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ABSTRACT

Pump-Probe Experiments & Radiation Generation using Laser Wakefield
Accelerators

by

William Alexander Schumaker

Co-Chairs: Karl M. Krushelnick & Alexander G. R. Thomas

This thesis describes pump-probe experiments using Laser Wakefield Acceleration

(LWFA) as the radiation source. LWFA systems generate highly relativistic electron

beams in a compact geometry by driving a nonlinear plasma wave with an ultraintense

laser pulse. These electrons beams, or the secondary radiation that they create, can be

used to pump or probe interactions on fs-timescales due to inherent synchronization

with the laser driver.

In this thesis, the first sub-ps measurements of magnetic field dynamics in ultra-

intense laser-solid interactions are presented. This experiment employed the LWFA

electron beam to probe the laser-irradiated target at different time delays, and by

measuring the subsequent beam deflections, the evolution of the magnetic field could

be inferred. The effect of laser temporal contrast on the laser-target interaction

was observed to play a crucial role in the magnetic field dynamics. High-contrast

laser conditions were observed to rapidly evolve over the course of ps-timescale as

electrons propagated radially along both the front and rear of the target, establishing

an azimuthal field that was stronger on the front surface. On the other hand, low-

xix



contrast laser conditions allowed ablated plasma on the front surface of the target to

limit magnetic field growth to only the rear of the target.

Using high-energy LWFA electron beams, bremsstrahlung radiation was created

by interaction with various solid targets. Secondary processes generate high-energy

electrons, positrons, neutrons, and pions, which can be measured using magnetic spec-

trometers, nuclear activation, bubble detectors, and Compton scattering. Presented

in this thesis are proof-of-principle results from a high-resolution, high-energy gamma-

ray spectrometer capable of single-shot operation as well as high repetition rate activa-

tion diagnostics. The first measurements of laser-generated neutral electron-positron

plasma beams are also presented. The pump-probe interaction of these beams with

other laser-produced plasmas will allow the study of astrophysical phenomena in a

compact, laboratory setting.

One promising pump-probe application of LWFA is the compact implementation of

nonlinear Thomson scattering (NLTS). Using high-energy LWFA electrons as a pump,

a second, counter-propagating, ultraintense laser pulse can Thomson backscatter off

these electrons and get upshifted to∼MeV energies, yielding a high-brightness source

of high-energy photons. The experimental attempts of NLTS here at Michigan and

in the United Kingdom are presented in this thesis and should help guide upcoming

attempts at NLTS.
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CHAPTER I

Introduction

1.1 Motivation

The development of particle accelerators in the last century has transformed our

understanding of physics from the sub-atomic to astronomical scales. Early acceler-

ators investigated nuclear structure, explored the stability of nuclei, and discovered

synthetic isotopes (still an ongoing topic of research). Accelerators have since pro-

duced all 17 of the elementary particles predicted by the Standard Model and have

shed light on the rules of particle interactions that shape the universe. High-energy

accelerators today strive to achieve> TeV center-of-mass collisional energies to search

for exotic particles or physics lying beyond the heaviest particle, the recently discov-

ered Higgs boson.

The first kind of particle accelerator - the electrostatic generator - was quickly

transformed from an entertaining curiosity to an important scientiifc instrument.

The accelerating potential of a single electrostatic accelerator stage is limited by the

highest voltage which can be applied without breakdown (for example, a 10 MV Van

de Graaff generator). A tandem accelerator can be used to double this maximum,

and a stepped device such as a Cockcroft-Walton generator can be used to effciently

synthesize high voltage. It was soon realized however that instead of accelerating

entirely in single or modular stages, acceleration to very high energies could be made
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Figure 1.1: Aerial photograph of the SLAC 3 km long linear accelerator. Note the
I-280 expressway crossing over the facility for a sense of scale.

more practical by applying accelerating fields which are synchronized or cyclical with

the accelerating particle. This is achieved in a Radio Frequency (RF) cavity such as

a linear accelerator by applying a potential to a series of electrodes and advancing

the potential so that it stays in front of the particle. In a cyclotron or betatron,

accelerating particles are constrained to spiral orbits by a magnetic field, receiving

a synchronized acceleration with each revolution. A synchrotron uses controllable

magnetic fields to compensate for the increased difficulty of synchronized acceleration

when particles reach relativistic energies.

Circular accelerator paths make the geometry of an accelerator more practical,

but the bending of particles’ trajectories comes with an inherent loss mechanism

known as synchrotron radiation. Synchrotron radiation was originally considered an

unfortunate loss mechanism in accelerators. However, the important applications of

the radiation are now recognized and many of today’s facilities generate the radiation

intentionally, generally with an insertion device (undulator or wiggler) which is a

series of alternating magnetic poles.

1.1.1 Current Accelerator Technology

The Stanford Linear Accelerator Center (SLAC) (now known as the SLAC Na-

tional Accelerator Laboratory, shown in Figure 1.1) was the highest energy lepton

accelerator in the world from 1966 until 1989, producing electron or positron beams
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LPA – Laser Plasma (LWFA) Collider (l≈1km)"

SLAC – Stanford Linear Collider (l=3km)"

Tevatron – Muon Collider (d=2km, l≈5km)  "

LHC – Large Hadron Collider (d=8.4km)"

ILC – International Linear Collider (l≈30km)"

CLIC – “Compact” Linear Collider  (l≈50km)"

Figure 1.2: Scaled comparison of current (LHC) and proposed (LPA/LWFA, ILC,
CLIC, Tevatron+Muon) particle colliders with TeV center-of-mass. The longest ex-
isting linear accelerator (SLAC) is shown for reference.

with up to 50 GeV energy. Due to growing demand for X-ray light sources, the last

km of SLAC was reconfigured to become the Linac Coherent Light Source (LCLS), at

which time a portion of the accelerator was replaced with a 132 m magnetic insertion

device. The LCLS is the first X-ray free electron laser (XFEL) in the world, providing

X-ray pulses with < 100 fs duration at 60 Hz repetition rate with photon energy

in the range 0.48-10 keV . FELs differ from more common synchrotrons in that the

emission is stimulated, producing a monochromatic, temporally coherent radiation

source which also has a high degree of spatial coherence. This requires a long undula-

tor and occurs because the electron beam and X-ray beam copropagate, causing the

beam to bunch and oscillate with the same periodicity as the initial dominant X-ray

wavelength. The LCLS total project baseline cost was $420M. The FEL produces 100

fs pulses with peak brightness of up to 5× 1033 photons/s/mm2/mrad2/0.1%BW .

The International Linear Collider (ILC) is a proposed lepton collider which may

be built to collide 1.6 nC pulses at 500 GeV collision energy at 14 kHz using an
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acceleration gradient of 31.5 MeV/m. The project would require over 30 km for the

accelerator and undulator and cost an estimated $6.65B (USD). The Muon Collider is

a proposed circular lepton (muon) collider using a high flux proton beam to generate

muons that would be sent into the existiing Tevatron collider ring at Fermilab. A

size comparison of proposed TeV accelerators is shown in Figure 1.2.

1.1.2 Applications

Electron accelerators have made many outstanding contributions to high-energy

physics. While a handful of large accelerator facilities catch the headlines, there

is a great number of smaller accelerators used for radiotherapy, radioisotope gen-

eration, and scientific research. Electron accelerators can be used for radiography

or radiotherapy either directly or via X-ray generation. The prevalence of smaller

scale accelerators has led to their widespread use as light sources, either through

bremsstrahlung or synchrotron radiation. For example:

• Active interogation of special nuclear materials (SNM)

• Radiography

• Production of medical isotopes (11C, 15O, 19F, etc.)

• Free Electron Lasers (FEL)

• Inelastic scattering from atomic and nuclear processes

• Time-resolved, pump-probe experiments

• Surface diffraction and scattering, crystal diffraction

• Protein crystallography

4



1.1.3 Laser Wakefield Acceleration

LWFA is a scheme of plasma acceleration in which a large-amplitude plasma wave

is driven by the ponderomotive force of a high intensity laser. In 1979, the scheme

was proposed although lasers with appropriate parameters were not available at the

time [1]. The lasers available during the earliest LWFA experiments had pulse dura-

tions much longer than the relativistic plasma wavelength for high-densities. Large-

amplitude plasma waves could still be driven, however. For example, the plasma

beat-wave accelerator scheme used two laser frequencies to form a beat wave in the

laser envelope with spacing equal to the relativistic plasma wavelength. Acceleration

was observed for externally-injected electrons using beat waves from a carbon dioxide

laser. Later LWFA schemes relied on the self-modulation by the wave itself. These

schemes relied on external injection or injection by wavebreaking, a process which

causes chaotic disruption of electron phase space [2, 3].

As sub-100 fs lasers became available with higher energy, allowing self-injection

at lower density [4, 5, 6], LWFA moved from the self-modulated regime to the forced

wakefield regime to the bubble regime [7, 8, 9]. In 2004, three groups independently re-

ported experimental observation of 100 MeV quasimonoenergetic beams [10, 11, 12],

which were made possible by self-injection rather than wavebreaking. Later, acceler-

ation in a 3 cm capillary waveguide led to generation of a 1 GeV quasimonoenergetic

beam [13]. The recent advance of LWFA research is documented in well over 500

scientific journal publications and review papers. While LWFA and other plasma-

based accelerator schemes show a great deal of promise for constructing compact

economical electron beam sources at moderate energy, it remains to be seen if such

accelerators can be scaled to the energy frontier while retaining the cost and size ben-

efits. Research is being conducted at many institutions around the world to assess the

scalability. Recently, the BELLA facility at Lawrence Berkeley National Laboratory

has demonstrated > 4 GeV energy electrons using a 1 PW laser and capillary targets.
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Figure 1.3: Schematic of a LWFA-based e−/e+ collider using 100 stages to reach TeV
center-of-mass. Reproduced from Physics Today

Designs for multiple stage TeV -class laser wakefield accelerators have been presented

based on staging BELLA-like systems (shown in Figure 1.3) [14]. However, new dis-

coveries are still being made in the field, and some fundamental questions about these

accelerators must be answered before a design of a large scale device can be selected.

Laser wakefield accelerators could contribute to high energy physics if they can eco-

nomically scale to the TeV energy range. At lower energies, the applications of their

electron beams are primarily for industry and medical treatment, though laser-based

ion beams are expected to offer more benefits in the treatment of tumors.

One particularly important application of LWFA outside of high energy physics is

radiation generation. LWFA-driven electron beams can be injected into conventional

undulator systems which convert some of the electron beam energy into a pulse of

collimated synchrotron radiation. Low mass electrons are the preferred beam species

for generating synchrotron radiation in these devices. The advantage of using a LWFA
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beam as opposed to a conventional RF accelerator beam is that LWFA beams likely

have pulse durations as short as a few fs [15]. Assuming the synchrotron radiation

also exhibits this ultra-short pulse duration [16], it could be used as a probe to

temporally resolve the evolution of ultrafast phenomena such as material equation-

of-state (EOS) and chemical synthesis. Synchrotron radiation from LWFA-driven

sources has so far been limited to the optical and VUV spectral range, which is limited

by the smallest undulator magnet spacing which can be assembled (mm-scale). It

was realized, however, that wiggler-like structures can be created, composed of the

plasma wakefield itself having features with µm scale, leading to undulator or wiggler

radiation in the X-ray range [17, 18, 19, 20]. In addition to making the applications

available to a wider range of users and with potentially reduced scale and cost, the

laser-driven electron and X-ray sources investigated in this dissertation could offer

improvements in pulse duration, spectrum, and source size [21, 22].

1.2 Dissertation Outline

This dissertation describes research utilizing Laser Wakefield Acceleration (LWFA).

This chapter discusses motivation for research in this field. Chapter II describes the

facilities, diagnostics, and experimental techniques used for the research in this dis-

sertation. Chapters III, IV, V present results obtained from different pump or probe

experiments using LWFA. Finally, Chapter VI gives an overview of the electron and

photon sources which have been delivered using these LWFA and draws conclusions

about their applications and future potential.
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CHAPTER II

Methods

2.1 Introduction

This chapter will describe the laser facilities, diagnostics, targets, and basic setups

used in experiments presented in this thesis.

2.2 Lasers

Laser stands for “Light Amplification by Stimulated Emission of Radiation” [23]

and the first was demonstrated in 1960 [24]. A laser is fundamentally composed of

two components: a gain medium to supply energy to the radiation, and some sort of

optical feedback to cycle the radiation and induce stimulated emission. This radiation

is spatially coherent and highly focusable.

The ability of lasers to produce high-energy density conditions was realized shortly

after its invention by Nuckolls at Lawrence Livermore Laboratory [25]. With the

development of various methods to increase the instantaneous power of lasers, such

as Q-switching and mode locking, different realms of physics were unlocked, as shown

in Figure 2.1.
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Figure 2.1: Focused laser intensity as a function of year.

2.2.1 Chirped-Pulse Amplification

By the early 1980s, peak laser power had plateaued to∼ GW due to the limitations

of Kerr-effect self-focusing within amplifers and which is defined by the critical power

for self-focusing:

Pcrit =
αλ20

4πn0n2

(2.1)

where λ0 is the laser wavelength, n0 and n2 are the linear and non-linear indices of

refraction, respectively, and α is a function of the initial intensity distribution. For

example, air has a critical power of 2.4 GW , whereas silica has a critical power of

1.6 MW . If the critical power is exceeded, self-focusing will occur rapidly and cause

damage to optics in the laser path.

The invention of chirped-pulse amplification (CPA) by Strickland and Mourou in

1985 [26] avoids this limitation by chirping (temporally stretching) the pulse to reduce

the instantaneous power inside the amplifier to manageable levels. The pulse can now

be amplified roughly by the factor of temporal stretching (roughly 106) before being
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Figure 2.2: Schematic process of chirped pulse amplification. A short pulse is tem-
porally stretched by a grating pair before undergoing amplification. This amplified
stretched pulse is re-compressed by a second set of grating pairs to the original short
pulse duration.

recompressed as shown in Figure 2.2. One complication of high-power CPA systems

is that the recompressed pulse can easily exceed the critical power for self-focusing in

air, requiring beam transport under moderate-to-high vacuum.

The current limit for CPA systems is the size (and, consequently, cost) of the

diffraction gratings required to keep the fluence below the damage threshold of the

gratings (∼ 1012 W/cm2)[27]. Other schemes such as Raman amplification in plasma

[28, 29] or coherent combination of fiber lasers [30] may overcome this limitation in

years to come.

2.2.2 HERCULES Laser

The hercules laser system is located at the Center for Ultrafast Optical Science

(CUOS) at the University of Michigan in Ann Arbor, Michigan. hercules was

constructed in 2001, with its current configuration completed in 2008 [31]. hercules

is a CPA laser based on titanium doped sapphire (Ti:S) gain media lasing at 800 nm

wavelength. The majority of experiments detailed in this dissertation were performed

on hercules and thus it was characterized in greater detail than astra-gemini in
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Section 2.3.

A schematic of the hercules laser is shown in Figure 2.3. The laser chain begins

with a FemtoLasers FemtoSource Ti:S Kerr-lens mode-locking oscillator lasing at

800 nm, which generates a train of ∼ nJ , 12 fs pulses at 75 MHz. After passing

through the dazzler pulse shaper and a 10 Hz pulse picker (Pockels cell with a set

of polarizers), the pulses travel through a 2-pass pre-amplifer to gain the µJ energy

necessary to induce a χ(3) nonlinearity in a pair of barium fluoride (BF2) crystals

required for the (optional) cross-wave polarization (XPW) pulse-cleaning technique.

The pulses are then stretched using a folded Martinez pulse stretcher to 0.5 ns before

being injected into the regenerative amplifier. In the regenerative amplifer (“regen”),

the pulses perform 25 round trips to reach 30 mJ energies before they are ejected.

The pulses are further amplified by a 4-pass amplifier to ∼ J energy, by a 3-pass

amplifer to 3 J energy, and by a final 2-pass amplifier to 17 J energy. These amplifiers

correspond to the “10 TW”, “30 TW” and “100 TW” power modes of hercules

amplifer system, respectively.The pulses are expanded from 50 to 150 mm diameter

before entering the pulse compressor consisting of two-pairs of gold-coated holographic

gratings (420×210 mm2 and 220×165 mm2, 1200 lines/mm) from Jobin Yvon. The

compressor outputs a pulse with a maximum of 9 J of energy and minimum of 30

fs duration for a total of 300 TW of power. After compression, the beam is down-

telescoped from 150 to 100 mm before being sent to the experimental areas.

The repetition rate of the laser is inherently limited to 0.1 Hz due to the Nd:Glass

pump laser. However, with the removal of the cryogenic cooler for the 4-pass Ti:S

amplifier in 2013, the effective rate is reduced to 0.02 Hz to prevent thermal lensing.

The laser is P -polarized entering the experimental areas as the compressor gratings

and high-reflector (HR) dielectric mirrors in the system are designed to optimally re-

flect P polarized light. The polarization can be changed after compression to circular

or S polarization with the introduction of a thin Mica λ/4 or λ/2 waveplate, respec-
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Figure 2.3: Schematic layout of the hercules laser system. The amplification stages
are known colloquially (in order of higher power) as the Front End, Regen, 10 TW
Stage, 30 TW Stage, and 100 TW (or PW) Stage.
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Parameter HERCULES Astra-Gemini

Central Wavelength 800 nm 800 nm
Amplified Bandwidth 30 nm 25 nm
Repetition Rate 0.1 Hz 0.05 Hz
Miminum Pulse Duration 30 fs 40 fs
Maximum Pulse Energy 9 J 15 J (×2)
Maximum Pulse Power 300 TW 500 TW (×2)
Typical Pulse Power 100 TW 300 TW (×2)
ns Contrast w/ XPW 1011 n/a
ns Contrast w/o XPW 107 108

ps Contrast 106 106

Table 2.1: Parameter comparison of the hercules and astra-gemini lasers.

tively; however, for experiments in this thesis, only P polarized (in the horizontal

plane) was employed for LWFA experiments.

2.2.3 ASTRA-GEMINI Laser

The astra-gemini laser system is located at the Central Laser Facility (CLF) at

the Rutherford Appleton Laboratory (RAL) in Didcot, England, United Kingdom.

astra was constructed starting in 1998, with the gemini upgrade/add-on completed

in 2008 [32]. This system is analogous to hercules in many ways as shown in Table

2.1 and Figure 2.4, employing similar level amplification, pulse shaping (dazzler),

pulse cleaning (plasma mirrors), and wavefront correction (DM) techniques. One

unique feature of the gemini system is that the incoming astra beam is split in two,

with each resulting beam amplified independently. The consequent ability to use two

fully amplified beams on astra-gemini allows for a variety of different experimental

configurations with independent control of each beam and is a important feature of

this facility.

A schematic of the astra-gemini laser is shown in Figure 2.5. The laser chain

begins with a FemtoLasers CompactPRO Ti:Sapphire Kerr-lens mode-locking oscil-

lator lasing at 800 nm, which generates a train of ∼ nJ , 12 fs pulses at 75 MHz.
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HERCULES ASTRA-Gemini 

Ti:Sapphire  
amplifier 

2ω pump beams 

Figure 2.4: Photographs of the hercules (left) and astra-gemini(right) lasers
firing at full power. The green 2ω pump, the red Ti:S amplifier, and white light from
the flashlamps are visible.

After passing through the dazzler pulse shaper and a 1 kHz pulse picker (Pockels

cell), the pulses travel through a 9-pass pre-amplifer and gain mJ energy.

The pulses are sampled down to 10 Hz before being then stretched to 0.5 ns for

use in the Astra Target Area 2 (TA2) or twice stretched to 1 ns for use in Gemini

Target Area 3 (TA3). The stretched pulses are then amplified in the astra system

by a 3-pass amplifier to 5 mJ energy, by a 4-pass amplifer to 120 mJ energy, and by

a final 4-pass amplifier to 1.5 J energy at 10 Hz. These amplifiers correspond to the

“Low,” “Medium,” and “High” power modes of astra amplifer system, respectively.

These pulses are then divided between the TA2 and TA3 at a rate of 5 Hz for

each system. Amplified pulses going through the TA2 compressor exit with 0.75

J in 30 fs (25 TW ) pulses at a final rate of 2 Hz for use in the TA2 chamber

(not used in this thesis). The remaining 5 Hz pulses are directed into the separate

gemini amplifier bay located directly above TA3 and are split into two separate beams

termed “North” and “South”. Each pulse is amplifed with separate 4-pass amplifers

to 25 J before entering separate compressors consisting of two-pairs of gold-coated

holographic gratings (320 × 205 mm2 and 265 × 420 mm2, 1480 lines/mm) from
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Jobin Yvon. The pulses exit the compressors with 15 J in 30 fs (500 TW) and

enter through the roof of the TA3 chamber with beam diameters of 150 mm. The

polarization of each beam is set by the direction of the bottom periscope mirror inside

the chamber.

The South beam was used for the LWFA driver, delivering 12 ± 2 J pulses with

45 ± 5 fs. The South beam also has a deformable mirror to assist in the alignment

and optimization of the f/20 paraboloid. The North beam was used in the NLTS

experiment as the scattering pulse, delivering 11 ± 2 J pulses with 50 ± 5 fs. The

repetition rate of the laser is inherently limited to 0.05 Hz due to the Nd:Glass pump

lasers.

2.3 Laser Diagnostics

Due to the complexity and sensitivity of CPA laser systems, a dedicated effort

to characterize the laser spatial and temporal profiles must be taken before, and

during, experiments. This is particularly important for laser-plasma interactions as

instabilities can crop up from the smallest perturbations in either spatial and temporal

profiles. Moreover, the shot-to-shot pointing stability of the laser beam is also critical

for spatio-temporal overlap in multi-beam experiments. This section will detail some

of the methods used to characterize and optimize laser parameters.

2.3.1 Focal Spot Characterization

Invariably, it is important to maximize intensity on the target and ensure an op-

timal focal spot distribution with minimal abberations. Since the full intensity of

the laser pulse far exceeds the damage threshold for materials (∼ 1014 W/cm2), it is

necessary to run these lasers with lower power (regen or “Low” power mode) for most

alignment and characterization purposes. Operating at a lower power level allows

most low-order abberations to be observed and corrected with a simple microscope
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Figure 2.5: Schematic layout of the astra-gemini laser system. The amplification
stages are known colloquially (in order of higher power) as the Front End, Low Power,
Medium Power, High Power, and Full Power (only available on gemini).
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objective imaging system. For f/20 focusing geometries on hercules, a 10× objec-

tive imaged the laser focus onto a 8-bit Watec CCD. The focal spot on hercules

was measured daily to ensure that were no significant changes to the optical system

and to provide a reference for the intensity distribution. The typical f/20 focal spot

was slightly astigmatic, measuring 25 µm×28 µm FWHM as shown in the upper-left

of Figure 2.6. An optional custom-fabricated pellicle apodizer could be installed in

the chamber area to act as a “soft” aperture to clean up the “wings” of the spot,

increasing the effective f/# to f/27 and consequently the spot size to 27 µm × 29

µm FWHM as shown in the upper-right of Figure 2.6. However, this apodizer was

not used for experiments in this thesis.

For the f/20-focused South beam on astra-gemini, a 10× long-working-distance

microscope objective imaged the laser focus onto a 12-bit Stingray CCD. The f/20

focal spot was corrected daily with a deformable mirror (DM) to ensure that the in-

tensity distribution was optimized. The typical f/20 focal spot was slightly ellipitcal,

measuring 28 µm × 35 µm FWHM with DM correction as shown in the lower-left

of Figure 2.6. An optional serrated apodizer could be installed in the amplifer area

before the final spatial filter, increasing the effective f/# to f/27 and the spot size

to 30 µm × 40 µm FWHM, while decreasing the pulse energy by 15% as shown in

the lower-right of Figure 2.6. For the f/2-focused North beam on astra-gemini, a

40× long-working-distance microscope objective imaged the laser focus onto a 12-bit

Stingray CCD. The spatial distribution is discussed in greater detail in Chapter V.

2.3.2 Temporal Characterization

Knowing the temporal structure of the laser pulse is crucial for understanding

how the laser energy is deposited into the target. Over long timescales (∼ ns) before

the peak of the pulse, the pulse may contain residual amplified stimulated emission

(ASE) from the amplifiers that is leaked through the Pockels cells in the system.
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Figure 2.6: f/20 focal spots of hercules (top) and astra-gemini (bottom) without
(left) and with f/27 apodizers installed (right). Note the color and spatial scales are
the same for all images.
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Figure 2.7: Representation of the typical contrast structure of CPA laser systems.
Note that this figure does not properly indicate the temporal symmetry of shot-pulse
pre/post-pulses.

Even though the intensity of the ASE pre-pulse may be 106−1011 times smaller than

the peak of the pulse (shown in Figure 2.7), this level of pre-pulse still means that

the target can experience intensities on the order of ∼ 1013 W/cm2, greater than the

damage threshold for many materials, and create plasma. The ASE contrast ratio

can be measured simply with a fast-rise (sub-ns) photodiode and an appropriate set

of filters to establish the baseline. On hercules, the ASE contrast ratio (main pulse

compared to pre-pulse) was measured to be 1011 with and 108 without the XPW pulse

cleaning technique [33]. This is sufficent for most LWFA experiments where the ASE

intensity is on the order of ∼ 1011 W/cm2 and is not enough to cause the gas target

to significantly change its profile.

Over short timescales (∼ ps), the ability to measure temporal features of the pulse

becomes much more complicated. There are two main effects in this temporal region:

the ps pedestal from imperfect pulse compression and short-pulse pre-pulses. The

ps pedestal comes from the inability of the compressor to correct higher order phase

terms in the laser pulse (ϕ(4)(ω) and greater). This is an extremely important reason

to keep the grating pairs as parallel as possible. On the other hand, the short-pulse

pre-pulses originate from reflections in improperly aligned or uncoated/unwedged
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optics in the system (before the amplifers) which form a post-pulse from a double

back-reflection. Normally, post-pulses themselves will not affect the main pulse inter-

action. However, if the stretched post-pulse temporally overlaps with the stretched

main pulse in the amplifers, gain will produce a non-linear spectral beatwave between

the two pulses and consequently shift energy spectrally to form a pre-pulse [34]. This

means that care must be taken to remove any un-wedged or un-coated optics in the

laser chain.

Since electronic detectors read out on the order of ∼ ns, the compressed pulse

must be measured indirectly with some process occuring on a similar timescale. One

option is to use a streak camera. A streak camera works by initially converting the

laser photons into electrons with a photocathode and accelerating them into a region

with a fast sweeping voltage before the electrons impact a phosphor screen which is

then imaged. Depending on when they interact the sweeping voltage, the electrons are

dispersed differently in one direction on the phosphor or micro-channel plate (MCP)

screen. By using a slit to reduce the spatial extent of the input electrons to the

other axis of phosphor, the streak camera outputs a 2-D image with one dimension

representing for space and the other for time. Since the temporal sweep is linear, the

time axis is unambiguous, meaning that it directly represents the temporal shape of

the pulse. This unique feature of steak cameras is particularly useful for unambiguous

detection of short-pulse pre-pulses and is something autocorrelators are unable to

resolve even with considerable analysis. Some drawbacks of the streak camera are

their limited temporal resolution (>100 fs), expensive cost (∼ $100,000), and shot-

to-shot timing jitter of the sweep voltage.

A streak camera trace from hercules without XPW is shown in Figure 2.8 gener-

ated using a Hamamatsu model C1587 streak camera unit imaged with a CoolSNAP

CCD. To observe the lower intensity post-pulse, the main-pulse is allow to saturate the

photocathode and “bloom” on the read-out MCP. There are a number of identifiable
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Figure 2.8: Streak camera trace of hercules without XPW. The post-pulses can be
observed at 140, 340, 500, and 700 ps.
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Figure 2.9: Streak camera traces of with (top-right) and without (top-left) XPW. The
location of the pre-pulse can be determined by placing glass to introduce a known
delay (bottom).

post-pulses at 140, 340, 500, and 700 ps - corresponding to a back-reflections from

various optics (amplifiers, Faraday rotator, glass polarizers) in the system. Moreover,

since the original XPW crystals were unwedged and uncoated, they introduced a ∼10

ps post-pulse which readily becomes a pre-pulse in the regen amplifier [34]. This was

measured with the streak camera and was partially corrected by angling the crystals

as shown in trace in Figure 2.9.

For resolving effects less than 100 fs, the pulse can act as its own reference in

a process called autocorrelation. An intensity autocorrelator employs a non-linear

(such as second harmonic generation, SHG, [35] or third harmonic generation, THG)

process to produce an intensity output that is relative to the combined intensity of

the both the signal and reference with their respective delay to one another. For a

second-order (SHG) autocorrelator, this relation is given by:

I2ω(τ) =

∫
Iω(t)Iω(t− τ) dt (2.2)

where τ is the delay between pulses, Iω(t) is the intensity of the input signal, and
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I2ω(τ) is the intensity of the SHG output at a delay of τ . By scanning the de-

lay between signal and reference pulses for a second-order autocorrelator, the time-

symmetric temporal profile of the pulse is resolved. This enables high accuracy meau-

rements of the width of Gaussian-shaped main pulses as well as efficient detection of

any pre/post-pulses with the simple adjustment of a delay stage. However, since the

even-order process creates an ambiguity in time, it is impossible to determine the

direction of the time and consequently whether it is a pre- or post- pulse.

To overcome temporally symmetric signal resulting in a temporal ambiguity, an

odd-order process (such as THG) can resolve the temporal axis to a certain degree.

For a third-order autocorrelator, the relation is given by:

I3ω(τ) =

∫
(Iω(t))2Iω(t− τ) dt =

∫
I2ω(t)Iω(t− τ) dt (2.3)

where τ is the delay between pulses, Iω(t) is the intensity of the input signal, and

I3ω(τ) is the intensity of the THG output at a delay of τ . Although this process now

resolves the time axis more closely, there is still a subtle ambiguity in the pre/post

pulses since they can still generate enough SHG signal (I2ω) to create “ghost” pulses

in the temporal profile on the opposite side of the time axis. However, by measuring

the intensity at delays on both sides of the axis, the temporal location can be roughly

deduced. Although not performed during this thesis, a third order autocorrelation of

the hercules and astra-gemini lasers can be found in [33] and [32], respectively.

An example trace is shown in Figure 2.10. Used in conjunction with a streak cam-

era, a third order autocorrelator enables a good understanding of the long-timescale

structure of the laser pulse.

Due to the simplicity of autocorrelation, it can only resolve the intensity of the

main pulse. To measure the phase of the pulse, a technique called Frequency Resolved

Optical Gating (FROG) can be employed. FROG is an extention of autocorrelator,
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Figure 2.10: Third order autocorrlator trace of hercules regen with (red) and with-
out (black) XPW. Note that the post-pulses seen can create pre-pulses under ampli-
fication. Reproduced courtesy of Vladimir Chvykov, University of Michigan.
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where the spatial axis is now spectrally resolved in conjunction with the temporal axis.

This temporal-spectral information can be fed into a genetic algorithm to retrieve the

phase, and consequently the electric field profile, of the pulse.

Once the temporal shape is characterized on the low-power/regen level power, it

may become necessary to measure how much the power amplifiers affect the charac-

terization. Since most diagnostics cannot withstand the intensity of the main pulse,

the beam can either be attenuated with wedges or with a leakthrough before use. An-

other diagnostic of the short-pulse pre-pulse is the measure the breakdown of plasma

using a transverse probe (in this case, one arm of the interferometer described in

Section 2.5.1). This directly measures the pre-pulse interaction with a plasma, de-

tecting short-pulse pre-pulses formed from post-pulses in the final amplifiers that are

intense enough to ionize a gas target before the arrival of the main pulse. To ensure

only short-pulses are ionizing the gas locally, the laser focus must be small (resulting

from an f/10 focus or smaller) and the gas target must be low-Z (H2 or He) and

high-density.

2.3.3 Laser Power

By simultaneously measuring the laser spectrum and energy, the laser power for

a given shot can be calculated. A simple full power diagnostic of the pulse spectra is

a Thorlabs CCS175 fiber spectrometer which takes a leak-through of a mirror before

the compressor. The full power spectrum allows the pulse duration to be estimated

given the bandwidth and central wavelength. The bandwidth is the most limiting

factor in calculating the pulse duration due to the time-bandwidth constraint:

τL ·∆ωL > 0.44 (Gaussian shaped pulse) (2.4)
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where τL is the laser pulse duration and ∆ωL is the laser bandwidth. This implies

that a 30 fs Gaussian-shaped pulse requires 31 nm of bandwidth near 800 nm. The

regen typically provides 30-35 nm of bandwidth; however, with gain narrowing of the

power amplifiers, this can be reduced to 15-20 nm (corresponding to 60-45 fs output

pulses, respectively), so it the spectral width must be monitored closely.

The central wavelength is also important for the proper compression of pulse. If

the central wavelength shifts by 10 nm, the compressed pulse is effectively doubled

from 30 to 60 fs as the compressor grating separation is no longer optimally matched

to the central wavelength. Since the gain narrowing of the final amplifers is pre-

compensated (the spectra is intentionally blueshifted to offset the redshift of the

amplifiers). This is particularly important when using XPW since the process is

third-order and any modulations in the spectra can lead to splitting and shifting of

the spectra in the later amplifers. In certain cases, the spectra actually splits into

two different lobes, leading to stretched, multiple pulses. Furthermore, the reduction

of the spectrum is hazardous to the final amplifers and gratings as the laser energy

is contained in a narrow portion of the spectra, potentially leading to damage if

uncorrected. As such, the spectrum of the oscillator output in the hercules system

is monitored in order to automatically shut-down the amplifiers if there is a loss

of sufficient bandwidth that could damage the system. Also, loss or splitting of

bandwidth after the final amplifiers is a sign that the laser needs re-alignment.

The laser pulse energy is measured two ways: summing the near-field image

through a leak-through after the each amplifer and focusing the leak-through light

before the compressor onto a Thorlabs DET10 photodiode read out by a oscillo-

scope. The images after each amplifer are subject to more shot-noise (scattered light,

interference on video signal) and, therefore, can be inconsistent from shot-to-shot.

However, they allow the laser user to detect damage in the amplifer optics (seen in

the form of growing diffraction) and isolate which amplifier is causing the laser power
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Figure 2.11: Instabilities known to affect shot-to-shot reproducability: a) air current
gradients, b) mirror mount relaxiation, c) optical table vibration, and d) laser-plasma
instabilities.

to drop. On the other hand, the photodiode measurement is extremely linear com-

pared to the imaging system and is a good indictor of the laser power. Both systems

are cross-calibrated with a integrating sphere at the beginning of each shot run.

It must be noted that subtle issues (temperature, humidity, incident angle, optical

coating, alignment, polarization) with the leak-through measurements can affect the

relatively weak transmission of the spectra and energy through the high-reflection

dielectric mirrors. This affects all of the diagnostics mentioned in this section to a

certain degree; however, only the trend over a few shots is usually considered due to

shot-to-shot fluctuations.
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2.3.4 Laser Alignment and Pointing

To ensure the laser is reproducibly focused onto the target, an alignment procedure

must be performed and checked constantly. As shown in Figure 2.11, there are a

number of fluctuations that can affect the laser - and consequently the electron beam

- pointing and profile. In hercules, the most prominent source of fluctuations is

from vibrations in the optical tables. Although all the transport optics are mounted

on damped tables which are isolated from vibrations of the vacuum chambers and

in the ground, the air-conditioning (AC) unit in the laser room vibrates so much in

amplitude that it couples to the tables. This has been clearly measured to affect the

pointing up to 100 µrad at a rate of 0.5 Hz. This can easily be remedied by shutting

off the AC temporarily before a shot. Another fluctuation is caused by temperature,

pressure, or density gradients across the beam caused by air drafts or heat sources.

These gradients create subtle changes in the index of refraction in air across the

beam, acting like optical wedges to redirect the beam. In this case, it is important

to enclose the laser beam from external air currents and avoid placing electronics

dissipating heat near the beam. Neglecting this can not only cause slight pointing

variations, but also distortions to the focus. Finally, over the course of an hour,

the springs used to hold mirrors in the system begin to relax due to subtle changes

in temperature. This relaxation results in a systematic drift which can affect fine

alignment, especially in the case of multiple-beam experiments, but does not usually

affect single-beam experiments.

To characterize the pointing drift of the beam, a far-field pointing monitor con-

sisting of a lens and a 10X microscope objective was installed after the leakthrough of

the first mirror in the Gas Target area of hercules. This serves two purposes: first,

as a alignment diagnostic to ensure the beam axis entering the chamber was parallel

to the alignment axis, and second, as a full-power diagnostic (when properly filtered)

to track the shot-to-shot fluctuations and shape of the focus.
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The periscope mirrors directly after the compressor steer the beam to be parallel

to the alignment axis of this diagnostic, acting a first point of alignment in the system.

The focal spot monitor (described in Section 2.3.1) was used as the second point of

alignment in the system and allowed the beam focus to be checked before shooting.

2.4 Targets

Once the laser pulse was characterized, the next step was to install a target in

the laser path depending on the particular experimental goals. For LWFA, the target

needs to have a density of ∼ 1019 cm−3, low Z, and mm lengths. For these conditions,

gas jets and gas cells are ideal and can be tailored for the appropriate longitudinal

density profile. For overdense laser-plasma interactions, the targets need to exceed

the critical density (∼ 1021 cm−3) and have ∼ µm lengths, so thin solid foils are

used. For secondary conversion processes, the target needs to be dense (solid density,

∼ 1023 cm−3) and thick (∼ cm lengths) to maximize conversion.

2.4.1 Gas Jets

Gas jets are a simple, yet reliable, gas target that offers a wide variety of gas

densities and lengths. They have been used on laser plasma experiments for decades

and were the targets used for the first observation of quasi-monoenergetic electrons

from LWFA [10]. The typical design is a conical nozzle approximating an ideal Laval

nozzle in order to optimize the supersonic expansion of gas into vacuum [36]. The

design is shown in Figure 2.12a. A simple formula based on conservation of flux can

estimate the required backing pressure based on the nozzle input and output:

nexit ≈ nentrance ×
(
Aentrance
Aexit

)
≈ nentrance ×

(
rentrance
rexit

)2

(2.5)

where n is gas density, A is the nozzle area, and r is the nozzle area.
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Figure 2.12: Typical rapid-prototyped gas targets used for LWFA: (a) gas jet, (b)
single stage gas cell, and (c) staged and variable length gas cell. Reproduced courtesy
of Michael Vargas.

The majority of the gas jets were machined out aluminum, with some plastic

or brass used in different scenarios, in order to minimize bremsstrahlung from low-

energy electrons impacting the nozzle. Since the chamber must be at high vacuum

(10−3 mbar or lower) for the laser to propagate without self-focusing, the gas jet is

pulsed 20-30 ms before the laser arrives with a solenoid valve (Peter Paul Model #

EH22H9DCCMG). The backing pressure ranged from 1.5-600 bar depending on the

nozzle length and gas type.

Unless otherwise stated, the gas jets were placed 1 mm below the laser axis to

minimize laser damage and to ensure that the gas flow is supersonic and the profile

is relatively flat-top. When the gas jet is closer to the laser axis or over the course

of 1000’s of shots on a particular nozzle, the laser can damage the inner surface of

the gas jet, resulting in turbulent flows which can disrupt the LWFA process through

shocks or density purturbations. On the other hand, if the nozzle is too far away from

the axis, the gas flow can become subsonic and begin to diffuse in a more Gaussian

shaped profile. The gradients in this profile can steer the laser pulse similar to a

gradient index (GRIN) lens, redirecting the laser (and its trailing electron bunch) in

the direction with lower density (away from the nozzle).
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2.4.2 Gas Cells

Gas cells offer the flexibility of implementing practically any complex density

profile, including multiple gas types [37]. This is especially true with the rise of rapid

prototyping in the form of 3D printing [38]. A gas cell target design can be modeled

using computer aided design (CAD) software and 3D printed in a matter of hours.

This iterative process allows for quick turnover of ideas and has led to a number

of significant improvements in the reproducibility of electron beams in the LWFA

process [39]. The design is shown in Figure 2.12(b,c).

In general, gas cells provide a nearly uniform density within the volume once an

equilibrium is reached [40, 41]. This is a significant improvement over the Gaussian-

shaped density profiles generally produced in gas jets and allows for the laser to

interact more uniformly with the resultant plasma [42]. However, since the gas also

flows out of the entrance and exit holes of the cell, the laser interacts with longitudinal

density gradients on axis. This is potential advantageous for the self-focusing process

and for assisting trapping [42]. However, small-volume gas cells present a few unique

practical issues such as gas mixing between the stages and difficulty maintaining low

backing pressures.

2.4.3 Solid Targets

For experiments in Chapter III, a variety of solid targets were shot with a portion

of the laser beam. These targets included 5-200µm foils of Al, Cu, Au, glass (SiO2),

and Mylar (C10H8O4) and Ø5− 25µm wires of Cu or Ni.

Since the laser ablates or entirely destroys the target after a shot, a new target

must be precisely positioned at the laser focus for the optimum interaction to oc-

cur. Two separate imaging systems and an alignment laser are used to help position

the target. The low magnification system (“low-mag”) allows the user to visually

position the target within ∼ 100 µm of the laser focus. Using an alignment laser
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co-propogating with the main laser, the high magnification system (“hi-mag”) allows

the user to triangulate the target positon to the laser focus using the scattered light

from the alignment laser.

For experiments in Chapter IV, a variety of solid targets were used for bremsstrahlung

conversion. Although any material may be used to convert radiation via bremsstrahlung,

the scaling is strongly dependent on the number of radiation lengths encountered.

This implies that the process efficiency is proportional to Z2/A, thickness (d), and

density (n). For electron beams creating bremsstrahlung photons and positrons, this

means targets of high Z materials with thicknesses on the order of a radiation length

d ∼ Lrad. Targets typically included Pb or Ta due to their high-density and high-Z.

2.5 Interaction Diagnostics

Once the laser is characterized and a target is selected for a given experiment, the

interaction of the laser with the target must be quantified. This generally falls into

two categories: optical and high-energy radiation diagnostics. This section will focus

on the former, using optical light to help diagnose the laser-plasma interaction. A

summary of the scientific cameras used for optical diagnostics used in this thesis is

shown in Table 2.2.

2.5.1 Interferometry

To measure the plasma density profile of the gas target, plasma interferometry

was performed using a small portion of the main laser pulse to probe the plasma.

On hercules, a 2 µm thick nitrocellulose pellicle (National Photocolor) with one

side anti-reflection (AR) coated was used to pick off the 4% Fresnel reflection from

the main beam to transversely probe the laser-plasma interaction before entering

a shearing Michelson interferometer. On astra-gemini, small pick-off mirror was

placed in the main beam to transversely probe the laser-plasma interaction before
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Manufacturer Photometrics Andor Allied Vision
Camera CoolSNAP cf iXon Stingray F-033

QE at 800 nm 6% 76% 12%
QE at 545 nm 36% 90% 38%
QE at 400 nm 32% 72% 24%
Pixels 1392 × 1040 1024 × 1024 656 × 492
Pixel Size 4.65× 4.65 µm2 13 × 13 µm2 9.9 × 9.9 µm2

Dynamic Range 12-bit 16-bit 12-bit
Readout Noise ± 4 counts ± 2 counts ± 4 counts
Connector PCI Frame Grabber PCI Frame Grabber Firewire

Table 2.2: Specifications of optical scientific cameras used in experiments. QE stands
for quantum efficiency, which is the photon-to-electron conversion efficiency in the
sensor for a given photon energy/wavelength.

entering an offset Mach-Zehnder interferometer. In both cases, a delay stage was

used to adjust the temporal overlap between the main and probe pulses such the

probe pulse arrived ∼ ps after the main pulse had passed throught the entire plasma

length.

The amount of phase shift (∆φ) accumulated in the interferometer fringes is the

integral:

∆φ =
2π

λL

∫
P

(1− η(x)) dx (2.6)

where λL is the laser wavelength and η(x) is the refractive index of the plasma as a

function of position. Assuming the plasma is cylinderically symmetric, the density

profile can be found by taking an Abel inversion to extract the radial density profile.

A labview program written by Nicholas Matlis was used to compute density maps

via Abel inversion of interferometer images.

2.5.2 Timing Diagnostics

Due to the fs timescales of the pump-probe interactions in this thesis, precise

temporal synchronization techniques are required. For all of these techniques to be

practical, the coarse ns timing must first be established by setting optical path lengths

33



to within cm’s for separate beams before using a delay stage to dial in finer timing.

If the paths cannot be measured easily, a fast photodiode and oscilloscope (rise time

of ∼ 50 ps) can be used to overlap the beams at (or near) the interaction point.

For experiments in Chapter III, two different fine timing methods were employed:

temporal interferometry and optical breakdown in air. For temporal interferometry,

the counterpropagating beams were overlapped using a glass microscope cover slip of

160 µm thickness to reflect a portion of the f/3 beam onto the transmitted f/18 beam.

When synchronized, the two beams produced fringes where the beams overlapped on

a CCD. However, the thick glass introduced a few sources of error. First, it produced

a secondary reflection of similar intensity from the rear surface that could be easily

be mistaken for the main reflection, except ∼ 500 fs delayed. Second, the glass

refractive index and thickness at the given angle were not precisely known, giving

an error of ±100 fs. Finally, the glass was not placed exactly at the f/3 focus,

yielding a positioning error on the order of 100 fs. The other timing method used

the f/3 focus to induce optical breakdown at its focus in air. The resultant plasma

was backlit with the f/18 beam on a CCD camera. Since the plasma forms at the

peak of the f/3 pulse, the f/18 light is only scattered after the plasma is formed,

indicated by a spatial intensity depression that disappears when the f/3 is blocked.

This technique enabled nearly pulse duration (∼ 30 fs) synchronization of the two

pulses. One caveat for this technique is that the beams must be split under vacuum,

lest the relative optical path lengths change due to the slight difference of refractive

index between vacuum and air.

For experiments in Chapter V, separate fine timing methods were used based

on the laser system: optical breakdown for hercules and spectral interferometry

for astra-gemini. On hercules, the optical breakdown method was similar to

above with the exception that the two foci (from f/2 and f/20 beams) are closely

overlapped. Since the f/20 did not always overlap with the f/2 breakdown, a non-
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dispersive diffuser (tissue paper) was used to spread the beam over a larger area to

ensure backlighting the breakdown. For spectral interferometry on astra-gemini, a

5 µm thick pellicle was used to reflect a portion of the f/2 beam to overlap with the

f/20 beam on a diffraction grating. The first order diffraction was imaged to a CCD

camera. Since the spectra of the pulses essentially stretched over time in one direction

of the camera, fringes will appear over ps timescales, with the fringes rotating as the

delay is changed. When the fringes are parallel between the two beams, the pulses

are closely overlapped in time. Since the relative fringe rotation slowly varies with

temporal overlap, this technique was only accurate to ∼ 100 fs.

2.5.3 Scattered Light Diagnostics

Thomson scattered light from the plasma can help diagnose the laser-plasma in-

teraction in a variety of ways. The primary scattered light diagnostic was the top

scatter or “top view” imaging system used in conjunction with gas jet targets. This

scattered light showed how far and how well the laser propagated through the gas

target. It was also used for alignment of the gas jet nozzle with the laser. Lastly,

a portion of this scattering light was sent to an imaging spectrometer (Horiba Mi-

croHR) which could image the scattered laser spectra as it propagates. Backscattered

light from NLTS counter-propagating geometry was also monitored due to the risk

of sending collimated light back into the laser chain, potentially damaging optics in

the front end of laser chain due to residual gain in the amplifiers after a shot. This

backscattered light could be measured by imaging the back-sacttered leak-through of

a dielectric mirror.

2.6 Radiation Detectors

If the laser is sufficently intense when it interacts with the plasma, a wide variety of

radiation can be emitted. This section will describe a variety of methods to measure
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Manufacturer Hamamatsu Hamamatsu Hilger Crystals
Model J6677 J6677-01 Custom

Scintillator CsI CsI BGO
Coupling 6 µm FOP 6 µm FOP Direct
Relative Light Output 70% 40% n/a
Scintillator Thickness 150 µm 150 µm 50 mm
Area 50 × 50 mm2 50 × 50 mm2 27 × 27 mm2

Resolution 100 × 100 µm2 50 × 50 µm2 1 × 1 mm2

Table 2.3: Specifications of camera-coupled scintillators used in experiments.

this radiation. This typically involves either direct measurement of the radiation

or conversion of the radiation into light or some other measurable unit for indirect

detection.

2.6.1 Scintillators

Scintillators are the primary radiation diagnostics used for high-energy radiation.

As with most radiation detectors, scintillators trade off efficiency for spatial resolution.

For the majority of high-repetition rate (∼ 1 shot/min) experiments, we used

Kodak LANEX scintillator screens to image the electron beam spatial or spectral

distribution. LANEX is composed of a thin layer of Gd2O2S doped with La2O2S,

scintillating light isotropically at a peak around 545 nm. The front of the LANEX

screens were shielded by Al or brass to block laser light and low-energy electrons or

X-rays from creating noise. The rear was imaged with visible light scientific cameras

(either CoolSNAP or iXon cameras, detailed in Table 2.2) using either BG39 glass or

545 nm bandpass filters to block laser or other contaminant light. Due to the variety

of cameras, lenses, and geometries used, cross-calibration was performed with image

plates (Section 2.6.2) for each scenario.

For indirect 20-100 keV energy X-ray detection, scintillators coupled to fiber optic

plates (FOP) can be directly attached to a camera to increase conversion of X-ray

energy into more easily detectable visible light. For such experiments, we used Hama-
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matsu J6677 or J6677-01 scintillator packages (Table 2.3) depending on the emphasis

of yield or resolution, respectively.

For spatial measurements of high energy photons (> 100 keV ), a pixelated scintil-

lator array manufactured by Hilger Crystals was used. The array consisted of 1×1×50

mm3 blocks or “voxels” of bismuth germanate oxide (BGO) to absorb as many of the

high-energy photons as possible. The voxels were separated by a 100 µm coating

of titanium dioxide (TiO2) to isolate different channels. This array was specifically

design to be coupled to the Andor iKon-L HF camera described in Section 2.6.3.

For the activation diagnostic in Section 4.2.2, a matched pair of NaI scintillators

of Ø75mm×75mm size were used to measure 511 keV photons from β+ decays. The

high-Z iodine helps increase the total photon absorption in the scintillator, and re-

duces scattered photons from leaving the volume. To measure the 511 keV photons in

coincidence, special nuclear electronics are required. A timing single-channel-analyzer

(timing SCA) takes the readout signal and gates it spectrally for the desired energy

range, before outputing a logic pulse after the signal’s peak. These logic pulses are

fed into a coincidence unit which acts as a hardware “AND” function, outputing a

logic pulse if the inputs fall within a certain time range (usually > 100 ns). These

output logic pulses can be summed in an analog or digital counter, depending on the

application.

Plastic scintillators (Eljen Technologies, EJ-200) were used for general, pulsed ra-

diation diagnostics around the interaction chamber. These Ø25mm× 100mm scintil-

lators were placed in three locations: on-axis with the drive laser, behind the electron

spectrometer beam dump, and opposite of the beam dump. The relative X-ray signal

amongst the different scintillators was strongly correlated with LWFA electron beam

generation and allowed initial diagnosis when the electron beam was not optimized.

For the NaI or plastic scintillators, photomultipler tubes (PMT) were coupled to

the scintillators for readout to a fast oscilloscope. A PMT works on the principle of
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cascaded electron multiplication in a vacuum tube, resulting in a high gain and low

noise readout from light entering the photocathode.

2.6.2 Imaging Plates

Photo-stimulatable phosphors, colloquially known as imaging plates (IP), are a

form of delayed scintillator (commonly used in medical X-ray detectors) based on

the principle of photostimulated luminescence (PSL). IPs contain an active layer

of barium fluorohalide phosphor crystals (BaF(Br,I):Eu2+) which can be excited by

ionizing radiation. This excitation relaxes to a meta-stable state in Eu2+ sites, which

can be externally photo-stimulated (in this case with a HeNe laser emitting 632.8 nm

light) to re-emit a photon of higher energy (∼ 400 nm). These photons are collected

with a photomultipler tube (PMT) to maximize the sensitivity and dynamic range

of the detector. After being readout, the IP can be “erased” by exposing it to white

light which de-excites any remaining Eu2+ sites. However, this also means that the

IP must be protected (typically with Al foil) from external light before being read

out.

IPs are preferred to X-ray film for a number of reasons: more linearity, larger dy-

namic range, simple readout, and re-usability [43]. They can be easily placed around

the interaction, requiring nothing more than a light-tight wrapping. They are also

much more sensitive than scintillator screens and have been absolutely calibrated for

practically every form and energy of radiation [44]. However, the primary drawback

for high-repetition rate experiments is the need to remove and read-out the plate for

every exposure.

There are three main variety of Fujifilm brand IPs used in our laser-plasma exper-

iments: MS (more sensitivity), SR (super resolution), TR (tritium detection). The

MS variety was typically employed for these experiments, as the 100 µm resolution

and high sensitivity is sufficient for most purposes. The SR and TR offer higher reso-
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lution (50 µm) but less sensitivity due to their thinner active layer [45]. Additionally,

the TR has no protective plastic coating which allows for the detection of ions and

> keV photons, but this means that it is highly hygroscopic (retains water) and must

be handled with care to avoid degrading the phosphor. For experiments on hercules

and astra-gemini, Fujifilm-BAS 1800-II and Fujifilm-FLA-5000 readers were used,

respectively.

The direct readout from the IP reader is in units of quantum levels (QL). This

needs to be converted into linear units of PSL before analysis can be easily performed.

The relationship is given by:

PSL =

(
R

100

)2

× 105(QL
G
− 1

2
) (2.7)

where R is the typical scanning resolution (in µm) and G is the graduation scale.

These are set by the scanning parameters where typically R = 100 µm resolution and

G = 65536 (16-bit digitization) are used.

Despite the high sensitivity and dynamic range of IP, there are some cases where

the IP can be overexposed for immediate direct readout. This can be solved in a few

ways. Since the excited states in the Eu2+ decay over time (fast mode ∼ 20 min, slow

mode ∼ 12 hours), the plate can be allowed to decay over time to reduce the signal,

although this method is slow and inefficient for determining the actual signal exposed.

One other method involves the decay caused by active readout since the HeNe laser

used to read the signal de-excites the Eu2+ at a constant rate. This method is useful

for signal just above saturation of the readout, but can become tedious for highly

saturated IPs. Another method involves the use of a thin neutral density filter placed

on top of the image plate. This attenuates not only the HeNe light incident on the IP

and but also the de-excitation light emitted from the IP. For an OD-1 neutral density

filter, this allows IPs with roughly a factor of 100× more signal to be read easily.
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Manufacturer Andor Andor Princeton Instr.
Model iKon-M SO iKon-L HF PIXIS XF

Peak QE 95% 95 % 12%
Pixel Array 1024 × 1024 2048 × 2048 1392 × 1040
Pixel Size 13 × 13 µm2 13.5 × 13.5 µm2 20 × 20 µm2

Light Collection Direct detection Fiber-coupled Fiber-coupled
CCD Format Deep-depletion Back-illuminated Front-illuminated
Fiber Diameter n/a 6 µm 10 µm
Dynamic Range 16-bit 16-bit 16-bit
Readout Noise ± 2.9 e− ± 4.9 e− ± 10 e−

Connector USB USB PCI Frame Grabber

Table 2.4: Specifications of X-ray cameras used in experiments.

2.6.3 X-Ray CCDs

Although charge-coupled device (CCD) cameras are typically used to image optical

light, the same principle can be applied to X-rays. As X-rays are absorbed into the

active pixel substrate medium, electrons are freed in a similar manner to optical light

absorption. The key difference is that X-rays have roughly 1000× more energy than

optical photons, so that one X-ray photon can create a much larger amount of signal in

the pixel. Figure 2.13 shows a comparison of different CCD sensor geometries. Front-

illuminated sensors (Figure 2.13(left)) require light to propagate throught the pixel

readout gates and insulation layers, reducing the overall efficiency. Back-illuminated

sensors (Figure 2.13(middle)) are made with thinned substrates which can absorb

more incident light if illumated on the substrate from the rear. Deep-depletion sensors

(Figure 2.13(right)) have a thicker substrate, allowing for higher energy photons to

get absorbed in a back-illuminated geometry.

An Andor iKon-M SO camera was used for betatron imaging (not included in

this thesis) due to its direct detection, back-illuminated, deep-depletion sensor. This

allowed for efficient imaging of photons from 5-20 keV .

The Andor iKon-L HF camera was used for the majority of high-energy detection
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Figure 2.13: Comparison of different types of CCD sensor geometries.

(Chapter IV) due to its fiber-coupled, back-illuminated sensor which could be fitted

with various scintillators (Section 2.6.1. Since the scintillators emit light between

400-550 nm, the sensor did not need to be thick (for deep-depletion) to efficiently

absorb the scintillator signal. With the Hamamatsu FOP scintillators, photons from

20-100 keV were efficiently imaged. In conjunction with the Hilger pixelated BGO

scintillator, photons up to 10 MeV could be coarsely imaged.

For both Andor cameras to achieve 16-bit resolution with low readout noise, the

sensors were thermo-electrically cooled to −35◦ C or lower.

2.6.4 Gamma Spectroscopy

Due to the poor resolution of scintillators, semiconductor detectors were employed

to get high-accuracy γ-ray spectra from activation and photo-fission products. Specif-

ically, high-purity germanium detectors (HPGe) were used for γ-ray spectroscopy of

the activated products. The liquid nitrogen cooled ORTEC GAMMX Ge(Li) detec-
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Figure 2.14: Sensitivity of energy-threshold bubble detectors used at astra-gemini.
Note that the BDS-2500 response is divided by an order of magnitude to fit on the
chart. Reproduced from the BDS Series Manual.

tor was used for the photofission measurements. The signal was read by a ORTEC

multi-channel analyzer (MCA), which digitized the data for analysis on a computer.

2.6.5 Neutron Detection

Since neutrons are uncharged, they interact weakly with most matter. As such,

they are difficult to detect directly and generate very little scintillation light com-

pared to charged particles and photons. This becomes an issue as these other, more

easily detected forms of radiation are generated in conjunction with the neutrons.
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One solution is to use low-Z (plastic) scintillators to perform time-of-flight (TOF)

measurements [46].

Another method of neutron detection uses the principle of historical bubble cham-

bers to create visible “bubble” tracks in a superheated emulsion when a neutron is

absorbed. Using chlorofluorocarbon gels, this“bubble detector” can be formed into

various shapes and will retain the bubbles until the emulsion is re-compressed. By

changing the emulsion mixture and, consequently, the critical point, the low energy

threshold can be tailored for different spectral sentivities. Figure 2.14 shows the

response of the energy sensitive bubble detectors used on the astra-gemini experi-

ments with six different energy thresholds: 10, 100, 600, 1000, 2500, and 10000 keV .

Since the higher energy spectral response is similar between the different bubble de-

tectors, the neutron spectrum can be calculated by subtracting the high-energy signal

from the low energy bins to find, assuming the neutron flux is consistent across the

various bubble detectors. This spectral deconvolution or “unfolding” can be per-

formed easily with a simple spreadsheet, knowing the calibration constants for each

bubble detector.

2.7 Computational Modeling

Due to the complexity of interactions studied by the aforementioned experimental

diagnostics, the use of computer simulations can deepen the understanding of the

underlying physics which may be difficult to study independently. This section will

detail some of the computational methods employed for understanding results in this

thesis.

2.7.1 Particle-in-Cell Simulations

Particle-in-Cell (PIC) methods are useful for studying collective effects in non-

fluid-like plasmas, such as in the process of LWFA and laser-solid interactions. PIC
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Figure 2.15: Particle density snapshot of a 2D PIC simulation with a0 = 5 laser pulse
interacting with a plasma channel with ne ' 8 × 1018 cm−3 on axis, showing the
typical structures of a LWFA.

simulations work by using finite difference methods to move “macro” or “quasi” par-

ticles on a grid according to equations of motion. The macroparticles and gridding

greatly increase the speed of the plasma simulation since the number of Coulomb

interactions required is reduced from the full N2 down to N .

The process begins by distributing particles to a grid. A electromagnetic field

distribution can be interpolated from the particle distribution and assigned back the

grid. The particles are then pushed by the field to a new position. The cycle then

can repeated, provided the radiation wavelength, Debye length, and the Courant-

Friedrichs-Lewy condition (∆x ≥ c∆t) are properly resolved to avoid developing

spatial, thermal, or temporal instabilities, respectively. The osiris [47] code was

used for all PIC simulations used in this thesis, most of which were run on the Nyx

cluster at the Center for Advanced Computing (CAC) in the University of Michigan.

PIC simulations of laser-solid interactions were crucial for understanding the field

shape and magnitude for the electron radiography experiments (Chapter III) and
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are shown in Section 3.4. These simulations required a solid density plasma with a

exponential decreasing density of pre-plasma on either side. The density scalelengths

were estimated from techniques described in Section 2.7.4. As the laser pulse reflects

off the overdense plasma, the simulation boundary conditions were set to be absorbing.

A typical PIC simulation of the LWFA is shown in Figure 2.15. Since the laser

readily propagates through the underdense plasma and is of primary interest, a mov-

ing frame simulation is used to track the laser pulse and consequent plasma evolution,

also greatly reducing the computational time due to the smaller number of particles

and grid size.

2.7.2 Monte-Carlo Simulations

Monte-Carlo methods are a type of computer algorithm that employ random

sampling to quickly converge on a numerical solution. These techniques were first

developed during the Manhattan Project for studying radiation transport in nu-

clear weapons. However, these can be used for a wide range of stochastic (non-

deterministic) problems such as calculation of bremsstrahlung spectra and beam fluc-

tuation analysis.

To support the bremsstrahlung results (Chapter IV), Monte-Carlo simulations

using the fluka [48] and mcnp codes were performed to simulate the radiation

transport and conversion of electron beams into bremsstrahlung and secondary par-

ticles. Due to its focus on nuclear fission processes and limited cross-section libraries

for high-energy positrons, mcnp5 was primarily used for simulating photon spec-

tra/divergence and 238U photofission yield (mcnpx has a more extensive library of

particles and cross-sections, but requires a different source and input; mcnp5 and mc-

npx will soon be merged into mcnp6, remedying this issue). Thus, the high-energy

physics fluka code was used to simulate situations where positrons (and pions) were

of primary interest, such as the Compton scattering spectrometer (Section 4.2.2) and
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positron measurements (Section 4.3).

Both codes start with an input deck of particle energies and directions. The

particles propagate a random distance (normalized to the mean-free path) before

undergoing a randomized process (scattering, absorption, pair production, etc.) ac-

cording to the relative cross-sections. The particle continues along its “random walk”

until it leaves the simulation or gets absorbed. The radiation created along the path

is likewise propagated until it terminates. The process is repeated with the next test

particle. The desired simulated quantity (particle type, spectra, divergence, etc.) is

then tallied. Over the course of the numerous (typically 106) particle runs, statisti-

cally significant processes can be observed.

To better understand the difficulty of beam-particle overlap for NLTS, a propri-

etary Monte-Carlo algorithm to simulate pointing fluctations and their effects was

developed by Martin Farlotti and the author (Section 5.3). This code normally dis-

tributed the electron and laser beams separately on a 2-D grid before calculating the

backscattered photon distribution from the interaction of the beams. A parameter

scan of temporal and spatial offsets, divergences, and perturbation amplitudes was

performed and is detailed in Section 5.3.

2.7.3 Particle Tracking

To study single particle motion in a static, deterministic system, simple algo-

rithms using the Lorentz force equation can be implemented to calculate the particle

trajectory. Various codes were used for mapping electron trajectories in the following

scenarios relevant to this thesis: electron deflection in magnetic spectrometers, in-

jected electron motion inside the wakefield bubble, and beam deflection after probing

magnetic fields on solid targets.

Proprietary codes written in matlab and Microsoft Excel as well as simulations

using the comsol Particle Tracing package were used to calculate electron trajectories
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Figure 2.16: Trajectories (left) and overall deflection on the scintillator (right) of
electrons with different energies entering the spectrometer magnet used in hercules
experiments. Courtesy of Stefan Kneip.

in the electron spectrometer. These required the experimental geometry and magnetic

field parameters to calculate the deflection as a function of electron energy. Example

particle trajectories are shown in the left of Figure 2.16 and the resultant spectral

correspondence on the scintillator screen is shown on the right of Figure 2.16.

For understanding results in Chapter III, a 2D particle tracking code written

by Calvin Zulick was employed to study electron beam propagation through strong

electromagnetic fields. This code used an electron beam spectrum/profile, a test

magnetic field profile, and the experimental geometry as inputs and produced an

output electron beam profile, as shown in Figure 3.12.

2.7.4 Fluid Simulations

Although the work in this thesis typically occurs on fs timescales which mostly

ignore the “slow” (> ns) fluid dynamics, the target dynamics before the laser pulse

arrives are extremely important for how these fs processes evolve.

For solid target interactions, 1D radiation hydrodynamic simulations were per-

formed using hyades [49] to study the effects of ns contrast on the pre-plasma scale-
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length of solid target interactions. These simulations were run with a ramped laser

pulse based on measurements from Section 2.3.2 interacting with a step function tar-

get with solid density surrounded by vacuum. As a function of the laser temporal

intensity distibution, an exponential density distribution of pre-plasma can form from

the material ablated off the target [50]. This exponential scale-length is critical for

understanding of certain laser-plasma applications such as high-harmonic generation

(HHG) [51] and will be discussed further in Chapter III.

For gas target dynamics, 2D computational fluid dynamics (CFD) simulations

were performed using the comsol CFD package [52] to study the gas flow in and

around the jets/cells. These simulations were run with a ramped gas pulse based

on settings from Sections 2.4.1 and 2.4.2 interacting with the target boundaries sur-

rounded by vacuum. As a function of the backing pressure and geometry, a lineout

of the density distribution on the the laser could be taken [39] and consequently fed

into PIC simulations (Section 2.7.1) to get more realistic parameters.

48



CHAPTER III

Electron Radiography of Laser-Solid Interactions

3.1 Introduction

Laser-solid interactions have been studied since the creation of the first laser in

1960. Understanding the dynamics of such interactions have been key to the develop-

ment of numerous laser applications. At high laser powers/intensities, the prominent

applications of laser-solid interations include inertial confinement fusion (ICF) [53],

laser-based ion acceleration, and high-order harmonic generation (HHG) [51].

Strong magnetic fields are well known to be generated by a variety of mecha-

nisms in laser interactions at a solid density plasma-vacuum interface, including the

important Biermann battery effect [54]:

∂B

∂t
= − kB

ene
(∇n×∇T ) (3.1)

In such interactions, the laser field generates hot electrons which can circulate through

the target and spread along the target surfaces (front and rear), generating an elec-

tromagnetic sheath field that expands from the laser focus [55, 56, 57, 58]. Further-

more, complex magnetic fields may arise by filamentation of the expanding current

sheet [59]. Measurements of such fields have previously been performed using laser-

generated proton radiography [60, 61, 62, 63, 64, 65], including time resolved mea-
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Figure 3.1: Sensitivity of protons (dashed) and electrons (solid) for electric (blue) and
magnetic (red) fields. Note that the (time-independent) magnetic field sensitivity of
10 MeV protons from TNSA is similiar to 100 MeV electrons from LWFA.

surements of magnetic fields advecting with plasma flows [66, 67, 68]. Current laser

driven sources of protons [69, 70, 71, 72] are usually produced by target normal sheath

acceleration (TNSA) and are non-relativistic, thereby limiting temporal resolution.

In contrast, highly relativistic electron bunches (>100 MeV ) generated by laser wake-

field acceleration (LWFA) typically have durations less than the driving laser pulse

(<30 fs) [73, 15] and can be optically synchronized, therefore enabling the observa-

tion of faster dynamics in field structures than can be easily performed with TNSA. A

comparison of sensitivities between protons and electrons to electric/magnetic fields

is shown in Figure 3.1.

In the interaction of an oblique incidence relativistic intensity laser pulse (a0 � 1),

the particles are heated primarily by a combination of resonance absorption [74] and

Brunel absorption [75] to produce relativistic electrons. These electrons propagate
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throughout the target and into the vacuum, forming expanding sheath fields on the

front and rear surfaces. For metal or plasma targets, the net current within the target

volume will be approximately zero [76], but fast electrons will be free to propagate

in the vacuum near the surface, balanced by a return current just inside the bulk

material. This leads to a thin Debye sheath with an electric field perpendicular to

the surface and an inductively generated azimuthal magnetic field, both expanding

radially at close to the speed of light.

In this Chapter, we demonstrate proof-of-principle radiography of electromagnetic

fields relativistically expanding from the interaction of intense laser pulses with planar,

foil targets, using LWFA electron beams.

3.2 Experimental Setup

For these experiments, the hercules laser was operated at 100 TW with native

108 contrast ratio between the main pulse and the amplified spontaneous emission

(ASE) on the nanosecond pulse pedestal and 104 contrast ratio for the picosecond

pulse pedestal. The cross-polarized wave (XPW) pulse cleaning technique could be

enabled for contrast improvement, yielding up to 1011 contrast ratio for the ASE

[33]. The experimental and optical geometries are shown in Figures 3.2 and 3.3,

respectively. A pick-off mirror sent the central portion of the beam to an f/18 off-

axis paraboloid (OAP) mirror focusing the pulse to an intensity of 1.6× 1019 W/cm2

(a0 = 2.8) into a He-N2 (95:5 mass ratio) plasma of 2×1019 cm−3 peak density above a

1.3 mm supersonic gas jet nozzle, generating a broad energy spectrum electron beam

with up to 120 MeV energy and 100 pC charge via ionization injection [77, 78]. The

remaining annular beam was sent to a delay stage with 300 ps of adjustable delay

and was then focused with an f/3 OAP mirror to an intensity of 4 × 1019 W/cm2

(a0 = 4.4) onto a solid target at 30◦ incidence. The f/3 focus was spatially overlapped

on the f/18 beam axis 10 cm behind the f/18 focus. Timing overlap was achieved

51



f/3 Pump Beam

LANEX Scintillator

Gas Jet

Light Shield/DiffuserSolid Target

f/18 LWFA 

Probe Beam

Probe Electron Beam

5 cm
5 cm

85 cm

30°

Figure 3.2: Simplified experimental geometry for electron radiography.

using the f/18 beam to backlight the breakdown in air at the f/3 focus, yielding an

optical timing accuracy of ±30 fs between the two beam paths.

Since the electron beam exits the gas jet plume with a relatively narrow, but

elliptical, divergence (<10 mrad) and a large energy spread (∆E/E ∼ 100%), a 75

µm thick aluminum foil was placed 5 cm behind the gas jet. This acted both as a

shield to block any remaining f/18 light from interacting with the rear surface of the

solid target as well as a diffuser to allow the electron beam to radiograph a larger

area of the target while scattering away the low energy (<15 MeV ) electrons as [79]:

θscatter ∝
1

Ee−
(3.2)

After the electron beam probed the solid target, the electron beam profile was mea-

sured 85 cm away from the target by a LANEX scintillator screen at 45◦ to the

beam imaged with a CCD camera at 90◦ to the beam to minimize distortion. After

passing through the diffuser and target, the electron beam had a Gaussian profile

elliptical about the polarization axis with a divergence of ∼ 20 mrad × 30 mrad

FWHM. Because an accurate electron spectrometer could not be placed behind the

solid target, diffuser, and LANEX screen, a charge-calibrated spectrometer with a

0.8 T magnet and LANEX screen was installed directly behind the gas jet and was

used to characterize the electron beam energies in a separate shot series. A typical
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Electron Radiography Optical Layout


HeNe 
Injection 

Figure 3.3: Optical layout of the electron radiography experiment.

electron spectrum is shown in Figure 3.4.

The focal position on the solid target was found by optimizing the X-ray signal

with a shielded plastic scintillator coupled to a PMT over a number of shots while

blocking the f/18 beam. Next, the f/3 beam was blocked and the electron beam was

checked for pointing and charge stability both with and without the diffuser. After

optimizing the solid target focus and electron beam, both beams were unblocked and

a series of shots were taken while varying the relative time delay of the f/3 beam

with respect to the f/18 beam. The solid target and diffuser were refreshed after each

shot and aligned to the optimum focal position. A variety of solid target thicknesses

(10−200 µm) and materials (Al, Cu, Au, and Mylar (C10H8O4)) were investigated for

this experiment, although thin (10− 13 µm) targets were primarily used to minimize

scattering.
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Figure 3.4: (a) Calibrated electron spectrum and (b) spectrometer image for a typical
probe electron beam.

3.3 Experimental Results

When the f/3 was incident on the target, distinct features were observable, de-

pending on the relative timing ∆τ , laser contrast level, and the target material. Such

features included a focused region of electrons, an area depleted of electrons or a ring

structure, and asymmetric structures. Differences in observed features can be ex-

plained by the underlying dynamics of the laser-target interaction since laser contrast

and target type (metal vs. dielectric) greatly affect the scale length of the pre-plasma

and absorption of laser energy. For low contrast shots (108) with dielectric Mylar

targets, focused structures (Figure 3.5) were consistently observed out to 7.5 ps, indi-

cating that the front surface fields dominated the interaction. For low contrast shots

with metallic aluminum targets (Figure 3.6) both focusing and de-focusing could be

observed, with focused features appearing for earlier times before de-focusing holes

in the electron beam profile appeared at longer timescales (>1.5 ps). This indicated

that the front surface field dominated early in time before either: (a) the beam over-

focused and creating a de-focusing feature, or (b) the rear surface became dominant

at longer time scales. Since the material composition (metallic versus dielectric) and
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-180fs +600fs +900fs +1500fs +2100fs +7200fs 

Figure 3.5: Radiographs of low-contrast shots taken on 13 µm Mylar foil. Note the
constant focusing structure over time.

-300fs +0fs +1650fs +650fs +1300fs +1850fs +3300fs +6600fs 

3mm 

Figure 3.6: Radiographs of low-contrast shots taken on 10 µm Al foil. Note the
focusing structure early transitioning to defocusing later in time.

laser contrast ratio affect the amount of pre-plasma formed, we decided to re-attempt

the 10 µm aluminum experiment with XPW, which improved the laser contrast to

1011 from 108. With high contrast shots on 10 µm aluminum, the observed feature

was a hole in the electron beam expanding linearly in time (Figure 3.7) out to 1.5 ps

after an initial period of focusing.

-500fs +1000fs +1333fs +500fs +667fs +333fs 0fs +167fs 

Figure 3.7: Radiographs of high-contrast (XPW) shots taken on 10 µm Al foil. Note
the defocusing structure rapidly growing in time.
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3.3.1 High-Contrast Interactions

To quantify the size of the high contrast deflection feature while compensating for

the irregular probe pointing overlap, the average of four lineouts were taken across

the center of deflection region in slices rotated at 45◦ intervals. For each lineout,

the mid-point from the top peak to lowest point of the valley was used to calculate

the threshold for the curvature of the feature. A circle was then fit to the feature

at this threshold level to find its diameter on the scintillator. Dividing this by the

projection magnification (18× in our case, taking the diffuser as the effective source),

the diameter of the feature on the target can then be calculated. Figure 3.8(d) shows

the size of this feature as a function of pulse delay, indicating that the speed of the

expansion of the field structure is (0.98 ± 0.08)c. An example lineout for a high

contrast shot is shown in Figure 3.8(b).

For a radially symmetric azimuthal magnetic field, the probe electron beam will

either experience a momentum dependent defocusing or focusing effect, whereas a

focusing/defocusing electric field would be radially directed. Since the strongest elec-

tric field component is expected to be normal to the target surface and therefore

parallel to the electron beam direction, the inductive magnetic field associated with

the expanding electric sheath [58] is likely to be the origin of these features. The front

surface sheath (facing towards the incident f/3 pulse) will generate a magnetic field

oriented to focus the probe electron beam, whereas the rear surface sheath (facing

towards the probe electron beam) will generate a defocusing magnetic field structure.

3.4 Simulations & Analysis

To simulate the laser-solid interaction and magnetic field generation, 2D particle-

in-cell simulations were run using the osiris 2.0 framework [47]. The charge density

profile was constructed piecewise from a rectangle function with exponential ramps
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Figure 3.8: (a) Radiograph from Figure 3.7 with location of lineout. (b) Lineout plot
with mid-point between peak-to-valley indicated. (c) Radiograph with threshold set
to mid-point and a circle fit to curvature to determine feature diameter. (d) Plot of
measured feature size versus delay timing taken from analysis of Figure 3.12(a). The
error bars represent the variance in determining the diameter over multiple lineouts
as well as the timing uncertainty. The linear fit (solid line) indicates that the velocity
of the expanding feature is (0.98 ± 0.08)c.
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on the front and rear surfaces. The peak density ρ0 was taken as ρ0 = 100nc, where

nc is the critical density, the target thickness was L = 60c/ω0 and the exponential

scalelength was λpp = 6c/ω0. The target was at a 30◦ angle with respect to the

simulation box. A Gaussian laser pulse with a0 = 6 was launched in the x1 direction,

linearly polarized in the x2 direction with a waist of w0 = 40c/ω0 and a 5th order

polynomial temporal shape with a duration of ω0t0 = 80.

Two particle species were used; one with charge to mass ratio q/m = −|e|/me

initiated with a thermal momentum of pth = 0.01mec and one with q/m = +|e|/mp

initiated at rest, where mp is the proton mass. 9 particles-per-cell were used with a

quadratic interpolation charge weighting scheme. The domain was divided by 10000

grid cells in x1 by 4000 in x2, yielding cell sizes ∆x1 = 0.1c/ωp and ∆x2 = 0.2c/ωp.

The simulation was run for ω0t = 1000 in steps of ω0∆t = 0.07. Compensated

binomial smoothing was applied to fields and currents on the grid.

The high-contrast simulations indicate that the laser energy is absorbed into a

near isotropic population of energetic electrons that propagate through the target

and into the vacuum. Within the target volume, background electrons cancel the fast

current, but at the interfaces the hot electron density exceeds the background cold

electron density. This leads to unneutralized currents in the sheaths at the edges of

the targets. A cold return current is drawn from electrons in the higher density region,

the net result being oppositely directed currents along the surfaces of the target. The

oppositely directed current sheets result in a magnetic field that is approximately a

scalelength (λpp) thickness between them, expanding along the surface at the speed

of light (Figure 3.9). The net result is a relativistically expanding Debye sheath.

To simulate low-contrast conditions, a large pre-plasma scalelength (λpp = 100

µm) was added to the front of the target. The rear of the target was assumed

to be similar to the high-contrast case since there is no laser ablation. The laser

was sent normal to the surface since the laser absorption is dominated by the pre-

58



 

 

B
 /

 1
0

3
 T

!30

!20

!10

0

10

20

30

x
1
 / µm

 

 

0 50 100

lo
g

1
0
(n

e /
 n

c)

!10

!8

!6

!4

!2

0

2

x
1
 / µm

x
2
 /

 µ
m

 

 

0 50 100
0

20

40

60

80

100

B
 /

 1
0

3
 T

!30

!20

!10

0

10

20

30

x
2
 /

 µ
m

 

 

0

20

40

60

80

100

B
 /

 1
0

3
 T

!30

!20

!10

0

10

20

30

a!

c! d!

b!

x
1
 / µm

x
2
 /

 µ
m

t = 0 fs

 

 

0 20 40 60 80 100 120
0

20

40

60

80

100

B
 /

 1
0

3
 T

0

20

40

60

80

100

120

Laser pulse!

Target!

t = 25 fs! t = 75 fs!

t = 125 fs!

Figure 3.9: (a-c) Magnetic field component in the x3 direction in Tesla (Fourier filtered
to remove the laser field) at different times, where t = 0 is when the peak of the pulse
is incident on the target surface, and (d) initial electron density profile with initial
pulse envelope superimposed.
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Figure 3.10: Simulations of low-contrast interactions taken on a 10 µm Al target with
a 100 µm-scale pre-plasma.
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plasma. The simulation indicated that as the laser passed the critical surface of the

pre-plasma, it undergoes hole-boring [80] and generates a radially-expanding electron

current (Figure 3.10). Due to the amount of pre-plasma, this electron current could

not develop a large magnetic field on the front surface as the return current in the

plasma cancels it out. This leads to a weak front surface magnetic field early in time,

as observed experimentally in Figure 3.6. Once the electron current reached the rear

of the target, it begins to spread along the rear surface, creating an expanding field

similar to that seen in the high-contrast simulations. This delayed rear field expansion

would explain the defocusing observed later in time in Figure 3.6.

In this 2D geometry, the electric field is in the simulation plane, normal to the

target, and the magnetic field is normal to the simulation plane. For the relativistic

electrons moving in the plane of the simulation, these fields exert forces with com-

parable strength [81]. Hence, due to the geometry, deflections to a probing electron

beam normal to the target, as in the experiment, would be expected to be primarily

due to the magnetic field [82]. In addition, an electron traveling from the laser fo-

cus along the target surface experiences cancellation of the sheath electric force and

Lorentz force due to the magnetic field (F = −eE− ev ×B ' 0) and can propagate

freely.

For a simple model of the generation mechanism, consider a circular loop at radius

r about the ẑ axis, normal to the surface near the laser focus, at a distance z0 from

the surface. Assuming azimuthal symmetry about the focal spot, and negligible

displacement current normal to the surface, Ampére-Maxwell in integral form will

yield:

Bθ(r, z, t) '
1

c2r

∂

∂t

r∫
0

Ez(r
′, z, t)r′dr′ (3.3)

Extending the surface to become a Gaussian ‘pillbox’ with the second circular surface

at z = 0, just outside the solid surface where Ez ' 0, and assuming Er is negligible,
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Gauss’s law and the continuity equation can be combined to relate the azimuthal

magnetic field Bθ to the radial fast current jr as:

Bθ(r, z, t) ' −µ0

∞∫
z

jr(r, z
′, t)dz′ (3.4)

Hence in the 2D slab geometry of the simulation, jr (and therefore Bθ) is approx-

imately constant with r until the electrons are slowed to sub-relativistic speeds,

whereas in 3D the jr (Bθ) would be expected to fall off as 1/r.

For relativistic electrons generated with a number density n ∼ nc/4 in a sheath

of thickness L ∼ λ0, the peak magnitude of the magnetic field generated would be:

|B| ∼ µ0c|e|ncλ0
4

∼ 104 [T ] (3.5)

Such a field cannot indefinitely grow in radius. The maximum field extent at stag-

nation rS can be estimated by equating the integrated electromagnetic field energy

(falling off as 1/r) with laser pulse energy Up having some absorption fraction f (ig-

noring other dissipative mechanisms and ion motion). Hence, assuming a field of

the form B = B0r0/rS outside radius r0, the energy absorbed into hot electrons and

transferred to the magnetic field is of the order:

fUp ≈
2πr20λ0B

2
0

µ0

ln

(
rS
r0

)
(3.6)

Therefore, the maximum radius is:

rS ≈ r0 exp

(
2fUp

π3mec2ncr20λ0

)
(3.7)

For Up = 1 J, f = 0.2 and r0 = 5 µm, this gives rS ∼ 500 µm, where the field will

have dropped to B ∼ 102 T .
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Figure 3.11: Deflection angle of electrons as a function of electron energy and field
strength. For angles above 2π, the electron is trapped in a cyclotron orbit in the field.

This is in reasonable agreement with experimental observations as the deflection

of electrons at early times is > 60 mrad, which for a 50 MeV electron yields an

integrated field strength of ∼ 104 T · µm, as shown in Figure 3.8 and given by:

∫
L

B× d` =
mec θ

e

√(
mec2 + Ee−

mec2

)
+ 1 (3.8)

Assuming a sheath of thickness of ∼ 1 µm, this level of deflection infers magnetic

field strengths of order ∼ 104 T as shown in Figure 3.11.

To understand the observed electron profiles, a second-order, time-centered elec-

tromagnetic particle tracking code was employed. Based on experimental parameters,

a flat electron spectrum from 20-120 MeV was modeled with 105 particles projected

50 mm with a transverse emittance of ε⊥ = 53π mmmrad in a Gaussian distribution.

Figures 3.12(b-d) show simulated electron profiles having passed through a 1 µm thick
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azimuthal magnetic field structure of the form:

B(r, t) =


B0 r < r0

B0r0/r r0 ≤ r ≤ rS(t)

0 r > rS(t)

(3.9)

where r0 = 5µm, rS(t) = ct, and B0 = 3.8 × 104 T (corresponding to the PIC

simulation output where f ∼ 0.1). In Figure 3.12(d), the magnetic field is defocusing

and in Figure 3.12(b,c) the magnetic field is focusing. Simulations with both rear and

front magnetic fields indicate that they tend to cancel, due to the small scattering

angles involved, and hence the resulting deflection of the probe electrons is consistent

with a single field corresponding to summation of the front and rear fields.

At early times (small rS), the electron profile has a void for all magnetic field

structures, due to the high field strength causing overfocusing of the electron beam

in the focusing cases. For later times (large rS) as the field strength falls off at

the periphery, the difference between focusing and defocusing structures becomes

apparent. Although the observed electron profiles in Figure 3.12(a) are reminiscent

of the defocusing structure, the 10 µm thickness of the target and the short pulse

duration make it very unlikely that the rear sheath is stronger than the front – a

conclusion that is also supported by particle-in-cell simulations. In Figure 3.12(b)

the focusing case has also been performed with an azimuthal perturbation to the

field structure (a sinusoidal perturbation, including a radial component to satisfy

∇ · B = 0). This could arise due to filamentation of the current sheet [59], for

example. This asymmetry suppresses the focusing of the probe beam and results in

a dip in the profile similar to the defocusing case for the relevant timeframe.
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Figure 3.12: (Column a) Measured radiographs taken from laser shots with high
contrast and 10 µm Al at delay timings from 0 to +1333 fs. (Columns b-d) Simulated
radiographs for each respective delay with defocusing with azimuthal perturbation
(b), focusing (c), and defocusing (d). (The color and length scales are the same in
each column.) Note that the electron beam profile is elliptical before interacting with
the target and the simulated profiles assume radial symmetry for simplicity.
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3.5 Conclusions

In conclusion, electron beams from LWFA can be used as an ultrafast probe of

rapidly evolving field structures in laser-plasma interactions. These beams have the

advantages of being tunable in energy, having ultra-short duration, and being easily

synchronized. In these experiments, the electron spectrum was very broad, which

led to some loss of spatial resolution. However, significantly more monochromatic

electron beams are achievable from LWFA and could be used in future work for more

accurate results. In summary, a LWFA electron probe beam was used to measure fs

scale relativistically expanding sheath fields in a laser-solid interaction that extend

to diameters of ∼ 1 mm and have peak fields of order ∼ 104 T .
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CHAPTER IV

Bremsstrahlung & Secondary Particle Generation

4.1 Introduction

This chapter will focus on the stochastic, higher-energy processes generated by

bremsstrahlung, most of which are multi-step. The fundamental, primary step is

the creation of high-energy (> MeV ) bremsstrahlung photons, in this case by the

interaction of LWFA electron beams with high Z converter targets.

Depending on the energy of the photon, many different production processes are

possible. For Ehν ≥ 1.022 MeV , the creation of e−e+ pairs becomes feasible. For

photons of 5 MeV < Ehν < 50 MeV , there is also a strong probability of (γ, n)

neutron ejection, especially for higher Z targets. Finally, for Ehν > 140 MeV , there

is a small, but finite, probabilty of “exotic” particle production, such as π mesons

and µ−µ+ lepton pairs.

4.2 Bremsstrahlung Photons

The interaction of a high-energy electron beam with any material will produce a

broad energy spread of photons up to the maximum electron energy via the process

of bremsstrahlung [83]. Depending on the input electron beam (energy, divergence)

and converter target (Z, geometry) parameters, the generated photons will exhibit

66



a) 

b) 

Figure 4.1: Simulated bremsstrahlung spectra from fluka for a flat-top spectra
electron beam with (a) 60 pC charge up to 200 MeV and (b) 500 pC charge up to
350 MeV interacting with a 2.8 mm Ta converter. Reproduced courtesy of Gianluca
Sarri, Queen’s University of Belfast.

67



characteristic distributions with respect to flux, energy, and divergence. For the ma-

jority of experiments, higher flux is desired, so the Z is maximized and the thickness

is matched to the radiation length of the material so as to minimize reabsorption and

scattering of the generated photons.

For an ultra-relativistic electron interacting with a nucleus, experiencing a Coulomb

deflection such that E,E ′ �Mc2, where M is the rest mass of the nucleus and E,E ′

are the electron energies before and after the collision, the differential cross section

for the fraction of photons radiated per unit energy interval (units of area/energy)

under the Born approximation is [84]:

dσ

d(~ω)
' Z2e6

12~π3ε30M
2c3

(
1− ~ω

E
+

3

4

(~ω)2

E2

)[
ln

(
2E (E − ~ω)

Mc2~ω

)
− 1

2

]
1

~ω
(4.1)

for ~ω/E < 1. This has a characteristic 1/~ω fall off for low photon energies and

a cut-off close to the initial electron energy. For low energy photons, the doubly

differential cross section for the fraction of photons radiated per unit energy interval

per unit solid angle is:

d2σ

d(~ω)dΩ
=

3γ2

2π

1 + γ4θ4

(1 + γ2θ2)4
dσ

d(~ω)
(4.2)

where θ is the emission angle. The emission is confined to a cone of angle θc ∼ 1/γ

radians.

To estimate the bremsstrahlung photons and the consequent pair production, a

number of Monte-Carlo simulations using fluka and mcnp were perfomed as shown

in Figures 4.1 and 4.2. These simulations indicate that a significant population of

low-energy photons are produced with large divergence. This is shown in Figure 4.2,

where the on-axis portion is relatively flat-top extending to the maximum electron

energy (350 MeV ). The 6 MeV portion of the photon spectrum, useful for active

interrogation, is 99% contained in a 14◦ on-axis cone as shown in Figure 4.2(f). It
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would follow that higher energy photons fall into an even smaller cone angle.

4.2.1 Photon Energy Measurement

Due to the short-pulse and high-energy nature of LWFA bremsstrahlung, tradi-

tional single-photon detectors such as HPGe semiconductor detectors are unable to

spectrally resolve these photons. The simplest, yet crudest, method to resolve the

energy spectrum is to introduce progressively thicker high-Z filters in the beam to

absorb/attenuate the beam while sampling the filtered beam with numerous NaI or

BGO scintillators. However, this requires detailed Monte-Carlo modeling efforts to

deconvolve the spectrum [85] and leads to significantly reduced energy resolution due

to the low number of sampling scintillators and filter sets.

On the other hand, a technique employing Compton-scattering can yield the in-

cident photon energy spectrum quite accurately, but requires a larger flux to become

practical for shot-to-shot measurements. This technique involves a low Z converter

in which the photon Compton-scatters off an electron, imparting most of its momen-

tum to the electron. In Compton scattering, for an electron initially at rest the final

energy of the electron, Ee− , depends on the scattered angle and is given by:

Ee− =

(
1−

[
hν

mec2
(1− cos θ) + 1

]−1)
hν (4.3)

where θ is the angle between the momentum of the incident photon (with energy

hν) and the scattered photon. Therefore, for hν � mec
2 and backward scattering

(θ = π), the forward scattered electron (with energy Ee−) will have energy:

Ee− = hν − mec
2

2
(4.4)

which is very close to the original photon energy.

This conversion is preserved by lower-Z materials as the higher-Z tend to broaden
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Figure 4.3: Typical electron spectra used in (a) the Compton spectrometer experiment
with 27 TW laser power and a 3 mm gas jet, (b) the autoradiography experiment
with 70 TW and (c) the activation experiments with 100 TW and a 1+5 mm staged
gas cell (7 mm total plasma length including 1 mm inner separator). Note that the
color scale is the same for all spectra and that the energy peaks of (c) saturated the
12-bit CCD camera.
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Figure 4.4: Simplified experimental geometry for bremsstrahlung photon generation
and pair production.

the photon energy by electromagnetic cascading and scattering, which in turn broad-

ens the energies of the forward-scattered electrons. If only the electrons in the prop-

agation direction are collected by means of a collimator, then they can be spectrally

resolved with a dipole magnet and scintillator, yielding an electron spectrum which

can be easily deconvolved to yield the input photon spectrum. However, the down-

side is that the conversion efficiency for forward-scattered electrons is ∼ 10−4 elec-

trons/photon/radiation length for hydrogen (the lowest Z material) and scales as

Z2/A. Another downside arises with the properties of low Z materials (specifically,

gaseous H2/He at room temperature and flammable Li in moist air), as the converter

must be a pipe filled with high pressure H2/He or a sealed block of elemental Li to

minimize Z. Regardless of the converter configuration, the total converter length must

allow the forward-scattered electrons to escape the converter before they noticeably

scatter and lose energy, meaning the secondary converter must be relatively thin in

terms of the total number of radiation lengths.

The preliminary bremsstrahlung experiment was performed on the hercules

laser system with <30 TW of laser power in an f/20 focusing geometry with a 3

mm gas jet using 2.5% N2 in He. This configuration produced broad energy electron
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Figure 4.5: (a) Compton-scattering spectrometer geometry. Note that the Pb col-
limator blocks the off-axis charged particles, but can cause contaminant signal as a
converter. (b) Raw image plate signal with outlined regions-of-interest. The signal
in the center is from the on-axis photon beam.

beams up to 200 MeV with nearly 60 pC of total charge as shown in Figure 4.3(a).

The converter targets included Cu, Sn, Ta, and Pb from 0.5 to 8 mm in length.

These converters were installed 1 cm behind the gas jet to allow the main spectrom-

eter magnet measure both electrons and positrons. The simplifed bremsstrahlung

generation geometry is shown in Figure 4.4. After the primary e−/e+ were removed

with the primary spectrometer magnet, the photon beam propagated 40 cm before

passing through the 4 cm LiF converter to generate secondary e−/e+. These sec-

ondary e−/e+ then propagated another 1 m before encountering a 5 cm thick Pb

collimator with a Ø15 mm aperture. Those that passed through the aperture were

immediately swept by a 5 cm long, 0.3 T magnet onto an image plate 20 cm away.

The spectrometer geometry and a typical image plate are shown in Figure 4.5.

Due to bremsstrahlung photons scattering onto the image plate, the e−/e+ signal

was background corrected using the shielded portions parallel to the magnet gap

direction on the image plate. The extracted e−/e+ signal is shown in Figure 4.7(a).

Also, since the e+ signal is the result of pair production, this must be subtracted

from the e− signal to yield the Compton scattered contribution. Considering the
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Figure 4.6: Simulated spectra of secondary electrons (red) and positrons (green)
emitted on-axis from 30 MeV mono-energetic photons interacting with 2 cm lithium
(solid) and 2 cm LiF (dashed) converter target. Reproduced courtesy of Gianluca
Sarri, Queen’s University of Belfast.

response of the converter material (Figure 4.6), the incident photon spectra can be

deconvolved from the Compton scattered electrons. The extracted photon spectrum

from a 60 pC, 200 MeV electron beam impacting a 2.8 mm Ta primary converter is

shown in Figure 4.7(b).

After this diagnostic was successfully fielded with LiF on hercules, the next

attempt using H2 was peformed on the astra-gemini laser system with 200 TW

of laser power in an f/20 focusing geometry with a 15 mm gas jet using 3% N2 in

He. In this configuration, broad energy electron beams up to 1.2 GeV (typically

800 MeV ) were produced with nearly 500 pC of total charge and interacted with

converters composed of up to 5 cm of Pb. However, due to the limiting geometry

(2 mrad acceptance angle) and lowered conversion efficency (> 10% compared to

LiF) of the H2-filled tube, no conclusive results were observed. A follow-up run on

astra-gemini using Li/LiF produced similar results to hercules and is shown in

Section 5.2.2.
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a) 

b) 

Figure 4.7: (a) Measured (solid) and simulated (dashed) spectra for secondary elec-
trons/positrons from Compton scattering through 4 cm LiF. (b) Extracted (light
green) and simulated (dark green) photon spectra based on electron/positron ener-
gies. Reproduced courtesy of Gianluca Sarri, Queen’s University of Belfast.
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4.2.2 Flux Measurement

There are numerous methods for measuring the instantaneous flux of bremsstrahlung

photons. However, all of them are highly dependent on the spectral sensitivity of the

detector. Above Ehν ≥ 1 MeV , the cross-section for Compton scattering/pair pro-

duction becomes dominant, making it difficult to determine the photon flux at a

certain energy via direct photon absorption. Therefore, we employed high-energy

threshold reactions to characterize > 10 MeV photon flux. Another consideration is

how the radiation is measured (coincidence, integration on IP, HPGe detector, etc.).

This section will detail three methods of high-energy threshold reactions: prompt

activation, 238U photofission, and autoradiography (covered in more detail inSection

4.2.3).

If the photon has enough energy to dislodge a neutron or proton from the nucleus,

the remaining isotope may be radioactive. For (γ, n) reactions, the resultant nuclei

become proton-rich and typically undergo β+ decay, emitting a e+ which quickly

annihilates into two 511 keV photons. In low-Z nuclei, the β+ decay process occurs

rapidly (half-lives can be as short as a few seconds). Since this radioactivity is short-

lived, it can easily be integrated in single-shot or low-repetition rate (< 0.02 Hz)

experiments [86].

One significant advantage of the (γ, n) reaction is the coincidence of the 511 keV

photons, this allows for a highly selective detector that can distinguish β+ decays

from background radiation using a coincidence unit. For these experiments, we used a

matched pair of NaI scintillators that were Ø75 mm × 75 mm. These were gated with

timing single-channel analyzers (timing SCAs) to produce logic pulses for 450± 100

keV of deposited energy in each scintillator. When both scintillators produced a

logic pulse within 100 ns of one another, a co-incidence unit sent a pulse to a digital

counter which recorded the coincident signal as function of time and displayed the

activity using labview software.
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Figure 4.8: Nuclear reaction diagram for 28Si activation. Bremsstrahlung photons
dislodge neutrons from 28Si to give 27Si which undergoes β+ decay (half-life of 4.15
s) and emits a e+ which quickly annihilates with a nearby e− to give two 511 keV
photons.

To maximize the prompt activity, silicon was chosen due to its short β+ half-

life (4.15 s), high-energy (> 10 MeV ) threshold for (γ, n), and high material purity

(99.999%). Other materials (Cu, SiO2, Al, and CaCO3) were used to compare activity

rates and thresholds. The calculated, normalized activity rates for most of these

materials irradiated by 106 photons of 20 MeV energy are shown in Figure 4.9a.

Since the cross-section for most of these reactions is relatively similiar (∼ millibarns)

between different materials, the peak activity is largely correlated to the shorter half-

life materials as they decay more rapidly.

To characterize the flux from a 400 MeV broad spectrum electron beam (see

Figure 4.3c), a 1 × 1 cm2 area by 10 cm long silicon bar was placed on axis with

the beam at 1.2 m from the gas cell. No upstream converter was used in order

to localize the photon transport to within the Si rod; however, the electron beam

did pass through a 0.6 mm Be window which was 10 cm in front of the Si rod,

inducing some scattering and bremsstrahlung. To avoid collecting shot noise and

nuclear fluorescence from the interaction, we gated the counter for 100 ms after
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a) b) 

c) d) 

Figure 4.9: (a) Calculated activities for various materials irradiated by 106 photons
of 20 MeV energy normalized according to abundance and density. (b) & (c) Experi-
mental (blue) and averaged (red) activity traces from multiple shots on (b) high-purity
Si and (c) fused silica (SiO2). (d) Experimental activity (blue), averaged (red), and
expected (green) traces of 25 shots accumulation on Cu.
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the shot occured. However, the counting electronics were not heavily shielded and

exhibit some electronic noise (spurious counts) after shots, forcing us to ignore the

first few seconds after the interaction during analysis. The pixellated scintillator,

placed behind the activation sample and 50 mm Pb shielding, was used to align the

rod on axis with the beam.

Over the course of 20 shots, the measured activation on Si varied with the pointing

and charge of the beam as shown Figure 4.9(b). Overall, the measured activity had

a half-life of 4.06± 0.67 s and an initial activation of 648± 320 decays as estimated

by fitting individual curves. The low number of measured decays was likely due to

the scatter of the beam before entering the sample and the inefficient bremsstrahlung

conversion within the relatively low-Z sample. However, given the 0.12% probability

of a photon inducing a reaction in 100 mm rod (peak cross-section of 12 millibarn at

20 MeV ), the estimated photon flux above 15 MeV is of order of 5×105 photons/cm2.

Alternatively, fused silica (SiO2) and copper rods of Ø12.7mm×100mm size were

used to demonstrate different aspects of activation. An activity trace of electron

beams entering fused silica is shown in Figure 4.9(c). Activation of oxygen (122 s

half-life) in the fused silica sample establishes a low-level background between the

short-lived silicon peaks. To investigate longer half-life materials, 25 shots were taken

on a Cu sample (62Cu half-life is 9.67 min). The Cu activity clearly follows the ex-

pected exponential decay as shown in Figure 4.9(d). Assuming each shot contributed

roughly the same signal and taking into account the time between shots, a simple

rate equation can model the build-up of activity until shots cease. By fitting the

decay curve of Cu to yield the initial activity after shots and in conjuction with this

simple model, a estimate of the activations for a single-shot can be estimated as 4200

decays/shot, corresponding to a flux of 3×106 photons/shot above 10 MeV given the

0.2% probability of interaction (over 100 mm of Cu with 70 millibarn at 17 MeV ).

Another method of creating radioactive isotopes is through the process of photo-
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Figure 4.10: Reaction cross sections in barns for neutron-induced (dashed) and
photon-induced (solid) fission as a function of incident particle energy for various
special nuclear materials (SNMs).

fission [87, 88]. When certain nuclei absorb high-energy photons, they can be excited

into a giant dipole resonant state and consequently undergo fission [89]. Some of

these fission products are radioactive and emit characteristic γ-rays. Using a HPGe

detector to peform nuclear spectroscopy on the sample, these fission products can be

measured and used to estimate the incident photon flux. Another application of this

process is the active interrogation of special nuclear materials (SNMs) for homeland

security. The fission cross-section for neutrons and photons interacting with various

SNMs is shown in Figure 4.10.

For experiments with hercules, we used depleted uranium (DU), which contains

more 238U than natural uranium, for our photofission samples. The first sample was a

3.2 mm thick metallic piece of DU. The second sample was an uranium oxide (UOx)

powder containing DU which could be packed into various-size containers. The fission

fragments primarily studied were 134I (847, 884 keV ), 138Cs (1436 keV ), and 134Sr

(1384 keV ) due to their medium-lived half-lives (52.5 min, 33.4 min, and 2.61 hr,

respectively).

The electron beam used for photofission was generated with a 1+5 mm staged
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Figure 4.11: γ-ray spectra integrated over 3 hours from activated 238U showing the
fission fragment decay peaks clearly above background. Reproduced courtesy of An-
thony Raymond, University of Michigan.

gas cell, producing electron beams with spectra of up to 500 MeV and charge of 100

pC, similar to spectra shown in Figure 4.3(b). To optimize the electron-to-photon

conversion, we placed 4 mm of Pb (d ∼ Lrad ' 5mm for Pb) 5 cm behind the gas

cell. The DU foil sample was directly attached to rear of the coverter.

Over the course of an hour, the sample was activated with 50 shots. The results are

shown in Figure 4.11. From the measured 3000 decays, the number of fissions per shot

can be calculated using the 2% branching ratio of fission fragments, 0.1% inherent

detector efficency, 1% geometrical detector efficiency, and a simple rate equation

(assuming each shot deposited identical signal). This calculation yields 3(±2) × 107

fissions/shot, corresponding to a flux of ∼ 3 × 108 photons/shot above 10 MeV

given the 10% probability of interaction (3.2 mm thick with cross-section of 0.18

barn). This agrees well with the simulations shown in Figure 4.1(b), which indicates

108 photons/MeV from 10-20 MeV . Moreover, it is a factor of 100 × improvement

in photo-fission yield using LWFA from previous results [87, 88], presumably due to

increased injected charge and higher energy electrons leading to an increased flux

of 10-20 MeV photons which induce photofission. Also, the higher photon number

compared to the short-lived (γ, n) activation is likely due to proximity of the 238U

to the electron source (120 cm versus 5 cm), allowing it to more consistently collect

electrons which are more divergent or miss the target due to shot-to-shot pointing

issues.
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4.2.3 Spatial Measurements

There are also numerous methods (IPs, scintillator screens/arrays, CCDs, etc.)

for measuring the spatial distribution of bremsstrahlung photons. However, all of

them are highly dependent on the collection efficiency of the detector. Around Ehν '

1 MeV , the cross-section for Compton scattering/pair production interaction levels

is relatively low for most materials, making it difficult to entirely absorb and directly

determine the photon flux at a certain energy. Therefore, we employed large volume

detectors or higher-energy reactions to characterize > 10 MeV photon flux.

In theory, image plates could be used for spatial detection; however, due to their

thin detection layer, only photons up to 100 keV can be completely absorbed in a

single IP. Given this low absorption probability for high-energy and high absorption

for low-energy photons, it is considerably more difficult to determine the high-energy

contribution to the spatial distribution of the beam . Thus, even with relatively

thick, high-Z shielding, the radiation transport in the shielding will severely degrade

the detection of the high-energy photon distribution without performing Monte-Carlo

modeling. This method is also limited to single-shot due to the IP readout process.

Using a larger detector volume, more of the photon energy can be absorbed,

resulting in more efficient detection. This was accomplished with a pixellated BGO

scintillator composed of a 25× 25 array of 1× 1× 50 mm3 macropixels or “voxels”,

each separated by a thin (100 µm) coating of titanium dioxide for optical isolation.

The scintillator array was read out by the Andor iKon-L fiber-coupled CCD attached

to the open-end of the scintillator. Example images are shown in Figure 4.12 with and

without an activation rod on axis. This allows for shot-to-shot spatial measurements

of the high-energy portion of beam, enabling fine alignment of activation samples that

must be placed directly on axis with the electron/photon beam. This is particularly

important as the electron beam does not always follow the laser alignment axis due

to deflections in the plasma. The alignment of a 100 mm Cu rod is shown in Figure
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Figure 4.12: Pixellated scintillator images of the photons from the activation exper-
iment without (left) and with (right) the Ø12.7 mm × 100 mm long Cu rod. Note
that each macropixel or “voxel” of the scintillator is 1×1 mm2. The detector was
shielded with 50 mm of Pb.

4.12(b).

Special precautions must be taken when the electron beam is not deflected away

from the camera. This situation requires additional shielding since electrons (charged

particles) create much more scintillation light than photons. Typically 50 mm of Pb

(d ∼ 10Lrad) was used to shield the camera from direct electron interactions.

Besides measuring the exponential decay of the activation signal, the spatial dis-

tribution of activation can be measured by placing a spatially sensitive, integrating

detector (such as imaging plate, film, CCD, etc.) on the sample after the shot in a

process known as autoradiography. In our configuration, one of the two escaping 511

keV photons was recorded spatially on the image plate and over the course of numer-

ous decays produced an image of the activation spatial distribution. The sample must

be activated for a few minutes in order to be transferred and subsequently read-out as

the image plates must be installed after the shot to prevent background. Copper and

carbon targets were chosen for their moderate half-lives of 9.67 and 20.33 minutes
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(see Figure 4.9(a)), respectively, and their different (γ, n) activation energy thresholds

(10 and 20 MeV , respectively). The separate energy bins enables a spectrally notched

gamma-ray spectrometer to spatially measure photons above threshold energy with

essentially zero background from the low-energy portion of the spectum. For photon

spectra extending to significantly higher energies (as in our experiment), the ability

to measure differences across these spectral bins becomes marginal. However, for

photon spectra in this range, the ability to measure these two spectral components

accurately is useful for characterizing exponential tails of low energy spectra [90, 91]

and the peak photon energy of broad spectra beams.

For the experiment, we placed various samples of copper and graphite on-axis

with the 500 MeV peak, 180 pC average charge electron beam (Figure 4.3(b)) in

place of the silicon sample as described in the previous section. The stack consisted

of 4 cm Cu, 3.2 mm Cu, and 15 mm C in order of increasing distance from the gas

target where the 4 cm Cu acted as the primary converter. The activation plates

were integrated for 20 shots and were read out by separately image plates for 1

hour (collecting 98% and 88% of the signal for Cu and C, respectively). The spatial

profiles of the electron beam impacting the 4 cm Cu, 3.2 mm Cu, and 15 mm C are

shown in Figure 4.13(a-c), respectively. Taking a lineout across each signal (Figure

4.13(d-f)), the divergence of the beam on 4 cm and 3.2 mm Cu was measured to be

roughly 10 mrad full-width-at-half-maximum (FWHM). Since 511 keV photons are

the primary contributors to the signal, the image plate signal can also be integrated to

estimate the total photon flux. While typically used only for spatial characterization,

autoradiography can also double as a flux measurement if carefully analyzed. For the

3.2 mm Cu, average activations were 2 × 104 activations/shot, implying a 10 MeV

flux of 2 × 107 photons/cm2 given approximately 0.1% probability of capture in the

1 cm2 area and 3.2 mm thickness.

One important consideration is the thickness of the sample. Thicker samples
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a) 

b) 

c) 

d) 

e) 

f) 

Figure 4.13: Autoradiographs of 20 shots for (a) 4 cm of Cu, (b) 3.2 mm of Cu, and
(c) 15 mm of C in units of photostimulated luminescence (PSL). (d-f) Horizontal
line-outs taken across each respective image. Note that (a) & (b) are on the same
scale.
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undergo more activations, but the detector collects scattered photons and secondary

particles from deep in the sample and photons travelling greater distances before

exiting the sample, thereby increasing the background. This effect was observed

between the 4 cm and 3.2 mm samples of Cu.

4.3 Positrons

Positrons are the most common form of anti-matter, produced naturally through

β+ radioactive decay. There are two primary methods to generate positrons with

lasers: through nuclear activation to produce β+ emitters (covered in Sections 4.2.2

and 4.2.3) and through e−/e+ pair production. For high-energy electron beams in-

teracting with converter targets, there are two possible mechanisms to generate e−e+

pairs: the single-step Trident process and the two-step Bethe-Heitler process.

The Trident process has the electron directly interacting with the nuclear field,

interacting with a “virtual” photon that is immediately transformed into a e−e+ pair.

e− + Z → e− + Z + e− + e+ (4.5)

For d/Lrad � 10−2, the Bethe-Heitler process [83] will dominate as the production

of photons exponentially increases with the converter thickness. These photons can

subsequently interact with the nuclear field to induce e−e+ pair production.

e− + Z → e− + Z + γ (4.6a)

γ + Z → Z + e− + e+ (4.6b)

Positron production using lasers has been explored previously using SM-LWFA

with low power (∼ TW )[92, 93] and hot electron generation in solid targets [94, 95, 96].

However, in both scenarios, the positron beams were relatively low-energy (Ee+ < 20
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Figure 4.14: Image plate directly installed behind the primary magnetic spectrometer
before (a)&(b) and after (c)&(d) plastic shielding was installed in front and in the
side-cusps of the magnet.

MeV , γe+ < 40) and high-divergence (θe+ > 100 mrad) due to the low energy and

high-divergence of the electron beams creating them.

It must be noted that positrons have been routinely generated with LWFA elec-

trons interacting with solid targets or in beam dumps. However, since these ex-

periments/configurations were not looking for positrons or had poor resolution, the

positrons had gone unmeasured. On hercules, the measurement of positrons was

initially hindered by background low-energy electrons from LWFA passing through

cusps of the primary spectrometer magnet as shown in Figure 4.14(a)&(b). This was

remedied by installing low-Z plastic (HDPE and Teflon) around the magnet to form

a collimator, removing the positron background as shown in Figure 4.14(c)&(d).

4.3.1 Experimental Setup

The basic experimental geometry for measuring positrons is shown in Figure 4.4.

LWFA electrons initially pass through a converter target to create bremsstrahlung

photons (Section 4.2) which then create e−e+ pairs through the Bethe-Heitler process.

The e−/e+ beams exit the converter and are separated by a magnetic spectrometer

before measured by a IP or LANEX. Due the divergence scaling (θe−/e+ ∝ 1/γe−/e+),
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Figure 4.15: (a) Top view of the experimental setup used on hercules. The magnet
is rotated by 90◦ for the sake of illustration. (b) Typical positron signal as recorded
by the image plate for 4.2 mm of Ta. The dark region on the upper part is predom-
inantly exposed by bremsstrahlung escaping the solid target. (c) Typical signal of
the electron beam as recorded on the LANEX screen, without a solid target for a
ten-shot series. The dashed white lines depict a full width at total maximum of 2.5
mrad (corresponding FWHM of 1.4 mrad). (d) Extracted spectrum and relative best
fit used as an input for FLUKA simulations.

the high-energy portion of the positron beams has a similiar divergence to the incident

electron beam and will pass through the collimator. To prevent divergent, low-energy

e−/e+ from creating background on the detector, cm-thick plastic collimators were

placed at the entrance of the magnets. However, divergent bremsstrahlung readily

passes through this plastic and creates a low-level background on the detectors that

falls off axially (Section 4.2.3).

The initial positron experiments took place on hercules in conjunction with the

characterization of the Compton scattering photon spectrometer (Section 4.2.1). As

such, the LWFA parameters were identical to those described in Section 4.2.1, using

broadband electron beams with 50 pC of charge and up to 200 MeV energy (shown in

Figure 4.15(c)&(d). The experimental setup on hercules is shown in Figure 4.15(a).

A raw IP of positron signal from a 4.2 mm Ta converter is shown in Figure 4.15(b)

with the contaminant bremsstrahlung signal close to the axis. The extracted spectra

from various converters are shown in Figure 4.16. For the low-Z materials, the noise

was a significant fraction of the signal and had to be carefully subtracted to isolate

the desired signal. For higher Z, the noise was roughly the same level, but the larger
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5.3mm Cu 6.4mm Sn 

4.1mm Pb 2.8mm Ta 

Figure 4.16: Extracted experimental (solid) and simulated (dashed) positron spectra
from (a) 5.3 mm Cu, (b) 6.4 mm Sn, (c) 2.8 mm Ta, and (d) 4.1 mm Pb using 50
pC electron bunches on hercules.

signal was clearly identifiable from the background as shown in 4.15(b).

Due to the limited power and experimental time available on hercules, a follow-

up positron experimental campaign was held at astra-gemini using its North beam

with 250 TW . This additional power helped two-fold by increasing both the electron

beam energy and charge to ∼ 1.2 GeV and ∼ 0.5 nC, respectively, using ionization

injection in gas jets. The experimental setup on astra-gemini is shown in Figure

4.17. These orders of magnitude improvement allowed us to measure the positron

spectra directly on a LANEX screen shot-to-shot, greatly expanding the available

experimental parameter space in terms of the converter.

4.3.2 Converter Z Dependence

For the Bethe-Heitler process (d � 0.01Lrad), increasing the Z of the converter

material has a two-fold effect. First, the incident electrons convert more efficiently to
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Figure 4.17: Experimental geometry used for neutral beam production on astra-
gemini. Extracted electron spectra are shown in the upper right, while the raw
image of the positron signal is shown in the lower right.

Figure 4.18: Positron production scaling at 100 MeV over (a) thickness (for d < Lrad)
and (b) Z2/A using the hercules laser.

bremsstrahlung photons, and second, the photons convert more efficiently into pairs.

Since both processes scale roughly as Z2, the overall scaling goes as:

Ne+ ∝
(
Z2

A

)2

(4.7)

where Ne+ is the consequent positron number. The experimental Z dependence from

hercules is shown in Figure 4.18(b). While it is not proper to fit a fourth-order

polynomial to only four points, a quadratic fit over Z2/A closely follows the expected

scaling.

This scaling largely prevents low-Z materials from consideration in experiments as
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there is roughly 108 difference in efficiency between the lowest-Z (elemental hydrogen)

and highest-Z (natural uranium) elements, density aside. However, between high Z

elements, the effect of Z4 provides slight gains (e.g. a 59% increased yield for Pb

(Z = 82) over Ta (Z = 73) at a given density) compared to density effects (Ta is

47% denser than Pb). Therefore, high-Z materials were most employed and their

thicknesses were used to vary the conversion efficiency as detailed in the next section.

4.3.3 Converter Thickness Dependence

Increasing the thickness of the converter has the primary effect of converting

more incident electrons into bremsstrahlung photons and scattering the beam as it

propagates further into the converter. The number of electrons exiting the converter

is given by:

Ne− ' Ne−(0) e−d/Lrad (4.8)

where Ne−(0) is the initial number of electrons entering the converter, d is the con-

verter thickness, and Lrad is the radiation length for electrons in the converter material

(Lrad = 0.5 cm for Pb). This scaling is shown in Figures 4.18 (a) & 4.19(middle) along

with the experimental and simulation results.

As the electron beam converts into bremsstrahlung propagating through the con-

verter, the rate of pair production quickly increases before trailing off as the drive

electron beam is depleted. The number of positrons (and pair produced electrons)

exiting the converter is given by:

Ne+ ' Ne+(0)

(
d

Lrad

)α
e−d/Lrad (4.9)

where Ne+(0) is the maximum number of positrons for a given material, d is the

converter thickness, Lrad is the the radiation length for positrons in the converter

material, and α is a scale factor (in the astra-gemini experiment, α ' 1.8). This

91



Figure 4.19: Positron (top) and electron (middle) production scaling over thickness
for E > 120 MeV using the astra-gemini laser. (bottom) the fraction of positrons
in the total number of leptons in the beam. Ne−(0) is given by the initial electron
beam charge (300 pC).
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Figure 4.20: Density of relativistic electrons (green crosses) and positrons (red empty
circles) as a function of the thickness d of the converter using astra-gemini. The
solid lines represent the density in the laboratory reference frame whereas dashed lines
represent the beam proper density. A neutral electron-positron beam is obtained for
d = 2.5 cm.

scaling is shown in Figure 4.19(top) along with the experimental and simulation

results. From the 1 GeV incident electron beam, the maximum observed positron

energy is 600 MeV , occurring at d ' Lrad. However, the production of high-energy

positrons is maximized at d ' 2Lrad. For thicker targets, the maximum energy

gradually decreases as should be expected due to increased probability of energy loss

during the propagation of the generated positrons through the rest of the converter.

For a similar reason, a thicker converter allows a lower number of electrons and

positrons to escape it.

When d ' 5Lrad, the percentage of positrons in the beam approaches 50% as

shown in the bottom of Figure 4.19. This implies that the net current in the beam

will drop to near zero, establishing a neutral beam. Since the conversion process

introduces minimal longitudinal spread for highest energy particles (Ee−/e+ > 10

MeV ) due to relativistic effects, the resultant high-energy portion of the neutral

beam will preserve the features of the incident electron beam which exits the plasma

with < 30 fs duration and a ∼ µm source size (initially occupying ∼ 10 µm3 volume).

The transverse spread of the beam is increased through scattering to roughly a 200 µm
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width. Using this volume (∼ 2000 µm3) and the number of particles (Ne−/e+ ' 109),

the density of the beam (in the laboratory frame of reference) can be estimated

to be ne−/e+ ≈ 1015 cm−3, as shown in Figure 4.20. However, because the beam

is relativistic, the relativistic density (in the beam frame of reference) is found by

dividing by the bulk Lorentz factor of the beam (assuming γe−/e+ ≈ 15 in this case,

similar to that shown in Figure 4.1). This results in a relativistic density of ne−/e+,γ ≈

1014 cm−3 for the neutral beam as shown in 4.20. For collective, plasma effects to

dominate the beam dynamics, the collisionless skin depth (δe ≈ c/ωγ,pe, where ωγ,pe

is the relativistically corrected plasma frequency) must be less than the beam size.

4.4 Neutrons

Pulsed sources of neutrons are important for a variety of applications, especially

active interrogation of special nuclear materials (SNMs). For a given energy, neutrons

have a higher cross section for inducing a fission than photons for certain SNMs as

shown in Figure 4.10. If the neutron generation time is known, then a detector can

be gated to look for prompt or residual radiation from an induced fission, indicating

a SNM is present. A compact, pulsed source of neutrons would be ideal for such an

application and LWFA may provide the necessary mechanism for such a solution.

When the aforementioned bremsstrahlung photons possess enough energy to over-

come the binding energy of the nucleus, a neutron can be freed in the following

reaction:

γ + NZ → n0 + N−1Z (4.10)

For lower Z materials, the energy required to free a neutron is quite variable,

ranging from 1-21 MeV , but leveling off to roughly 7-9 MeV as Z increases. This is

shown in Figure 4.21 [97]. From conservation of momentum, the neutron gets most
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Figure 4.21: Minimum energy required to eject a neutron for a given stable isotope
as a function of Z.

of the remaining energy from the inelastic collision since it is much lighter than the

remaining nucleus. As such, the neutron is ejected in an anisotropic distribution

following the direction of incident photon.

4.4.1 Energy Measurement

When a photon has enough energy to eject a neutron from the nucleus, the re-

maining energy is transferred to the nucleus and the exiting neutron. Since neutrons

are a small fraction of the mass of a typical nucleus, most of the remaining energy

(after overcoming the neutron binding energy) is given to the neutron by conservation

of momentum. By measuring the neutron energy, the incident photon energy can be

estimated knowing the binding energy for the reaction and the neutron/nucleus mass

ratio. This extends the usefulness of the 511 keV signal from photoactivation, as

neutron spectra can reveal higher peak energies.

For this experiment, the astra-gemini laser generated a 1 GeV electron beam
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with a broad spectra containing 300 pC of charge. The beam was passed through a 3

cm thick Pb converter before the electrons/positrons were separated by a spectrometer

magnet. After 4.2 m, the remaining photons interacted with a Ø1.27 cm × 20 cm

long Al rod surrounded by a high-density polyethylene (HDPE) holder. Neutrons

were detected by 3 sets of 6 energy-sensitive bubble detectors (see Section 2.6.5) with

separate energy thresholds of 0.01, 0.1, 0.6, 1.0, 2.5, and 10.0 MeV . These were

placed adjacent to the Al rod within the HDPE holder. Since the beam had greatly

diverged after 4.2 m of propagation, the probability of the beam also interacting with

the HDPE holder must be considered. The relative reaction probabilities between

the Al and HDPE are shown in Figure 4.22, which indicates that the carbon in

the HDPE can make a considerable number of neutrons at higher photon energies.

However, because the (γ, n) energy threshold of Al is much lower and its cross-section

is relatively higher, neutrons from carbon will not contribute as much to the high

energy bins, adding signal to the lower energy bins. The normalized cross sections

are shown in Figure 4.22. Assuming the neutrons are predominantly generated in Al

due to its significantly higher cross-section probability, measured neutrons infer that

the incident photon energy is at least 15 MeV greater than the resultant neutron

energy.

After a shot series, the bubble detectors were removed and counted for the number

of “bubbles” or expansions in the superheated emulsion caused by a capture of a

neutron. The neutron spectra can be constructed by deconvolving the bubbles from

detectors with different energy thresholds (see Section 2.6.5). However, for this case,

we are primarily interested in only the high-energy portion of the spectra (> 1 MeV )

since the highest energy bins are more clearly resolved (the highest-energy signal is

directly proportional to its neutron flux). There were three different conditions tested.

First, for a background, we did not use a converter target (no bremsstrahlung) and

deflected the electrons with a magnet. Next, we installed a 5 cm Pb converter to

96



Figure 4.22: (γ, n) reaction probabilities per unit length based on cross-sections taken
from EXFOR [cite EXFOR]. The carbon values are normalized to reflect abundance
in high-density polyethylene (HDPE) with chemical formula (CH2)n.

generate bremsstrahlung photons but magnetically deflected the e−/e+. Finally, we

removed both the converter and magnet to allow the electrons to propagate to the

target and create bremsstrahlung closer to (or inside of) the detector. The average

neutron fluence for each one of these cases is shown in Figure 4.23 after spectral

deconvolution. It should be noted that the lower energy bins have consider error bars

(the high-energy signal is subtracted from the low-energy signal).

For the case with only bremsstrahlung photons entering the detectors, we mea-

sured 5× 106 neutrons/shot above 2.5MeV (corresponding to 18+MeV photons/shot)

and 5× 105 neutrons/shot above 10MeV (corresponding to 25+MeV photons/shot).

Since the beam was only partially sampled due to the divergence and propagation

distance, the actual number of neutrons is likely much higher.

4.4.2 Divergence Measurement

Due to conservation of momentum, the (γ, n) neutrons will receive a kick in the

direction of the incident photon. This anisotropy results in an effective “beam” of
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Figure 4.23: Average neutron fluence from energy-sensitive bubble detectors used
on the pion detector at astra-gemini. Neutron measurements from (light blue)
background (no converter, spectrometer magnet installed), (purple, blue, orange)
photon beam (5 cm Pb converter, spectrometer magnet installed), and (red) electron
beam (no converter, no magnet). Note the large error bars for low energy neutrons
due to the deconvolution.
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Figure 4.24: Diagram for measuring (γ, n) neutron divergence on astra-gemini.

neutrons with a given divergence. To measure the divergence of (γ, n) neutrons gener-

ated with astra-gemini, we arranged the energy-sensitive bubble detectors into an

array parallel to a Ø12.7mm×100mm Cu rod placed on axis with the bremsstrahlung

photon source. A 50 mm thick plastic wall surrounded the entire array to shield the

bubble detectors from external or reflected neutrons.

In the array, the bubble detectors in the inner ring subtend 30◦ around the axis,

while the outer ring subtends 15◦ (twice the distance to the axis). From this geometry,

a purely isotropic source would distribute approximately twice the signal on the inner

ring, whereas an anisotropic, beamed source would be contained in the inner ring

alone, as shown in Figure 4.24. In terms of neutron energy, it follows that the higher

energy would be more beamed due to the larger momentum transfer.

For this experiment, we used the 500 MeV , 50 pC electron beams from the NLTS

experiment at astra-gemini (described in Section 5.2) to generate bremsstrahlung

photons after travelling through ∼ 15 of various low-Z materials (1 cm plastic, 4
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cm Li, 10 cm Si). These photons then passed through the Ø12.7mm×100mm Cu

rod at the center of the array to generate (γ, n) neutrons. After a series of 10-20

shots, the bubble detectors in the array were removed and counted. For the < 10

MeV neutrons, the ratio was approximately 4.75 inner/outer ratio, implying the

beam was directional in a forward cone of roughly 80◦. For > 10 MeV neutrons, the

signal is entirely contained in the inner ring of detectors, placing the upper limit of

the divergence at 32◦ based on the geometry. For one series in particular, this was

evident as 1.7 bubbles/shot (corresponding to 4.1× 106 neutrons/shot assuming 200

cm2 area) between 10-20 MeV were counted in the inner ring, while none were seen

on the outer track over 10 shots.

4.5 Other Particles

Although positrons are antimatter they are produced naturally via β+ decay.

Similarly, neutrons - which are naturally bound to the nucleus - can be ejected via

nuclear fusion, spontaneous fission, etc. As such, both neutrons and positrons can be

created with terrestrial, non-accelerator sources. However, ”exotic” particles requiring

more rest mass (> 100 MeV/c2) than is typically available from natural radioactive

processes (decay, fusion, fission) must be created using high-energy particles either

from a cosmic source or an accelerator. Moreover, unlike the relatively stable half-lives

of positrons (> 1046 s) and neutrons (881 s), all of these higher-energy particles have

half-lives of 2 µs or less, making synchronization crucial for potential applications

and controlled measurement.

For the sake of conciseness, the only two particles discussed here are pions and

muons since their low rest masses (140 MeV and 106 MeV , respectively) can be

readily generated with hercules and astra-gemini electron energies.
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Figure 4.25: Feynman diagram of photoproduction of a π+ via transformation of a
proton within a nucleus. Note the creation of a dd̄ quark pair which allows the d
quark to supplant the u quark and form a neutron.

4.5.1 Pions

Pions are the lightest meson (a particle consisting of a quark and an antiquark)

and are a key decay product in high-energy particle physics. Despite their larger rest

mass than a muon, they require less energy to produce with bremsstrahlung since a

(virtual) quark-antiquark pair (> 10 MeV ) in a nucleus is easier to produce than a

muon-antimuon pair (> 212 MeV ). However, these quark-antiquark pairs must be

created with enough energy to overcome the necessary binding energy of the quarks

in neutron/proton with which it is interacting so that it can transfer quarks and form

a pion (Figure 4.25). This process also leads to neutron/proton transformation inside

the nucleus, which forms a different element than the original.

In certain cases, the new element is an radioactive isotope, which can be readily

measured and identified ex situ with a HPGe detector. This is quite useful for the

detection of pions since they are difficult to measure directly and have a extremely

short life time (∼ 26 ns) before preferentially (> 99.98%) decaying into longer-lived

(but just as difficult to directly detect) muons (Figure 4.26). However, due to the

inherently low production cross-sections (10-100 µb) for pions, care must be taken to

account for other primary and secondary processes such as (γ, n) and (n, p), which
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Figure 4.26: Feynman diagram of the decay of a π+ into a µ+ via the weak nuclear
force with a 99.998% probability.

can result in the same isotope as (γ, π+), but which have much higher cross sections.

Increasing on the length of interaction can cause a significant production of the iden-

tifying isotope from secondary processes as the primary process yield increases. To

minimize these secondary processes, previous experiments on pion production at sy-

chrotron sources used a thin (100 µm) activation target. However, due to the much

lower average flux on current LWFA compared to conventional accelerators, one must

sacrifice accuracy for yield to get significant activation.

On the astra-gemini experiment, we set out to detect π+ via the 27Al(γ, π+)27Mg

reaction. In this case, the pion “detector” consisted simply of aluminum posts which

were placed co-axially with the photon beam. The aluminum posts were built into a

plastic block to moderate and attenuate external (γ, n) neutrons from the surrounding

shielding and were straddled by energy-sensitive (10 keV − 20 MeV ) neutron bubble

detectors. The total length of the Ø12 mm rods was 200 mm, consisting of 4 × 50

mm rods so as to fit within the HPGe detector housing. At both ends of the plastic

block, an imaging plate was mounted to the block to determine the alignment of the

rods with respect to the incident photon beam (Figure 4.27). After a sequence of

shots, the rods were analyzed in the HPGe detector.

For most runs, the bubble detector spectrum showed a suprathermal distribution

above 1 MeV . This is likely due to the plastic shielding attenuating the low energy

neutrons before they interact with a bubble detector (Section 4.4.1). The bubble
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Figure 4.27: Photographs of the top and side of the pion detector setup used on the
astra-gemini experiment. The bulk of the bubble detector gel is inside the block
and the rod is protected on the sides from contaminant (γ, n) neutrons.

detector spectral deconvolution typically yielded a flux of 1×104 neutrons/cm2/shot

above 1 MeV with about a quarter of those above 10 MeV (Section 4.4.1). Given the

total pion detector area of 500 cm2, this gives roughly 5× 106 neutrons/shot above

1 MeV . Also, this does not take into account the number of (γ, n) neutrons from the

surroundings of the pion detector.

Another method considered to measure the neutron flux inside the Al rod besides

the bubble detectors was to measure the activation from the 27Al(γ, n)26Al reaction

since 26Al is a β+ emitter with a half-life of 7.17× 105 years. This technique gives a

clearly identifiable 511 keV anniliation peak on the HPGe detector while measuring

27Mg decay products. However, due to small contaminants in the Al (even on the

order of parts per million) with shorter-lived half-lives (Zn, Cu, Fe, etc.), the origin

of the 511 keV signal cannot be determined and this cannot be employed.

From a theoretical standpoint, given the bremsstrahlung photon spectrum from a

1 GeV , 300 pC flat-spectra electron beam interacting with 2 cm of Pb, the number

of 27Al(γ, n)26Al activations would be 5×107 neutrons/shot (Figure 4.28). However,

this assumes primary interactions only with flat cross-sections from [97], neglecting

any cascading effects which may be significant since the cross-section is peaked at
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Figure 4.29: Calculated build-up and consequent decay of 27Mg activity in a sample
due to 1000 activations/shot over 20 shots at 1 shot/minute. Note that the sample
was loaded into the HPGe detector approximately 15 min after the last shot, such
that the integrated signal had significantly decayed to the activity level compared to
only 3 shots.

lower photon energies.

Regardless, the number of neutrons does not bode well for the pion measurement,

as we saw only 50 counts from 843 keV (the primary decay gamma of 27Mg) and

more than 84% of this is expected from (n, p) rather than (γ, π+) based on the 1 GeV

photon spectrum. Using the more realistic < 800 MeV photon spectrum skews this

ratio even more in favor of (n, p) to 95%. Given the low level of 27Mg, accurately

determining the level of pion production with any statistical significance compared to

(n, p) would require a detailed Monte-Carlo treatment with the full detector/shielding

geometry, out of the scope of this thesis.

However, assuming each shot created the same number of activations, a simple rate

equation model can be used to estimate the number of pions created per shot as shown

in Figure 4.29. The measured activity is back-extrapolated knowing the amount of

time that the sample decayed after the final shot (15 min) and the number of shots
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taken over a given time (20 shots at 1 shot/min). Therefore, measuring 50 counts on

the 10% inherently efficient HPGe detector collecting ∼50% of the total solid angle

infers that 1000 activations/shot were generated. Since 95% of these activations are

from (n, p), the estimated pion number is 50 pions/shot.

4.5.2 Muons

The lightest and longest lived of these other particles is the muon. Although its

mass is 106 MeV , it must be created in µ+µ− pairs in order to conserve lepton num-

ber for a direct generation process (they are a key decay product of other, higher rest

mass particles, such as π+/π−, τ+/τ−, etc.). Therefore, the required energy is 212

MeV , higher than for pions but still quite achievable with LWFA. Unlike the indi-

rectly measured pions, however, muons must be directly measured since there are no

transmuted source nuclei involved which can be distinctly measured. This makes the

process of measuring muons quite difficult due to their low production with respect to

electrons/protons and their intermediate mass, leading to low stopping power. This

difficulty is observed with large particle collider detectors, where the outer detector

shell is made primarily to track and absorb some of the muons’ energy before they

typically escape. One potential method of measurement is to use a Thomson parabola

spectrometer, which separates particles with parallel electric and magnetic fields ac-

cording to their charge-to-mass (q/m) ratio. Thomson parabola spectrometers are

frequently employed in laser-solid experiments to measure ion spectrum and can be

readily adapted for a muon detection experiment. Muons have a ratio of 106 MeV/e,

whereas electrons are 0.511 MeV/e and protons are 938 MeV/e. This means that

the parabolic trace of the µ+ trace should be quite distinct from e+ and p+, whereas

the µ− trace should be distinct from e− (antiprotons are too massive (∼ GeV/c2) to

be created with LWFA energies in this thesis).

Since muons have a long lived lifetime (∼ 2.2 µs), an intermediate mass, and
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are leptons, they have a variety of potential applications in particle physics, nuclear

fusion, and active interrogation. Next generation particle colliders require leptons

(fundamental particles including electrons, muons, taus and neutrinos) rather than

hadrons (composite particles of quarks, such as protons, neutrons, pions, etc.) to

determine finer aspects of the Higgs boson. To generate Higgs bosons with sufficent

energies, linear accelerators (ILC, CLIC) would need to be on the order of 10s of km

to meet the ∼ TeV energy requirement, costing on the order of $10 billion US dollars.

On the other hand, muons, which are 200× heavier than electrons, can be accelerated

in current circular accelerators since bremsstrahlung loses scale as m−4, meaning that

a muon loses 109 less energy to bremsstrahlung than electrons/positrons. Although

muons are most routinely produced from proton-produced pions which quickly decay,

the primary issue with muon colliders is the issue of muon cooling, which is required

to re-collimate and bunch the exiting muons into a usable beam. This process is

studied on larger accelerator facilities, but LWFA potentially allows for more compact

experiments to study muon cooling [98].

One speculative use of muons is in nuclear fusion. Since a µ− is a lepton with the

same charge as an e−, it can form exotic atoms (specifically termed a muonic atom)

with nuclei during its short lifetime. Due to the much higher mass of the muon,

the atomic radius of muonic atom is significantly reduced, lowering the Coulomb

barrier required for another nuclei to fuse with the nuclei of the muonic atom. The

µ− is typically ejected and can go on to fuse multiple nuclei before it decays or

becomes attached to a fusion product (α-particles for D-T reaction or 3He or 3T

nuclei for D-D reaction). This process is known as muon-catalyzed fusion (termed

µCF) and was reseached extensively in the 1980s. However, the required accelerator

technology available at the time limited the ability to easily intoduce muons in large

fusion experiments and test in-situ in hybrid schemes. With the upcoming NIF-ARC

beamline, it is conceivable that LWFA could be implemented to generate a muon
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Figure 4.30: Feynmann diagram of the decay of a µ− into a e− and appropriate
neutrinos via the weak nuclear force.

source for a hybrid ICF-µCF approach or as a muon backlighter of the fuel assembly.

Lastly, muons, with their low stopping power in materials, are potentially useful

for active interrogation of special nuclear materials (SNMs). This method is currently

employed using cosmic-ray generated muons to interrograte shipping containers and

other structures. However, the ability to use a compact, pulsed source of muons could

lead to other interrogation applications which may require the detector to be placed

parallel to the ground rather than the perpendicular case for using cosmic ray sources.

Since the charged pions preferentially decay into a muon of the same charge for

99.998% of transactions (Figure 4.26), the detection of charged pions (Section 4.5.1)

is a effective measurement of muons. Therefore, for nearly every measured pion, there

is a muon produced. From the pion measurements in the previous section, the number

of muons per shot in astra-gemini could be inferred to be 50 muons/shot.

Another indirect measurement of muons could be based on their long-lived (2.2µs)

decay into electrons (Figure 4.30). Since most electrons and photons are absorbed or

scattered away within ∼ 100 ns of the bremsstrahlung generation process, the slower

muons will likely survive and decay afterwards, having not escaped the generation

area. This implies that a gated scintillator could be used to observe the decaying

muons.
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4.6 Conclusions

An extensive collection of bremsstrahlung and secondary particle generation data

has been presented using LWFA electrons as the driver. Although many of these

results have been previously demonstrated on conventional RF accerators, there are

a number of firsts using LWFA shown in this chapter: the first measured few-second

radioisotopes using LWFA, the largest photo-fission yields of 238U per unit of laser

energy, the first high-energy (> 100 MeV ) laser-produced positrons, the first direc-

tional neutron source using LWFA, and the first measured production of pions (and

inferred muons) using lasers. These results demonstrate the upcoming capabilities of

LWFA sources compared to mature RF technology.
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CHAPTER V

Non-Linear Thomson Scattering

5.1 Introduction

The culmination of the research presented in this thesis is the experimental work

towards non-linear Thomson scattering (NLTS) using LWFA. The research in Chapter

III provided a good understanding of pump-probe experiments with LWFA, whereas

the research in Chapter IV provided a suite of diagnostics necessary to measure the

high-energy photons generated by NLTS.

Experimentally realizing NLTS is not trivial, requiring both a ultra-relativistic,

high-energy electron beam and a high-intensity laser system [99, 100, 101]. The E144

experiment in the mid-1990s [102, 103, 104] used the 46 GeV electrons from the 2 km

SLAC accelerator but were limited by linear (a0 � 1) laser scattering pulses available.

In the time since E144, all-optical schemes of LTS for compact sources of tunable

high-energy photon beams have become a growing interest[105, 106, 107]. The first

demonstration of LTS with LWFA used a plasma mirror to back-reflect the LWFA

laser pulse (a0 ≈ 1) back onto the electron bunch [108]. This technique avoids much

of the hassle of spatio-temporal alignment since the laser is co-propagating with the

electrons, but the plasma mirror introduces bremsstrahlung as a considerable fraction

of the signal. Another experiment used a small portion of the LWFA beam focused

with a long-focal length lens to scatter off an electron beam to generate ∼ MeV
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photons with a0 < 1 [109, 110]. Both of these LWFA results use broad electron

energies such that the consequent photon spectrum is also broad. Most importantly,

all of these experiments did not enter the non-linear scattering regime, falling short

of demonstrating any nQED effects [111, 112, 113].

This chapter will summarize the two experimental attempts at NLTS using the

hercules and astra-gemini lasers, the preliminary results, and simulations of the

interaction probability.

5.2 Experimental Attempts

To achieve NLTS, both a high energy electron beam (200 MeV ) from LWFA and

a second high-intensity laser pulse (a0 � 1) are required, demanding a 100 TW -class

laser system. As such, experimental campaigns were designed for the hercules and

astra-gemini systems and are detailed in this section.

5.2.1 HERCULES Experiment

For the hercules NLTS experiment, the compressed beam was split with a thin

beamsplitter (to minimize B-integral) into two arms: the transmitted beam to drive

electron beams via LWFA, and the reflected for scattering off the electrons (Figure

5.1). The LWFA pulses contained 50 TW and were focused via f/20 optics to an

a0 ' 3 above a 3 mm long gas jet, generating ∼ 108 electrons at ∼ 200 MeV energy.

The second scattering pulse contains 140 TW and was focused via f/2 optics to a

peak a0 ' 10 near the exit of the gas jet. The f/2 optic had an f/15 hole for the f/20

(and electron beam) to pass through in a counterpropagating geometry (180◦). The

two focusing axes were spatially overlapped prior to - and checked in between - laser

shots to within ∼ 12 µm accuracy using optical scattering off a 80 lines/mm mesh.

Relative timing between the arms was found within ∼ 100 fs via optical breakdown

as described in Section 2.5.2.
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Figure 5.1: Optical layout of the NLTS experiment on hercules.

The primary detector was a Compton scattering photon spectrometer, as described

in Section 4.2.1. However, since this style of detector requires a large flux of photons

to make up for the conversion losses to electrons, and has a slow readout (approxi-

mately ∼ 30 min cycle time required to vent chamber, read & replace IP, and check

alignment), it set a mimimum threshold of detection and limited the experimental

parameter space to scan.

The laser pointing fluctuation on hercules was ∼ 5 µrad with the local air

conditioning turned off and ∼ 15 µrad with the air conditioning turned on. During

experiments, the air conditioning was cycled to minimize vibrations during shots.

For other gas jet experiments, the LWFA beam was typically focused 1 mm above

the nozzle. However, to prevent the counterpropagating f/2 from grazing and dam-

aging the nozzle, the height above the nozzle was adjusted to 2.5 mm. At this height,

the transverse gradients of the gas flow were more exaggerated, leading the laser to

“skip” off the gradient and direct the electrons away from the nozzle. Consequently,

the electron beam pointing was constantly measured and found to be deflected 5−10

mrad up vertically. The alignment of the Compton scattering spectrometer and f/2
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focus were adjusted accordingly. However, the electron spectra showed that the beam

frequently clipped on the hole of the f/2 OAP, creating on-axis bremsstrahlung that

generated a background signal on the Compton spectrometer. Unfortunately, this

signal was higher than any seen from two-beam overlap.

After this hercules attempt, a set of simulations (shown in Section 5.3) were

performed to identify potential improvements to the experiment. These simulations

showed that electron beam stability and detector dynamic range needed to be im-

proved, leading to the development of gas cells (Section 2.4.2) and robust, single-shot

detectors (Section 4.2). These improvements were applied to the subsequent astra-

gemini attempt, detailed in the next section.

5.2.2 ASTRA-GEMINI Experiment

For the astra-gemini NLTS experiment, the South beam (f/20 OAP) was used

to drive electron beams via LWFA, and the North beam (f/2 OAP) was used for

scattering off the electrons. The geometry of focusing was nearly identical to that

used on 2.3 in the previous section, with the overall layout shown in Figure 5.2. The

LWFA pulses contained 250 TW and were focused via f/20 optics to an a0 ' 5 into

a 1 + 18 mm gas cell, generating ∼ 3 × 108 electrons at ∼ 500 MeV energy. The

second scattering pulse contains 250 TW and was focused via f/2 optics to a peak

a0 ' 20 near the exit of the gas cell. The f/2 optic had an f/17 hole for the f/20

(and electron beam) to pass through in a counterpropagating geometry (180◦). The

two focusing axes were spatially overlapped prior to - and checked in between - laser

shots to within ∼ 10 µm accuracy using optical backlighting of a 25 µm wire. Relative

timing between the arms was found within ∼ 200 fs via spectral interferometry as

described in Section 2.5.2.

Again, the primary detector was a Compton scattering photon spectrometer, as

described in Section 4.2.1. However, a variety of other shot-to-shot diagnostics were
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Figure 5.2: (a) Optical layout of the NLTS experiment on astra-gemini. (b) The
f/2 laser focus represented as a wiggler of 12 cycles with λu = λL/2 = 400 nm. (c)
Typical electron spectrum generated by the f/20 passing through the 1 + 18 mm gas
cell.

used, including: the pixellated scintillator array, the prompt β+ activation detector,

and a gated Cherenkov detector.

Over the course of the experiment, the electron spectrometer showed large beta-

tron and pointing oscillations in the electron beam, which was speculated to be due to

the focal spot asymmetry (shown in Figure 2.6). As such, an apodizer was installed

in the South beam after amplification to reduce the beam to effectively f/27, thereby

improving the focal symmetry and consequently the pointing stability.

To improve the chances of spatial overlap, an optional diffuser was placed in the

North beam before it went to the f/2. This reduced the peak a0 from 20 to 10 around

the focal spot of Ø5 µm, but added a larger plateau of Ø100 µm diameter with a0 ≥ 1

and Ø50 µm diameter with a0 ≥ 2.

Despite the limited experimental time available, a large parameter space covering

200 × 200 × 400 µm3 of overlap volume (vertical, horizontal, and time dimensions,

respectively) was explored by tiliting the f/2 and varying a delay stage. Although the

data from the shot-to-shot diagnostics were inconclusive, the Compton spectrometer

114



Figure 5.3: a0 lineout of the f/2 focal spot (inset) on astra-gemini with the diffuser
installed. Note the Ø100 µm diameter plateau of a0 ≥ 1 and Ø50 µm diameter plateau
of a0 ≥ 2.

a.! b.!
Figure 5.4: Compton scattering spectrometer data showing spatial (a) and temporal
(b) misalignment effects on the photon spectra and flux. Reproduced courtesy of
Gianluca Sarri.
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Figure 5.5: Compton scattering spectrometer data showing simulated photon spectra
for overlap with a0 = 2 (line) and a0 = 1 (dashed), and extracted experimental data
(green shaded region). Reproduced courtesy of Gianluca Sarri.

signal was found to have spatial (Figure 5.4(a)) and temporal (Figure 5.4(b)) de-

pendance. With more detailed analysis/modeling which factors in the electron beam

energy and photon conversion efficiency, the spectral shape was observed to follow a

non-linear generation mechanism (a0 > 1) as shown in Figure 5.5. Due to the elec-

tron energies involved (Ee− ≤ 500 MeV ), a linear 4γ2 upshift would only yield a 6

MeV photon, implying either that the measured photons above 6 MeV came from

either bremsstrahlung or a non-linear process. In this case, bremsstrahlung can be

systematically ruled out by varying the spatial/temporal overlap, leaving NLTS as

the most likely cause.

5.3 Monte-Carlo Simulation of Beam Overlap

Unfortunately, due to pointing fluctuations from vibrations, temperature gradi-

ents, beam instabilites, etc., the overlap probability can be significantly decreased,

causing the resulting photon yield to drop. To study these effects, a matlab code
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that uses Monte Carlo methods was developed to simulate the effects of optical sup-

port vibrations and air currents perturbations and compute the consequences in terms

of photon yield. We then used this code to study the influence of several parameters

in the experiment, such as spatial separation and timing difference between the two

beams.

Several pertubations to the laser path can cause a beam deflection (Fig. 2.11). A

gradient of pressure, temperature or humidity can create a refractive index gradient

that deflects light. Mirrors held by springs can relax over time and cause the beam

to drift. Vibrations around the lab can cause the optical tables to oscillate, moving

the mirrors and deflecting the beams. There are 180 mirrors in the hercules laser,

and the optical path is 200 m long, so this even a small movement in a single mirror

can have a large effect. Finally, laser-plasma instabilities can cause the direction of

the electron beam to deviate from the initial laser axis on a shot-to-shot basis.

5.3.1 Perturbation Scan

Figure 5.6 shows the variation of the photon yield with the air current perturba-

tions and the vibrations, computed by direct product of the laser and electron beams

distribution (red) and Monte Carlo (blue). The error bars correspond to error esti-

mates with 95% confidence, that is, 2σ/
√
N , where σ is the standard deviation of the

results and N the number of samples. Full numerical results (number of photons and

error estimates) are shown in Appendix B. As expected, the perturbations increase

the deviation of the beams, causing the number of photons to decrease.

5.3.2 Spatial-Temporal Separation Scan

Figure 5.7 shows the effect of a separation between the beams in the presence

of vibrations. The separation is the distance over which the electron beam diverges

before being hit by the focused laser. No separation means that the laser focus hits
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Figure 5.6: Influence of vibration and air gradient strengths on photon yield.
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Figure 5.7: Photon yield probability as a function of electron beam and laser focus
separation. (Dictated by the electron beam size at overlap)

the electron beam at the point were it is the most concentrated. We can see that with

no separation at all, most shots give a very small number of photons, because the

beams rarely overlap. When they do overlap, they produce the maximum amount of

signal due to the concentrated electron beam. Separation increases the probability

that the beams overlap and produce photons, but the average yield is reduced as the

electron beam diverges.

Figure 5.8 shows the effect of changes in the laser timing. This is similar to the

previous section, except that in this case, the laser is diverging, not the electron

beam. The effect is quite similar: the probabilities of very small yields and very high

yield are reduced, while the probability of getting an intermediate photon yield is

increased.
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Figure 5.8: Photon yield probability as a function of overlap timing. (Dictated by
the laser intensity at overlap)

5.3.3 Electron Beam Pointing Scan

Figure 5.9 shows the effect of an additional pointing instability in the electron

beam. We previously assumed that the deflection of the electron beam is just 10 times

that of the laser beam, but in fact there can be a significant fluctuation around that

position. That was simulated with a normally distributed random variable around

the initial laser pointing direction. Increasing the electron beam pointing instability

only slightly reduces the photon yield since the electron beam divergence is similar

to the additional fluctation even with an extra 12 mrad pointing instability.

Figure 5.10 shows the effect of offset between the two beams. We previously

assumed that the beams have the same axis which they are normally distributed

around. Introducing even a slight offset (∼ 50 µm) between the beam axes reduces

the photon yield and detection probability considerably. This is most likely the case

in the hercules experiment since the overlap diagnostic is only accurate to ∼ 12

µm and the beam drifts in between alignment and shots.
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Figure 5.9: Photon yield probability as a function of additional electron beam pointing
instability.

Figure 5.10: Photon yield probability as a function of axis offset.

121



5.3.4 Code Summary

As expected, the code showed that increased air currents perturbations and vi-

brations reduce the photon yield. Although the constants and distributions used for

these perturbations were based on basic assumptions, the code was able to re-create

pointing fluctuations similar to those observed experimentally. More detailed knowl-

edge of the parameters of the experiment and implemention in the code would allow

a more precise computation of the fluctuations and their effect on the experiment.

The code was used to study the influence of several parameters in presence of

perturbations. It was shown that a greater seperation between the laser focus and

electron beam source decreases the average photon yield but increases the probability

that the beams actually overlap. A variation in the laser timing has a similar effect.

Additional electron beam pointing marginally decreases the yield, whereas offseting

the electron beam greatly decreases the photon yield.

In particular, minimizing the electron beam offset and detection threshold were in-

vestigated for the subsequent round of NLTS experiments at astra-gemini (Section

5.2.2).

5.4 Conclusions

After two experimental attempts using the hercules and astra-gemini lasers,

much work still needs to be done to conclusively demonstrate NLTS. These two ex-

periments, as well as the Monte-Carlo simulations, have helped identify many areas

of improvement for future experiments.
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CHAPTER VI

Conclusions

6.1 Summary

This thesis presents experimental data generated using laser wakefield accelerators

to pump or probe a secondary process. The intial set of experiments demonstrated

the first sub-ps measurements of the evolution of magnetic fields in laser-plasma

interactions using LWFA generated electron beams [114]. We observed an expansion

of the magnetic field along the surface at nearly the speed of light to ∼ mm in

diameter, inferring that the laser-produced hot electrons that emanate along the

surface generate the field, measured on the order of 104 T . As the laser contrast is

reduced, the ratio of field strength on the front and rear of the target will dynamically

shift to being dominated by the rear surface fields as the front surface pre-plasma

cancels the field from expanding due to available return current, whereas the front

surface dominates for high-contrast interactions.

The second group of experiments investigated bremsstrahlung generation using

LWFA electron beams for diagnostic development, nuclear reactions, and secondary

particle generation. We measured the bremsstrahlung beam flux to contain upwards

of 1010 photons with > MeV energies using a single-shot Compton-scattering spec-

trometer and (γ, n) activation/autoradiography techniques. With these photons, we

measured the largest photofission yield, ∼ 107 fissions/J , of depleted uranium per
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unit of energy using lasers. Furthermore, the shortest-lived (t1/2 < 5 s) radioiso-

topes generated with lasers were measured using these photons to activate silicon

and glass (SiO2) targets [115]. Coupled with spatial measurements of the beam using

a pixellated BGO scintillator and autoradiography of carbon and copper activation

targets, the brightness of the LWFA bremsstrahlung source is on the order of 1019

photons/s/mm2/mrad2/0.1%BW at 10 MeV , based on measurements of 108 photons

at 10 MeV with 10 mrad divergence and assuming 100 fs duration and 0.01 mm2

area.

In addition to the photons beams, secondary particles were measured, including

the first highly-relativistic positron beams [116, 117, 118], directional neutrons, and

pions generated using LWFA electron beams. By increasing the converter target

thickness and Z, the number of positrons was observed to increase to a maximum at

a thickness of 2Lrad, consistent with the Bethe-Heitler process of electrons convert-

ing into photons which consequently produce e−/e+ pairs. Increasing the converter

thickness to 5Lrad, the incident electron beam almost entirely depletes into photons

and e−/e+ pairs such that the resultant electron/positron beam is neutral and highly

relativistic, having a density of ne−/e+ ≈ 1015 cm−3 in the beam frame of reference.

Besides measuring the radioisotopes resulting from (γ, n) reactions, the spatial and

spectral distributions of (γ, n) neutrons were also measured with bubble detectors,

with 105 neutrons/J above 10 MeV contained in a 32◦ cone. Lastly, for high-energy

electron energies (> 230 MeV ), a small number (50 ± 30) of pions were measured

indirectly using (γ, π+) activation of aluminum.

The final set of experiments explored using LWFA electrons interacted with ultra-

high-intensity laser pulses (a0 � 1) to perform non-linear Thomson scattering. By

scattering a laser pulse of a0 ' 2 off electrons of 500 MeV energy, photons above

15 MeV were generated and measured with the aforementioned Compton scattering

diagnostic. The beam had a brightness of 1021 photons/s/mm2/mrad2/0.1%BW at
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HERCULES 

Bremsstrahlung 

LCLS  

(Self-Seeding) 

Astra-Gemini NLTS 
(a0=2, γ=1000) 

NLTS Theoretical 
(a0=30, γ=400) 

Figure 6.1: Peak brightnesses of various light sources. Work presented in this thesis
is shaded black. Previous betatron measurements from hercules are shaded light
blue. Theoretical NLTS estimates for hercules-like parameters are shaded grey.
Reproduced courtesy of Stefan Kneip.

10 MeV , based on measurements of 108 photons at 10 MeV with 2 mrad divergence

and assuming 40 fs duration and 30 µm diameter. When the spatial or temporal

alignment was changed by 30 µm or 100 fs, the signal dropped off above 10 MeV ,

indicating that the process was indeed non-linear in nature.
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6.2 Challenges

To improve most LWFA probing experiments in this thesis, the electron beam can

be made significantly more mono-energetic using controlled injection [119], thereby

decreasing both its temporal and spectral distribution. This typically comes at the

cost of increased complexity (using staging or second laser) and lowered beam charge.

For LWFA pumping applications, more charge is typically required to increase effi-

ciency. For example, the activation experiments require only moderate electron en-

ergies (5-25 MeV ) since most reactions and do not benefit much from the higher

energy electrons. As such, continuous ionization injection could be used to gener-

ate broad energy electrons throughout the acceleration process, maximizing available

charge. Another possibility would be to split the pulse into a pulse train or use

higher-repetition rate lasers in higher density plasma to generate more electrons with

lower energies.

As indicated in Section 5.3, the electron beam shot-to-shot pointing stability is

particularly critical for the realization of NLTS. The development of staged gas cells

(Section 2.4.2) has improved the pointing, but has introduced its own challenges in

terms of balancing the density in the separate stages. Another difficulty for NLTS is

shot-to-shot detection of the photon beam, through which some of the work presented

in this thesis was motivated. Although bremsstrahlung can be used to characterize

these diagnostics, the photon flux from NLTS can be lower than from bremsstrahlung,

making diagnostics difficult to implement even though the peak brightness of a NLTS

source could be orders of magnitude higher than bremsstrahlung.

6.3 Future Work

While LWFA has become a very successful technique for accelerating electrons

to multi-GeV energies since first demonstrated 10 years ago [10, 11, 12], its distinct
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Figure 6.2: Temperature-density phase space accessible to LCLS and LWFA with the
200 TW laser at MEC (green area).

advantages compared to conventional accelerators are a large acceleration gradient

of (>100 GeV/m) [13, 8], ultrashort duration (∼ fs) [73, 15], and inherent synchro-

nization with the laser driver (and its triggering electronics). Another advantage of

LWFA is the natural generation of betatron X-rays from transverse electron motion

in the acceleration process [18]. For these reasons, LWFA systems are of interest for

ultrafast pump-probe experiments in compact, flexible geometries. Exactly such a

system would help SLAC expand the pump-probe capabilities of its Matter at Ex-

treme Conditions (MEC) instrument of the Linac Coherent Light Source (LCLS)

facility as LWFA would provide the flexability to quickly reconfigure experiments

around the LCLS beamline.

This combination of LCLS with LWFA would allow for the exploration of a large

range of high-energy-density (HED) conditions as shown in Figure 6.2. The com-

plementary X-ray spectra (narrowband LCLS, broadband betatron) provide a unique

platform for ultrafast X-ray pump/X-ray probe or X-ray pump/electron probe studies
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of matter in extreme conditions. Notably, the ability to study isochorically heated

matter, plasma instabilities, and shockwave phenomena with the ultrafast pump-

probe capabilities of both the LCLS beam and LWFA radiation (electrons or beta-

tron) is of particular interest to the HED community. Another possibility would be

to directly measure the ultrashort duration of the LWFA electron bunch and demon-

strate its inherent fs synchronicity for the first time. Furthermore, the combination

of LWFA with LCLS would enable the study the propagation of anti-matter plasmas

and formation of collisionless shocks, key topics of research in laboratory astrophysics.

Such research could ultimately help determine the physical properties of matter at

HED conditions, thus validating and improving modeling capabilities for fusion plas-

mas.

The two long-pulse lasers (ns) at MEC can perform pump-probe experiments

on laser-shock compressed matter in conjuction with the LWFA electron beam and

betatron source, analogous to the experiments in Chapter III. Irradiating a thin (µm)

foil target from one or both sides with the ns pump beams would compress and shock

the target while the electron beam or betatron X-rays probe the field or density

structure of the target, respectively. The transmitted radiation can then be imaged

to observe transitions in the laser-plasma interaction such as changes in the field

magnitude or absorption spectrum as shown in Figure 6.3. By adjusting the temporal

delay between the pulses, the field dynamics can be clearly resolved as the fs LWFA

radiation essentially can take a snap-shot of the much longer ns interaction. These

measurements would help clarify how the formation of pre-plasma on either one or

both sides of the target changes the net field deflection of probe electrons.

Ultimately, integrating LWFA experiments with the LCLS X-ray beam would

enable true fs-scale pump-probe experiments. Since both systems generate fs-scale

radiation, there is a variety of experimental configurations possible as either can be

used as a pump or a probe for the other. One potential experiment could be to
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Figure 6.3: Experimental setup for back-lighting laser-pumped targets with LWFA
electrons or betatron X-rays.

Figure 6.4: Experimental setup for measuring LWFA electron bunch duration using
LCLS X-ray cross-correlation.

measure opacities and continuum lowering of warm dense matter (WDM) using the

betatron X-rays as a pump and the LCLS X-rays as a probe. The broadband betatron

X-rays could quickly photo-ionize and heat a thin foil target isochorically (without

significantly changing the volume) into a WDM state, while the monochromatic LCLS

X-rays would diffract off the target onto a detector screen. This X-ray diffraction

would indicate the density and temperature conditions in the WDM and the X-ray

absorption would provide detailed opacity measurements at those conditions.

While simulations and experimental evidence indicate that the LWFA electron

bunch can be as low as 1 fs [15], the LWFA electron bunch has not been directly

measured to date. Using the < 5 fs LCLS X-ray beam, the duration of LWFA electron
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Figure 6.5: Experimental setup for combining LWFA electrons/betatron and LCLS
X-rays in pump-probe.

bunches (and its subsequent betatron) could be measured with a cross-correlation

experiment. LCLS X-rays focused on a thin titanium foil would create hollow K-shell

titanium atoms that would emit a signature X-ray if temporally overlapped with the

energetic LWFA electron beam as shown in Figure 6.4. By imaging these characteristic

X-rays emitted from the titanium foil, the temporal overlap can be calculated from

the spatial extent of the characteristic X-ray radiation and by knowing the angle

between the two beams.

Once the cross-correlation between the two beams is performed, measuring the

ultrafast dynamics of relativistic particles or X-rays interacting with materials would

be feasible. Such experiments will enable direct experimental measurement of tran-

sition times and cross-sections for material processes on the fs-scale. Furthermore,

transient high-strength electric and magnetic fields generated by relativistic LWFA

electrons impacting the surface of a target will be measured with LCLS X-rays or a

secondary electron beam to understand the evolution of rapidly heated plasmas. A

generalized pump-probe experimental setup is shown in Figure 6.5.

Finally, the ability to compactly generate high-density, relativistic lepton jets

using LWFA would allow the LCLS X-rays to pump or probe these exotic states
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Figure 6.6: Experimental setup for measuring electron/positron jet filamentation in
plasma.

of matter relevant to astrophysics. The lepton jets would be created by passing

the LWFA electron beam through a thick (cm) high-Z converter target to create

bremsstrahlung photons that subsequently undergo pair production to generate elec-

trons and positrons (as detailed in Section 4.3). By increasing the thickness of the

converter, the exiting electron/positron beam composition can be turned from purely

electrons (with no converter) to practically charge neutral after approximately 5 ra-

diation lengths (roughly 2.5 cm of Pb, scaling as A/Z2) [118]. By propagating the

exiting beam through another plasma (generated by another laser focused on a sec-

ond gas jet/cell), the current filamentation instability can be studied in detail by

backlighting the beam-plasma interaction with another short-pulse laser as shown

in Figure 6.6. The LCLS X-ray beam can also directly probe the converter with

the LCLS X-ray beam to observe the radiation transport of electrons and positrons

through the high-Z material.

This will provide relativistic electrons and their subsequent betatron X-ray ra-

diation for use in conjunction with the LCLS X-ray beam and other pump lasers.

Using LWFA radiation to probe materials shocked and/or heated by these long-pulse

pump lasers would develop deeper understanding of laser-matter interactions relevant

to inertial confinement fusion (ICF), including the study of shockwave propagation
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and hot electron transport. The opacity and continuum lowering of materials at

WDM conditions could be measured in fine detail using the narrowband LCLS X-ray

beam to probe materials irradiated by relativistic electrons or broadband betatron

X-rays generated from LWFA. This could extend our understanding of HED opacities

relevant to fusion plasmas.

Since compact pump-probe applications are one of the most desired abilities of

LWFA, the direct measurement of the LWFA electron bunch duration using X-ray

cross-correlation with the LCLS X-ray beam would be the first to measure the shot-

to-shot duration of the LWFA electrons. As betatron radiation is created by the

electron bunch inside the wakefield, this experiment would also effectively measure

the betatron duration, an important aspect for its application at MEC. Lastly, this ex-

periment could directly measure cross-sections of inner-shell X-ray transitions within

various materials such as titanium or gold, the understanding of which is important

for modeling materials relevant to fusion.

Finally, creating electron-positron jets with LWFA electrons would allow for the

novel study of astrophysical phenomena with the high-brightness LCLS X-ray beam

(see Figure 6.1). Due to the scalability of laboratory astrophysics, the compact nature

of LWFA may allow for the study of galactic-scale electron-positron jets and gamma-

ray bursts in a table-top platform. Propagating LWFA electron-positron jets through

a secondary plasma will create similar conditions to those found in these astrophysical

phenomena and enables controlled study of jet filamentation in the plasma, thought

to be driven by turbulent electromagnetic fields seeded by current instabilities.
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APPENDIX A

List of Constants

Symbol Description Quantity
e Charge of an Electron 1.6× 10−19 C
me Mass of an Electron 9.11× 10−31 kg
mp Mass of an Proton/Neutron 1.67× 10−27 kg
c Speed of Light in Vacuum 2.998× 108 m · s
ε0 Permittivity of Free Space 8.85× 10−12 F ·m−1
µ0 Permeability of Free Space 4π × 10−7 H ·m−1
h Planck’s Constant 6.63× 10−34 J · s

Table A.1: Table of fundamental constants.
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APPENDIX B

Monte-Carlo Algorithm for NLTS

B.1 Introduction

NLTS experiments require the precise overlap of an intense laser pulse and an

electron beam to produce a high-energy, high-brillance photon beam. Unfortunately,

due to pointing fluctuations from vibrations, temperature gradients, beam instabilites,

etc. (Figure 2.11), the overlap probability is significantly decreased, causing the

resulting photon yield to drop. To study these effects, a matlab code that uses Monte

Carlo methods was developed to simulate the effects of optical support vibrations

and air currents perturbations and compute the consequences in terms of photon

yield. The code was used to study the influence of several parameters in the NLTS

experiment, such as spatial separation and timing difference between the two beams.

B.2 Perturbation Generation

Vibrations around the lab can cause the optical tables to oscillate, moving the

mirrors and deflecting the beams. There are approximately 180 mirrors in the her-

cules laser, and the optical path is long (200 m), so even a small movement can have
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a large effect. Many events in and around the lab can cause the tables to vibrate:

a car in the street, construction projects, someone walking nearby, air conditioning

fans, seismic vibration of the earth, leaning on a table, etc. When a table oscillates,

the mirrors on top of it start moving, deflecting the beam. These perturbations are

simulated by sampling several variables:

• At one given instant, the number of vibration sources around the lab is sampled

from a Poisson distribution of mean 5, using a table lookup method.

• The frequency of each vibration is sampled from a truncated normal distribution

of mean 150 Hz and standard deviation 150 Hz, using acceptance-rejection

method.

• The amplitude of each vibration is sampled from an exponential distribution,

using inverse transform method. A = −A0 log(ξ), where ξ is a random number

between 0 and 1 (resulting from matlab’s rand(1)) and A0 is a constant (A0 =

10−6 m).

• Depending on the configuration of the lab, not all mirrors are affected by a

given vibration. To reflect this, a binary decides if a mirror is hit by a vibration

(with probability of 0.3) or not.

• The mirrors do not necessarily move together. The phase difference for each

mirror is sampled from a uniform distribution between 0 and 2π.

The response of a typical table to a vibration depends on the frequency with an

exponential law (Fig. B.1). The compliance is the ratio between the amplitude of

the ground vibration and the amplitude of the table vibration.
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Figure B.1: Compliance curve of an ideal rigid body.

Once these values are known, the deflection of the beam on the target due to one

mirror and one vibration is:

δ = A · R(f)

Ltable
· cos(φ) · L (B.1)

where A is the amplitude of the vibration, R(f) is the response of the table (depending

on the frequency f), Ltable is the length of the table, φ is the phase and L is the distance

between the mirror and the target. The sum over all mirrors and all vibration sources

provides the total deviation due to vibrations.

Gradients of pressure, temperature and humidity change the index of refraction

of the air. An index gradient deflects the light, resulting in a deviation of the beam.

In the code, the gradients of pressure, temperature and humidity in 5 different areas

are sampled from normal distribution using the Box-Muller transform. The resulting

index gradient is dn/dl. At small angles, the deviation on target is:

δ = dn/dl · δl · L (B.2)

where δl is the distance over which the gradient in present, and L is the distance to

the target. The sum over all areas provides the total deviation of the beam on the

target.
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B.3 Beam Overlap and Photon Yield

The previous simulations provide the deflection of the laser beam. The system

setup is such that the laser spot driving the electron beam moves in the same direction,

but its deflection is 10 times higher due to the difference in focal lengths. Once the

centers of the laser beam and electron beam are known, it is possible to compute the

number of photons produced. The electron beam has an elliptical normal distribution

of 2 µm FWHM on the x-axis and 1 µm on the y-axis, while uniformly diverging at

5 mrad FWHM. One shot contains a total of Ne− = 108 electrons. The intensity of

laser beam has normal distribution of 4 µm FWHM, peaked at an a0 of 30. When an

electron hits the laser beam, it produces a20 photons, where a20 is the proportional to

the intensity of the laser beam. Two methods can be used to compute the number of

photons:

1. Both distributions are evaluated on a 100 µm × 100 µm grid, giving a matrix

ebeam for the electron beam and laser a0 for the laser beam. Then the number

of photons is computed in matlab through element multiplication:

photon = sum(sum(ebeam.*laser a0.*laser a0)).

2. The second method applies Monte Carlo directly using the intensity of the laser

as a cross section. N electrons are thrown to points (x, y) randomly sampled

from the electron beam distribution. Each electron produces a0(x, y)2 photons.

The number of photons is then multiplied by Ne/N for normalization.

Figure B.2 shows the distribution of the beam deflection due to air currents and

vibrations. It looks like an ellipsis of about 30 µm diameter, which is consistent with

the experimental results. The ellictical shape is due to the fact that air currents

and vibrations have a larger impact on the vertical deflection than on the horizontal

deflection.
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Figure B.2: Distribution of pointing from air currents and mirror vibrations.

B.4 MATLAB Code

B.4.1 Main Program

%computes the photon yield with all perturbations

overlap = 2;

%method to compute the photon yield

%1 -> monte-carlo

%2 -> grid

%parameters:

Lmax = 180; % defines maximum length [meters]

S = 1000; % defines number of samples

output = zeros(S,1);

% creates output for number of photons generated per run

%mirrors:

N1 = 175; %one set of mirrors

N2 = 7; %mirrors in the ring amplifier

ringpos = 120;

ringdist = 0.05;

posmir2 = ringpos:ringdist:(ringpos+(7*25-1)*ringdist);

%positions of mirrors in the ring

Amp = 1e-4; %average amplitude of vibrations (arbit. unit)

N11 = 125;

posmir1 = [linspace(1,119,N11), linspace(130,179,N1-N11)];

%positions of the other mirrors.
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p = 0.3;%probability that a mirror is actualy hit by a given vibration

f0 = 100; %some frequency (Hz) for the compliance curve

RTx = 1e-3; %table response on x-axis

RTy = 1e-4; %table response on y-axis

%air currents:

V = 4; % defines number of variables per air current

N = 5; % defines number of air currents

L = [5, 10,120,130,140]; % defines location of air currents [meters]

dl = [2,2,1,0.5,1]; % defines length of air currents [meters]

skew = 2; % defines x-y skew of distribution

dP = 3e-8;% defines maximum pressure gradient index (for 0.1 atm/m)

dT = 1e-8;% defines maximum temperature gradient index (for 10 C/m)

dH = 1e-8;% defines maximum humidity gradient index (for 1% RH/m)

%laser and electron beams

a0_max = 30;

% defines maximum normalized vector potential of laser pulse

% (analogous to sqrt of intensity)

Ne = 1e8; % defines number of electrons in beam [#]

ed = 5e-3; % defines electron beam divergence [rad]

ep = 3e-3; % defines electron beam shot-to-shot pointing [rad]

eoffx = 0; % defines electron beam offset in x [microns]

eoffy = 10; % defines electron beam offset in y [microns]

dz = 2e-3;

% defines seperation between laser focus and e beam source [meters]

z = 0e-6; % defines amount of spatial delay [microns] (causes

%overlap in another plane along axis)

w0l = 2e-6; % defines minimim beam waist of laser

w0e = 5e-7; % minimim beam waist and e beam [m]

zr = pi*w0l^2/0.8; % defines Rayleigh length of laser pulse [microns]

wl = w0l*sqrt(1+(z/zr)^2);

% calculates laser waist as a function of delay [microns]

a0_norm = a0_max/((1+(z/zr)^2)^(1/2));

% calculates laser potential at new waist

we = w0e + ed*(dz-z)/2;

% calculates electron beam waist at new overlap plane

rl = wl/sqrt(log(2));%constant for the exponential law of the laser

%we = 6e-6;%FWHM of the electron beam (m)

re = we/sqrt(log(2));

%constant (m) in the exponential law for the electron beam
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sigma_laser = ([wl, wl]*1e6).^2; % defines laser beam waist in 2D

sigma_ebeam = ([we*skew, we]*1e6).^2; % defines electron

%beam waist in 2D (with skew in X axis)

spot = zeros(1,2);%generates array for spot deflection for each sample

for s = 1:S

%deflection due due to mirrors at one instant

nvib = poisson(5); %number of vibration sources

vibs = zeros(2,nvib);

for n = 1:nvib

vibs(1,n) = gaussian_acrej(149,149);

%frequency of the vibration (Hz), following a normal distribution

vibs(2,n) = -Amp*log(rand(1));

%amplitude of the vibration

end

mdev1x = zeros(nvib,N1,2);

mdev2x = zeros(nvib,N2,2);

mdev1y = zeros(nvib,N1,2);

mdev2y = zeros(nvib,N2,2);

for n = 1:N1

for k = 1:nvib

if rand(1) < p

mdev1x(k,n,1) = vibs(2,k)*RTx*exp(-vibs(1,k)/f0);

%movement of the mirror in the x direction (m)

mdev1x(k,n,2) = 2*pi*rand(1);

%mdev1x(k,n,2) = 0;

%phase of the movement at the time of the shot

mdev1y(k,n,1) = vibs(2,k)*RTy*exp(-vibs(1,k)/f0);

mdev1y(k,n,2) = 2*pi*rand(1);

%mdev1y(k,n,2) = 0;

%same thing in the y direction

end

end

end

%same thing for the mirrors in the ring amplifier

for n = 1:N2

for k = 1:nvib

if rand(1) < p

mdev2x(k,n,1) = vibs(2,k)*RTx*exp(-vibs(1,k)/f0);

mdev2x(k,n,2) = 2*pi*rand(1);
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mdev2y(k,n,1) = vibs(2,k)*RTy*exp(-vibs(1,k)/f0);

mdev2y(k,n,2) = 2*pi*rand(1);

end

end

end

mirrordevx = 0; %total deflection on x (m)

mirrordevy = 0; %total deflection on y (m)

for n = 1:N1

for k = 1:nvib

mirrordevx = mirrordevx + mdev1x(k,n,1)*...

cos(mdev1x(k,n,2))*(Lmax-posmir1(n))/1;

%for each mirror, movement of the table times cos of the

%phase times distance to target over size of the table

%gives deflection on the x axis

mirrordevy = mirrordevy + mdev1y(k,n,1)*...

cos(mdev1y(k,n,2))*(Lmax-posmir1(n))/1;

end

end

%same thing for mirrors in the ring

for n = 1:N2

for k = 1:nvib

for q = 1:25

mirrordevx = mirrordevx + mdev2x(k,n,1)* ...

cos(mdev2x(k,n,2))*(Lmax-posmir2((q-1)*N2+n))/1;

mirrordevy = mirrordevy + mdev2y(k,n,1)* ...

cos(mdev2y(k,n,2))*(Lmax-posmir2((q-1)*N2+n))/1;

end

end

end

%mirrordevx

%mirrordevy

%deviation due to air currents

x = zeros(N,V,2); % generates array for sample outputs

angle = zeros(N,2); % generates array for angle outputs

deflection = zeros(N,2);

% generates array for variance and mean for each batch

j = 1; % resets random number index

for d = 1:2 % loops over dimensions
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for i = 1:N % loops over air currents

for k = 1:V % loops over variables

x(k,i,d) = sqrt(-2*log(rand(1)))*cos(2*pi*rand(1));

% performs Box-Muller transform to get a normal

% distribution for the air current deviations

end

angle(i,d) = x(1,i,d)*dP + x(2,i,d)*dT + x(3,i,d)*dH;

% sums all air current small angle deflections

end

deflection(:,d) = (angle(:,d)).*transpose(Lmax - L).*transpose(dl);

% calculates deviation of the center of the alignment axis

% at the end of the laser chain

end

totaldevx = mirrordevx + sum(deflection(:,1))/skew;

totaldevy = mirrordevy + sum(deflection(:,2));

spot(s,1) = totaldevx; % saves spot deflections for X-axis

spot(s,2) = totaldevy; % saves spot deflections for Y-axis

if overlap == 1

%computes the number of photons resuling of the interactions

%between the beams

lcenter = [0.1*totaldevx,0.1*totaldevy]; %center of the laser beam (m)

ecenter = 10*lcenter; %center of the electron beam (m)

%Fl = @(x,y)(a0_norm*exp(-((x-lcenter(1))^2+(y-lcenter(2))^2)/(rl^2)));

Fl = @(x,y)(a0_norm*exp(-(x-lcenter(1))^2/(2*wl^2)- ...

(y-lcenter(2))^2/(2*wl^2)));

%normal law for the laser beam

Nelec = 1000;

Nphot = 0;

%Nelec electrons are sent. Their positions are normally

% sampled around the center of the electron beam.

for n = 1:Nelec

%theta = pi*rand(1); %random angle

%r = normrnd(0,re); %random distance

%x = ecenter(1) + r*cos(theta)*skew;

%y = ecenter(2) + r*sin(theta); %position of the electron

x = ecenter(1) + normrnd(0,skew*we);

y = ecenter(2) + normrnd(0,we);

Nphot = Nphot+(Fl(x,y))^2; %number of photons created by

% one electron at this position in the laser beam

end
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Nphot = Nphot*Ne/Nelec; %normalization of the number of photons

output(s,1) = Nphot;

end

if overlap == 2

mu_laser = [totaldevx*1e5 totaldevy*1e5]; % defines expectation

%of laser axis including deflection

mu_ebeam = [((totaldevx+x(1,i,d)*ep*dz)*1e6 + eoffx) ...

((totaldevy+x(1,i,d)*ep*dz)*1e6+eoffy)]; % defines expectation

%of ebeam axis including 10x greater deflection

[X1,X2] = meshgrid(linspace(-50,50,100)’,linspace(-50,50,100)’);

% creates 100 x 100 grid for laser/ebeam distributions

X = [X1(:) X2(:)]; % creates a set op X1,X2 points distribution

%for 2D normal function

laser = reshape(mvnpdf(X,mu_laser,sigma_laser),100,100);

% normally distributes

%laser in 2D with defined axis and waist

laser_a0 = laser / max(max(laser))*a0_norm;

%normalized laser with updated vector potential

ebeam = reshape(mvnpdf(X,mu_ebeam,sigma_ebeam),100,100)*Ne;

% normally distributes ebeam in 2D with

% defined axis, waist, and electron number

photon = ebeam.*laser_a0.*laser_a0;

% calculates number of photons per unit bin as

% Ne*a0^2 per bin

output(s,1) = sum(sum(photon)); % sums photons over all bins

end

end

output(isnan(output)) = 0;

m = mean(output);

sigma = std(output);

error = 2*sigma/sqrt(S);

B.4.2 Functions

function [ x ] = gaussian_acrej( m,s )

%generates gaussian random numbers with mean m and std s

%using acceptance-rejection

acc = 0;
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while acc == 0

x = (m+4*s)*rand(1);

y = rand(1);

if y < exp(1/2*((x-m)/s)^2)

acc = 1;

end

end

end

function [ k ] = poisson( l )

%generates numbers following a poisson distribution

%wth mean l using a table lookup method

x = rand(1);

k = 0;

S = exp(-l);

while S < x

k = k+1;

S = S+exp(-l)*(l^k)/factorial(k);

end

k = k+1;

%shift result to get values from 1 to infinity, same distribution

end
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[28] R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A.
Cairns, and P. A. Norreys. Simulations of efficient raman amplification into the
multipetawatt regime. Nature Physics, 7:87–92, 2011.
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