
Switchable and Tunable Ferroelectric Devices for 

Adaptive and Reconfigurable RF Circuits 

 

 
by 

 

 

Victor Chia Lee 

 

 

 

 
A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Electrical Engineering) 

in the University of Michigan 

2014 

 

 

 

 

 

 

Doctoral Committee: 

 

Professor Amir Mortazawi, Chair 

Associate Professor Jerome P. Lynch  

Professor Jamie D. Phillips 

Professor Kamal Sarabandi 



 

© Victor C. Lee 

 

All Rights Reserved 

 

2014



ii 

To my father, James Jenn-Huei Lee, mother Heidi Chen-Ton Chao Lee,  

and sister, Grace Ruth Lee.



iii 

ACKNOWLEDGEMENTS 

 
I would like to take this opportunity to acknowledge and thank those that have made 

my Ph.D. studies and the work presented in this dissertation possible. First, I would like to 

thank my research advisor, Professor Amir Mortazawi, for his support, guidance, and 

encouragement as well as for teaching me how to be an independent researcher. Second, I 

would like to thank my dissertation committee members. In particular, I would like to thank 

Professor Phillips for sharing his expertise on material deposition and material 

characterization as well as for allowing me to use his research group’s pulsed laser 

deposition (PLD) system to deposit barium strontium titanate (BST) thin films and 

metrology tools to measure the film thicknesses. In addition, I would like to thank Professor 

Kamal Sarabandi for his assistance and support with the MAST project and his interest in 

the success of my research. Furthermore, I would like to thank Professor Lynch for 

providing his perspective and insight on the work presented here.  

I must also thank the former and current research group members of Professor 

Mortazawi. I especially want to thank Dr. Xinen (Alfred) Zhu, Dr. Jia-Shiang (Josh) Fu, 

Dr. Seyit Ahmet Sis, and Seungku Lee for their collaboration and discussion on BST thin 

film device research as well as co-authoring many conference and journal publications with 

me. I also want to thank Meng-Hung Chen, Dr. Morteza Nick, Dr. Danial Ehyaie, Dr. 

Waleed Alomar, Xiaoyu Wang, Elham Mohammadi, and Noyan Akbar for their help and 

support with classes and research. I would also like to thank my colleagues and fellow 



iv 

graduate students in the Radiation Laboratory (RadLab), Lurie Nanofabrication Facility 

(LNF), (Jamie) Phillips Research Group (in particular, Adrian Bayraktaroglu), Electrical 

Engineering and Computer Science (EECS) Department, and Nanotechnology and 

Integrated Microsystems Student Association (NIMSA). This work would also not be 

possible without the RadLab staff, LNF staff (in particular, Dennis Schweiger), EECS staff, 

Army Research Laboratory (ARL) researchers, and University of California - Santa 

Barbara (UCSB) researchers. In addition, I need to thank my countless friends who have 

helped me through the good times and bad that have simply been invaluable to me. 

Lastly and most importantly, I would like to thank my parents, my sister, and all of my 

relatives for their love and support during the many years I have been studying at the 

University of Michigan. 

 

Victor Lee 

January 2014 



v 

TABLE OF CONTENTS 

 

DEDICATION................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................ iii 

LIST OF TABLES ......................................................................................................... viii 

LIST OF FIGURES ......................................................................................................... ix 

LIST OF APPENDICES ................................................................................................ xv 

ABSTRACT .................................................................................................................... xvi 

CHAPTER 1 Introduction ......................................................................................... 1 
1.1. Motivation ........................................................................................................... 1 

1.1.1. Overview of Resonator and Filter Technologies ...........................................4 

1.1.2. Properties of Ferroelectric Thin Films ...........................................................6 

1.1.3. Ferroelectric Devices ...................................................................................10 

1.2. Thesis Organization .......................................................................................... 14 

CHAPTER 2 Design, Performance, and Modeling of Switchable, Tunable, and 

Reconfigurable BST FBARs .......................................................................................... 17 
2.1. Introduction ....................................................................................................... 17 

2.2. BST FBARs ...................................................................................................... 21 

2.2.1. Design and Simulation .................................................................................25 

2.2.1.1. Analytical Design ................................................................................ 25 

2.2.1.2. Multiphysics Simulation ...................................................................... 27 

2.2.2. Device Fabrication and Measurement Setup ...............................................28 

2.2.3. Performance .................................................................................................32 

2.2.3.1. Voltage Dependent Behavior ............................................................... 32 

2.2.3.2. Large Signal Performance ................................................................... 37 

2.2.3.3. Reliability Test .................................................................................... 40 

2.2.4. Nonlinear Model Parameter Extraction of BST FBARs..............................43 

2.3. Reconfigurable Dual-Frequency BST FBAR ................................................... 47 

2.3.1. Design ..........................................................................................................47 

2.3.2. Fabrication and Measurement Procedure .....................................................51 

2.3.3. Performance .................................................................................................52 

2.4. Conclusion ........................................................................................................ 56 



vi 

CHAPTER 3 Design and Performance of Switchable, Tunable, and 

Reconfigurable BST FBAR Filters ................................................................................ 58 
3.1. Introduction ....................................................................................................... 58 

3.2. Design, Modeling, and Simulation ................................................................... 59 

3.3. Fabrication and Measurement Procedure ......................................................... 63 

3.4. Filter Performance ............................................................................................ 66 

3.4.1. Voltage dependent behavior ........................................................................66 

3.4.2. Switching reliability and response time .......................................................71 

3.5. Dual-Band BST Filter ....................................................................................... 75 

3.5.1. Design ..........................................................................................................75 

3.5.2. Fabrication and Measurement Setup ............................................................80 

3.5.3. Performance .................................................................................................80 

3.6. Conclusion ........................................................................................................ 85 

CHAPTER 4 Design and Performance of BTO Contour Mode Resonators ...... 86 
4.1. Introduction ....................................................................................................... 86 

4.2. Parallel Plate Electrodes - Fundamental Mode Resonator ................................ 87 

4.2.1. Device Design and Simulation.....................................................................87 

4.2.2. Device Fabrication and Measurement Setup ...............................................90 

4.2.3. Measurement Setup/Measurement Results ..................................................92 

4.3. Interdigitated Electrodes - Overmoded Resonator ............................................ 96 

4.3.1. Design ..........................................................................................................96 

4.3.2. Device Fabrication .....................................................................................100 

4.3.3. Measurement Setup ....................................................................................101 

4.3.4. Measurement Results .................................................................................102 

4.3.5. Model Parameter Extraction of TFE Interdigitated Contour Mode Resonators

 ....................................................................................................................109 

4.4. LFE Interdigitated Resonator .......................................................................... 113 

4.4.1. Design ........................................................................................................113 

4.4.2. Measurement Results .................................................................................114 

4.5. Conclusion ...................................................................................................... 115 

CHAPTER 5 Design and Assembly of an RF Magnetron Sputtering System for 

BST Deposition ........................................................................................................... 117 
5.1. Introduction ..................................................................................................... 117 

5.2. RF Magnetron Sputtering System Components ............................................. 119 

5.2.1. Main Processing Chamber .........................................................................119 

5.2.2. Load Lock and Substrate Assembly ..........................................................120 

5.2.3. Mechanical Scroll Pump ............................................................................120 

5.2.4. Cryogenic Pump.........................................................................................121 

5.2.5. RF Magnetron Sputtering Gun...................................................................121 

5.2.6. Sputtering Targets ......................................................................................122 

5.2.7. Gas Management and Pressure Measurement ...........................................122 

5.2.8. Water Chiller ..............................................................................................122 

5.3. Film Deposition Parameters............................................................................ 123 

5.4. Film Characterization ..................................................................................... 123 

5.5. Conclusion ...................................................................................................... 124 



vii 

CHAPTER 6 Conclusions and Future Work ....................................................... 125 
6.1. Conclusion ...................................................................................................... 125 

6.2. Future Work .................................................................................................... 128 

6.2.1. Reconfigurable Contour Mode Resonators and Filters ..............................129 

6.2.2. Fully Characterize and Automate RF Magnetron Sputtering System .......129 

6.2.3. Complete Physics Based Modeling of Ferroelectric Resonators ...............130 

6.3. Select List of Publications .............................................................................. 130 

6.3.1. Journal Papers ............................................................................................130 

6.3.2. Conference Proceedings/Digests ...............................................................131 

APPENDICES ............................................................................................................... 135 

BIBLIOGRAPHY ......................................................................................................... 165 

 

 



viii 

LIST OF TABLES 

 
Table 2.1: PLD Deposition Parameters ............................................................................ 29 

Table 2.2: Figures of merit for a BST FBAR for different dc bias voltages .................... 37 

Table 2.3: One-Port FBAR Figures of Merit .................................................................... 43 

Table 2.4: MBVD Model Attributes ................................................................................. 48 

Table 2.5: Figures-of-Merit for the Simulated FBAR Configurations ............................. 49 

Table 2.6: Summary of Reconfigurable Dual-Frequency Resonator Performance .......... 55 

Table 3.1: Measured Filter Characteristic at Various DC Bias Voltages ......................... 68 

Table 3.2: Center Frequency of BST FBAR Filter ........................................................... 71 

Table 3.3: Summary of Filter Performance ...................................................................... 71 

Table 3.4: Summary of Dual-Band Filter Performance .................................................... 85 

Table 4.1: Material Properties of BTO ............................................................................. 88 

Table 4.2: Variable Definition and Approximate Value ................................................... 98 

Table 4.3: Series Resonance Frequency of Interdigitated Contour Mode Resonators at 15 

V DC Bias ....................................................................................................................... 104 

Table 4.4: Measured Resonance at Various Bias Voltages............................................. 108 

Table 5.1: Specification of the Scroll Pump ................................................................... 121 

Table 5.2: RF Sputter Deposition Parameters................................................................. 123 

 

 



ix 

LIST OF FIGURES 

 
Figure 1.1: Block diagram of the RF frontend for a modern cellular phone. Reproduced 

from [1]. .............................................................................................................................. 3 

Figure 1.2: System diagram of a reconfigurable RF front end that utilizes the 

multifunctional properties of ferroelectric thin film technology. ....................................... 6 

Figure 1.3: Illustration showing the relationship between different classes of dielectric 

materials [22]. ..................................................................................................................... 7 

Figure 1.4: Unit cell of BST [18]. ....................................................................................... 8 

Figure 1.5: Dependence of Curie temperature of various ferroelectric as a function of 

chemical composition. (Reproduced from [18]). ................................................................ 8 

Figure 1.6: Diagram showing the relation temperature and permittivity of ferroelectric 

materials (Reproduced from [18]). ..................................................................................... 9 

Figure 1.7: The Heckmann diagram, which shows the thermal, mechanical, and electrical 

relationships of a material (Reproduced from [22]). ........................................................ 11 

Figure 1.8: Tuning curve and normalized tuning curve of a BST MIM capacitor measured 

at 100 MHz. The dc bias is swept from -25 to 25 V. ........................................................ 12 

Figure 2.1: Configuration of (a) one- and (b) two-port BST FBARs shown in schematic 

form. .................................................................................................................................. 20 

Figure 2.2: Cross section of a (a) traditional, non-composite and (b) composite BST FBAR.

........................................................................................................................................... 21 

Figure 2.3: Cross section of a BST FBAR. ....................................................................... 22 

Figure 2.4: Measured response of a Ba0.5Sr0.5TiO3 FBAR at various bias voltages. ........ 22 

Figure 2.5: Illustration showing the electric field induced piezoelectricity of BST as a result 

of its strong electrostrictive response. ............................................................................... 23 

Figure 2.6: Dependence of the electromechanical coupling coefficient, which is related to 

the effective piezoelectric coefficient, as a function of dc bias voltage. Reproduced from 

[32]. ................................................................................................................................... 24 



x 

Figure 2.7: Acoustic wave transmission line model for designing FBARs and FBAR filters.

........................................................................................................................................... 26 

Figure 2.8: COMSOL Multiphysics simulation results showing the desired resonance mode 

of a BST FBAR. (a) The total displacement of the FBAR at different regions is shown by 

the color. (b) The deformation of the FBAR is shown. .................................................... 28 

Figure 2.9: Step by step illustration of the fabrication process......................................... 30 

Figure 2.10: Setup of the pulsed laser deposition system used for depositing BST thin films.

........................................................................................................................................... 31 

Figure 2.11: Microphotograph of various BST FBARs that have been fabricated. ......... 31 

Figure 2.12: Measurement setup for measuring one-port BST FBARs. ........................... 32 

Figure 2.13: The measured input impedance of a one-port BST FBAR measured at dc bias 

voltages of 0, 5, 10, 15, 20, and 25 V shown on a Smith Chart at frequencies of 1.8 to 2.2 

GHz. .................................................................................................................................. 33 

Figure 2.14: (a) Reflection coefficient and (b) input impedance vs. resonance frequency of 

a BST FBAR at dc bias voltages of 0, 5, 10, 15, 20, and 25 V. ....................................... 35 

Figure 2.15: Resonance frequencies of a BST FBAR vs. dc bias voltage. ....................... 36 

Figure 2.16: The Smith chart showing the input impedance of the BST FBAR at bias 

voltages of 5 and 25 V and power levels of -8, 0, and 8 dBm. ......................................... 38 

Figure 2.17: Kt,
2

eff and Q of the BST FBAR as a function of RF input power at applied dc 

bias voltages of 5, 10, 15, 20 and 25 V. ............................................................................ 39 

Figure 2.18: Resonance frequency of a BST FBAR as a function of dc bias voltage and RF 

power level. ....................................................................................................................... 40 

Figure 2.19: Test setup for measuring the switching reliability of FBARs. Biasing is applied 

through a bias tee. For 2-port FBARs, an additional GSG probe and bias tee are used to 

connect the 2nd port to the network analyzer. ................................................................... 41 

Figure 2.20: Programmed voltage waveform for switching the resonators on and off at a 

repetition rate of 20 kHz. .................................................................................................. 41 

Figure 2.21: (a) S11 (when the 2nd port is shorted to ground through simulation) and (b) S21 

for a 2-port BST FBAR after 103, 106, and 109 switching cycles. .................................... 43 

Figure 2.22: A Nonlinear MBVD model used to represent the large signal behavior of 

ferroelectric thin film FBARs. .......................................................................................... 44 



xi 

Figure 2.23: Comparison between the measurement (solid line) and nonlinear MBVD 

model results (dotted line) at (a) -17 dBm of RF power and dc bias voltages of 4, 6, and 8 

V and (b) dc bias voltage of 5 V and RF power levels of 0, 4, and 8 dBm. ..................... 46 

Figure 2.24: Schematic of a series connected multi-frequency BST FBAR. The resonator 

shown in blue is on and the resonators shown in yellow are off. ..................................... 50 

Figure 2.25: Schematic of a dual-frequency BST FBAR. ................................................ 51 

Figure 2.26: Microphotograph of a fabricated dual-frequency BST FBAR. .................... 52 

Figure 2.27: Response of an intrinsically switchable dual-frequency BST FBAR with (a) 

both resonators off, (b) each individual resonator on, and (c) both resonators 

simultaneously on. ............................................................................................................ 54 

Figure 3.1: (a) Schematic of a single stage electrically coupled ladder filter. (b) Synthesis 

of the bandpass filter response from the input impedance of the series and shut FBARs. 60 

Figure 3.2: The schematic of an intrinsically switchable 1.5 stage ferroelectric FBAR filter.

........................................................................................................................................... 61 

Figure 3.3: Simple MBVD model used for designing FBAR filters. ............................... 62 

Figure 3.4: Fabrication procedure for ferroelectric FBAR filters. (a) A high resistivity 

silicon wafer with a thermally grown oxide layer and a 150 nm layer of platinum with 40 

nm of TiO2 adhesion layer is cut to the desired size. (b) Bottom electrodes are defined by 

using ion milling to selectively etch away platinum. (c) Ferroelectric thin film is deposited. 

(d) Top electrodes are deposited. (e) The ferroelectric is selectively etched away using 

HF/BHF. (f) A gold mass loading/compensation layer is deposited on top of the top 

electrode of the shunt resonator. (g) Thin film resistor is deposited. (h) Gold and aluminum 

contacts are deposited. (i) The silicon beneath the device is etched. (j) The key labeling the 

different materials used in the fabrication process. .......................................................... 64 

Figure 3.5: Microphotographs of a fabricated 1.5 stage electrically coupled ladder filter.

........................................................................................................................................... 65 

Figure 3.6: Response of a BTO FBAR filter in the on and off state. ............................... 67 

Figure 3.7: Measured BTO FBAR filter response at dc bias voltages of -3, 0, 3, 6, 9,12, 

and 15 V. ........................................................................................................................... 69 

Figure 3.8: (a) Transmission coefficient and (b) reflection coefficient of a 1.5 stage 

electrically coupled bandpass ladder filter composed of BST at dc bias voltages of 0, 5, 10, 

15, and 20 V. ..................................................................................................................... 70 

Figure 3.9: Measurement setup for measuring the reliability and switching speed of 

intrinsically switchable BST FBAR filters. Biasing is performed through a dc probe that is 

used to make contact with the thin film resistor that has been fabricated on chip. .......... 72 



xii 

Figure 3.10: Measured transmission at the center frequency of an intrinsically switchable 

BST FBAR filter after the indicated number of switching cycles when switched ‘On’ and 

‘Off’. ................................................................................................................................. 72 

Figure 3.11: Measurement setup for testing the switching speed of BST FBAR filters. . 74 

Figure 3.12: Oscilloscope waveform measuring the output of the arbitrary waveform 

generator and the output of the BST FBAR filter when switched on with a horizontal scale 

of (a) 1 μs/division and (b) 100 ns/division. ..................................................................... 75 

Figure 3.13: Schematic of a 1.5 stage BST FBAR filter with series BST varactors. ....... 76 

Figure 3.14: Schematic of a dual-band BST FBAR filter (a) with series connected BST 

varactors and (b) without series connected BST varactors. The biasing configuration for 

turning on a single filter is shown where the blue resonators are switched on and the yellow 

resonators are switched off. The arrow indicates the path of the RF signal within in the pass 

band of the filter. ............................................................................................................... 78 

Figure 3.15: S-parameters of a simulated dual-band filter with (red solid trace) and without 

(blue dashed trace) the use of series BST varactors. (a) The low frequency filter is switched 

on while the high frequency filter is switched off. (b) The low frequency filter is switched 

on while the high frequency filter is switched off. ........................................................... 79 

Figure 3.16: Microphotograph of a fabricated dual-band BST FBAR filter. ................... 80 

Figure 3.17: Measured reflection and transmission coefficients of a reconfigurable dual-

band filter when (a) both filters are off, (b) one filter is on, and (c) the other filter is on. 82 

Figure 3.18: Schematic showing the impedance matching that is performed on the 

measured filter in simulation through the use of Advanced Design System. ................... 83 

Figure 3.19: Simulated reflection and transmission coefficients of the measured 

reconfigurable dual-band filter when (a) both filters are off, (b) the low frequency filter is 

on, and (c) the high frequency filter is on for port impedances of 20 Ω and the addition of 

3 nH shunt inductors. ........................................................................................................ 84 

Figure 4.1: Cross section of a contour mode resonator that shows the excitation of laterally 

propagating acoustic waves due to the application of a vertical electric field. ................. 87 

Figure 4.2: Ring-shaped contour mode resonator with single pair of parallel plate electrodes 

for exciting laterally propagating acoustic waves in response to the applied RF electric 

fields. ................................................................................................................................. 89 

Figure 4.3: COMSOL Multiphysics simulation showing the total displacement of a parallel 

plate electrode contour mode resonator. Red indicates a large displacement and blue 

indicated a small displacement. ........................................................................................ 90 



xiii 

Figure 4.4: Step by step illustration of the fabrication process. (a) Start with a 525 μm thick 

high resistivity silicon substrate (5000 Ω·cm) with a layer of thermal SiO2 is deposited on 

top. (b) A 100 nm layer of platinum is patterned by e-beam evaporation and liftoff to serve 

as the bottom electrode. (c) A 405 nm BTO thin film is then deposited by pulsed laser 

deposition (PLD) using the conditions described in Chapter 2. (d) The top electrode is 

deposited using the identical procedure as for the bottom electrode. (e) The resonator 

structure is defined by wet etching the BTO and SiO2 layers. Then 500 nm of gold is 

deposited for the CPW probe pads (not pictured). (f) Device is released by an isotropic 

silicon dry etching process using XeF2. ............................................................................ 91 

Figure 4.5: Microphotograph of a released one-port intrinsically switchable circular ring-

shaped BTO thin film contour mode resonator. The bending of the resonator structure 

causes the section away from the tether to be out of focus. .............................................. 92 

Figure 4.6: (a) Measured input impedance of a one-port circular ring-shaped contour mode 

resonator with an applied dc bias voltage of 0 V (blue solid trace) and 1 V (green dotted 

trace). (b) Input impedance of the same device with an applied dc bias voltage of 12 V 

(blue solid trace) and 1 V (green dotted trace). ................................................................ 94 

Figure 4.7: The measured series and parallel resonance frequency vs. applied dc bias 

voltage of a BTO circular ring-shaped contour mode resonator. ...................................... 95 

Figure 4.8: Cross sectional view of an interdigitated contour mode resonator showing the 

signal path and biasing configuration. .............................................................................. 97 

Figure 4.9: (a) The parameters of interdigitated contour mode resonators used for 

approximating the series resonance frequency. (b) The desired length extensional 

resonance mode of the BTO thin film resonator. .............................................................. 98 

Figure 4.10: (a) The simulated 2-D resonator structure, (b) the electric fields due to the 

applied excitation, and (c) the mechanical displacement that occurs due to the contour 

mode resonance at 1.57 GHz. ......................................................................................... 100 

Figure 4.11: Step by step illustration of the fabrication process. (a) Bottom electrodes are 

deposited on top of a thermally oxidized silicon wafer. (b) Ferroelectric thin film is 

deposited. (c) Top electrodes are deposited. (d) Resonator body is defined by selectively 

etching away the ferroelectric and SiO2. (e) Gold contacts are deposited. (f) The silicon 

beneath the device is etched, releasing the device which consists of SiO2, Pt, BTO, and Pt 

(bottom to top). ............................................................................................................... 101 

Figure 4.12: Microphotograph of a high frequency interdigitated contour mode resonator.

......................................................................................................................................... 101 

Figure 4.13: Layout of the top (solid line) and bottom (dashed line) electrodes for the CPW 

signal line of (a) two series capacitors, (b) long through, and (c) short through test structures 

for determining the loss tangent of the ferroelectric thin film (in between the top and bottom 

electrode) of the fabricated resonators. ........................................................................... 103 



xiv 

Figure 4.14: Measured S11 of the interdigitated contour mode resonators with the indicated 

electrode width at 15 V dc bias. ...................................................................................... 105 

Figure 4.15: Fit of the calculated and experimentally measured resonance frequency of 

resonators (at 15 V dc bias) with different electrode widths. ......................................... 105 

Figure 4.16: Measured input impedance for a 1 μm electrode width interdigitated contour 

mode resonator in the on and off state. ........................................................................... 106 

Figure 4.17: Measured |S11| of an interdigitated contour mode resonator with an electrode 

width of 1 μm at bias voltages of 0 V, 5 V, 10 V, and 15 V. ......................................... 107 

Figure 4.18: Response of an interdigitated resonator with a 1 μm electrode width at bias 

voltages of 0 V, 5 V, 10 V and 15 V plotted on a Smith Chart. ..................................... 108 

Figure 4.19: Plot of the normalized series and parallel resonance frequency versus bias 

voltage. ............................................................................................................................ 109 

Figure 4.20: The Modified Butterworth-Van Dyke model for ferroelectric BAW 

resonators. ....................................................................................................................... 111 

Figure 4.21: Comparison between measurement and MBVD modeling results of a 1 μm 

electrode width resonator for dc biases of 0, 5, 10, and 15 V from 0.1 to 2 GHz. ......... 112 

Figure 4.22: Extracted motional capacitance and motional inductance as a function of bias 

voltage of a 1 μm electrode width resonator. .................................................................. 112 

Figure 4.23: Extracted device capacitance as a function of bias voltage of the 1 μm 

electrode width resonator. ............................................................................................... 113 

Figure 4.24: Structure of an LFE interdigitated contour mode resonator with top electrodes 

only. The excitation and dc biasing scheme is also shown. ............................................ 113 

Figure 4.25: Measurement result of the top electrode only LFE interdigitated contour mode 

resonator at a bias voltage of 50 V.................................................................................. 115 

Figure 5.1: Assembled RF magnetron sputtering system for the deposition of ferroelectric 

BST thin films. (a) Main processing chamber. (b) Load lock and transfer arm. ............ 118 

 



xv 

LIST OF APPENDICES 

 

Appendix A BST Thin Film Resonator and Filter Fabrication Procedure .... 136 
A.1 Fabrication Process Overview ........................................................................ 136 

A.2 Detailed Fabrication Procedures ..................................................................... 136 

A.2.1 Wafer preparation and cleaning .................................................................136 

A.2.2 Bottom electrode patterning .......................................................................137 

A.2.3 BST thin film deposition using pulsed laser deposition (PLD) .................138 

A.2.4 Top electrode deposition ............................................................................140 

A.2.5 BST annealing ............................................................................................141 

A.2.6 BST etch.....................................................................................................141 

A.2.7 Compensation layer deposition ..................................................................143 

A.2.8 Thin film resistor deposition ......................................................................144 

A.2.9 Contact deposition .....................................................................................145 

A.2.10 Device release ............................................................................................146 

Appendix B RF Magnetron Sputtering System - Standard Operating 

Procedures ........................................................................................................... 149 
B.1 Initializing the System .................................................................................... 149 

B.2 Running the System ........................................................................................ 151 

B.2.1 Sample Loading .........................................................................................151 

B.2.2 Film Deposition .........................................................................................152 

B.2.3 Sample unloading.......................................................................................155 

Appendix C MATLAB Code ............................................................................... 156 
C.1 Acoustic Wave Transmission Line Model ...................................................... 156 

 



xvi 

ABSTRACT 

 
As wireless communication systems have become more prevalent, their role has 

broadened from simply a means of connecting individuals to one another to a means of 

connecting individuals to the vast information and social network of the Internet. The 

resulting exponential increase in the utilization of wireless communication systems, the 

fundamental limitation of the finite wireless spectrum, and the use of conventional wireless 

communication systems that are designed to operate at fixed predetermined carrier 

frequencies pose a significant challenge. One method to address this problem is to use 

adaptive and reconfigurable wireless communication systems that can change their 

frequency and mode of operation based on the unused/available wireless spectrum in their 

environment as well as their surrounding environmental conditions. Unfortunately, 

currently available RF and microwave circuit components cannot meet the frequency 

agility specifications, performance requirements, and cost constraints necessary for the 

widespread commercialization of such systems. 

This thesis explores how the multifunctional properties of ferroelectrics such as barium 

strontium titanate (BST) can be used to design switchable and tunable RF circuits for use 

in adaptive and reconfigurable wireless communication systems. In particular, the electric 

field dependent permittivity, electrostriction, and electric field induced piezoelectricity of 

BST are utilized for the design of electroacoustic resonators and filters. The main 

contribution of this thesis is the demonstration of several different intrinsically switchable, 



xvii 

tunable, and reconfigurable resonator and filter designs. First, BST film bulk acoustic wave 

resonators (FBARs), which exhibit electric resonances that are controlled by an applied dc 

bias voltage, are designed, fabricated, and characterized. In addition, reconfigurable dual-

frequency resonators that utilize intrinsically switchable and tunable BST FBARs are 

demonstrated for the first time. Second, intrinsically switchable and tunable ferroelectric 

FBAR filters with insertion losses as low as 4.1 dB at 1.6 GHz are presented. Furthermore, 

dual-band BST FBAR filters that exhibit two different pass band responses in the low GHz 

range are demonstrated for the first time. Third, intrinsically switchable and tunable lateral 

(contour) mode resonators with frequencies as high as 1.67 GHz are demonstrated for the 

first time. Last of all, an RF magnetron sputtering system dedicated to BST thin film 

deposition is designed, assembled, and configured for continuing the improvements in 

ferroelectric thin film performance, developing novel ferroelectric based circuits, and 

designing larger and more complex circuits and systems. 

 



1 

CHAPTER 1 

Introduction 

 

1.1. Motivation 

Wireless communication systems are constantly evolving to increase network capacity, 

achieve higher data bandwidth, extend communication range, improve quality of service, 

and/or lower costs. However, there are many challenges that need to be addressed before 

such improvements can be realized. First, newer systems must utilize the crowded wireless 

spectrum more efficiently [1]. This is because the number of wireless devices in use is 

growing at a phenomenal rate and the number of different communication standards in use 

by consumer electronics has been increasing [2, 3]. For example, a typical smartphone 

often contains RF frontends for Wi-Fi, Bluetooth, GPS, 2G, 3G, 4G, radio frequency 

identification (RFID), Global System for Mobile Communications (GSM), CDMA2000, 

etc. and future devices will include even more with the development of newer 

communication standards (e.g. WiMAX, 5G). Second, the complexity, power 

consumption, and size of the hardware must decrease while the reliability and lifetime need 

to increase [4]. These improvements are necessary for applications such as wireless sensor 

networks [5, 6] and wireless appliances where a large number of wireless devices are 

deployed and scattered throughout unknown, unsafe, or remote regions, making it cost 

inhibitive to rely on redundancy or replacement for maintaining operation. Therefore, the 
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transceiver must be able to adjust to constantly changing environmental conditions (e.g. 

temperature, moisture, noise floor, antenna loading effects, etc.) in order to maintain a 

communication link and sustain a long lifetime to maximum return on interest. Lastly, the 

system must provide a secure communication link to prevent wireless systems from being 

hacked and sensitive information from being intercepted. In order to address these issues, 

a new class of radio designs that are adaptive and reconfigurable is required.  

The next generation of wireless communication systems is expected to be a form of 

cognitive radio with the ability to intelligently adapt and reconfigure themselves based on 

their circumstances. In other words, the transceivers must reconfigure themselves based on 

the user’s demands and opportunistically exploit available communication channels in their 

environment while maintaining connectivity, quality of service, and a long battery life. 

This requires the ability to rapidly switch modulation scheme and carrier frequency to 

accommodate bandwidth requirements, minimize power consumption, and minimize 

propagation losses. These design requirements are very challenging and will become more 

so as the number of supported communication standards increases. An example of the 

complexity of an RF front end is illustrated in Figure. 1.1, which shows the block diagram 

of a global cellular phone and the many different RF components that are required just for 

the GSM bands [1]. There has been recent progress in achieving the next generation radio. 

For example, recently, the Intel Corporation announced the XMM™ 7160 [7], Broadcom 

Corporation their BCM21892 [8], and Qualcomm Incorporated their WTR1625L & RF360 

[9], which are their respective 2G/3G/4G integrated modems for cellular phones. 

Integration and performance enhancements of integrated circuits (ICs) are steadily 

improving as a result of device scaling. However, passive radiating and frequency selective 
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components such as antennas and bandpass filters do not benefit from the rapid advances 

described by Moore’s law for active devices and often contribute to a large portion of the 

transceiver’s size and cost. In order to further reduce the complexity and cost of 

components such as resonators and filters, many new design approaches and materials are 

being explored. However, it is still unclear which of these technologies will be able to 

maintain high signal-to-noise (SNR) ratio, reject interference, and reduce power 

consumption for cognitive radios. 

 

 
Figure 1.1: Block diagram of the RF frontend for a modern cellular phone. Reproduced 

from [1]. 
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1.1.1. Overview of Resonator and Filter Technologies 

There is substantial ongoing effort in improving almost every aspect of the many 

different components that make up an RF front end. Resonators and filters, which serve as 

the frequency determining components for RF front ends, have one of the most profound 

impact on the performance, size, and cost of wireless communication systems [3]. For 

example, very low loss resonators and filters can drastically reduce the power consumption 

while increasing sensitivity of the RF front end. Higher performance filters that are used in 

duplexers, triplexers, and multiplexers can also increase the data bandwidth and spectrum 

utilization achieved by the wireless communication system by reducing the minimum 

separation between communication bands. The use of frequency agile resonators and filters 

can drastically reduce the size, complexity, and cost of RF front ends. 

Various techniques have been developed to realize frequency agile resonators and 

filters. However, mobile devices and sensors are severely size and weight constrained, 

limiting resonator and filters designs to electroacoustic and RF microelectromechanical 

system (MEMS) based technology. Fortunately, devices based on these two technologies 

are generally voltage-controlled, minimizing the required control components and adding 

to their robustness. Example of such devices include electrostatic resonators, which utilize 

a dc bias voltage to excite a capacitively transduced resonator. They possess excellent 

quality factors at ultra high frequency (UHF) [10-12]. However such resonators also have 

high motional impedances, which complicate their integration with standard 50 Ω systems. 

Another voltage controlled resonator design, which uses a MEMS switch in series with a 

traditional piezoelectric resonator, has also been demonstrated and have shown quality 
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factors of 2000 and turn-on voltages as low as 5 V [13-16]. However the signal loss and 

limited lifetime of the external switches are undesirable. 

Many tunable and reconfigurable filters have also been demonstrated, such as in [11], 

where a two-filter self-switching electrostatic micromechanical filter bank with center 

frequencies of 9.40 and 9.55 MHz has been demonstrated. In [12], digitally-tunable 

mechanically-coupled MEMS filters that are able to selectively excite particular vibration 

modes are reported. In [16], SP2T lead zirconate titanate (PZT) MEMS switches are used 

to select between two mechanically coupled contour mode PZT-on-SOI filters with center 

frequencies of 197 and 294 MHz. Similar work is demonstrated in [13, 15, 17] using 

aluminum nitride (AlN). However, these approaches have not been able to simultaneously 

provide low insertion loss, high rejection, a 50 Ω port impedance, and very compact form 

factor.  

The research presented in this thesis is intended to address the challenges of designing 

cognitive/intelligent radios using the ferroelectric thin film technology and in particular, 

the multifunctional properties of barium strontium titanate (BST, Ba(x)Sr(1-x)TiO3) for 

resonator and filter design. Figure 1.2 shows the system diagram of what a reconfigurable 

RF front end that utilizes the multifunctional properties of ferroelectric thin film would 

look like. In the envisioned RF front end, the filter banks are implemented using 

intrinsically switchable ferroelectric FBAR filters that switch between different 

frequencies by simply controlling the applied dc voltage and without the need of solid state 

or MEMS based switches. The amplifiers are implemented using ferroelectric impedance 

tuner that consists of ferroelectric varactors/tunable capacitors so that a minimal number 

of amplifiers can be used over a wide frequency range. The local oscillator is implemented 
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with intrinsically switchable and tunable ferroelectric FBARs to minimize the required 

number of voltage controlled oscillators (VCOs). 

 

 
Figure 1.2: System diagram of a reconfigurable RF front end that utilizes the 

multifunctional properties of ferroelectric thin film technology. 

 

1.1.2. Properties of Ferroelectric Thin Films 

Ferroelectric materials are a class of ceramic dielectrics and a subgroup of piezoelectric 

and pyroelectric materials, as shown in Figure 1.3. Piezoelectrics and pyroelectrics exhibit 

electric field induced strain and temperature dependent spontaneous polarization [18]. 

These properties can be described by (1.1) and (1.2), which relate the temperature (T) 

dependent strain (u) of a material to the electrostriction coefficient (Q), spontaneous 

polarization (Ps), dielectric susceptibility (χ), and electric field (E) [19-21]  
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Figure 1.3: Illustration showing the relationship between different classes of dielectric 

materials [22]. 

 

In addition to these properties, ferroelectrics also exhibit a spontaneous polarization 

that can be reversed by an externally applied electric field. However, this only occurs when 

such materials are below their Curie temperature. When their temperature rises above the 

Curie temperature, they transition from the ferroelectric phase to the paraelectric phase and 

no longer exhibit spontaneous polarization [21]. For example, when the temperature of 

barium titanate rises above 116°C and its unit cell, shown in Figure 1.4, changes from a 

tetragonal to a cubic crystalline structure, the polarization-electric field curve does not 

display hysteresis. Strontium titanate (STO) is a material in the same class as barium 

titanate (BTO). However, for nearly all temperatures, it is in the paraelectric phase and 

therefore its polarization does not show hysteresis [21]. For ferroelectric solid solutions of 

barium strontium titanate (Ba(x)Sr(1-x)TiO3, BST), the Curie temperature of the material 

depends on the ratio of barium to strontium, as shown in Figure 1.5. From this point on, 

BST based ferroelectrics will be the main focus since they are the family of ferroelectric 

that are used in the work presented here. The relative permittivity and electric polarization 

of BST thin films are shown in the top of Figure 1.6 as a function of temperature. 
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Figure 1.4: Unit cell of BST [18]. 

 

 
Figure 1.5: Dependence of Curie temperature of various ferroelectric as a function of 

chemical composition. (Reproduced from [18]). 
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Figure 1.6: Diagram showing the relation temperature and permittivity of ferroelectric 

materials (Reproduced from [18]). 

 

In thin film form, BST has properties that differ from that of its bulk form. Thin film 

BST in general has a much lower permittivity with a significantly decreased temperature 

dependence, making it quite ideal for use in commercial RF/microwave applications. BST 

thin films also require much lower control voltages for tuning the electric permittivity and 

reversing the spontaneous polarization since the required voltage is inversely proportional 

to the separation of the electrodes for metal-insulator-metal structures. BST thin films are 

commonly deposited using RF sputtering, pulsed laser deposition (PLD), metal-organic 

vapor phase epitaxy (MOCVD), sol-gel, and atomic layer deposition (ALD). Each of the 

deposition techniques have their own advantages and disadvantages such as initial capital 

cost, deposition rate, scalability, etc. and to a certain degree, can influence the 

characteristics of the material. One disadvantage of the thin film deposition process is the 

traditionally high temperature growth conditions necessary to obtain high quality film, 

which can limit the type of devices that can be integrated onto the substrate, substrate 

material, and the bottom electrode material. However, material deposition is still a very 
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active area of research due to the material’s exceptionally valuable properties that can be 

used for a variety of applications, as discussed in the next section. Therefore, continued 

research and development in the deposition process as well as improvements in film quality 

can be expected. 

1.1.3. Ferroelectric Devices 

Many of the multifunctional properties of ferroelectric materials used for device design 

are presented by the Heckmann diagram shown in Figure 1.7, which shows the broader 

relationship between the thermal, mechanical, and electrical properties of these materials. 

Thermal-based detectors and sensor arrays for infrared (IR) imaging commonly employ 

pyroelectricity and measure the change in spontaneous polarization due to the increase in 

temperature from absorbed IR radiation [23]. Non-volatile memories can be realized by 

using ferroelectricity (electric field reversible spontaneous polarization) to create 

ferroelectric random access memory (FeRAM), which use ferroelectric capacitors or 

ferroelectric field effect transistors (FeFETs) [23]. Similarly, ferroresistivity can be 

employed to create ferroresistive random access memory (FRRAM) and ferroelectric 

tunnel junctions (FTJ) [23]. Sensors, transducers, and actuators can also be designed using 

piezoelectricity through a variety of methods [21, 23, 24]. Compact and light weight super 

capacitors, as well as high density dynamic random access memory (DRAM) can be 

realized by the very high permittivity of ferroelectrics. Last but not least, RF and 

microwave circuits that utilize the various properties of ferroelectrics, especially BST, can 

be designed. 
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Figure 1.7: The Heckmann diagram, which shows the thermal, mechanical, and electrical 

relationships of a material (Reproduced from [22]). 

 

The dielectric properties of ferroelectrics have a variety of uses for RF and microwave 

applications. In their bulk form, their high electric permittivity has been used in dielectric 

resonators and filters, lens antennas, and dielectric substrates [21, 23]. In their thin film 

form, the electric field dependent permittivity and low loss tangent of thin film 

ferroelectrics make them ideal materials for voltage tunable capacitors (varactors) [18]. In 

the absence of an external electric field, the capacitance of BST varactors are at their 

maximum. With the introduction of an electric field from the application of a dc bias 

voltage, their permittivity decreases through the relation given in (1.4), where Cmax is the 
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maximum capacitance of the capacitor, which typically occurs at 0 V bias and V2 is the 

value of the voltage (V) at which the value of the capacitor is half of Cmax. An example of 

a tuning curve of a BST capacitor is shown in Figure 1.8.  
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Figure 1.8: Tuning curve and normalized tuning curve of a BST MIM capacitor measured 

at 100 MHz. The dc bias is swept from -25 to 25 V. 

 

Compared to semiconductor diode varactors, BST varactors have a higher RF power 

handling capacity and do not have a conducting state. Furthermore, compared to MEMS 

based varactors, BST varactors are smaller, have a faster response time, do not suffer from 

mechanical fatigue, and have excellent power handling capabilities. Other advantageous 

properties are listed below: 

1) Good long-term stability at operational temperatures and voltages 

2) Low loss tangent/high quality factors 

3) Negligible dispersion in high quality films 
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4) Completely passive and do not suffer from junction noise (unlike Schottky and 

varactor diodes) 

5) No quiescent current and therefore no static power consumption and 

6) Small footprint. 

BST thin film based varactors have been employed in phase shifters, tunable filters, 

voltage controlled oscillators, frequency modulators, parametric amplifiers, tunable power 

divider, and many other applications [18, 21, 23]. 

While the dielectric properties of BST have been well characterized and utilized for RF 

and microwave applications, it is only recently that the electrostriction and electric field 

induced piezoelectricity of BST thin films have been utilized for the design of 

electromechanical resonator [19, 25]. Without any applied dc bias, the BST thin film metal-

ferroelectric-meta (MFM) devices behave as simple capacitors. However, with the 

application of a dc bias, which creates a large electric field within the BST thin film, 

acoustic waves can be excited within the materials and for a properly designed resonator, 

a series and parallel resonance are observed. The voltage/electric field dependent properties 

of BST resonators can be used for the design of intrinsically tunable and switchable 

oscillator and filter designs. The ability of BST thin films to be used for varactors as well 

as tunable and switchable resonators and filters provides the opportunity to create an 

entirely adaptive and reconfigurable RF front end, such as the one shown in Figure 1.1, 

using BST thin film technology. The focus of this thesis is to utilize BST thin film 

technology to design RF and microwave electroacoustic frequency selective devices. 

This concludes the discussion on the motivation behind realizing adaptive and 

reconfigurable wireless communication system and how ferroelectric thin film technology 
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can play a critical role in addressing the multiple challenges that engineers face in attaining 

cognitive radios. The background on adaptive resonators and filters, ferroelectric thin film 

technology, and ferroelectric BST thin film devices provided in this chapter serves as the 

foundation and starting point for the topics that will be discussed in this thesis. 

1.2. Thesis Organization 

The remainder of this thesis is organized in the following manner: 

Chapter 2 will focus on the design, performance, and modeling of BST based 

intrinsically switchable, tunable, and reconfigurable resonators. First, the acoustic wave 

transmission line model, which is a method for determining the behavior of acoustic waves 

in multilayered structures, will be utilized for designing BST-based bulk acoustic wave 

resonators. Then, the fabrication process of BST bulk acoustic wave resonators will be 

described. Subsequently, the dc voltage dependent, RF power dependent, and switching 

performance of BST FBARs as well as their reliability will be discussed. Furthermore, 

their dc voltage and RF power dependent frequency response will be modeled using the 

Modified Butterworth-Van Dyke (MBVD) model. Next, the design and performance of 

reconfigurable BST FBARs are presented. Intrinsically switchable BST FBARs of 

different resonance frequencies are electrically connected in series. Individual FBARs can 

be switched on independently by controlling the dc bias voltage across each device. This 

is the first demonstration of reconfigurable resonators that utilize BST thin film technology. 

Chapter 3 will focus on the design and performance of electrically coupled BST FBAR 

filters and reconfigurable BST FBAR filters. Intrinsically switchable BST FBARs are 

arranged in a ladder configuration to create electrically coupled FBAR filters that show a 
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band pass response when the FBARs are switched on with the application of a dc bias. By 

using the MBVD and acoustic wave transmission line model to represent the resonators 

that make up the filter, the proper filter design can be obtained. Without dc bias, the filter 

is off and the device isolates the two ports. The design and performance of reconfigurable 

BST FBAR filters is also presented. Intrinsically switchable BST FBAR filters of different 

frequencies are connected in parallel with one another. Each filter consists of an electrically 

coupled 1.5 stage ladder filter placed in between series connected BST MFM varactors. 

This is the first demonstration of a reconfigurable filter that utilizes intrinsically switchable 

BST FBAR filters and BST varactors to switch on/off individual filter elements. 

Chapter 4 will focus on the design, performance, and modeling of intrinsically 

switchable contour mode bulk acoustic wave resonators using the ferroelectric material 

barium titanate (BaTiO3 or BTO). The non-zero effective d31 exhibited by BTO and its 

electric field induced piezoelectricity is utilized to create intrinsically switchable resonators 

that have their resonance frequency mainly determined by their lateral dimensions. The 

design and measurement results of BTO ring-shaped contour mode resonators are 

discussed. In addition, the design, measurement, and modeling results of interdigitated 

contour mode resonators are presented. This is the first demonstration of intrinsically 

switchable ferroelectric contour mode resonator. 

Chapter 5 will focus on the design, assembly, and operation of an RF magnetron 

sputtering system for BST thin film deposition. Each component of the system is described 

and its function relative to the overall system is discussed. The standard operating 

procedure for the system included and the optimal deposition conditions are also included. 
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Chapter 6 will summarize the topics that have been are discussed in each of the 

chapters, relate each research topic discussed in this thesis to the challenge of achieving 

adaptive and reconfigurable wireless communication systems, and introduce possible 

future research directions. It will also summarize the contribution of the work that is 

presented here in the area of adaptive and reconfigurable RF/microwave circuits and 

possible new applications. 
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CHAPTER 2 

Design, Performance, and Modeling of 

Switchable, Tunable, and Reconfigurable  

BST FBARs 

 

2.1. Introduction 

High performance, compact, and low cost resonators are essential components for 

modern wireless communication systems. State-of-the-art resonators that are currently 

being used for mobile applications are generally a type of electroacoustic resonator [26]. 

Electroacoustic resonators behave similarly to electromagnetic metallic and dielectric 

resonators in that the resonant structure imposes boundary conditions that can only be 

satisfied by waves with particular frequencies. However, electroacoustic resonators have 

several advantages that have allowed them to become commercially successful. First, the 

propagation velocity of acoustic waves in solids, which is in the range of several thousands 

of meters per second, results in design features that are on the order of several microns for 

devices operating in the hundreds of MHz to GHz frequency range. The small features 

allow the devices to have a small footprint while also being matched to standard 50 Ω 

components. Second, high quality materials commonly used in the semiconductor industry 

such as silicon have very low acoustic loss at RF and microwave frequencies [27]. This 

increases the achievable quality factor of a resonator, an important figure of merit for 
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frequency selective circuits, and reduces the overall power consumption of the circuits they 

are used in. Third, they can be mass produced using standard CMOS and MEMS based 

fabrication technology. All of these factors have led to the maturation and widespread use 

of electroacoustic devices for many applications such as oscillator, filter, and sensors [27]. 

Electroacoustic resonators are generally categorized as either surface acoustic wave 

(SAW) or bulk acoustic wave (BAW) devices. Both types of resonators have a series and 

a parallel resonance frequency. The series resonance frequency is determined by the 

dimensions of the device relative to the structure’s effective acoustic wave velocity. The 

parallel resonance frequency is higher than the series resonance frequency by a value that 

is proportional to the effective electromechanical coupling coefficient of the resonating 

structure [26]. The difference between the two types of electroacoustic resonators is the 

types of acoustic waves that are generated, confined, and converted into electrical 

resonances, and the type of waves that are generated is determined by the physical structure 

of the resonator [27]. 

SAW resonators consist of a piezoelectric substrate or thin film (e.g. quartz, lithium 

niobate, lead zirconate titanate (PZT), and aluminum nitride) that is covered by 

interdigitated metal electrodes [27]. The piezoelectric material allows the RF signals 

applied to the interdigitated electrodes to produce laterally propagating surface acoustic 

waves and also allows the propagating surface acoustic waves to exhibit an electrical 

resonance. The patterning of the electrodes dictates the resonance frequency, quality factor, 

impedance level, and other electrical parameters of the device [27].  

BAW resonators consist of a piezoelectric slab with metal electrodes on the top and/or 

bottom surface. RF signals applied to the electrodes produce acoustic waves that propagate 
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within the bulk of the slab and the propagating bulk acoustic waves can in turn generate an 

electrical response. The acoustic waves are confined within the resonator due to the 

acoustic impedance mismatch between the resonator body and its surrounding 

environment. The two methods of confining the bulk acoustic waves divide BAW 

resonators into two different categories. The first type of BAW resonator is the solidly 

mounted resonator (SMR). It utilizes an acoustic Bragg reflector, which consists of 

alternating quarter-wavelengths of high and low acoustic impedance materials, to contain 

the acoustic waves of a particular set of frequencies [27]. The second type is the film bulk 

acoustic wave resonator (FBAR). It utilizes MEMS processing techniques to remove the 

material surrounding the resonator body and relies on the large acoustic impedance 

mismatch between the resonator body and the surrounding air/vacuum to contain acoustic 

waves of a particular set of frequencies [26]. Both FBARs and SMRs have resonance 

frequencies that are determined by the thickness of the thin films that make up the device. 

While both types of BAW resonators have been very commercially successful in the 

telecommunications industry and have been spreading into other markets, each have their 

own advantages. SMRs are very mechanically robust and the film stress within the 

transducing layer and electrodes are minimal [27]. Furthermore, SMRs have better heat 

dissipation capabilities, which can allow for higher power handling [27]. FBARs on the 

other hand can achieve higher effective electromechanical coupling coefficients and 

quality factors since the Bragg reflector can serve as an additional source of energy loss 

[28]. Also, it is easier to design and fabricate FBARs of widely varying frequency on a 

single substrate since there is no need to consider the operating frequency range of a Bragg 

reflector. Based on the motivation behind this work, the fabrication processes/equipment 



20 

available for use, and performance goals, the FBAR structure was chosen for 

demonstrating the capabilities of BST thin film technology. 

FBARs can be designed with a variety of configurations. For example, they can be 

configured as either one- or two-port devices. One-port devices, which have the 

configuration shown in Figure 2.1(a), are generally used in VCO design and can be easily 

characterized by plotting the measured input impedance on the Smith Chart [27]. Two-port 

devices, which have the configuration in Figure 2.1(b), are generally used in filter design 

and can be measured more accurately since network analyzers can achieve higher 

sensitivity when measuring transmission coefficients than reflection coefficients [26]. 

Furthermore, in contrast to the common bottom electrode, transduction layer, and top 

electrode configuration, FBARs can be designed with a layer of very high quality and low 

acoustic loss material, such as silicon, beneath the bottom electrode to create a composite 

structure for enhancing certain performance aspect of the device [26, 27, 29]. Figure 2.2(a) 

shows the cross section of a traditional, non-composite FBAR and Figure 2.2(b) shows a 

composite FBAR. In this chapter, the design, performance, and modeling of non-composite 

one-port FBARs using a BST thin film transduction layer is the main focus. 

 

 
(a) 

 
(b) 

Figure 2.1: Configuration of (a) one- and (b) two-port BST FBARs shown in schematic 

form. 

Port 1 Port 2 Port 1 Port 2
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(a) 

 
(b) 

Figure 2.2: Cross section of a (a) traditional, non-composite and (b) composite BST FBAR. 

 

2.2. BST FBARs  

BST FBARs are acoustically resonant membranes that consist of a BST thin film 

sandwiched between a pair of top and bottom electrodes, as shown in Figure 2.3. The 

properties of BST provide a couple advantages for designing bulk acoustic wave 

resonators. First, BST has a high relative permittivity in the several hundred, which allows 

for the design of much smaller resonators than compared to those based on traditional 

piezoelectric materials. Second, BST exhibits electrostriction and electric field induced 

piezoelectricity, which allows for the design of intrinsically switchable and tunable bulk 

acoustic wave resonators. This is illustrated by the measured input impedance of a BST 

FBAR when it is in the off state, which occurs with a 0 V dc bias, and when it is in the on 

state with a 5 to 25 V dc bias, as shown in Figure 2.4. 
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Figure 2.3: Cross section of a BST FBAR. 

 

 
 

(a) 

 
 

(b) 

Figure 2.4: Measured response of a Ba0.5Sr0.5TiO3 FBAR at various bias voltages. 

 

The unique ability of BST FBARs to switch on and off with the application of a dc bias 

voltage and have their resonances be tuned by controlling the bias voltage level is due to 

BST’s strong electrostrictive properties. In order to understand the mechanism behind this 

behavior, piezoelectricity and electric field induced piezoelectricity are discussed with 

respect to their role in realizing electroacoustic resonators. Traditional bulk acoustic wave 

resonators that utilize piezoelectric materials to excite an acoustic wave within the bulk of 

the structure in response to an applied RF signal always exhibit an electrical resonance. 

This is because the coupling between the strain and electric field within the piezoelectric 

material is always present regardless of the external electric field, as shown in the left of 
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Figure 2.5. Thus, the acoustically resonant cavity can always be excited and result in a 

resonance behavior. In contrast, recently demonstrated ferroelectric BST based bulk 

acoustic wave resonators do not exhibit a piezoelectric response in their natural unbiased 

state and cannot excite acoustic waves within the ferroelectric layer. Therefore, under 

normal circumstances, BST resonators do not exhibit an electrical resonance. However, 

when a dc bias voltage is applied across the ferroelectric thin film, the electric field 

displaces the center titanium ion in the perovskite crystal lattice, polarizing the material to 

exhibit electric field induced piezoelectricity (see Figure 1.4), and applied RF signals are 

able to excite acoustic waves within the bulk of the resonator, as illustrated in the right of 

Figure 2.5. 

 

 
Figure 2.5: Illustration showing the electric field induced piezoelectricity of BST as a result 

of its strong electrostrictive response. 

 

The resulting coupling between the electrical and acoustic waves gives rise to an 
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electromechanical coupling coefficient, the ratio of electrical to mechanical energy 

densities, of the BST thin film to increase, as shown in Figure 2.6. Furthermore, due to 

BST’s dc electric field dependent permittivity and polarization as well as its nonlinear 

electrostrictive effects, the resonance frequencies of BST FBARs can be tuned by 

controlling the dc bias level [30, 31]. Lastly, by removing the dc bias, the titanium ion to 

returns to the center of the BST unit cell (given that the material is in its paraelectric state), 

eliminating any electrical resonance that once existed. In order to design a BST FBAR, we 

need to consider the properties of the device at a particular bias voltage and determine the 

behavior of the excited acoustic waves that propagate within the resonator. This can be 

done by using transmission line theory as discussed in the next section. 

 

 
 (b) 

Figure 2.6: Dependence of the electromechanical coupling coefficient, which is related to 

the effective piezoelectric coefficient, as a function of dc bias voltage. Reproduced from 

[32]. 
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2.2.1. Design and Simulation 

2.2.1.1. Analytical Design 

BST FBARs are electroacoustic devices that utilize electrostriction to switch on and 

off their electrical resonances and tune their resonance frequencies. The phenomenon of 

electrostriction is quite complex and involves many material parameters that are difficult 

to characterize. However, it is possible to design of BST FBARs without directly 

considering electrostriction by separately considering the electrical and acoustic properties 

of the device and utilizing the electromechanical coupling coefficient of BST thin films. 

The method discussed in this section can be used for the initial design of a BST FBAR and 

subsequently an iterative design process can be used to more accurately predict the 

behavior of the fabricated and characterized devices. 

The overall frequency response of a BST FBAR can be determined using the acoustic 

transmission line model shown in Figure 2.7 [33]. With this design technique, the acoustic 

properties of each material, such as stiffness constant (E), mass density (ρ), acoustic quality 

factor (QA), and acoustic wavelength (λA) are used to calculate the acoustic wave velocity 

(vA), acoustic impedance (ZA), acoustic propagation constant (β), and acoustic propagation 

coefficient (γA) for each layer:  
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Then, the input impedance of the FBAR is determined by modeling each layer as an 

acoustic transmission line of thickness t that is terminated with a load ZA by using (2.5).  
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Subsequently, the acoustic impedances (normalized by the acoustic impedance of BST) 

seen by the top and bottom of the BST layer (zt, zb), the electrical capacitance (C) due to 

the overlapping top and bottom electrodes, and the electromechanical coupling coefficient 

(K2) of the BST are used in (2.6) to calculate the overall input impedance of the resonator 

(ZR), where ϕ is half of the acoustic phase delay for the BST layer. The thickness of each 

layer and the overlap area of the top and bottom electrodes are chosen to obtain the desired 

frequency response from the FBAR. 
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Figure 2.7: Acoustic wave transmission line model for designing FBARs and FBAR filters. 
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2.2.1.2. Multiphysics Simulation 

The analytically derived design parameters for obtaining the desired frequency 

response can be verified by performing multiphysics based simulations. Here, COMSOL 

Multiphysics (COMSOL) is used to perform 2D simulations in order to demonstrate what 

is physically taking place within the FBAR structure.  

The 2D cross section of a BST FBAR is drawn in COMSOL and the properties of 

platinum and BST used in the simulation are initially obtained through the COMSOL 

material library and then modified to represent the materials grown in our fabrication 

facility. The simplest simulation to perform is to solve for the eigenfrequencies of the 

structure. Once the eigenfrequencies are known, the total displacement of the resonator 

body can be obtained. An FBAR consisting of platinum bottom and top electrodes that are 

100 nm thick and a BST layer that is 400 nm thick has been simulated. Figure 2.8(a) shows 

the eigenmode of the FBAR at its eigenfrequency of 2.6 GHz where the different colors 

indicate the total displacement of the resonator body and Figure 2.8(b) shows the 

exaggerated deformation of the resonator. We see that the displacement is the largest at the 

top and bottom boundary of the structure, which is where the strain of the material must be 

zero due to the boundary conditions. This is the desired fundamental resonance mode for 

FBARs. COMSOL can also be used to simulate the frequency response of the BST FBAR. 

However, due to the relatively simple and well understood nature of the FBARs in addition 

to the sufficient accuracy afforded by the acoustic wave transmission line, it is not 

discussed here but will be discussed in Chapter 4 for a different type of resonator structure. 
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(a) 

 
(b) 

Figure 2.8: COMSOL Multiphysics simulation results showing the desired resonance mode 

of a BST FBAR. (a) The total displacement of the FBAR at different regions is shown by 

the color. (b) The deformation of the FBAR is shown. 

 

2.2.2. Device Fabrication and Measurement Setup 

After using the acoustic wave transmission line model to obtain a preliminary design 

and COMSOL multiphysics to verify that the desired resonance mode is obtained, BST 

FBARs are fabricated in the Lurie Nanofabrication Facility (LNF) located within the 

Electrical Engineering and Computer Science building at the University of Michigan using 

the procedure illustrated in Figure 2.9. BST FBARs are fabricated on high resistivity silicon 

substrates that are 525 µm thick and have a resistivity of 3 kΩ∙cm [Figure 2.9(a)]. 

Fabrication begins by growing a 100 nm SiO2 thermal oxide on the wafer [Figure 2.9(b)]. 

Next, a 100 nm platinum bottom electrode and a 3 nm titanium adhesion layer is deposited 

by electron beam evaporation and patterned by standard photolithography and liftoff 

procedures [Figure 2.9(c)]. A BST thin film is then deposited by pulsed laser deposition 

(PLD) using an excimer laser (λ = 248 nm, pulse width = 25 ns, repetition rate = 5 Hz) and 

the deposition parameters listed in Table 2.1 [Figure 2.9(d), Figure 2.10]. (Here, the 

thermal oxide between the silicon wafer and platinum bottom electrode prevents the 

formation of platinum silicide, which would otherwise occur under these growth conditions 
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[34].) A 100 nm platinum top electrode is deposited using the same procedure as the bottom 

electrode [Figure 2.9(e)]. The entire wafer is then annealed in an oxygen environment at 

500 °C [not shown]. The BST and SiO2 are selectively etched by using diluted hydrofluoric 

acid for creating vias [Figure 2.9(f)]. A 500 nm gold contact layer with a 50 nm titanium 

adhesion layer is deposited for the coplanar waveguides (CPWs) through electron beam 

evaporation [Figure 2.9(g)]. Finally, the devices are released using deep reactive ion 

etching (DRIE) to etch away the bulk silicon, creating a membrane [Figure 2.9(h)]. A 

microphotograph of a fabricated device is shown in Figure 2.11. 

 

Table 2.1: PLD Deposition Parameters 

Target Material Ba0.5Sr0.5TiO3 

Laser Repetition Rate 10 Hz 

Laser Power* 1.12 W 

Substrate Temperature 650 ºC 

Chamber Partial Pressure 300 mTorr of O2 

Deposition Time Thickness Dependent 

Post Deposition Anneal Time 60 minutes 

Post Deposition Anneal Temperature 650 ºC 

Post Deposition Anneal Chamber Pressure 100 Torr of O2  

Post Anneal Cooling Rate 1 ºC/minute 
*measured just outside of chamber viewport. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2.9: Step by step illustration of the fabrication process. 
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Figure 2.10: Setup of the pulsed laser deposition system used for depositing BST thin films. 

 

    
Figure 2.11: Microphotograph of various BST FBARs that have been fabricated. 

 

Device measurements are performed in the open-air and the unpackaged devices are 

subjected to the ambient pressure, temperature, and humidity of the laboratory 

environment. The devices under test (DUTs) are mounted on the chuck of a Cascade 

Microtech probe station and are characterized by using 150 µm pitch GSG probes to make 

contact with the CPW test structure. DC bias voltages are provided by Agilent E3631A 

power supplies and applied through the bias-tees that are connected to each of the 

measurement ports as well as through additional dc probes. The complete setup is 
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illustrated in Figure 2.12. Short-open-load-through calibration is performed on an Agilent 

E8364B/C vector network analyzer using a calibration substrate prior to characterizing the 

DUTs, setting the measurement reference plane at the GSG probe tips. S-parameters are 

taken over a wide range of frequencies (e.g. from 100 MHz to 5 GHz in 1.5 MHz 

increments) with various dc bias voltages applied to the device and with -17 dBm up to 10 

dBm of RF power available from the source. 

 

 
Figure 2.12: Measurement setup for measuring one-port BST FBARs. 

 

2.2.3. Performance 

Various properties and performance metrics of BST FBARs have been measured and 

studied in this work. In the following section, the voltage dependent behavior, RF power 

dependent behavior, and switching reliability of BST FBARs are discussed in detail. 

2.2.3.1. Voltage Dependent Behavior 

The dc voltage applied to BST FBARs controls whether or not the devices resonate and 

the voltage level controls their resonance frequencies. This behavior allows BST FBARs 

to be used for the design of switchable and tunable oscillators and filters that do not require 

Bias

Tee
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the use of solid-state or MEMS switches. Here, the performance of several different BST 

FBARs are given to illustrate their properties. All of the FBARs that are presented here 

have a BST thin film with a Ba:Sr ratio of 1:1 such that the ferroelectric material is in its 

paraelectric phase when characterized at room temperature. 

In the absence of a dc bias voltage, BST FBARs behave as simple capacitors and do 

not exhibit any type of resonance behavior. This behavior is expected since BST is not 

piezoelectric under these conditions and therefore, RF signals applied to the device are not 

able to excite acoustic waves within the body of the resonators. The measured input 

impedance of a 650 μm2 BST FBAR with a 0 V dc bias has been plotted on the Smith Chart 

from 1.8 to 2.2 GHz with a thick black trace in Figure 2.13 and agrees with the expected 

behavior of a capacitor. 

 

 
Figure 2.13: The measured input impedance of a one-port BST FBAR measured at dc bias 

voltages of 0, 5, 10, 15, 20, and 25 V shown on a Smith Chart at frequencies of 1.8 to 2.2 

GHz. 
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When BST FBARs are given a dc bias, an electrical resonance is exhibited and as the 

bias voltage increases, the resonance grows stronger and the resonance frequency is tuned. 

The electrical resonance and its increase in strength can be seen from the measured input 

impedance of the same BST FBAR as previously discussed for dc bias voltages of 5, 10, 

15, 20, and 25 V that have been plotted on the Smith Chart with magenta traces in Figure 

2.13. When switched on, BST FBARs exhibit both a series resonance frequency (fs) and a 

parallel resonance frequency (fp), which are defined by the frequency at which the input 

reactance is zero and the input resistance is minimized and at which the input susceptance 

is zero and the input conductance is minimized, respectively. The decrease in resonance 

frequency with increase dc bias voltage is shown in Figure 2.14, which plots the reflection 

coefficient and input impedance of the BST FBAR at dc bias voltages of 0, 5, 10, 15, 20, 

and 25 V. Furthermore, the tunability of BST resonators can be calculated for both the 

series and the parallel resonance by using equation (2.7) and are evaluated to be 5.33% and 

1.46% for the series and parallel resonance, respectively, with a Vmin and Vmax of 0+V and 

25 V (where the resonance frequency was measured at a voltage just above 0 V for f(Vmin)) 

[35]. The measured resonance frequencies are plotted as a function of dc bias voltage in 

Figure 2.15. 
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(a) 

 
(b) 

Figure 2.14: (a) Reflection coefficient and (b) input impedance vs. resonance frequency of 

a BST FBAR at dc bias voltages of 0, 5, 10, 15, 20, and 25 V. 
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Figure 2.15: Resonance frequencies of a BST FBAR vs. dc bias voltage. 

 

In addition to the changes in resonance frequencies, other properties of BST FBARs 

also change with dc bias voltage. The enlargement of the impedance-circle traced out on 

the Smith chart by the resonance of the BST FBAR in Figure 2.13 represents an increase 

in the effective piezoelectric coefficient and a related figure of merit of resonators, the 

effective electromechanical coupling coefficient. The effective electromechanical coupling 

coefficient (Kt
2

eff) for a resonator can be calculated using (2.8), where fs and fp are the series 

and parallel resonance frequencies.  It is a measure of the electroacoustic energy conversion 

efficiency and the higher it is, the better, especially for FBAR filter design. Another 

important figure of merit for resonators is its quality factor, which represents the 

losslessness of the resonator and the higher it is the better. The quality factor (Q) can be 

calculated using (2.9), where dϕZin/df is the change in the phase of the input impedance 

with respect to frequency. 
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The Kt
2

eff and the Q of the measured resonator is listed in Table 2.2 for different dc bias 

voltages. As bias voltage is increased, the Kt
2

eff increases significantly and the Q also 

increases a bit. 

 

Table 2.2: Figures of merit for a BST FBAR for different dc bias voltages 

Bias Voltage 0 5 10 15 20 25 

Qs N/A 64 66 70 74 78 

Kt
2
eff 0 4.35 7.29 8.38 8.8 8.93 

 

2.2.3.2. Large Signal Performance 

As for most voltage controlled devices, the large signal, RF power dependent, and 

nonlinear behavior of ferroelectric based devices needs to be characterized before they can 

be considered for use in high power applications. The nonlinear behavior of ferroelectric 

varactors [36] and piezoelectric FBARs [37, 38] have been characterized and modeled by 

various research groups. Here, the large signal and nonlinear behavior of ferroelectric 

FBARs are investigated. 

BST FBARs are measured at frequencies of 100 MHz to 3 GHz and at bias voltages of 

0 to 25 V as the power available from the source is swept from -18 to 8 dBm using the 

same setup shown in Figure 2.6. The measured input impedance of the resonator is plotted 

in Figure 2.16 at bias voltages of 5 and 25 V and RF power levels of -8, 0, and 8 dBm. 

Measurement results show that at both 5 and 25 V dc bias, the input impedance of both 

resonators begins to deviate from their small signal values when the power level is above 

0 dBm and as the RF power applied to the device increases beyond 0 dBm, the size of the 
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impedance-circle on the Smith Chart decreases. This behavior reflects the decrease in the 

Kt
2
eff and/or Q of the resonator. 

 

 
Figure 2.16: The Smith chart showing the input impedance of the BST FBAR at bias 

voltages of 5 and 25 V and power levels of -8, 0, and 8 dBm. 

 

In order to quantitatively determine the decrease in Q and Kt,
2
eff, they have been 

extracted from the measurement results taken at dc bias voltages of 5, 10, 15, 20, and 25 V 

and RF power levels of -18 to 8 dBm. Figure 2.17 shows that as the RF input power is 

increased beyond 0 dBm, Kt,
2

eff and Q begin to notably deviate from their small signal 

values and decrease. However, the change in performance is decreases as the bias voltage 

is increased. 
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Figure 2.17: Kt,

2
eff and Q of the BST FBAR as a function of RF input power at applied dc 

bias voltages of 5, 10, 15, 20 and 25 V. 

 

The change in the series and parallel resonance frequencies of BST FBAR with dc bias 

voltage and RF power are shown in Figure 2.18. Ferroelectric FBARs are electrically 

tunable and as bias voltage is increased, the resonance frequencies decrease, as expected. 

In addition, as the RF power is increased, the series resonance frequency increases and the 

parallel resonance frequency decreases. The decreases in the difference between the series 

and parallel resonance frequency is also expected since it is related to the Kt
2

eff, which 

decreases with RF power. From the measurement results discussed here, it is concluded 

that ferroelectric FBARs exhibit more power dependent behavior and nonlinearity at lower 

bias voltages. Therefore, for certain high power applications, BST FBARs may need higher 

dc biasing than would otherwise be required. 
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Figure 2.18: Resonance frequency of a BST FBAR as a function of dc bias voltage and RF 

power level. 

 

2.2.3.3. Reliability Test 
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rate of 20 kHz (period T = 50 μs), and a duty cycle of approximately 50 %, as shown in 

Figure 2.19, and is similar to the waveform used in [41] for testing the switching reliability 

and lifetime of MEMS switches. 

 

 
Figure 2.19: Test setup for measuring the switching reliability of FBARs. Biasing is applied 

through a bias tee. For 2-port FBARs, an additional GSG probe and bias tee are used to 

connect the 2nd port to the network analyzer. 

 

 
Figure 2.20: Programmed voltage waveform for switching the resonators on and off at a 

repetition rate of 20 kHz. 
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Several FBARs are tested for switching reliability and performance degradation. The 

network analyzer is configured to provide a continuous wave (CW) time sweep. The 

frequency is set to the average of the series (fs) and parallel (fp) resonance frequencies, 

which is in the frequency range that is generally of interest for oscillator design [42]. The 

power delivered to the input of the device is 10 dBm and the device is switched on and off 

for one billion cycles over a period of 14 hours. 

The reliability of a device is determined by measuring its S-parameters over the 

frequency range of interest after many switching cycles. The S-parameters for one of the 

characterized 2-port FBARs after 103, 106, and 109 switching cycles is shown in Figure 

2.21 and an excellent overlap between the different traces is observed. This indicates that 

the device is reliable up to one billion switching cycles and the behavior of the device 

remains constant when switched on and off. The Kt
2
eff and Q for one of the characterized 

1-port FBARs are summarized in Table 2.3, showing very consistent values after 103, 106, 

and 109 switching cycles. Overall, the characterized intrinsically switchable BST 

resonators show very stable performance over many switching cycles. 
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(a) (b) 

Figure 2.21: (a) S11 (when the 2nd port is shorted to ground through simulation) and (b) S21 

for a 2-port BST FBAR after 103, 106, and 109 switching cycles.  

 

Table 2.3: One-Port FBAR Figures of Merit 

Number of 

Switching 

Cycles 

Qs Qp Kt,
2
eff (%) 

100 415 552 0.80 

103 420 551 0.80 

106 417 550 0.80 

109 418 555 0.80 

 

2.2.4. Nonlinear Model Parameter Extraction of BST FBARs 

Accurate and comprehensive models are necessary to design BST FBAR based circuits. 

Physics [30, 31] and equivalent circuit based models [43] that represent the dc bias voltage 

dependent behavior of ferroelectric resonators have been developed. Furthermore, models 

that represent the nonlinear behavior of ferroelectric varactors [36] and piezoelectric 

FBARs [37, 38] have also been developed by various research groups. However, the large 

signal and nonlinear behavior of ferroelectric FBARs have yet to be modeled. 
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The nonlinear modified Butterworth-Van Dyke (MBVD) model shown in Figure 2.22 

has been developed to represent the behavior observed in the large signal measurement 

results of BST FBARs. The model consists of the seven lumped elements defined in Figure 

2.22 where the values of Lm and Cm determine fs, the values of Lm, Cm, and C0 determine fp, 

and the rest of the components represent undesired parasitics. 

 

 
Figure 2.22: A Nonlinear MBVD model used to represent the large signal behavior of 

ferroelectric thin film FBARs. 
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measured device is as follows. First, the voltage dependent small signal equivalent circuit 
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analyzed using large signal S-parameters at different power levels and compared to 

measurement results.  

The Smith Chart in Figure 2.23 shows the good agreement between the modeling and 

the measurement results. The solid traces in Figure 2.23(a) show the small signal 

performance of a BST FBAR at 4, 6, and 8 V dc bias while the dashed traces show the 

modeling results. In addition, the solid traces in Figure 2.23(b) show the power dependent 

performance at 0, 4, and 8 dBm at a dc bias of 5 V while the dashed traces show the 

modeling results. This nonlinear model shows a good match with measurement results and 

can be used in commercial circuit design tools for non-linear analysis and to better 

understand the effect of high power on ferroelectric based devices. More work on the 

nonlinear modeling of BST thin film resonators is discussed in greater detail in [44-46]. 
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(a) 

 
(b) 

Figure 2.23: Comparison between the measurement (solid line) and nonlinear MBVD 

model results (dotted line) at (a) -17 dBm of RF power and dc bias voltages of 4, 6, and 8 

V and (b) dc bias voltage of 5 V and RF power levels of 0, 4, and 8 dBm. 
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2.3. Reconfigurable Dual-Frequency BST FBAR 

2.3.1. Design 

Multiple intrinsically switchable and tunable BST FBARs can be integrated to create 

reconfigurable multi-frequency resonators. The resonance frequency is determined by 

controlling the dc bias voltage applied across each of the FBARs that make up the device. 

The FBARs can either be connected together in series or in parallel. A comparison between 

the two configurations has been performed through simulation with Advanced Design 

System. In the study, each FBAR is represented using the modified Butterworth-Van Dyke 

(MBVD) model, which is shown in Figure 2.22, due to its simplicity and accuracy. 

The MBVD model used in the simulation is given the attributes listed in Table 2.4. The 

model uses two different set of parameters, one for when the BST resonator is switched on 

and the other for when it is switched off. The main differences between the two states is 

that when the resonator is switched on, the electromechanical coupling coefficient (K2) of 

the BST thin film is 7% and the impedance (Z0) is 50 Ω, and in contrast, when the resonator 

is switched off, K2 is 0% and Z0 is 50/τ Ω. Here, the change in K2 represents the change in 

the electric field induced piezoelectric behavior of the BST thin film and the ability to 

excite acoustic waves within the resonator body. The change in Z0 represents the change in 

the device capacitance. The parameter τ represents the dielectric tunability of the BST thin 

film and is varied in this study to determine its role on the performance of multi-frequency 

resonators. 
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Table 2.4: 

MBVD Model Attributes 

Property Expression On 

Value 

Off Value 

Acoustic Quality Factor  

(Qm) 

2πfsLm/Rm 150 150 

Dielectric Loss Tangent  

(tanδ) 

ReCe2πfs 0.02 0.02 

Electrode Resistance  

(Rs) 

- 1 Ω 1 Ω 

Series Resonance Frequency  

( fs) 

1/(2π(LmCm)0.5) 1 GHz 1 GHz 

Electromechanical Coupling 

Coefficient (K2) 

1.2·Cm/Ce 7% 0% 

Impedance  

(Z0) 

1/(2πfsCe) 50 Ω 50/τ Ω 

Dielectric Tunability  

(τ) 

Ce, max/C e, min - 1 to 4 

 

In the simulation of the multi-frequency BST resonator model, one resonator is 

switched on while all others are switched off. An additional series inductor and resistor, 

with values of 0.1 nH and 1.5 Ω, respectively, are included in the model to represent the 

parasitic contributions from the contact pads used for characterizing the device. The 

number of resonators arranged in series and in parallel as well as the dielectric tunability 

of the BST thin film are varied. The different configurations are simulated to extract the 

Qs and Kt,
2
eff. 
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Table 2.5: 

Figures-of-Merit for the Simulated FBAR Configurations 

  Kt,
2

eff (%) Qs Qp 

Single Resonator τ = N/A 6.9 101 128 

Two in Parallel 
τ = 1 3.6 95 119 

τ = 4 1.8 67 81 

Two in Series 
τ = 1 3.5 113 121 

τ = 4 5.5 101 126 

Four in Parallel 
τ = 1 2.0 77 99 

τ = 4 1.2 28 43 

Four in Series 
τ = 1 1.8 98 102 

τ = 4 4.0 102 123 

 

The simulation results for a single intrinsically switchable and tunable BST resonator 

as well as for the different multi-frequency resonator configurations that are considered 

here are summarized in Table 2.5. From the data, it is concluded that the resonators that 

have been switched off in both the series and parallel configuration reduces the Kt,
2

eff of the 

resonator that is switched on. This occurs when the resonators are placed in series because 

the series capacitance due the resonators that are switched off increases fs as calculated by 

(2.10), (where CL is the effective series capacitance of the off devices [33]) and occurs 

when the resonators are placed in parallel since the shunt capacitance due to the resonators 

that are switched off decreases fp as calculated by (2.11). 
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However, it is also important to note that when the τ of the device is larger, the 

reduction in Kt,
2

eff decreases when the resonators are placed in series and increases when 

the resonators are placed in parallel. This is in agreement with what is expected when 

considering (2.10) and (2.11), and is in support of using the series configuration. 
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The effect of the resonator configuration on quality factors (Qs) are also investigated. 

From the simulation results, it is concluded that the effect of placing the devices in parallel 

decreases the Qs more severely in comparison to placing them in series. The performance 

difference widens when taking into consideration the dielectric tunability of BST. This also 

supports the use of the series configuration. In general, as the equivalent capacitance of the 

resonators that are switched off increases, they behave more similar to an RF short. 

Therefore, when considering the electric field dependent capacitance of BST FBARs, it is 

more beneficial to use the series configuration for designing multi-frequency 

reconfigurable resonators. 

 

 
Figure 2.24: Schematic of a series connected multi-frequency BST FBAR. The resonator 

shown in blue is on and the resonators shown in yellow are off. 

 

In the series connected configuration, multi-frequency BST resonators only require the 

addition of inductors or resistors to each node of the device, as shown in Figure 2.24, for 

dc biasing. Individual resonators are switched on by applying different dc bias voltages 

across its terminals. For switching on only a single resonator, a thermometer-style biasing 

scheme where the dc bias voltages applied to the all the nodes to the left and right of a 

particular device are the same is used. To demonstrate the multi-frequency resonator design 

discussed here, a simple dual-frequency BST resonator, which consists of two series 
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connected 80 μm × 80 μm BST FBARs and has the configuration shown in Figure 2.25, is 

fabricated and characterized as described in the next section. 

 

 
Figure 2.25: Schematic of a dual-frequency BST FBAR. 

 

2.3.2. Fabrication and Measurement Procedure 

Multi-frequency BST FBARs are fabricated using a similar procedure as described for 

individual BST FBARs. The only additional steps are the deposition of a thin layer of high 

resistivity material such as SiCr, chromium, nickel-chromium, or even platinum to create 

thin film resistors as well as mass loading/compensation layers to shift the frequency of the 

resonators. A microphotograph of a fabricated dual-frequency BST FBAR is shown in 

Figure 2.26. The fabricated device is characterized by using a vector network analyzer to 

measure the reflection coefficient of the one-port device. The thermometer style biasing 

scheme used for characterizing the device is implemented by using a bias tee to control the 

bias voltage at the port of the device a dc probe to control the bias voltage at the inner node 

of the device. 
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Figure 2.26: Microphotograph of a fabricated dual-frequency BST FBAR. 

 

2.3.3. Performance 

The fabricated dual-frequency resonators that consist of two series connected 

intrinsically switchable and tunable BST FBARs are characterized under various biasing 

conditions. The bias voltage at the port is applied through a bias-tee and the bias voltage at 

the inner node is applied through a dc probe. When the port and inner node are not biased, 

the resonator behaves as a capacitor, as shown in Figure 2.27(a), and each BST FBAR has 

a capacitance of 24.4 pF. When the thermometer-style biasing scheme is used to switch on 

an individual FBAR with the application of 20 V dc bias across its terminals, both a series 

and parallel resonance are excited with the application of an RF signal, resulting in the 

responses shown in Figure 2.27(b), and the capacitance of each FBAR decreases to 10.2 

pF. When the low frequency BST FBAR is switched on, a series and parallel resonance 

frequency of 936.1 MHz and 949.8 MHz is obtained, respectively, which corresponds to a 

Kt,
2

eff  of 3.5 %. The Qs for the series and parallel resonance are 98 and 90, respectively. 

When the high frequency BST FBAR is switched, a series and parallel resonance frequency 

180 μm

80 μm

Thin film 
resistor
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of 1.136 GHz and 1.153 GHz is obtained, respectively, which corresponds to a Kt,
2
eff  of 

3.6 %. The Qs for the series and parallel resonance are 100 and 99, respectively. 
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(a) 

  
(b) 

 
(c) 

Figure 2.27: Response of an intrinsically switchable dual-frequency BST FBAR with (a) 

both resonators off, (b) each individual resonator on, and (c) both resonators 

simultaneously on. 
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The dual-frequency BST resonator can also exhibit both the low and high frequency 

resonances simultaneously by switching on both FBARs. This can be done by applying a 

bias voltage at the inner node, resulting in a voltage difference across the terminals of both 

FBARs. With the application of a 20 V dc bias, the dual-frequency response shown in 

Figure 2.27(c) is obtained. In this condition, the Qs for the series and parallel resonance of 

the low frequency resonator are 89 and 84, respectively, and the Qs for the series and 

parallel resonance of the high frequency resonator are 81 and 88, respectively. The 

reduction in the Qs of the resonances when both FBARs are switched on compared to when 

just a single device is switched on is attributed to the loss of energy from the excitation of 

evanescent acoustic waves in the other BST FBAR, which is designed for a different 

resonance frequency. The Kt,
2

effs for the low and high frequency resonator are 2.8% and 

2.4%, respectively. The reduction in Kt,
2

eff of the resonators when both FBARs are switched 

on is attributed the smaller effective series capacitance of the other FBAR. The figures-of-

merit of the characterized device is summarized in 2.6. 

 

Table 2.6: Summary of Reconfigurable Dual-Frequency Resonator Performance 

 

Configuration fs (GHz) fp (GHz) Qs Qp Kt,
2

eff (%) Kt,
2

eff, int (%) 

One on 0.9361 0.9498 98 90 3.5 5.1 

One on 1.136 1.153 100 99 3.6 5.0 

Both on 0.9391 0.9498 89 84 2.8 5.1 

Both on 1.141 1.153 81 88 2.4 5.0 

 

The dual-frequency resonator demonstrated here shows the potential for using 

intrinsically switchable and tunable BST FBARs for designing reconfigurable multi-

frequency resonators. For applications that require higher quality factors, a design similar 
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to the BST-on-Si composite FBARs in [29], which have demonstrated the highest quality 

factor BST FBARs to date, can be used. For applications that require higher Kt,
2
eff, higher 

bias voltages or BST thin films with higher τ can be used. The low and high frequency 

BST FBARs in this work had a Kt,
2

eff of 5.1% and 5.0%, respectively, and a τ of 2.4. 

Furthermore, the use of multi-ferroelectric layer composite resonators [47, 48] and contour 

mode resonators [49] can be used to reduce the number of additional fabrication/processing 

steps necessary for realizing many more operating frequencies. 

2.4. Conclusion 

In this chapter, the theory of operation, design, fabrication, performance, and modeling 

of intrinsically switchable and tunable BST FBARs are presented. The voltage dependent 

behavior, RF power dependent behavior, and switching reliability of BST FBARs are 

discussed in detail. Furthermore, their application in the design of reconfigurable BST 

resonators is demonstrated. 

DC bias voltage dependent measurement results of a BST FBAR show that without an 

applied dc bias, no electrical resonance is observed and with an applied dc bias, a series 

and parallel electrical resonance are exhibited. Furthermore, the resonance frequencies can 

be tuned by up to 5.33% by adjusting the bias voltage level. Large signal measurement 

results show that both quality factor (Q) and effective electromechanical coupling 

coefficient (Kt
2

eff) decrease at lower dc bias voltages as a function of RF power. However, 

the RF power dependence of Q and Kt,
2

eff is significantly reduced at higher bias voltages. 

Reliability testing of BST FBARs has also been performed. Devices that are switched on 

and off for over one billion cycles in an open-air environment do not show any signs of 
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performance degradation. A large signal nonlinear MBVD model that is able to represent 

the measured dc bias voltage and RF power dependent behavior of BST FBARs is also 

presented. When the modelling results are compared to the measurement results, excellent 

agreement is observed. Lastly, a reconfigurable dual-frequency resonator that consists of 

two series connected BST FBARs with Qs of 100 has been presented. It can be off, 

switched on and exhibit one of two resonances, or exhibit both resonances simultaneously. 

This is the first demonstration of BST-based frequency switchable devices for the design 

of adaptive and reconfigurable wireless devices. 
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CHAPTER 3 

Design and Performance of Switchable, 

Tunable, and Reconfigurable BST FBAR Filters 

 

3.1. Introduction 

BAW resonators have been widely used for the design of bandpass filters for mobile 

wireless devices in the past decade. Their low insertion loss, high out-of-band rejection, 

small size, and large bandwidth have been are able to justify a price premium over 

conventional SAW filters and their market share is expected to continue to enjoy a strong 

demand into the future [50]. BAW resonators can be used in a wide variety of filter 

topologies. The two main categories of BAW filters are acoustically coupled and 

electrically coupled filters. Acoustically coupled filters consist of several resonators of the 

same frequency placed in very close proximity of one another such that the acoustic waves 

from each resonator are able to couple and cause the resonance mode to split [51]. They 

can either be coupled by being vertically stacked on top of one another or being places in 

very close lateral proximity to one another. Electrically coupled filters consist of multiple 

resonators that are connected electrically in series and in parallel and are traditionally 

configured in either a ladder or lattice topology, as described in [26]. The advantage of 

acoustically coupled filters is their very small feed through capacitance between the two 

ports of the filter, which results in a very high out of band rejection [26]. The advantage of 
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electrically coupled filters is their straightforward design process, which can be easily 

performed using circuit based simulators, and their commercial success, which has fueled 

continued research into the field [26]. In this chapter, intrinsically switchable and tunable 

ferroelectric FBAR are used to design electrically coupled filters that use the ladder 

configuration as well as reconfigurable ferroelectric FBAR filters. 

3.2. Design, Modeling, and Simulation 

Electrically coupled ladder filters consist of an arrangement of alternating series and 

shunt resonators as shown in Figure 3.1(a). The shunt resonators are designed to have 

resonance frequencies lower than the series resonator such that the parallel resonance 

frequency of the shunt resonators are approximately the same as the series resonance 

frequency of the series resonators, which results in the filter response shown in Figure 

3.1(b). At frequencies far below the series resonance frequency of the shunt resonator (f 

<< fs2), the static capacitance of both resonators dominate the behavior of the filter and the 

out-of-band rejection is determined by the capacitance ratio between the series and shunt 

resonators [26]. At frequencies near the series resonance frequency of the shunt resonator 

(f ~ fs2), the signal fed at the input is shunted to ground by the low impedance of the shunt 

resonator and a notch occurs below the center frequency of the filter response. At 

frequencies near the parallel resonance frequency of the shunt resonators (f ~ fp2) and the 

series resonance frequency of the series resonators (f ~ fs1), the signal sees a very large 

impedance to ground and a very small impedance to the output and therefore, most of the 

signal is transmitted from the input to the output. At frequencies near the parallel resonance 

frequency of the series resonator (f ~ fp1), the signal sees a large impedance to the output 
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and is mostly reflected back to the input and a notch occurs above the center frequency of 

the filter response. At frequencies much higher than the parallel resonance of the series 

resonator (f >> fp1), the capacitance of the resonators appear as very small impedances and 

again, the ratio of the capacitances between the series and shunt resonators determine the 

out-of-band rejection. 

 

 

 
(a) (b) 

Figure 3.1: (a) Schematic of a single stage electrically coupled ladder filter. (b) Synthesis 

of the bandpass filter response from the input impedance of the series and shut FBARs. 

 

The performance of FBAR filters can be fine-tuned by using a variety of techniques. 

First, the number of stages (pair of series and shunt resonators) can be increased to obtain 

higher out-of-band rejection. Second, the resonators that make up the filter can be designed 

to have higher quality factors (Qs) at the price of lower effective electromechanical 

coupling coefficients (Kt
2
eff) to achieve a smaller bandwidth. Third, the series and parallel 

resonance frequencies of individual series and shunt resonators can be slightly tuned by 

adding compensation/mass loading layers or inductors. Many of these techniques are used 

in the design of commercially available aluminum nitride based FBAR and SMR filters 
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[26]. However, here the focus is to study the switching and tuning behavior of ferroelectric 

FBAR filters. Therefore, a simple 1.5 stage ladder filter has been designed to test the 

performance of ferroelectric-based FBAR filters. 

 

 
Figure 3.2: The schematic of an intrinsically switchable 1.5 stage ferroelectric FBAR filter. 

 

Ferroelectric FBAR filters are designed by implementing the extracted MBVD model 

of measured ferroelectric FBARs or by creating an MBVD model (shown in Figure 3.3) 

based on desired filter characteristics in a circuit simulator such as Advanced Design 

System (ADS). The MBVD model parameter extraction procedure was given in Chapter 

2. Here the focus is on creating an MBVD model to obtain the desired filter response and 

then designing a resonator that matches the MBVD model. The different MBVD model 

parameters can be related to the resonator characteristics by using the following equations 

[52]: 
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Figure 3.3: Simple MBVD model used for designing FBAR filters. 

 

The parameters in these equations are the series resonance frequency (fs), parallel 

resonance frequency (fp), series resonance frequency quality factor (Qs), dielectric quality 

factor (Qd), device capacitance (Ccap), and bandwidth ratio (BWR). Once the desired filter 

response is obtained through the circuit simulation, the acoustic wave transmission line 

model can be used to design the thickness of each layer of material and the capacitance of 

the resonator. If the required resonator is not feasible, then the filter needs to be redesigned 

based on more practical FBAR figures of merit. 

The schematic of the 1.5 stage filter that consists of two series FBARs and two shunt 

FBARs is shown in Figure 3.2. The dc bias for switching the resonators on and off is 

applied to the center node of the filter through a thin film resistor while all other nodes are 
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held at dc ground with the use of the bias tees at both ports. The thin film resistors should 

have a resistance that is large enough to prevent RF signals from leaking onto the dc port 

and increasing the insertion loss as well as small enough such that the switching/response 

time due to RC delay is insignificant and furthermore that any leakage current of the 

ferroelectric resonators does not cause a significant voltage drop across the thin film 

resistor, which would reduce the voltage and therefore electric field seen by the resonator 

[53]. It should be noted that by using this configuration, it is also possible to dynamically 

tune performance of the overall filter by changing dc bias across individual resonators. 

However, this is not investigated here. 

3.3. Fabrication and Measurement Procedure 

The fabrication procedure for ferroelectric FBAR filters is very similar to that of stand-

alone ferroelectric FBARs. However, there are a few additional steps that are that are also 

needed. Figure 3.4 summarizes the fabrication procedures. The key differences in the 

fabrication process are shown in Figure 3.4(f), where a thin layer of gold is deposited on 

the top electrode of the shunt resonator to serve as a mass loading/compensation layer and 

shift its resonance frequencies down, and in Figure 3.4(g), where a thin layer of high 

resistivity material such as SiCr, chromium, nickel-chromium, and even platinum is use to 

create thin film resistors. Microphotographs of two different ferroelectric FBAR filters are 

shown in Figure 3.4. The filter in Figure 3.5(a) has been designed for top-side releasing 

with XeF2 gas and the filter in Figure 3.5(b) has been design for back-side releasing by 

DRIE [Figure 3.4(i)]. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 
 

(i) (j) 

Figure 3.4: Fabrication procedure for ferroelectric FBAR filters. (a) A high resistivity 

silicon wafer with a thermally grown oxide layer and a 150 nm layer of platinum with 40 

nm of TiO2 adhesion layer is cut to the desired size. (b) Bottom electrodes are defined by 

using ion milling to selectively etch away platinum. (c) Ferroelectric thin film is deposited. 

(d) Top electrodes are deposited. (e) The ferroelectric is selectively etched away using 

HF/BHF. (f) A gold mass loading/compensation layer is deposited on top of the top 

electrode of the shunt resonator. (g) Thin film resistor is deposited. (h) Gold and aluminum 

contacts are deposited. (i) The silicon beneath the device is etched. (j) The key labeling the 

different materials used in the fabrication process. 

 

The performance of two different types of ferroelectric FBAR filters are discussed in 

the next section. The first filter has a 1 μm layer of SiO2 under the bottom electrode and 

has a 700 nm thin film of BTO as the ferroelectric transduction layer. Since BTO is in the 
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ferroelectric phase at room temperature, it possesses a spontaneous polarization and 

therefore, BTO resonators can exhibit an electrical resonance even in the absence of an 

applied dc bias voltage. The BTO FBAR filter has two shunt resonators in parallel instead 

of just one to compliment the symmetry of the CPWs used for characterizing the device as 

can be seen in Figure 3.5(a). The second filter has a 10 μm layer of Si under the bottom 

electrode and has a 550 nm thin film of BST as the transduction layer. BST is in the 

paralelectric phase at room temperature and should behave as a capacitor with dc bias. The 

filter just has one shunt resonator as can be seen in Figure 3.5(b). 

 

  
Figure 3.5: Microphotographs of a fabricated 1.5 stage electrically coupled ladder filter. 

 

The fabricated filters are measured on a Cascade Microtech probe station with two 150 

μm pitch GSG probes. S-parameters are acquired using an Agilent E8364B/C network 

analyzer after performing a SOLT calibration. The dc bias is controlled with an Agilent 

E3631A dc power supply and applied through bias tees and a dc probe. 
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3.4. Filter Performance 

3.4.1. Voltage dependent behavior 

The voltage dependent performance and switching behavior of several different 

ferroelectric FBAR filters that have been fabricated are reported here. The measurement 

results of the BTO FBAR filter shown in Figure 3.5(a) in the on and off state are giving in 

Figure 3.6. With the application of a -3 V dc bias, the filter is off and the two ports are 

isolated by 15 dB and the return loss at each port is 1.6 dB as shown in Figure 3.6(a). With 

the application of a 15 V dc bias, a bandpass response at 2.14 GHz is observed with a 3 dB 

bandwidth of 33 MHz as shown in Figure 3.6(b). The filter has an insertion loss in the 

passband of 6.5 dB, return loss greater than 10 dB for both ports, and out-of-band rejection 

of 19 dB. 
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(a) 

 
(b) 

Figure 3.6: Response of a BTO FBAR filter in the on and off state. 

 

The response of the filter can also be adjusted dynamically by tuning the dc bias 

voltage. Figure 3.6 shows the transmission and reflection coefficients of the filter as the 

bias voltage is increased from -3 to 15 V in increments of 3 V. Here, we see that even at 0 

V, there is a filter response since the resonators are switched on due to the spontaneous 

polarization present in the BTO thin film. As the bias is increased, the effective 
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electromechanical coupling coefficient of the resonators increase, resulting in a higher 

return loss and lower insertion loss, as summarized in Table 3.1. 

 

Table 3.1: 

Measured Filter Characteristic at Various DC Bias Voltages 

DC Bias Voltage 

(V) 

Return Loss (dB) Insertion Loss (dB) 

0 4.7 13.4 

3 9.9 10.8 

6 12.7 8.7 

9 13.2 7.5 

12 13 6.8 

15 12.8 6.5 
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(a) 

 
(b) 

Figure 3.7: Measured BTO FBAR filter response at dc bias voltages of -3, 0, 3, 6, 9,12, 

and 15 V. 

 

Voltage dependent measurement results of the 1.5 stage electrically coupled BST-

FBAR-based ladder filter shown in Figure 3.5(b) are given in Figure 3.8. The solid black 

trace shows the transmission and reflection coefficient of the filter when in the off state, 

which occurs at a dc bias voltage of 0 V since BST is in its paraelectric state at room 

temperature and does not exhibit spontaneous polarization. When switched off, the devices 

has a return loss of 1 dB and an isolation of 14 dB. As the dc bias voltage is increased, a 

passband response emerges, the return loss increases, the insertion loss decreases, and the 
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center frequency is tuned. At 20 V dc bias, the filter has a center frequency of 1.60 GHz, 

bandwidth of 9 MHz, insertion loss of 4.1 dB, and a return loss exceeding 10 dB. The 

center frequency of the filter under different dc biasing is given in Table 3.2. A summary 

of the measurement results for both types of intrinsically switchable BST filters is given in 

Table 3.3. 

 

 
(a) 

 
(b) 

Figure 3.8: (a) Transmission coefficient and (b) reflection coefficient of a 1.5 stage 

electrically coupled bandpass ladder filter composed of BST at dc bias voltages of 0, 5, 10, 

15, and 20 V. 
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Table 3.2: 

Center Frequency of BST FBAR Filter 

DC Bias Voltage 

(V) 

Center Frequency 

(GHz) 

5 1.604 

10 1.604 

15 1.603 

20 1.601 

 

Table 3.3: Summary of Filter Performance 

 BTO Filter BST Filter 

Off Bias Voltage -3 V 0 V 

On Bias Voltage 15 V 20 V 

Center Frequency 2.14 GHz 1.60 GHz 

Bandwidth 33 MHz 9 MHz 

Insertion Loss 6.5 dB 4.1 dB 

Return Loss >10 dB >10 dB 

Isolation 15 dB 14 dB 

 

From these results, it can be concluded that BST FBAR filters can be switched on and 

off and their insertion loss can be dynamically adjusted by controlling the bias voltage 

level. Furthermore, the center frequency of the filters can also be tuned. 

3.4.2. Switching reliability and response time 

Several FBAR filters are tested for switching reliability and performance degradation 

using the setup shown in Figure 3.9, which is similar to that used for measuring the 

reliability of BST FBARs. The network analyzer is set to the center frequency of the band 

pass response and 10 dBm of power is delivered to the input of the filter. The insertion loss 

and isolation of the filter, when switched on and off, respectively, are measured to monitor 

its performance degradation after a given number of switching cycles. The measurement 

results plotted in Figure 3.10 show that the performance of the filter in both the on and off 

state did not change after cycling the device one billion times. The reliability and stability 
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of the BST FBAR filters tested in this work demonstrate that these devices may be 

acceptable for use in tunable and switchable RF circuit designs for commercial/industrial 

applications. 

 

 
Figure 3.9: Measurement setup for measuring the reliability and switching speed of 

intrinsically switchable BST FBAR filters. Biasing is performed through a dc probe that is 

used to make contact with the thin film resistor that has been fabricated on chip. 

 

 
Figure 3.10: Measured transmission at the center frequency of an intrinsically switchable 

BST FBAR filter after the indicated number of switching cycles when switched ‘On’ and 

‘Off’. 
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Switching speed measurements have also been performed on a BST FBAR filter using 

the setup shown in Figure 3.11. For this measurement, a 4 dBm continuous wave signal 

with a frequency of 1.526 GHz, which is the center frequency of the BST FBAR filter 

under test, is fed into its input. The signal at the output of the device is measured using an 

Agilent MSO9404A Mixed Signal Oscilloscope as the filter is switched on and off by using 

an arbitrary wave form generator that provides a 1 kHz pulse wave with a 10 V amplitude 

and a duty cycle of 0.5 %. Figure 3.12 shows the waveform at the output of the arbitrary 

waveform generator (yellow trace) and the output of the filter (green trace). The output of 

the arbitrary waveform generator provides a pulse with a very fast rise and fall time, but it 

also shows some ringing, which has a frequency of 1.3 MHz and is due to the probe tip that 

is used for applying the dc bias to the filter. Nevertheless, even with the ringing in the dc 

biasing, the signal at the output of the filter demonstrates that intrinsically switchable 

ferroelectric based resonators and filters exhibit a switching speed of less than 100 ns. This 

is much faster than the switching speed of MEMS switches, which is on the order of 30 μs 

[54]. 

With a more sophisticated measurement setup, it is believed that the measured 

switching speed would be much faster that what has been demonstrated here. The lower 

limit is expected to be determined by the time it takes to setup a standing acoustic wave 

within the resonator body. Therefore, the lower limit of the switching speed can be 

calculated from the amount of time it takes for the excited acoustic waves to travel through 

the top electrode, ferroelectric thin film, and bottom electrode layers of the FBAR structure 

and back. Assuming that the top and bottom platinum electrodes are each 100 nm thick and 
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the ferroelectric thin film is 500 nm thick, and based on longitudinal acoustic wave 

velocities of 2767 m/s and 6192 m/s for platinum and the ferroelectric, respectively, the 

lower limit of the response time for the 3 GHz resonator is calculated to be roughly 300 ps. 

Furthermore, as the resonator is made thinner to achieve a higher resonance frequency, the 

response time is also expected to decrease, due to their inverse relationship. 

 

 
Figure 3.11: Measurement setup for testing the switching speed of BST FBAR filters. 
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(a) 

 
(b) 

Figure 3.12: Oscilloscope waveform measuring the output of the arbitrary waveform 

generator and the output of the BST FBAR filter when switched on with a horizontal scale 

of (a) 1 μs/division and (b) 100 ns/division. 

 

3.5. Dual-Band BST Filter 

3.5.1. Design 

Intrinsically switchable BST FBAR filters of different frequencies are connected in 

parallel with one another to form multi-band filters. Each individual intrinsically 

switchable BST filter consists of an electrically coupled 1.5 stage ladder filter placed in 
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between series connected BST MFM varactors as shown in Figure 3.13. The purpose of 

using the BST varactors is to improve the isolation of the filter without significantly 

impacting insertion loss or adding to fabrication complexity and device area. 

The intrinsically switchable and tunable filter operates as follows. When it is switched 

on, the three resonators are switched on and the varactors are tuned to their highest 

capacitance such that they are at their lowest impedance, which occurs when the voltage 

across their terminals is 0 VDC. When the filter is switched off, the shunt resonator is 

switched off and the varactors are set to their lowest capacitance such that they present a 

high impedance, which occurs when the voltage across their terminals is high. 

 

 
Figure 3.13: Schematic of a 1.5 stage BST FBAR filter with series BST varactors. 

 

A comparison between the multi-band filter design discussed in the previous paragraph 

(shown in Figure 3.14(a)) and the same filter but without the series connected BST 

varactors (shown in Figure 3.14(b)) is performed through simulation to study the 

performance improvement obtained by using the varactors. Figure 3.15 shows the S-

parameters of reconfigurable dual-band filters that consists of the exact same FBARs but 

with (red solid trace) and without (blue dashed trace) series varactors. From the results, it 

is concluded that the series BST varactors can greatly improve the matching and rejection 
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ratio of the filter. This is in part due to the additional impedance of the series varactor but 

mostly due to the ability to independently switch on the series and shunt resonators, which 

significantly helps reject the out-of-band signals. Furthermore, the biasing scheme provides 

a notch near the center frequency of the off filter, which is beneficial for many applications 

such as frequency-division multiplexing. In summary, the increase in complexity of the dc 

biasing scheme due to the added series BST varactors is justified by the improvement in 

performance. In this work, we demonstrate a dual-band filter, which has the configuration 

shown in Figure 3.14(a). 
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(a) 

 
(b) 

Figure 3.14: Schematic of a dual-band BST FBAR filter (a) with series connected BST 

varactors and (b) without series connected BST varactors. The biasing configuration for 

turning on a single filter is shown where the blue resonators are switched on and the yellow 

resonators are switched off. The arrow indicates the path of the RF signal within in the pass 

band of the filter. 
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The dual-band BST filter designed in this work consists of series resonators with an 

area of 32 μm × 37.5 μm and shunt resonators with an area of 60 μm × 40 μm for both 

filters, which results in a capacitance ratio of 1:2. The series BST varactor has an area of 

30 μm × 40 μm and has the same capacitance as the series resonators. All of the resonators 

in the low frequency filter have a thicker top electrodes to shift their resonance frequency 

lower. In addition, the shunt resonators in both filters have a thicker top electrode to shift 

their frequency down and get the desired bandpass response. The fabrication process is 

discussed in more detail in the next section. 

 

 
(a) 

  
(b) 

Figure 3.15: S-parameters of a simulated dual-band filter with (red solid trace) and without 

(blue dashed trace) the use of series BST varactors. (a) The low frequency filter is switched 

on while the high frequency filter is switched off. (b) The low frequency filter is switched 

on while the high frequency filter is switched off. 
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3.5.2. Fabrication and Measurement Setup 

Multi-band BST FBAR filters are fabricated using a very similar procedure as 

described for individual BST FBAR filters. The only difference is the need for additional 

mass loading/compensation layers to offset the frequency of the two filters. A 

microphotograph of a fabricated device is shown in Figure 3.16. The measurement setup 

for characterizing the dc bias voltage dependent behavior of reconfigurable BST FBAR 

filters is also the same as with individual filters. 

 

 
Figure 3.16: Microphotograph of a fabricated dual-band BST FBAR filter. 

 

3.5.3. Performance 

The dual-band BST filter with the design shown in Figure 3.14(a) has been 

characterized under various biasing conditions. The bias voltage at the port is applied 

through a bias-tee and is maintained at 0 V and the bias voltage at the two inner nodes are 

applied through dc probes. In the case both filters are off, the return loss is 0.7 dB and the 
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rejection is greater than 20 dB over a frequency range of 1.4 to 1.7 GHz, as shown in Figure 

3.17(a). In the case the low frequency filter is switched on with a 20 V dc bias, a bandpass 

response with a center frequency of 1.541 GHz, insertion loss of 8.8 dB, and bandwidth of 

7 MHz is obtained, as shown in Figure 3.17(b). In the case the high frequency filter is 

switched on with a 20 V dc bias, a bandpass response with a center frequency of 1.608 

GHz, insertion loss of 9.2 dB, and bandwidth of 9 MHz is obtained, as shown in Figure 

3.17(c). 
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(a) 

 
(b) 

 
(c) 

Figure 3.17: Measured reflection and transmission coefficients of a reconfigurable dual-

band filter when (a) both filters are off, (b) one filter is on, and (c) the other filter is on. 

 

The performance of the measured dual-band filter can also be improved by changing 

the port impedance to 20 Ω and adding 3 nH inductors in shunt at both ports as shown in 

the schematic in Figure 3.18 by using the software package Advanced Design System [55]. 
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With this setup, the insertion loss decreases to a value of 6.5 dB and 6.2 dB for the low and 

high frequency filter response, respectively, as shown in Figure 3.19. The figures-of-merit 

of the dual-band filter demonstrated here are summarized in Table 3.4. The performance 

of the reconfigurable filter can be further improved by using similar techniques that were 

discussed for the reconfigurable BST resonator. 

 

 
Figure 3.18: Schematic showing the impedance matching that is performed on the 

measured filter in simulation through the use of Advanced Design System. 
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(a) 

 
(b) 

 
(c) 

Figure 3.19: Simulated reflection and transmission coefficients of the measured 

reconfigurable dual-band filter when (a) both filters are off, (b) the low frequency filter is 

on, and (c) the high frequency filter is on for port impedances of 20 Ω and the addition of 

3 nH shunt inductors. 
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Table 3.4: 

Summary of Dual-Band Filter Performance 

 Low Frequency Filter  High Frequency Filter 

 Without 

Matching 

Network 

With Matching 

Network 

Without 

Matching 

Network 

With Matching 

Network 

Center 

Frequency 
1.541 GHz 1.541 GHz 1.608 GHz 1.608 GHz 

Bandwidth 7 MHz 7 MHz 9 MHz 9 MHz 

Insertion Loss 8.8 dB 6.5 dB 9.2 dB 6.2 dB 

Return Loss >4.0 dB  > 8.9 dB >3.6 dB >7.3 dB 

Rejection >16 dB >13.5 dB >16 dB >13 dB 

Isolation >20 dB >10 dB >20 dB >10 dB 

 

3.6. Conclusion 

The theory of operation, design, fabrication, and performance of several ferroelectric 

thin film FBAR filters based on the electrically coupled ladder topology have been 

presented. The voltage controlled switching and tuning behavior of both BTO and BST 

based filters that work in the 1.5 – 2.5 GHz range are discussed. Ferroelectric FBAR filters 

are demonstrated to have very high switching reliability and a switching speed of less than 

100 ns. Furthermore, a reconfigurable BST FBAR filter that utilizes BST varactors has 

been demonstrated for the very first time. The advantage of these devices is the elimination 

of dedicated switches that can be an additional source of signal loss, their excellent 

reliability due to their electrostriction based switching mechanism, and their very fast 

switching and response time. 
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CHAPTER 4 

Design and Performance of BTO Contour Mode 

Resonators 

 

4.1. Introduction 

The intrinsically switchable film bulk acoustic wave resonators (FBARs) and solidly 

mounted resonators (SMRs) based on ferroelectric thin film technology that have been 

demonstrated in [56-59] rely on the controlled thickness of each layer in the device stack 

for obtaining the desired resonance frequencies, as discussed in Chapter 2. Intrinsically 

switchable bandpass filters, formed by arranging multiple ferroelectric FBARs in a ladder 

configuration have also been demonstrated in [60, 61], as discussed in Chapter 3. By using 

an array of such resonators and filters, intrinsically switchable resonator banks and filter 

banks can be demonstrated. However, as mentioned above, the resonance frequencies of 

FBARs are determined by the thickness of their structure.  Therefore, for each operating 

frequency, a unique film thickness is required, increasing the number of processing steps, 

complexity, and overall cost of the device. One approach to address this issue is to use 

contour mode resonators in addition to FBARs. 

Lateral (contour) mode resonators have their resonance frequency dictated by the 

lateral dimensions of the transduction layer and the geometry of their bottom and top 

electrodes. The advantage of contour mode resonators is that their frequency determining 
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design parameters of an individual device can be defined lithographically with the use of 

CMOS and MEMS fabrication techniques and therefore a limitless number of different 

resonance frequencies can be realized without increasing the number of processing steps. 

This is very beneficial for the design of monolithic, multi-frequency circuits [62]  

In this chapter, 1-port intrinsically switchable contour mode resonators that have a 

barium titanate (BaTiO3, BTO) thin film transduction layer are discussed. BTO is 

ferroelectric at room temperature and is utilized for its non-zero effective d31 piezoelectric 

coefficient when polarized by an external electric field. This property allows the excitation 

of laterally propagating acoustic waves within the acoustically resonant cavity with the 

application of an RF signal applied across the top and bottom electrodes as shown in Figure 

4.1. Here, two different electrode variations are used to excite the fundamental and higher 

order resonance modes as discussed in the following sections. 

 

 

Figure 4.1: Cross section of a contour mode resonator that shows the excitation of laterally 

propagating acoustic waves due to the application of a vertical electric field. 

 

4.2. Parallel Plate Electrodes - Fundamental Mode 

Resonator 

4.2.1. Device Design and Simulation 

The simplest intrinsically switchable contour mode resonator design consists of a thin 

film of BTO sandwiched between a pair of electrodes as shown in the bottom right of 

E
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Figure 4.2. The width (W) of the BST slab and the effective acoustic wave velocity (νa,eff) 

of the structure determine the fundamental resonance frequency of the parallel plate 

contour mode resonators as given by  
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Table 4.1: Material Properties of BTO 

 ρ (kg/m3) σ EP (GPa) 

BTO 5800 0.3 67 

 

By neglecting the effects of the top and bottom electrode, the effective acoustic wave 

velocity can be approximated using the mass density (ρ), in-plane Poisson’s ratio (σ), and 

equivalent Young’s modulus (EP) of the BTO thin film [63]. The values of these parameters 

are listed in Table 4.1. Parallel plate contour mode resonators are typically formed into the 

shape of a circular ring (as shown in Figure 4.1), rectangular loop, or rectangular plate. The 

circumference/length/area of the ring/loop/plate, the thickness and permittivity of the BST, 

and the coverage of the electrodes determine the capacitance of the resonator. The 

resonance frequency and capacitance of the resonator can be chosen to obtain the desired 

impedance level, which is typically 50 Ω. 
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Figure 4.2: Ring-shaped contour mode resonator with single pair of parallel plate electrodes 

for exciting laterally propagating acoustic waves in response to the applied RF electric 

fields. 

 

Contour mode resonators can also be designed using COMSOL Multiphysics with the 

same method used for designing FBARs as discussed in Chapter 2. A 2D simulation of a 

parallel plate contour mode resonator with a 400 nm BTO layer and 100 nm platinum 

electrodes is performed to illustrate the desired resonance mode, which is shown in Figure 

4.3. In the simulation results, the color indicates the total displacement of the resonator 

body and shows that the displacement is only a function of lateral position and is 

maximized at the lateral boundaries of the device. This is in agreement with the mechanical 

boundary conditions of the device which require the boundary to be under zero strain. The 

eigenfrequency of this mode is also very similar to the value obtained analytically from 

(4.1). 
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Figure 4.3: COMSOL Multiphysics simulation showing the total displacement of a parallel 

plate electrode contour mode resonator. Red indicates a large displacement and blue 

indicated a small displacement. 

 

4.2.2. Device Fabrication and Measurement Setup 

After the resonator has been designed, it is fabricated using a process similar to the 

procedure given in Chapter 2. The procedure for fabricating parallel plate electrode 

fundamental mode resonators is summarized in Figure 4.4. A microphotograph of a 

fabricated circular ring-shaped contour mode resonator with an outer diameter of 80 μm, 

electrode width of 10 μm, and BST width of 20 μm is given in Figure 4.5. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.4: Step by step illustration of the fabrication process. (a) Start with a 525 μm thick 

high resistivity silicon substrate (5000 Ω·cm) with a layer of thermal SiO2 is deposited on 

top. (b) A 100 nm layer of platinum is patterned by e-beam evaporation and liftoff to serve 

as the bottom electrode. (c) A 405 nm BTO thin film is then deposited by pulsed laser 

deposition (PLD) using the conditions described in Chapter 2. (d) The top electrode is 

deposited using the identical procedure as for the bottom electrode. (e) The resonator 

structure is defined by wet etching the BTO and SiO2 layers. Then 500 nm of gold is 

deposited for the CPW probe pads (not pictured). (f) Device is released by an isotropic 

silicon dry etching process using XeF2.  
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Figure 4.5: Microphotograph of a released one-port intrinsically switchable circular ring-

shaped BTO thin film contour mode resonator. The bending of the resonator structure 

causes the section away from the tether to be out of focus. 

 

The fabricated contour mode resonator is characterized using an Agilent E8364B vector 

network analyzer and a GGB ground-signal-ground (GSG) probe with a pitch size of 150 

µm. Short-open-load calibration is performed using a GGB Industries CS-5 calibration 

substrate prior to characterizing the devices under test (DUTs), setting the measurement 

reference plane at the GSG probe tips. DC bias is applied to the port of the device through 

a bias tee. 

4.2.3. Measurement Setup/Measurement Results 

The input impedance of the resonator, Zin, is measured as the dc bias voltage is 

gradually increased from 0 V to 12 V. In the absence of dc bias, the spontaneous 

polarization of the BTO thin film results in a weak resonance at 158 MH as shown by the 

blue solid trace in Figure 4.6 (a). At a 1 V DC bias, the film is unpolarized and has no 

piezoelectric response and therefore the resonance is turned off, as can be seen from the 
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green dotted trace shown in Figure 4.6 (a) and Figure 4.6(b). At 12 V dc bias, the 

polarization of the material leads to a strong piezoelectric response and the resonator 

exhibits a series resonance frequency fs of 159.7 MHz and a parallel resonance frequency 

fp of 160.45 MHz as can be seen from the blue solid trace in Figure 4.6 (a). The quality 

factors are calculated to be 47 and 83 for the series and parallel resonance frequencies, 

respectively. The effective electromechanical coupling coefficient is calculated to be 

1.15%, which is comparable to that of piezoelectric AlN thin film contour mode resonators 

[63]. 
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(a) 

 
(b) 

Figure 4.6: (a) Measured input impedance of a one-port circular ring-shaped contour mode 

resonator with an applied dc bias voltage of 0 V (blue solid trace) and 1 V (green dotted 

trace). (b) Input impedance of the same device with an applied dc bias voltage of 12 V 

(blue solid trace) and 1 V (green dotted trace). 

 

The measured resonance frequencies of the BTO resonator at various dc bias voltage 

is shown in Figure 4.7. The results show that both the series and the parallel resonance 

frequencies increase with voltage. The tunability of this resonator can be calculated using 
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where Vmin, the minimum voltage at which resonance occurs, and Vmax, the maximum 

applied voltage [35]. The tunability of the series and parallel resonance frequencies are -

0.31% and -0.41%, respectively, for Vmin = 5 V and Vmax = 12 V. 

 

 
Figure 4.7: The measured series and parallel resonance frequency vs. applied dc bias 

voltage of a BTO circular ring-shaped contour mode resonator. 

 

Circular ring-shaped, rectangular loop, and rectangular-plate contour mode resonators 

are most practical in the tens to hundreds of MHz range. In order to operate at higher 

frequencies, the width of the resonators would need to be significantly smaller than what 

has already been demonstrated. However, in reducing the resonator width, the required 

resonator geometry for maintaining adequate performance would be structurally unfeasible 

[63]. Another approach to achieving higher frequency devices is to utilize higher order 

resonance modes that can also exist within the resonator body. This is the approach that is 

discussed in the next section. To excite these higher order resonance modes, interdigitated 

electrodes are employed. 
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4.3. Interdigitated Electrodes - Overmoded Resonator 

4.3.1. Design 

The interdigitated contour mode resonators presented here consist of a rectangular BTO 

thin film with interdigitated top and/or bottom electrodes to obtain GHz frequency 

operation. This structure is more mechanically robust and better at suppressing spurious 

responses compared to non-interdigitated resonators of the same frequency [63]. 

Interdigitated contour mode resonators can be designed as either thickness field excitation 

(TFE) or lateral field excitation (LFE) devices. In TFE resonators, the electric field vector 

are almost entirely perpendicular to the plane of the thin film and in LFE resonators, the 

electric field vectors have a component parallel to the plane of the thin film [64]. Both 

utilize the transducing material’s d31 (effective) piezoelectric coefficient to realize contour 

mode resonators [64]. In both instances, induced acoustic waves that propagate in the 

lateral direction are confined within the resonator body due to the interface between the 

resonator body and air. However, LFE resonators are less complex and may not require as 

many fabrication steps while TFE resonators typically have larger effective 

electromechanical coupling coefficients [64, 65]. Here, one-port TFE interdigitated 

contour mode resonators, which are excited by applying an RF signal and dc bias to the 

interdigitated electrodes in the alternating fashion shown in Figure 4.8, are discussed. 
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Figure 4.8: Cross sectional view of an interdigitated contour mode resonator showing the 

signal path and biasing configuration. 

 

The series resonance frequency (fs) of the contour mode resonator model shown in 

Figure 4.9(a) is determined by the width and spacing of the interdigitated electrodes as well 

as the material properties of the resonator body. The value of fs can be approximated with 

(4.3) based on the parameters defined in Table 4.2 [63, 66]. It is dependent on the lateral 

acoustic velocity of BTO (ν = /BTO BTOE  ), the correction factor (Φ), which accounts for 

the contributions of the electrodes, and the lateral periodicity of the structure (2∙Wres). Since 

the lateral periodicity of the resonators is defined lithographically, the number of operating 

frequencies for devices on a single chip is independent of the number of processing steps, 

significantly reducing cost and complexity. This is very advantageous for the design of 

monolithic resonator and filter banks. 
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(a) 

 
(b) 

Figure 4.9: (a) The parameters of interdigitated contour mode resonators used for 

approximating the series resonance frequency. (b) The desired length extensional 

resonance mode of the BTO thin film resonator. 
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Table 4.2: Variable Definition and Approximate Value 

Symbol Quantity Approximate Value 

EBTO BTO Young’s modulus 230 GPa 

tBTO BTO thickness 400 nm 

ρBTO BTO mass density  5998.8 kg/m3
 

EPt Pt Young’s modulus 164.6 GPa 

tPt Pt thickness 100 nm 

ρPt Pt mass density 21500 kg/m3 

Wnon-elec electrode separation 1 μm 

Welec electrode width 1 μm 

2∙Wres lateral periodicity 2∙(Welec + Wnon-elec) 

 

The multi-physics simulation software COMSOL Multiphysics is used to solve for the 

different resonance modes of the resonator structure shown in Figure 4.9(a). Material 

parameters that are used for the simulation are taken from the COMSOL material library. 
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The simulation result of the desired contour mode resonance is shown in Figure 4.9(b) 

(where the arrows and colors show the displacement that occurs within the body of the 

resonator). It is observed that the displacement of the resonator body is periodic with 

respect to the lateral periodicity of the electrodes (2∙Wres). This is expected since the 

electrodes are the source of the electrical excitation that causes the displacement within the 

resonator body by means of the electric field induced piezoelectric effect. 

Although the contour mode resonance of the simple structure in Figure 4.9(a) can be 

easily excited and has a resonance frequency that can be analytically calculated using (4.3), 

the fabrication of this device is very complex. The modified structure shown in Figure 

4.10(a) is utilized in this work to simplify the fabrication process while providing 

comparable performance. This new structure has an additional layer of dielectric below the 

bottom electrodes and a non-planar ferroelectric layer. COMSOL Multiphysics is used to 

simulate the frequency response of this resonator design. Only losses associated with the 

material are included.  

The simulation results show a strong resonance at 1.57 GHz. The electric fields within 

the resonator are shown in Figure 4.10(b), (where the arrows show the electric field vectors 

and the colors represent the electric potential) and the mechanical displacement within the 

resonator is shown in Figure 4.10(c) (where the arrows show the displacement that occurs 

within the body of the resonator and the colors represent the lateral displacement). In Figure 

4.10(c), the displacement is shown to be periodic with respect to the lateral periodicity of 

the electrical excitation applied to the top and bottom electrodes, which is the same as the 

desired mode shown in Figure 4.10(b). The results of the simulated five digit resonator 

illustrate the nature of the desired resonance mode for the fabricated device and validate 
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the excitation scheme. The physical dimensions of the simulated structure are used in the 

design and fabrication of the actual resonator. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.10: (a) The simulated 2-D resonator structure, (b) the electric fields due to the 

applied excitation, and (c) the mechanical displacement that occurs due to the contour 

mode resonance at 1.57 GHz. 

 

4.3.2. Device Fabrication 

The fabrication procedures of the interdigitated resonators are very similar to that of 

the circular ring-shaped contour mode resonators discussed earlier. Figure 4.11 visually 

summarized each fabrication step. A microphotograph of a fabricated interdigitated 

contour mode resonator with dimensions of 43 μm × 28 μm is given in Figure 4.12. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.11: Step by step illustration of the fabrication process. (a) Bottom electrodes are 

deposited on top of a thermally oxidized silicon wafer. (b) Ferroelectric thin film is 

deposited. (c) Top electrodes are deposited. (d) Resonator body is defined by selectively 

etching away the ferroelectric and SiO2. (e) Gold contacts are deposited. (f) The silicon 

beneath the device is etched, releasing the device which consists of SiO2, Pt, BTO, and Pt 

(bottom to top).  

 

 
Figure 4.12: Microphotograph of a high frequency interdigitated contour mode resonator. 

 

4.3.3. Measurement Setup 

The fabricated interdigitated contour mode resonators are measured with 150 µm pitch 

GSG probes and the S-parameters of the devices are obtained using an Agilent E8364B 

vector network analyzer. Short-open-load calibration is performed using a GGB Industries 
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CS-5 calibration substrate prior to characterizing the devices under test (DUTs), setting the 

measurement reference plane at the GSG probe tips. S-parameters are taken from 100 MHz 

up to 5 GHz in 1.5 MHz increments at applied dc bias voltages starting from 0 to 15 V in 

1 V increments. 

4.3.4. Measurement Results 

In order to determine the intrinsic performance of the DUT, the influence of the contact 

pads are de-embedded from the measurement results. Open and short test structures, where 

the resonator is not present and where the resonator is replaced with a conducting strip, 

respectively, are simulated in a 3-D electromagnetic solver, similar to what has been 

described in Hirano et. al. [67]. The material parameters used for simulating the de-

embedding structures are determined as follows. The loss tangent of the ferroelectric thin 

film is extracted by measuring the test structures shown in Figure 4.13, which have been 

fabricated on the same chip as the resonators. It is calculated by using (4.4), where ZC, Z1, 

and Z2 are the equivalent impedance of two series capacitors (Figure 4.13(a)), short through 

(Figure 4.13(b)), and long through (Figure 4.13(c)) 2-port CPW structures, respectively 

[68]. The conductivities of the platinum and gold that make up the contact pads are 

determined by measuring the S-parameters of a patch of material that has the same structure 

as the contact pads with SG probes and comparing them to S-parameters of a simulated 

patch. In addition, the dc resistance of the patch was also measured with a DMM and 

Signatone probe tips, verifying the conductivities. The high resistivity silicon substrate 

conductivity is provided by the manufacturer. After the simulation of the open and short 

test structures, the intrinsic device input admittance is calculated using (4.5), where Zopen, 
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Zshort, and Zext are the input impedance of the open, short, and DUT, respectively, and Yint 

is the intrinsic input admittance of the resonator [18]. 
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(a) 

 
(b) 

 
(c) 

Figure 4.13: Layout of the top (solid line) and bottom (dashed line) electrodes for the CPW 

signal line of (a) two series capacitors, (b) long through, and (c) short through test structures 

for determining the loss tangent of the ferroelectric thin film (in between the top and bottom 

electrode) of the fabricated resonators. 
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Table 4.3: 

Series Resonance Frequency of 

Interdigitated Contour Mode Resonators at 15 V DC Bias 

Electrode Width Electrode Spacing Periodicity fseries 

4 µm 4 µm 16 µm 0.46 GHz 

2 µm 2 µm 8 µm 0.92 GHz 

1.4 µm 1.4 µm 5.6 µm 1.26 GHz 

1 µm 1 µm 4 µm 1.68 GHz 

 

Resonators of different periodicities and different number of digits are measured using 

the procedure discussed in the previous section. The electrode widths, periodicities, and 

series resonance frequencies of four different resonators are summarized in Table 4.3. The 

measured return loss, plotted in Figure 4.14 as a function of frequency, demonstrate the 

lithographically defined resonance frequencies of the resonator structure. The measured 

series resonance frequencies are also plotted against the calculated resonance frequencies 

from (4.3) in Figure 4.15, verifying the inverse relationship with the structure’s periodicity, 

and subsequently electrode width. The series resonance frequency can be easily scaled to 

even higher frequencies and is only limited by the minimum feature size dictated by the 

process technology. 
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Figure 4.14: Measured S11 of the interdigitated contour mode resonators with the indicated 

electrode width at 15 V dc bias. 

 

 
Figure 4.15: Fit of the calculated and experimentally measured resonance frequency of 

resonators (at 15 V dc bias) with different electrode widths. 

 

The highest frequency interdigitated contour mode resonator that is demonstrated has 

a 1 μm electrode width and a series and parallel resonance frequency of 1.67 GHz and 1.68 

GHz, respectively, with the application of a 10 V dc bias. In the absence of a dc bias, the 

response of the device is purely capacitive and does not exhibit any resonances. This is 

illustrated by Figure 4.16, which shows the measured input impedance of the resonator as 

a function of frequency at 0 and 10 V dc bias. The series and parallel resonance quality 

factors (Qs) of the resonator at 10 V dc bias are calculated to be 149 and 143, respectively, 
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using (4.6) [35, 69, 70]. After de-embedding the contributions of the contact pads, the 

intrinsic series and parallel resonance quality factors are calculated to be 178 and 152, 

respectively. The effective electromechanical coupling coefficient (K2
eff) is calculated to 

be 2.0 % with (4.7), which is comparable to that of aluminum nitride interdigitated contour 

mode resonators [63, 66, 71]. 
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Figure 4.16: Measured input impedance for a 1 μm electrode width interdigitated contour 

mode resonator in the on and off state. 

 

The additional resonances that occur near 2.4 GHz, shown in Figure 4.16, are present 

in all devices regardless of the electrode width as well as in the COMSOL simulation. They 

are the thickness mode resonances of the device. The theoretical thickness mode 

resonances for the fabricated devices are calculated to be approximately 2.6 GHz by using 
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the acoustic wave transmission line model of a SiO2/Pt/BTO/Pt stack, corroborating with 

measurement results. 

 

 
Figure 4.17: Measured |S11| of an interdigitated contour mode resonator with an electrode 

width of 1 μm at bias voltages of 0 V, 5 V, 10 V, and 15 V. 

 

BaxSr1-xTiO3 based resonators exhibit bias voltage dependent resonance frequencies 

due to dc electric field dependent permittivity and polarization as well as nonlinear 

electrostrictive effects [30, 31]. Figure 4.17 shows the return loss of a 1 μm electrode width 

resonator at 0, 5, 10, and 15 V dc bias as a function of frequency. Figure 4.18 shows the 

measured input impedance of the same resonator from 1.3 to 2 GHz plotted on the Smith 

Chart. As the bias voltage increases the resonance frequency increases, which is consistent 

with the behavior of BTO resonators presented in [30, 35, 60]. Here, the series and parallel 

resonances are determined by where the input impedance is purely real and changes from 

capacitive to inductive and from inductive to capacitive, respectively. The tunability of the 

series and parallel resonance frequencies are calculated by using (4.2) to be -1.58 % and -

1.81 %, respectively, for Vmin = 4 V and Vmax = 15 V. Figure 4.19 shows the normalized 
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resonance frequencies versus bias voltage and Table 4.4 summarizes the bias voltage 

dependent behavior of the contour mode resonator. 

 

 
Figure 4.18: Response of an interdigitated resonator with a 1 μm electrode width at bias 

voltages of 0 V, 5 V, 10 V and 15 V plotted on a Smith Chart. 

 

Table 4.4: 

Measured Resonance at Various Bias Voltages 

Bias Voltage fseries fparallel Qseries Qparallel K2
eff 

5 V 1.652 GHz 1.664 GHz 111 192 1.8% 

10 V 1.666 GHz 1.680 GHz 178 152 2.0% 

15 V 1.676 GHz 1.690 GHz 160 121 2.0% 
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Figure 4.19: Plot of the normalized series and parallel resonance frequency versus bias 

voltage. 

 

The tuning behavior in ferroelectric resonators can be used to correct for temperature 

and process variations (such as alignment error during photolithography and material 

growth variation). The dc voltages required to turn on and tune the resonators are larger 

than what is used for VDD of CMOS chips and would require dc-dc converters, which are 

commonly used in cell phones. However, the voltages are comparable to those used to 

actuate electrostatic resonators [10-12]. Furthermore, it should be possible to lower the dc 

bias voltages for turning on the resonators by reducing the thickness of the BTO thin film 

since the dc electric field strength within the ferroelectric would be maintained. The non-

linear nature of ferroelectric devices is also a concern for high RF power applications. 

Nevertheless, there are techniques which have been developed for ferroelectric varactors 

and piezoelectric resonators that may also be applied to ferroelectric resonator design to 

increase their power handling [72-75]. 

4.3.5. Model Parameter Extraction of TFE Interdigitated 

Contour Mode Resonators 
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The equivalent circuit for interdigitated contour mode resonators is based on the 

Modified Butterworth-Van Dyke (MBVD) model, which is shown in Figure 4.20 [52]. It 

is useful for the design and analysis of resonators since it allows one to determine the 

electrical and acoustic characteristics of the device. In the model, the series connected Rm, 

Lm, and Cm are the motional resistance, inductance, and capacitance of the resonator, 

respectively, and make up the acoustic branch. The series connected C0 and R0 are the 

electrical capacitance and its dielectric loss of the resonator, respectively, and make up the 

electrical branch. The parameter Rs represents the ohmic loss of the metallization. The 

series resonance frequency is determined by the acoustic branch and occurs at a lower 

frequency than the parallel resonance frequency, which is determined by the combination 

of the acoustic and electrical branch. The value of each parameter in the model can be 

calculated from the resonance frequencies, effective electromechanical coupling 

coefficient, and quality factors of the measured device as outlined in [52]. Figure 4.21 

shows the good agreement between the measurement results for a 1 μm electrode width 

interdigitated contour mode resonator and the extracted MBVD model over the frequency 

range of 0.1 to 2 GHz for dc bias voltages of 0, 5, 10, and 15 V. 
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Figure 4.20: The Modified Butterworth-Van Dyke model for ferroelectric BAW 

resonators. 

 

The performance of ferroelectric FBARs are dc bias voltage dependent and therefore 

the parameters of the equivalent circuit must be voltage dependent as well [43]. Without 

any dc bias, the value of Rm is very large and behaves as an open circuit, preventing any 

resonances from occurring. As dc bias is applied and increased, the value of Rm decreases, 

causing the resonances to turn on and grow stronger, respectively. The values of Lm and Cm 

also vary with bias voltage; as bias voltage increases, Lm increases and Cm decreases. The 

electrical capacitance of the resonator (C0) decreases with increasing bias voltage, which 

is in agreement with the performance of ferroelectric varactors. Figure 4.22 and Figure 

4.23 show the extracted value of Lm, Cm, and C0 at voltages from 4 to 15 V for a 1 μm 

electrode width interdigitated contour mode resonator. The extracted values represent the 

tunability of the series ( 1/ (2 )s m mf L C ) and parallel ( 01 /p s mf f C C  ) resonance 

frequencies with bias voltage, which is shown in Figure 4.19. The bias voltage dependent 

MBVD model illustrates the equivalent electrical behavior of ferroelectric resonators [45]. 

It can be used to integrate the switching and tuning capabilities of ferroelectric thin film 

resonators into microwave circuit designs [76]. 
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Figure 4.21: Comparison between measurement and MBVD modeling results of a 1 μm 

electrode width resonator for dc biases of 0, 5, 10, and 15 V from 0.1 to 2 GHz. 

 

 
Figure 4.22: Extracted motional capacitance and motional inductance as a function of bias 

voltage of a 1 μm electrode width resonator. 
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Figure 4.23: Extracted device capacitance as a function of bias voltage of the 1 μm 

electrode width resonator. 

 

4.4. LFE Interdigitated Resonator 

4.4.1. Design 

LFE interdigitated contour mode resonators based on BTO have also been designed, 

measured, and fabricated. The structure of the resonator is shown in Figure 4.24. The 

resonator structure, excitation, and dc biasing is essentially the same as the TFE counterpart 

of the resonator except that the bottom electrodes and related design considerations are 

absent. 

 

 
Figure 4.24: Structure of an LFE interdigitated contour mode resonator with top electrodes 

only. The excitation and dc biasing scheme is also shown. 

 

 

BTO

Pt

RF & dc bias
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4.4.2. Measurement Results 

LFE interdigitated contour mode resonators are fabricated and characterized using 

procedures similar to what was used for their TFE counterparts. When 50 V of dc bias is 

applied to an LFE resonator with a 1 μm electrode width and 4 μm periodicity, two 

resonance modes are observed, as shown by the magenta trace in Figure 4.25. The contour 

mode response has series and parallel resonance frequencies of 1.734 and 1.797 GHz, 

respectively. The thickness mode response has series and parallel resonance frequencies of 

2.499 and 2.631 GHz, respectively. Without dc bias, no resonances are observed, as shown 

by the black trace in Figure 4.25. 

LFE interdigitated contour mode resonators have dc voltage controlled resonances and 

lithographically defined resonance frequencies similar to their TFE counterparts, yet have 

a much simpler fabrication process. However, the LFE resonators demonstrated here have 

weaker resonances compared to the demonstrated TFE resonators, suggesting that the 

electric field induced piezoelectricity is weak and the quality factor of the resonator is low. 

To address the former, a larger dc bias voltage can be applied or the electrode separation 

can be decreased in subsequent designs. To address the latter, the BTO thin film deposition 

process for non-platinized substrates can be studied and optimized. 
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Figure 4.25: Measurement result of the top electrode only LFE interdigitated contour mode 

resonator at a bias voltage of 50 V. 

 

4.5. Conclusion 

In this chapter, contour mode resonators, which have resonance frequencies that are 

determined by their lateral dimensions, allowing resonators of virtually any frequency to 

be integrated onto a single substrate without the need for additional fabrication steps, are 

presented. BTO-based contour mode resonators can be intrinsically switched on and off by 

applying and removing the dc bias voltage across its terminals, respectively. Furthermore, 

its resonance frequency can be tuned by adjusting the dc bias voltage level. 

Several different contour mode resonator designs are discussed. A parallel-plate 

fundamental mode contour mode resonator with a circular ring-shaped structure and a BTO 

thin film transduction layer has been designed, fabricated, and characterized. When a 12 V 

dc bias is applied to one such device, a contour mode resonance is observed with a series 
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and parallel resonance frequency of 159.7 and 160.45 MHz, respectively. The calculated 

quality factors of the former and latter are 47 and 83, respectively. Furthermore, thickness 

field excitation (TFE) and lateral field excitation (LFE) interdigitated contour mode 

resonators are discussed. At 10 V dc bias, the highest frequency TFE resonator exhibits 

series and parallel resonance frequencies of 1.67 GHz and 1.68 GHz with quality factors 

of 178 and 152, respectively. At 50 V dc bias, the demonstrated LFE resonator exhibits 

series and parallel resonance frequencies of 1.734 and 1.797 GHz, respectively. These 

devices are the first demonstration of intrinsically switchable interdigitated contour mode 

bulk acoustic wave resonators based on ferroelectric BTO thin films. 
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CHAPTER 5 

Design and Assembly of an RF Magnetron 

Sputtering System for BST Deposition 

 

5.1. Introduction 

One major challenge in realizing our objective of integrating BST thin film capacitors, 

resonators, and filters to create very simple yet reconfigurable RF circuits for the design of 

intelligent/cognitive radios is realizing very high performance BST thin films with 

excellent within wafer and wafer-to-wafer uniformity. BST devices are made using micro-

fabrication technology (similar to semiconductor device fabrication). For most of the 

intrinsically switchable and tunable microwave circuits discussed in this dissertation, the 

BST thin films have been deposited using a process called pulsed laser deposition (PLD). 

However, the design of larger and more sophisticated RF circuits for use in multi-standard 

radios require very precise, accurate, and uniform BST films which are not obtainable with 

the PLD system. The PLD system is also being shared among other research groups at the 

university, which deposit various other materials with the system, increasing the risk of 

contamination from other materials and the variation in film quality from sample to sample. 

In this chapter, an RF magnetron sputtering system that has been designed for and 

dedicated to BST thin film growth, shown in Figure 5.1, is discussed. 
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(a) (b) 

Figure 5.1: Assembled RF magnetron sputtering system for the deposition of ferroelectric 

BST thin films. (a) Main processing chamber. (b) Load lock and transfer arm. 

 

Ferroelectric thin films are commonly deposited using RF sputtering, pulsed laser 

deposition (PLD), metal-organic vapor phase epitaxy (MOCVD), and atomic layer 

deposition (ALD) [18]. The setup of an RF magnetron sputtering system is chosen due to 

their ease of use, high quality films, and low operating cost. Furthermore, the deposition 

of uniform, high performance, and low impurity BST has been demonstrated by Professor 

Robert York’s and Professor Suzanne Stemmer’s group at UCSB as well as Professor 

Spartak Gevorgian’s group at Chalmers University of Technology. The system assembled 

and setup at the University of Michigan is configured with two sputtering guns, which 

allows for the co-sputtering of BaTiO3 and SrTiO3 and enables the growth of BST with any 

stoichiometry. Also, the sputtering system is designed to hold up to four sputtering guns, 

which allows for the reactive sputter deposition of BST, providing even more control over 

BST stoichiometry. Stoichiometrically graded BST thin films can also be deposited with 

both of these methods. The ability to control the various stoichiometrically dependent 

properties of BST is essential for high performance BST thin film devices. In addition to 
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fine control over BST composition, the RF magnetron sputtering system has been designed 

for high temperature, high deposition rate, and high uniformity thin film growth and can 

accommodate wafers up to 4” in diameter. This new system will enable the design and 

fabrication of fully integrated BST based circuits and systems. 

5.2. RF Magnetron Sputtering System Components 

The RF magnetron sputtering system shown in Figure 5.1 is located in a UV light 

filtered cleanroom environment and is dedicated to the deposition of ferroelectric BST thin 

films. It has been assembled from parts that were purchased from various vendors. Each of 

the major components/subsystems are listed and described below. 

5.2.1. Main Processing Chamber 

The main processing chamber is a double walled cylindrical stainless steel vessel with 

a diameter and height of 16” and is the location where the film deposition occurs. The 

chamber is cooled by flowing chilled water through the chamber walls. There are three 8” 

and one 10” CF ports which are separated by 90º on the perimeter of the chamber. The 8” 

ports are attached to the load lock and view ports for transferring wafers into and out of the 

chamber. The 10” port is attached to the cryogenic pump through the 3-position gate valve. 

The top lid of the chamber has four 6” CF ports and can accommodate a maximum of four 

sputtering guns. Each port is 30º off the vertical axis and points to the exact center of the 

chamber. The bottom lid is configured with an 8” CF clearance port to accommodate the 

substrate assembly as well as a 1.33” mini CF flange for the substrate shutter. Several 

additional 2.75” CF ports are also located on the wall and lid of the chamber for gas 



120 

management, pressure measurement, etc. The entire main processing chamber rests on an 

aluminum support frame. 

5.2.2. Load Lock and Substrate Assembly 

The sputtering system is configured with a load lock and uses a manual linear motion 

transfer arm to transport the wafers between the load lock and the substrate assembly that 

is inside of the main processing chamber. The load lock enables the main processing 

chamber to be maintained under vacuum at all times, which helps prevent the introduction 

of contaminates into the thin film deposition environment. The load lock is also configured 

with a downward facing 8” CF port, which can be used to accommodate a turbomolecular 

pump a later time if necessary. 

The substrate assembly is designed to be used with wafers up to 4” in diameter and has 

quartz lamp heaters that can heat the wafers up to 850 ºC. In addition, it is connected to an 

electrical motor that rotates the sample to improve film uniformity. Furthermore, the 

substrate assembly can be biased up to 100 V to adjust the plasma characteristics and 

deposition conditions inside the main processing chamber. 

5.2.3. Mechanical Scroll Pump 

The sputtering system requires a pump to bring the load lock and main processing 

chamber from atmospheric pressure to medium vacuum before the cryogenic pump can be 

used to reach ultra-high vacuum (UHV). Mechanical scroll pumps are commonly used for 

such purposes in thin film deposition systems because they are a type of dry pump and do 

not expose the vacuum system to any oils that are usually used for lubrication in other types 

of mechanical pumps. The introduction of hydrocarbons into the main processing chamber 
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should be avoided because it will contaminate the wafers and pollute the activated charcoal 

in the cryogenic pump, preventing the system from reaching its ultimate vacuum [77]. The 

sputtering system that has been setup is configured with an Edwards XDS 10 pump. 

Relevant specifications of the pump are listed in Table 5.1. 

 

Table 5.1: Specification of the Scroll Pump 

Parameter Value 

Ultimate Vacuum < 6 Pa (45 mTorr) 

Maximum Pumping Speed 11.1 m3/hour 

Inlet/Outlet Connections DN25NW flange 

 

5.2.4. Cryogenic Pump 

The sputtering system requires an additional pump to bring the main processing 

chamber from medium vacuum to ultrahigh vacuum. A Cryogenic pump was chosen due 

to their ease of operation and robustness. Cryogenic pumps operate by condensing gases 

(with the exception of helium, hydrogen, and neon) onto a cold head which is kept at 

cryogenic temperatures with the use of a closed-loop helium gas cooling system. The gases 

that do not condense are adsorbed by activated carbon cooled to 15-20 K within the cold 

head. Although cryogenic pumps have an initialization time of several hours and require 

periods of regeneration to restore the original pumping capacity, they have no mechanical 

components and are very robust. Furthermore, they have high water vapor pumping speed 

and high Ar, and N2 retention [77]. The cryogenic pump is attached to the 10” 3-position 

gate valve that is attached to the 10” port of the main processing chamber. 

5.2.5. RF Magnetron Sputtering Gun 
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The sputter system has two RF magnetron sputtering guns installed in the main 

processing chamber to allow for the deposition of either two distinct materials or the 

simultaneous deposition of the same material for increasing deposition rate. Each 

sputtering gun is fed by an RF power supply that can provide up to 300 W of power and is 

controlled by an automatic matching network for minimizing the reflected power. The 

sputtering guns can also be used with a DC power supply for depositing metals. 

5.2.6. Sputtering Targets 

The sputtering system is setup to sputter Ba0.5Sr0.5TiO3 and BaTiO3 thin films.  These 

4” diameter, 0.125” thick targets have a 0.125” copper backing plate which is used to help 

conduct heat away from the target as well as for attaching the target to the RF magnetron 

sputtering guns. 

5.2.7. Gas Management and Pressure Measurement 

The process gases are managed by a 3-position gate valve, mass flow controllers 

(MFCs), and pressure sensors. The 3-position gate valve throttles the pumping speed of the 

cryogenic pump and is used for establishing the partial pressure during deposition. The two 

MFCs control the flow of O2 and Ar into the chamber. Lastly, the pressure sensors monitor 

the chamber pressure and indicate whether the 3-position gate valve position needs to be 

adjusted to achieve the desired partial pressure. 

5.2.8. Water Chiller 

The sputter system has a water chiller which cools the main processing chamber, the 

RF magnetron sputtering guns, the helium compressor that is used for the cryogenic pump, 
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and the substrate assembly. The chiller has a 7.0 kW cooling capacity and the heat is 

dissipated through the closed-loop chilled water lines of the building so that the heat is not 

dissipated into the laboratory environment. 

5.3. Film Deposition Parameters 

There are many different deposition parameters that affect the properties of the 

sputtered film. Table 5.2 gives the deposition parameters that have been chosen for the 

system discussed here. 

 

Table 5.2: RF Sputter Deposition Parameters 

Target Material Ba0.5Sr0.5TiO3 

Number of Target/Sputtering Guns 2 

RF Power 2 × 300 W 

Substrate Temperature 650 ºC 

Gas Flow Ar/O2: 75/25 sccm 

Chamber Partial Pressure 45 mTorr 

Deposition Time Thickness Dependent 

Substrate Temperature Ramp Up/Down Rate 20 ºC/minute 

 

5.4. Film Characterization 

Material characterization is a significant portion of setting up the system for thin film 

deposition. Many different growth conditions affect the properties/quality of the BST. 

Deposition parameters, such as gas pressure, gas ratio, substrate temperature, growth rate, 

source to target distance, etc., need to be studied to understand how each affects the 

following film properties. The composition of the film, which can vary due to the different 

atomic weights of Ba, Sr, Ti, and O, needs to be determined by using Rutherford 

backscattering spectrometry (RBS). The crystallinity of the film, which is extremely 
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important in the tunability of the capacitors, needs to be characterized by X-ray diffraction 

(XRD). The film roughness, which determines the quality factor of resonators and the 

signal loss in filters, needs to be measured using atomic force microscopy (AFM). Once 

material characterization is completed and the deposition parameters for the growth of high 

quality films are determined, the performance BST capacitors, resonators, and filters need 

to be characterized with DC (constant voltage) and RF probes. The results of the film 

characterization are not a part of this thesis. 

5.5. Conclusion 

An RF magnetron sputtering system has been setup for depositing uniform, high 

performance, and repeatable BST thin films. The system is currently configured with two 

4” RF magnetron sputtering guns that are oriented 30º off the vertical axis and is able to 

accommodate wafer up to 4” in diameter. The deposition parameters such as substrate 

temperature, partial pressure, gas mixture ratio, RF power, target-to-substrate distance, etc. 

have been determined to obtain high quality films. Complete film characterization is 

currently underway. 
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CHAPTER 6 

Conclusions and Future Work 

 

6.1. Conclusion 

The work in this thesis demonstrates how the unique and multifunctional properties of 

ferroelectric thin films can be used to develop intrinsically switchable resonators and filters 

for applications such as intelligent/cognitive wireless communication systems. BST, which 

has been well characterized in the microwave frequency regime and exhibits a large and 

electric field dependent permittivity as well as electric field induced piezoelectricity, 

allows for the fabrication of highly compact and potentially monolithic adaptive and 

reconfigurable RF circuits.  

The contribution of this thesis in the area of ferroelectric thin film devices fall into four 

major categories. In Chapter 2, the design, fabrication, characterization, and modeling of 

BST FBARs is been discussed. FBAR design is performed by using the acoustic wave 

transmission line model, which represents each different thin film that makes up the FBAR 

structure as a transmission line for acoustic waves, to obtain the desired resonance 

frequency and impedance level. Multiphysics FEM simulation tools such as COMSOL 

Multiphysics can be used in conjunction with the acoustic wave transmission line model 

for design verification. Once the design is finalize, device fabrication is perform in the 

Lurie Nanofabrication Facility located at the University of Michigan. The fabricated 
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devices are characterized for their dc bias dependent behavior, RF power dependent/large-

signal behavior, and switching reliability. BST FBARs that are in the paraelectric phase 

behave as capacitors when there is no dc bias. When dc bias is applied to BST FBARs, RF 

signals of particular frequencies excite acoustic waves that add constructively within the 

bulk of the device, resulting in an electrical resonance. As the dc bias is increased, the 

electric field induced piezoelectricity grow stronger, causing an increase in the effective 

electromechanical coupling coefficient of the device. Furthermore, the non-linear 

electrostrictive effect and electric field dependent permittivity cause the resonance 

frequency to shift/tune. A BST FBAR has been demonstrated with a tunability as high as 

5.33%. In this work, it was also determined that by increasing the RF power applied to 

BST resonators, changes in the electromechanical coupling coefficient, quality factor, and 

resonance frequency are also observed. Furthermore, these effects can minimized by 

increasing the dc bias voltage. To ensure that the performance of BST resonators do not 

degrade when exploiting their voltage dependent behavior, a reliability study that switched 

a device on and off for over one billion cycles was completed and no apparent degradation 

was observed. With the assurance of their high reliability and consistent behavior in 

addition to the interest in utilizing BST FBARs in more advanced and high power 

microwave and RF circuits, their dc bias and RF power dependent behavior are modeled 

using a non-linear version of the MBVD model to enable circuits designs that can take 

advantage of their multifunctional capabilities. After studying individual ferroelectric 

FBARs, their electric field dependent piezoelectricity was utilized to design reconfigurable 

BST FBARs that could switch on individual or multiple electrical resonances by using a 

very simple dc biasing scheme that can be easily controlled by low cost digital circuitry. 
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In Chapter 3, intrinsically switchable ferroelectric FBAR filters that utilize the 

properties of BTO and BST FBARs have been designed, fabricated, and characterized. The 

filters are designed by using the modified Butterworth-Van Dyke (MBVD) and acoustic 

wave transmission line models established in Chapter 2 together with the circuit simulator, 

Advanced Design System (ADS), to represent the resonators that form the electrically 

coupled ladder filters. They are fabricated using the same basic process as was used for 

BST FBARs with the addition of a few extra steps for the mass loading/compensation 

layers and the thin film resistors used for biasing. The fabricated 1.5 stage ladder filters 

were then characterized for their dc bias voltage dependent behavior, switching reliability, 

and switching speed. When the ferroelectric FBAR filters are off, the input and output are 

isolated by 14 dB. When they are switched on by controlling the applied dc bias, a passband 

response with an insertion loss as low as 4.1 dB and center frequency of 1.60 GHz is 

observed. Furthermore, the insertion loss and center frequency can be tuned with the bias 

voltage level. BST FBAR filters that leverage BST varactors have also been used to design 

reconfigurable BST FBAR filters. The BST varactors are used as an internal dc block and 

improve the performance of the filters that are switched on by minimizing the loading 

effect of the filters that are switched off. Furthermore, with the biasing scheme developed 

here, a notch response is observed at the center frequency of the filters that are switched 

off. 

In Chapter 4, several different BTO contour mode resonators, which have resonance 

frequencies defined by their lateral dimension and operate at resonance modes determined 

by the electrode patterning, have been designed, fabricated, and characterized. The benefit 

of this type of structure is the ability to fabricate resonators over a wide range of frequencies 
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without the need for additional processing steps. Parallel plate and interdigitated electrode 

contour mode resonators are designed analytically and their mode of operation is verified 

with COMSOL Multiphysics. The resonators are fabricated using a very similar approach 

as compared to BST resonators but require their BTO thin film be precisely etched to define 

the acoustic boundaries for the laterally propagating bulk acoustic waves. As with BST 

based resonators, BTO contour mode resonators can be switched on and off by controlling 

the applied dc bias voltage and as the bias voltage is increased, the resonance frequency 

increases, which agrees with measurement results of BTO based FBARs. A circular ring-

shaped parallel plate resonator with a frequency of 160 MHz and an interdigitated resonator 

with a frequency of 1.67 GHz have been demonstrated. 

In Chapter 5, the design, assembly, and setup of an RF magnetron sputtering system 

dedicated to BST thin film deposition is discussed.  The different components of the system 

are described and the deposition parameters for depositing high quality BST thin film are 

given. Complete film characterization is currently underway. 

6.2. Future Work 

The work presented here only represents a small fraction of what is possible with 

ferroelectric thin film technology. There are still many significant contributions that can be 

made in the field of ferroelectric thin film BAW devices. For example, there is a need to 

develop ferroelectric thin film BAW resonators that can achieve higher frequencies, higher 

quality factors, higher effective electromechanical coupling coefficients, and improved 

linearity. Ongoing work in Professor Mortazawi’s research group is aimed at addressing 

these issues. Additional projects involving new designs and applications of ferroelectric 
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thin film resonators, and improved understanding of ferroelectric thin films and devices are 

given in the following sections. 

6.2.1. Reconfigurable Contour Mode Resonators and Filters 

In Chapter 4, the design, fabrication, and performance of individual BTO contour mode 

resonators that operated in the low GHz frequency range was presented. The different 

resonators had resonance frequencies that were determined by lithographically defined 

features and therefore, each device was able to be fabricated on the same wafer using a 

minimal number of processing steps. The next phase of research is to incorporate several 

different contour mode resonators to create more sophisticated devices. One particular 

application is the design of reconfigurable resonators, which was previously demonstrated 

in Chapter 2 with BST FBARs. The fabrication process for reconfigurable contour mode 

resonators would not require the additional processing steps used for depositing additional 

mass loading/compensation layers that were previously used. The benefit of contour mode 

resonators also applies to the design of filters and reconfigurable filters, which were 

previously demonstrated with ferroelectric FBARs in Chapter 3. 

6.2.2. Fully Characterize and Automate RF Magnetron 

Sputtering System 

The RF magnetron sputtering system discussed in Chapter 5 has been setup for the 

deposition of ferroelectric thin films. Additional work to fully automate the thin film 

deposition process and data logging of the deposition parameters would significantly help 

with the complete characterization of the system. The system has been designed with 

computer automation in mind from the very beginning. By creating a computer program 
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for controlling all the different components and instruments, the number of extraneous 

variables that influence the quality of the deposited films would be decreased. Furthermore, 

once a recipe is established, the run to run variation can be minimized. 

6.2.3. Complete Physics Based Modeling of Ferroelectric 

Resonators 

In Chapter 2, a nonlinear MBVD model was developed to represent the dc bias voltage 

and RF power dependent behavior of characterized BST FBARs. The nonlinear model 

parameters of a measured device can extracted by using the procedure that have been 

outlined. Other research groups have developed voltage dependent physics based models 

of BST resonators that are derived from Landau free energy P-expansion. One new project 

would be to incorporate the RF power dependent behavior of BST FBARs into the dc bias 

voltage dependent physics based models for a complete physics based model. 
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Appendix A 

 

BST Thin Film Resonator and Filter Fabrication 

Procedure 
 

 

A.1 Fabrication Process Overview 

1 Wafer preparation and cleaning 

2 Bottom electrode deposition/patterning 

3 BST thin film deposition using pulsed laser deposition (PLD) 

4 Top electrode deposition 

5 BST annealing 

6 BST etch 

7 Compensation layer deposition 

8 Thin film resistor deposition 

9 Contact deposition 

10 Device release 

A.2 Detailed Fabrication Procedures 

A.2.1 Wafer preparation and cleaning 

1 Dice a wafer to the desired size using a scribe 
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2 Blow off any dust or particles that may have gotten onto the wafer from the 

dicing process with a nitrogen gun 

3 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath 

4 Transfer and soak the wafer in a beaker of hot isopropyl alcohol (IPA) for 3 

minutes while inside an ultrasonic bath 

5 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

6 Bake the wafer at 130 °C for 3 minutes 

A.2.2 Bottom electrode patterning 

1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath 

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 

8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 
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10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 

13 Pattern the bottom electrode using step a or b 

a. Selectively etch away the blanket platinum bottom electrode layer using 

the Plasmatherm 790 

b. Deposit 30 nm of titanium and 100 nm of platinum onto the wafer with 

the Enerjet Evaporator 

14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.3 BST thin film deposition using pulsed laser deposition 

(PLD) 

1 Adhere the wafer onto the stage of the PLD using silver paint  

2 Wait for the silver paint to dry 

3 Load the substrate assembly into the chamber 

4 Switch on the roughing pump 

5 Open the gate valve 
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6 Wait for the chamber pressure to go below 2.5 Torr 

7 Switch on the turbomolecular pump 

8 Program the temperature controller to increase the temperature of the stage up 

to 650 °C at a ramp rate of 5 °C/minute 

9 Wait until the wafer reached 650 °C 

10 Open the flow of ultrahigh purity oxygen into the chamber 

11 Turn on the speed controller for the turbomolecular pump 

12 Adjust the flow of the oxygen until the partial pressure reaches 300 mTorr 

13 Switch on the target rotation motor 

14 Turn on the laser  

15 Verify the laser is hitting the BST target 

16 Wait until the desired film thickness has been obtained 

17 Turn off the laser 

18 Close the gate valve 

19 Switch off the turbomolecular pump 

20 Switch off the target rotation motor 

21 Wait for the chamber pressure to reach 100 Torr 

22 Close the flow of ultrahigh purity oxygen into the chamber 

23 Wait one hour 

24 Switch off the roughing pump 

25 Program the temperature controller to decrease the temperature of the stage 

down to 25 °C at a ramp rate of 1 °C/minute 

26 Wait for the wafer to cool down to 25 °C 
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27 Vent the chamber using nitrogen 

28 Remove the wafer 

29 Replace the substrate assembly and pump down the chamber 

A.2.4 Top electrode deposition 

1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 

8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 

10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 
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13 Deposit 100 nm of platinum onto the wafer with the Enerjet Evaporator 

14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.5 BST annealing 

1 Switch on the furnance  

2 Place the wafer into the center of the tube furnace 

3 Program the temperature controller to increase the temperature of the furnace 

up to 500 °C at a ramp rate of 5 °C/minute 

4 Open the flow of ultrahigh purity oxygen into the furnace at a rate of 2-3 sccm 

5 Wait for 30 minutes 

6 Close the flow of oxygen 

7 Program the temperature controller to decrease the temperature of the furnace 

down to 25 °C at a ramp rate of 1 °C/minute 

8 Wait until the furnace reaches 25 °C 

9 Remove the wafer from the furnace 

10 Switch off the furnace 

A.2.6 BST etch 
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1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 

8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 

10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 

13 Pattern the BST by using step a or b 

a. Soak the wafer in a beaker of diluted BHF and rinse in DI water 

b. Mount the wafer onto a 6” carrier wafer with Crystalbond and etch the 

BST with the LAM 9400 using a recipe with an Cl2-Ar chemistry 
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14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.7 Compensation layer deposition 

1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 

8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 

10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 



144 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 

13 Deposit the desired amount of gold onto the wafer with the Enerjet Evaporator 

14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.8 Thin film resistor deposition 

1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 
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8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 

10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 

13 Deposit 30 nm of nickel-chromium onto the wafer with the Cooke Evaporator 

14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.9 Contact deposition 

1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 



146 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

3000 RPM 

7 Softbake the photoresist at 115 °C for 90 seconds 

8 Align the mask and the wafer with the MA/BA-6 Mask/Bond Aligner and 

expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

9 Post exposure bake the photoresist at 115 °C for 90 seconds 

10 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

11 Inspect the photoresist patterning under the optical microscope 

12 Descum the surface of the wafer using the March Asher at a pressure of 250 

mTorr and a power of 80 W for 60 seconds 

13 Deposit 50 nm of titanium, 1.5 μm of aluminum, 50 nm of titanium, and 500 

nm of gold onto the wafer with the Enerjet Evaporator 

14 Place the wafer into a beaker of hot acetone for 1 hour 

15 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

16 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

17 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

18 Bake the wafer at 130 °C for 3 minutes 

A.2.10 Device release 
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1 Soak the wafer in a beaker of hot acetone for 3 minutes while inside an 

ultrasonic bath  

2 Transfer and soak the wafer in a beaker of hot IPA for 3 minutes while inside 

an ultrasonic bath 

3 Blow the IPA off the surfaces of the wafer with a nitrogen gun 

4 Bake the wafer at 130 °C for 3 minutes 

5 Spin HMDS onto the wafer using the CEE 200X PR Spinner at a speed of 4000 

RPM 

6 Spin SPR 220 3.0 onto the wafer using the CEE 200X PR Spinner at a speed of 

5000 RPM 

7 Bake the photoresist at 115 °C for 130 seconds 

8 Spin HMDS onto the back of the wafer using the CEE 200X PR Spinner at a 

speed of 4000 RPM 

9 Spin SPR 220 3.0 onto the back of the wafer using the CEE 200X PR Spinner 

at a speed of 2500 RPM 

10 Softbake the photoresist at 115 °C for 90 seconds 

11 Align the mask and the backside of the wafer with the MA/BA-6 Mask/Bond 

Aligner and expose the photoresist for 6 seconds at an intensity of 20 mW/cm2 

12 Post exposure bake the photoresist at 115 °C for 90 seconds 

13 Develop the photoresist with the CEE Developer using the 30/30 second double 

puddle recipe for the AZ726 developer 

14 Inspect the photoresist patterning under the optical microscope 
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15 Strip the photoresist from the front of the wafer by spinning the wafer using the 

CEE 200X PR Spinner at a speed of 5000 RPM and spraying acetone onto the 

wafer 

16 Descum the back of the wafer using the March Asher at a pressure of 250 mTorr 

and a power of 80 W for 60 seconds 

17 Mount the wafer face down on a 4" or 6" oxidize silicon carrier wafer using 

Crystalbond 

18 Selectively etch away the silicon wafer with the STS Pegasus 4 or 6 

19 Measure the depth of the trench to make sure the silicon has been etched away 

with the Zygo NewView 5000 

20 Unmount the wafer from the carrier wafer 

21 Place the wafer into a beaker of hot acetone for 1 hour 

22 Transfer and place the wafer into a beaker of hot IPA for 3 minutes 

23 Gently blow the IPA off the surfaces of the wafer with a nitrogen gun 

24 Inspect the surface of the wafer under the optical microscope, clean again if 

necessary 

25 Bake the wafer at 130 °C for 3 minutes 
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Appendix B 

 

RF Magnetron Sputtering System -  

Standard Operating Procedures 
 

 

B.1 Initializing the System 

1 Make sure both water filters are “clean” 

2 Open the building water valves (both source (S) and return (R)) going to and 

from the water chiller 

3 Make sure there is enough DI water in the reservoir of the water chiller (> 50%) 

of the gauge on the side 

a. If there is not enough water 

i. Remove the lid of the water chiller 

ii. Add DI water obtained from the cleanroom staff 

iii. Replace the lid of the water chiller 

4 Switch on the water chiller 

5 Turn on roughing pump 

6 Open the valve connecting the roughing pump to the cryogenic pump 

7 Wait for roughing pump pressure gauge to read < 50 mTorr 

8 Close the valve connecting the roughing pump to the cryogenic pump 



150 

 

9 Make sure the main processing chamber is below 50 mTorr 

a. If the pressure is too high 

b. Open the valve connecting the roughing pump to the load lock 

c. Open the gate valve connecting the load lock to the main chamber 

d. Wait until the pressure of the main chamber is < 50 mTorr 

e. Close the gate valve connecting the load lock to the main chamber 

f. Close the valve connecting the roughing pump to the load lock 

10 Turn off the roughing pump 

11 Make sure the cryogenic pump temperature gauge is on (should read below 300 

K) 

12 Make sure the cryogenic pump has adequate water flow (> 0.5 gpm) 

13 Turn on the cryogenic pump compressor 

14 Make sure the water chiller is being properly cooled 

a. When the compressor is running, the head pressure should never exceed 

500 psi 

i. If this is the case, the compressor will automatically shut off 

ii. If this is the case, most likely the building water valves are not 

both opened  

b. The compressor should only be on for several minutes at a time and the 

refrigerant head pressure should not exceed 300 psi 

c. If the compressor is running for > 3 minutes at a time, check the water 

filter and make sure it is clean 

15 Make sure the water chiller is properly chilling the circulating water 
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16 The temperature reading on the cryogenic pump temperature gauge should start 

to decrease and after roughly 2 – 3 hours, will reach 11 K 

17 Open the gate valve connecting the cryogenic pump to the main processing 

chamber 

B.2 Running the System 

(M) = Manual procedure 

(C) = Computer controlled procedure 

B.2.1 Sample Loading 

1 Isolate cryopump from main chamber (C) 

2 Vent load-lock (C) 

3 Open load-lock door (M) 

4 Turn off nitrogen (C) 

5 Take out sample holder (M) 

6 Put sample on holder (M) 

7 Put sample holder back in load-lock (M) 

8 Close load-lock door and use the thumb-screw to seal the door shut (M) 

9 Rough out load-lock to < 50 mTorr 

a. Turn on roughing pump (M) 

b. Open valve connecting load-lock to roughing pump (M) 

c. Wait until load-lock pressure reading is < 50 mTorr (C) 

d. Close valve connecting load-lock to roughing pump (M) 

e. Turn off roughing pump (M) 
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f. Loosen the thumb-screw and rotate out of position (M) 

10 Lower heater (M) 

11 Open gate valve connecting load-lock to main chamber (M) 

12 Gently slide transfer arm to move sample holder over heater (M) 

13 Slowly raise heater until sample holder is resting on heater (M) 

14 Slowly rotate the heater in the unlock direction to disengage the sample holder 

from the loading arm (M) 

15 Move the transfer arm back into the load-lock (M) 

16 Close the gate valve between the load-lock and the chamber (M) 

17 Open the nitrogen gas cylinder (M) 

18 Open gate valve connecting cryopump to main chamber (C) 

B.2.2 Film Deposition 

1 Wait for the chamber to reach the desired base pressure (for high tunability 

optimized conditions < 5×10-8 Torr) (M) 

2 Turn on sample rotation (usually 10-20 rpm) (M) 

3 Close substrate shutter (C) 

4 Adjust the heater height to the 0.8” mark (so sample is just below substrate 

shutter) (M) 

5 Make sure sputtering guns and substrate heater are adequately cooled (M) 

a. Turn on secondary water pump (M) 

b. Check to see water flow is > 0.5 gpm for both sputtering guns (M) 

c. Check to see water flow is > 0 gpm for the substrate heater (M) 
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6 Set the heater ramp rate (20 ºC/min is relatively conservative, good for 

dissimilar materials) (M) 

7 Set the desired temperature (M) 

8 When the sample reaches 300 ºC, start the gas flow 

a. Turn on “Power” (pulling and moving up) 

b. Set mass flow controller (MFCs) to 75 sccm for argon and 25 sccm for 

oxygen (M) 

c. Open the argon and oxygen gas cylinders (M) 

d. Switch on the argon mass flow controller (M) 

e. Open the argon valve (C) 

f. Switch on the oxygen mass flow controller (M) 

g. Open the oxygen valve (C) 

h. Set gate valve between the chamber and the cryopump to its 3rd position 

(C) 

9 Adjust the partial pressure to 45 mTorr by using the pressure regulator on the 

gate valve (M) 

10 Turn on the power to the sputter gun power supply and automatic matching 

network controllers for both guns, set to automatic (M) 

a. Press the power button on each unit (M) 

b. Turn on the ramp mode for the power supply (M) 

c. Set the turn on and turn off time so that the power ramps up and down 

at 20 W/min (M) EX) It will take15 min to reach 300 W. So, it needs to 

start at temp=350 deg when 650 deg maximum. 
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11 Set the RF sputtering gun power supplies to 300 W (M) 

12 Turn on the “RF” output (M) 

13 Check and make sure the plasma ignites (M) 

14 Check and make sure the sample is still on the sample holder (M) 

15 Open the shutter (C) after ensuring the stage height is correct. 

16 Start your timer quickly (M) 

17 Mid-way through the deposition record the load and tune values of the 

automatic matching network (M) 

18 When your timer goes off, close the shutter (C) 

19 Turn off the “RF” output (M) 

20 Set the heater ramp rate (if ramp up and ramp down rates are different) (M) 

21 Set the desired temperature to 25 ºC 

22 Wait until RF output power reaches 0 W 

23 Turn off the gases 

a. Close the argon and oxygen valves (M) 

b. Turn off the argon and oxygen flow at the mass flow controller (C) 

c. Close the argon and oxygen cylinders (M) 

d. Turn off “Power” (M) 

24 Turn off the power supplies (M) 

25 Turn off the automatic matching network controllers (M) 

26 Turn off secondary water pump (M) 

27 Open the gate valve between the chamber and the cryopump, turn off relay 6 

(C) 
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28 Below 200 C, turn off rotation (M) 

29 Turn off substrate heater power supply and controller (M) 

B.2.3 Sample unloading 

1 Make sure rotation is off (M) 

2 Lower substrate heater assembly (M) 

3 Rough out load-lock to < 50 mTorr (M) 

4 Open gate valve between load-lock and main chamber  (M) 

5 Slide transfer arm into chamber (M) 

6 Adjust heater height to match transfer arm (M) 

7 Rotate in lock direction to attach sample holder to transfer arm (M) 

8 Lower heater (M) 

9 Move transfer arm back into load-lock (M) 

10 Close gate valve between load-lock and chamber (M) 

11 Open door to load-lock (M) 

12 Flow nitrogen to vent load-lock (C) 

13 Take out sample holder (M) 

14 Remove sample (M) 

15 Replace sample holder (M) 

16 Turn off nitrogen (M) 

17 Close door to load-lock (M) 

18 Rough out load lock to 50 mTorr (M) 
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Appendix C 

 

MATLAB Code  
 

 

C.1 Acoustic Wave Transmission Line Model 

%% Resonator Design 

******************************************************* 
% Instructions 
% Set freq_sweep 
clear 
clc 
close all 
freq_sweep = linspace(100e6, 5e9, 3201); 
material_data 

  
%% Plot Options 

*********************************************************** 
x_label = 'Frequency (GHz)'; 
freq_sweep_plot = freq_sweep/1e9; 

  
%% REFLECTIVITY OF DIFFERENT BRAGG REFLECTORS 

***************************** 

  
N = input('Choose the number of repeated pairs of low/high refractive 

index material : '); 

  
%v Bragg Reflector on Sapphire Substrate (Sapphire -> Pt -> SiO2 -> (Pt 

-> SiO2) x (N number of pairs - 1)) 
% Z_S = AZ_S; % Sapphire substrate 
Z_S = AZ_air; % Air substrate 
% Z_S = AZ_S.*(AZ_air + AZ_S.*tanh(gamma_S.*t_S))./(AZ_S + 

AZ_air.*tanh(gamma_S.*t_S)); 

  
Z_Pt = AZ_Pt.*(Z_S + AZ_Pt.*tanh(gamma_Pt.*t_Pt(1)))./(AZ_Pt + 

Z_S.*tanh(gamma_Pt.*t_Pt(1))); 
Z_SiO2 = AZ_SiO2.*(Z_Pt + 

AZ_SiO2.*tanh(gamma_SiO2.*t_SiO2(1)))./(AZ_SiO2 + 

Z_Pt.*tanh(gamma_SiO2.*t_SiO2(1))); 

  
for i = 1:N-1 
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    Z_Pt = AZ_Pt.*(Z_SiO2 + AZ_Pt.*tanh(gamma_Pt.*t_Pt(i+1)))./(AZ_Pt + 

Z_SiO2.*tanh(gamma_Pt.*t_Pt(i+1))); 
    Z_SiO2 = AZ_SiO2.*(Z_Pt + 

AZ_SiO2.*tanh(gamma_SiO2.*t_SiO2(i+1)))./(AZ_SiO2 + 

Z_Pt.*tanh(gamma_SiO2.*t_SiO2(i+1))); 
end 
Z_reflector = Z_SiO2; 

  
reflectivity = abs((Z_reflector - AZ_BTO)./(Z_reflector + AZ_BTO)); 
transmittivity = 1 - reflectivity; 

  
figure(1); 
[haxes, h1, h2] = plotyy(freq_sweep_plot, reflectivity*100, 

freq_sweep_plot, 10*log10(transmittivity)); 
title(strcat([num2str(N), ' pair Bragg Reflector Reflectivity and 

Transmittivity vs Frequency for BTO'])); 
xlabel('Frequency (GHz)'); 
set(get(haxes(1),'Ylabel'),'String','Reflectivity (%)'); 
set(get(haxes(2),'Ylabel'),'String','Transmittivity (%)'); 

  
[max_reflectivity, max_index] = max(reflectivity); 

  
disp(strcat(['Max reflectivity at ', 

num2str(freq_sweep(max_index)/1e9), ' GHz with a value of ', 

num2str(max_reflectivity)], ' with ', num2str(N), ' pairs')); 

  
%% Acoustic Wave Transmission Line Model 

********************************** 

  
n = 1; % Number of FBARs 
L_s = 0.01e-9; % [Henry] wirebond inductance 

  
phi_BTO = -1i.*gamma_BTO.*t_BTO/2; 

  
% Zl is defined as a load (air) seen through a transmission line 

(Platinum) of length t_top_Pt and acoustic impedance of AZ_Pt 
% Top electrodes Zl: Air --> Pt 

  
% Platinum Top Electrode 
Zl = AZ_Pt.*(AZ_air + AZ_Pt.*tanh(gamma_Pt.*t_top_Pt))./(AZ_Pt + 

AZ_air.*tanh(gamma_Pt.*t_top_Pt)); 

  
% Aluminum Top Electrode 
% Zl = AZ_Al.*(AZ_air + AZ_Al.*tanh(gamma_Al.*t_top_Al))./(AZ_Al + 

AZ_air.*tanh(gamma_Al.*t_top_Al)); 

  
% Aluminum Compensation Layer On Top of Platinum Top Electrode 
% Z_comp = AZ_Al.*(AZ_air + AZ_Al.*tanh(gamma_Al.*t_comp_Al))./(AZ_Al + 

AZ_air.*tanh(gamma_Al.*t_comp_Al)); 
% Zl = AZ_Pt.*(Z_comp + AZ_Pt.*tanh(gamma_Pt.*t_top_Pt))./(AZ_Pt + 

Z_comp.*tanh(gamma_Pt.*t_top_Pt)); 

  
% % Gold Compensation Layer On Top of Platinum Top Electrode 
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% Z_comp = AZ_Au.*(AZ_air + AZ_Au.*tanh(gamma_Au.*t_comp1_Au))./(AZ_Au 

+ AZ_air.*tanh(gamma_Au.*t_comp1_Au)); 
% Zl = AZ_Pt.*(Z_comp + AZ_Pt.*tanh(gamma_Pt.*t_top_Pt))./(AZ_Pt + 

Z_comp.*tanh(gamma_Pt.*t_top_Pt)); 

  
% % Bragg Reflector Top Electrode (Air -> Pt -> SiO2 -> (Pt -> SiO2) x 

(N number of pairs - 1) - SiO2)  
% % Example: If N = 4, then the stack is Air -> Pt -> SiO2 -> Pt 
% Zl = Z_Pt; 

  
% Zr is defined as a load (Sapphire Substrate) seen through a Bragg 

Reflector and a transmission line (Platinum) of length t_bot_Pt and 

acoustice impedance of AZ_Pt 
% Bottom electrodes Zr: Sapphire --> Pt 

  
% % SMR BOTTOM 
% Zr = AZ_Pt.*(Z_reflector+ AZ_Pt.*tanh(gamma_Pt.*t_bot_Pt))./(AZ_Pt + 

Z_reflector.*tanh(gamma_Pt.*t_bot_Pt));  
% FBAR BOTTOM 
Zr = AZ_Pt.*(AZ_air + AZ_Pt.*tanh(gamma_Pt.*t_bot_Pt))./(AZ_Pt + 

AZ_air.*tanh(gamma_Pt.*t_bot_Pt)); 
% % FBAR BOTTOM WITH SIO2 
% Z_SiO2 = AZ_SiO2.*(AZ_air + 

AZ_SiO2.*tanh(gamma_SiO2.*t_bot_SiO2))./(AZ_SiO2 + 

AZ_air.*tanh(gamma_SiO2.*t_bot_SiO2)); 
% Z_TiO2 = AZ_TiO2.*(AZ_SiO2 + 

AZ_TiO2.*tanh(gamma_TiO2.*t_TiO2))./(AZ_TiO2 + 

AZ_SiO2.*tanh(gamma_TiO2.*t_TiO2)); 
% Zin_1 = Z_SiO2; 
% Zr = AZ_Pt.*(Zin_1 + AZ_Pt.*tanh(gamma_Pt.*t_bot_Pt))./(AZ_Pt + 

Zin_1.*tanh(gamma_Pt.*t_bot_Pt)); 
% Zin_2 = Zr; 
% % FBAR BOTTOM WITH Silicon-on-insulator 
% Z_Si = AZ_Si.*(AZ_air + AZ_Si.*tanh(gamma_Si.*t_Si_SOI))./(AZ_Si + 

AZ_air.*tanh(gamma_Si.*t_Si_SOI)); 
% Z_SiO2 = AZ_SiO2.*(Z_Si + 

AZ_SiO2.*tanh(gamma_SiO2.*t_bot_SiO2))./(AZ_SiO2 + 

Z_Si.*tanh(gamma_SiO2.*t_bot_SiO2)); 
% Zr = AZ_Pt.*(Z_SiO2 + AZ_Pt.*tanh(gamma_Pt.*t_bot_Pt))./(AZ_Pt + 

Z_SiO2.*tanh(gamma_Pt.*t_bot_Pt)); 
% % FBAR BOTTOM WITH Silicon-on-insulator and residual SiO2 
% t_residual_SiO2 = 0.5e-6; 
% Z_residual_SiO2 = AZ_SiO2.*(AZ_air + 

AZ_SiO2.*tanh(gamma_SiO2.*t_residual_SiO2))./(AZ_SiO2 + 

AZ_air.*tanh(gamma_SiO2.*t_residual_SiO2)); 
% Z_Si = AZ_Si.*(Z_residual_SiO2 + 

AZ_Si.*tanh(gamma_Si.*t_Si_SOI))./(AZ_Si + 

Z_residual_SiO2.*tanh(gamma_Si.*t_Si_SOI)); 
% Z_SiO2 = AZ_SiO2.*(Z_Si + 

AZ_SiO2.*tanh(gamma_SiO2.*t_bot_SiO2))./(AZ_SiO2 + 

Z_Si.*tanh(gamma_SiO2.*t_bot_SiO2)); 
% Zr = AZ_Pt.*(Z_SiO2 + AZ_Pt.*tanh(gamma_Pt.*t_bot_Pt))./(AZ_Pt + 

Z_SiO2.*tanh(gamma_Pt.*t_bot_Pt)); 

  

  
% Zin of the device 
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Area = 10e-6*10e-6;  
% % STO 
% C_E = E0*EC_STO*Area/t_STO; 
% BTO 
C_E_on = E0*EC_BTO_on*Area/t_BTO; 
C_E_off = E0*EC_BTO_off*Area/t_BTO; 

  
% STO 
% zl = Zl./AZ_STO; 
% zr = Zr./AZ_STO; 
% BTO 
zl = Zl./AZ_BTO; 
zr = Zr./AZ_BTO; 

  
K2= 0.075; 

  
% STO 
% Zin = 1./j./2./pi./freq_sweep./C_E.*(1 - K2.*tan(phi_STO)./phi_STO.* 

((zl+zr).*cos(phi_STO).*cos(phi_STO) + 

j.*sin(2.*phi_STO))./((zl+zr).*cos(2.*phi_STO) + 

j.*(zl.*zr+1).*sin(2.*phi_STO))); 
% BST 
%Zin = 1./j./2./pi./freq_sweep./C_E.*(1 - K2.*tan(phi_BST)./phi_BST.* 

((zl+zr).*cos(phi_BST).*cos(phi_BST) + 

j.*sin(2.*phi_BST))./((zl+zr).*cos(2.*phi_BST) + 

j.*(zl.*zr+1).*sin(2.*phi_BST))); 
% BTO 
Zin = 1./j./2./pi./freq_sweep./(C_E_on*(1)).*(1 - 

K2.*tan(phi_BTO)./phi_BTO.* ((zl+zr).*cos(phi_BTO).*cos(phi_BTO) + 

j.*sin(2.*phi_BTO))./((zl+zr).*cos(2.*phi_BTO) + 

j.*(zl.*zr+1).*sin(2.*phi_BTO))); 

  
% % FBAR BANK 
% % Capacitance of off devices 
% Zin = Zin + (1./(1i*2*pi*freq_sweep.*C_E_off/(n-1))); 

  
% Contribution of metallization 
Z_metallization = 1.9; 

  
Zin = Zin + Z_metallization; 

  
% Contribution of parasitic inductance 
Z_inductance = 1i*2*pi.*freq_sweep*L_s; 
Zin = Zin + Z_inductance; 

  
Capacitance = -1./imag(Zin)./2./pi./freq_sweep; 

  
Losstangent = -1.*real(Zin)./imag(Zin); 
Zin_modulus = abs(Zin); 

  
BE_impedance = 1; 
if (BE_impedance == 1) 
    figure(1); 
    gamma = (Zr-AZ_BTO)./(Zr+AZ_BTO); 
    s_vec(1, 1, :) = gamma; 
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    data = rfdata.data('Z0', 50, 'S_Parameters', ... 
        s_vec, 'Freq', freq_sweep_plot); 
    smith(data, 's11'); 
    plot(freq_sweep_plot, abs(gamma)); 
end 

  
quarter_wavelength = 0; 
if (quarter_wavelength == 1) 
    figure(2); 
    subplot(4, 1, 1); 
    plot(freq_sweep_plot, (wavelength_Pt./4).*10^9); 
    title('Platinum Thickness for Bragg Reflector vs Resonant 

Frequency'); 
    xlabel(x_label); 
    ylabel('Platinum Thickness (nm)'); 
    grid on; 

  
    %  subplot(4, 1, 1); 
    %  plot(freq_sweep_plot, (wavelength_W./4).*10^9); 
    %  title('Tungsten Thickness for Bragg Reflector vs Resonant 

Frequency'); 
    %  xlabel(x_label); 
    %  ylabel('Tungsten Thickness (nm)'); 
    %  grid on; 

  
    % subplot(3, 1, 1); 
    % plot(freq_sweep_plot, (wavelength_ALN./4).*10^9); 
    % title('Aluminum Nitride Thickness for Bragg Reflector vs Resonant 

Frequency'); 
    % xlabel(x_label); 
    % ylabel('Aluminum Nitride Thickness (nm)'); 
    % grid on; 

  
    subplot(4, 1, 2); 
    plot(freq_sweep_plot, (wavelength_SiO2./4).*10^9); 
    title('SiO_2 Thickness for Bragg Reflector vs Resonant Frequency'); 
    xlabel(x_label); 
    ylabel('SiO_2 Thickness (nm)'); 
    grid on; 

  
    subplot(4, 1, 3); 
    plot(freq_sweep_plot, (wavelength_S./4).*10^9); 
    title('Sapphire Thickness for Bragg Reflector vs Resonant 

Frequency'); 
    xlabel(x_label); 
    ylabel('Sapphire Thickness (nm)'); 
    grid on; 

  
    subplot(4, 1, 3); 
    plot(freq_sweep_plot, (wavelength_BTO./2).*10^9); 
    title('BTO for Bragg Reflector vs Resonant Frequency'); 
    xlabel(x_label); 
    ylabel('BTO (nm)'); 
    grid on; 
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    subplot(4, 1, 4); 
    plot(freq_sweep_plot, (wavelength_STO./2).*10^9); 
    title('STO for Bragg Reflector vs Resonant Frequency'); 
    xlabel(x_label); 
    ylabel('STO (nm)'); 
    grid on; 
end 

  
plot_1 = 1; 
if (plot_1 == 1) 
    figure(11); 
    subplot(3,1,1); 
    plot(freq_sweep_plot, Capacitance/1e-12); 
    title('STO FBAR Capacitance'); 
    xlabel(x_label); 
    ylabel('Capacitance (pF)'); 
    grid on; 
    % axis([1.06e9 1.14e9 -4e-12 4e-12]); 

  
    subplot(3,1,2); 
    plot(freq_sweep_plot, Losstangent); 
    title('STO FBAR Loss Tangent'); 
    xlabel(x_label); 
    ylabel('Loss Tangent'); 
    grid on; 

  
    subplot(3,1,3); 
    semilogy(freq_sweep_plot, Zin_modulus); 
    title('STO FBAR Zin Impedance'); 
    xlabel(x_label); 

  
    ylabel('|Zin| (Ohms)'); 
    grid on; 
end 

  
plot_2 = 0; 
if (plot_2 == 1) 
    figure(12); 
    plot(freq_sweep_plot, real(Zin), freq_sweep_plot, imag(Zin),'-'); 
    title('Real and Imaginary (-) Impedances vs. Frequency'); 
    xlabel(x_label); 
    ylabel('Real and Imaginary Impedance (Ohms)'); 
    grid on; 
end 

  
Z0 = 50; 
S11 = (Zin - Z0)./(Zin + Z0); 
S11_mag = abs(S11); 
% S11_phase = atan(imag(S11)./real(S11)); 
S11_phase = angle(S11); 

     
plot_3 = 1; 
if (plot_3 == 1) 
    figure(13); 
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    subplot(2,1,1); 
    plot(freq_sweep_plot, 20*log10(S11_mag)); 
    title('STO FBAR S11 Magnitude in dB'); 
    xlabel(x_label); 
    ylabel('|S11| (dB)'); 
    grid on; 

  
    subplot(2,1,2); 
    plot(freq_sweep_plot, S11_phase*180/pi); 
    title('STO FBAR S11 Phase'); 
    xlabel(x_label); 
    ylabel('Phase(S11)'); 
    grid on; 
end 

  
plot_4 = 1; 
if (plot_4 == 1) 
    figure(14); 
    s_vec(1, 1, :) = S11; 

     
    data = rfdata.data('Z0', 50, 'S_Parameters', ... 
    s_vec, 'Freq', freq_sweep); 
    smith(data, 's11'); 
%     smithchart(S11); 
    title('STO FBAR S11'); 

  
    [Zs,Is]=min(Zin_modulus) 
    fs = freq_sweep(Is) 
    [Zp,Ip]=max(Zin_modulus) 
    fp = freq_sweep(Ip) 
    Kt_eff = pi/2*fs/fp*tan(pi/2*(fp-fs)/fp) 

  
    Zin_angle = angle(Zin); 
    group_delay = abs(gradient(Zin_angle)./gradient(freq_sweep)); 
    Q = freq_sweep./2.*group_delay; 
    Q2 = -

2.*pi.*freq_sweep.*gradient(unwrap(S11_phase))./gradient(2.*pi.*freq_sw

eep).*S11_mag./(1-S11_mag.*S11_mag); 
    Qs = Q(Is) 
    Qp = -Q(Ip) 
end 

  
plot_5 = 1; 
if (plot_5 == 1) 
    figure(20); 
    subplot(2, 1, 1); 
    plot(freq_sweep_plot, Q);%, freq_sweep, Q2); 
    title('Q & Q vs. Frequency'); 
    xlabel(x_label); 
    ylabel('Q'); 
    grid on; 
end 

  
bwr = (fp-fs)/fp 
C = real(C_E_on) 



163 

 

  
Co = C*2/(2+bwr) 
Ca = C*2*bwr 
La = 1/(2*pi*fs)^2/Ca 
Ra = 2*pi*fs*La/Qs 

  
Zin_fit = 1./(j.*2.*pi.*freq_sweep.*Co + 1./(Ra + 

j.*2.*pi.*freq_sweep.*La - j./2./pi./freq_sweep./Ca)); 
% figure(15); 
% subplot(2,1,1); 
% plot(freq_sweep_plot, real(Zin), freq_sweep_plot, real(Zin_fit)); 
% subplot(2,1,2); 
% plot(freq_sweep_plot, imag(Zin), freq_sweep_plot, imag(Zin_fit)); 
%  
% figure(16); 
% semilogy(freq_sweep_plot, Zin_modulus, freq_sweep_plot, 

abs(Zin_fit)); 
% grid on; 
% [Zs_fit,Is_fit]=min(abs(Zin_fit)) 
% fs_fit = freq_sweep(Is_fit) 
% [Zp_fit,Ip_fit]=max(abs(Zin_fit)) 
% fp_fit = freq_sweep(Ip_fit) 

  
% load BSTFBARZin.txt; 
% Zin_measure = BSTFBARZin(:,2)+j.*BSTFBARZin(:,3); 
% figure(7); 
% semilogy(f,abs(Zin+2),f,abs(Zin_measure)); 
%  
% Zin_angle_measure = angle(Zin_measure); 
% group_delay_measure = gradient(abs(Zin_angle_measure'))./gradient(f); 
% Q_measure = f./2.*group_delay_measure; 
% figure(8); 
% plot(f,Q_measure,f,Q); 

  
%%% Plot of Modeled vs. Measured 

  
comparison = 1; 
if (comparison == 1) 
    measurement_file = ''; 
    Measured_Device = read(rfdata.data, measurement_file); 

  
    Measured_Device_S11 = Measured_Device.S_Parameters(:); 
    Measured_Device_Zin = 50*(1+Measured_Device_S11)./(1-

Measured_Device_S11); 
    Zin_mag = abs(Measured_Device_Zin); 

  
    figure(13); 
    subplot(2, 1, 1); 
    hold on; 
    plot(Measured_Device.Freq()/1e9, 

20*log10(abs(Measured_Device_S11)), 'color', [1 0 0]); 
    hold off; 

     
    figure(14) 
    hold on; 
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    s_vec2(1, 1, :) = Measured_Device_S11; 

     
    data = rfdata.data('Z0', 50, 'S_Parameters', ... 
    s_vec2, 'Freq', Measured_Device.Freq()); 
    hsm = smith(data, 's11'); 
    set(hsm, 'Color', [1 0 0]); 
    hold off; 

     
    Zin_angle = angle(Measured_Device_Zin); 
    group_delay = 

abs(gradient(Zin_angle)./gradient(Measured_Device.Freq())); 
    Q = Measured_Device.Freq()./2.*group_delay; 
    figure(20); 
    subplot(2, 1, 2); 
    hold on; 
    plot(Measured_Device.Freq()/1e9, Q, 'Color', [1 0 0]); 
    length(Measured_Device.Freq()/1e9) 
    length(Q) 
    hold off; 
end 
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