred contribution of a particular limb group 

when the task is implicitly biased to favor that group. Finally, we consider 

possible applications to rehabilitation.  

 

We propose to reward the user with a variable weighting of limb group power 

contributions to create an implicit incentive for exercising designated limb 

groups. Humans often prefer behavior which is more economical, and therefore it 

may be possible to alter effort distributions toward a target if that target is made 

less effortful.  

 

We will give more credit for work from some limbs than for the work from others 

during a work-based exercise task.  
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In essence, we suggest that a patient’s bias in performance toward using one 

group of limbs over another stems from their chosen method feeling the easiest. 

There is already some evidence that effort can be directed by decreasing the 

magnitude of force necessary to complete an exercise task with the desired effort 

distribution [60].  Furthermore, humans may judge this force by means of their 

own subjective sense of effort, which scales with their force producing capabilities 

[61]. Therefore, there seems to be evidence that subjective impressions of 

biomechanical behavior influence the distribution of effort humans choose to 

accomplish a task. Here we manipulate one variable which influences ease, 

namely the power necessary to fulfill the task. Our aim is to use weighted tasks to 

quantify the subjects’ sense of ease and then construct a task with proper 

feedback such that the easiest way to complete the task is with increased 

recruitment of their weakened limbs, or any other specific contribution goal. 

 

Methods 

We experimentally quantified how human subjects allocate power between limbs 

during multi-limb exercise, and how implicit uneven weighting of power from 

limb groups toward an exercise goal affects that allocation. Our subjects 

performed multi-limb exercise on a NuStep recumbent stepper machine (TRS 

4000, NuStep, Inc., Ann Arbor, MI). While seated, the subject moves all four limbs 

against a single load (Figure 2.1 A). The NuStep is intended for self-driven 

rehabilitation exercises related to locomotion while allowing subjects to remain 

seated. We instrumented the machine to measure power from all four limbs, 

which could be weighted differently toward a weighted power target provided to 

the user via visual feedback. The power from either the legs vs. arms, or the left 

vs. right sides of the body, could thus be credited unevenly toward a task (Figure 
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2.1 C). The primary question was whether subjects would tend to alter the 

distribution of effort between limbs even if not explicitly informed about the 

weighting.  

 

A separate experiment was conducted for each of two limb groupings. For the 

legs vs. arms study, 11 healthy adult subjects participated (6 male and 4 female, 

age 25.3 ± 7.1 years (mean ± standard deviation)). For the left vs. right side study, 

10 healthy adult subjects participated (6 male and 3 female, age 21.9 ± 3.3 years). 

We recorded body mass (72 ± 13kg) for each subject, and all provided written 

informed consent according to University procedures. One subject in the legs vs. 

arms study was too weak to reach the weighted power target with their self-

selected combination of arms and legs and so was excluded from further trials, 

and their data was deleted, leading to 10 data sets instead of 11.  In addition, we 

experienced technical difficulties during one data collection in the left vs. right 

study and the subject could not return for another test, leading to 9 sets of data 

instead of 10.  

 

The stepper machine was instrumented to measure mechanical power output 

from each limb (Figure 2.1 A). Customized load cells were installed in the handles 

(StrainSert, West Conshohocken, PA) and foot pedals (FlexiForce, South Boston, 

MA; Nintendo, Japan) to measure applied forces, and optical encoders were used 

to measure net motion. Subjects were instructed to maintain contact with the 

machine with all four limbs, even if they chose not to apply appreciable forces. 

Mechanical power for each limb was computed from the moment produced by 

the applied forces multiplied by the angular velocity. The summed power from all 

limbs was dissipated by the machine’s internal resistance. The measurement of 



 32 

 

Figure 2.1: Experimental Setup 

A: Force and angular velocity of the individual limbs are measured at each arm and leg.  B:  Limb 

power is calculated via the dot product of the moment exerted by each limb and the angular 

velocity. C:  Limb group powers (legs and arms or left and right sides) are multiplied by a 

weighting factor and summed.  The effect of the weighted sum is displayed to the subject as 

either individual limb group contributions relative to a target region (top), or their combined 

contribution towards a scalar target level of their summed weighted power (bottom).  In either 

case, a moving average of the subject’s current contribution is shown relative to their target 

region.  

power from individual limbs is key to experimental testing of the conceptual 

approach, detailed as follows. 

 

Conceptual Approach  

We propose that users allocate effort between limbs based on the desire to 

minimize a subjective cost associated with the task. Subjective cost can be 

modeled as an objective function, as is typical of the optimization approach to 

motor control [62], [63]. A limitation of this approach is that there is usually 

incomplete knowledge regarding an individual’s actual objective for a motor task, 

despite an experimenter’s intended objective. In the context of neuromotor 

rehabilitation, we hypothesize that subjective cost includes a tendency to avoid 

expending more work or energy than is necessary to complete the task, but with 

the understanding that an individual’s assessment of such costs is subjective, and 

that a variety of other costs may also be important. These may include cognitive 

load, physiological capacity for power generation, and even highly subjective 

factors such as comfort, habit, or goal-setting. Because the present task has 
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explicit goals in terms of mechanical power, we will characterize subjective cost as 

a function of the power from the limb groups in question. 

 

We wish to determine the characteristics of our subjects’ subjective functions. 

Consider a hypothetical subjective cost function that generally increases with the 

power from the arms and legs (Figure 2.2 A). We presume that there exist 

multiple combinations of arm and leg power that a person perceives as equally 

preferred. Because there may be factors other than mechanical power that 

contribute to a person’s preference, these combinations might not be equal in 

mechanical power. For example, one may find it equally preferable to perform 

25W of exercise with the arms alone as to perform 30W with the legs alone. We 

treat these as tasks of equal subjective cost (individual contours in Figure 2.2 A). 

The nature of the subjective cost function may be revealed, in part, through 

observations of the limb combinations a subject prefers as a function of task 

conditions. Unequal task weightings may be applied to the limbs, so that the 

limbs contribute differently toward a goal amount of weighted power which is 

presented to the use via visual feedback.  We called the weighted sum of power 

the subject’s Performance, which is calculated as follows: 

 

              (  | |) ((   )            (   )           )  

(Equation 2.1) 
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Figure 2.2: Relationship between Subjective Cost and Manipulation of Performance 

A: Hypothetical subjective indifference curves, as a function of power from the legs and arms. B: 

A weighted task may be viewed as a constraint line that may be achieved with many combinations 

of arm and leg power. Three possible tasks are shown, weighting the legs only, legs and arms 

equally, and arms slightly toward a scalar amount of Performance. C:  Subjects are expected to 

prefer a limb combination (denoted by dark line segments) for each task where the indifference 

curve is tangential to the task constraint, equivalent to minimizing their subjective cost associated 

with the task. D: Preferences are expressed in terms of the subject’s limb use at each preferred 

distribution for each Task Weighting (x-axis).  Limb use is reported as a Performance Bias, B, which 

represents the amount of power coming from each limb group, varying from using the legs to 

generate 100% of the net power (B = -1), to using the arms to generate 100% of the net power (B 

= 1). 

  where P is the total weighted power, and  is a Task Weighting to give limbs 

unequal contributions toward a goal amount of P. A value of  = -1 corresponds 

to weighting the legs (or left side) alone,  = 1 to the arms (right side) alone, and 

 = 0 to equal weighting, such that P is the same as actual total mechanical 

power. Each value for is thus a task that a user would be expected to perform 
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with a different combination of limbs. A task constraint is set to match a target 

amount of Performance (Figure 2.2 B).  Different combinations of limb powers will 

satisfy the constraint, but these are limited by Equation 2.1. For practical reasons, 

we chose to express the target visually as a zone within 15% of the goal level:   

 

                                                (Equation 2.2) 

 

In terms of limb power, the subject’s preferred task strategy may be interpreted 

as a constrained optimization problem. The preferred strategy is determined by 

the intersection of the task constraint with the contour line of minimum 

subjective cost (Figure 2.2 C). The unknown subjective cost function may thus be 

characterized by sampling the preferred strategies for a range of task weightings 

. In addition, the preferred strategy itself may be summarized by a Performance 

Bias parameter, B, which expresses the amount of leg/arm, or left/right side, 

power relative to net power.  It is computed from the user’s actual power 

contributions according to: 

 

                    (
          

                    
)                  (Equation 2.3) 

 

Here, a B value of -1 corresponds to using the legs or left side to generate 100% 

of the net power, and 1 corresponds to the arms or right side generating 100% of 

the net power. We show the relationship between the Performance Bias and the 

Task Weighting as the Manipulation of Performance Function (Figure 2.2 D). 

 

We hypothesize that people will prefer to perform different tasks with different 

proportions of limb power, dependent on the task weighting. Even if a biased 
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weighting is not indicated explicitly, a tendency to seek lower subjective cost is 

expected to cause a change in Performance Bias, away from their neutrally 

weighted Performance Bias. A subject’s decision on how to distribute effort for 

different tasks is reflected in the shape of the Subjective Cost Function’s contours, 

or indifference curves (Figure 2.2, power combinations along a contour are 

equally preferable).  The shape of the indifference curves can be used to 

demonstrate a trade-off between multiple variables that all have an effect on 

choice or preference.  Applications of indifference curves, though predominantly 

used in economics, have started to be used to describe behavioral decision-

making [8]. 

 

Experimental Protocol 

Each experiment consisted of a Familiarization period followed by an 

Experimental period. Familiarization was intended to allow subjects to gain an 

understanding of the task and explore a range of different limb combinations 

that would satisfy the task constraint. In the subsequent Experimental period, we 

randomly assigned Task Weightings,  unknown to the subject, and measured 

their preferred Performance Bias, B.   

 

During Familiarization, we presented subjects with explicit visual feedback of the 

instantaneous weighted power from each limb pair (Figure 2.3 A). This was 

displayed as a dot cursor (smoothed with a moving average) plotted on a two-

dimensional field with the leg and arm (or left and right) power as the two axes. 

We displayed a target zone for the cursor and asked the subjects to explore 

different combinations of limb power to locate their cursor in different areas of 

the target region. This allowed the subject to experience a nearly full range of 
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Figure 2.3: Explicit and Implicit Feedback 

A: Familiarization (Explicit): Different task constraints favoring one group of limbs or another are 

normalized and explored. Weighted arm power is displayed as the x-coordinate of the moving 

dot cursor, and weighted leg power is displayed as the y-coordinate. The task constraint is 

normalized to be viewed as a diagonal region in all conditions. B: Experimental (Implicit): 

Weighted limb contributions are summed to create a single-goal task to assess each subject’s 

choice for limb power distribution for each condition. 

  power distributions and experience how the multi-limb task goal could be 

accomplished using different appropriate combinations of limb power.  

 

Next, the Experimental portion determined each subject’s preferred distribution 

of effort during implicitly weighted tasks. A moving average of their Performance, 

P (Equation 2.1), was displayed in real time on a bar graph meter, along with a 

visual target, PVis, which indicated the level of Performance to be achieved (Figure 
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2.3 B). The Task Weighting was varied with each condition, and subjects were 

asked to achieve the target level without knowledge of the weighting. We 

measured Performance Bias for each task (Equation 2.3). For example, one task 

might weigh the legs alone ( = -1) toward subject Performance, and the subject 

might respond by biasing their effort toward the legs (Performance Bias, B = -1) 

or by using arms and legs equally (B = 0).  

 

The Experimental sessions consisted of a period of Exploration and Assessment 

(Figure 2.4). In Exploration, subjects were encouraged to explore different 

combinations of limbs on their own, though now without knowledge of the 

weighting or explicit information about the weighted sum of their limb power. 

When they were confident about the limb combination they most preferred to 

satisfy the task, they signaled to the experimenter and Assessment began. In 

Assessment, the subject honed their preferred limb distribution under each 

condition as data was recorded. The experiment consisted of two sets of 11 trials 

with Task Weightings,  distributed in the range -1 to +1, conducted in random 

order, again unknown to subjects. We collected data during Assessment over a 

brief period of at least 15 - 30 seconds. Subjects typically reached a steady state 

distribution of effort within this time frame. Each trial was followed by a brief rest, 

with a longer rest between sets. 

 

The effort levels were determined as follows: For male subjects, the target level 

was equivalent to 100W of mechanical power for equally weighted trials (. 

Female subjects were given a target 40% lower to account for typical strength 

differences between genders. Subjects were generally able to conduct repeated 

trials at these target levels, except for one subject who, as previously noted, 
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Figure 2.4: Combination of Limb Power to Yield Performance Bias  

Each individual limb power is combined into arm and leg grouped power.  Next, the overall power 

distribution is calculated via the ratio of arm power to net power scaled to range from -1 to 1 

(Equation 2.3). Power is low-pass filtered to smooth cyclical data due to stepping during the 

exercise.   

 became fatigued early in the experiment, and whose participation was terminated 

and whose data were excluded from the analysis. 

 

Data Analysis 

We characterized Performance Bias, B, across Task Weightings, , as a logistic 

function of according to: 

 

                             ( )      
     

     (   
 )             (Equation 2.4) 

 

This curve has asymptotes at the two extremes of limb use preference, and 

changes monotonically between the extremes (Figure 2.2 D).  The parameter    

describes the weighting at which there is the greatest change in B().  It reflects a 

horizontal shift in the curve, and indicates a non-neutral Performance Bias at a 

neutral Task Weighting.  Values greater than 0 indicate an inherent preference for 

legs or the left side, and values less than 0 indicate that, under a neutral Task 

Weighting, subjects will generate more power with their arms or right side.  The 

parameters B1 and B2 are the lower and upper asymptotes, respectively. They 

represent the limits to which subjects are willing to generate more of the net 

power with a single limb group. Finally, the parameter   characterizes the 
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sharpness of the curve, where larger values tend toward the creation of a step 

function. A sharper curve indicates a more sudden transition from use of one pair 

of the limbs to the other as a function of Task Weighting. 

 

We reported the limb power performed for each condition and fit the parameters 

for the Manipulation of Performance function for the population and individuals. 

Statistical comparisons were made between the fit parameters and meaningful 

values using their confidence intervals (for the population) or a one-sample 

Student’s t-test (for individuals).  The legs/left asymptote, B1, was compared to -1, 

which would indicate that the legs or left side performed 100% of the net power.  

The arms/right asymptote, B2, was compared to +1, which would indicate that the 

arms or right side performed 100% of the net power.  The parameter    was 

compared to 0, which would indicate an equal division of power between limb 

groups at a neutral Task Weighting. For t-tests, the significance threshold was set 

at ɑ = 0.05. 

 

We also estimated the Subjective Cost Function for the studied population 

numerically from the Manipulation of Performance fits.  We derived contour 

shapes according to performed power and individual limb contributions at each 

Task Weighting. Each Task Weighting equates to a task constraint with a specified 

slope for the Subjective Cost Function.  We also know from optimization that the 

Subjective Cost Function will have an identical slope when minimized at the 

solution.  The Performance Bias equates to a specific point on that constraint.  By 

smoothly sampling the Performance Bias at each Task Weighting, we can derive 

slopes of the Subjective Cost Function to create an entire contour at a designated 

amount of weighted power, or on a unique indifference curve.  The goal amount 
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of Performance can be scaled higher or lower to estimate neighboring 

indifference curves.  

 

The derivation of the Subjective Cost function from the Manipulation of 

Performance function enforces equivalences between the shape parameters of 

the two functions (Figure 2.5). The shape of the contour is the same at each 

indifference curve because we have not characterized the parameters of the 

Manipulation of Performance Function independently for different Performance 

levels. 

 

Finally, a validation of the Manipulation of Performance Function fit was made for 

each individual subject. We fit a Manipulation to Performance trend to a subset 

of each subject’s data.  The data were chosen such that the data would span the 

range of the Task Weighting, and consist of 75% of the trials.  We reserved 25% 

as validation data to test the predictive power of the individual fits. We reported 

each curve fit result with median R2 values and ranges—one for the fit data, and 

another for the same curve fit’s prediction of the validation data.  

 

Results 

We found that Task Weightings had a systematic effect on each subject’s limb 

use during exercise. Tasks weighted toward a particular limb pair generally 

resulted in greater use of those limbs (Figure 2.6).  

 

All Subjects 

To summarize the overall subject pool, a single Manipulation of Performance 

Function was fit to all of the subject data for each study (parameter values in 
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Figure 2.5: Equivalents of Interpretations 

We may estimate the shape of the Subjective Cost Function’s contours numerically from 

knowledge of the logistic trade-off between Task Weighting and Performance Bias. A: 

Manipulation of Performance Function – Each of the parameters in Equation 2.4 relate to a 

graphical and physiological interpretation of the curve. Here, each parameter is shown with its 

associated influence on the logistic curve’s shape. B: Subjective Cost Function – The logistic curve 

includes information about limb group power and Task Weighting which will uniquely define the 

shape of the Subjective Cost Function’s contours.  Here we show the effect that each of the 

parameters in Equation 2.4 (indicated with primes) have on the shape of the contours, thereby 

drawing equivalence between the two interpretations of the data. 

  Table 2.1). The overall fit of Performance Bias vs. Task Weighting confirms the 

consistency and repeatability of inter-subject performance (R2 = 0.80 for legs vs. 

arms and R2 = 0.79 for left vs. right, Figure 2.7). 

 

The population preferred to use the legs significantly more than arms under the 

neutral weighting condition (57% vs. 43%, from Λ* = 0.12, 95% confidence 
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Figure 2.6: Limb Group Power Generated across Task Weightings 

Individual limb group power vs. Task Weighting. The mean is indicated with a red line and the 

shaded region is the standard deviation of limb group power at each weighting.  The more 

heavily weighted limb group is used more than the less weighted limb group. 

  interval (CI): 0.05/0.20). There was no significant bias away from neutral in the left 

vs. right experiment (Λ* = 0.02, CI: -0.03/0.07). 

 

At extreme task weightings, which rewarded individual limb groups alone, 

subjects generally tended to perform a non-zero amount of power with the other 

group of limbs, (legs vs. arms: B1 = -0.65, CI: -0.74/-0.57, B2 = 0.74, CI: 0.62/0.86, 

and left vs. right sides: B1 = -0.54, CI: -0.61/-0.47, and B2 = 0.55, CI: 0.48/0.61).  

The population also exhibited a smoother shift in preference for legs/arms (σ = 

4.43, CI:  3.05/5.82) than for left/right limbs (σ = 8.31, CI:  5.07/11.54). 
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 Manipulation of Performance for Population 

parameter            

description 
legs/left 

asymptote 

arms/right 

asymptote 

step/line 

trade-off 

Inherent bias  

Legs vs. Arms 

 

value -0.65 0.74 4.4 0.12 

95% CI -0.74/-0.57 0.62/0.86 3.1/5.8 0.05/0.20 

Left vs. Right 

 

value -0.54 0.55 8.3 0.02 

95% CI -0.61/-0.47 0.48/0.61 5.1/11.6 -0.03/0.07 

 

Table 2.1: Manipulation of Performance Results for Population 

Parameters of the fit for the population in the form of Equation 2.4.  Table includes best-fit values 

and 95% confidence intervals (CI). 

 
 

We also used the population’s Manipulation of Performance Function to 

numerically generate contour curves for both the legs vs. arms and the left vs. 

right side study (Figure 2.8). 

 

Individual Subjects 

Each subject exhibited a unique limb preference curve. To illustrate the variation 

between subjects, representative individual preferences are shown in Figure 2.9. 

Results are first presented for the legs vs. arms trials, followed by left vs. right. 

  

We found logistic curves to fit the individual data reasonably well (Figure 2.9 - fit 

of form Equation 2.4 to all data for each individual subject: median R2 = 0.89 for 

legs vs. arms study and R2 = 0.86 for the left vs. right study). The range of limb 

use was typically close to the possible extremes, but usually not with the 

exclusion of any limb group. For example, when the task only credited power 

from the legs ( = -1), subjects tended to strongly prefer the legs, but with some 

remaining contribution from the arms (median B1 = -0.65, comparison: B1 > -1, p 
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Figure 2.7: Manipulation of Performance Functions for All Subjects 

Plotted is the Performance Bias vs. Task Weighting for the population studied in both legs vs. 

arms and left vs. right studies. The data is fit with generalized logistic functions in the form of 

Equation 2.4. A: Relationship between Task Weighting and Performance Bias for legs vs. arms 

grouping.  B: Relationship between Task Weighting and Performance Bias for left vs. right 

grouping. Solids lines are a fit to data from all subjects. Dotted lines represent 95% confidence 

intervals on fit parameters.   

= 6.6e-4). For pure arms weighting ( = 1), subjects still performed some work 

with the legs (B2 = 0.80, B2 < 1, p = 0.047). For the left vs. right task, subjects 

again chose to maintain some power production by the unweighted limb-group 

(B1 = -0.57, B1 > -1, p = 1.1e-4 and B2 = 0.61, B2 < 1, p = 0.013) (Table 2.2). 

  

Subject power distribution preference typically did not exhibit a linear 

dependence on task weighting, displaying a more sigmoidal relationship with 

weight. The parameter σ describes that dependence, with a value of σ = 1 

denoting a linear increase with , and σ values tending toward infinity denoting a 

step-like change in limb use.  The observed median of σ = 5.5 for the legs vs. 

arms study indicates a relatively gradual, sigmoidal dependence. For the left vs. 

right study, the median σ = 8.3 indicates a similarly sigmoidal trade-off. 
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Figure 2.8: Estimated Subjective Cost Functions for All Subjects 

A: Estimated Subjective Cost trade-off between arms and legs.  B: Estimated Subjective Cost 

trade-off between left and right sides. Individual subjects are shown with unique colors. 

Finally, in the legs vs. arms study, subjects demonstrated an inherent bias toward 

legs, whereas they demonstrated no significant bias under the unweighted 

condition between the left and right sides.  The parameter    had a median value 

of 0.16 (   ≠ 0, p = 0.012) for the legs vs. arms study, indicating a significant bias 

toward using the legs under a neutral Task Weighting.  In the left vs. right study, 

   had a median value of 0.0055 (   ≠ 0, p = 0.21), showing no significance 

difference. 

 

We also performed a test of the consistency of limb preference within subjects. 

Fits for each subject, in the form of Equation 2.4, were created using 75% of their 

data, spanning the range of Task Weightings. The remaining 25% of their data 

was withheld from fitting as validation data. We tested how well the validation 

data conformed to the fits to the fit data.  For the legs vs. arms study (N = 10), 

the fit data fits yielded a median R2 = 0.90 (ranging from 0.79 to 0.96). We used 

the same fits on the independent validation data, which resulted in a median R2 = 
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 Manipulation of Performance for Individual Fits 

parameter            

description 
legs/left 

asymptote 

arms/right 

asymptote 

step/line 

trade-off 

Inherent bias  

Legs vs. Arms 

median value -0.65 0.80 5.5 0.16 

comparison > -1 < 1 --- Different than 0 

p-value 6.6e-4 0.047 --- 0.012 

Left vs. Right 

 

median value -0.57 0.61 8.3 0.0055 

comparison > -1 < 1 --- Different than 0 

p-value 1.1e-4 0.013 --- 0.21 

 

Table 2.2: Manipulation of Performance Results for Individual Fits 

Parameters of individual fits in the form of Equation 2.4.  Median values and statistical comparison 

values are reported.  Significance of comparisons with inter-subject fit parameters is indicated 

with one sample t-test p-values.   

 
 

0.83 (ranging from 0.23 to 0.97). For the left vs. right comparison (N = 9), the fits 

on fit data yielded a median R2 = 0.92 (ranging from 0.76 to 0.97), and the 

validation data yielded a median R2 = 0.84 (ranging from -0.14 to 0.92; see Figure 

2.9).  The results suggested a reasonable degree of repeatability and robustness 

within subjects, albeit for a small number of outliers. 

 

Discussion 

We had hypothesized that humans have a tendency to prefer movements that 

minimize a subjective cost, quantifiable in terms of mechanical work. The 

hypothesis implies that implicit weighting of limb powers toward a goal amount 

of weighted limb power could alter the preferred limb contributions by altering 

the subjective cost associated with each weighting and distribution.  Furthermore, 

we may induce these effects without the need for explicit feedback to the subject 
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Figure 2.9: Representative Individual Subject Data and Fits 

Performance Bias vs. Task Weighting relationship from representative subjects in the form of 

Equation 2.4.  Logistic curves (solid lines) were fit to a portion of the data (Fit Data, filled circles). 

The remainder of the data was reserved and used to test the predictive ability of the fit (Validation 

Data, unfilled circles).  A: Representative legs vs. arms study subjects – Median R
2
 for validation 

data for all subjects was 0.83. B: Representative left limbs vs. right limbs study subjects. Median R
2
 

for validation data for all subjects was 0.84 

  about weightings. Our results show that subjects biased their use of limbs in 

accordance with these expectations.  

 

The subjects did not arrive at the limb distributions reported immediately, but 

only after some exploration with different limb distributions that allow subjects to 

judge which they preferred. Most subjects explored each task for up to one 

minute before settling upon their preferred limb distribution. We suspect that 

determining preference is a physiological process that occurs continually. 

However, the consistency of our repeated trials suggests that continued 

refinement would have had little effect.   
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We found it curious that subjects tended to use all limbs, even if one pair was not 

weighted at all toward the task goal. In fact, subjects sometimes performed 20-

40W of unnecessary power to preserve using the limbs together. This may have 

been a consequence of our requirement that subjects maintain contact between 

all four limbs and the machine. Subjects might have found it difficult to produce 

zero force with the non-weighted limbs, and would have chosen to remove those 

limbs from the exercise machine entirely, given the choice. But there are also 

other possible explanations. There may exist neural coupling between limbs, 

meaning that movements of one limb group may necessarily activate the muscles 

of another [47]. Or, it may be helpful to use both sides of the body to prevent 

twisting of one’s torso, which may occur if the limbs on one side were used much 

more than the other.  Maintaining control over posture with some additional 

effort may be important to the subject, even if the extra work appears not to 

contribute to their primary task goal.  

 

Expected fatigue and the capacity for power generation or work of limbs may 

also play a role in how subjects determine their effort distribution.  Subjects may 

use combinations of limbs to reduce the possibility for fatigue which may reduce 

their ability to complete a future task that might demand more of only one limb 

group.  Distribution of the workload among the limbs may serve to ensure that 

the subject will be able to complete future tasks, despite the fact that in the 

current task, concentrated effort would make the task easier. Finally, it may seem 

unnatural to only use one group of limbs if the subject expects the task to require 

all their limbs.  Expectations about the nature of the task, or the subject’s 

previous experience under similar circumstances could influence their preferred 

strategy. 
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In possible applications to rehabilitation, our intention with implicit feedback is to 

increase strength by recruiting weak limbs for a greater period of time and to a 

greater degree.  We do not assume that better symmetry induced from training 

will persist after exercise or that after-effects of altered symmetry are necessary 

to achieve functional benefits or increased strength. Our method therefore 

contrasts with some others which attempt to instill a learned effect which will 

persist after training has stopped or via error augmentation [64]–[67]. We do not 

claim or dispute that such learning occurs, but rather only rely on subjects acting 

in accordance to preferences they already had to benefit from the strength 

training implicit feedback may encourage. 

 

At this point, our implicit feedback relies on visual feedback to the user. A visual 

display is somewhat abstract compared to the normal force and proprioceptive 

feedback humans regularly use to inform many of their behaviors during 

everyday activities. We used visual feedback for its straightforward 

implementation, but an alternative approach might be to adjust the physical 

resistance felt by the user in response to their limb use and our implicit 

weightings.  One could imagine a system in which resistance to motion could be 

decreased when subjects use the more heavily weighted limbs, but the same 

speed of stepping is required to match their exercise goal.  Lower effort via 

changes in resistance could thus provide an incentive toward the use of specific 

limbs, similar to those found in this study. We suspect that more natural feedback 

could perhaps reduce the cognitive demand of the task. 

 

It remains uncertain what actually determines a person’s subjective cost function. 

Our experiment revealed the preferred power distribution as a function of Task 

Weighting, which may be interpreted as the intersection of a subjective 
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indifference curve with an applied task constraint. The composition of many such 

intersections revealed an image of indifference curves (Figure 2.8). Unfortunately, 

we lack the ability to assign values to these contours. We presume that subjective 

cost depends on a variety of factors, such as metabolic energy expenditure, 

limitations on muscle strength or previous training [68], and even less measurable 

effects such as discomfort and fatigue [4], [11], [22]. There is even evidence that 

expectations of an exercise’s duration or intensity can alter perceived exertion 

[69]. Further experiments targeted at such factors might provide more specific 

insight regarding subjective cost. 

 

The methods to quantify subjective preferences examined here may be used to 

motivate limb use generally in strength training or for patients in neuromotor 

rehabilitation. As an extension of this work, it may even be possible to control the 

kinematics of certain movements via similar mechanisms to help with 

coordination tasks.  Correct form could be mapped to lower subjective costs via 

similar implicit feedback, and therefore become controlled by lowering the 

subjective cost associated with correct movements. Implicit feedback may reduce 

the vigilance and attention required of athletic trainers and physical therapists 

when they provide explicit feedback in a wide range of possible applications. 



 52 

Chapter 3.  

 

Implicit Vs. Explicit Feedback: A Comparison of Methods 

to Redistribute Effort during Multi-Limb Exercise 
 

Introduction 

It often takes great concentration and effort to exercise with the proper form or 

strengthen muscles.  In rehabilitation in particular, the therapist directs the 

patient to use the limbs weakened due to injury or disease, despite the time and 

attention it takes to reinforce the behavior. Patients who have suffer from stroke 

or spinal cord injury may instead prefer to compensate with their strong limbs 

because it feels less difficult.  In traditional therapy patients must pay attention to 

the therapist’s cues to correct their behavior and achieve improvement. Their 

attention might already be strained due to limitations arising from brain injury 

[57], [70], or through the process of aging. Lower cognitive function is related to 

poorer functional performance [71], such that if the patient’s cognitive abilities 

are overextended or they become confused by elaborate feedback, there may be 

delays in recovery. Furthermore, explicit feedback from the therapist or exercise 

machine may interfere with the subconscious adaptation of limb use [58], [59]. It 

might be better to steer patient effort implicitly, and leverage patient preferences 

to alter their work distribution without the need for constant explicit 

reinforcement.  Implicit feedback could potentially reduce the demands on the 

therapist and patient if an exercise could be made in which the subject’s desire 

for ease was aligned with increased work from particular limbs.  
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We propose to implicitly weigh power contributions from the arms and legs of 

healthy subjects unevenly toward a scalar goal of this weighted power to 

encourage the use of the more heavily weighted limb group [similar in method to 

Chapter 2]. We hypothesize that humans determine their preferred distribution of 

limb effort based, in part, on relative ease, and will use the combination of limbs 

which satisfy their exercise goal with the least effort.  We intend to compare this 

implicit strategy with an analogous explicit feedback mode to determine the 

effect of the feedback on limb distribution preference and cognitive ability. If 

healthy subjects demonstrate less interference between exercise performance 

and cognitive performance with the use of implicit feedback, then patients, with 

their more limited and variable ability levels, may also benefit from the same 

approach. 

 

Methods 

We performed an experiment to compare subject limb use when they used 

implicit and explicit feedback to match power and symmetry goals during multi-

limb exercise. We also compared cognitive demand of the two modes of 

feedback.  We determined if implicit feedback had less of an effect on the ability 

to perform a secondary math-based cognitive task than explicit feedback. 

Conversely, we explored how the cognitive task would affect each subject’s ability 

to use implicit or explicit feedback to match their exercise goals.  

 

Twelve healthy adult subjects participated (8 male and 4 female, age 21.8 ± 2.5 

years (mean ± standard deviation)). We recorded body mass (68 ± 14kg) for each 
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subject, and all provided written informed consent according to University 

procedures. 

 

A recumbent stepper (NuStep, Ann Arbor, MI) machine was instrumented to 

allow measurement of the subject’s power distribution among limbs (Figure 3.1 

A). We presented visual feedback to the user about their performance and 

exercise goals via an LCD display (Figure 3.1 B).  Individual limb power was 

calculated with force and motion measurements. Force was measured with 

custom load cells at each hand and foot. Gyroscopes were used to measure 

angular velocity.  We used the forces and the machine’s kinematics to calculate 

the moments generated from each limb about the exercise machine’s axis of 

rotation.  Then we calculated each individual limb’s instantaneous power with the 

dot product of the moments and the angular velocity (Figure 3.1 C). 

 

Subjects were first familiarized with the feedback modes, the exercise, and 

cognitive task.  Then we characterized the effect of the implicit weightings on 

limb use during the exercise.  Finally, we performed an experiment in which three 

implicit weightings or explicit symmetry and power targets were given to alter 

subject effort distribution toward arms or legs at a certain level of mechanical 

power.  For each condition given, subjects first explored the task with different 

combinations of arms and legs to feel the differences.  Then we assessed their 

preferred limb distribution as a function of each condition. The feedback was 

constructed as follows: 

 

Implicit Feedback 

Implicit feedback unequally weighted power contributions toward a scalar task 

goal in an attempt to alter their preferred effort distribution. Visual feedback 
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Figure 3.1: Visual Feedback and Measured Data during Experiment  

A: Instrumentation of the experimental hardware to measure power from each individual limb 

and provide visual feedback. B: Visual feedback provided for implicit and explicit tasks. 

Performance in power, symmetry, or summed weighted power is displayed as a moving bar.  

Target amounts of each of these quantities are shown as target zones. C: Representative data 

collected at each individual limb.  Torque is measured via load cells and knowledge of the 

kinematics of the machine.  Angular velocity is measured via gyroscopes.  The dot product of 

torque and angular velocity yield power, which is cyclical in nature due to the stepping motion.  A 

low-pass filter is applied to the raw powers to smooth their signal during processing. 

 showed subjects a single bar graph, with a target level, and a moving bar which 

represented their current performance (Figure 3.1B upper). Subjects were given a 

Performance score, which was a function of weighted power from the limbs 

according to: 

 

              
(  | |)

 
((   )       (   )     )        (Equation 3.1) 

 

where P is the credited amount of weighted power.  Performance is filtered and 

displayed to the subject. The parameter  is a Task Weighting which gives limbs 

unequal credit toward a target level of Performance. A value of  = -1 

corresponds to crediting the legs alone,  = 1 to the arms alone, and  = 0 to 

equal credit. Unequal weightings imply that the subject may satisfy their exercise 

goal with less power from the more heavily weighted limb group than with the 
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lesser weighted limb group. Lower overall power may make the task less difficult 

and may simultaneously promote greater use of the more heavily weighted limb 

group. Implicit weightings may thereby provide an incentive for increased use of 

targeted limb groups. If subjects shift effort when we apply weightings, we may 

set power and symmetry goals for the subject implicitly as a function of the 

provided Task Weighting, without the need to explicitly display both goals 

separately.  

 

Explicit Feedback 

Explicit feedback consisted of two bar graphs showing limb power and symmetry 

targets individually (Figure 3.1 B, lower).  The subjects are shown their current 

symmetry and power and corresponding target levels, but now as two separate 

graphs. With explicit feedback, the subject cannot use different combinations of 

arms and legs to fulfill the task, and their targets reflect a single combination of 

arm and leg power. 

 

Task goals expressed in terms of power from the arms and legs for implicit and 

explicit feedback and typical subject power trajectories during a trial can be seen 

in Figure 3.2. 

 

Protocol 

We first familiarized the subjects with the implicit weighting feedback.  The 

feedback was verbally explained to them during a number of trials.  Then, the 

subject would match a target amount of Performance using implicit feedback. 

Subjects were told the Task Weighting for each trial as they tried to match their 

implicit goal.  Knowledge of the weighting allowed the subjects to explore the 

effort associated with different power distributions under each condition.  
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Figure 3.2: Representative Performance during Different Trial Types 

Arm and leg power throughout the course of representative trials, including implicit and explicit 

tasks with and without the presence of a secondary cognitive task.  A:  Implicit Constraints: A 

target level of Current Performance can be achieved via different combinations of arm and leg 

power.  The combinations constrain distributions that fulfill the task along a line in the space of 

arm and leg power.  B: Explicit symmetry and power targets equate to a single point in the space 

of arm and leg power.  Only a single combination of arm and leg power can satisfy the task goal.  

  

After familiarization, we characterized subject preferences with a number of 

implicit weightings.  The subjects were presented with tasks with implicit Task 

Weightings of  = -0.68, -0.28, and +0.263. The Task Weightings were unknown 

to the subject, though they understood some weighting might be present. The 

subject was instructed to reach the target level for that trial, which could range 

from 30-60W of actual power, depending on the weighting and the subject’s limb 

distribution. The three weighted conditions were repeated three times, in an 

order unknown to the subjects. The same Task Weightings would be used for 

future implicit trials, and the subject’s mean symmetry and power levels during 

                                                        
 

 

3 Original Task Weightings were  = -0.5, 0.0, and +0.5.  However, further calibration of our 

sensor information changed the effective Task Weightings to those reported in the text.  We do 

not believe the difference should change the trends or significance of our results, as the 

weightings chosen are somewhat arbitrary.  They were chosen only to weigh the contributions 

differently in each condition.  Any set of weightings, sufficiently far apart, should lead to similar 

trends. 
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the last two characterization trials of each weighting were used as targets for the 

explicit tasks.  

 

Next we presented experimental trials with either implicit or explicit feedback, for 

which we attempted to alter the distribution of effort of the subject toward target 

power and symmetry levels.  The trials consisted of a work task at a level of 40 

units of Performance, P, for implicit tasks or corresponding symmetry and power 

targets from the characterization for the explicit trials.  Each type of trial lasted 90 

seconds.  The trials were presented in groups of three implicit, then three explicit 

trials. In each group, all three limb distribution targets were given, either implicitly 

using weightings, or explicitly with two different visual targets for symmetry and 

power. 

 

Finally, we explored the effects of a cognitive task on the exercise task, and vice 

versa. The implicit and explicit tasks outlined above were performed with and 

without a secondary cognitive task for each of the three implicit weightings and 

explicit targets. After 6 trials without the cognitive task, 6 additional trials were 

given with a secondary cognitive task which consisted of counting backwards 

alternately by 7 and 6 aloud from a random 3-digit number. Both sets with and 

without cognitive trials were repeated for a total of 24 trials. 

 

Analysis 

Subject performance was characterized in terms of limb use, ability to match their 

feedback targets, and the variability of their performance.  Limb use was 

expressed in terms of power from the limbs, as well as the ratio of arm power to 

net power, according to: 
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                         (Equation 3.2) 

 

The subjects were instructed to explore different combinations of arms and legs 

to find the combination they most preferred.  Subjects most often displayed 

steady-state effort distributions about half way through the trial (Figure 3.3).  

Data from seconds 40-85 of the trial were used to calculate steady-state results.  

Therefore, we termed the first part of the trials exploration, and the second part 

assessment. The Arm Power Ratio under various implicit and explicit targets was 

compared with Student’s t-tests. 

 

Next we described how well subjects matched their feedback goals, and the 

variability of their performance (Figure 3.4).  We first calculated the difference 

between the subject’s performance and their implicit or explicit target(s).  For the 

implicit task, the feedback error was measured as the distance, in watts, between 

their mean arm and leg power during assessment and the closest combination of 

power that satisfied the task of form Equation 3.1 (Figure 3.4 A, perpendicular 

distance).  For the explicit task, their feedback error was calculated as the distance 

between their performed mean arm and leg power during assessment and the 

powers necessary to satisfy the explicit target for both symmetry and total power 

(Figure 3.4 B, absolute distance).  The errors were compared with Student’s t-test 

for significant differences between implicit and explicit trials with and without the 

presence of a secondary cognitive task.  
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Figure 3.3: Representative Transient Response for Implicit and Explicit Tasks  

A: Each individual limb power is combined into arm and leg grouped power.  Next, the overall 

power distribution is calculated via the ratio of arm power to net power (Equation 3.2). Power is 

low-pass filtered to smooth cyclical data due to stepping during the exercise.  Mean limb 

contributions and the Arm Power Ratio are calculated over seconds 40-85 (shaded assessment 

area). B: Arm Power Ratio for three representative trials with different implicit weightings.  After 

some exploration, subjects approach their preferred power distributions, which are different, 

depending on the implicit weighting.  C: Arm Power Ratio for three representative trials with 

different explicit targets. Subjects approach their targets more quickly when using explicit 

feedback, at the expense of having to fulfill two simultaneous tasks.  

We performed analyses using linear algebra techniques to characterize steady-

state variability for implicit and explicit trials. We used Eigen-decomposition of 

the covariance matrices of each subject’s power data throughout the time course 

of the assessment period to measure the ratio of leg and arm power responsible 

for the most variability (the two Eigen-vectors, or the direction of greatest 

variability and direction perpendicular to it). 
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Figure 3.4: Error Analyses for Implicit and Explicit Trials  

The filtered arm and leg power during the assessment period of each trial was used to analyze 

performance.  For all trials, we calculated the 95% confidence interval for the variability in the 

primary and secondary directions of variability (95%CIpri and 95%CIsec) and the trace of the 

covariance matrix, which represents the overall variability of the data. A: During implicit trials, 

performance error was defined as the perpendicular distance between the mean arm and leg 

power during the assessment period for each subject, and the subject’s implicit constraint.  We 

also quantified how close the axis of primary variability aligned with the task constraint in terms 

of the cosine of the angle between them. B: For explicit trials, in addition to measures of 

variability, we defined performance error to be the absolute distance between mean power during 

assessment and the subject’s explicit target power. 

We also reported information about the magnitude of variability. Each Eigen-

vector (primary and secondary directions of variability) has an associated Eigen-

value, which is a scalar value defined as the variance of the data in the direction 

of the Eigen-vector.  We report the span of 4 standard deviations (4 times the 

square root of the Eigen-value) around the mean power (roughly 95% confidence 

interval (95%CI) in the direction of variability).  The 95%CI is in units of watts, and 

is reported for both the primary axis of variability, and the orthogonal secondary 

direction of variability. To assess the overall variability, we also calculated the 

trace of the covariance matrix, which is the sum of the diagonal terms.  It should 

be noted that the trace of the covariance matrix is identical to the trace of the 

diagonal, Eigen-decomposed matrix, or of the covariance matrix of the data 
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expressed in any set of orthonormal basis-vectors with the same scale. Therefore, 

it represents an absolute measure of the variability of the data, independent of 

how it is oriented. The trace and variabilities in the primary and secondary 

directions between implicit and explicit conditions were compared with Student’s 

paired t-tests. 

 

Finally, for implicit trials, we described the orientation of maximum variability 

relative to the implicit constraint.  Specifically, we report the absolute value of the 

cosine of the angle between the axis of primary variability and the implicit 

constraint.  This value can range between 0 and 1, where 0 corresponds to an 

orthogonal orientation and 1 indicates that the axis of primary variability is 

parallel to the implicit constraint.  The measure should reflect how much the 

subjects exploited the degree of freedom the implicit constraint afforded them. 

Their performance was not penalized in any way if they varied arm and leg power 

along this constraint to match their target.  If the orientation of the variability was 

at a random orientation to the implicit constraint, we would expect a mean value 

of the cosine of this angle to be the cosine of 45 degrees, or roughly 0.707.  

Therefore, we expect that if subjects exploited the use of this degree of freedom, 

the cosine of the angle will be significantly greater than 0.707.  We made the 

comparison with a one-sample t-test. 

 

We also compared the speed and accuracy of the mental math performed by the 

subjects for the secondary cognitive task during both implicit and explicit tasks.  

We measured the number of subtractions performed by the subject during the 

trial, as well as the number of mistakes they made. To achieve a baseline level of 

mental math ability at the time of testing, we performed the cognitive task 

without the primary exercise task. Paired t-tests were used to compare the 
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number of subtractions performed and the number of errors made under 

baseline and simultaneous, implicit, and explicit tasks. The threshold for 

significance for all tests was set at ɑ = 0.05. 

 

Results 

Results (N = 12) shows that subjects altered their effort distribution among limbs 

as a result of both implicit and explicit feedback about power and symmetry 

goals. Subjects changed their preferred distribution by an average of about 

20.0% of the net power toward either the arms or legs away from their power 

distribution in the central condition (Figures 3.5, 3.6). Moreover, trials with implicit 

feedback resulted in less feedback error than with explicit feedback, though with 

more variability.  However, much of the variability in implicit trials occurred along 

the implicit constraint’s degree of freedom. Finally, subjects were slower at the 

secondary cognitive task using explicit feedback than with implicit feedback.   

 

Subjects matched distribution targets about 24% of net power away from their 

central preferred distribution toward arms or legs, under the implicit weightings 

tested without the presence of the cognitive task (Figures 3.5 A, & 3.6 A).  

Subjects directed 6.35 ± 7.7W (mean ± standard deviation) more power toward 

their legs, away from their preferred distribution under the central weighting, 

when leg power contributions were heavily weighted.  The change is equivalent 

to a change in their Arm Power Ratio of 0.13 ± 0.16 (comparison against the 

central weighting, p = 4.9e-4).  Subjects also significantly directed 16.6 ± 9.2W 

(ΔA = 0.35 ± 0.20, p = 7.4e-9) toward the arms when that limb group was heavily 

weighted.   
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Figure 3.5: Normal vs. Divided Attention Limb Power  

A: Arm and leg power for each implicit and explicit targets, without performing the secondary 

cognitive task.  B: Arm and leg power for each implicit and explicit targets, while performing the 

secondary cognitive task. Subjects significantly altered their effort distributions when they used 

implicit and explicit feedback to target specific limbs. 

With explicit targets, subjects matched distribution targets about 21% of net 

power away from their central preferred distribution with no concurrent cognitive 

task.  Subjects directed 7.2 ± 4.2W (ΔA = 0.15 ± 0.08, p = 1.5e-8) toward the legs, 

or 13.6 ± 9.0W (ΔA = 0.28 ± 0.18, p = 1.5e-8) toward the arms away from their 

distribution with the central target.  

 

With the addition of the cognitive task, subjects demonstrated a reduced 

distribution range with the same implicit weightings or explicit targets.  

Furthermore, variability in the distributions increased.  Still, subjects produced 
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Figure 3.6: Normal vs. Divided Attention Power Distributions  

A: Arm Power Ratio under different implicit and explicit task targets, without performing the 

secondary cognitive task. B: Arm contributions under different implicit and explicit task targets 

while performing the secondary cognitive task. Subjects significantly altered their effort 

distributions with arm or leg targets when they used both implicit and explicit feedback (* 

denotes significant differences in paired t-tests, p < 0.05).  

more power with the arms or legs, depending on the target, by an average of 

about 16% or 19% of mean net power, for implicit or explicit trials respectively 

(Figures 3.5 B, & 3.6 B).  Subjects significantly directed 7.2 ± 6.9W (ΔA = 0.15 ± 

0.14, p = 3.1e-5) toward the legs, or 8.1 ± 9.0W (ΔA = 0.17 ± 0.18, p = 2.0e-4) 

toward the arms, away from their central preferred distributions for implicit tasks.  

When subjects used explicit feedback to match symmetry and power goals 

directly, they directed 6.8 ± 4.0W (ΔA = 0.13 ± 0.08, p = 2.3e-8) toward the legs, 

or 12.4 ± 9.1W (ΔA = 0.24 ± 0.18, p = 3.1e-5) toward the arms, away from their 

central preferred distribution.   

 



 66 

measure Feedback Error Trace 95%CIpri 95%CIsec Cosine Angle 

(units) (W) (W
2
) (W) (W) (0-1) 

Implicit w/o 

Cog. 

1.1 

± 1.1 

15.6 

± 16.2 

6.7 

± 3.5 

2.1 

± 0.8 

0.92 

± 0.16 

Implicit w/ 

Cog. 

2.7 

± 2.7 

26.5 

± 29.7 

8.6 

± 5.2 

2.4 

± 0.9 

0.87 

± 0.21 

Explicit w/o 

Cog. 

4.3 

±1.7 

7.1 

± 5.3 

4.5 

±1.8 

2.2 

±0.7 
n/a 

Explicit w/ 

Cog. 

5.7 

±3.5 

17.7 

±17.1 

7.1 

±3.4 

2.6 

±1.3 
n/a 

Table 3.1: Error Analyses for Implicit and Explicit Trials 

 

Both implicit and explicit feedback helped subjects to alter their effort 

distribution toward arms or legs.  However, feedback error was greater with 

explicit feedback (Table 3.1).  The mean implicit error (perpendicular distance) 

without the addition of the cognitive task was 1.1 ± 1.1W (Table 3.1).  Explicit 

error (absolute distance) without the cognitive task was 4.3 ± 1.7W, significantly 

greater than the implicit case (p = 5.8e-21).   

 

Explicit feedback error was also greater than implicit feedback with the addition 

of the secondary cognitive task.  Now, the mean subject feedback error for trials 

using implicit feedback was 2.7 ± 2.7W, a significant increase from implicit trials 

without the cognitive test (p = 2.2e-8).  Trials that provided explicit feedback 

during the cognitive task also had a significantly higher associated mean error of 

5.7 ± 3.5W (p = 8.0e-4) than without the cognitive task present. However, the 

mean error in explicit trials was also significantly greater than in the trials using 

implicit feedback when both had the concurrent cognitive task (p = 2.6e-11). 

 

Explicit trials were generally less variable than implicit trials. The trace computed 

for explicit trials was significantly less than the trace of the power data during 

implicit trials (p = 2.8e-5 w/o cog., p = 0.038 w/ cog.).  Furthermore, variability in 

the primary direction of variability is greater for implicit trials than those trials 
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which use explicit feedback (p = 1.5e-6 w/o cog., p = 0.036 w/ cog.). However, 

variability during implicit trials is not significantly greater in the secondary 

direction of variability (p = 0.47 w/o cog., p = 0.14 w/ cog.). We believe this is 

important, as we also found that the primary direction of variability in the implicit 

trials was quite well aligned with the implicit constraint. The absolute value of the 

cosine of the angle between the primary direction of variability and the implicit 

constraint was found to be significantly greater than 0.707 (one-sample t-test, p 

= 6.4e-18. w/o cog., p = 1.1e-8 w/ cog.), which indicates that the variability of 

implicit trials was more aligned with the constraint than could be the outcome of 

random chance.  Variability parallel with the constraint is un-penalized variability 

which does not result in greater visual feedback error for implicit trials.  That 

means that implicit trials result in less penalized variability, in addition to the 

lower mean error as described above. 

 

Next we compared the effects of using implicit and explicit feedback on the 

secondary cognitive task.  Generally, the use of explicit feedback did not result in 

an increased error rate of the mental arithmetic greater than the rate during 

implicit trials. However, subjects did perform fewer mental calculations while 

using the explicit feedback.  Subjects who performed the cognitive task 

performed an average of 27.6 ± 6.3 mental calculations over the 90 seconds of 

the trial.  In that list, subjects made an average of 3.5 ± 2.2 errors.  The number of 

errors did not significantly change when the exercise task was introduced (p = 

0.55 and p = 0.58 for implicit and explicit trial errors vs. baseline errors, 

respectively). Furthermore, the number of errors between explicit and implicit 

trials were not significantly different (p = 0.73).  Subjects did perform the 

cognitive task more slowly when the primary exercise task was reintroduced 

(Figure 3.7).  Implicit trials resulted in 22.4 ± 5.7 mental calculations, and explicit 
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Figure 3.7: Performance of the Secondary Cognitive Task 

A: Mean performance of cognitive task for each subject. B: The number of subtractions 

performed in the secondary cognitive task relative to the baseline for all trials.  Baseline 

calculations were performed at rest without the primary task of matching implicit or explicit 

exercise goals. Subjects made fewer subtractions during trials with explicit feedback (*p < 0.05). 

trials resulted in 21.5 ± 5.7 calculations being reported.  Both results were 

significantly shorter than the baseline performance (p = 1.3e-20 for implicit trials 

and p = 7.6e-26 for explicit trials).  Furthermore, the number of subtractions 

subjects performed while using implicit feedback was 0.83 calculations (3.7%) 

longer than when they used explicit feedback (p = 0.042). The explicit feedback 

slowed down calculation 16.1% more than implicit feedback did relative to their 

difference from baseline. 

 

Discussion 

Both implicit and explicit feedback can be used to steer effort in a multi-limb 

exercise.  However, our subjects demonstrated that implicit feedback may be an 

appropriate alternative to explicit strategies if there exist concerns about 

attentional constraints, or the difficulty of the exercise task.  Not only were 

subjects able to perform more mental math when using the implicit feedback 

alternative, but they did so with less error matching their visual feedback target 

and without sacrificing the range of possible power distributions attainable with 

the feedback.  We thought it may be of little surprise that an implicit exercise, in 

which the subject must match only one goal, would incur less error than in the 
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explicit, dual-goal, task.  However, the implicit feedback was still able to 

encourage greater use of targeted limb groups, and so there may be little reason 

to complicate the feedback with another simultaneous task goal. 

 

We found some evidence for strategies learned over time, or habitually, which 

subjects used to perform our feedback tasks. We expected that for explicit tasks, 

variability in the power from the arms and legs would no specific coupling. 

Therefore, we would expect, on average, a 45 degree angle between the primary 

axis of variability and any other vector.  However, analysis of the explicit trials 

with the presence of the cognitive task showed the orientation of the variability 

may not have always been random.  The variability of these trials was actually 

somewhat aligned with the previous trial’s implicit constraint.  The absolute value 

of the cosine of the angle between the explicit trial’s primary axis of variability 

and the implicit constraint of the previous trial had a value significantly greater 

than 0.707 (cosine of 45 degrees) (cosine of angle = 0.82, greater than 0.707, 

one-sample t-test, p-value = 4.7e-6).  We found it curious that people varied in 

their power distribution along a similar limb combination as they had previously 

experienced as not penalized.  With explicit feedback they gained no advantage 

by varying power in this way, and were indeed penalized the same as if they 

varied away from their goal in any other direction.  Therefore, one possible 

explanation for the behavior is that subjects learned the combination of limbs to 

use without penalty during implicit trials, and this effect carried over for the 

explicit trials. Alternatively, another possible explanation is that people naturally 

vary power generation with a combination of limbs that resemble the direction of 

the implicit constraints used here.  However, we noticed the effect was only 

present in explicit trials with the secondary cognitive task, and not in those trials 

with the explicit exercise task alone.  Perhaps the cognitive task distracted our 
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subjects to allow any learned or subconscious strategy to have a greater effect 

than when the subjects could concentrate on the exercise alone. Further study 

should be done to determine if there is an underlying mechanism for 

unconscious variation with the observed combination of arms and legs, or if the 

effect is learned. 

 

There were a number of limitations to this study. One limitation was the relatively 

small range of induced limb power distributions. Although the feedback tested 

here induced shifts in effort of only 15-20% of net power, these results do not 

necessarily represent a limitation on the magnitude of the shift.  Previous work 

has shown that a greater range of limb distributions is possible with higher 

magnitude implicit weighting biases [Chapter 2]. However, there are observed 

limits to how much subjects will use arms or legs in exclusion of the other group. 

A strong preference exists to use limbs in combination for this particular exercise 

task. 

 

Another limitation to this study was the limited effect of the exercise task on 

performance of the cognitive task. The exercise task might not have been 

challenging enough to cause a large effect on each subject’s ability to perform 

mental math.   

 

Implicit feedback did not induce the precision of explicit feedback in terms of 

guiding subjects to match specific symmetry or power goals.  However, if we 

consider applications to neuromotor rehabilitation, the therapist is often more 

concerned with the patient’s increased limb use than an exact distribution of limb 

power.  Strength training rehabilitation for target limbs has shown promise of 

increasing functional performance [72], [73] and improvement of coordination 
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and control [74], [75]. If implicit feedback is able to steer effort toward a group of 

limbs that need it, it may not be important to match any specific power 

distribution. 

 

Implicit task weightings may provide a simple alternative to explicit strategies to 

encourage use of specific limb groups during exercise. Implicit tasks may also 

have potential in rehabilitation applications where they may require less patient 

attention and be easier to perform than explicit feedback. 
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Chapter 4.  

 

Preference for Low Resistance Can Be Used to Control 

Power Distribution among Limbs during Exercise 

 

Introduction 

Humans often prefer to perform tasks in ways that reduce energy expenditure [1], 

[15] or feel less difficult [19], [45], [61].  As a result, if given the choice to use 

limbs in different combinations toward satisfying a task’s goal, people may 

produce more of the work with the limb group that makes the task feel easier to 

complete.  This is especially true in rehabilitation, where limbs weakened due to 

injury or disease tend to be used less, or differently, than the unaffected limbs.  

The difference can be partially explained by decreased strength [13], [73], 

decreased capacity for work, or an increased sensitivity to fatigue [76] of the 

affected limbs. Patients may also have difficulty controlling movement [75], [77]. 

More generally, humans are thought to maximize subjective utility to choose how 

to behave [78]. This utility decreases as the subjective costs of ease and other 

factors such as control ability of the task increase. We may therefore view the way 

in which humans choose to allocate effort among their limbs as a minimization of 

a subjective cost of the performance of a given task [Chapter 2].  

 

To determine if people minimize some subjective cost consistently when they 

decide how to accomplish a task, we introduced an exercise in which we unevenly 
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weight limb power contributions toward a scalar goal amount of this weighted 

power.  Effectively, the weightings make it possible to reduce the overall work 

required for the subject to satisfy their exercise goal if they favor the more heavily 

weighted limb group. Skinner and Kuo have shown that subjects respond to 

weighted power tasks with altered effort distributions, in part to reduce the work 

required to match their goal, but they also demonstrate a willingness to generate 

more power than necessary to satisfy more subjective objectives [Chapter 2].  

Furthermore, subjects do not need knowledge of the specific weighting or the 

distribution of their limb power desired by the experimenter. Thus, we may 

leverage the subject’s natural inclinations for ease as well as other subjective 

quantities to provide a useful tool to implicitly control the effort distribution to 

the subject’s or patient’s advantage.  

 

Feedback is necessary to indicate the achievement of specific weighted power 

goals. Visual feedback can be used to allow the subjects to track their 

performance relative to a task goal. The feedback allows the subjects to judge 

their sense of effort in response to different power distributions that satisfy the 

task.  In previous work, subjects generally chose power distributions that reduced 

the mechanical power necessary to achieve the task goal [Chapter 2, 3].  The 

reduction in work enabled a subject to pedal the experimental equipment, a 

recumbent stepper, more slowly. In other words, the preference for lower power 

production was coupled to any preference for lower speeds.  

 

Alternatively, information about limb use could be communicated via a change in 

the resistance to motion of the exercise machine.  Resistance could be decreased 

if the subject used the heavily weighted limb group more, in addition to the 

reduction in the total power necessary to match their visual feedback goal. 
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Furthermore, there may be inherent preferences for different levels of resistance, 

independent of preference for low power, which may be used to alter the power 

distribution during exercise.  

 

In this work, we hypothesize that humans will demonstrate preferences for lower 

power and resistance that will allow for the manipulation of their distribution of 

effort between limb groups. We expect that preferences will be consistent with 

our general hypothesis that humans commonly search out less effortful methods 

by which to satisfy a given task, and so shall generally self-select limb use 

distributions that result in lower power generation, when possible. We also 

believe that subjects will prefer lower resistances if they perform self-paced 

exercise with no visual feedback or power requirements.  If preferences for low 

resistance exist, independently of power requirements, exploitation of these 

preferences could steer effort toward targeted limb groups without the need for 

visual feedback.  Changes in resistance can be felt directly by a user, and 

therefore would not require visual feedback to inform the subject of their power 

distribution. Self-selected exercise intensities have been shown to increase 

compliance in strength-training programs while subjects maintain adequate 

amounts of exercise for a number of target populations [79]–[83].  Therefore, the 

ability to steer effort without strict guidelines on power or the need for visual 

feedback may be beneficial. 

 

Methods 

We experimentally quantified how human subjects divided power between limbs 

during multi-limb exercise, and how implicit weighting of limb powers affects 

that distribution. Furthermore, we compared a task in which weighting power 
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contributions from arms and legs changed the speed (and thereby power) 

necessary to complete the task with one that altered the required power via a 

change in resistance.  Both tasks used visual feedback to display performance 

and task goals to the subject.  We went further to compare the use of visual 

feedback with a set of self-paced trials.  These trials were given without visual 

feedback, but still included changes in resistance to movement dependent on the 

subject’s power distribution among their limbs and the task weighting. However, 

the exercise did not have specific goals about power generation or speed. 

 

Fifteen healthy adult subjects participated: 9 male and 6 female, age 24.6 ± 4.36 

years (mean ± standard deviation). All subjects provided written informed 

consent according to University procedures.  

 

For the multi-limb exercise task, we instrumented a NuStep recumbent stepper 

machine (TRS 4000, NuStep, Inc., Ann Arbor, MI), to measure individual limb 

power and adjust resistance to motion (Figure 4.1 A).  We provided visual 

feedback about their task and performance with a display screen (Figure 4.1 B). A 

seated subject moved all four limbs against a variable load and power was 

calculated via custom load-cells and gyroscopes. We calculated individual limb 

power via the dot product of measured torque and angular velocity.  A low-pass 

filter smoothed the cyclic power caused by the stepping motion (Figure 4.1 C).   

 

Our experiment included a familiarization phase, followed by an experimental 

phase.  Before data was recorded, familiarization introduced subjects to the 

feedback. Familiarization was intended to allow subjects to gain knowledge of the 

effect of the weightings, which we term Task Weightings.  We introduced a 

number of the weights to the subject and instructed them to explore a range of 
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Figure 4.1: Experimental Setup  

A: The NuStep recumbent stepper was instrumented to measure the power generated at each 

individual limb.  The machine resists motion via an adjustable load.  Finally, information about the 

task and performance can be displayed to the user on an LCD screen. B: The exercise task consists 

of reaching a target level of weighted power (Current Performance).  The target and the subject’s 

current weighted contribution are displayed. C: Load-cells measure force, which is used in 

combination with machine dimensions to calculate torque.  In addition we measure angular 

velocity via gyroscopes and calculate the dot product of these two measurements to yield an 

individual limb’s power.  A low-pass filter is applied to the power calculation to smooth the 

cyclical signal. 

different limb combinations that would satisfy the current task’s feedback goal. 

The subject could therefore feel the different required power from arms and legs 

necessary to fulfill the task under different implicit Task Weightings.  

 

In the subsequent experimental phase, we determined each subject’s preferred 

distribution of effort during implicitly weighted tasks. We randomly assigned Task 

Weightings, unknown to the subject, and measured their preferred Performance 

Bias. The weighting was varied with each condition, and subjects were asked to 

achieve a specified amount of weighted power without knowing the implicit 

weight. 

 

The experiment was performed with visual feedback only (Visual Feedback Trials), 

visual feedback with continually altered resistance (Resistance Trials), and also 
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without visual feedback but with changes in resistance (Self-paced Trials). The 

task consisted of generating a goal amount of weighted power for both the 

Visual Feedback and the Resistance Trials.  Note that visual feedback was still 

necessary for the Resistance Trials to control for the subject’s level of weighted 

power. We brought back a portion of the same subject pool (N = 5) for additional 

tests of trials which altered resistance without visual feedback.  Subjects were 

aware that changes in their distribution of effort would affect the resistance felt, 

but were only told to exercise at comfortable levels, allowing the subject to 

choose the power, speed and distribution of power among limbs. 

 

Subjects generated power with their arms and legs to match an exercise task 

goal. Task Weightings allowed arms and legs to contribute toward the exercise 

goal according to: 

 

              
(  | |)

 
((   )       (   )     )        (Equation 4.1) 

 

where a goal amount of Performance, P (target region in Figure 4.1 A), can be set, 

and  is a Task Weighting which gives arms or legs unequal contributions toward 

the task goal. A value of  = -1 corresponds to giving credit for power from the 

legs alone,  = 1 to the arms alone, and  = 0 to equal weighting. The more the 

subject uses the more heavily weighted limb group, the less mechanical power is 

necessary to satisfy a goal amount of their Performance. Each value for is thus a 

task that a user would be expected to perform with a different combination of 

power from their limb groups. The nominal P, under a neutral weighting ( = 0), 

was set to be equivalent to 40W of mechanical power. 
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We created two measures to summarize limb use under different weighted 

conditions (Figure 4.2). Preferred limb use was summarized by a Performance Bias 

parameter, B, which expressed the amount of net power generated by the arms 

and legs.  It was computed according to: 

 

                    (
     

           
)                  (Equation 4.2) 

 

Here, a B value of -1 corresponds to producing 100% of net power with the legs, 

and 1 with producing 100% of net power with the arms.  Note that it is possible 

to produce values of B greater than 1 and less than -1 if significant negative 

power is generated with one limb group (e.g. -5W with legs and 25W with arms 

would result in a B of 1.5). At other points we wished to simply quantify the ratio 

of the arm power to net power.  It was computed similarly to Equation 4.2: 

 

                  
     

           
                                  (Equation 4.3) 

 

Subjects first explored different combinations of limbs to find their preferred 

distribution, which we termed the Exploration period.  Then, in an Assessment 

period, we measured the subject’s power generation and calculated their mean 

distribution.  We characterized the relationship between implicit weights and 

mean limb use with a logistic curve fit. The curve described the Performance Bias 

as a function of Task Weightings. This curve has asymptotes at two extremes, and 

changes monotonically between the two with task weighting:  

 

                             ( )      
     

     (   
 )             (Equation 4.4) 
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Figure 4.2: Combination of Limb Power to Yield Outcome Measures  

Individual limb power is combined into arm and leg power.  Next, the overall power distribution is 

calculated via the ratio of arm power to net power that is either scaled to range from -1 to 1 

(Performance Bias, Equation 4.2), or unscaled (Arm Power Ratio, Equation 4.3). Power is low-pass 

filtered to smooth cyclical data due to stepping during the exercise. 

where 1 and 2 are respectively lower and upper asymptotes. Parameter  

characterizes the sharpness of the curve, where larger values tend toward a step 

function, and is the weighting which results in the largest change in limb use 

(effectively a shift in the curve left or right).  Shifts of the curve left or right result 

in an unequal reported distribution of effort at the neutral weighting bias, which 

indicates the subject’s preference for arms or legs with a neutral weighting. 

 

We also explored subject limb use over the time course of each trial (Figure 4.3). 

Over the course of each trial, subjects explored different combinations of limb 

use to experience the subjective costs associated with each task (Figure 4.3 A).  

Subjects were allowed to alter their preferred power distribution at any time, but 

usually found a steady-state distribution after about 30-45 seconds. After 

exploration, subjects would choose their preferred power distribution.  We 

computed the time course of their Arm Power Ratio and deviations from steady-

state (calculated as the mean of seconds 40-85, known as the Assessment period) 

(Figure 4.3 B).  Over all trials for each subject, we calculated an exponential fit to 

all absolute deviations from steady-state for Visual Feedback and Resistance trials 

starting after the first 5 seconds (Figure 4.3 C).  The exponential curve describes 



 80 

 

Figure 4.3: Representative Time Series Results  

A: Over the length of the trial, the subject’s power distribution is calculated in terms of the ratio 

of arm power to net power (Equation 4.3).  The subject’s “preferred contribution” is calculated as 

the mean Arm Power Ratio over roughly the second half of the trial. B: Deviations from the 

subject’s preferred contribution in terms of Arm Power Ratio C: An exponential function is fit to 

each subject’s complete data set of deviations away from their preferred arm power ratio.  The fit 

describes the rate at which the subject approaches their preferred Arm Power Ratio, and the 

variability about this preference.  The fit’s parameters for each subject can be compared between 

Visual Feedback Trials and Resistance Trials. 

the rate at which subjects made their choice for their effort distribution, and the 

level of variability at that choice, on average. We reported the time constant and 

asymptote of the fits for each subject’s Visual Feedback Trials and compared 

them to the fitted parameters for the Resistance Trials.  The time constant 

describes the rate at which the preferred contribution was approached, and the 

asymptote describes the amount of steady-state variability.  

 

We provided three methods to convey information about the implicit weights to 

the subjects, and also tested if subjects would alter their power distribution away 

from their preferred distribution with no visual feedback. The study consisted of 6 

Visual Feedback Trials, 14 Resistance Trials, and 6 Self-paced Trials.  Within a set 

of trials, each individual trial was 90 seconds long, with Task Weightings,  

distributed in the range -1 to +1.  Each weighting was given in random order, 

again unknown to subjects. Each trial was followed by a brief rest, with longer 

rests if requested by the subject to avoid fatigue. The Visual Feedback Trials and 
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Resistance Trials were grouped into blocks, and these blocks were presented in 

alternating order with each additional subject.  The self-paced trials were given 

on a follow-up day for a subset of the subjects (N = 5 of 15).  All statistical 

comparisons used Student’s paired t-test unless otherwise noted. The threshold 

for significance was set at ɑ = 0.05. 

 

Results 

We found that implicit tasks which used visual feedback or changed resistance to 

motion in response to the subject’s effort distribution had a systematic effect on 

limb use during exercise. Tasks weighted toward a particular limb pair generally 

resulted in a greater preference for those limbs.  In the absence of visual 

feedback, subjects still demonstrated a preference for low resistance, which 

allowed altered power distributions among arms and legs through changes in 

resistance as a function of limb use and Task Weighting.  

 

For Resistance Trials, there existed a consistent and repeatable overall trend in 

Performance Bias vs. Task Weighting.  However, there was significant variability in 

the Performance Bias at each individual weighting.  We investigated limb group 

power and the source of this variability across Task Weightings (Figure 4.4).  We 

found high variability was associated with the less heavily weighted limb group. 

More heavily weighted limbs were used more and with less variability than those 

limbs which received less credit toward the subject’s Performance goal. We 

believe this is a favorable source of variability, as the limbs targeted to receive 

more exercise do so more consistently. 
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Figure 4.4: Limb Power as a Function of Task Weighting for Resistance Trials 

Individual limb group power vs. Task Weighting. The mean is indicated with the solid line. The 

shaded region is the standard deviation of limb group power at each weighting.  The more 

heavily weighted limb group is used more and with less variability than the less weighted limb 

group. 

 

Resistance Trials and Visual Feedback Trials resulted in similar effort distributions 

and variability (Figure 4.5).  We analyzed the subset of the Resistance Trials data 

which used the same weightings as the Visual Feedback Trials to compare 

between the modalities ( = -0.6, 0.0, and 0.6). The Visual Feedback data 

collected here serves as a benchmark against a previous study’s findings that 

concluded visual feedback of Performance and target levels of weighted power 
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Figure 4.5: Visual Feedback vs. Resistance Trial Results 

Three weighting conditions were given to subjects using either Visual Feedback or via changes in 

resistance (Resistance Trials). Mean Arm Power Ratios were calculated for the last half of each 

trial.  Significant differences exist for both Visual Feedback Trials and Resistance Trials for 

conditions weighted away from neutral (* denotes significance, p < 0.05). 

enables subjects to steer limb group power toward heavier weighted limb groups 

[Chapter 2]. In the current study, tasks that gave more credit for arms or legs 

resulted in greater use of that limb group, respectively (Performance Bias under 

conditions  = -0.6 and  = 0.6 vs.  = 0.0; Visual Feedback Trials: p = 1.2e-5 and 

p = 6.9e-7, respectively; Resistance Trials: p = 3.5e-6 and p = 4.9e-7, respectively).  

Furthermore, subjects demonstrated similar distributions, independent of trial 

modality (Performance Bias at  = -0.6,  = 0.6, and  = 0.0 for Resistance vs. 

Visual Feedback Trials, all p > 0.10).  However, variability when using Visual 

Feedback for the leg biased trials ( = -0.6) was significantly lower than the 
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Measure Time Constant Asymptote 

Units  (A) 

Visual Feedback Trials 0.064 ± 0.031 0.015 ± 0.078 

Resistance Trials 0.057 ± 0.024 0.029 ± 0.022 

Different? (p-value) 0.54 0.62 

Table 4.1: Comparison of Visual Trials and Resistance Trials Temporal Characteristics 

 

Exponentials were fit to the Arm Power Ratio over time for each kind of trial.  Each fit’s parameters 

were reported, along with a comparison of the parameters between the two types of trial. 

 

corresponding Resistance Trials (F-tests comparing Performance Bias variability 

between Visual Feedback Trials and Resistance Trials for  = -0.6, p = 0.033).   

 

Visual Feedback Trials and Resistance Trials demonstrated similar temporal 

characteristics as well (Table 4.1). We again used the same subset of Resistance 

Trials and all Visual Feedback Trials.  We compared the time course of each 

subject’s effort distribution against their steady-state choice with an exponential 

fit.  Subjects in both forms of trial approached their choice for limb group 

distribution steadily and similarly.  Subjects reached a distribution within 10% of 

their steady-state distribution in 47.5 seconds and 45.8 seconds on average for 

Visual Feedback Trials and Resistance Trials, respectively. Each fit’s time constant, 

which represent speed of progress toward steady-state, were similar for each trial 

type’s fit:  0.064 ± 0.031 (mean ± standard deviation) for the Visual Feedback 

Trials and 0.057 ± 0.024 for those trials also using changes in resistance, showing 

no significant difference (p = 0.54).  The asymptote of each fit reflects variability 

about the preferred contribution, away from the calculated steady-state 

distribution. The asymptote for the exponential fit was an Arm Power Ratio equal 

to 0.015 ± 0.078 for the visual feedback trials, and 0.029 ± 0.022 for resistance 

trials, again with no significant difference (p = 0.62). 

 

Analysis of the complete set of resistance trials data revealed that each subject 
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Figure 4.6: Representative Individual Results 

Six of the 15 individual fits of form (Equation 4.3) for Resistance Trials.  The Task Weighting,  

credits the power generation of limb groups unevenly, ranging from only giving credit for the 

power generated by the arms ( = 1) toward the exercise task, to only giving credit for power 

from the legs ( = -1). The Performance Bias, B, quantifies the amount of limb group use in 

relation to the total net power.  B = 1 indicates the arms produced 100% of the net power, and B 

= -1 indicates that the arms produced 0% of the net power. Median R
2
 for individual fits was 0.86. 

exhibited a unique limb preference curve. To illustrate the variations between 

subjects, a representative 6 of the 15 individual preference curves of form 

Equation 4.4 are shown in Figure 4.6. Although individual subjects displayed quite 

different trends in performance in reaction to the weighting, they shared some 

key characteristics.  We believe the most important is that all subjects displayed 

an increasing relationship between Task Weighting and Performance Bias.  No 

subject consistently used a limb group more if they received less credit for power 

from that limb group toward their Performance goal, and no subject 

demonstrated complete insensitivity to the Task Weighting. Another shared 
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Figure 4.7: Manipulation of Performance Function for All Subjects 

Performance Bias vs. Task Weighting.  A single fit of form (Equation 4.3) is applied to all subject 

data.  The 95% confidence interval (95% CI) of the fit’s parameters is plotted as a dotted line. 

characteristic was the relative consistency of intra-subject data.  For each subject, 

individual trials did not stray far from the trend line for that subject’s complete 

data set (median R2 of all individual subjects’ fits: 0.86).  

 

To summarize the overall trend for Resistance Trials, a single limb preference 

curve of form Equation 4.4 was fit to all of the subject data (Figure 4.7). The 

overall fit of Performance Bias vs. Task Weighting confirms the consistency and 

repeatability of intersubject performance.  The lower and upper asymptotes of 

the logistic fit were 1 = 0.03 95% confidence interval (CI): -0.11/0.17, and 2 =0.74 

CI: 0.63/0.85, which indicate the limits to which subjects altered their use of arms 

and legs. The data indicate subjects were much more willing to forego use of 

their arms and complete the task almost completely with their legs than vice 

versa.  The average arm use at the weighting which almost exclusively credited 
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power from the legs was 6.9% of net power (3.1W of a mean of 44.8W). However, 

when the weighting heavily biased arm power, subjects still preferred to use their 

legs to produce 29.4% (13.1W of a mean of 44.5W) of the net power, on average. 

The population also preferred to use the legs more than arms under the neutral 

weighting condition, though with enough variability throughout the population 

that the result was not significant (59.2% vs. 40.8%, reflected by the parameter Λ* 

= -0.07 CI: -0.23/0.09). 

 

According to (Equation 4.1) the power required to satisfy the task could always be 

minimized by using only those limbs receiving a heavier weighting, no matter 

how much the weighting was biased.  Still, subjects preferred to alter their power 

distributions more in proportion with the weighting (smoothness of the curve 

reflected by the parameter = 3.67 CI: 1.30/6.04).  Subjects’ willingness to 

produce more power than necessary hints at costs, beyond mechanical power, 

associated with performing the task that may influence how the subjects split 

their effort. 

 

Subjects demonstrated a similar preference in Self-paced Trials to alter their 

preferred limb use away from their nominal unweighted Arm Power Ratio.  

Uneven weightings now changed the resistance to motion of the machine, but 

there was no visual feedback provided. Subjects freely chose power, distribution 

of effort, and the speed at which to exercise. Still, subjects decided to generate 

50.2 ± 13.8W of power during the trials.   

 

Under uneven weightings, subjects directed effort toward those limbs whose use 

would result in reduced resistance to movement.  Similar to Resistance Trials, 

subjects in Self-Paced Trials chose power distributions under uneven weightings 
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Figure 4.8: Self-paced Power Distributions Resistance Trials with and without Visual Feedback 

Arm Power Ratio as a function of Task Weighting.  A: Arm Power Ratio for Resistance Trials with 

three different Task Weightings. B: Arm Power Ratio for Self-Paced Trials under the same Task 

Weightings.  Subjects significantly alter their power distribution for weightings that give more 

credit for arms or legs relative to the neutral performance for both Resistance Trials and Self-

Paced Trials (*denotes p < 0.05). 

significantly away from those chosen distribution with a neutral weighting ( = -

0.9 and  = 0.9 vs.  = 0 were significantly different, p = 0.035 and p = 1.8e-4, 

respectively) (Figure 4.8).  Lower resistance to motion was generally preferred in 

the population, despite the absence of a specific required amount of weighted 

power. When use of legs reduced the resistance to motion (condition:  = -0.9), 

subjects chose to use the legs to supply 84.0% (42.4W of the mean 50.4W) of net 

power.  When arms were weighted more heavily (condition:  = 0.9), subjects 

used them to produce 72.1% (41.9W of the mean 58.1W) of net power.  Subjects 

always had the choice not to alter their limb distribution toward target limbs, 

which would result in increased resistance to motion, but would not require them 

to generate any additional power, since their effort was self-paced.  Subjects 

could have chosen to simply slow down if they desired lower power output.  
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Task Weighting 

() 

Performance Bias 
Different? (p-value) 

Self-paced (30 trials) Resistance (90 trials) 

-0.9 -0.68 ± 0.49 -0.86 ± 0.60 0.391 

0.0 -0.19 ± 0.51 -0.18 ± 0.49 0.957 

0.9 0.44 ± 0.34 0.41 ± 0.35 0.810 

Table 4.2: Comparison of Resistance and Self-paced Trials 

Performance Biases for different Task Weightings in Self-Paced and Resistance trials.  Biases 

reported in terms of mean ± standard deviation.  A 2-sample t-test between Self-Paced and 

Resistance Trials tested if the two modes of trial result in different Performance Biases.  We found 

no differences in effect between the two modes of exercise. 
 

 

Finally, we compared limb use between Resistance trials that still had visual 

feedback, with Self-Paced trials where no visual feedback was present. Despite 

the lack of constraints on speed or power performed, power distributions in the 

Self-paced Trials were quite similar to those in the Resistance Trials.  Subjects 

displayed similar Performance Biases and variabilities in both kinds of trial (Table 

4.2 – unable to find significant differences between trial types). 

 

Discussion 

Visual feedback, with or without the addition of proprioceptive feedback via 

changes in resistance, can be used to alter limb power distributions.  

Furthermore, even without any visual feedback, subjects displayed a preference 

for low resistance, which can be coupled to specific limb use to encourage 

greater recruitment of those limbs. 

 

There may exist in this study evidence for self-imposed regulation of exercise 

under self-selected conditions. For the Self-paced Trials, in which there was no 

visual feedback, subjects self-selected speed, power, and resistance in a fairly 

consistent manner. It may be interesting to investigate whether subjects regulate 
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one or more of these factors when they are free to control all three.  Subjects 

reported that although they chose to endure some minimal resistance such that 

the exercise was challenging, they would not naturally choose a higher resistance.  

Two subjects noted that they wanted to choose a speed to reach a comfortable 

pace, and then choose a preferred balance of resistance and power distribution 

by altering their power distribution among limbs. It was mentioned that, at high 

resistances, the exercise was closer to the level of exertion (albeit self-imposed) of 

weight-lifting, and dissimilar to aerobic exercise, which was preferred on this 

machine.  

 

During trials with visual feedback, subjects displayed a tendency to avoid power 

generation in excess of the required amount necessary to complete the task.  

However, an individual’s assessment of effort is subjective.  A variety of other 

costs may also be important that cause subjects to choose distributions of effort 

which result in non-minimal power. These may include cognitive loads associated 

with conscious splitting of effort among limbs [Chapter 3], force magnitudes and 

physiological capacity for generating power in individual limbs [24], and even 

highly subjective factors such as comfort and stability [9], [11]. These subjective 

factors manifest in the shape of the trade-off between Task Weighting and 

Performance Bias. If subjects chose the combination of limbs that resulted in the 

minimal amount of mechanical power required for the task, they would only use 

the more heavily weighted limbs.  Using only the more heavily weighted group 

minimizes the power necessary to satisfy the task constraint of form Equation 4.1.  

The result of this pure minimization would be a step function in the Manipulation 

of Performance curve (Figure 4.7) and a large in the fit of form Equation 4.4 

Instead, subjects chose to produce significant power from both limb groups for 

many of the weightings.  Therefore, they assumed a cost, in terms of mechanical 
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power (difference from the minimum), which they were willing to spend in 

exchange for the perceived benefits of other factors. The ability to indirectly 

measure the effect of subjective factors using mechanical power may prove 

useful for the prediction and control of exercise and behavior in general. 

 

Limitations on the study include time delays in the visual feedback due to filtering 

cyclical powers, and also delays changing resistance, due to the amount of time 

needed for the servo to physically change position.  

 

It is possible implicit weighting of limb contributions may be used to the benefit 

of targeted strength training, or to promote the use of weakened limbs in 

rehabilitation.  Growing evidence suggests that strength training in rehabilitation 

can be of benefit without detrimental effects on control, and that preferences for 

high force output under higher loads may be one way to increase the recruitment 

of weakened limbs [84]. Even though there are a number of ways to use implicit 

weights with or without feedback, we have demonstrated that uneven weighting 

power contributions toward a scalar amount of weighted power or lower 

resistance to motion can successfully alter effort distributions. 
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Figure 4.9: Subjective Effort Function for All Subjects 

Contours of equal subjective effort, expressed as combinations of arm and leg power.  Contours 

are derived from the Manipulation of Performance trade-off. 

Supplementary Material 

Subjective Cost Function 

Similarly to Chapter 2, we can estimate the population’s Subjective Cost Function 

from their Manipulation of Performance Function (Figure 4.9). In contrast with 

previous studies, the power required from each subject here was kept close to 

35W via the difference between equations 2.1 and 4.1, which denote the task 

constraint. Therefore, we sampled the function in a smaller range of powers, 

which may yield a better estimate of its shape in that region, but makes us less 

confident about its shape along different indifference contours. 
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Setting Resistance 

In this study’s experiments, the resistance changed such that if the subject used 

the more heavily weighted limb group, the resistance would be lowered, and vice 

versa.  We attempted to create equivalence between Resistance trials and Visual 

Feedback trials.  Under either scenario, depending on the weighting, the subject 

enjoyed a benefit in terms of reduced required power if they used the more 

heavily weighted limbs, or suffered a penalty, in terms of increased required 

power, when they instead used the lesser weighted limbs.  We attempted to 

make the penalty or benefit equal in terms of power for the two kinds of trial if 

the subject displayed the same distribution of power between limbs.  

 

The primary source of power dissipation in the NuStep machine is via an eddy-

current damper attached to an internal flywheel. Although there may be other 

sources of loss (friction, etc.), we assume them to be small as compared to the 

magnetic damping. We instrumented the damper to increase or decrease 

resistance via changes in overlap between the magnet and flywheel, operated by 

a servo. 

 

We first calibrated the relationship between power measured at the individual 

limbs, the speed of the flywheel, and servo-controlled resistance.  In one model, 

the power dissipation of eddy current resistance is proportional to the squares of 

the amount of overlap between the flywheel and magnet, and the flywheel’s 

speed.4 Our calibration function was therefore: 

 

                                                        
 

 

4 Adapted from Wikipedia: Eddy Current 2013 
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Figure 4.10: Resistance Calibration 

A: Performance for a given task, in terms of the power actually generated (P) (Equation 4.5), and 

the current Performance (P’) (Equation 4.6). The difference between P and P’ represents a penalty, 

in terms of power beyond the required power for the task.  The subject would not need to 

generate this extra power to satisfy the exercise task if they only used the more heavily weighted 

limbs. B: In visual feedback trials, resistance is fixed and the subject must change speed to satisfy 

the task goal.  They are equivalently only being rewarded for S’ (The amount of speed that would 

equate to P’ amount of real power). C For the resistance trials, the resistance is set such that their 

speed will be the same as their rewarded speed if resistance was a constant value (S for resistance 

trials is equal to S’ for visual feedback trials–calculated via Equation 4.4).  The equivalence results 

in equal penalties in terms of actual power, which is in terms of either speed or resistance—not a 

combination of the two. 

 (   )  (      )
 (      )

                       (Equation 4.4) 

 

Where P is the total power measured at the individual limbs, v is the speed of the 

internal flywheel, r is the resistance level, and alphas are constants to be 

determined.  Total mechanical power is expressed as: 

 

                                     (Equation 4.5) 

 

And the weighted power awarded to the subject via the implicit feedback is: 

 

                          
(  | |)

 
((   )       (   )     )        (Equation 4.6) 
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The reward or penalty that arises from using certain limb combinations is the 

difference between the actual power generated, P, and the weighted power, P’ 

(Penalty in Figure 4.9).  We used the combination of Equations 4.4-4.6 to equate a 

resistance that would provide the same penalty as the difference in speed would 

create with identical subject performance.  
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Chapter 5.  

 

Why Make More Work for Yourself? Factors beyond 

Economy of Movement in Drop Landing 

 

Abstract 

Humans can choose to perform a task in many different ways [85], yet often 

adopt movements that reduce muscle work [1], [16].  Sometimes, people may 

prefer to reduce metabolic energy expenditure via decreases in muscle force or 

increases in the time of activation, even if achieving no mechanical work benefit 

[86] [24]. In drop-landings specifically, researchers have noticed different landing 

strategies and associated energetics between males and females [87] and 

amateur and professional gymnasts [88], [89] which may indicate additional goals 

beyond energetic minimization. Minimization of overall muscle activation has 

been suggested to more accurately replicate experimentally derived mechanics 

than maximization of economy, which may even result in increased metabolic 

cost [37]. People may prefer to sacrifice economy to avoid subjective costs, such 

as discomfort [21], [90], [91].   Here we measure how people land on cushioned 

and non-cushioned surfaces to investigate a proposed trade-off between 

economy and other subjective factors. 
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Introduction 

Despite a common desire in people to minimize extraneous effort, some activities 

encourage uneconomical behavior.  In drop-landings, humans perform extra 

mechanical work beyond the minimum amount required. If humans landed with 

stiff straight legs and no bending at the hips, soft tissues such as cartilage and fat 

stores would dissipate the energy imparted by gravity during the drop passively, 

and the amount of work necessary to stop their descent would be minimized [21].  

Instead, humans perform active muscle work to lower and raise their center of 

mass (COM) upon landing in such a way that they stop their fall more slowly than 

if they landed with straight legs.   

 

There should be some perceived benefit to landing less stiffly since it requires 

extra work and sacrifices economy of movement.  Devita et al. propose that 

humans may value reduced impact stresses, which are lowered during landing 

with bent knees as the muscles actively absorb more of the body’s kinetic energy 

[92].  Or, as Minetti et al. discuss, it may be important in some circumstances to 

increase the height at which it is safe to drop [93]. It would be extremely painful, 

and potentially harmful, for people to land on straight stiff legs during many 

forms of locomotion.  When people land on surfaces of different compliance, 

they bend their knees to maintain an overall constant effective stiffness of the 

legs/surface system [94][95].  Subjects that land on stiffer surfaces tend to 

produce lower peak forces and longer landing times than on softer surfaces [96]. 

Perhaps these results demonstrate a trade-off between compliance for safety, 

and landing with straight legs to increase economy.  It is possible that humans 

could save energy via dissipation of energy with cushioned materials to create a 

more comfortable landing, and make landing with straighter legs more 

preferable. 
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In this study, we determined how subjective costs affect the mechanical work 

associated with impact during drop-landings. We hypothesized there may be a 

trade-off between the influence of apparently more major behavioral 

determinants, such as economy, and more subjective factors, such as comfort or 

stability.  The trade-off may be thought of as an exchange rate between the two 

determinants.  Changes in mechanical work under different conditions may 

indirectly characterize this exchange-rate and predict the mechanical work costs 

of the subjective influences in movement, similar to the work of Zelik, et al. [11]. 

 

Methods 

We measured the work associated with a number of drop landing tasks onto 

different amounts of foam. We compared the mechanical work performed with 

the minimum amount of work necessary to land in order to characterize the 

influence of the foam’s subjective influences on economy.  

 

Eight healthy adult subjects participated in this study (6 male and 2 female, age 

21 ± 0.9 years (mean ± standard deviation)). We recorded anthropomorphic data 

including leg length (0.93 ± 0.056m) and body mass (71 ± 15kg). Each subject 

provided written informed consent according to University procedures. 

 

Subjects performed a series of drop-landings onto different thicknesses of foam 

over in-ground force plates (AMTI, Watertown, MA) (Figure 5.1). Each trial 

consisted of drop-landing on zero to four layers of foam.  The landing surface 

had 0-4 layers of 2” (0.051m) foam or a bare landing surface (force plates alone).  

Subjects stood at the edge of a raised platform in an upright position.  They were 
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instructed to drop from their initial height and land as they preferred.  Then they 

were to return to the upright posture they had at the beginning. Eight drops were 

performed per condition.  Subjects were instructed to cross their arms during the 

drop.  Crossed arms helped to reduce work peripheral to their center-of-mass 

(COM). Conditions were presented in random order.   

 

We measured mechanical work associated with each drop and compared work 

beyond the minimum required for each foam condition. We measured ground 

reaction forces (GRFs) from in-ground force plates to describe each landing 

(Figure 5.4). We analyzed the vertical forces to measure COM velocity, position, 

and work rates.  We divided forces by subject mass and subtracted the 

acceleration of gravity to calculate COM acceleration.  We then integrated COM 

acceleration to yield vertical COM velocity, with the integration constant 

determined according to a final velocity of zero. Vertical COM position relative to 

the final position was calculated by integrating the COM velocity, and work rate 

was calculated by taking the dot product of the original vertical GRF and the 

COM velocity. Finally, negative and positive work is calculated by integrating the 

work rate over the course of the landing.  We defined Collision Work to be the 

negative work and Recovery Work to be the positive work performed during 

landing.  Recovery work is mostly performed in order to raise the COM of the 

subject to achieve their starting posture from its lowest height. Landing was said 

to begin when the vertical force was above 1% of body weight, which we termed 

touchdown.  Landing was said to end when a moving average of the vertical work 

rate over 20ms measured less than 30W, or approximately 1% of peak work rates. 

 

We attempted to maintain the same drop height across subjects and conditions 

to fix the minimum amount of work necessary to stop the fall for each subject.  
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Figure 5.1: Drop-landing Protocol 

Subjects stand at a height of roughly 0.4m above their landing level, with arms crossed.  They are 

instructed to drop onto the foam and return to their original standing posture.  Drops are 

performed on 0 to 4 layers of foam.  Force plates measure the ground reaction forces (GRFs), 

which are used to calculate center-of-mass (COM) velocity and drop displacements (net, peak and 

overshoot) and work.  Overshoot displacement is defined as the difference between the lowest 

position of the COM and the final COM position after landing. 

 The subject’s gravitational potential energy on the drop platform is changed into 

kinetic energy during the drop.  The person and landing surface must perform, at 

minimum, negative work equal to this amount of kinetic energy to come to rest, 

which is also equal to their original gravitational potential energy.  The subject is 

free to perform additional positive and negative work beyond that which is 

necessary, although there will be no net work beyond the minimum negative 

work if the subject’s final velocity is zero. Therefore, work beyond the minimum 

negative work required to stop the fall may be considered excess work.  To 

achieve a fixed drop height, we added spacers to the drop platform to 

accommodate the variable depth to which subjects sank into different 

thicknesses of foam. We measured each subject’s height on different layers of 

foam to determine their distance off the ground.  We then added this thickness 

to the drop platform via spacers to fix the drop height.  A number of spacers 

came in three thicknesses of 0.012m, 0.073m, or 0.155m.  We chose the 

combination of spacers that best matched the offset in height caused by different 

layers of foam.  The offset was typically 0.30-0.35m.   
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Figure 5.2: Possible Drop-landing Strategies 

A: Subjects may demonstrate a number of landing strategies on bare ground and foam.  The 

subject may change how much they lower and raise their center of mass (COM) depending on the 

surface.  Their chosen strategy results in different contributions from muscles, soft tissues and the 

landing surface toward stopping the fall.  B: Work rates from the person and landing surface, 

including those of the active muscle, passive soft tissues, and the passive spring/damper of the 

foam.  C: Total positive and negative work during landing.  

  

In accordance with the work of Butler and others, we expected that subjects 

would choose to lower and raise their COM to maintain equivalent overall 

compliance over many of the conditions, as it may help to reduce potentially 

damaging impact forces and cushion the subject’s landing, despite costing more 

energy [92], [97] (Figure 5.2).  For hard surfaces, with little foam, we expected that 

subjects will lower their COM beyond their final COM position to increase the 

time of collision and reduce forces.  On softer surfaces, we expected them to land 
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with less COM displacement beyond their final COM position. Alternatively, 

subjects may land stiffly on hard surfaces and allow soft tissues to dissipate 

energy or they may continue to lower their COM beyond their final position on 

soft surfaces.  

 

We characterized the action of the foam independently from the experimental 

procedure similarly to Pain et al. [98].  We also determined typical kinetics and 

kinematics for the different thicknesses of foam from motion capture and force 

measurements of a small number of tests (Figure 5.3). The measurements allowed 

us to estimate contributions from the foam to the landing work of the subjects in 

our experiment. We found the foam to have a spring constant of ~1400Nm-1 and 

a damping coefficient of ~120Nsm-1 when operating in its linear region. 

 

We compared a kinetics and kinematics of the subject during landing for each of 

the five foam conditions. We measured Recovery Work during landing, which is 

the positive work performed throughout landing by the COM. We believe that 

positive work is primarily due to muscles actively raising the COM from its lowest 

position to the final standing position. We also defined a measure of excess COM 

movement, which we called Overshoot, as the difference between the lowest and 

final position of the COM (Figure 5.1).  If the subject landed with maximum 

economy (stiff straight landing), COM overshoot and Recovery Work would be 

zero.  Therefore, Recovery Work represents the amount of extra mechanical work 

subjects are willing to produce in response to different landing conditions. COM 

Overshoot could reflect flexed ankle, knees and hips, which would lower their 

COM position. Force, velocity, position, work rate and work were non-

dimensionalized with body mass, leg length, and gravity to yield unit-less 

measures. Unit-less measures allowed for comparison between subjects of 
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Figure 5.3: Time Series of Vertical Trajectories of Foam 

Force, velocity, position, work rate and work quantities estimated for different thicknesses of 

foam.   A: Measured vertical force over the course of a few typical landings.  B: Estimated velocity 

of the top surface of the foam during landing.  C: Estimated position of the top of the foam while 

landing. D: Work rate calculated as the foam’s velocity multiplied by the force it conveys to the 

ground. A few conditions are compared to typical overall work rates of the foam and human drop 

combined.  E: Cumulative work over the course of a drop. Foam work appears for a relatively 

short period of time during landing.  The complete time course is used in later analysis of subject 

forces and work. 

 

 

different sizes.  For the five conditions, we compared outcome measures with 

repeated measures analysis of variance (repeated measures ANOVA). Where 

significant differences were found, we performed a set of paired t-tests under the 

Holm-Sidak step-down procedure to test for significant differences between 

individual pairs of conditions. Linear regression was used to describe trends 

throughout the entire population over all conditions. The threshold for 

significance was set at ɑ = 0.05. 
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Figure 5.4:Typical COM Trajectories 

Measured and calculated traces for two typical landings, one on a hard surface (0 layers of foam), 

and another on a soft surface (4 layers of foam). A: Ground reaction forces (GRFs) from an in-

ground force plate during landing. B: Vertical COM velocity was calculated from the vertical GRF, 

accounting for gravity and zero final velocity after landing. C: Velocity was integrated to yield 

position.  The difference between the lowest COM position and the final position was termed 

COM Overshoot. D: We calculated the work rate as the dot product of COM force and COM 

velocity.  E: We integrated work rate to calculate COM work for the drop.  Negative work is 

termed Collision work and positive work is termed Recovery work. Measurements were non-

dimensionalized using body mass, leg length, and gravity to compare between subjects. 

Results 

We found that subjects reduced their COM Overshoot and performed less 

Recovery Work on cushioned surfaces than on bare ground.  Furthermore, 
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Figure 5.5: Mean Forces, Kinematics, and Work Rate for all Conditions 

Force, velocity, position, and work quantities for different thickness of foam. A: The mean vertical 

force throughout landing for each condition.  B: The COM vertical velocity throughout landing for 

each condition.  C: Vertical COM position throughout landing. D: Calculated mean vertical work 

rate trajectories for each condition. Quantities were non-dimensionalized with body mass, leg 

length, and gravity to compare between subjects.   

 

 

subjects displayed a longer onset to peak force production when landing on 

foam (Figures 5.5 & 5.6). 

 

The calculated drop height did not differ between foam conditions (Figure 5.6 A, 

p = 0.77). The mean estimated drop height was 0.41 ± 0.008m (mean ± standard 

deviation).   

 

Peak forces and time until peak force performed by subjects changed as a 
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Figure 5.6: Mean Summary Measures of Drop Landings for all Conditions 

Force, distance, and work for landing on zero to four layers of foam. A: Estimated drop heights 

calculated from the net work performed by the subject in each condition. B: Peak vertical ground 

reaction force landing on 0 to 4 layers of foam. C: Landing duration and time to peak force after 

touchdown. D: The center of mass (COM) overshoot below the final measured COM position.  E: 

The mean positive and negative works subjects performed during landing.  Hatched bars 

represent estimated contributions to work from the foam. Measurements were non-

dimensionalized with body mass, leg length, and gravity to compare between subjects. * denotes 

significant linear regression results, Ɨ denotes significant repeated measures ANOVA difference 

between conditions, p < 0.05. 

 

 

function of the number of layers of foam, whereas overall landing duration did 

not change (Figure 5.6 B, C).  Subjects displayed mean peak forces during landing 

that ranged from 1880N to 3970N.  Significant differences were found between 

conditions (repeated measures ANOVA, p = 0.0087), although peak forces did not 

change monotonically as foam thickness increased (linear regression, p = 0.15). 

The time from touch-down until peak force varied from 0.05s to 0.23s with a 

mean and standard deviation for the bare ground condition of 0.09 ± 0.03s and 

time until peak force in the 4 layers of foam condition of 0.16 ± 0.03s.  Time to 

peak force increased with increasing layers of foam across all subjects (linear 

regression: p = 2.7e-7). In contrast, overall landing time did not appear to differ 

between conditions (Repeated measures ANOVA: p = 0.07), and was, on average, 

0.71 ± 0.04s. 
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Subjects landed with reduced COM Overshoot magnitudes as foam thickness 

increased (Figure 5.6 D, linear regression: p = 0.015). Calculated COM position at 

the lowest point during landing ranged from 0.048m to 0.30m below their final 

calculated COM position. The overshoot was 0.15 ± 0.070m on bare ground and 

0.085 ± 0.040m on 4 layers of foam.  The difference between subjects’ COM 

overshoot on bare-ground and on four layers of foam was an average of 0.078m, 

which was 46% of their mean overshoot on bare ground.  Still, all trials resulted in 

non-zero overshoots.  The minimal overshoot was 0.047m, which was still 61% of 

that subject’s maximum overshoot.  In fact, the subject with the largest reduction 

in COM overshoot still displayed a 0.163m overshoot under the most cushioned 

condition. 

 

Subjects changed the amount of negative (Collision) and positive (Recovery) work 

they performed in different conditions (Figure 5.6 E).  Subjects performed -374.3 

± 13.8J of negative work during landing, but there existed significant differences 

between conditions (p = 0.0048).  However, Collision work did not change linearly 

as a function of condition (p = 0.11).  Subjects performed 100.6 ± 46.7J of 

Recovery work on bare-ground conditions, and 68.4 ± 20.2J on 4 layers of foam.  

An overall linear trend was found, in which the population produced less positive 

work landing on greater amounts of foam (p = 0.046). 

 

We analyzed individual performed work to investigate differences between 

subjects. Individual subjects also regularly performed less COM positive work 

landing on four layers of foam compared to landing on the force plates alone 

(Figure 5.7). Linear regression fits to each subject’s Recovery Work data included 

an offset and a slope, which indicate the amount of positive work performed 

during the landing with no foam, and the change in that work as foam was 
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Figure 5.7: Individual Subjects’ Recovery Works 

Recovery Work (positive work) for landing on different thicknesses of foam. Each subject’s dotted 

trials are fit with a solid line using linear regression. Recovery Work was non-dimensionalized with 

subject mass, leg length, and gravity. 

added, respectively.  All subject fits had negative slopes, which, as a group, 

indicated a significant reduction in the amount of Recovery Work performed 

when landing on greater thicknesses of foam (p = 0.019).  However, the subjects 

varied in the amount of Recovery work they produced. In the conditions studied, 

the population produced an average of 32.3J (32.1%) less Recovery Work when 

they dropped onto the most cushioned surface than when they dropped onto the 

bare force plates. Furthermore, each subject performed non-zero Recovery Work 

during all landings.  Even in the most cushioned condition, subjects performed, 

on average, 68.4J more Recovery Work than the 0J required, and no subject 

performed less than 34.9J of Recovery Work in any condition. 
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Discussion 

We attribute unrequired work the subjects performed while drop landing to 

subjective factors such as comfort. Subjective factors are not directly 

measureable.  However, we quantified unrequired work performed by the 

subjects as they lowered and raised their center of mass on various cushioned 

surfaces.  Our results suggest that subjects land uneconomically on uncushioned 

surfaces because economical landing would be uncomfortable.  Therefore, 

quantification of the work cost of the subjective factor of comfort may be 

measured and predicted.  

 

We do not believe that subjects would choose a landing strategy to maximize 

energetic economy with additional layers of foam.  Although subjects generated 

less positive work when foam was added to the landing surface, all subjects in all 

conditions still demonstrated positive work of at least 34.9J. A cushioned landing 

platform may reduce some aspects of the subjective cost of landing, such as pain 

[99].  However, as the stack of foam grows thicker, it is possible the cost of 

maintaining stability increases, which may again cause excess work to be 

produced to create a more stable landing [9], [100]–[102].  There may also be a 

minimal amount of energy that subjects will produce in return for the greater 

kinematic control afforded when their legs are bent [103].  

 

The relationship between Recovery Work and foam thickness suggests a 

quantifiable tradeoff between work and other subjective factors that govern 

movement.  It is difficult to isolate subjective factors experimentally, especially 

since many are not well defined.  However, we may still describe their collective 

cost in terms of mechanical work.  Indeed, in this experiment, the slope of 

Recovery Work vs. foam thickness describes the rate at which economy can be 
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increased as a function of the subjective aspects of adding foam to the landing 

area, including comfort, stability, and any other factor not based on economy.  

 

The relationship between foam thickness and peak force is complex.  Our results 

show an initial increase in peak forces generated by subjects landing on one layer 

of foam versus landing on bare ground.  However, peak forces then tend to 

decrease as additional layers of foam are added.  The initial increase in peak force 

is consistent with some findings regarding barefoot running vs. running with 

sneakers [104].  Impact forces have been found by some researchers to be lower 

for barefoot running, in contrast with higher forces with cushioned, shod running. 

This may provide evidence that cushion may increase loading in the knees and 

other joints, possibly causing increased rates of injury. Our data do not contest 

their results.  However, since peak forces begin to decrease when even greater 

cushion is provided on the landing surface, our data indicated that the 

relationship between forces and cushion is not linear, and may deserve more 

attention. 

 

Subjects displayed varied sensitivity to any economical benefit provided by 

additional foam on the landing surface.  Based on the trend-line fits to their 

individual data, one subject only produced an average of 7.8J (6.3%) less positive 

work on four layers of foam relative to bare ground while another subject 

reduced their performed Recovery Work by 85.4J (45.3%). We found that two 

subjects, who were less economical than the rest in the bare ground condition, 

experienced the largest reduction of Recovery Work. It may be that subjects who 

are more practiced in drop landing, or have higher pain thresholds are more 

likely to drop economically, expending less Recovery Work. Those less practiced, 
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or with lower pain thresholds, could possibly benefit to a greater extent when 

cushion is added to soften their collisions. 

 

There are a number of limitations to this study.  One limitation is that our analysis 

of energetics solely uses mechanical energy of the center of mass.  Metabolic 

energy expenditure may inform our decisions for changing our behavior to a 

greater degree than mechanical work, as it captures more of the physiological 

energetic expense of using our bodies to accomplish tasks.  However, metabolic 

measurements require long term activities that primarily use aerobic pathways.  

For short term activities, mechanical work still may be a better measurement.   

 

Another limitation is our lack of kinematic data.  Without information about limb 

segments, we are unable to assign responsibility for the mechanical work 

measured to specific joints, such as the knee or ankle, although we do believe 

bending at these joints is most responsible for the COM Overshoot and positive 

work reported.  Kinematic data and inverse dynamics analysis for drop landing do 

exist in other works.  Such work can provide information about individual body 

segment contributions, such as the attribution of increased energy absorption by 

the hips and knees for soft landings whereas ankles provide more energy 

absorption during stiff landings [92].  However, our experiment was designed to 

capture the general tradeoff between work and subjective factors.  Still, kinematic 

data would allow us to examine the relationship between the work of individual 

muscle groups and subjective factors. 

 

Our results may have implications for tasks beyond drop-landings.  Collisions also 

occur when we walk or run, as well as when we hop or jump.  Straight legged 

locomotion could reduce the costs associated with walking and running [105], 
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[106], if only the associated subjective non-energetic costs were made low 

enough to make more economical locomotion preferable. 

 

Here we were able to leverage the relationship between mechanical work and 

subjective costs to encourage more or less economical drop-landing.  We may 

describe and predict many trade-offs indirectly through measurement of 

mechanical work. We have shown that, in some cases, it is possible to save 

energy through passive dissipation. Knowledge of the trade-offs between 

subjective factors and mechanical work can therefore be used to shape our 

behavior. 
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Discussion and Conclusions 

 

People sometimes choose to spend more energy than necessary performing 

tasks, in terms of metabolic cost or mechanical work,. We hypothesized people 

are willing to expend extra energy to gain advantages in other, more subjective 

areas, such as the reduction of pain, or the prevention of fatigue.  

 

We believe that our methods to determine the costs of subjective factors, as well 

as the application of these methods to areas such as rehabilitation, pose potential 

opportunities for future research and commercial endeavors. A great deal of 

research currently available is concerned with either quantified performance, in 

terms of biomechanical factors such as work, joint forces, metabolic cost, etc., or 

is confined to subjective experiences and perceptions. We aimed to combine the 

biomechanics field’s use of constrained optimization to predict behavior with the 

ability of psychophysics and ergonomics to sometimes provide a more complete 

representation of human motivations. Our research will be successful if the 

methods described here can be used to form a lasting bridge between these two 

areas of study. 

 

Each of the experiments aimed to uncover some of the energy costs of 

performing a task in the manner preferred by the subjects. Most of the 

experiments dealt with exercise on a recumbent stepper because of its 

applicability to rehabilitation. However, we attempted to broaden the scope of 
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our hypothesis and our approach by examining drop-landing as well. Our set of 

experiments is not intended to limit the breadth of potential application areas, 

and is only meant to represent a small sample of the types of human movement 

that could be studied in a similar manner. 

 

Of course, our approach is still limited, and a number of weaknesses have 

surfaced as we have continued the assessment of our methods. One of the 

greatest weaknesses of our work is that we did not explore alternative 

approaches to uncovering subjective costs. We chose to derive costs of subjective 

factors in terms of mechanical work and metabolic cost. We chose energy costs 

as they are present in all activities and are quite influential in their determination 

of behavior. However, there are alternatives. The use of some attributes of 

movement, such as muscle forces or muscle activation, may offer more complete 

understanding of the internal trade-offs a person can exploit when choosing how 

to move their body. Instead, we used a variable extrinsic to the body to describe 

why people choose to move as they do. Measurements of the body’s impact on 

the environment necessarily hide many motivations for peoples’ behavior from 

our scientific view. For example, there were minimal kinematic constraints on 

each subject’s body. They could manipulate the metabolic cost of exercise by 

moving their torso or by creating lengthening contractions of the muscles around 

the shoulder, elbow, hip or knee. These movements might be variable among 

subjects and enable benefits such as bodily stability or other factors that would 

lead to changes in their work output or metabolic cost. Unfortunately, we did not 

measure them. The closer we get measuring the internal physiology of the 

human body, the more we will be able to develop a comprehensive 

understanding of the strategies and tactics people employ when they decide how 

to behave.  
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Another limitation to our work is that we performed no explicit modelling of the 

perceptual or subjective components that in some part led to the behavior we 

observed. We made no claims about what, exactly, people valued, or in what 

combination. We were intentionally vague as to what we meant by comfort, 

stability, and so on. Therefore, we have gained minimal new knowledge about 

these perceptual qualities, and do not have information about how they interact. 

Instead, we only know their effect as a whole. Specifically, we only know how 

much energy people spend during a few specific tasks in return for the effects of 

a group of hypothesized subjective factors. For a complete bridge between 

quantitative biomechanics methods and subjective perception frameworks to be 

built, additional research will have to be performed to strengthen the connection. 

 

Still, we believe the simplicity of our general approach offers an advantage 

beyond the traditional explanations of human task performance, such as 

optimizing biomechanical variables. The idea of an umbrella cost function that 

serves as the aggregate of all individual subjective costs allows a more direct 

approach to quantifying preference. We measure the output we wish to control 

and then observe the effect on that output which arises from underlying 

subjective factors and energetic considerations directly. We can thereby control 

behavior with a minimal set of underlying assumptions. We have sacrificed 

comprehensive understanding for completeness and directness of application. 

  

We conducted experiments to determine methods to quantify and control 

behavior via knowledge of subjective factors and their associated energetic costs. 

We were able to show that our experimental apparatus, the NuStep recumbent 

stepper, was chosen appropriately to conduct experiments aimed at describing 
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the influence on behavior of subjective factors. Subjects that exercised on the 

NuStep altered their distribution of effort between arms and legs based on grip 

type, machine arm length, and the method with which they generated power. 

Limb distribution was variable despite the variation not providing any reduction 

in the necessary mechanical work required for the task. 

 

We then introduced a method of implicit feedback to quantify the energy cost of 

preferred limb use, as well as steer effort toward specific limb groups. We 

weighted limb power contributions unequally toward a goal amount of the 

summed contribution. The achievement of the goal was performed with a 

preferred distribution of limb effort, which may or may not have been identical to 

the minimum power solution. We thereby developed a predictable relationship 

between the weighting and the preferred limb power distribution, as well as 

knowledge of the energetic costs associated with the desired distribution.  

 

The feedback was tested against another form of feedback which was supposed 

to simulate the explicit information supplied by a therapist during motor 

rehabilitation. Our implicit approach demonstrated its potential to be just as 

effective in steering effort toward target limbs, as well as the possibility that 

implicit feedback is less cognitively taxing than its explicit alternative. 

 

Visual feedback, no matter how intuitive, is still more demanding than if effort 

could be controlled without the need for visual information to be communicated. 

We found in our subjects a preference for low resistance. Low resistance could be 

experimentally associated with the use of target limbs, thereby eliminating the 

need for visual feedback completely, while still being able to adequately steer 

effort. 
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Finally, we extended our experimentation to other areas of biomechanics—

specifically, the landing phase of a person’s drop from a height. We found that in 

this activity, subjects were willing to spend extra energy beyond the minimum 

required to gain the perceptual benefit of a more comfortable landing. 

 

All of these experiments are attempts to uncover the methods by which humans 

make choices for behavior. The decision process may not be known to the 

subject, and it may be subconsciously driven. Still, we were able to show that 

these decisions for action may be predictable, as long as we can capture the 

effect the process has on the quantifiable performance variables of a task. If we 

can measure the costs of non-work factors in terms of work, we can form a more 

complete picture of human decision-making. 
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Appendix 

 

A copy of the NuStep instrumentation was created and installed in the 

MedRehab clinic, a rehabilitation clinic run by the University of Michigan. The 

patients there were exposed to various forms of feedback we had created. We 

have not yet performed studies which test our primary hypotheses on patient 

populations. However, we collected data during the various patients’ normal use 

of the machine while they used simplified forms of the visual feedback to monitor 

limb power output, symmetry, or while they recorded their effort but did not 

choose to pay attention to the information on the screen. Patients seen in the 

clinic using our instrumentation include those who have suffered a stroke, were 

recovering from orthopedic surgery, suffered from various infections of the limbs, 

or simply had lower back pain which required physical therapy. The following 

figures illustrate some of our observations and thoughts on the data we 

collected. None were collected in a controlled environment, or with specific 

scientific aims. Still, we could not find many publications with information about 

individual limb use of patient populations. Therefore, the results may still be of 

interest, both in terms of demonstrated capability of our instrumentation and by 

pointing toward possible directions for future research. 
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Figure App.1: Quantification of patient effort 

Power trajectories for individual limbs, limb groups, and other measures from a characteristic 

subject for a portion of the duration of exercise. Each individual limb’s power output may be 

graphed vs. time to display temporal characteristics (center four graphs). Furthermore, individual 

limbs can be grouped into limb pairs or other groups (e.g. left or right limb combination graphed 

at left and right, upper or lower limb combination graphed above and below). We also plotted 

limb contributions from the left side or arms relative to the total power, in terms of a percentage 

(top corners). Finally, we plotted total power output from all limbs and the angular velocity of the 

stepper machine’s telescoping arms (bottom corners). All quantities are cyclical from the nature of 

the NuStep exercise. Therefore, the continuous trajectories are smoothed with a low pass filter. 

Little data could be found in the literature relating patient condition and rehabilitation routines to 

individual limb use. Although our dataset is small, we have begun to see the promise of 

considering this level of description of patient exercise. 
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Figure App.2: Time-course of power output from individual limbs: Healthy vs. Patient 

Power trajectories from each limb from a characteristic healthy subject and from a patient. 

Exercise on the NuStep is cyclical. Power output during each cycle is scaled to be equal in 

duration and superimposed for each limb (thin lines). The median trace of all cycles is shown as 

the thick line. 

The healthy subject displayed limited variability in power output for each cycle in each limb. They 

were able to produce positive power output while both pushing and pulling with their arms, and 

sustained extended bouts of positive power output with each leg. On the other hand, the patient 

produced substantially less power output from the arms, and with greater variability. Furthermore, 

they were unable to continue to produce power with their legs after reaching a momentary peak 

in power output. 

 

Analysis of time-series data of individual limb power output from patients may demonstrate 

significant potential to allow for the fuller understanding of the dynamics that arise as a result of a 

disease. 
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Figure App.3: Illustration of compensation mechanisms 

A summary of average power contributions from each limb during one session of exercise on the 

NuStep (in terms of percentage of total power). The patient was recovering from arthritis of the 

left knee. One may expect them to display a weakness of their left leg. Weaknesses are difficult to 

detect visually by the therapist, but the therapist may sometimes deduce lower power output by 

the resulting asymmetry in the patient’s posture and movement which results from the weakness. 

In the figure we can see that symmetry between arms and legs is quite good, and asymmetry 

between left and right sides is not very dramatic. The therapist may not be able to see any 

abnormality from observing the patient. However, the general balance is only possible because 

the compensations made by the left arm and the right leg. They produce more power than 

normal to reduce the asymmetries caused by the weak left leg. This may be beneficial to the 

patient to reduce abnormal twisting of the torso during exercise, but it may hide the weakness 

from the therapist. Feedback of the power generation from each limb is able to uncover and 

display these hidden compensation mechanisms, potentially allowing for more appropriate and 

effective rehabilitation. 
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Figure App.4: Longitudinal tracking of multiple patients’ limb use 

Summary data for three patients (each their own color) over a time period of one half to three 

months. Each dot represents the average power contribution (percent of total power) over a 

single exercise session. The size of dot is proportional to the duration of the session.  

A number of patients routinely used our instrumentation, and we were able to track their use over 

multiple sessions. This kind of data allows us to judge patient consistency, correlate their power 

output to their condition, and track their progress over time. We believe that this type of data 

analysis could be of great use to track the benefit of rehabilitation and inform its process. 
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