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Abstract

  Adrenocortical carcinoma (ACC) is a rare yet highly aggressive form of 

cancer with limited treatment options and poor prognosis.  Insulin-like growth 

factor 2 (IGF2) is one of the most highly expressed genes in sporadic ACC, and 

is an adrenal mitogen.  In addition, a microRNA (miRNA), miR-483-3p, is located 

in an intronic region of IGF2, suggesting co-expression of IGF2 and miR-483-3p 

in ACC.  miRNAs are small, endogenous, non-protein coding RNAs that are an 

important means of post-transcriptional gene regulation, and have been 

implicated in numerous physiologic and disease processes. This thesis describes 

the correlation between IGF2 and miR-483-3p in primary human ACC samples, 

providing rationale for the development of molecular tools designed to aid in the  

study of the role of IGF2  and miR-483-3p in ACC.  Additionally, we describe the 

results of genetically deleting Dicer, a key miRNA processing enzyme, in the 

developing adrenal cortex.  Adrenal Dicer knockout (KO) mice did not survive 

beyond 24-48 hours post-parturition, and were characterized by rapid failure of 

the adrenal cortex during late gestation at embryonic day 18.5 (E18.5).  

Specifically, Dicer KO adrenal cortical cells underwent apoptosis and were 

completely depleted by E18.5.  The adrenal medulla, however, remained in 

E18.5 Dicer KO adrenals, suggesting that initial adrenal cortex formation was 

unperturbed by Dicer inactivation.  To further characterize Dicer KO embryonic 

ix



adrenals, we subjected purified RNA isolated from control and KO adrenals at 

both E15.5 and E16.5 to mRNA and miRNA microarray analyses.  Intriguingly, 

Dicer KO adrenals demonstrated significant up-regulation of transcripts 

belonging to the genes Nr6a1 and Acvr1c, whose functions in adrenocortical 

development and physiology are currently poorly understood.  Finally, several 

down-regulated miRNAs in Dicer KO adrenals were consistently predicted to 

target mRNA transcripts from these genes.  The increased expression of Nr6a1 

and Acvr1c gene transcripts in Dicer KO adrenals may suggest a role for miRNA 

mediated regulation of these genes, which may in turn be important in normal 

adrenal development.

x



CHAPTER 1

Introduction

 Four hundred and fifty years ago, an Italian anatomist by the name of 

Bartolomeo Eustachi (Eustachius) described the presence of the suprarenal 

bodies, ‘Glandulae renis incumbentes’, in his work Opuscula Anatomica.  He did 

not, however, offer any explanation on their function.  At the time, Eustachius 

stated that no one had previously described the glands now known as the 

adrenals in any medical work, although there is some debate as to whether the 

early Roman physician Galen may have described them as early as the second 

century AD [1].  While Eustachius remains a well known establishment of the 

medical community in the twenty-first century due in part to the tube in the inner 

ear that bears his name, he is often overlooked concerning the history of the 

adrenal gland.  It was not until nearly 300 years later, in 1855, that the adrenal 

glands finally came to the forefront of the burgeoning field of endocrinology.  It 

was in this year that a renowned English physician, Thomas Addison, published 

his book, On the Constitutional and Local Effects of Disease of the Suprarenal 

Capsules, in which he described 10 cases of patients suffering with what would 

eventually come to be identified as Addison’s Disease [2].  With the renewed 

interest in the ‘suprarenal capsules’ and their association with a profile of disease 

symptoms, the floodgates of research into the adrenal glands were opened.  The 

1



following year, Brown-Séquard proved in animal experiments that the adrenal 

glands were essential for life.  Then, towards the beginning of the twentieth 

century, Sir William Osler demonstrated the temporary effective treatment of 

Addison’s Disease by the administration of a crude, oral extract prepared from 

adrenal glands, proving that their still unidentified secretions were important for 

health.  Through the early twentieth century into the 1930s, further experiments 

in animal models supported Osler’s initial observation, and the involvement of the 

pituitary gland in what is now known as the hypothalamic-pituitary-adrenal (HPA) 

axis was first described.  As advances in biochemistry were made through World 

War II and beyond, the steroid hormones of the adrenal cortex were isolated, and 

their structures determined and synthesized.  In 1942 adrenocorticotropic 

hormone (ACTH), the pituitary hormone responsible for stimulating steroid 

production in the adrenal cortex, was isolated by Li and Sayers; shortly 

afterwards the anti-inflammatory effects of cortisol were discovered by Hench in 

1948.  By the end of the 1950s, aldosterone had been isolated and 

characterized.  Jerome W. Conn, a University of Michigan Medical School 

alumnus and endocrinologist, was the first to describe the disease of primary 

aldosteronism which now bears his name [3].

 In the 157 years since Addison rekindled scientific interest in the adrenal 

glands, the biochemical, anatomical, and physiologic aspects of the glands and 

their functions have been elucidated in great detail.  Their role in maintaining 

electrolyte homeostasis, mediating physiologic responses to stress and external 

stimuli, and the regulatory feedback pathways involved in adrenal function are 
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now standard fare for any first year medical student around the world.  The 

advent of the ‘molecular age‘ of research as the twenty-first century gets 

underway opens the door for new directions of adrenal research.  The molecular 

ontogeny of the adrenal gland is one of these avenues.  The molecular and 

cellular signaling processes necessary for adrenal formation are still poorly 

defined, and the molecular mechanisms of maintenance and homeostasis of the 

adrenal cortex are still in the relatively early stages of discovery.  The molecular 

and genetic factors that keep the balance between adrenal physiology, 

pathophysiology, and neoplasia, and the events that upset this balance still 

remain elusive as well; they are also a subject of great interest for the current 

and next generation of physicians and researchers.  The information gathered 

from genetic and molecular studies of the adrenal gland will provide insights and 

answers to questions regarding the factors that contribute to adrenal 

development, function, and disease.  From the simple yet foundational 

advancements made in adrenal biology from the nineteenth century onwards, the 

knowledge gleaned from present day adrenal research will serve to propel our 

understanding of adrenal pathology well into the twenty-first century and beyond, 

ushering in a new era of treatments for adrenal and endocrine related disease.  

Adrenal Structure and Function

 The adrenal glands are bilateral endocrine organs situated superior to the 

kidneys.  In mice, they are grossly spherical or ellipsoid in shape, with a fairly 

uniform radial organization and appearance when viewed in cross section.  In 
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humans, the glands appear grossly pyramidal in shape, and often have 

invaginations that make them irregular in cross section, with the internal 

organization seemingly flattened or folded.  The human adrenal is divided into 

the head, body, and tail, from the inferomedial to superior aspects, highlighting its  

irregular shape in comparison with the mouse.  The adrenals in humans and 

mice are surrounded by a thin capsule that surrounds the cortical tissue.  Current 

research suggests that this capsule plays an important function in the 

maintenance of the adrenal cortex [4].  The adrenal gland is divided into two 

grossly defined zones, the outer cortex and the inner medulla (Figure 1.1).  The 

cortex is further subdivided into three concentric functional zones, which are 

defined by their biochemical and steroid producing profiles.  Beginning from the 

outermost zone, these are the zona glomerulosa (zG), zona fasiculata (zF), and 

zona reticularis (zR).  In rodents and other animals, the functional distinction 

between the zF and zR is often less distinct when compared with the human 

adrenal [5].  Vascular supply is provided via branches from the aorta, renal, and 

inferior phrenic arteries, which form a capsular plexus that flows into a capillary 

network in the outer margin of the zG.  Sinusoids in the zF, zR, and medulla 

eventually drain into the adrenal central vein, which then flows back into the 

venous return system.  Innervation of the adrenal gland is well established in 

regards to the direct regulation of catecholamine synthesis by the adrenal 

medulla.  Sympathetic preganglionic and cholinergic fibers derived from the 

splanchnic nerves synapse directly on the cells of the medulla.  Recent studies, 

however, have demonstrated that the cortical cells may also receive direct 
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neuronal synapses [6,7].  In addition, evidence exists supporting the notion that 

the cortex may also contain sensory innervation, with afferent nerve fibers 

providing feedback to the central nervous system in response to adrenal specific 

stimuli.  Finally, the presence of numerous neuropeptides and transmitters in the 

adrenal cortex and medulla also suggest a rich network of innervation in the 

gland [8-10].  

 As stated previously, the adrenal gland is divided grossly into the medulla 

and cortex.  The adrenal medulla is comprised of chromaffin cells, so named by 

the Prague histologist Alfred Kohn at the turn of the nineteenth century because 

of their apparent affinity to chromium salts that resulted in a yellow-brown 

staining [11].  Indeed, it had been observed earlier in that same century by the 

French physician, Edmé Félix Alfred Vulpian, that an unknown substance in the 

adrenal medulla reacted with perchloride of iron to produce an emerald green 

stain not seen elsewhere in the human body [3].  It is now known that the 

unknown substances that caused the colored stains in Kohn and Vulpian’s 

experiments were catecholamines synthesized by the adrenal medullary cells.  

This discovery was made shortly after Kohn coined the term “chromaffin”, when 

adrenaline (epinephrin) was isolated and synthesized.  Epinephrine, 

norepinephrine, and dopamine are the endogenous secretions of the adrenal 

medulla, and belong to a class of compounds known as catecholamines.  They 

are characterized by an amine group containing a 3,4-dihydroxyphenyl (catechol) 

nucleus, and are synthesized from the amino acid tyrosine involving a series of 

biochemical steps mediated by enzymes produced by the medullary cells.  The 
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majority of medullary cells synthesize, store, and secrete epinephrine.  A small 

minority lack the enzyme phenylethanolamine N-methyl transferase (PMNT), 

which is necessary to catalyze the final step from norepinephrine to epinephrine; 

these cells can only secrete norepinephrine.  Interestingly,  PMNT expression is 

induced by glucocorticoids, raising the possibility of cortical-medullary signaling 

in the maintenance of epinephrine secreting medullary cells [12].  The biological 

functions of the catecholamines are mediated through adrenergic receptors 

found on the cell membranes of target cells.  This class of receptors is broadly 

divided between α and β receptors, with each class further subdivided into 

subtypes α1, α2 and β1, β2.  Catecholamines produces a variety of physiologic 

effects, although their effects on blood pressure and glucose metabolism are 

among the most widely known.  Among the hemodynamic effects of 

catecholamines are increased myocardial contraction (β1), vasoconstriction (α), 

and vasodilation (β2).  The metabolic effects of catecholamine stimulation include 

a hyperglycemic effect that is facilitated in part by increased hepatic glucose 

production [10].  These effects together, are in part responsible for the so-called 

“fight or flight” stress response that the medullary catecholamines are known to 

facilitate.

 Despite the importance of the adrenal medulla in synthesizing and storing 

catecholamines, the adrenal cortex plays an equal, if not more critical role, in 

maintaining physiologic homeostasis by secreting functionally distinct hormones 

from a population of cells thought to have common origins.  The adrenal cortex 

produces three main classes of steroid hormones: mineralocorticoids, 
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glucocorticoids, and sex steroids.  The separately controlled secretion of these 

steroids is critical, and is accomplished in part by cellular differentiation and 

zonation of the adrenal cortex (Figure 1.2).  Mineralocorticoids (primarily 

aldosterone) are produced by the zG, primarily under the influence of the renin-

angiotensin system.  Renin is produced by the kidney in response to decreased 

perfusion, decreased sodium balance, and sympathetic stimulation.  Renin acts 

upon its zymogen substrate, angiotensinogen, which is produced by the liver, to 

generate angiotensin I.  Angiotensin converting enzyme converts angiotensin I 

into active angiotensin II, which acts on the adrenal zG to stimulate aldosterone 

secretion.  Aldosterone exerts its primary effects on the distal convoluted tubule 

of the kidney nephron to promote the resorption of sodium from the urine.  In 

doing so, aldosterone facilitates the maintenance of fluid and electrolyte balance 

in the organism.  The secretion of glucocorticoids is the task of the zF, and is 

controlled primarily by the HPA axis through the effects of ACTH, a peptide 

hormone secreted by the anterior pituitary.  ACTH is a product of a larger 

precursor peptide, pro-opiomelanocortin (POMC) that is secreted by the anterior 

pituitary.  POMC undergoes a series of endoproteolytic cleavage steps to 

produce ACTH, in addition to several other melanocortin-related peptides.  While 

ACTH secretion is episodic and correlates with the circadian rhythm of the 

organism, stress, both emotional and physical, is also a significant stimulator of 

ACTH release into the bloodstream.  The physiologic effects of glucocorticoids 

are too numerous and substantial to describe fully in this work, but briefly, 

glucocorticoids affect metabolic functions by promoting protein catabolism, 
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hepatic gluconeogenesis, and inhibiting glucose uptake and usage in peripheral 

tissues.  Additionally, prolonged exposure to glucocorticoids leads to a re-

distribution of fat mass, resulting in characteristic “moon facies”, truncal obesity, 

and other features of Cushing’s syndrome.  Glucocorticoids also negatively 

regulate growth and wound healing, and repress the inflammatory response of 

the immune system, making them highly effective anti-inflammatory drugs.  

Finally, the last class of steroid hormones produced by the adrenal cortex are 

androgens, with dehydroepiandrosterone sulfate (DHEA-S) being one of the 

primary adrenal androgens.  Like the secretion of glucocorticoids from the zF, 

androgen secretion from the zR is stimulated primarily by ACTH.  While the 

testes produce more androgens than the zR, adrenal androgens are converted to 

more potent androgens in the periphery.  In rodents and humans, both the zF 

and zR are capable of synthesizing androgens, although the sulfation of steroids 

appears to be specific to the zR [9,10].      

 This complex organization of the adrenal gland is a result of its equally 

complex developmental program.  In the next section, the developmental steps of 

the adrenal gland will be outlined, with an emphasis on the underlying molecular 

mechanisms and the relatively new field of adrenal stem cells and maintenance.                     

Adrenal Development

 Adrenal development is characterized by a series of discrete histological 

events under the control of specific molecular signaling mechanisms (Figure 1.3).  

The adrenal cortex originates from a cellular condensation of the coelomic 

8



epithelium known as the urogenital ridge, which additionally gives rise to both the 

kidney and gonads.  In the mouse, the adrenogonadal primodrium (AGP), which 

eventually gives rise to both the adrenal cortex and the gonads, becomes 

apparent at approximately embryonic day 9.5 (E9.5).  An analogous initial phase 

also occurs in the human fetus at around the 4th week of gestation.  The orphan 

nuclear receptor, steroidogenic factor 1 (Sf1) is a useful molecular marker to 

distinguish this group of cells.  After this point, the adrenal and gonadal lineages 

become distinct.  By E12.5, neural crest cells infiltrate the developing adrenal 

primordium, eventually becoming the adrenal medulla.  The same occurs in the 

human at approximately the 9th week of gestation.  In both humans and mice, 

the developing adrenal cortex is initially comprised of what is known as the fetal 

adrenal cortex.  This fetal cortex is eventually replaced by the definitive adult 

cortex, and regresses in humans during the weeks following birth.  In mice, the 

fetal cortex (sometimes referred to as the X-zone) enlarges until 3 weeks of age, 

then in males degenerates following puberty whereas in female mice the X-zone 

persists until the first pregnancy [13-16].

 The expression of Sf1 is necessary for adrenal and gonadal development, 

as Sf1 deficient mice die shortly after birth and lack both adrenals and gonads 

[17].  Sf1 expression is first detectable in the mouse at E9.5, when it initiates the 

transcriptional signaling cascades that lead to adrenocortical development, 

differentiation, and maintenance.  However there are numerous other regulatory 

factors and signaling pathways that have been implicated in adrenal 

development and maintenance.  Wt1, or Wilms Tumor 1, is also required for 
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adrenal formation, and Wt1 null mice demonstrate an adrenal aplasia phenotype 

[18].  Additionally, the CBP/p300-interacting transactivator with ED-rich tail 2 

(Cited2) and the pre-B cell leukemia homeobox 1 (Pbx1) transcription factor have 

been reported to be necessary for adrenal development.  In the case of Cited2, 

null mice demonstrate complete adrenal agenesis and other developmental 

defects [19].  It has been since shown that Cited2 interacts with Wt1 to modulate 

Sf1 dosage and maintain the proper threshold of gene expression necessary for 

adrenal development [20].  The Pbx1 gene product has also been shown to be 

necessary for normal adrenal development, as Pbx1 mutant mice have greatly 

reduced Sf1 expression and the complete lack of adrenal glands [21].  It has 

recently been shown that Pbx1 interacts with Hox and Prep1 to form a 

transcriptional complex that is capable of regulating the fetal expression of Sf1 

unique to the fetal X-zone cells. [22].  Finally, the same report by Zubair et. al. 

demonstrates that Sf1 itself is involved in an auto-regulatory loop that is initiated 

following fetal expression of Sf1 under the regulation of the Pbx1-Hox-Prep1 

complex, together defining the fetal enhancer (FAdE) of Sf1.  At approximately 

E14.5 in the mouse adrenal, Sf1 expression is believed to shift from being driven 

by FAdE in the fetal cortex to being dependent upon a definitive, adult cortical 

enhancer (DAdE) that has yet to be defined.  Lineage tracing experiments prove 

that adult cortical cells expressing Sf1 under the control of DAdE are derived 

from cells once expressing Sf1 via the FAdE enhancer [23].  These data have led 

to the current hypothesis that the adrenal cortex is maintained throughout life by 

10



a population of putative stem or progenitor cells in the adrenal capsule that are 

derived from the early fetal cortex.            

 The concept of adrenal turnover and regeneration is not novel.  In 1883 

Gottschau proposed a theory of cellular migration in the adrenal cortex that has 

been experimentally supported over the years.  Proliferation has been primarily 

observed in the outer periphery of the cortex, as enucleation (removal of the 

inner cell mass of the adrenal while leaving the outer capsule intact) results in the 

gradual regrowth of the adrenal cortex from the remaining capsule and peripheral 

cortical tissue, complete with functional zonation [24-26].  In addition to 

enucleation experiments, transplantation studies of the adrenal cortex also 

support the concept of continued cortical turnover and replenishment.  

 Until recently, however, the evidence for a population of adrenal stem or 

progenitor cells, and the molecular mechanisms that maintain this population has  

been sparse.  Several reports published within the last five years have generated 

evidence that the Sonic hedgehog (Shh) signaling pathway may play a role in 

these putative adrenal stem or progenitor cells.  The sonic hedgehog signaling 

pathway is involved in the development of numerous vertebrate organ systems 

[27].  Recent studies have shown that Shh ligand is expressed in the cortical 

subcapsular region.  Ablation of Shh in the adrenal cortex results in decreased 

cortical size and proliferation, suggesting that Shh is necessary for the 

maintenance of the cortex [28-30].  Insight into the role of these Shh expressing 

cells comes from the elucidation of cells that respond to Shh, and hence express 

the downstream effector of the sonic pathway, Gli1.  Interestingly, Gli1 expression 
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is restricted to the cells of the outer capsule of the adrenal gland, and is not 

expressed in the underlying cortex.  Furthermore, these Gli+ cells can be lineage 

traced to Sf1 expressing cortical cells and indeed give rise to fully differentiated 

cells of the cortex.  These specific studies by Ching & Vilain, King et. al., and 

Huang et. al. provide evidence that Gli1+/Shh-/Sf1- cells in the capsule give rise 

to an undifferentiated Shh+/Gli- subcapsular cell before becoming fully 

differentiated Sf1+/Shh-/Gli- definitive cortical cells [28-30].  Taken together, 

these data suggest both a signaling and cell lineage relationship between Shh 

expressing subcapsular cells and Gli1 expressing capsular cells that underlies 

the homeostatic maintenance of the adrenal cortex.          

 In addition to the Shh signaling pathway, other molecular mechanisms 

have been implicated in adrenal maintenance.  The Wnt/β-catenin pathway is 

involved in the adrenal gland during development, and is critical for the 

maintenance of the adult cortex.  Loss of β-catenin in the adrenal cortex during 

development results in complete adrenal aplasia, and continuous impairment of 

the Wnt/β-catenin signaling pathway in adult mice results in the gradual failure of 

adrenocortical replenishment and maintenance [31].  Similarly, the dosage-

sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the 

X chro- mosome, gene 1 (Dax1) gene is an orphan nuclear receptor that 

functions primarily to repress Sf1-mediated transcription in peripheral cortical 

progenitor cells to maintain the adrenocortical stem/progenitor population.  

Humans with mutations in DAX1 manifest clinically with adrenocortical failure due 

to adrenal hypoplasia or aplasia, and mice lacking the gene exhibit a gradual 
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decrease in adrenal proliferation and steroidogenesis [32].  Interestingly, Wnt 

signaling has been shown to induce Dax1 transcription, supporting the notion 

that adrenocortical maintenance and regeneration is under the control of a 

complex regulatory network of numerous signaling and transcription factors [33].  

Adrenal Neoplasms

 The relationship between physiologic tissue regeneration and pathologic 

tumorigenesis has long been recognized, and the adrenal cortex is no different in 

this regard.  Adrenal masses are relatively common in the general population, 

with an incidental detection rate of up to 10% [34].  There are numerous types of 

adrenal neoplasms that include metastases from other tumors and those 

originating from non-adrenal cell types such as myelolipomas or lymphomas.  

However, the three types tumor types arising from adrenal restricted cell 

populations are adrenocortical adenomas (ACA), adrenocortical carcinomas 

(ACC), and pheochromocytomas.  ACAs, by virtue of their nomenclature, are 

generally benign, and account for up to 80% of adrenal neoplasms [34].  

Pheochromocytomas are neoplasms of the adrenal medulla, and are often 

characterized by a clinical presentation consistent with excessive catecholamine 

production and can be detected by elevated serum and urinary catecholamine 

metabolites (metanephrins).  For both ACAs and pheochromocytomas, surgical 

resection is often curative, and patients generally have good prognoses.  In 

sharp contrast, ACCs represent an extremely small fraction of all adrenal 

13



neoplasms on an annual basis, yet the clinical outcome for patients diagnosed 

with ACC is usually poor.  

 Adrenocortical carcinomas have a reported incidence ranging from 0.5-2 

cases per million per year.  This represents less than 1% of all annually reported 

cancers.  ACC is an aggressive cancer, and most cases are relatively advanced 

when diagnosed, contributing to a 5 year survival rate of less then 10% [35].  

Treatment options for ACC are limited, and ACCs are often unresponsive to 

standard chemotherapeutic agents [36].  Surgical resection is typically the 

treatment of choice for localized disease, and adjuvant therapy with mitotane 

(o,p’-DDD; an isomer of the insecticide DDD which is derived from DDT) is often 

utilized to prevent recurrence in patients.  Unfortunately, the effectiveness of 

mitotane is limited by its toxicity [37], and while additional strategies including the 

addition of streptozocin to adjuvant therapy, or the use of an etoposide, 

doxorubicin, and cisplatin (EDP) based therapy for non-operable disease have 

helped increased survival, the need for more targeted ACC treatments still 

remain [38,39].

 The genetic mechanisms that drive the development of ACC have been 

the subject of recent study, and may hold the key to developing novel treatment 

strategies for this disease.  There are several genetic causes of ACC that have 

been described over the years, and are often associated with disease 

syndromes.  Mutations that render the TP53 tumor suppressor gene inactive, 

which define the Li-Fraumeni syndrome, can predispose affected individuals to a 

higher risk of developing ACC and other types of cancer [40].  The multiple 
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endocrine neoplasia type I syndrome (MEN1) involves genetic abnormalities in 

the MEN1 gene, a putative tumor suppressor.  Patients diagnosed with this 

autosomal dominant syndrome variably develop parathyroid pituitary, pancreatic, 

and occasionally, adrenal tumors [35,41].  The Wnt/β-catenin signaling pathway 

is also implicated in adrenal development and tumorigenesis [31,42].  Mutations 

in the APC gene, which negatively regulates β-catenin (CTNNB1), are known to 

predispose affected patients to familial adrenal neoplams, although these often 

tend to be non-malignant adenomas [43].  In contrast, mutations in CTNNB1 

itself that render it insensitive to regulatory factors are described primarily in 

cases of sporadic adrenal tumors which are also typically benign, suggesting 

mutations in APC or CTNNB1 alone may not be sufficient to drive the formation 

of ACC [44].  However, cases of ACC that demonstrate APC or CTNNB1 

mutations are correlated with poorer outcome and shorter disease free survival 

[45].  The most common genetic abnormalities seen in sporadic ACCs, however, 

are those in the locus that encodes the insulin-like growth factor 2 (IGF2) gene.  

Beckwith-Wiedemann syndrome (BWS) is characterized by a loss of imprinting 

defect at the 11p15.5 locus containing the IGF2, p57KIP2 (CDKN1C), and H19 

genes, and results in excessive IGF2 expression and decreased CDKN1C and 

H19 expression.  CDKN1C is a cyclin-dependent kinase inhibitor, and negatively 

regulates cell cycle progression.  H19 encodes a 2.3 kb non-protein coding 

transcript whose function remains unknown.  It is thought to potentially act as a 

tumor suppressor, and is able to decrease IGF2 transcript levels in vitro [46].  

BWS is characterized by macrosomnia, macroglossia, organomegaly, ear and 
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renal abnormalities, and an increased incidence of childhood tumors including 

ACC [35,47].  Normally IGF2 is expressed from the paternal allele, while 

CDKN1C and H19 are expressed from the maternal allele.  In BWS, IGF2 can be 

expressed from both alleles, or CDKN1C and H19 expression may be silenced 

entirely due to epigenetic or genetic defects at the 11p15.5 locus that alter the 

relative contributions of each allele [47].  Similarly, sporadic ACCs are often 

associated with genetic defects at the 11p15.5 locus, with increased IGF2 

expression and concomitant down-regulation of CDKN1C and H19 [48].  In more 

recent studies utilizing microarray analysis on human ACC samples, IGF2 is 

confirmed as being consistently among the most highly up-regulated transcripts 

in ACC versus normal adrenals or even adrenal adenomas [49-52].  Furthermore, 

increased IGF2 expression is also correlated with increased malignancy of 

adrenal tumors [53].    

 Although there is overwhelming evidence implicating IGF2 expression in 

the development of ACC, the exact role of IGF2 in ACC is still not fully 

understood.  Both IGF1 and IGF2 are known to play important roles in the 

development and differentiation of the normal adrenal gland.  IGF receptors, IGF 

binding proteins, and the IGF1/IGF2 peptides are synthesized in the adrenal 

glands of a variety of species, and have mitogenic effects on adrenocortical cells 

in vitro and in vivo.  These effects are mediated through the activity of the IGF1 

receptor (IGF1R), which is expressed in both the normal adrenal and in ACC cell 

lines such as NCI-H295R [46,51].  However, while postnatal mice engineered to 

over-express Igf2 exhibit increased adrenal weight, they do not develop ACC 

16



[54].  Similarly, other mouse models engineered to increase Igf2 expression and 

decrease the function of either H19 or Cdkn1c fail to develop ACC, despite the 

fact that they more closely recapitulate clinical features of BWS [55,56].  These 

reports suggest that neither increased Igf2 expression nor dysregulation of the 

11p15.5 locus alone are sufficient to cause ACC.  Therefore, other genetic 

defects must also be present.  Recent work from our lab provides evidence of a 

synergistic role for defects in both the Wnt/β-catenin signaling pathway and Igf2 

locus, supporting a genetic “multi-hit” progression leading to the development of 

ACC.  Research into the genetic causes of ACC has led to the investigation of 

new therapeutic targets in this rare yet aggressive cancer.  Recent work on IGF2 

signaling in ACC has led to the initiation of clinical trials for drugs targeting this 

pathway, which show significant promise [51,57].  Additional research may yet 

provide ACC patients with new, effective treatments for this disease. 

                          

MicroRNAs

 The first microRNA (miRNA) was described by Lee et. al. in 1993, when 

the heterochronic C. elegans gene lin-4 was found to encode small RNAs with 

complementary sequences to the 3’ untranslated region (UTR) of the lin-14 gene 

transcript [58,59].  At the time, this observation remained largely a novelty of post 

transcriptional gene silencing in the nematode, and these small RNAs were 

initially referred to as small temporal RNAs (stRNAs) due to their temporally 

regulated expression and their role in regulating developmental timing [60].  It 

quickly became evident that these newly described stRNAs functioned in a post-
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transcriptional gene silencing (PTGS) role, and had some aspects in common 

with PTGS phenomena that had been previously observed in plants.  

 PTGS had been described in plants, when it was observed that 

transgenes introduced into petunias with the intent of over-expressing an enzyme 

necessary for flower pigmentation had the opposite effect [61].  Although what 

Napoli had reported was eventually recognized as a specific type of PTGS 

known as RNA interference (RNAi), it was not until later in the decade that Fire 

and Mello described this phenomenon in greater detail [62].  In the years 

following the discovery of lin-4 in nematodes, similarities between these new 

stRNAs (now known as miRNAs) and the RNAi pathway were noted.  For 

example, the ~22 nucleotide length of mature stRNAs was recognized to be 

nearly identical to that of RNAs involved in RNAi [63,64], and the downstream 

genes and mechanisms necessary for proper processing of RNAs destined for 

RNAi mediated gene repression appeared to be shared by stRNAs.  For 

example, both RNAi and stRNAs were soon demonstrated to require the activity 

of Dicer, an RNase III enzyme, and both also require a class of proteins known 

as Argonautes, which catalyze their PTGS activity [65].  However, researchers 

also observed several key differences that suggested that despite their 

similarities, RNAi and stRNAs were two distinct pathways.  First, RNAi was 

described as primarily the result of exogenously supplied double stranded RNA 

molecules, while stRNAs were derived from the organism’s genome [62].  

Second, RNAi was shown to induce degradation of target mRNA transcripts 

[63,66], while stRNAs were initially described as inducing translational repression 
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[67].  Finally, lin-4 does not form perfect duplexes with its cognate target, lin-14 

[68], unlike RNAs involved in the RNAi pathway which typically rely on perfect 

sequence complementarity with their targets [69].  

 Seven years following the discovery of the lin-4/lin-14 relationship in 

nematodes, several breakthroughs were reported in the field of both RNAi and 

miRNAs.  The RNA directed effector protein complex (RNA Induced Silencing 

Complex [RISC]) and RNase III enzyme (Dicer) required for RNAi were 

described, which allowed researchers to better characterize the mechanistic 

similarities between RNAi and miRNA mediated gene silencing described above 

[64,70-72].  Additionally, a second miRNA was discovered.  In 2000, the 

heterochronic regulatory RNA, let-7, was discovered and described in detail, 

including its conservation across the animal kingdom [60,73,74].  This confirmed 

that miRNAs were not simply a curiosity in nematodes, but belonged to a post 

transcriptional gene silencing pathway that is conserved through metazoan 

evolution.  Within one year, miRNAs were recognized as a distinct subclass of 

non-coding, phylogenetically conserved RNAs within the genome [75], and 

reports describing additional miRNAs began to accumulate [76-78].  It was 

collectively agreed by leading researchers of the emerging miRNA field to refer to 

this new subclass of RNAs as miRNAs, displacing the previously used 

terminology of heterochronic and small temporal RNAs.  By the end of the 

decade, the field of miRNAs had expanded exponentially, and today, our 

understanding of their functions in development, physiology, and disease 

continues to grow.  Current research has shed significant light on the 
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evolutionary and genomic origins of miRNAs, their cellular biogenesis, and the 

mechanisms by which they repress the expression of target genes.  As discussed 

in the subsequent sections of this introduction, it is now known that miRNAs are 

expressed from endogenous loci within the genome of an organism, and function 

by inducing the degradation of target mRNA transcripts to repress gene 

expression.  Furthermore, miRNAs can affect multiple target genes, and are 

therefore closely integrated in gene regulatory networks as a result of this 

pleiotropism.  miRNA biogenesis has also been demonstrated to be necessary 

for the embryologic development in mammals, and specific miRNAs are capable 

of regulating physiologic processes such as cell renewal and differentiation.  

Finally, miRNAs have been implicated in the regulation of disease processes, 

particularly the development of human cancers.  As discussed in this 

introduction, miRNAs can act as both tumor suppressors and oncogenes by 

regulating gene transcripts that are responsible for mediating tumorigenesis, and 

recently, have shown promise in their use as prognostic markers in human 

cancer.

MicroRNA Biogenesis

 Micro-RNAs are derived from endogenous loci within the genome of an 

organism and undergo progressive processing steps to form a mature miRNAs 

(Figure 1.4).  The majority of mammalian miRNAs can be found in clusters of 

functional transcriptional units.  Approximately 80% are transcribed from intronic 

regions of either protein or non-protein coding transcriptional units, while a 
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minority may be found in exons [79-82].  Additionally, many mammalian miRNAs 

have multiple paralogues of each other, presumably due to gene duplications that 

occurred during the phylogeny of the organism [82].  These paralogues often 

have identical sequences in the “seed” region (positions 2-7 relative to the 5’ end 

of the miRNA) and are therefore thought to be redundant, although differential 

expression in vivo may suggest distinct roles for these various isoforms [83].  

Biogenesis of miRNAs requires multiple processing steps of the initial miRNA 

transcript, and is under multiple layers of regulatory control [84,85].  

 miRNAs are primarily transcribed by RNA polymerase II (Pol II) and many 

primary transcripts are capped and polyadenylated, characteristic of Pol II 

transcription [86-89].  However, a  small number of miRNAs can be transcribed 

by RNA polymerase III [90].  The use of Pol II allows for the control of miRNA 

transcription by the range of Pol II associated transcription factors.  For example, 

p53 and the Tcf/Lef transcriptions factors associated with Wnt/B-catenin signaling 

are able to directly regulate transcription of miR-34 and miR-483, respectively 

[91,92].  As a result, miRNAs transcribed by Pol II can be specifically regulated 

under a number of conditions and cell types.      

 The primary miRNA transcripts (pri-miRs) generated by RNA polymerases 

can vary in length from several hundred bases to several hundred kilobases and 

carry local stem loop structures [86,93].  The first step in the canonical miRNA 

processing sequence involves endonucleolytic cleavage at the stem of the 

hairpin structure, which releases a small hairpin known as a precursor miRNA 

(pre-miR).  This process is mediated by the Microprocessor complex, a putative 
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650kD multimeric protein complex which includes the RNAse III enzyme Drosha 

[94,95] and the dsRNA binding protein Dgcr8 [96,97].  The Microprocessor 

recognizes potential pri-miRs for processing by the single stranded RNA 

sequences that flank the ~33bp stem of the hairpin structure.  Dgcr8 interacts 

with this portion of the pri-miR, and in conjunction with Drosha, cleaves 11 base 

pairs away from the single strand/double strand junction at the hairpin base [98].  

The Microprocessor complex itself is under complex regulation, including an 

auto-regulatory loop whereby Drosha cleaves its own co-factor, Dgcr8 [99].  

Additional regulation at this point in the miRNA pathway has been attributed to 

transforming growth factor beta (TGF-β) and bone morphogenic protein (BMP) 

signaling.  It has been demonstrated that following signaling by BMPs or TGF-β, 

activated downstream Smad proteins can increase the recruitment of pri-miRs to 

the Microprocessor complex, enabling more efficient cleavage by Drosha.  This 

mechanism is believed to occur in part by the ability of Smad1, 3, and 5 to bind a 

nucleotide sequence in the stem structure of specific pri-miRs that resembles the 

consensus sequence recognized by the Smad DNA binding domain.  Additionally, 

activated Smads can also directly bind to the RNA helicase p68, a subunit of the 

Microprocessor complex; this interaction is required for Smad mediated pri-miR 

processing.  Although miR-21 and miR-199a were among the first miRNAs 

described to be subject to this regulatory mechanism, subsequent studies have 

demonstrated numerous other miRNAs that can respond to BMP/TGF-β 

signaling in this manner [100,101].  
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 Following Drosha mediated cleavage, the pre-miRNA is then transported 

out of the nucleus by Ran-GTP and the Exportin-5 nuclear transport protein 

[102].  The pre-miR sequence is inconsequential for recognition by Exportin-5, as 

the length of the hairpin and 3’ overhangs appear to be sufficient [103].  Once in 

the cytoplasm, another RNAse III enzyme, Dicer, in complex with the 

transactivator RNA (tar) binding protein (TRBP) [104], cleaves the hairpin loop 

from the stems.  The resulting ~22 nucleotide Dicer-Trbp bound RNA duplex is 

then joined by an Argonaute (Ago) protein, and a glycine tryptophan repeat 

containing 182kD protein (GW182) to generate the miRISC effector complex.  

One strand of the ~22 nucleotide duplex is retained as the guide strand or mature 

miRNA.  The other strand is referred to as the passenger strand or miRNA* 

(miRNA “star” strand) and is degraded.  Generally, selection of which strand 

becomes the miRNA* is dependent on the relative thermodynamic stability of the 

two ends of the duplex.  The strand with the less stable 5’ end is retained, while 

the other becomes the miRNA* strand [105].  Once incorporated into the Ago-

RISC complex, a mature miRNA is then able to exert its post-transcriptional 

regulatory effects on target mRNAs.  Due to the partially complementary binding 

between miRNAs and target sequences in the 3’ UTR of mRNA transcripts, it is 

possible for a given miRNA to potentially target and bind to multiple mRNAs 

[106,107].  This phenomenon has the effect of allowing a single miRNA to have 

potentially pleiotropic downstream effects, and complicates the identification of 

mRNA targets.  In metazoans, miRNA binding sequences almost invariably 

reside in the 3’ UTR of target transcripts, and are often present in multiple copies.
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 Recent reports suggest some miRNAs can be generated through several 

non-canonical pathways.  For example, a number of intronic miRNAs known as 

“mirtrons” have been shown to mature without Drosha mediated cleavage if they 

are of the proper size to form a hairpin consistent with a pre-miR.  In this case, 

the hairpin consists of the entire host intron and bypasses Drosha mediated 

cleavage.  Instead, mRNA splicing is responsible for the first step of biogenesis, 

and the pre-miR is excised as an intronic lariat structure that is subsequently 

linearized, then exported directly to the cytoplasm for further downstream 

processing by Dicer.  These mirtrons are characterized by flanking sequences 

that correspond to the 5’ splice site if a 5’ miRNA is formed, or the 3’ splice site if 

a 3’ miRNA is formed [108,109].  This is in contrast with canonical intronic 

miRNAs, which still require subsequent processing by Drosha following 

transcription to form a pre-miR that can be exported to the nucleus for Dicer 

processing.  Mirtrons have subsequently been described in additional organisms 

including mammals, plants, and avians using deep sequencing techniques 

[110-112].  More recently, additional miRNA biogenesis pathways have been 

described in mammalian cell lines.  Three independent reports were published in 

the summer of 2010 that describe the biogenesis of miR-451, an unusually highly 

conserved miRNA shown to be important for erythropoiesis [113].  Further 

investigation into miR-451 demonstrates that its maturation is dependent on the 

endonuclease activity of Ago2, and is refractory to Dicer inactivation [114-116].  

The implications for this are significant, as miR-451 is perfectly conserved in 

vertebrates, suggesting that the retention of Ago2’s unique catalytic activity 
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among the mammalian Argonaute proteins may be evolutionarily constrained to 

maintain this non-canonical miRNA biogenesis pathway.  Additionally, Yang et. al. 

also demonstrate the ability of a reprogrammed miR-451 backbone to confer 

Dicer independent expression of other miRNAs, a feature which could show 

promise as a molecular tool to aid in the study of miRNAs [115].  Finally, a recent 

report by Havens et. al. claims to have identified yet another non-canonical 

miRNA biogenesis pathway, in which the biogenesis of the predicted mirtrons 

miR-1225 and miR-1228 is independent of most of the canonical miRNA 

biogenesis components, including Dgcr8, Dicer, Exportin-5, or Ago2 [117].  

Instead, the authors report that Drosha appears to be the only component 

required for the maturation of these miRNAs, which they term splicing-

independent mirtron-like miRNAs (simtrons).  However, the authors were unable 

to identify the binding partners and additional components of this newly 

described simtron biogenesis pathway, and further research is necessary to 

elucidate this novel mechanism.  

MicroRNA Mediated Silencing Mechanisms

 The canonical miRNA mediated gene regulatory pathway requires the 

binding of mature miRNAs to their cognate mRNA targets through partially 

complementary sequences in the mRNA’s 3’ UTR.  There are several 

experimentally and bioinformatically defined rules involving miRNA-mRNA 

interactions [118,119].  First, positions 2-7 (the seed region) must generally be 

continuous and perfectly matched, as mismatches in this sequence greatly affect 
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miRNA mediated repression; second, bulges or mismatches must be present in 

the central region of the miRNA to preclude endonucleolytic cleavage by Ago2; 

finally, there must also be partial complementarity in the 3‘ end of the miRNA to 

ensure stability [119-121].  Although these factors are not exhaustive in 

describing miRNA-mRNA interactions, they are considered to be among the most 

important.  Recently, it has been demonstrated that bulged pairing at nucleotide 

positions 5-6 in the miRNA-mRNA pair can in some instances provide enough 

stability for the propagation of the seed interaction [122].  This observation, which 

was primarily seen in the mouse brain, has the potential to expand the number of 

predicted miRNA binding sites that would need to be considered when 

performing target prediction analyses.  

 Since their discovery in 1993, the mechanism by which miRNAs are 

thought to inhibit their mRNA targets has been a controversial subject.  Evidence 

supports the possibility of both transcriptional degradation and/or translational 

repression, (Figure 1.5) and initially, miRNAs were thought to primarily function 

through the latter mechanism [123,124].  Indeed, this was recognized as one of 

the hallmark differences between canonical RNAi and miRNA mediated 

repression in plants, both of which are primarily characterized by degradation of 

the transcriptional target.  There have been four distinct methods proposed to 

explain miRNA mediated translational inhibition in animals: inhibition of 

translational initiation, inhibition of elongation, co-translational protein 

degradation, and premature termination of translation [123,124].     

26



 Translation of mature mRNAs into protein broadly falls into 3 discrete 

stages:  Initiation, elongation, and termination.  The majority of miRNA mediated 

mRNA decay mechanisms involve perturbation of the initiation and elongation 

steps [118,125].  Additionally, miRNAs have been reported to facilitate the 

destabilization of target mRNAs through removal of the m7G cap (decapping) 

[126,127] and the poly A tail (deadenylation) [128-130].  In the initiation stage of 

eukaryotic translation, the eIF4E subunit of the eukaryotic translation initiation 

factor (eIF4) binds to the m7G cap at the 5’ end of the mRNA.  The other subunits  

in eIF4 recruit and stabilize the 40S ribosomal subunit.  At the 3’ end, 

polyadenylate binding protein 1 (PABP1) binds to the poly A tail of the mRNA, 

and in turn binds to the eIF4G subunit of eIF4.  In doing so, the mRNA becomes 

circularized, and translation is initiated.  Elongation can then begin when the 60S 

ribosomal subunit joins the protein complex at the AUG start codon [131].  

 Inhibition of translational initiation by miRNAs is thought to involve the 

Argonaute proteins that are bound with mature miRNAs as part of the RISC.  It 

has been shown that human AGO2 has sequence similarities with the eIF4E 

translation initiation factor subunit that binds to the m7G cap of mRNAs to begin 

the initiation process.  In addition, AGO2 is able to bind a sepharose bound m7G 

analog in vitro and suggests that binding of AGO2 to the m7G cap can displace 

eIF4 factors and prevent initiation [132].  Both cell culture and cell free systems 

supported this notion, and also showed that non-cap dependent translation 

driven by an internal ribosomal entry site (IRES) was not silenced by miRNAs 

[126,127,133].  Subsequent studies in the fly and nematode also provided 
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evidence that the miRNA silencing machinery targets the mRNA cap structure or 

interferes with the cap binding complex [134,135].  In addition, Chendrimada et. 

al. reported that eIF6 and the 60S ribosomal subunit co-immunoprecipitate with 

AGO2 and other miRISC components [136].  By binding eIF6 and its associated 

60S ribosomal subunit, AGO2 may be able to prevent the association of the small 

and large ribosomal subunits, inhibiting initiation.  However, this is a controversial 

subject regarding miRNA mediated translational inhibition, as  Eulalio et. al. 

demonstrated in a subsequent report that eIF6 does not appear to be required for 

miRNA mediated silencing [137].

 Experimental evidence also supports the notion that miRNAs can repress 

target mRNAs at the post-initiation or elongation stages of translation.  Early 

experiments in C. elegans showed that miRNA targets remained associated with 

polysomes despite a marked reduction in protein expression [67,138].  Other 

experiments in mammalian cells involving sucrose sedimentation experiments 

supported the theory that miRNAs may be blocking elongation at a later 

translational stage following initiation [139-141].  These studies showed that 

miRNAs appeared to associate with their mRNA targets undergoing translation, 

but without the protein product being detectable.  To explain these results, 

Nottrott et. al. [140] proposed a model of co-translational degradation, where the 

nascent polypeptide is degraded as it exits the ribosome.  In contrast, Petersen 

et. al. [141] suggested that miRNAs might induce the premature termination of 

translation, resulting in the drop-off of ribosomes from the target transcript, 

resulting in an incomplete and unstable polypeptide.
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 In yet another mechanism, miRNAs have been shown to induce the 

degradation of their mRNA targets, complementing their reported ability to induce 

translational repression.  In plants, mRNA target degradation is believed to be the 

most common mechanism of miRNA mediated gene silencing, similar to the 

mechanism seen in RNAi.  In contrast, animal miRNAs, until recently, were 

thought to repress targets mainly through translational inhibition, as outlined 

above.  However, earlier studies reported the ability of animal miRNAs to 

degrade their cognate mRNA targets [142-144], raising the possibility that 

miRNA mediated mRNA degradation might be more common in animals than 

originally thought.  In eukaryotes, mRNA degradation follows two primary 

pathways which are both initiated by a shortening of the poly A tail.  Following 

this deadenylation step, mRNAs can be degraded 3‘ to 5‘ by the exosome, or 

degraded 5‘ to 3‘ following removal of the m7G cap [145].  It has been shown that 

miRNA mediated mRNA degradation in animals is dependent on the 5’ to 3’ 

mRNA decay pathway in which they are first deadenylated [128,129,146,147].  

This deadenylation step appears to be facilitated by the CAF1-CCR4-NOT 

deadenylase complex, which is required for miRNA mediated deadenylation as 

depletion of these components results in the up-regulation of miRNA targets 

[146,148,149].  Genome-wide studies with the goal of determining the 

contribution of both translational repression and transcriptional degradation to 

miRNA mediated gene silencing have shown that animal miRNAs have only a 

modest effect on the translation of mRNA transcripts [150] [151].  More recently, 

Guo et. al. demonstrated using ribosomal profiling techniques in mammalian cells  
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that ≥84% of miRNA mediated repression occurs due to mRNA transcript 

destabilization, while only a small fraction of repression is due to reduced 

translational efficiency [152].  These data together support the notion that 

mammalian miRNAs function primarily at the mRNA transcript level, and have 

minor effects on protein synthesis.  Furthermore, in cases where translational 

inhibition does occur, it appears to do so at the translational initiation stage 

[152,153].  These observations are inconsistent with the previously proposed 

models of nascent polypeptide degradation or premature ribosomal drop-off. 

 Despite these advances made in delineating the roles of translational 

repression and mRNA degradation in miRNA mediated gene silencing, the 

temporal order of miRNA mediated silencing is still being elucidated.  Recent 

studies now support a more parsimonious model that is able to unify the 

observed miRNA mediated gene silencing mechanisms of translational inhibition 

and mRNA degradation.  These reports provide data that suggest miRNAs 

initially inhibit translation of their target mRNAs, but then subsequently induce 

degradation of the mRNA transcript [154-156].  Research into the GW182 

protein, a core component of the miRISC, has demonstrated its ability to mediate 

both translational repression and deadenylation of target mRNAs [157].  Indeed, 

it was observed in earlier reports that GW182 is critical for miRNA silencing, as 

depleting this protein abrogates miRNA activity [137,158].  It is now believed that 

GW182, through its C-terminal “silencing domain” facilitates in part the silencing 

effects of miRNAs by interacting with poly-A binding proteins (PABP) and 

recruiting the CCR4-NOT deadenylase complex (reviewed in [159])     

30



Emerging Role of MicroRNAs in Development & Cancer

 Since their discovery in 1993, miRNAs have been implicated in 

developmental processes, as lin-4 null nematodes exhibit developmental defects 

consistent with inappropriate lin-14 expression [58,59].  Given the ubiquitous and 

highly conserved nature of miRNAs, it is therefore not surprising that miRNAs 

play critical roles in the developmental regulation of higher organisms.  The first 

Dicer KO mouse was described by Bernstein et. al. in 2003 [160].  In this mouse 

model, the authors report that loss of Dicer in the developing mouse is embryonic 

lethal at approximately embryonic day 7.5 (E7.5), and is accompanied by loss of 

embryonic stem cells (ES cells) in mutant embryos.  Indeed, subsequent studies 

have confirmed the role of Dicer in regulating pluripotency and differentiation of 

stem cells in various models [161-163].  Since then, numerous tissue specific 

knockout models in the mouse have confirmed the importance of Dicer in the 

development of various organ systems [164-170].  The necessity for Dicer, and 

presumably miRNA biogenesis, through the course of organismal development is  

irrefutable.  However, the subsequent steps to further understand this 

observation involve uncovering the underlying mechanisms of specific miRNAs in 

the development of the organism.

 Another rapidly advancing area of research involving miRNAs is the 

investigation into their role in disease processes, especially tumorigenesis.  It has  

been established that genetic mutations that perturb the miRNA biogenesis 

pathway are implicated in tumorigenesis.  Mutations in TRBP2 not only impair 

miRNA biogenesis, but have also been identified in sporadic and hereditary 
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carcinomas [171], as have inactivating mutations in Exportin-5, which result in 

the trapping of pre-miRNAs in the nucleus to inhibit miRNA biogenesis [172].  

Also, several reports within the last year have emerged that describe 

heterozygous loss of function mutations of the human DICER gene in the context 

of several familial syndromes.  The patient cohorts studied presented with a 

heterologous pattern of tumors that includes sertoli-leydig cell tumors of the 

ovary, embryonal rhabdomyosarcomas, and pleuropulmonary blastomas 

[173-175].  In addition, sporadic perturbations in DICER expression have been 

reported in numerous cancer types [176-182].  However, until recently, little data 

implicating total DICER loss in tumorigenesis was available.  This was addressed 

in a recent report demonstrating that homozygous Dicer null murine sarcoma 

cells exhibit increased doubling time and higher apoptotic activity compared to 

heterozygous Dicer null cells [183].  When injected into mice, these Dicer null 

sarcoma cells are able to maintain their tumorigenicity, albeit with slight 

impairment compared with heterozygous Dicer null cells.  In this case it would 

appear that complete loss of Dicer activity slightly inhibits tumorigenesis, raising 

the possibility that inhibiting Dicer activity in vivo may hold viable therapeutic use.  

 Individual miRNAs have also been implicated in the process of tumor 

formation and metastasis, with many of them acting as tumor suppressors or 

oncogenes.  The ability of miRNAs to inhibit multiple genetic factors involved in 

tumorigenesis, and the observation that many of these same genetic factors can 

induce the expression of miRNAs has led to the understanding that miRNAs and 

their targets form complex regulatory networks.  In many cases, these networks 
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consist of feed-back and feed-forward regulatory loops, demonstrating that 

miRNAs that integrate themselves into key oncogenic pathways can result in an 

intricate balancing effect between pro- and anti- oncogenic signals.  As a result, 

miRNAs can act as tumor suppressors if they target transcripts that encode 

oncogenic proteins, and conversely, act as oncogenes if they target known tumor 

suppressors.  For example, one of the most closely studied miRNA families, let-7, 

is able to repress several oncogenes including HMGA2, RAS, and MYC 

[184-186], thereby functioning as a tumor suppressor.  Conversely, MYC is able 

to repress let-7 expression [187], and is able to repress the widespread 

expression of other miRNAs [188], including those with anti-tumorigenic and pro-

apoptotic activity such as miR15a/16-1, miR-26, and miR-34 family members 

[187].  In addition, MYC can induce the expression of the miR-17-92 polycistronic 

cluster [189], which has been demonstrated to repress negative regulators of the 

PI3-kinase signaling pathway, and tumor suppressor proteins such as BIM, 

PTEN, and CDKN1A [190-192].  The miRNAs encoded by the miR-17-92 cluster 

are often amplified in lymphoma, small cell carcinoma of the lung [193].  They 

have also been shown to be expressed in developing mouse tissue [194], and 

deletion of the miR-17-92 cluster is embryonic lethal [83], illustrating its role in 

both tumorigenesis and development.   

 Similarly, the network of tumor suppressor proteins in the cell is also highly 

integrated with miRNA input and regulation.  A canonical example is that of the 

regulatory network linking miRNAs and the tumor suppressor gene P53.  The 

expression of miRNAs belonging to the miR-34 family have been demonstrated 
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to be directly induced by P53 [195].  These miRNAs have been shown to 

promote cell cycle arrest, senescence, and apoptosis by negatively regulating the 

expression of proteins that inhibit these processes, and include targets such as 

BCL2 and CDK4 [91].  More recent publications have reported other miRNAs that 

appear to be induced by P53, including miR-192, miR-194, miR-215, and 

miR-605 [196,197].  These miRNAs target MDM2, an important negative 

regulator of P53, suggesting a miRNA mediated feed forward regulatory loop 

initiated by P53 activation.  miR-149* has also been shown to be up-regulated in 

human melanoma in response to P53.  Intriguingly, miR-149* acts as an 

oncogene by inhibiting glycogen synthase kinase 3α and increasing the 

expression of Mcl1, an anti-apoptotic protein that inhibits PUMA, a pro-apoptotic 

protein that is also induced by P53 activation [198].  In contrast, miR-380-5p and 

miR-504 act to repress P53 and promote cellular survival and tumorigenesis 

[199,200].  Likewise, miR-372 and miR-373 have been demonstrated to inhibit 

P53 mediated apoptosis in testicular germ cell tumors [201].  Finally, in an even 

more complex interaction with miRNAs, P53 has been demonstrated to modulate 

miRNA processing through an association with P68 and Drosha [202] that 

promotes pri-miR processing.  In this model, it would be possible for mutant P53 

to interfere with this regulation, and in addition to the direct effects of P53 loss on 

downstream anti-tumor mechanisms, could result in decreased expression of 

cancer relevant miRNAs.  

 Lastly, miRNAs are an area of interest regarding their use as diagnostic 

and cancer therapy tools.  For example, let-7 is often down-regulated in lung 
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cancer [203], miR-196a is up-regulated in pancreatic ductal carcinoma [204,205], 

and miR-483-3p, miR-483-5p, and miR-21 are up-regulated in adrenocortical 

carcinoma [206,207].  Because many miRNAs are uniquely and differentially 

expressed in certain tissues, their expression profiles in conjunction with clinical 

context could be used to determine various qualitative and quantitative 

characteristics of tumors such as tissue of origin, stage, grade, and overall 

outcome.  Further empirical data regarding miRNA expression in various cancers 

is still required, however, and will likely be an ongoing area of study for the 

foreseeable future.  The potential use miRNAs as therapeutic targets has yet 

even more progress that must be made before this concept becomes a practical 

clinical reality.  Currently, molecular tools such as synthetic antisense 

oligonucleotides (antagomirs) designed to inhibit specific miRNAs [142], miRNA 

“sponges” [208], and miRNA mimics that can behave as endogenous miRNAs 

show considerable effect and practicality in many in vitro models, and in the case 

of antagomirs, some success in vivo [209].  However, many challenges remain, 

such as safe and efficient delivery of therapies designed to perturb miRNAs 

involved in a disease state.  Target specificity is another concern, as off target 

effects of miRNA based therapy could have significant side effects in normal, 

healthy tissue given the relative ubiquity of miRNAs and their biogenesis 

pathway.  

       Despite the progress made over the past 20 years in understanding the 

biologic functions of miRNAs, it is clear that much work remains to be completed 

to elucidate mechanisms of miRNA mediated regulation in development and 
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disease.  This work addresses the role of Dicer and miRNA biogenesis in the 

developing mouse adrenal gland, as well as investigating the correlation between 

miR-483-3p and IGF2 expression in human adrenocortical carcinoma.  It is 

hoped that the work described herein will provide novel avenues for further 

research into adrenal miRNA expression and function. 

36



Figure 1.1 Histology of mouse adrenal.

Hematoxylin & eosin stain of an adult mouse adrenal gland illustrating the cellular 
zonation characteristic of the adrenal.  The outer-most capsule surrounds the 
gland, and is derived from mesenchymal cells of the stroma around the 
developing gland.  The cortex is further subdivided into the zona glomerulosa 
(zG), zona fasciculata (zF), and zona reticularis (zR).  The zR is not present in 
rodents, but is the source of androgen precursors in primates.  The medulla 
consists of neuroendocrine cells derived from the neural crest, and synthesizes 
catecholamines such as epinephrine and norepinephrine.  Scale bar = 200 µm.
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Figure 1.2 Steroidogenic pathways of the adrenal cortex

Flow chart illustrating the steroidogenic pathways in each of the cortical zones of 
the adrenal gland.  Mice lack the Cyp17 enzyme, and therefore, cannot produce 
cortisol or precursor androgens.  The predominant glucocorticoid produced by 
the mouse adrenal is corticosterone.
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Figure 1.3 Adrenal development in the mouse

Adrenal development in the mouse begins at E9.0 with the coalescence of the 
adrenogonadal primordium (AGP), a bi-potential mass of cells that gives rise to 
both the adrenal cortex and gonads.  The orphan nuclear receptor Steroidogenic 
Factor 1 (Sf1) is detectable in the AGP at this time, and acts as a master 
regulator for adrenal and gonadal development.  Loss of Sf1 results in adrenal 
and gonadal agenesis.  Following the separation of the adrenal and gonadal 
primordia, the fetal cortex begins to coalesce beginning at E10.  Shortly 
thereafter, cells from the neural crest migrate into the developing fetal cortex to 
populate what will become the adrenal medulla.  The adrenal capsule is derived 
from mesenchymal cells in the surrounding stroma, and is hypothesized to be be 
the location in which adrenal stem/progenitor cells reside.  At approximately 
E14.5, the fetal cortex begins to be displaced by the adult or definitive cortex.  
Transcriptional control of Sf1 is believed to shift from the use of a fetal enhancer 
to a still undefined definitive enhancer.  As development progresses, the fetal 
cortex is continuously displaced by the expanding definitive cortex.  In rodents, 
the fetal cortex persists in females until the first pregnancy, whereas in males the 
fetal cortex fully disappears by 3 weeks of age.  
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Figure 1.4 miRNA biogenesis

Canonical miRNA biogenesis in animals.  miRNAs are found in discrete 
transcriptional units in the genome, often in clusters, and can also be found in 
coding or non-coding regions of protein expressing genes.  Most are transcribed 
by RNA polymerase II, and the resulting primary miRNA is ~70 nucleotide hairpin 
structure that is recognized and cleaved by the Microprocessor complex 
consisting of the Drosha RNase III enzyme and its cofactor, DGCR8.  The 
resulting product is known as a precursor miRNA (pre-miR), and is transported 
out of the nucleus into the cytoplasm via the Exportin-5 nuclear transport protein.  
In the cytoplasm, a protein complex consisting of Dicer, TRBP, and Argonaute 
(AGO) proteins removes the loop from the pre-miR, and helicases unwind the 
duplex.  One strand of the duplex is retained (typically the strand with the less 
stable 5’ pairing) and the other is degraded.  The remaining strand is 
incorporated into the miRNA-induced silencing complex (miRISC), a protein 
complex that facilitates downstream mRNA repression mediated primarily 
Argonaute proteins and the GW182 protein.  The miRISC bound miRNA binds to 
target mRNAs through partially complementary sequences located in the 3’ 
untranslated regions of the RNA transcript.
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Figure 1.5 Mechanisms of miRNA mediated post transcriptional gene 
regulation

Evidence for multiple mechanisms of miRNA mediated gene regulation has been 
observed, and the main proposed methods are described here.  miRNAs have 
been demonstrated to induce the destabilization of target mRNAs by the 
deadenylation and subsequent decapping of the target transcript.  Current 
research suggests this is the predominant mechanism in miRNA mediated gene 
silencing.  Additional proposed mechanisms involve translational repression, 
either by preventing the formation of the translational initiation complex, 
proteolysis of the nascent peptide as it exits the ribosome, and inhibition of 
translational elongation.  Current theory holds that miRNAs induce translational 
repression at the initiation step, then subsequently facilitate the degradation of 
target mRNAs.  This parsimonious model helps reconcile the conflicting data 
regarding miRNA mediated gene silencing mechanisms.
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CHAPTER 2

Correlation Between MicroRNA-483-3p and IGF2 in Human Adrenocortical 

Carcinoma

 This chapter is comprised of in vitro work performed to establish the 

correlation between IGF2 and miR-483-3p expression in human ACCs.  All work 

was performed independently under the mentorship of Gary Hammer, MD, PhD.  

I would also like to acknowledge Guido Bommer for his assistance in designing 

the miR-483 sponge, and Victoria Kelly for her assistance with luciferase assays.  

Introduction

 Adrenocortical carcinoma (ACC) is a rare yet highly aggressive endocrine 

malignancy, with an incidence ranging from 0.5-2 cases/year per million people, 

and accounts for less than 1% of all reported cancers [1].  Prognosis for patients 

with ACC is unfortunately poor, with a 5 year survival rate of 22% [2].  

Unfortunately, most patients with ACC present with advanced metastatic disease, 

where the 5 year survival is less than 10%, and most cases of ACC present with 

this advanced form of the disease [1].  Treatment options for ACC have 

historically been extremely limited.  Surgical resection is treatment of choice for 

localized disease.  Additionally, radical ACC resection in conjunction with 

adjuvant mitotane therapy and radiotherapy (XRT) has been demonstrated to 
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prolong recurrence-free survival in patients presenting with advanced disease 

[3-6].  However, the benefits of mitotane are relatively modest, and use of the 

drug at therapeutically effective doses is limited by toxicity [5].  While small 

studies suggest some benefits of alternative adjuvant therapies [7], ACC has the 

distinction of being relatively unresponsive to most chemotherapuetic treatments 

[8].      

 There are only a few well characterized genetic causes of sporadic 

adrenocortical tumorigenesis that have been described over the years.  

Inactivating mutations in the TP53 tumor suppressor gene, which is the cause of 

the Li-Fraumeni syndrome, are known to predispose affected individuals to the 

development of ACC, among other types of cancer.  Additionally, mutations in the 

APC gene, which are characteristic of the adenomatous polyposis coli syndrome, 

can lead to the development of adrenal neoplasms, although these tend to often 

be non-malignant adenomas.  The multiple endocrine neoplasia type 1 syndrome 

(MEN1), which is associated with a predisposition towards the development of 

endocrine tumors, is also associated with the formation of adrenal adenomas, 

and to lesser extent, carcinomas [1,8].  The most common genetic abnormalities 

seen in sporadic ACC however, involve those in the locus that encodes the 

insulin-like growth factor II (IGF2) gene.  Nearly 90% of sporadic ACCs are 

shown to have an abnormal up-regulation of IGF2 expression [9], overwhelming 

evidence that supports the association between IGF2 over-expression and the 

development of ACC.  Indeed, the Beckwith-Wiedemann syndrome, which is due 

to a loss of imprinting defect at the 11p15.5 locus that results in excessive IGF2 
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expression, is strongly associated with ACC [10,11].  IGF2 is known to be a 

mitogen for adrenocortical tissue [12], and signals through the ubiquitously 

expressed type 1 IGF receptor (IGF1R), whose expression is also up-regulated 

in many ACCs [13].  Based on this body of work, current therapeutic efforts 

targeting IGF2 signaling in ACC have shown significant promise in clinical trials 

[14,15].

 While IGF2 itself has been implicated in ACC, a microRNA locus, 

miR-483, is located within the 2nd intron of the IGF2 gene.  MicroRNAs 

(miRNAs) are small, endogenous, non-protein coding RNAs that effect post 

transcriptional regulation by targeting partially complementary “seed” sequences 

in the 3’ UTR of target mRNAs.  In conjunction with the miRISC complex, 

miRNAs are able to facilitate the destabilization and degradation of their target 

mRNA transcripts, and repress translation of target mRNAs [16,17].  Although 

initially overlooked, the importance of miRNAs in the regulation of oncogenic 

processes is now widely appreciated.  Perturbations in DICER expression have 

been described in numerous cancer types, with conflicting data on the usefulness  

of over-expression versus under-expression of DICER as a predictor of 

prognostic outcome.  For example, in chronic lymphocytic leukemia, lung, breast, 

and ovarian cancers, lower expression of DICER is associated with poor 

prognosis [18-21].  On the other hand, increased DICER expression is correlated 

with worse outcome in primary cutaneous T-cell lymphomas, colorectal 

carcinoma, prostate cancer, and triple negative breast cancer [22-25].  These 

data suggest the presence of more complicated mechanisms besides simple 
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gain or loss of miRNA biogenesis in tumorigenesis.  Lastly, heterozygous 

germline mutations in DICER have been identified in several familial syndromes 

that are characterized by pleuropulmonary blastoma, multinodular goiter, ovarian 

cancer, and Sertoli-Leydig cell tumors [26-28].

 In addition to perturbations in DICER expression, individual miRNAs have 

recently gained attention for their roles in the pathogenesis of tumor formation.  

Many of the miRNAs identified regulate proliferation, differentiation, or apoptotic 

pathways; these miRNAs have been shown to function as both oncogenes or 

tumor suppressors, and are referred to as ‘oncomirs’ [29-31].  Current research 

suggests that many of these oncomirs hold potential as therapeutic targets or 

prognostic biomarkers indicative of the severity of a tumor [32,33].  

 In this study, we aimed to determine whether IGF2 and miR-483 

expression cold be correlated in human ACC samples and the human ACC cell 

line, H295R.  As previously described, the IGF2 mRNA levels were significantly 

higher in ACC samples compared to normal adrenals [14].  miR-483 transcript 

levels, specifically the miR-483-3p strand, were similarly high in ACCs versus 

normal adrenal tissue samples. To further study miR-483-3p, we constructed a 

lentiviral over-expression vector capable of expressing mature miR-483 at levels 

similar to ACCs and the H295R cell line to aid in the investigation of potential 

miR-483-3p targets and physiologic effects.  Additionally, we tested a luciferase 

sensor and miRNA “sponge” for miR-483 to also aid in pursuing these goals.  We 

were successful in constructing these molecular tools, but were unable to 

elucidate the mechanistic aspects of miR-483-3p expression in vitro.
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Materials and Methods

Human Tissue Samples

 A subset of frozen tissue samples from a larger sample set consisting of 

human normal adrenals (n=3) and both low IGF2 expressing (IGF2-LOW; n=5) 

and high IGF2 expressing (IGF2-HIGH; n=6) ACCs were kindly donated by Dr. 

Thomas J. Giordano, Departments of Pathology and Internal Medicine, University 

of Michigan Medical School, Ann Arbor MI [9].  All patient data were kept strictly 

confidential in accordance with institutional IRB guidelines.

RNA Isolation

 RNA isolation on human tissue samples was performed using a modified 

TRIzol Reagent protocol (Ambion, Life Technologies, Carlsbad, CA).  Briefly, 

following the phase separation step in the manufacturer’s protocol, the aqueous 

phase was removed and subject to an acid phenol chloroform separation step 

using an equal volume of  5:1 phenol:chloroform solution, pH 4.5 (Life 

Technologies, Carlsbad, CA).  After spinning to phase separate the sample, the 

aqueous phase was removed and the RNA was precipitated with 0.5mL 100% 

isopropanol, 1µL linear acrylamide, and 10 µL 3M sodium acetate pH 4.5 (Life 

Technologies, Carlsbad, CA).  Samples were mixed by inversion, then stored at 

-20°C overnight.  The samples were then spun for 10 minutes at 4°C in a 

microcentrifuge to pellet the RNA, then washed with 1mL of 75% ethanol before 

being spun again for 5 minutes at 4°C, and finally resuspended in up to 100µL of 
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nuclease free water.  RNA was quantified on a Beckman DU640 

spectrophotometer.   

Quantitative Real Time PCR for IGF2 and miR-483-3p

 For RNA isolated from human tissue samples, up to 200ng of RNA was 

reverse transcribed using the iScript system (Bio-Rad Laboratories, Hercules, 

CA) to generate cDNA.  The resulting cDNA was diluted 1:5 in nuclease free 

water, and 2µL was used for downstream amplification with appropriate primers 

using Power SYBR Green PCR Master Mix and an ABI 7300 Real Time PCR 

System (Applied Biosystems, Carlsbad, CA).    Data analysis was performed 

using the 2-∆∆C(T) method [34].  Primers for each amplified gene are as follows:  β-

Actin (ACTB) Fwd 5’-CCAACCGCGAGAAGATGA and Rev 5’-

TCCATCACGATGCCAGTG; Igf1 (IGF1) Fwd 5’-TGTGGAGACAGGGGCTTTTA 

and Rev 5’-ATCCACGATGCCTGTCTGA; Igf2 (IGF2) Fwd 5’-

GCTGGCAGAGGAGTGTCC and Rev 5’-GATTCCCATTGGTGTCTGGA; IGF1 

receptor (IGF1R) Fwd 5-‘AAAAACCTTCGCCTCATCC and Rev 5’-

TGGTTGTCGAGGACGTAGAA.  All transcripts were normalized to β-Actin.  

Taqman based miRNA quantitative real time PCR kits for miR-483-3p and U6 

control RNA were purchased from Applied Biosystems by Life Technologies 

(Carlsbad, CA) and used according to the manufacturer’s instructions to 

determine relative expression of miR-483-3p.  Correlation between miR-483-3p 

and IGF2 transcript levels was done using linear regression analysis on 
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miR-483-3p and IGF2 ΔCt values for each sample with the Graphpad Prism 

software suite (La Jolla, CA).

miR-483 Over-expression Vector

 To generate a vector capable of stably expressing miR-483-3p at high 

levels, a 550 base pair product that consisted of the pre-miR-483 hairpin 

structure and 305 and 170 base pairs of flanking sequence upstream and 

downstream, respectively, was amplified using a high fidelity Platinum Taq DNA 

Polymerase from H295R genomic DNA.  The 550bp product was gel purified and 

cloned into a pCRII-TOPO vector using a TOPO TA cloning kit (Invitrogen, 

Carlsbad, CA), then subcloned into the EcoRI restriction site in the MCS of the 

pMSCV-Puro pro-viral vector (Clontech, Mountain View, CA).  The over-

expression vector was confirmed by DNA sequencing (University of Michigan 

Sequencing Core), grown and isolated in  Dh5α E. Coli cells, and transfected into 

the SW13 cell line.  Transfected cells were grown in DMEM supplemented with 

10% fetal bovine serum, antimicrobials, and 3µg/µL puromycin to select for cells 

containing the over-expression vector.  Confirmation of mature miRNA 

expression was assayed with the TaqMan based miRNA assay kit (Applied 

Biosystems) and normalized to U6.

  

miR-483 Sponge

 Biological “sponges” constructed by inserting predicted miRNA binding 

sites has been described previously [35].  Complementary sense and antisense 
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oligonucleotides bearing 3 miR-483-3p binding sites (5’-

AAGACGGGACCTAGGAGTGA-3’; perfect matches in the seed region with a 

non-complementary bulge in the central region of the sequence) in tandem and 

separated by spacers of 4 nucleotides were synthesized and purchased from 

Invitrogen.  The oligos were annealed in vitro to generate a double stranded 

DNA construct with EcoRI compatible sticky ends.  The pLentiLox 3.7 (pLL3.7) 

proviral vector (kindly donated by Guido Bommer) was digested with EcoRI, 

mixed with the DNA insert (sponge) containing miR-483-3p binding sites, and 

annealed using standard molecular cloning procedures.  Insertion and orientation 

of the DNA insert was confirmed with DNA sequencing to ensure that the binding 

sites were properly inserted in the 3‘ UTR of the GFP reporter in the proviral 

vector.  Lentiviral packaging was performed by the University of Michigan Vector 

Core.  H295A and H295R cells were grown in DMEM F12 supplemented with 

10% fetal calf serum, antimicrobials, and L-glutamine.  Cells were transduced 

with 1mL 1x viral supernatant and 8µg/mL polybrene.  After 24 hours, the media 

was replaced with fresh DMEM F12, and the cells monitored for GFP expression.  

Proliferation assays were performed by plating GFP positive H295R cells at a 

starting density of 5x10^5 cells/well in 12 well plates.  Cells were followed and 

harvested on days 1, 2, 3, and 4 (short term) or days 3, 4, 5, and 6 (long term), 

and counted on a hemocytometer.  To assess the transcript levels of the 

predicted miR-483-3p targets IGF1 and EGR1, the SYBR based semi-

quantitative real-time PCR method described in the above section was used.  

Primer sequence for IGF1 was as above, and primers for EGR1 were as follows: 
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Fwd 5’-AGCCCTACGAGCACCTGAC and Rev 5’-GGTTTGGCTGGGGTAACTG.  

Expression data from H295 cells transduced with the miR-483-3p sponge were 

expressed relative to H295 cells transduced with control plasmid.

        

miR-483-3p Sensor Luciferase Assays

 To generate luciferase reporters sensitive to miR-483-3p mediated 

knockdown, a DNA construct consisting of 2 perfectly complementary sites (5’-

AAGACGGGAGGAGAGGAGTGA-3’) to mature miR-483-3p was inserted into 

the EcoRI and SpeI sites downstream of the luciferase reporter in a modified 

pGL3Control plasmid (Promega, Madison, WI).  Insertion was confirmed by DNA 

sequencing.  H295R, H295A, or SW13 cells expressing the miR-483-3p over-

expression vector were plated in 24 well plates at 5x10^4 cells/well.  24 hours 

after plating, cells were transiently transfected and harvested 48 hours later.  

Renilla luciferase (pRL-TK, Promega, Madison, WI) was co-transfected into cells 

and utilized to measure transfection efficiency.  Cell lysates were assayed for 

luciferase activity using the Dual Luciferase Assay kit (Promega, Madison, WI) on 

an auto-injector luminometer.   
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Results

miR-483-3p Expression Correlates Strongly with IGF2 in Primary Human 

ACCs and Human ACC Cell Lines

 We first determined whether IGF2 and miR-483 might be co-expressed in 

ACC.  Previous microarray data from our lab, in collaboration with Dr. Tom 

Giordano (Depts. of Internal Medicine and Pathology, University of Michigan 

Medical School) have shown that increased IGF2 expression in human ACC 

samples contributed to the distinct genetic profile that separated ACCs from 

ACAs and normal adrenals (Figure 2.1).  Further investigation revealed the 

existence of an annotated miRNA, miR-483, located in the second intron of the 

IGF2 gene.  The miR-483 locus, like most miRNA loci, is capable of producing 

two mature sequences, designated by a -3p or -5p suffix, depending on which 

strand of the precursor duplex is selected for miRISC loading.  Given the strong 

correlation between ACC and IGF2 over-expression, we considered whether 

miR-483-3p, the more abundant product of the miR-483 locus, would strongly 

correlate with IGF2 expression and therefore, be characteristic in many cases of 

ACC.  

 Normal human adrenal tissue, and human ACC samples consisting of 

both low and high IGF2 expressing tumors were provided by Dr. Tom Giordano 

as part of our collaboration.  We performed quantitative real time PCR for IGF2, 

IGF1, IGF1R, and ACTB (β-Actin) as an internal normalization control.  

Additionally, numerous human cell lines were also tested for IGF2 expression, 

including the NCI-H295A and NCI-H295R human ACC cell lines.  Figure 2.2A 
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displays the significantly higher expression of IGF2 in human ACC samples 

relative to normal adrenals; the H295A/H295R human ACC cell lines also 

displayed very high IGF2 transcript expression relative to the RL251 cell line, a 

human ACC derived cell line that does not express IGF2.  Also, non-ACC human 

cell lines (HEK293, HeLa, SW13) did not show elevated IGF2 expression.  

Following confirmation of IGF2 over-expression in primary human ACCs and 

human ACC cell lines, mature, endogenous miR-483-3p expression was 

measured in both sets of samples.  TaqMan based quantitative real time PCR 

showed that like IGF2, miR-483-3p expression was significantly up-regulated in 

primary human ACCs, but not normal human adrenals.  Likewise, the high IGF2 

expressing human ACC cell lines H295A and H295R exhibited very high levels of 

endogenous miR-483-3p, whereas the non-IGF2 expressing RL251 cell line did 

not (Figure 2.2B).

 We confirmed the observed correlation between IGF2 and miR-483-3p 

expression in primary human ACCs and human ACC cell lines by performing 

linear regression analysis on the ΔCt values calculated for IGF2 and miR-483-3p 

(relative to internal normalization controls ACTB and U6) for each sample tested.  

Figure 2.3A shows the correlation between IGF2 and miR-483-3p expression 

among primary human adrenal samples, while 2.3B illustrates the same 

correlation in human cell lines.  Both analyses indicate that the correlation 

between IGF2 and miR-483-3p expression is robust, with R2 values of .8021 

and .9683 for primary human ACCs and human cell lines, respectively.  The 

human ACC cell lines H295A and H295R demonstrated similar expression 
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profiles for IGF2 and miR-483-3p, suggesting that these cell lines may serve as a 

convenient in vitro model of IGF2/miR-483-3p high human ACC. 

miR-483-3p Over-Expression Vector 

 Several molecular tools were developed to facilitate further study of 

miR-483-3p and its potential function in the pathogenesis of ACC.  A miR-483-3p 

over-expression vector was developed to allow for stable expression in cell lines.  

In conjunction with sensor reporter constructs and knock-down tools specific for 

miR-483-3p, this construct was designed to facilitate the identification of potential 

mRNA targets, and the isolation of pathophysiologic effects of perturbing the 

level of intracellular miR-483-3p.

 Figure 2.4 illustrates the cloning strategy utilized to generate the 

miR-483-3p over-expression vector.  This expression vector would be predicted 

to express both the -3p and -5p miRNA products; however, we focused our 

analysis on the -3p product due in part to technical limitations of the TaqMan 

qPCR reagents that were available at the time.  In addition to providing robust 

expression of the gene of interest, this vector can be directly transfected into 

cells, or can be packaged into viral particles to transduce cell lines that may be 

difficult to transfect using chemical means.  A similar strategy has been shown 

previously in the past to be effective for the artificial expression of miRNAs [36].  

SW13 (a cell line with low IGF2 expression) cells were transfected with either 

empty pMSCVpuro (pMSCV-Control) or miR-483 expressing plasmid (pMSCV-
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miR483), then grown and passaged in cell culture media containing puromycin to 

maintain selective pressure for transfected cells.    

 We first assessed SW13 cells transfected with pMSCV-miR483 for mature 

miR-483-3p using a TaqMan quantitative qPCR assay specific for mature 

miR-483-3p (Figure 2.5).  SW13 cells transfected with the pMSCV-miR483 vector 

expressed significantly more mature miR-483-3p than control SW13 cells 

transfected with pMSCV-Control vector.  The amount of miR-483-3p expression 

was comparable to what was observed in H295R cells used as positive controls.  

These results indicate that the miR-483-3p expression vector was capable of 

robustly producing mature miRNA transcripts in SW13 cell lines.  Although 

quantitative real time PCR was able to detect mature miR-483-3p in SW13 cells 

transfected with the pMSCV-miR483 vector, it was unknown whether the 

transcripts being produced were functionally active and capable of silencing gene 

targets.

A Luciferase Sensor and GFP ‘Sponge’ for miR-483-3p

 At the time of these experiments, mRNA targets of miR-483-3p were not 

known.  Although the target prediction algorithms used by Targetscan 

(www.targetscan.org) offered significant possible targets with phylogenetically 

conserved miR-483-3p binding sites, the lack of an empirically confirmed target 

made functional studies of miR-483-3p difficult.  This made constructing an 

inhibitor to miR-483-3p challenging as there was no known positive control (i.e. a 

validated, endogenous target 3’ UTR containing miR-483-3p binding motifs) 
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against which we could compare the efficacy of our inhibitor.  To attempt to 

circumvent this limitation, we developed an artificial luciferase sensor construct 

that contained perfect complementary sequences to mature miR-483-3p.  Using 

this approach, it is possible to make miRNAs behave similarly to siRNAs in 

mammalian cells by slightly modifying the 3’ UTR target sequence of a reporter 

construct to be perfectly complementary to the miRNA sequence.  Indeed, 

miRNAs in plants generally exhibit perfect sequence matching between the 

miRNA sequence and target mRNAs.  Additionally, this perfect base pair 

matching commonly leads to the degradation of target mRNAs, characteristic of 

mammalian siRNA and plant miRNA pathways, and may provide a potentially 

greater degree of target inhibition.  

 To generate a miR-483-3p specific luciferase sensor, complementary 

oligonucleotides bearing two repeats of a sequence that perfectly match the 

mature miR-483-3p sequence flanked by EcoRI sticky ends was synthesized 

(See Materials & Methods).  These oligos were then annealed in-vitro and cloned 

into pGL3-Control downstream of the luciferase stop codon and upstream of the 

PolyA sequence.  If both the pMSCV-miR483 expression vector and the pGL3-

Sensor constructs were functioning as intended, decreased luciferase activity 

would be observed in SW13 cells that stably expressed the pMSCV-miR483 

expression vector.  Indeed, SW13 cells expressing miR-483-3p exhibited less 

luciferase activity when the miR-483-3p luciferase sensor was introduced.  In 

contrast, SW13 cells stably expressing the pMSCV-miR483 expression vector did 

not show decreased luciferase activity when pGL3-Control plasmid lacking the 3’ 
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miR-483-3p binding sites was introduced (Figure 2.7).  Likewise, SW13 cells 

stably transfected with the pMSCVpuro-Control plasmid were unable to decrease 

luciferase activity from either pGL3-Control or pGL3-Sensor plasmids.  Taken 

together, these data demonstrate that the miR-483-3p transcript expressed from 

the pMSCVpuro-miR483 vector was able to inhibit a luciferase sensor designed 

to specifically respond to miR-483-3p. 

 The pGL3-Sensor construct was then tested to determine if it would be 

able to respond to endogenous miR-483-3p, as opposed to the artificial 

expression construct utilized in SW13 cells.  pGL3-Sensor or pGL3-Control were 

transfected into both H295A and H295R cells that express high levels of 

endogenous miR-483-3p.  Endogenous miR-483-3p expressed by these cell 

lines was able to significantly decrease the relative measured luciferase activity 

(Figure 2.8).  Interestingly, it appeared that the H295R (295R) cells were more 

effective at repressing the miR-483-3p specific luciferase sensor, as measured 

relative luciferase activity was reduced by up to 3-fold whereas luciferase 

repression in H295A (295A) cells was less than 2-fold.

 In the final part of this series of experiments, a biological sponge was 

designed to “soak” the activity of endogenous miR-483-3p by providing multiple 

miR-483-3p binding sites in a GFP reporter gene.  The rationale behind this 

technique has been described previously, but briefly, the sponges are intended to 

be competitive inhibitors of endogenous miRNAs that are expressed from strong 

promoters and driven by RNA polymerase II [35].  A construct was cloned bearing 

multiple bulged miR-483-3p binding sites to into the 3’ UTR of the GFP gene in 
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the pLentilox 3.7 lentiviral vector.  The plasmid was packaged into viral particles 

to overcome the inherent difficulty of transfecting the H295 cell line and a viral 

transduction approach was used to attain strong levels of GFP expression.  

While the cloning and transduction of the miR-483-3p sponge was successful, we 

were unable to conclusively determine if the sponge was functional.  This was 

due in part to the lack of data regarding validated miR-483-3p targets, against 

which we could compare the effects of the sponge.  Instead, we chose to assess 

proliferation because IGF2 is a known mitogen in ACC.  We hypothesized that 

the co-expression of miR-483-3p may have a similar function, and therefore a 

functional miR-483-3p sponge might have a negative effect on proliferation of 

cells expressing this miRNA.  However, pilot experiments that analyzed the 

proliferation of NCI-H295 cells transduced with the miR-483-3p sponge construct 

were inconclusive.  Growth curves of H295 cells transduced with the miR-483-3p 

sponge relative to control plasmid were erratic and inconsistent over the time 

course of both a short term (4 days) and long term (6 days) experiment (Figure 

2.9).  The total number of viable cells at each experimental endpoint, however, 

were consistently lower in H295 cells transduced with the miR-483-3p sponge.  

The results from these pilot experiments did not definitively support the 

hypothesized effects on proliferation stemming from miR-483-3p inhibition, 

indicating the sponge may not have functioned effectively and may require 

further optimization, or that miR-483-3p does not play a significant role in 

promoting cellular proliferation as hypothesized.  
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 We also determined a list of predicted miR-483-3p mRNA targets that, 

according to the array data cited previously, were down-regulated in IGF2/

miR-483-3p expressing primary human ACC samples.  This list consisted of 

BMPR2, EGR1, H3F3B, IGF1, MLLT6, QKI, TMOD1, USP46, and VAMP2.  We 

focused on IGF1 and EGR1 (Early growth response protein 1), as IGF1 is a 

known adrenal mitogen, and EGR1 has been demonstrated to possess tumor 

suppressor properties.  Quantitative real-time PCR for IGF1 and EGR1 

transcripts in H295 cells transduced with the miR-483-3p sponge demonstrated a 

slight increase of EGR1 expression relative to H295 cells transduced with control 

plasmid (Figure 2.10).  In contrast, H295 cells transduced with the miR-483-3p 

sponge responded inconsistently with regard to IGF1 expression.  Half of the 

replicates analyzed demonstrated a further decrease in IGF1 transcript, contrary 

to the expected result, and a only single replicate showed a marked increase in 

IGF1 expression.  Together these data suggest the miR-483-3p sponge had a 

modest effect on de-repressing EGR1 transcript levels in transduced H295 cells.  

However, the data on IGF1 transcript levels in cells transduced with the 

miR-483-3p sponge were inconclusive, and would require additional 

investigation.     
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Discussion

 This chapter describes the efforts to investigate the correlation between 

IGF2 expression in primary human ACCs and the expression of miR-483-3p, a 

miRNA that is located within the second intron IGF2.  We also attempted to 

generate potential molecular tools that could aid in the study of miR-483-3p and 

its functional role in the human ACC cell line H295R.  Our data, while preliminary 

in nature, supported the correlation between IGF2 and the co-expression of 

miR-483-3p with its host gene.  We also performed several experiments to 

analyze potential physiological effects of miR-483-3p inhibition in vitro by testing 

a miRNA “sponge” designed to specifically respond to miR-483-3p.  

 The experiments designed to assess proliferation in H295 cells transduced 

with the sponge yielded inconclusive results, which may be due to several 

factors.  One likely explanation may be due to poor efficacy of the sponge 

designed in this study.  We designed the sponge with three potential miR-483-3p 

binding sequences that consisted a perfect seed region match and non-

complementary bulge in the central region of the miRNA-target sequence.  It is 

possible that three binding sites were not sufficient to effectively inhibit 

endogenous miR-483-3p activity in H295 cells, which express very high levels of 

this miRNA.  Additionally, the binding sequences in the sponge were separated 

by only four nucleotides, which may have resulted in steric hindrance of miRISC 

bound miR-483-3p, preventing access to all three binding sites.  Another 

explanation is that miR-483-3p does not significantly affect proliferation, and that 

its host gene, IGF2, primarily mediates the proliferative capacity of H295 cells.  
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Indeed, IGF2 has been specifically implicated as an autocrine regulator of 

proliferation in the NCI-H295R human ACC cell line [37].  Finally, there may be 

additional uncharacterized molecular pathways independent of miR-483-3p or 

IGF2 that promote proliferation in the H295 cell line.  

 We also compared a list of predicted miR-483-3p targets using the 

TargetScan algorithm (www.targetscan.org) with down-regulated gene transcripts  

found in primary human ACCs that express high IGF2 and miR-483-3p.  Of the 

nine predicted targets to be down-regulated in human ACCs, we were interested 

to discover that IGF1 and EGR1 were among those target genes.  IGF1 is a 

known adrenal mitogen, and in humans, is co-expressed in the adult adrenal in 

conjunction with IGF2.  In ACC, IGF2 is up-regulated, and IGF1 expression often 

decreases, recapitulating the embryonic adrenal in which IGF2 is the 

predominant growth factor [12].  The prediction of IGF1 as a target of miR-483-3p 

raises the possibility of a regulatory mechanism in which IGF1 expression is 

repressed indirectly by IGF2.  This could be a potential mechanism that 

maintains the balance between IGF1 and IGF2 expression in the adult adrenal.  

 Finally, EGR1 is an interesting predicted miR-483-3p target because of its 

tumor suppressor function that has been reported in the literature [38,39].  EGR1 

is a zinc-finger transcription factor that has been demonstrated to induce the 

expression of p53, PTEN, and c-Jun, and is down-regulated in a variety of 

cancers including glioma, lymphoma, and carcinoma of the breast [40-44].  In 

contrast, EGR1 is often up-regulated in prostate cancer [45,46], and intriguingly, 

has been demonstrated to induce the expression of IGF1R [47], the key IGF2 
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receptor in ACC.  However, given that EGR1 is down-regulated in the primary 

human ACCs analyzed in our array, this suggests that EGR1 may act in the role 

as a tumor suppressor in the context of ACC.  In this case it would be reasonable 

to hypothesize that as a predicted target of miR-483-3p, EGR1 expression is 

inhibited in ACCs that express high levels of IGF2, contributing to the 

tumorigenesis of ACC.        

 More recent studies into the potential targets of miR-483-3p in the context 

of cancers have reported that miR-483-3p does indeed have a pro-oncogenic 

function in human neoplasms including Wilm’s Tumor, colon, breast, and liver 

tumors.  These same reports have also identified a potential role for miR-483-3p 

as an oncogene that inhibits apoptosis and promotes proliferation in the human 

ACC cell line H295R by repressing the pro-apoptotic protein, p53 up-regulated 

modulator of apoptosis (PUMA) [48,49].

 Our data appeared to show robust correlation between IGF2 and 

miR-483-3p expression, suggesting the expression of the latter is dependent on 

the former.  In addition, it has been recently demonstrated that expression of 

miR-483 can be induced by the Wnt/β-catenin signaling independent of IGF2, 

adding an additional layer of complexity to the regulation of miR-483 expression 

[50].  Recent studies have shown that other intronic miRNAs, most notably 

miR-21, can be regulated independently of their host genes in a similar manner.  

In the case of miR-21, it has been shown that TGF-β signaling can promote the 

processing and expression of miR-21 through a positive interaction between 

Smads, the downstream effector proteins of TGF-β signaling, and Drosha, the 

80



RNase III enzyme responsible for processing primary miRNA transcripts into 

precursor transcripts ready for nuclear export [51,52].  Considering that both the 

Wnt/β-catenin and TGF-β signaling pathways are implicated in the process of 

tumor formation, the discovery that these signaling pathways can directly 

promote the expression of miRNAs involved in oncogenesis such as miR-483-3p 

and miR-21 means consideration must be given to identifying the targets of these 

miRNAs implicated in cancer.  

 The potential involvement of β-catenin in regulating the miR-483 locus is 

intriguing, as abnormal nuclear localization of β-catenin, indicative of active 

signaling, is characteristically associated with poorer prognosis and outcome in 

human ACC cases [53,54].  It has further been reported that Wnt/β-catenin 

targets are over-expressed in cases of human ACC [55].  Although IGF2 or β-

catenin dysregulation is most often associated with poor outcome and prognosis 

in ACC, there are few studies that evaluate the simultaneous effects of both IGF2 

and β-catenin dysregulation on ACC development.  Igf2 over-expression alone in 

mouse models fails to induce ACC, although these mice exhibit non-malignant 

adrenal defects consistent with the Beckwith-Wiedemann syndrome seen in 

humans [56,57].  Mice engineered to constitutively express β-catenin have been 

reported to develop adrenal hyperplasia, dysplasia, increased adrenal 

vascularization, and ultimately neoplasia in aging mice [58].  This model of 

progressive adrenal pathology is similar to the multi-hit progression seen in 

colorectal cancer, suggesting that single genetic defects alone may not be 

enough to promote the development of ACC, and that other genetic hits are 
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necessary for carcinogenesis.  A long term study conducted in our lab to 

investigate the potential synergistic effects of simultaneous dysregulation of Igf2 

active β-catenin in the mouse adrenal gland is currently in press [59] and 

provides evidence supporting the hypothesis that multiple genetic hits may be 

required for the tumorigenesis of ACC.  

 We did not assess the specific human ACC samples used in this study for 

dysregulated β-catenin expression; nor did we assess ACC samples with high β-

catenin expression for miR-483-3p.  As such, we cannot comment as to whether 

β-catenin could be in part responsible for the high levels of miR-483-3p that are 

seen these samples.  Given that miR-483-3p has oncogenic properties by 

repressing PUMA, leading to decreased apoptosis, it is possible that the IGF2 

and β-catenin dysregulation seen in human ACCs converge to a common 

pathway that involves miR-483-3p and its repression of PUMA and other genes.  

Further studies would need to be performed to investigate this possibility in both 

ACCs and other cancers characterized by increased β-catenin expression.     

 The field of miRNAs and the understanding of their involvement in 

development and disease has expanded tremendously since we initially began 

these studies.  Although we were successful in generating several molecular 

tools that might be useful in studying the effects of miR-483-3p in vitro, the 

abundance, quality, and cost effectiveness of commercially available tools that 

have rapidly come on the market has made working with miRNAs significantly 

faster.  With the increased availability of commercially produced molecular tools 

designed to study the function of individual miRNAs, it has become much easier 
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for researchers to perturb miRNAs of interest in cell culture systems, or even 

whole animal models.  To illustrate this, while we were investigating the 

relationship between IGF2 and miR-483-3p in the NCI-H295 cell lines, the 

previously cited reports correlating miR-483-3p with poorer disease prognosis 

and establishing PUMA as a target were published by an independent laboratory 

[48].  As a result, we therefore elected to expand our studies by addressing the 

role of miRNAs in adrenal development by utilizing a genetic knockout approach 

that will be described in Chapter 3.  However, there is still much work that can be 

pursued regarding the interplay between miR-483-3p, IGF2, and ACC.  Future 

studies involving IGF2 and miR-483-3p would benefit greatly from the recent 

advances in techniques and molecular tools aimed at facilitating miRNA 

research.
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Figure 2.1 Tissue Classification & IGF2 Locus Heatmap of Human Adrenal 
Samples.

A heat map showing the histological classification and expression levels of the 
IGF2 locus genes at 11p15.5 in normal human adrenals, adrenal adenomas, and 
adrenal carcinomas.  
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Figure 2.2 Relative fold expression of IGF2 and miR-483-3p in human 
adrenal tissue samples and cell lines.

Quantitative real-time PCR for both IGF2 (A) and miR-483-3p (B) transcript 
expression in human adrenal (normal, high IGF2, low IGF2) samples and human 
cell lines.  Fold expression is relative to normal human adrenals (for ACC 
samples) and the RL251 cell line (for human cell lines).  
               

85



A

B

86

IGF2 Expression in Human ACC and Cell Lines

ADR83
 N

L

ADR36
 LOW

ADR38
 LOW

ADR39
 LOW

ADR53
 LOW

ADR42
 LOW

ADR17
 H

IG
H

ADR46
 H

IG
H

ADR57
 H

IG
H

ADR84
 H

IG
H

ADR94
 H

IG
H

ADR10
1 H

IG
H
RL25

1
SWI13

29
5A

29
5R

1

10

100

1000

10000

100000

Fo
ld

  E
xp

re
ss

io
n

miR-483 Expression in Human ACC and Cell Lines

ADR83
 N

L

ADR36
 LOW

ADR38
 LOW

ADR39
 LOW

ADR53
 LOW

ADR42
 LOW

ADR17
 H

IG
H

ADR46
 H

IG
H

ADR57
 H

IG
H

ADR84
 H

IG
H

ADR94
 H

IG
H

ADR10
1 H

IG
H
RL25

1
SWI13

29
5A

29
5R

1

10

100

1000

10000

Fo
ld

 E
xp

re
ss

io
n



Figure 2.3 Correlation between IGF2 and miR-483-3p expression in human 
adrenal tissue and cell lines.

Linear regression analysis performed on real time PCR ΔCt values for IGF2 and 
miR-483-3p.  Each square represents one sample.  (A) Correlation between 
IGF2 and miR-483-3p for human adrenal tissue samples (p<.05; R2=.8021).  (B) 
Correlation between IGF2 and miR-483-3p for various human cell lines 
(p<.05; R2=.9683).
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5’ 3’pri-miR483-305bp +170bp

EcoR1 EcoR1

Figure 2.4 miR-483-3p over-expression vector construction.

Schematic showing the strategy used to develop the miR-483 expression vector.  
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miR-483 Expression from Exogenous miR-483 Expression Vector
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Figure 2.5 Quantitative real time PCR on cell lines transfected with 
miR-483-3p expression vector.

miR-483-3p expression in SW13 cells that do not express endogenous 
miR-483-3p.  Fold changes relative to SW13 cells transfected with control 
pMSCVpuro vector (SW13 OEV).  H295R cells known to express endogenous 
miR-483-3p used as positive controls (295R1 & 295R2).
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Figure 2.6 miR-483-3p luciferase reporter construction.

Schematic illustrating the strategy used to generate miR-483-3p luciferase 
sensor using the pGL3-Control plasmid.
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pGL3 miR-483 Reporter Assay in SW13 Cells
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Figure 2.7 Luciferase activity in SW13 cells transfected with miR-483-3p 
expression vector.

SW13 cells were transfected with either empty control pMSCVpuro (SW13 -EV) 
or pMSCVpuro-miR483 expression vector (SW13 +EV).  The miR-483-3p 
luciferase reporter plasmid (Reporter), or control pGL3-Control plasmid (Control) 
were subsequently transfected into each cell type, and relative luciferase activity 
was measured.
(*p>.05)

92



090313 mir-483 Luciferase Sensor Assay

29
5A

29
5R

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Cell Type

R
el

at
iv

e 
L

u
ci

fe
ra

se
  U

n
its

Control
Reporter

***

**

Figure 2.8 Luciferase assays on H295R cells transfected with the 
miR-483-3p sensor.

Effect of endogenous miR-483-3p expression on the luciferase reporter construct 
in H295A and H295R cells.  Cells transfected with the miR-483-3p luciferase 
reporter (Reporter) show significantly less (*p<.05) luciferase activity compared 
to cells transfected with control pGL3-Control luciferase plasmid (Control). 
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Figure 2.9 Growth curves of H295A and H295R cells transduced with the 
miR-483-3p sponge.

Growth curves of H295A and H295R cells transduced with either control plasmid 
or miR-483-3p sponge.  Cells were plated at a density of 5 x 105 cells per well 
and followed for up to 4 days (A) or 6 days (B).  Cells were harvested on days 
denoted by data points on the line graph and counted.
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Figure 2.10 IGF1 and EGR1 transcript levels in H295 cells transduced with 
the miR-483-3p sponge.

Expression of IGF1 and EGR1 in H295 cells transduced with the miR-483-3p.  
Each column represents an independent replicate, and shows expression relative 
to a corresponding control (H295 cells transduced with control plasmid).  The 
dotted horizontal line at 1 denotes the baseline expression in control samples.  
miR-483-3p sponge induced a modest increase in EGR1 transcript levels in 3/4 
replicates analyzed.  IGF1 response to the miR-483-3p sponge was inconclusive. 
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CHAPTER 3

Differentially Expressed Genes and MicroRNAs in Embryonic Dicer 

Deficient Mouse Adrenals

 The work described in this chapter was performed under the mentorship of 

Gary Hammer, MD, PhD.  I would like to thank Katherine Gurdziel, MS, and Ann 

Grosse, PhD, for their invaluable insight and assistance in staging and harvesting 

embryonic adrenals, and in performing bioinformatic analysis on the microarray 

data.  Katherine was heavily involved in the data and statistical analysis of 

Figures 3.6, and 3.8, as well as Tables 3.1 and 3.2, and had a significant role in 

the generation of these figures and tables.  Katherine will also be a first co-author 

on a manuscript to be submitted for publication based on this work.

Introduction

 The adrenal glands are bilateral structures located superior to the kidneys.  

They are critical components of the hypothalamic-pituitary-adrenal (HPA) axis, 

and have important functions in maintaining electrolyte and metabolic 

homeostasis, as well as regulating the stress response.  The adrenal gland is 

comprised of two embryologically and functionally distinct cell types:  The adrenal 

cortex, which is derived from the coelomic epithelia and intermediate mesoderm 

103



known as the urogenital ridge; and the adrenal medulla, which is comprised of 

neuroendocrine cells derived from the neural crest [1,2].  

 The adrenal cortex initially forms as a coalescence of cells known as the 

adrenogonadal priomordium (AGP) at approximately embryonic day 9 (E9.0) [3].  

This bi-potential mass of cells then further develops into two distinct cell 

populations that eventually comprise the steroid secreting cells of the gonad and 

adrenal cortex.  It is at this time that steroidogenic factor 1 (Sf1), a key regulator 

of steroidogenic enzymes in the adrenal cortex and steroid secreting cells of the 

gonads, begins to be expressed in the AGP [4].  By E12.0, a distinct adrenal 

primordium consisting of fetal adrenocortical cells forms.  At approximately the 

same time, medullary precursor cells from the neural crest begin migrating into 

and populating the fetal adrenal cortex [1].  Shortly thereafter, mesenchymal cells 

from the surrounding stroma coalesce to form the adrenal capsule, which is 

where a population of adrenocortical stem/progenitor cells is believed to reside 

[5].  As encapsulation progresses, the fetal adrenal cortex is replaced by the 

adult or definitive cortex, which has been shown to have regenerative properties 

that presumably facilitate the continued turnover and replenishment of 

adrenocortical cells throughout the life of the organism [6].  

 The necessity of Sf1 in adrenal development is absolute for the 

development and maintenance of the adrenal gland.  Sf1-null mice die shortly 

after birth likely due to adrenocortical insufficiency, and also completely lack both 

adrenal glands and gonads [7].  However, there are numerous additional 

regulatory factors and signaling pathways that have also been implicated in the 
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specification, development and maintenance of the adrenal cortex.  These 

include dosage-sensitive sex reversal, adrenal hypoplasia congenita critical 

region on the X chromosome, gene1 (Dax1); pre B-cell leukemia homeobox 1 

(Pbx1); Wnt/β-catenin signaling; sonic hedghog signaling (Shh); Cdkn1c (p57kip2) 

which is implicated in the intrauterine growth restriction, metaphyseal dysplasia, 

adrenal hypoplasia congenita, and genital anomaly syndrome (IMAGe); and most 

recently, Pod1 (Tcf21) [8-14].  The interplay between these regulatory and 

signaling pathways that occurs in the developing adrenal gland is highly complex 

and intricate, and the exact roles of each of them has yet to be fully understood. 

 Recently, the role of post-transcriptional regulation in the form of miRNAs 

has been investigated in development and physiology, including in the 

developing adrenal.  miRNAs are short, endogenous, non-coding RNA transcripts  

first described in C. elegans [15].  Initially thought to be an idiosyncrasy found in 

nematodes, they are present in most eukaryotic cells, consistent with a critical 

evolutionary role for these transient and previously dismissed RNA transcripts.  

The canonical function of miRNAs is that of post-transcriptional regulation of 

gene expression, and this is accomplished by binding to target gene mRNAs 

through partially complementary sequences in the 3’ untranslated region (UTR).  

In conjunction with a protein complex known as the miRNA Induced Silencing 

Complex (miRISC), miRNAs bind to target mRNA transcripts to inhibit translation 

by destabilizing the target transcript and facilitating degradation, or inhibiting the 

translational machinery [16,17].  These mechanisms have the effect of 
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subsequently inhibiting the protein expression of specific genes within a cell, fine 

tuning the gene expression within a cell to maintain homeostasis.   

 Since the groundbreaking observation in 1993 by Lee et. al., the field of 

miRNAs has rapidly expanded, and along with it our understanding of their 

functions in development, physiology, and disease processes.  miRNAs appear 

to be crucial in development, as mice deficient in Dicer, the RNAse III enzyme 

required for miRNA maturation, do not survive beyond embryonic day 8.5 (E8.5), 

due to arrested embryonic development beginning at E7.5 [18].  Subsequent 

studies involving tissue-specific Dicer knockout mouse models show that Dicer is 

required for normal organogenesis and tissue maintenance in a variety of organs 

including the heart, lung, skin, muscle, and gonads [19-25].  Additionally, Dicer 

has shown to be required for the maintenance of embryonic and tissue stem cells 

[26,27], suggesting a role for Dicer and miRNA expression in regulating cellular 

differentiation.    

 In this study we utilized a genetic approach to ablate Dicer in the 

steroidogenic cells of the adrenal cortex.  The resulting adrenocortical Dicer KO 

mice underwent normal adrenal development through embryonic day E14.5.  

However, the adrenal cortex underwent rapid degeneration beginning at E16.5.  

By E18.5, the adrenal cortex had completely failed to the point of there being a 

near complete absence of cortical tissue.  MicroRNA and mRNA array analysis 

showed that Dicer KO adrenals had distinct expression profiles relative to wild 

type controls, including the up-regulation of Nr6a1, Igdcc3, and Acvr1c; the data 
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also revealed the concurrent down-regulation of miRNAs predicted to target 

these specific mRNA transcripts in Dicer KO adrenals.   
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Materials and Methods

Mice

 Experiments involving live animals were performed in accordance with 

current and institutionally approved protocols and animal care guidelines.  Sf1-

Crehigh and Sf1-Crelow  mice were obtained and described previously [9,28].  Mice 

carrying the floxed Dicer allele (Dicer1tm1Bdh/J) were purchased from The Jackson 

Laboratory (Bar Harbor, ME).  

 To obtain Sf1-Cre/Dicerlox/lox mice, Sf1-Cre/Dicer+/lox and Dicerlox/lox mice 

were mated together.  Females from each mating pair were monitored for 

seminal plugs, and the morning of detection was designated as E0.5.  Pregnant 

females were sacrificed and harvested at designated timepoints, and embryos 

were staged using Theiler staging criteria as described by the e-mouse Atlas 

Project (www.emouseatlas.org).  Genotyping for the Sf1-Cre and Dicerlox allele 

was performed on tail sections from both embryos and adult mice as previously 

described [28,29].  For long term observations of Sf1-Crelow/Dicerlox/lox mice, 

control and knockout offspring were sacrificed at 6, 13, 18, 30, and 50 weeks of 

age.  Adrenals were bilaterally excised, cleaned of excess fatty tissue, and 

weighed.  Adrenal weights were normalized to the body weight of the animal from 

which they were isolated.  Left adrenals were collected for histologic processing, 

and the contralateral glands were utilized for RNA isolation.  
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Dexamethasone suppression/ACTH stimulation test and plasma 

corticosterone RIA

 50 week old Sf1-Crelow/Dicerlox/lox (n=7) and 50 week old control mice (n=5) 

were subject to ACTH stimulation and tail vein blood collection prior to sacrifice 

as described previously [30].  Animals were intra-peritoneally injected (IP 

injected) with 5mg/kg body weight dexamethasone (Sigma-Aldrich, St. Louis, 

MO) at 1800 hours the night before and at 0800 hours the day of the assay.  At 

1000 hours, 1mg/kg body weight of ACTH [ACTH (1-24); Bachem, Torrance, CA] 

was IP injected.  Blood was collected by venous tail vein puncture at 0, 15, 30, 

and 60 minutes post-ACTH injection. 

 Serum corticosterone levels in 50 week old knockout and control animals 

were measured by radioimmunoassay (RIA) using a 125I RIA kit (MP Biomedicals, 

Solon, OH) using the manufacturer’s instructions.  Samples were run in triplicate 

and quantified using a Gammer Counter.  All measurements were within the 

standard curve of the assay.   

Adrenal histology, immunohistochemistry, and immunofluorescence

 Tissues were fixed between 2-4 hours in 4% paraformaldehyde and then 

dehydrated in a series of graded ethanol solutions before paraffin embedding.  

7µm sections were cut and placed on microscope slides for further manipulation.

 Hematoxylin and eosin staining was performed by deparaffinizing tissue 

sections in xylene, then rehydrated in graded ethanol solutions of decreasing 

concentration.  Slides were dipped in hematoxylin for 3 seconds, then 
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immediately transferred to deionized water and rinsed with running deionized 

water for several minutes.  Slides were counterstained by a 3 second immersion 

in eosin, then rinsed and dehydrated in a series of ethanol and xylene baths, and 

finally mounted with Permount (ThermoFisher, Waltham, MA).

 Immunohistochemistry was performed by processing tissue sections as 

described above.  Following rehydration, slides were subjected to antigen 

retrieval by boiling in 10mM sodium citrate (ph 6) for 20 minutes.  After cooling, 

slides were washed once in deionized water followed by 2 washes in Tris-

buffered saline/0.1% Tween-20 (TBST, ph 7.5).  Antibody staining was performed 

with VECTASTAIN ABC kits (Vector Laboratories, Burlingame, CA) according to 

the manufacturer’s protocol.  Tissue sections were blocked in antibody diluent 

solution for 1 hour at room temperature, then incubated overnight at 4°C with 

anti-p21 (1:100, BD Pharmingen, San Diego, CA), anti-cleaved-caspase 3 

(1:100, Cell Signaling, Danvers, MA), anti-Sf1 (1:1000, custom antibody), and 

anti-tyrosine hydroxylase (1:500, Pel-Freez Biologicals, Roger, AR).  The 

following day, sections were washed 3 times in TBST, then 2 times in deionized 

water.  Incubation with biotinylated secondary antibodies was performed for 1 

hour at room temperature, and subsequent staining via 3,3’-Diaminobenzidine 

(DAB) was performed according to the manufacturer’s instructions.  DAB stained 

tissue sections were then counterstained with either diluted (1:10 deionized 

water) eosin or hematoxylin.  Slides were finally mounted using Permount 

coverslip mounting medium, allowed to cure overnight at room temperature, and 

imaged using light microscopy.
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 Fluorescent labeled tissue sections were processed and cut as described 

above.  Antigen retrieval was performed by boiling slides in 10mM citric acid (pH 

6) for 30 minutes.  After cooling to room temperature, tissue sections were 

blocked with PBS/2% non-fat dry milk/2% normal goat serum for 1 hour at room 

temperature.  Sections were then incubated overnight at 4°C with anti-Sf1 

(1:1000, custom antibody), anti-tyrosine hydroxylase (1:300, Millipore, Billerica, 

MA), and anti-PCNA (1:500, Santa Cruz, Santa Cruz, CA).  The following 

morning, slides were washed 3 times in PBS, then 2 times in deionized water 

before incubation with DylightTM 488 conjugated goat anti-rabbit or DylightTM 549 

conjugated goat anti-mouse (1:1000, Jackson ImmunoResearch Laboratories, 

West Grove, PA) for 1 hour in the dark at room temperature.  All antibodies were 

diluted in PBS containing 0.2% non-fat dry milk and 0.2% normal goat serum.  

Slides were washed again 3 times in PBS, followed by 2 washes in deionized 

water.  The fluorescently labeled tissue sections were counterstained with 4',6-

diamidino-2-phenylindole (DAPI, 1:1000, Sigma-Aldrich, St. Louis, MO).  

Coverslip mounting was performed using Tris-buffered Fluorogel (Electron 

Microscopy Sciences, Hatfield, PA), cured for 24 hours in the dark at room 

temperature, then visualized by fluorescent microscopy.

Quantitative Real-time PCR

Total RNA was isolated from the adrenals of control and Dicer KO animals were 

processed using either TRIzol reagent or the RNAqueous Micro kit (Life 

Technologies, Carlsbad, CA) to isolate total RNA.  Up to 1µg of RNA was reverse 
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transcribed using the iScript system (Bio-Rad Laboratories, Hercules, CA) to 

generate cDNA.  1µL of the resulting cDNA was amplified with appropriate 

primers using Power SYBR Green PCR Master Mix and analyzed on an ABI 

7300 Real Time PCR System (Applied Biosystems, Carlsbad, CA).  Data 

analysis was performed using the 2-∆∆C(T) method [31].  Gene expression was 

normalized to mouse β-Actin. Primers for each amplified gene are as follows:  

β-Actin (Actb), Fwd 5’-CTAAGGCCAACCGTGAAAAG and 

Rev 5’-ACCAGAGGCATACAGGGACA; 

Sf1 (Nr5a1), Fwd 5’-TCCAGTGTCCACCCTTATCC and 

Rev 5’-CGTCGTACGAATAGTCCATGC; 

11β-hydroxysteroid dehydrogenase (Cyp11b1), Fwd 5’-

GCCATCCAGGCTAACTCAAT and Rev 5’-CATTACCAAGGGGGTTGATG; 

11β-aldosterone synthase (Cyp11b2), Fwd 5’-GCACCAGGTGGAGAGTATGC 

and Rev 5’-CCATTCTGGCCCATTTAGC; 

ACTH receptor (Mc2r), Fwd 5’-TGGAAAAGTTCTCAGCACCAC and 

Rev 5’-TCTTTGTGTGGAAGGATCTGG; 

steroidogenic acute regulatory protein (Star),

 Fwd 5’-TTGGGCATACTCAACAACCA and Rev 5’-ACTTCGTCCCCGTTCTCC; 

cholesterol side chain cleavage enzyme (Scc), Fwd 5’-

AAGTATGGCCCCATTTACAGG, and Rev 5’-TGGGGTCCACGATGTAAACT; 

Dicer (Dicer1), Fwd 5’-GCAAGGAATGGACTCTGAGC and 

Rev 5’-GGGGACTTCGATATCCTCTTC.
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Microarrays

 Timed matings were established to generate Sf1-Crehigh/Dicerlox/lox 

knockout embryos.  At E15.5 and E16.5, pregnant females were sacrificed, and 

embryos were collected and staged according to the criteria referenced above.  

Adrenals from each embryo were micro-dissected and stored separately in 

RNAlater solution (Invitrogen, Carlsbad, CA) until genotyping confirmed Dicer KO 

status.  The adrenals from control and Dicer KO littermates were pooled for 4 

separate litters, resulting in a total of 4 control and 4 Dicer KO biological 

replicates at both E15.5 and E16.5 timepoints.  Total RNA was isolated using the 

RNAqueous Micro kit (Invitrogen, Carlsbad, CA) in accordance with the 

manufacturer’s protocol to preserve small RNA recovery.  Isolated RNA was 

quantified on a Nanodrop 2000c spectrophotometer (Thermo Scientific, 

Wilmington, DE), and submitted to the University of Michigan Microarray Core 

Facility where samples were quality checked and finally analyzed with both 

Affymetrix Mouse 430 2.0 gene expression arrays and ABI miRNA OpenArrays.      

Statistical Analysis

 Microarray data were normalized using the robust multiarray average 

(RMA) algorithm [32].  MicroRNA data were normalized to the U6 rRNA value on 

the corresponding subpanel of the Openarray.  For both types of arrays, 

differential gene expression between conditions was determined using the limma 

package by applying linear modeling followed by the empirical Bayes method to 

compute significance [33].  The resulting p-values were adjusted for multiple 

113



testing by the Benjamini-Hochbberg method [34]. Genes with an absolute log2 

fold change greater than or equal to 1.5 with an adjusted p-value of less than .05 

were considered differentially expressed and statistically significant.  For the 

DAVID analysis, each collection of differentially expressed genes was evaluated 

for gene-enrichment by submitting the Entrez Gene identifiers to DAVID and 

running the default analysis. Functional classifications with a false discovery rate 

(FDR) ≤ 5% were considered significant [35].
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Results

Sf1-Crelow/Dicerlox/lox mice survive up to 50 weeks and have no appreciable 

deficits in adrenal morphology or steroidogenesis

 We generated knockout (KO) mice that lack Dicer expression in the 

adrenal cortex by breeding mice carrying the Sf1 promoter-driven Cre transgene 

and one copy of the floxed Dicer allele (Sf1-Cre/Dicerlox/lox) with mice carrying 

homozygous floxed Dicer alleles (Dicerlox/lox).  The contrasting effects of the low 

and high Sf1-Cre transgenes have been described [9].  Briefly, the single-copy 

Sf1-Crelow transgene (low driver) results in partial penetrance of Cre recombinase 

expression and a milder phenotype compared with the Sf1-Crehigh transgene 

(high driver) that contains five copies and results in full phenotypic penetrance.  

Because of the rapid and drastic nature of the phenotypes seen in other tissue 

specific Dicer knockout models, we chose to initially study Sf1-Crelow/Dicerlox/lox 

(low driver Dicer KO) offspring in our study to determine whether a stochastic, 

partial deletion of Dicer could provide insight into its role in the long- term 

maintenance of the adrenal cortex.  

 Sf1-Crelow/Dicerlox/lox mice were housed separately according to sex and 

followed for 6, 18, 30, and 50 weeks of age.  Small cohorts of at least n=2 were 

sacrificed at each time point up 30 weeks, and the adrenals from these animals 

were analyzed.  We were unable to detect any appreciable physiologic or 

histologic phenotype at the earlier timepoints (data not shown).  We then 

concentrated our analysis on the 50 week Sf1-Crelow/Dicerlox/lox mice by testing a 

larger cohort (n ≥ 5) for functional and gene expression perturbations.  However, 
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we were unable to observe any appreciable differences in phenotype between 50 

week old control versus low driver Dicer KO adrenals.  Figure 3.1 illustrates 

representative hematoxylin and eosin stained sections from control and low 

driver Dicer KO adrenals at the 50 week timepoint, with additional to 

immunohistochemistry for the adrenocortical marker Sf1, and the medullary 

marker tyrosine hydroxylase.  No appreciable structural changes in the adrenal 

such as capsular thickening or changes in cortical mass were observed.  

Likewise, there were no discernible differences in Sf1 or tyrosine hydroxylase 

staining as assessed by immunohistochemistry.  Comparison of normalized 

adrenal weights between 50 week old control and low driver Dicer KO animals 

showed a slight trend in which the KO adrenals were on average slightly smaller 

in size than control adrenals, but this difference was not statistically significant.  

(Figure 3.2A)  Prior to sacrifice, 50 week old control and low driver Dicer KO 

animals were subjected to an ACTH stimulation test to compare maximum 

steroidogenic output.  This has been described in previous studies [30] as a 

method to measure adrenal function in vivo.  We were unable to detect a 

significant difference between 50 week old control and low driver Dicer KO mice 

in ACTH-stimulated corticosterone output at 0, 15, 30, and 60 minutes post 

injection (Figure 3.2B).  Therefore, 50 week old low driver Dicer KO adrenals 

maintained normal steroidogenic function.  Finally, 50 week old control and low 

driver Dicer KO adrenals were compared by quantitative real-time PCR to 

determine whether any differences were detectable at the transcriptional level.  

Except for a decrease in Dicer transcript levels in 50 week old Dicer KO 
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adrenals, the relative expression of steroidogenic enzyme encoding transcripts 

remained constant between control and low driver Dicer KO adrenals (Figure 

3.2C).  In summary, no significant morphological or functional deficits were 

detected in the adrenals of 50 week old low driver Dicer KO mice compared to 

control animals.  These results indicate that low driver Dicer KO adrenals can 

compensate for the loss of Dicer in a subpopulation of cortical cells, or perhaps 

Dicer function is not required in these cells.  To further explore these possibilities, 

we then performed experiments aimed at determining the effects of Dicer 

deletion in all Sf1 expressing cortical cells by examining the adrenal glands in 

Sf1-Crehigh transgenic mice.    

High driver (Sf1-Crehigh/Dicerlox/lox) Dicer KO mice die shortly after birth

 While we did not observe a significant phenotype in the adrenal glands of 

low driver Dicer KO animals as old as 50 weeks, the more robust expression 

pattern of Cre recombinase in the high driver Dicer KO animals resulted in a 

marked adrenal defect that proved to be lethal.  Based on our breeding strategy, 

embryonic (E14.5-E18.5) and post-weaning (21 days post-parturition) offspring 

were expected to demonstrate Mendelian genotypic ratios in which 25% of 

progeny should have been positive for the Sf1-Crehigh/Dicerlox/lox genotype.  

However, high driver Dicer KO animals were not observed at weaning, and the 

expected Mendelian ratios for the Sf1-Crehigh/Dicerlox/lox genotype were seen only 

at the embryonic stages. Mortality among Sf1-Crehigh/Dicerlox/lox animals occurred 

1-2 days post-parturition, and no Sf1-Crehigh/Dicerlox/lox offspring survived beyond 
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this timepoint.  Therefore, Sf1-Crehigh/Dicerlox/lox offspring invariably died shortly 

after birth.  This perninatal lethality in high driver Dicer KO animals is also 

supported by a previous report [36].  

High driver (Sf1-Crehigh/Dicerlox/lox) Dicer KO mice exhibit adrenal failure late 

in embryonic development

 Due to the perinatal lethality of the high driver Dicer KO model, we 

performed detailed analyses of adrenal histology at various embryonic time 

points in these animals.  E14.5 is the earliest time point in development where 

the adrenal has fully separated from adrenal-gonadal primordium, and medullary 

precursor cells have migrated from the neural crest into the adrenal.  We were 

unable to detect significant histological changes at E14.5 (Figure 3.3B) between 

control and high driver Dicer KO adrenal glands.  This implies that the fetal 

adrenal cortex in high driver Dicer KO animals undergoes normal specification 

and formation, and that Dicer loss in Sf1 positive cells is not initially detrimental 

to early adrenal development.  In contrast, Sf1-null animals demonstrate marked 

developmental defects in the gonad and adrenal as early as E12.5 [7], illustrating 

the global necessity of Sf1 for proper adrenogonadal development.  Adrenals 

from E16.5 high driver Dicer KO animals were still present compared with control 

adrenals, but cortical thickness was decreased in the sections that were 

analyzed.  However, adrenals from KO animals still exhibited distinct cortical and 

medullary demarcations.  The most significant phenotype in high driver Dicer KO 

animals occurred at E18.5.  As shown in Figure 3.3B, adrenals from high driver 
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Dicer KO animals at this time point demonstrated a nearly complete absence of 

the cortex.  Additionally, the overall size of the adrenal in Dicer KO animals was 

markedly smaller than control counterparts (Figure 3.3A).  Interestingly, the 

adrenal medulla, which is derived from a separate cell lineage than the cortex, 

persisted in the high driver Dicer KO adrenals.  Finally, an unidentified population 

of small, basophilic cells was observed between the medullary cells and the 

adrenal capsule.    

 To further characterize the phenotype seen in high driver Dicer KO 

adrenals, immunofluorescent antibody co-staining was performed on sections 

from control and Dicer KO adrenal sections as described in Materials and 

Methods.  At the earlier time point of E14.5, both the adrenal cortex and medulla 

appear to be intact in both control and high driver Dicer KO adrenals, as 

evidenced by anti-Sf1 and anti-tyrosine hydroxylase staining (Figure 3.3C).  

However, as development progressed, cortical mass, as defined by Sf1-positive 

cells, began to decrease at E16.5.  By E18.5, Dicer KO animals had very few 

residual Sf1 expressing cortical cells remaining in the adrenal gland.  Again, 

tyrosine hydroxylase expressing medullary cells persisted at E18.5 in Dicer KO 

adrenals, despite the severe cortical failure that was observed.  

 In summary, high driver Dicer KO adrenals underwent normal early 

development, with adrenal-gonadal separation and formation of the fetal adrenal 

cortex, followed by infiltration of the developing cortex by neural crest derived 

medullary precursor cells by E14.5.  However, beginning at E16.5, the Dicer KO 

adrenals exhibited a gradual loss of Sf1 positive cortical cells that accelerated 
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rapidly and led to the complete absence of the cortex by E18.5.  This marked 

phenotype is incompatible with life, as evidenced by the perinatal lethality 

observed in high driver Dicer KO animals which do not survive beyond one or 

two days following live birth.  

High Driver Dicer KO Adrenals Exhibit Increased dsDNA Damage and 

Apoptosis

 We further investigated the adrenocortical destruction in high driver Dicer 

KO animals by examining differences in cortical proliferation or apoptosis versus 

control mice.  In the adrenal gland, proliferating cortical cells are most abundant 

in the outer peripheral region of the cortex [37].  Anti-PCNA stained adrenal 

sections from control and Dicer KO animals were co-stained with anti-Sf1 to 

localize proliferating cells.  Our results demonstrated that Sf1 expressing, 

proliferating cells localized to the sub-capsular cortical region were were present 

in the periphery of high Driver Dicer KO adrenals, suggesting that loss of Dicer in 

cortical cells did not significantly affect proliferation (Figure 3.4A). 

 We then addressed the question of whether Dicer loss in the adrenal 

cortex induced cell cycle arrest and apoptosis.  Immunohistochemistry for 

Cdkn1a (p21) and cleaved-Caspase 3 indicated significant increases in the 

expression of these proteins in high driver Dicer KO adrenals (Figure 3.4B and 

Figure 3.4C).  The expression pattern of p21 and cleaved-Caspase 3 in Dicer KO 

adrenals was limited primarily to the cortex, and could be detected as early as 

E14.5.  This was surprising as we were not able to otherwise appreciate an 
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apparent phenotype in high driver Dicer KO adrenals at this early time point.  

Finally, phospho-gamma-H2A.X staining was present in high driver Dicer KO 

adrenals, indicating the presence of double stranded DNA damage (Figure 3.5).

 In summary, high driver Dicer KO adrenals showed evidence of increased 

cell cycle arrest and apoptosis in the cortex, consistent with the induction of a 

DNA damage checkpoint and the aplastic cortical phenotype observed at E18.5.

High Driver Dicer KO Adrenals Demonstrate a Unique mRNA Expression 

Profile

 Sf1-Crehigh/Dicerlox/lox high driver Dicer KO mice demonstrated marked 

aplasia of the adrenal cortex that began with increased cellular death at E14.5 

and continued at a rapidly accelerating tempo until E18.5, at which time high 

driver Dicer KO adrenals had undergone nearly complete cortical failure.  

Whether this adrenal failure reflected dysregulation of miRNA biogenesis, or a 

cellular toxicity effect resulting from the accumulation of unprocessed pre-miRs is 

unclear.  Further analysis on the high driver Dicer KO phenotype was therefore 

performed by assessing gene transcript expression in both control and KO 

adrenals over a 2 day time course just prior to the rapid cortical failure seen at 

E18.5.

 E15.5 and E16.5 adrenals from control and high driver Dicer KO embryos 

were harvested and processed as described in Materials and Methods.  Figure 

3.6A shows a heatmap illustrating the differentially expressed gene transcripts in 

high driver Dicer KO adrenals compared with control adrenals at both the E15.5 
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and E16.5 time points.  In E15.5 high driver Dicer KO adrenals, 10 up-regulated 

and 19 down-regulated transcripts were observed that were differentially 

expressed relative to control adrenals.  Similarly, there were less up-regulated 

unique transcripts in E16.5 Dicer KO adrenals than unique down-regulated 

transcripts (19 up vs. 31 down).  The majority of these differentially expressed 

genes overlapped between the E15.5 and E16.5 timepoints in Dicer KO adrenals 

as illustrated in Figure 3.6B.   

 Many of the differentially down-regulated gene transcripts in Dicer KO 

adrenals were related to steroidogenic pathways, with Akr1d1 (a 5-beta 

reductase), and Adh7, (an alcohol dehydrogenase known to be expressed in the 

adrenal cortex), being the two most down-regulated transcripts in Dicer KO 

adrenals common to both E15.5 and E16.5 timepoints.  Additionally, Frzb, a 

secreted Wnt antagonist, was also highly down-regulated in E15.5 and E16.5 

Dicer KO adrenals.  This result was consistent with data from our lab and others, 

which demonstrates a role of the Wnt/β-catenin signaling pathway in adrenal 

development and maintenance, and in the pathology of adrenocortical neoplasia 

[9,38].  

 When we compared all of the differentially up-regulated transcripts in high 

driver Dicer KO adrenals relative to control adrenals at both E15.5 and E16.5, 

numerous genes related to inflammatory or immune processes appeared to be 

over-represented in the data.  We performed a DAVID (Database for Annotation, 

Visualization and Integrated Discovery) analysis which allowed us to identify 

enriched biological themes such as gene ontology (GO) terms and functionally 
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related gene groups.  Comparison across time points and genetic background 

(control vs. Dicer KO) demonstrated that E16.5 high driver Dicer KO adrenals 

were particularly enriched for GO terms related to immune and inflammatory 

response pathway genes (Table 3.1).  These data were consistent with an 

inflammatory process or a cell mediated immune response occurring in high 

driver Dicer KO adrenals that could either contribute to or be a consequence of 

the observed cortical cell death.  

 Interestingly, the most up-regulated transcript in high driver Dicer KO 

adrenals at both E15.5 and E16.5 timepoints was Nr6a1, or germ cell nuclear 

factor (Gcnf).  There was concern this may have been an artifact due to the 

presence of approximately 10kb of the 3’ end of Nr6a1 on the BAC utilized to 

generate the Sf1-Cre transgene.  To further investigate, we performed 

quantitative real-time PCR on E15.5 control and high driver Dicer KO adrenals.  

The up-regulation of Nr6a1 in high driver Dicer KO adrenals was confirmed, as 

we observed at least 2-fold up-regulation of all 3 Nr6a1 isoforms in Dicer KO 

adrenals with isoform 2 being the most robustly up-regulated (Figure 3.7A).  

Additionally, we compared Nr6a1 transcript levels by quantitative real-time PCR 

in the adrenals of wild type animals and animals carrying only the Sf1-Crehigh 

transgene (Figure 3.7B).  We observed a small but significant increase (up to 2 

fold) in isoform 2 of Nr6a1 in adrenals collected from animals harboring only the 

Sf1-Crehigh transgene.  This suggested there may have been transcriptional 

leakage from the transgene, which contains approximately 10kb of the 3’ end of 

the Nr6a1 locus.  Subsequent quantitative real-time PCR analysis performed on 
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cerebral and hepatic tissue isolated from mice bearing only the Sf1-Crehigh 

transgene supported the possibility that the transgene was leaking an incomplete 

3’ transcript of Nr6a1 (Figure 3.7C).  We observed a 2 to 5-fold increase in 

isoform 2 of Nr6a1 in tissues isolated from animals carrying only the Sf1-Crehigh 

transgene.  In comparison, the high driver Dicer KO animals that also carry the 

transgene demonstrated significantly higher levels of this particular isoform (10 to 

16-fold) relative to wild type control animals that were not Dicer KO and did not 

have the Sf1-Crehigh transgene.  Additionally, isoforms 1 and 3 of Nr6a1, which 

were also up-regulated in high driver Dicer KO adrenals, were not significantly 

changed in adrenals taken from animals bearing only the Sf1-Crehigh transgene.  

Taken together, these data confirm that Nr6a1 was up-regulated resulting from 

loss of Dicer in the adrenal cortex.  They also demonstrated transcriptional 

leakage of a partial, 3’ transcript of Nr6a1 from the Sf1-Crehigh transgene alone, 

which accounted for approximately 20-30% of the Nr6a1 up-regulation seen in 

Dicer KO adrenals.  

Down-regulated miRNAs in High Driver Dicer KO Adrenals Are Predicted to 

Target Up-Regulated Gene Transcripts

 In addition to performing Affymetric microarray analysis on high driver 

Dicer KO adrenals, we also profiled and compared miRNA expression for control 

and KO adrenals at E15.5 and E16.5.  As expected, the differentially expressed 

miRNAs in Dicer KO adrenals relative to control were down-regulated to varying 

degrees (Figure 3.8A).  Of these differentially expressed miRNAs, sixteen were 
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common among the E15.5 and E16.5 timepoints analyzed, and several including 

miR-21, have been implicated in the regulation of adrenal physiology [39] (Figure 

3.8B).  Of these down-regulated miRNAs seen at both E15.5 and E16.5, miR 

34c, miR-21, miR-10a, and let-7d were among the most interesting candidates 

for future studies due to the large body of literature available regarding their 

function.    

 We cross-referenced the list of differentially expressed miRNAs with the 

list of differentially expressed gene transcripts in high driver Dicer KO adrenals at 

both E15.5 and E16.5 with the intent of identifying predicted miRNA-target 

mRNA pairs.  Interestingly, the gene transcripts for Nr6a1, Igdcc3, Acvr1c, and 

Greb1l were consistently and repeatedly identified as targets for a small subset 

of miRNAs that were differentially expressed in common among E15.5 and E16.5 

Dicer KO adrenals.  Table 3.2 lists these miRNA-target miRNA pairs and the 

number of predicted sites in each gene target for a given miRNA.  Let-7d, 

miR-10a, miR-202, miR-21, miR-674, and miR-362 were the six miRNAs in 

common between E15.5 and E16.5 Dicer KO adrenals, and it is important to 

reiterate that the four predicted gene targets listed above were also commonly 

up-regulated in Dicer KO adrenals at both time points analyzed.  Finally, we 

compared the predicted binding sites for let-7 in the 3‘ UTRs of both mouse and 

human NR6A1 and ACVR1C.  As illustrated in Table 3.3, the seed sequences 

recognized by let-7 are strongly conserved between human and mouse for all of 

the predicted binding sites that were suggested by the TargetScan algorithm.  In 

addition, these seed sequences were also found to be strongly conserved among 
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other vertebrate organisms (data not shown).  This phylogenetic conservation of 

predicted let-7 binding sites among various species including between mice and 

humans supports the notion that these binding sites may indeed be functional.  

Similar analyses would need to be performed on the other predicted miRNA-

mRNA interactions described here, and would help determine which predicted 

miRNA-mRNA interactions might be candidates for functional validation studies.     

 In summary, results from the arrays performed on E15.5 and E16.5 control 

versus high driver Dicer KO adrenals showed a unique gene expression profile.  

A number of other transcripts, most notably belonging to the genes Nr6a1, 

Igdcc3, Acvr1c, and Greb1l were also highly up-regulated in Dicer KO adrenal 

glands.  Concurrent miRNA profiling suggested a strong correlation between 

these four differentially expressed genes and several down-regulated miRNA 

species.   There was also data suggestive of an immune/inflammatory response, 

which may have been contributory to the apoptosis and ultimate aplastic 

phenotype observed in Dicer KO adrenal glands.    
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Discussion             

 In this study we generated mice that lacked the enzyme Dicer in the 

adrenal cortex utilizing a Cre-loxP excision system to selectively knock out Dicer 

in cells that expressed the steroidogenic regulator, Sf1.  The first part of the study 

utilized Sf1-Crelow transgenic mice, in which only a small percentage of cortical 

cells underwent Cre mediated excision of the floxed Dicer alleles.  In contrast, 

the Sf1-Crehigh driver resulted in excision of floxed Dicer alleles in all Sf1 

expressing cortical cells, and this mouse was used to determine the 

developmental effects of Dicer loss in the adrenal cortex.

 Dicer ablation has been associated with cellular senescence and 

apoptosis or reduced proliferation in a number of biological models [40-43].  We 

hypothesized that generating Sf1-Crelow Dicer KO mice might result in a 

protracted exhaustion of the adrenal cortex stemming from increased cellular 

turnover of the gland.  Since Dicer knockout mice generated with the Sf1-Crelow 

transgene did not exhibit any significant phenotype even up to 50 weeks of age, 

these data suggested that Dicer loss under the Sf1-Crelow transgene was 

insufficient to produce a measurable effect in our animals, or the adrenals in 

these animals were able to physiologically compensate for the defect, as is seen 

in the contralateral adrenal following unilateral adrenalectomy [44].  In light of 

recent reports that describe heterozygous DICER mutations in humans resulting 

in a familial cancer syndrome, it would be interesting to see what effects, if any, 

may have resulted had Sf1-Crelow Dicer KO animals been followed significantly 

beyond our experimental endpoint of 50 weeks.    
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 We hypothesized that complete Dicer ablation in the developing adrenal 

cortex would result in failure of the tissue.  In contrast to Sf1-Crelow Dicer KO 

animals, Sf1-Crehigh Dicer KO animals exhibited severe adrenal aplasia at E18.5, 

despite normal fetal adrenal formation.  There was a substantial delay between 

Cre-mediated Dicer excision at approximately E10-E11, and the onset of 

phenotypic changes in Dicer KO mice at E14.5-E16.5.  This delay in phenotype 

onset may be due to varying half-lives of Dicer protein and/or mature miRNAs in 

the developing adrenal.  A three to ten day delay has been reported between 

Cre-mediated Dicer excision and depletion of specific miRNAs in the developing 

mouse inner ear, and the possible persistence of other miRNAs has been 

observed long after Dicer ablation in Purkinje cells  [45,46].  Another possibility 

for the delay between Dicer ablation and phenotype onset might be attributed to 

differing sensitivities of various tissues to miRNA mediated gene regulation.  We 

observed increased apoptosis at E14.5 in Dicer KO adrenals, which coincides 

with the time at which the fetal cortex begins to transition to the adult cortex.  It is 

known that the fetal adrenal cortex is eventually replaced by the adult adrenal 

cortex beginning at E14.5 [47].  Our lab has hypothesized that a small sub-

population of fetal adrenocortical cells undergo a change in transcriptional 

programming as they populate the adrenal capsule and become adrenal stem/

progenitor cells responsible for maintaining the adult adrenal cortex [5].  Such a 

transition would be predicted to require significant changes in gene transcription 

and expression, and could make the adrenal cortex more vulnerable to loss of 

miRNA mediated gene regulation in Dicer KO mice at this critical timepoint.
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 The phenotype observed in the adrenal cortex of Sf1-Crehigh Dicer KO 

animals was caused in part by increased cell cycle arrest and apoptosis, 

resulting in the rapid perinatal death of affected offspring, and was consistent 

with adrenal failure [7].  As cited earlier, many of the previous tissue-specific 

Dicer loss of function studies report both an increase in apoptosis, and in some 

cases proliferative defects.  Additionally, it is known that Dicer ablation in primary 

cell cultures results in the induction of a DNA damage checkpoint, and 

subsequent p19Arf-p53 signaling, leading to increased cellular senescence [40].  

The increased phospho-gamma-H2A.X staining (a marker for double stranded 

DNA damage) we observed in Sf1-Crehigh Dicer KO adrenals is consistent with 

this report.  Adrenals from Sf1-Crehigh Dicer KO embryos also demonstrated a 

significant up-regulation of p21, a cell cycle inhibitor that in part mediates 

senescence, and cleaved Caspase-3, an apoptotic effector caspase.  

The body of data generated by the numerous Dicer loss-of-function models show 

that despite tissue specific differences in observed phenotypes, there may be a 

common mechanistic element across Dicer knockout models.  However, the 

exact mechanism responsible for the observed phenotypes is unknown, and 

several potential actions other than loss of miRNA mediated gene regulation 

could also be involved.

 One possibility may be related to the accumulation of precursor miRNAs 

(pre-miRNAs) that result without the downstream processing provided by Dicer 

[26].  There is evidence for toxic effects associated with oversaturating the 

endogenous miRNA machinery [48].  Animals injected with shRNA vectors into 
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the liver exhibit toxic effects in addition to a decrease in the expression of several 

liver-specific miRNAs, [49] which appears to be a result of oversaturating the 

endogenous miRNA processing machinery.  It is unknown what effect the 

analogous overabundance of immature miRNA species may have on cellular 

homeostasis.

 Dicer is also reported to exhibit miRNA-independent cell survival 

functions, which may also be a contributing factor to consider in the context of 

Dicer loss of function phenotypes.  A recent report by Kaneko et. al. 

demonstrates the necessity of Dicer in clearing Alu and Alu-like B1/B2 RNAs in 

the retinal pigmented epithelium (RPE) of humans and mice, respectively; loss of 

Dicer in these cells resulted in degeneration of the RPE and was not dependent 

on dysfunctional miRNA biogenesis [50].  Similarly, Dicer has been implicated in 

the silencing of centromeric chromatin and regulation of differentiation in mouse 

embryonic stem cells through a non-miRNA-dependent mechanism [26].  These 

reports support the possibility that not all Dicer loss-of-function model 

phenotypes may be necessarily due to impaired miRNA biogenesis, but could 

also be due to defects in other Dicer dependent pathways such as RNAi.  There 

may also be other uncharacterized functions of Dicer that are unrelated to the 

RNAi or miRNA pathways.

 Finally, Dicer in nematodes is reported to undergo specific cleavage at the 

C-terminus of the first RNase III domain in the presence of caspases, generating 

a truncated protein that has DNase activity [51] and produces 3‘ hydroxyl breaks 

in chromosomal DNA, leading to apoptosis.  If a similar phenomenon also occurs 
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in mammals, it could provide a feed-foward loop in which upstream caspase 

activation promotes cell death by acting upon residual Dicer protein that may be 

undetectable in Dicer KO cells.  Regardless of the mode of cell death that is 

induced by Dicer ablation, attempting to determine the specific effects and 

mechanism of Dicer ablation in the context of adrenal development is a 

complicated proposition, and is beyond the scope of this study.

 The second half of this study profiled mRNA and miRNA expression in 

Sf1-Crehigh Dicer KO adrenals at E15.5 and E16.5 with the goal of identifying 

differentially expressed genes resulting from Dicer ablation in knockout adrenals 

prior to failure of the cortex.  In addition, we aimed to identify inversely expressed 

miRNAs that could be potential regulators of down-regulated genes observed in 

Dicer KO adrenals.  Results from the mRNA microarray showed significant down-

regulation of numerous steroidogenic genes, in addition to the sonic hedgehog 

(Shh) transcript.  The latter is intriguing as Shh signaling between subcapsular 

cortical cells and the adrenal capsule is believed to be closely involved in the 

maintenance of an adrenocortical progenitor cell population in the capsule 

[11,52,53].  At E16.5, there were substantially more differentially expressed gene 

transcripts in Dicer KO adrenals, suggesting a progressive disruption of gene 

expression resulting from Dicer ablation.  Additionally, a surprising number of up-

regulated transcripts at both E15.5 and E16.5 were associated with immune or 

inflammatory response processes.  We performed a DAVID analysis on the array 

data, and in E16.5 KOs, there was a significant enrichment of GOTERMS among 

differentially expressed gene transcripts that supported this finding.  However, 
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our histologic analysis of Dicer KO adrenals did not show signs of an active 

inflammatory process.  Further study is needed to determine whether these gene 

changes are related to the phenotype seen in Dicer KO adrenals, or if they are 

indicative of some other processes resulting from Dicer ablation.

 The most interesting result was the up-regulation of Nr6a1 (Gcnf) and 

Acvr1c (Alk7) in Dicer KO adrenals.  These observations were of particular 

interest to us as they are implicated in developmental processes in other tissues 

and organs; they are also shown to be expressed in the developing adrenal 

gland at E14.5 by in situ hybridization [54], although their function in the 

embryonic adrenal is not known.  Nr6a1 is reported to play important functions in 

germ cell and neuronal development [55], and is a paralog of Sf1, residing a 

mere 13kb downstream of Sf1 on chromosome 2 [56].  Despite the close 

proximity to Sf1, the expression pattern of Nr6a1 is relatively distinct, and an 

insulator defining a transcriptional boundary between Sf1 and Nr6a1 has been 

previously described [57].  Nr6a1 is transiently up-regulated following retinoic 

acid induced differentiation of embryonic stem cells [58], and is a potent 

transcriptional repressor of the stem cell pluripotency factor Oct4 [59].  It is also 

required for proper neural stem cell and germ cell development and 

differentiation [55].  The expression and function of Nr6a1 in the adrenal cortex is 

not well characterized, but it could be hypothesized to regulate the differentiation 

of adrenocortical cells from the population of progenitor cells thought to reside in 

the subcapsular region of the cortex.  Further analysis would be required to 
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localize Nr6a1 expression in the normal embryonic adrenal, and to further 

characterize its function, if any, in adrenal development.  

 Acvr1c (Alk7) is a member of the TGF-beta receptor superfamily, and is a 

type I activin receptor, working in conjunction with type II activin receptors to 

transduce signaling of ligands through Smad proteins.  Alk7 has a restricted 

expression pattern in contrast with the activin type IB receptor (Alk4), and is the 

preferred receptor for activin AB, activin B, and Nodal [60,61].  Nodal is a 

secreted ligand belonging to the TGF-beta superfamily, and is responsible for 

mesendoderm formation, node formation, and left-right patterning in the mouse 

[62,63].  It is also able to induce caspase-3 dependent apoptosis by activating 

Alk7 signaling in a variety of cell types, in addition to normal physiologic 

processes such as follicular atresia in the ovary and in trophoblast cells during 

placentation [64-68].  There are no published reports of Alk7 expression or 

function in the adrenal cortex, although its role in the ovary, an organ with a 

common development origin with the adrenal cortex, has been described [69].  It 

is possible that the caspase-3 mediated apoptosis seen in our Sf1-Crehigh Dicer 

KO adrenals may be mediated in part by the up-regulation of Alk7, and would be 

an interesting avenue for further study.  Finally, there is evidence of activin/inhibin  

signaling as a regulator of adrenal-gonadal fate.  It has been shown previously by 

our lab that inhibin KO mice develop gonadal sex-cord tumors, and when 

gonadectomized, adrenocortical tumors.  These adrenocortical tumors display a 

change in cellular identity from adrenal to ovary, which is facilitated by a switch in 

the expression of the transcription factor Gata6 to Gata4.  These transcription 
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factors define the normal adrenal and ovary, respectively [70].  While intriguing, it 

is unknown whether Alk7, although it functions as a receptor for certain activin 

family ligands, has a direct role in this previously observed phenomenon. 

 Interestingly, the literature provides circumstantial evidence of cross-talk 

between the Nr6a1, Alk7, and Wnt/B-catenin pathways.  It is known that Nr6a1 

represses the expression of Cripto1, an epidermal growth factor-Cripto1/FRL1/

cryptic (EGF-CFC) family growth factor that is capable of significantly enhancing 

Nodal mediated signaling through Alk7 [71].  In contrast, Cripto1 is a target of the 

canonical Wnt/β-catenin signaling pathway, and is activated by Lef/Tcf 

transcription factors [72].  Previous studies from our lab demonstrate that active 

β-catenin is present in the subcapsular cortical cells of the adrenal gland as early 

as E14.5, and these cells are believed to receive Wnt signals from the adrenal 

capsule [2].  Further study would be required to confirm the expression and 

potential interaction of these signaling pathways in the normal developing 

adrenal.  If there proves to be some degree of interaction between these 3 

signaling pathways, it would likely require a complex regulatory network to 

maintain homeostasis.  In this regard, miRNAs would be a viable candidate for 

fine-tuning the relative expression levels of each gene, and perturbation of the 

miRNA biogenesis machinery could upset the fine balance required for normal 

adrenal development and homeostasis.

 The miRNAs found to be significantly down-regulated in E15.5 and E16.5 

Dicer KO adrenals provided several interesting avenues for further study.  miR 

34c, miR-21, miR-10a, and let-7d have all been significantly studied in the 
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literature, particular in aberrant physiological processes such as tumorigenesis.  

Let-7 is the second miRNA to be described after lin-4, and was discovered to 

regulate developmental timing in nematodes [73].  In addition, it is known to 

regulate the oncogenes RAS [74], HMGA2 [75], and MYC [76], and can regulate 

proliferation pathways in human cells [77].  The miR-34 cluster of miRNAs can 

act as a tumor suppressor downstream of p53, and promote cell cycle arrest, 

apoptosis, and senescence [78,79].  In contrast, evidence supports the role of 

miR-10a in retinoic acid induced differentiation of neuroblastoma cells [80], and 

the regulation of Bcl-6, a gene involved in the development of diffuse large B-cell 

lymphoma [81].  miR-21 is implicated in the regulation of aldosterone synthesis in 

the H295 human ACC cell line [39], and believed to promote tumor metastasis 

and tumorigenesis by targeting PTEN [82].  Although these miRNAs have been 

heavily studied in the context of cancer, the body of literature concerning them 

could be useful in elucidating their function in developmental processes, as the 

pathways responsible for organism development and the pathology of cancer 

often coincide.     

! We also compared differentially expressed miRNAs from E15.5 and E16.5 

Dicer KO adrenals with differentially expressed mRNA transcripts using predictive 

algorithms in the TargetScan method in an attempt to identify miRNA-mRNA 

target pairs [83].  We found that Nr6a1 and Acvr1c were both overrepresented as 

predicted targets of a subset of significantly down-regulated miRNAs in both 

E15.5 and E16.5 Dicer KO adrenals, which consisted of the following miRNAs: 

let-7d, miR-10a, miR-202, miR-21, miR-674, and miR-362.  These associations 
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were not likely due to random probability, and therefore suggest that following the 

loss of Dicer function, dysregulation of specific miRNAs may result in de-

repression of Nr6a1 and Acvr1c.  There is considerable literature on the function 

of let-7d and miR-10a as discussed above.  miR-202 expression has been 

observed in mouse adrenals stimulated with ACTH [84], and in porcine adrenals 

associated with psychosocial stress [85].  However, there are very few reports 

regarding the function of miR-674 and miR-362, which have been reported to be 

altered in Huntington’s Disease models [86], and correlated with certain 

melanoma subtypes [87], respectively.  Similarly, little is also known about 

miR-202, although it has been reported to be expressed in the porcine adrenal 

following psycho-social stress [85], and is up-regulated in the circulating blood of 

early stage breast cancer patients [88].  When we compared the predicted let-7 

binding sites in both Nr6a1 and Acvr1c, we found that these sequences were 

highly conserved between mouse, human and other organisms, suggesting these 

sites may be evolutionarily conserved to maintain functional miRNA-mRNA 

interactions.  Further experiments are required to empirically confirm these 

miRNA-target associations, and to establish whether derepression of Nr6a1 and 

Acvr1c by these miRNAs is a result of the Dicer KO phenotype, or is contributory 

to it.    

 This study provided evidence for the requirement of Dicer in the 

developing adrenal cortex.  It further built on the phenotypic observation seen 

here and previously [36] by using a bioinformatic approach to address potential 

underlying mechanisms at the transcriptional level by assessing differentially 
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expressed mRNA and miRNA transcripts in Dicer deficient adrenals.  Although 

we were unable to define specific mechanistic aspects of Dicer ablation in the 

developing adrenal cortex, adrenal enriched miRNAs and potential target mRNAs 

were uncovered, providing several novel avenues of further study.  Subsequent 

analyses of embryonic adrenal glands in the mouse would be more focused 

based on the data collected herein, allowing for the investigation of more specific 

hypotheses regarding Dicer and miRNA biogenesis in the developing adrenal 

gland.  
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Figure 3.1 Histologic analysis of 50 week old control and Sf1-Crelow/Dicerlox/

lox (low driver) Dicer KO adrenals.  

Hematoxylin and eosin staining, in addition to DAB staining for Sf1 and tyrosine 
hydroxylase, were performed as described in Materials and Methods to visualize 
changes in morphology.  Scale bars: 100µm.  
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Figure 3.2.  Functional analysis of Sf1-Crelow/Dicerlox/lox Dicer KO adrenals.  

(A) Adrenals weights of 50 week old control (n=4) and Sf1-Crelow/Dicerlox/lox (n=6) 
adrenals normalized and expressed as a ratio to animal body weight.  Horizontal 
lines indicate mean values, vertical lines indicate standard error.  (B) Serum 
corticosterone following ACTH stimulation in 50 week old control and Sf1-Crelow/
Dicerlox/lox animals.  Blood samples were collected at 0, 15, 30, and 60 minutes 
post-ACTH injection, and corticosterone was measured by RIA.  (C) Quantitative 
real-time PCR in total RNA isolated from 50 week old control and low driver Dicer 
KO adrenals.  Fold changes for each sample were calculated relative to the 
mean dC(T) value of all the samples amplified for each gene.  Open bars 
represent control adrenals, while solid bars represent low driver Dicer KO 
adrenals.  All samples were run in triplicate.
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Figure 3.3.  Phenotypic results of Sf1-Crehigh/Dicerlox/lox Dicer KO adrenals.  

(A) Gross photos of E16.5 and E18.5 adrenals from control and high driver Dicer 
KO embryos.  Photos from the E16.5 timepoint were taken at a 2x higher 
magnification than the E18.5 photos.  (B) Hematoxylin/eosin staining of 
embryonic control and high driver Dicer KO adrenals at E14.5, E16.5, and E18.5.  
(C) Co-staining for Sf1 and tyrosine hydroxylase (Th) in control and high driver 
Dicer KO embryonic adrenals at E14.5, E16.5, and E18.5.  Sections were 
counterstained with DAPI (blue) prior to visualization.  Images were merged to 
show co-localization.  Scale bars: 100µm.
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Figure 3.4. Assessment for proliferation and cell cycle arrest/apoptosis in 
Sf1-Crehigh Dicer knockout adrenals.  

(A) Co-staining for Sf1 and PCNA in control and high driver Dicer KO adrenals at 
E14.5, E15.5, and E16.5.  Sections were counterstained with DAPI (blue) prior to 
visualization.  Images were merged to show co-localization.  (B) 
Immunohistochemistry with DAB for p21 (Cdkn1a), a cell cycle inhibitor.  Dicer 
KO adrenals appear to have increased p21 staining compared to control 
adrenals.  Tissues were counterstained with hematoxylin diluted 1:10 in 
deionized water.  (C) Immunohistochemistry with DAB for cleaved Caspase3, an 
apoptotic marker.  Dicer KO adrenals demonstrate significantly higher cleaved 
Caspase3 staining relative to control adrenals.  Tissues were counterstained with 
hematoxylin diluted 1:10 in deionized water.  Scale bars:  100µm.
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Figure 3.5. H2A.X staining in Sf1-Crehigh Dicer KO adrenals.

Immunohistochemistry for gamma-H2A.X in Sf1-Crehigh Dicer KO adrenals at 
E14.5, E16.5, and E18.5.  Scale bars: 100µm.
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A       

! e15.5

Figure 3.6.  Affymetrix gene expression data from control and Sf1-Crehigh 
Dicer KO adrenals at E15.5 and E16.5.  

Heatmaps illustrating differentially expressed genes in Dicer KO adrenals versus 
control adrenals at (A) E15.5 and (B) E16.5.  To narrow down differentially 
expressed genes, probe-sets were filtered by excluding those with a false 
discovery rate (FDR) of ≥ .05, and a log fold change of ≤ 1.5 or ≥ -1.5.  Yellow 
bars indicate an increase over the mean chip intensity, and blue indicates a 
decrease over mean intensity.  (C) Venn diagram illustrating common 
differentially expressed genes in E15.5 (light yellow) and E16.5 (light blue) Dicer 
KO adrenals.  Special thanks to Katherine Gurdziel, MS, for her significant 
contributions to the analysis and organization of the data depicted.
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Figure 3.7.  Quantitative real time PCR to confirm Nr6a1 expression in Sf1-
Crehigh Dicer KO adrenals and Sf1-Cre only tissues.

(A) Expression of the 3 Nr6a1 transcript isoforms in 3 individual samples of E15.5 
and E16.5 Sf1-Crehigh Dicer KO adrenals relative to control adrenals.  Isoform 2 
(Nr6a1_2) is the most highly expressed at E15.5 by up to 20 fold; isoform 3 
(Nr6a1_3) is also up-regulated relative to control adrenals but to a much lesser 
degree.  At E16.5 isoform 1 (Nr6a1_1) expression is up-regulated in Dicer KO 
adrenals, in addition to isoforms 2 & 3.  (B) Comparison of Nr6a1 expression in 
adrenals from adult mice expressing only the Sf1-Crehigh transgene (Cre), relative 
to wild type (WT) animals.  Expression of isoform 2 seems to suggest leakage of 
a 3’ transcript from the transgene.  (C) Additional Nr6a1 expression data in adult 
adrenal, brain, and liver from mice expressing only the Sf1-Crehigh transgene.  
Expression is relative to corresponding tissue from wild type (WT) animals (not 
shown).
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Figure 3.8.  Differentially expressed miRNAs in Sf1-Crehigh Dicer KO 
adrenals. 

OpenArray assays for rodent miRNA chips were utilized for differential miRNA 
analysis as described in Materials and Methods.  (A) Differentially expressed 
miRNAs at both E15.5 and E16.5 in Dicer KO adrenal relative to control adrenals 
were filtered to select only those whose expression was changed significantly 
with a p value of ≤ .05.  Only miRNAs with a fold change of ≥ 1.5 or ≤ -1.5 were 
included.  (B) Venn diagram illustrating commonly down-regulated miRNAs at 
both E15.5 and E16.5 in Dicer KO adrenals.  Special thanks to Katherine 
Gurdziel, MS, for her significant contributions to the analysis and 
organization of the data depicted.
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A

Table 3.1. DAVID enrichment analysis illustrating differentially expressed 
genes enriched for specific GOTERMS.  

Enriched GOTERMS in E16.5 Dicer KO adrenals relative to E16.5 control (A).  
Enriched GOTERMS in E16.5 versus E15.5 Dicer KO adrenals (B).  FDR ≤ .05 
and fold changes ≥ 1.5 were used as cut-offs.  Special thanks to Katherine 
Gurdziel, MS, for her significant contributions to the analysis and 
organization of the data depicted.

153

Term Percentage Fold Enrichment p-value

Innate immune 
response

2.840909091 5.218794008 9.72E-07

Positive regulation 
of immune 
response

3.598484848 5.200886382 2.27E-08

Activation of 
immune response

2.272727273 5.194520548 1.78E-05

Immune effector 
process

3.03030303 4.727288541 1.36E-06

Positive regulation 
of immune system 

process

4.545454545 4.337172496 7.13E-09

Regulation of 
cytokine 

production

3.03030303 4.28516803 4.71E-06

Positive regulation 
of response to 

stimulus

3.787878788 4.002945942 6.00E-07

Regulation of cell 
activation

3.03030303 3.818194591 1.92E-05

Cell activation 4.734848485 3.783272079 4.72E-08

Leukocyte 
activation

3.787878788 3.399762307 6.92E-06

Immune response 7.954545455 3.31964052 2.48E-11

Response to 
wounding

5.492424242 3.111223402 2.07E-07

Cell surface 4.734848485 2.831265284 8.55E-06
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Term Percentage Fold Enrichment p-value

Adaptive immune 
response based 

on somatic 
recombination of 

immune receptors
built from 

immunoglobulin 
superfamily 

domains

5.93220339 12.58148148 1.80E-05

Adaptive immune 
response

5.93220339 12.58148148 1.80E-05

Inflammatory 
response

10.16949153 8.052148148 2.36E-07

Response to 
wounding

12.71186441 6.526416907 5.22E-08

External side of 
plasma membrane

8.474576271 6.193778482 3.07E-05

Cell surface 11.86440678 5.856674473 6.22E-07

Immune response 14.40677966 5.449304081 5.78E-08

Carbohydrate 
binding

9.322033898 5.36160223 3.33E-05

Defense response 12.71186441 5.055059524 1.17E-06



miRNA
Predicted 

Targets
Number of 

Predicted Sites

let-7g
let7d

e15.5 Differentially Expressed miRNAs

Nr6a1
Igdcc3
Acvr1c
Greb1l

4
2
1
1

miR-10a Nr6a1 1

miR-202 Igdcc3
Acvr1c
Greb1l
Nr6a1

2
1
1
1

miR-21 Acvr1c 1

miR-674 Acvr1c 1

miR-182 Acvr1c 1

Acvr1c
Greb1l
Nr6a1

miR-101b 1
1
1

Greb1lmiR-362 1

e16.5 Differentially Expressed miRNAs

let7d Nr6a1
Igdcc3
Acvr1c
Greb1l

4
2
1
1

miR-10a Nr6a1 1

miR-202 Igdcc3
Acvr1c
Greb1l
Nr6a1

2
1
1
1

miR-21 Acvr1c 1

miR-674 Acvr1c 1

miR-30e Nr6a1 2

Greb1lmiR-362 1

miRNA
Predicted 

Targets
Number of 

Predicted Sites

Table 3.2.  Predicted targets of differentially expressed miRNAs.

Differentially expressed miRNAs in E15.5 and E16.5 Dicer KO adrenals were 
cross referenced with differentially expressed genes for predicted mRNA-miRNA 
interactions based on target predictions algorithms from Targetscan 
(targetscan.org).  Some miRNAs have more than one predicted gene target, and 
some predicted targets have multiple potential miRNA binding sites in the 3’ UTR.  
Special thanks to Katherine Gurdziel, MS, for her significant contributions 
to the analysis and organization of the data depicted.
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CUAGAUGAGUAUUUCCAUAAUGUUGACAAA-GACAACUACCUCAAUGGAA
GCAGAUGACUAUUUCCAUAAUGUUGACAAA-GAUGACUACCUCAAUGGAA

....340.......350.......360........370.......380..
Mmu
Hsa

CAUUAAACUACCUCAUGUUUCUAAGGGCUAGGCUGCU---GCU--CUGCA
CUUUAAACUACCUCAGGUUCCUAAUGGCCCGGCUGCU---ACC-UCUGCA

Mmu
Hsa

.........1230......1240......1250.........1260....

GA-CUACCUCUUGAG-UGACAUCCUGGUCGAUUCCUCUCU-GAGGAGUCC
AA-CUACCUCUUAAG-CGACAUCCUGGUCGAUUCCUCUCU-GAGGAAUCC

Mmu
Hsa

......3830.......3840......3850......3860.......38

CUCUGCUACCUCC----CACA------------------CUU-GC-CUGC
CUCUGCUACCUCC----CAC-------------------CCU-GC-CAGC

.....4310..........4320..........................4
Mmu
Hsa

GUUCUACCUCAAG----------------GAUGACU---C--ACUACAGU
..100.......110............................120....

GUUCUACCUCAAA----------------GAUAAGA---C--AGUACAGU
Mmu
Hsa

Predicted let-7 binding sites in the 
Nr6a1 3’ UTR

Predicted let-7 binding sites in the 
Acvr1c 3’ UTR

Table 3.3 Predicted let-7 binding sites in Nr6a1 and Acvr1c 3’ UTRs.

Comparative sequence analysis between mouse and human 3’ UTRs based on 
TargetScan (www.targetscan.org) miRNA-mRNA target prediction algorithms.  
The four predicted let-7 sites in the 3’ UTR of mouse (Mmu) Nr6a1 are shown 
and compared with human (Hsa) NR6A1.  let-7 seed sequences are highlighted 
in red.  Additionally, the single predicted let-7 binding site in both human and 
mouse ACVR1C are also shown, with the seed sequence highlighted in red.  The 
predicted binding sites for both genes are tightly conserved between human and 
mouse, in addition with other vertebrates.
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CHAPTER 4

Summary and Future Directions

Summary

! Dicer is an RNase III enzyme necessary for the maturation of miRNAs, 

which fine tune the expression of target genes by repressing their translation at 

the post-transcriptional level.  Loss of Dicer in various biological models results in 

a down regulation of mature miRNAs, which in turn is predicted to disrupt the 

normal, homeostatic expression levels of countless target genes.  In vitro models 

of Dicer loss have demonstrated increased activity of cell cycle inhibitors leading 

to failure to proliferate, senescence and apoptosis.  In other models involving 

stem cells, the lack of Dicer has led to impaired regulation of pluripotency and 

differentiation.  Furthermore, miRNA independent functions for Dicer have been 

described, adding another level of complexity to Dicer mediated regulatory 

functions in the cell.  In vivo, tissue-specific Dicer loss of function results in 

developmental failure of the targeted tissue or organ system that is consistent 

with in vitro observations.  Although it would appear loss of miRNA biogenesis 

due to Dicer inactivation is the primary reason for the phenotypes seen in Dicer 

knockout models, recent evidence suggests miRNA independent function of 

Dicer may also play a role.  miRNAs are also implicated in human disease, and 

DICER expression is often perturbed in human tumors, and genetic 
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haploinsufficiency of the gene has been implicated in familial tumor syndromes.  

Additionally, many specific miRNAs have been implicated in the tumorigenesis of 

human cancers by their ability to regulate cellular processes such as 

differentiation, proliferation, and apoptosis.  This work addresses the 

developmental effects of Dicer loss in the embryonic adrenal cortex, and the 

correlation between miR-483-3p and IGF2 in adrenocortical carcinoma.  

! Chapter 2 confirms the observation that in a high percentage of sporadic 

human ACC cases, IGF2, an adrenocortical mitogen, is highly up-regulated, 

presumably due to defects at the 11p15.5 locus.  In conjunction with IGF2 up- 

regulation in ACC, the miR-483 locus residing in the 2nd intron of IGF2 was 

concurrently over expressed in human ACCs, and the IGF2 expressing human 

ACC cell line, NCI-H295.  This result suggested that the H295 cell line may serve 

as a useful in vitro model in which to study the effects of IGF2 and miR-483-3p 

function in the tumorigenesis of ACC. We designed and constructed several 

molecular tools in an attempt to perturb miR-483-3p expression in vitro and 

identify putative gene targets in the context of ACC.  First, a miR-483-3p 

expression vector was constructed that was able to express miR-483-3p at 

similar levels seen in the H295 cell line.  We also showed that the mature miRNA 

from this expression vector was able to function as an siRNA towards a 

luciferase reporter designed to respond to miR-483-3p.  We also demonstrated 

that endogenous miR-483-3p in H295 cells had a similar inhibitory effect on the 

luciferase reporter.    We also constructed a miR-483-3p “sponge” designed to be 

stably expressed at high levels and act as a competitive inhibitor for miR-483-3p.  
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Unfortunately the results of this sponge were inconclusive, hampered in part by 

the lack of validated miR-483-3p targets that could be used as a gold standard to 

determine the efficacy of the sponge.  Cellular growth of H295A and H295R cells 

transduced with the miR-483-3p sponge was slightly affected, as there were 

fewer viable cells at the endpoint of each experiment compared with controls.  

This may have indicated that the sponge needed further optimization to be more 

efficacious, or that miR-483-3p does not affect cellular proliferation as we had 

hypothesized.  We also determined that nine predicted miR-483-3p target genes 

are significantly down-regulated in primary human ACCs that express high levels 

of endogenous IGF2.  Of these predicted targets, IGF1 and EGR1 were of 

particular interest as IGF1 can act as an adrenal mitogen, and EGR1 is 

described as a tumor suppressor.  We assessed mRNA levels of IGF1 and EGR1 

in H295 cells transduced with the miR-483-3p sponge, and observed a modest 

increase in EGR1 transcript levels, but inconclusive changes in IGF1 transcript 

levels.  These two predicted targets would be ideal candidates for further target 

validation and additional study in the context of ACC.  The molecular tools 

described in Chapter 2 showed promise, but it became readily apparent that with 

the emergence of commercial reagents designed for miRNA research, 

construction of such tools for routine studies would be relatively inefficient from a 

financial and labor perspective.  Furthermore, independent research groups were 

were able to describe potential mechanistic functions of miR-483-3p by reporting 

a putative target, BBC3/PUMA.  This miRNA-target association is consistent with 

the aggressive nature of ACC, as PUMA functions as a pro-apoptotic regulator.  It 
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also supports the theory that miR-483-3p co-expression with IGF2 may synergize 

to drive a more aggressive form of ACC compared to those that do not express 

high levels of IGF2. 

! Chapter 3 describes the results of generating a tissue specific Dicer KO 

mouse.  We utilized both the Sf1-Crelow and Sf1-Crehigh transgenic mice to 

compare the effects of a continual, stochastic model of Dicer inactivation that 

persisted through adulthood (Sf1-Crelow), and a complete model of Dicer 

inactivation in the adrenal cortex that occurred in early development (Sf1-Crehigh).  

Use of the Sf1-Crelow transgene to knock out Dicer in a subset of adrenocortical 

cells did not result in an appreciable phenotype over the course of 50 weeks.  

This suggested that the adrenal cortex was able to compensate for any 

deleterious effects resulting from a continuous, stochastic pattern of Dicer 

inactivation.  Another possible explanation is that Dicer and miRNA biogenesis is 

not as important for the maintenance of the adrenal cortex versus adrenocortical 

development.  In contrast, Sf1-Crehigh Dicer KO mice underwent a dramatic 

failure of the adrenal cortex that began as early as E14.5 and rapidly progressed 

over the subsequent 4 days.  The adrenals in Sf1-Crehigh Dicer KO mice initiated 

normal development, as the presence of adrenal medullary cells implied that 

coalescence of the fetal cortex had occurred.  However, our results show that at 

approximately E14.5, the cortex began to fail, and resulted in the complete loss 

of cortical cells.  Unsurprisingly, these animals died shortly after birth as a result 

of apparent adrenal failure.  Analysis of embryonic Sf1-Crehigh Dicer KO mice 

revealed increased DNA damage, as evidenced by an increase in H2A.X 
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staining, and the up regulation of the cell cycle arrest and apoptotic markers, p21 

and cleaved Caspase-3, respectively.  In contrast, Sf1-PCNA co-

immunofluorescence indicated that proliferation remained unchanged.  Together, 

these result indicate that the E14.5 time point may be host to an important 

developmental milestone that is sensitive to Dicer expression or miRNA 

biogenesis.  As previously cited in Chapter 3, E14.5 has been shown to be the 

developmental time point at which the fetal cortex begins to regress, and Sf1 

expression through the fetal adrenal enhancer is abrogated.  It is possible that 

this critical transition point from fetal to adult cortex is particularly sensitive to 

perturbations in miRNA biogenesis.  Alternatively, if the source of adrenal stem/

progenitor cells indeed comes from Sf1 expressing fetal cortical cells as 

hypothesized, then the inactivation of Dicer in these cells may prevent them from 

completing this transition, resulting in the loss of the adrenal stem/progenitor cell 

pool.  This is an interesting possibility as it has been demonstrated that Dicer 

inactivation can adversely affect stem cells by resulting in the down regulation of 

Oct4.  Additional studies are required to further pursue this hypothesis.

! The second goal of this in vivo project involved profiling the differentially 

expressed mRNA and miRNA transcripts in Sf1-Crehigh Dicer KO adrenals versus 

control adrenals.  We profiled four biological replicates each for Dicer KO and 

control adrenals, then compared differentially expressed mRNA and miRNA 

transcripts between the two experimental groups.  Unsurprisingly, numerous 

steroidogenic enzymes were down regulated in Dicer KO adrenals.  We also 

observed and confirmed through DAVID analysis that a significant number of 
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genes associated with an inflammatory or immune response were up regulated 

as well.  The up-regulation of these immune and inflammatory pathway genes 

could play a role in the phenotype seen in Dicer KO adrenals, which was 

characterized by the expression of cell cycle arrest and apoptotic protein 

markers.  The most intriguing results, however, were the observation that Nr6a1 

and Acvr1c were highly up-regulated in Sf1-Crehigh Dicer KO adrenals.  These 

genes have not been functionally described in the adrenal cortex previously, but 

have been shown to be important in regulating development and differentiation in 

other organ systems.  For example, Nr6a1 regulates the pluripotency and 

differentiation of stem cells by repressing the pluripotency marker Oct4, and has 

also been implicated in the differentiation of neural progenitor cells and the 

regulation of germ cells.  Acvr1c is a type I activin receptor that transduces 

signals from the Nodal ligand, which helps regulate developmental patterning in 

the mouse.  The potential roles of these two genes in adrenal development are 

promising avenues for subsequent study.  We also profiled the differentially 

expressed miRNAs in Dicer KO adrenals compared to controls.  As expected, 

nearly all of the differentially expressed miRNAs in Dicer KO adrenals were down 

regulated, presumably due to the loss of Dicer activity.  There was significant 

overlap in down regulated miRNAs between E15.5 and E16.5 Dicer KO adrenals, 

with 16 commonly down regulated miRNAs.  Of these, miR-34c, miR-21, 

miR-10a, and let-7d were among the most interesting candidates for follow up 

study given the considerable amount of literature that exists regarding their 

function.  As discussed previously in this work, let-7 is known to regulate the 
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oncogenes RAS, HMGA2, and MYC, and can regulate proliferation pathways in 

human cells.  Similarly, the miR-34 cluster of miRNAs can act as a tumor 

suppressors downstream of p53, and promote cell cycle arrest, apoptosis, and 

senescence.  In contrast, evidence supports the role of miR-10a and miR-21 as 

oncogenic miRNAs, as they are often up regulated in human cancers, and in the 

case miR-21, is believed to promote tumor metastasis and tumorigenesis by 

targeting PTEN.  Finally, we asked whether the down regulated miRNAs in Dicer 

KO adrenals were predicted to target any up regulated mRNA transcripts.  We 

matched the list of up regulated mRNA transcripts from E15.5 and E16.5 Dicer 

KO adrenals with down regulated miRNA transcripts using the TargetScan 

algorithm to determine predicted miRNA-target associations.  We discovered that 

a small subset of down regulated miRNAs in Sf1-Crehigh Dicer KO adrenals were 

consistently predicted to target Nr6a1 and Acvr1c.  These miRNAs were as 

follows: let-7d, miR-10a, miR-202, miR-21, miR-674, and miR-362.  Whether the 

up regulation of these two genes is a direct result of or in response to Dicer loss 

is still unknown, and further study is required to validate the predicted miRNA-

mRNA interactions.  These data demonstrate that Dicer loss in the developing 

adrenal cortex resulted in a unique transcriptional and miRNA profile which may 

reflect the underlying mechanism of adrenocortical failure seen in Sf1-Crehigh 

Dicer KO mice.  
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Future Directions

! The results from Chapter 2 confirmed the expression of IGF2 and 

miR-483-3p in ACC, and provided possible gene targets of miR-483-3p for 

subsequent study.  Identifying the gene targets of miR-483-3p would be a 

significant advancement in understanding how this miRNA affects the process of 

tumorigenesis in ACC.  As discussed previously, IGF1 and IGF2 are both 

expressed in the normal adult human adrenal, whereas IGF2 is predominantly 

expressed in the embryonic and cancerous adrenal gland.  Could there be a 

regulatory mechanism by which IGF2 expression indirectly (through miR-483-3p) 

inhibits IGF1?  What are the consequences of IGF1 down regulation, if any, in 

the context of ACC?  Furthermore, the fact that EGR1 is also a predicted 

miR-483-3p target is of great interest considering the role of EGR1 as a tumor 

suppressor gene that is often down regulated in a number of human cancers.  It 

is therefore a reasonable hypothesis that low EGR1 expression seen in primary 

human ACCs is a contributory factor in ACC.   Validation of IGF1 and EGR1 as 

targets of miR-483-3p could be performed using the now widely available 

molecular tools to perturb endogenous miR-483-3p and the H295 cell line could 

be utilized as a model system in which to pursue this goal.  Knockdown of 

miR-483-3p could be accomplished by transfecting synthetic oligos designed to 

competitively inhibit miR-483-3p, and the resulting changes in IGF1 and EGR1 

transcript levels can be measured using standard methods such as quantitative 

real-time PCR.  Protein could also be measured using Western blot techniques.  

In contrast, the effects of miR-483-3p over expression on IGF1 and EGR1 could 
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be studied in the SW13 cell line, which does not express high levels of 

endogenous IGF2 or miR-483-3p.  Over expression of miR-483-3p in such a 

system would be predicted to have an opposite effect on IGF1 and EGR1 

transcript levels.  Finally, target validation would have to be confirmed using an 

exogenous GFP or luciferase reporter construct bearing the 3’ UTR of either 

IGF1 or EGR1.  If the predicted target sequences in the UTRs of both genes are 

responsive to miR-483-3p and responsible for target inhibition, we would expect 

to see decreased reporter activity relative to control reporter constructs in which 

the predicted target sequences are mutated such that they no longer recognize 

miR-483-3p.  The results of these experiments would complement what is known 

about the previously validated miR-483-3p target, BBC3/PUMA.     

! Although BBC3/PUMA has been reported to be a target of miR-483-3p in 

human ACCs, the fact that miRNAs can bind to multiple target mRNAs implies 

there should be other target genes for miR-483-3p that have yet to be identified.  

Identification of additional targets, particularly in the context of ACC, could be 

accomplished using a combination of bioinformatic and molecular techniques to 

empirically determine miRNA-target associations.  Knock down of endogenous 

miRNA could be accomplished using synthetic inhibitory oligos specific for 

miR-483-3p.  Cultured H295 cells subject to miRNA knockdown could then be 

subject to microarray or RNA sequencing analysis to determine the effects of 

miR-483-3p knock down on mRNA expression.  Transcripts shown to be up 

regulated in response to miR-483-3p knock down could then be further 

scrutinized as potential miR-483-3p targets by analyzing the 3’ UTRs for putative 
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binding sites.  Additionally, such an experiment could provide insight into the 

physiologic roles of miR-483-3p.  For example, if miR-483-3p inhibition resulted 

in changes to proliferative, metastatic, or steroidogenic capacity of H295 cells, 

these data could be taken into consideration when filtering down potential 

miR-483-3p targets by placing greater weight on target genes known to regulate 

these physiologic processes.  Then, bioinformatic algorithms such as those 

provided by TargetScan would serve to narrow down the list of targets based on 

putative miR-483-3p binding sites in the 3’ UTR of candidate genes.  The most 

likely candidate genes could be tested in-vitro using molecular tools similar to 

those described in Chapter 2 to confirm miR-483-3p mediated repression of the 

target at both the mRNA and protein level.  

! Evidence suggesting that miR-483-3p can be directly regulated by the 

Wnt/β-catenin signaling pathway has been recently published.  Given that many 

cases of ACC are characterized by inappropriately increased Wnt/β-catenin 

signaling, a logical question to pursue would be whether this signaling pathway 

intersects with the up regulation of IGF2/miR-483-3p that is also seen in many 

ACC cases.  First, the binding of canonical Wnt/β-catenin transcription factors 

such as TCF/LEF to the miR-483-3p locus could be confirmed with chromatin 

immunoprecipitation, and the transcriptional complex defined.  This could be 

performed in the H295 cell line, which harbors an activating mutation in β-

catenin, or heterologous cell lines treated with lithium to activate the Wnt/β-

catenin pathway.  Mutation of the putative TCF/LEF binding sites would help 

confirm these results.  Additionally, the effects of inhibiting Wnt/β-catenin 
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signaling via inhibitors such as cardamonin or the over expression of APC on 

miR-483-3p expression can also be assessed. Finally, published data suggests 

miR-483-3p negatively regulates β-catenin, implying a self regulating feedback 

loop.  While this would initially appear counter intuitive, it is possible that mutated 

β-catenin in the context of ACC is insensitive to miR-483-3p mediated inhibition 

because mutations in the 3’ UTR of β-catenin prevent the binding of miR-483-3p.  

It would be interesting to determine if the β-catenin transcripts in primary human 

ACCs harbor 3’ UTR mutations, rendering itheminsensitive to miR-483-3p 

mediated repression.  Genomic and RNA sequencing of the β-catenin locus 

would help provide insight into this possibility.

! Lastly, further analysis on miRNA expression in ACC could be performed 

by assessing the miRNA profiles of ACCs versus normal or adenomatous 

adrenals.  There are several published studies that pursue this avenue of study, 

but are somewhat limited by small tumor samples sizes.  Nevertheless, these 

reports support the observation made in this thesis that products from the 

miR-483 locus are generally up regulated in ACCs versus adrenal adenomas or 

normal adrenals.  Our laboratory, in collaboration with Dr. Arul Chinnaiyan at the 

University of Michigan, has recently begun a large scale miRNA and mRNA 

profiling study consisting of a significantly larger cohort of primary human ACCs.  

This would allow for a comprehensive study of differentially expressed miRNAs 

and mRNA targets that may be involved in the tumorigenesis of ACC.  Because 

miRNAs can act as both tumor suppressors or oncogenes, highly up-regulated or 

down-regulated miRNAs in ACC may suggest that important target genes are 
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dysregulated as a result.  Large scale bioinformatic analysis to identify predicted 

miRNA-mRNA networks could allow for more detailed classification of ACCs and 

prognostic indicators.  Ultimately, it is hoped that these large scale profiling 

studies will help shed light on the pathophysiology of ACC, and provide clues to 

biochemical or molecular weaknesses in ACC that may be used as targets for 

new and more effect therapies.  

! Chapter 3 discussed the results of Dicer inactivation in the developing 

mouse adrenal cortex, and data from those studies showed that loss of Dicer in 

the embryonic adrenal resulted in the developmental failure of the adrenal cortex.  

This failure became evident as early as E14.5, the time point at which the fetal 

cortex begins to be displaced by the definitive cortex.   Because the Sf1-Cre 

transgene used in these studies is active in both the fetal and definitive cortex, it 

would be of interest to determine whether it is the fetal or definitive cortex that is 

most suscpetible to Dicer inactivation.  This could be accomplished in part by 

generating conditional Dicer KO mice using FAdE-Cre transgenic mice, in which 

the Cre transgene is driven specifically by the FAdE promoter of Sf1.  These mice 

are already available to our lab, and if FAdE-Cre Dicer KO mice recapitulate the 

phenotype seen in Sf1-Cre Dicer KO mice, it would be reasonable to hypothesize 

that Dicer activation might primarily affect the fetal cortex, particularly as the 

adrenal begins to transition from fetal to definitive cortex.  It is hypothesized that 

a small number of fetal adrenocortical cells are destined to become the adrenal 

stem/progenitor cells, which ultimately maintain the definitive adrenal cortex.  If 

this is true, and Dicer loss of function primarily affects fetal cortical cells, it could 
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be speculated that this would negatively affect the specification of adrenal stem/

progenitor cells from fetal cortical cells.  Such a scenario would be consistent 

with the cortical failure seen in Sf1-Crehigh Dicer KO mice in which the adrenal 

cortex fails to maintain itself beyond the E14.5 time point.  To determine the 

specific effects of Dicer inactivation in the definitive cortex would most likely 

require the use of an inducible Cre transgene.  The majority of tissue specific 

Dicer knockout mouse models involves the use of Cre transgenes under the 

control of developmental transcription factors.  This results in Dicer loss of 

function during developmental stages of the organism during which tissues 

undergo significant molecular and physiologic change.  Unfortunately, the Sf1 

definitive adrenal enhancer (DAdE) is still being characterized by our lab, and a 

definitive cortex specific Cre transgene has yet to be developed.  In lieu of this, 

the use of an inducible Sf1-Cre transgene under the control of exogenous 

tamoxifen, for example, might provide a means to study Dicer ablation in the 

definitive cortex.  However, timing the tamoxifen administration and subsequent 

Cre-mediated excision to coincide with the emergence of the definitive cortex 

during embryogenesis would be difficult, and it would be likely that fetal cortical 

cells would also be affected.  However, this system would be a useful tool for 

studying the effects of Dicer inactivation in a fully developed organ in which the 

definitive cortex predominates.  Because many of the existing publications 

detailing tissue specific Dicer inactivation involve developmental models, it is 

difficult to determine if Dicer inactivation is affecting the differentiation and 

specification of developing tissues, or the maintenance of established tissue.  
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Would Dicer ablation in a fully developed, adult adrenal result in complete failure 

of the cortex as was observed in this thesis?  Or would it simply cause increased 

cellular turn over of the adrenal cortex, which could remain in relative 

compensatory homeostasis?  A Dicer KO model under the control of an inducible 

Cre transgene may provide insight into the role of Dicer and miRNA biogenesis in 

the physiology and self renewal of the adult adrenal cortex.  

! In the second aim of Chapter 3, we assessed Dicer KO adrenals at E15.5 

and E16.5 for differentially expressed miRNAs and mRNAs.  The goal was to 

profile transcriptional changes resulting from Dicer inactivation in these adrenal 

glands, identify potential miRNAs involved in adrenal development, and to 

determine any potential miRNA-mRNA associations.  The unexpected 

observation of Nr6a1 and Acvr1c up regulation in Sf1-Crehigh Dicer KO adrenals 

is an avenue for further investigation.  As the expression of these genes has not 

been detailed in the adrenal, it would be important to first confirm mRNA and 

protein expression in both wild type and Sf1-Crehigh Dicer KO embryonic 

adrenals.  Both of these genes are implicated in developmental processes, and 

the ultimate question is whether they have a similar function in the embryonic 

adrenal cortex.  Northern blot analysis from Genepaint (www.genepaint.org) 

demonstrates the presence of Nr6a1 and Acvr1c RNA in the adrenal cortex at 

E14.5.  This is the timepoint at which the adrenal begins to transition from fetal to 

definitive cortex, and therefore, raises the question if Nr6a1 or Acvr1c are 

somehow involved in this process.  Our data shows the loss of Dicer and miRNA 

biogenesis appears to de-repress the expression of these genes, and could be 
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evidence supporting the hypothesis that Nr6a1 and Acvr1c are expressed at 

E14.5 in the developing adrenal, but then must subsequently be down regulated 

for normal development to proceed.  This could be confirmed by assessing the 

expression of these genes over an embryonic time course to elucidate the 

temporal-spatial expression of Nr6a1 and Acvr1c.  Should the expression of 

these genes in the developing adrenals be confirmed, functional studies could be 

initiated by generating adrenal specific mouse knock out models with the Sf1-Cre 

and conditional floxed allele mice.   

! Confirmation of the differentially expressed miRNAs in Sf1-Crehigh Dicer 

KO adrenals would need to be confirmed.  We observed in our results sixteen 

down regulated miRNAs that were common to both the E15.5 and E16.5 time 

points.  Of these, let-7d, miR-10a, miR-21, and miR-34c would be viable 

candidates to initially pursue in subsequent studies due to the large amount of 

literature that is available regarding their function.  The role of these miRNAs in 

adrenal development is an interesting avenue to pursue.  What is the function of 

these miRNAs in the developing adrenal cortex, and is the phenotype in Dicer 

KO adrenals attributable to their down regulation? Confirmation of the expression 

of these miRNAs in the developing adrenal can be accomplished through 

TaqMan based quantitative real time PCR assays, and if necessary, Northern blot 

techniques to localize the spatial expression in the developing adrenal cortex.  

This could aid in the identification of specific miRNAs whose expression is 

required for proper adrenal development.  Additionally, the miRNA arrays we 

performed could also be extended to include the E18.5 time point in wild type 
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adrenals, giving us an additional data point that may aid in elucidating the 

temporal expression of specific miRNAs in the developing adrenal cortex.

! Finally, our data demonstrated that six common miRNAs in both E15.5 

and E16.5 Dicer KO adrenals were consistently predicted to target Nr6a1 and 

Acvr1c, two genes which were highly up regulated in knockout adrenals.  These 

miRNAs were: let-7d, miR-10a, miR-202, miR-21, miR-674, and miR-362.  

TargetScan prediction algorithms demonstrate putative binding to 

phylogenetically conserved sequences in the 3’ UTRs of these genes, but 

empirical evidence of binding and repression would have to gathered.  

Bioinformatic analyses to align and compare the 3’ UTRs of Nr6a1 and Acvr1c 

could be performed initially to identify common sequence motifs that might 

suggest conserved binding sites for these six miRNAs.  Then, using techniques 

and tools discussed in Chapter 2, target validation could be performed in an in 

vitro system in which GFP or luciferase reporter constructs engineered to contain 

the 3’ UTR of putative miRNA targets could be tested against exogenously 

expressed miRNAs of interest.  Lastly, it would be interesting to determine the 

regulatory networks that control the expression of these miRNAs predicted to 

target Nr6a1 and Acvr1c.  Are they co-transcribed with other protein expressing 

genes, or do they respond to transcription factors downstream of canonical 

signaling pathways such as Wnt/β-catenin or Shh which have both been 

implicated in adrenal organogenesis?  Such a question could be investigated by 

taking a bioinformatic approach to determine if there are response elements or 

binding sites in the promoter or regulatory region of these miRNAs that might 
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respond to signaling pathways known to be active in the developing adrenal.  If 

so, in vitro perturbation of the suspected signaling pathway or transcription 

factor(s) should result in a concomitant change in the expression of the miRNA in 

question.  The results from these studies would not only represent a significant 

contribution to the field of adrenal development, but to other areas of 

organogenesis.        
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