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Abstract

Self-assembly of active particles is believed to play an important role in enabling tomorrow’s

generation of smart materials. As a system is driven out of thermodynamic equilibrium,

existing thermodynamic theory fails to predict the system behavior; however, it often ex-

hibits rich and novel behaviors that are not found otherwise and could be leveraged for

designing smart materials. In this thesis, by using computer simulation, we investigate

the self-assembly behaviors of active particles driven via two different mechanisms: self-

propulsion and -rotation, and show that the particle activity, in combination with other

design parameters, gives rise to a great diversity of novel structures and dynamics.

In particular, we implement the first 3D model of self-propelled particles interacting

via a soft Morse potential and demonstrate how the self-propulsion together with the pa-

rameters of interaction potential and thermal noise influence the particles to form a variety

of 3D swarming structures. We also report novel behaviors that deviate from equilibrium

self-assembly, including swarm coexistence, sensitivity to initial conditions and structure

switching. The results, in addition to elucidate general swarming behavior, could motivate

further studies in self-assembly of self-propelled, interacting colloids in 3D.

We then perform the first study of self-rotated shaped particles that interacting solely

via excluded volume. Each particle is driven by a constant torque in either a clockwise or

counter-clockwise direction. In spite of the model simplicity, we observe a wealth of inter-

esting behavior that is otherwise not possible with self-propelled particles or in equilibrium

self-assembly. We report phase separation, collective and heterogeneous dynamics, rotating

crystals and complex phase behavior. The rich behavior resulted from a minimal model

xx



opens up many possibilities for further studies of practical interest.

Lastly, we carry out preliminary, exploratory study of systems of self-rotated particles in

confinement. Early experimental results from experimental collaborators confirm some of

the findings for bulk systems. In addition, our initial simulations reveal some remarkable,

unique dynamics for systems with flexible boundaries and highlights exciting possibilities

worth pursuing further.
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Chapter 1

Introduction

1.1 Motivation

One day, hopefully not far in the future, your shirts will turn water-resistant under rains,

your house paint color could be changed instantly according to the weather (or your!) mood

and your tennis rackets could be conveniently compressed to fit to your palm. All of these

are examples of tomorrow’s generation of smart materials that will fundamentally transform

human quality of lives but are, unfortunately, still mostly imaginative. Most of current

materials are static, which means once they are formed, their properties remain unchanged

during their entire lifecycle. Some primitive smart materials include shape-memory alloys

that can reversibly deform themselves under temperature or stress changes and piezoelectric

materials that can bend, expand or contract under an applied voltage. But the materials

are still far from what we aspire to. However, the quest for designing and realizing such

futuristic materials has begun and self-assembly is believed to play an important role in

achieving the goal.

Self-assembly is a process where individual, discrete building blocks spontaneously

form an ordered arrangement without human intervention. It naturally happens everywhere

and is responsible for countless phenomena from formations of galaxy to living cells. In

recent years, self-assembly has gained significant attention in the materials science and

related communities as a promising bottom-up route for creating materials at the mesoscale.

Particles in nano- to micro-meter sizes are imparted with the right attributes that enable
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them to self-assemble in a proper environment, e.g. water, into desired structures. Design-

ing building blocks with the right attributes has been an important research endeavor that

encompasses anything from sizes, shapes to interactions. Recently, learning design lessons

from biological systems has gained significant importance in implanting smart properties

to materials. After all, Nature is abundant of adaptive, smart biological systems, including

formation of virus capsids, bacteria swarming and bird flocks; and amazingly many of the

system-level behaviors come from some simple rules among constituent individuals. For an

example, researchers have shown that [24] the beautiful and constant-changing bird flocks

that one has seen can be reproduced by computer simulations of self-propelled particles

(particles that move by themselves at a constant velocity) interacting via only three simple

rules: 1, a particles comes to its neighbors if it is too far away, but 2, does not come too

close to a neighbor to avoid potential collisions, and 3, move at the neighbors’ speed if it is

at a right distance. Examples like this lead to important questions: What can we learn from

the natural systems, and how are we going to implement them to realize the desired smart

materials?

One inherent property of the aforementioned biological systems, if not of all biological

systems, is that they all operate far from equilibrium: There is a constant energy exchange

between the systems and their environment, and stopping this energy exchange will cause the

system to disintegrate. This energy exchange often enables motion of individual units (e.g.

swimming or flying) and is the key to the emergence of interesting collective behavior that

leads to novel properties such as self-adaptability and self-reconfigurability. Because of this,

self-assembly of far-from-equilibrium systems has recently become a growing and important

research direction in understanding the principles behind enabling new generations of smart

materials. Recent experimental advancement in not only synthesis of building blocks of

various shapes and sizes but also in imparting particles active properties such as the ability

to self-propel could not come at better time. The new experimental capabilities allow one

to start asking more comprehensive questions of 1) how a system of active building blocks
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with these various attributes behaves and 2) what one can learn from there to potentially

apply to designing smart materials.

In this thesis, we investigate far-from-equilibirum self-assembly behavior of particles

driven by two different mechanisms: self-propulsion and self-rotation. Self-propulsion

is a popular moving mechanism in biological systems and has been shown to give rise

to interesting collective behavior in 2D systems of interacting point particles. However,

equivalent 3D systems, prior to this thesis, had not been comprehensively investigated.

Parts of this thesis study in detail how parameters such as interaction potentials, thermal

noise and self-propelled speed influence the behavior of 3D systems. In addition to further

elucidate general swarming behavior, which has a wide range of applications on its own,

the results could motivate future studies for systems of interacting, self-propelled colloids.

While self-propulsion as a method of inputing energy to a system has been given major

attention, self-rotation has not been systematically studied. However, driving a system

through self-rotation is interesting because 1) it does not directly alter translational motion

and 2) has a circular symmetry in 2D that potentially allow adoption of more complex

local structures. Parts of this thesis investigate how self-rotation influences the behavior

of systems of shaped hard particles. In particular, how the energy inputed to the rotational

degree of freedom re-distributes and how that affects the dynamics and structures of the

system. The results could potentially provide us an alternative mechanism for driving and

designing, in the right combination with other design parameters, novel active systems.

1.2 Thesis overview

The thesis is organized as follows. Chapter 1 discusses about the motivation for the work

and organization of the thesis. Chapter 2 summarizes the relevant background work for

self-assembly and active matter. In Chapter 3, the simulation models and methods and

software packages utilized in this thesis are discussed in detail.
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In Chapter 4, we investigate the swarming behavior of self-propelled particles. We

find a variety of swarms of different overall shape assemble spontaneously and that for

certain Morse potential parameters at most two competing structures are observed. We

report a rich “phase diagram” of athermal swarm structures observed across a broad range of

interaction parameters. Unlike the structures formed in equilibrium self-assembly, we find

that the probability of forming a self-propelled swarm can be biased by the choice of initial

conditions. We investigate how thermal noise influences swarm formation and demonstrate

ways it can be exploited to reconfigure one swarm into another. Our findings validate and

extend previous observations of self-propelled Morse swarms and highlight open questions

for predictive theories of far-from-equilibirum self-assembly. The results presented in this

chapter are published in Ref [21].

In Chapter 5, we study collective phenomena with rotationally driven spinners of con-

cave shape. Each spinner experiences a constant internal torque in either a clockwise or

counterclockwise direction. Although the spinners are modeled as hard, otherwise non-

interacting rigid bodies, their active motion induces an effective interaction that favors

rotation in the same direction.With increasing density and activity, phase separation occurs

via spinodal decomposition, as well as self-organization into rotating crystals. We observe

the emergence of cooperative, super-diffusive motion along interfaces, which can transport

inactive test particles. Our results demonstrate novel phase behavior of actively rotated

particles that is not possible with linear propulsion or in non-driven, equilibrium systems of

identical hard particles. The results presented in this chapter are being published in Ref [23].

Chapter 6 presents and discusses about our preliminary results of systems of active spin-

ners confined in a boundary. The research have been done in collaboration with the group of

Prof. Kyle Bishop at Pennsylvania State University and is divided into two parts: systems

with fixed and flexible boundaries. We confirm experimentally the demixing reported in

Chapter 5 for small systems with fixed boundaries and report new, richer phenomena for

systems with flexible boundaries. In particular, we find that by driving the boundary we can
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influence both the interior dynamics and morphology. Chapter 7 summarizes the results and

the contributions, and discusses the outlook of the thesis. Appendix A includes/decribes the

codes used in, and videos for, Chapter 4. Appendix B includes/describes the codes used in,

and supplements videos and figures for, Chapter 5.

5



Chapter 2

Background

2.1 Self-assembly

2.1.1 Definition and importance

Nature is a giant self-assembling plant. From galaxies to living cells, from molecular

crystals to virus capsids, all involve the process of pre-existing components spontaneously

self-organizing into ordered arrangements [1, 25]. Self-assembly is so ubiquitous that it

is astonishingly hard to come up with an examples of things that are not naturally formed

from self-assembling processes. The formations of vapor from boiling water and of glass

from rapid melt-quenching are perhaps some such examples. However, given the term

self-assembly is used broadly and, sometimes, loosely in a wide range of disciplines, care-

ful distinctions need to be made here. The self-assembly definition that we refer to here

involves important key words in “pre-existing components”,“spontaneous self-organizing”

and “ordered”. Accordingly, a general self-assembly process involves discrete building

blocks and an environment in which the building blocks self-organize autonomously into

ordered arrangements without human intervention.

Self-assembly can be broadly classified into two types: static and dynamical self-

assembly [25, 26]. These can sometimes be referred to as equilibrium and far-from-

equilibirum self-assembly, respectively. Examples of static self-assembly include salt

crystals, superlattice nano structures [5], and binary nano crystals [27, 28, 29]. Most of

the research so far focuses on static self-assembly. Dynamical self-assembly is not yet com-
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mon in technology but is ubiquitous in nature; school of fishes, swarm of bacteria or even

biological cells all arise through processes of dynamical self-assembly. The key distinction

between the two types is the energy flux through the system. For static self-assembly, there

is no energy flux, or no energy exchange between the system and its environment, although

there may be energy exchange during the evolution of system to an equilibrium state. The

system, governed by the principle of free energy minimization, evolves to and resides in

free energy minima in its equilibrium states. These minima can be either local or global

but they both fix the system’s structure and properties unless some external perturbation,

e.g. heating, is applied to drive the system out of the minima. Dynamical self-assembly,

on the other hand, requires a constant flux of energy to form and maintain its steady states.

A stop of this energy flux would disassemble the self-assembly: cells die if there is no

energy passing through. This energy flux also provides means for the system to explore a

much broader phase space outside of (free) energy minima that often offers novel structures

and properties such as self-adaptability, self-healing and self-replicating. Predicting what

the system might evolve into, however, remains a great challenge because the theory of

dynamical self-assembly is still relatively unknown. There is not (yet) a variational principle,

such as the free energy minimization for static self-assembly, that can be used to explain

the system behavior. While the theory is still in the making, computer simulation could be

utilized as a powerful tool to guide experiments and design novel systems.

Self-assembly is centrally important to designing materials. Much of traditional ma-

terials involve the study of self-assembly of fundamental building blocks such as atoms

and molecules into thermodynamic phases. Recent scientific breakthroughs have given an

unprecedented access to a plethora of building blocks at larger, mesoscopic length scales

(10-1000nm) that vary widely in their anisotropic attributes such as shape, surface patterns

[1, 30]. These supra-molecules (Fig. 2.1) can be used for self-assembling into novel struc-

tures, giving rise to physical properties that are unattainable with the traditional building

blocks. With these new “atoms” and “molecules” in hand, self-assembly plays an even
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Figure 2.1 Anisotropic building blocks for self-assembly [1]

more important role in designing tomorrow’s materials. In addition, self-assembly, as a

bottom-up approach, offers potentially a lower-cost route to new materials, compared to

other top-down approaches such as lithography, because of its scalability. But to realize

the promises of self-assembly, one needs to answer challenging questions such as “What

do existing building blocks self-assemble into?” and “How do we design building blocks

that self-assemble into a target structure? ”. In the following sections, we will discuss the

current approaches in addressing these important questions.
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2.1.2 Self-assembly approaches

Self-assembly is a science as well as an art. Obviously, it obeys scientific principles such as

minimization of free energy (for static self-assembly), the laws of conservation and Newton’s

laws. For example, a mixture of rods will undergo a transition from liquid to nematic phases

to minimize its potential energy while maximizing its orientational entropy, consequently

minimizing its free energy. Similarly, cubic colloids are shown to self-assemble into cubic

crystals under the effect of entropic depletion interaction [2]. Although the results of these

examples may seem obvious, predicting a priori what structure a system will self-assemble

into in general is not possible. This is especially true when the building blocks are highly

complex such as the nano octapod [5]. The situation is further complicated by the fact

that, even if we know what the terminal structure should be, there is no guarantee that the

system will actually arrive there because of potential kinetic traps. Kinetic traps happen

when the system falls into a metastable state that the system, by its own fluctuations, will

not be able to escape. These can happen in the forms of jamming, gelation or polymorphism.

That is just for self-assembly in an equilibrium system. Once one ventures into the realm

of far-from-equilibirum self-assembly, things become even less certain and predictable.

Not only because the governing theory for a system in this regime is still unknown but

also the sheer size of the phase space poses a great challenge to brute force approaches.

These challenges call for holistic approaches that have scientific intuition blended with

clever designs of system to navigate a system to more promising lands. Such designs are

often inspired by learning from other fields such as biology or sometimes just from one’s

own intuitive imagination. In the following, we will discuss two common approaches in

self-assembly.

The first approach, probably the most common one, is forward engineering. In this ap-

proach, the goal is to design building blocks so that they assemble into some novel structure,

which may not be known before hand. As pointed out by Glotzer and Solomon [1], the

broad anisotropic space of building blocks offer enormous opportunities for imparting the
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(d) (e)

Figure 2.2 Self-assembly of shaped particles. (a) cubic colloids self-assemble into cubic crystals
[2]. (b) Rhombic dodecahedra self-assemle into triangular and hexagonal platelike morphologies
[3]. (c) Corner-truncated octahedra form Octahedral supercrystals. (d) Self-assembly of lock and
key colloids under depletion interaction [4]. (e) Self-assembly of octapod (inset) nano particles into
super lattice crystals [5].

right attributes for building blocks to self-assemble into novel structures. However, it also

presents huge challenges in selecting the right attributes for the purpose. Here we highlight

key design parameters that have achieved considerable success and/or are promising for

further advancement.

Shape

Shape is a fundamental attribute of any building block. It is basic, however, it can be a pow-

erful tool in engineering novel self-assembly. The most obvious example is probably how

rods behave differently from spheres. In 2D, the elongated shape of rods force the particles

to go through a liquid-nematic transition, while spheres will form a hexagonal crystal at
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high densities. Recent experiments [3] showed the formation of super-crystals from the

self-assembly of nano-crystals of various shapes, including cube, rhombic dodecahedra and

octahedra. In addition, not just polyhedra but highly complex shapes such as an octapod [5],

a shape that encompasses the center and all the corner points of a cube, can hierarchically

self-assemble into super lattice nano-structures that are otherwise impossible. Furthermore,

Sacanna et al. utilized shape complementariness to demonstrate novel self-assembly of lock

and key colloids [4] (Fig. 2.2). In 2012, Damacesno, Engel and Glotzer demonstrated that

shapes can give rise to a remarkably rich set of complex packing structures [31]. Although

there are differences between self-assembly and packing, which often happens in a theoreti-

cal infinite pressure, the finding re-emphasizes the importance of shape in self-assembly and

suggests that even more complex structures can be accomplished by tuning shapes.

Interaction specificity

In addition to the usual interaction strength and ranges, interaction specificity has been

demonstrated as an important design parameter Fig. 2.3. Interaction specificity, or the

directionality of interaction, is common in nature: DNAs bind in complementary pairs and

virus capids self-assemble from selective bindings. Inspired by nature, researchers have

been successful in using the binding selectivity of DNA strands in guiding the self-assembly

to form nano crystals [32, 33] and chains [8]. In another direction, by simply adding

immiscible tethers of polymers to specific locations on the particle surfaces, Zhang et al.

[6] developed a framework that lead to a remarkable set of self-assembled structures. Some

of these structures resemble the phases resulting from block copolymer and liquid-crystal

phase-ordering. However, when the shapes are tuned in more exotic fashion, the interaction

specificity conspires with the shape anisotropy to give rise to new kinds of ordering, includ-

ing a hexagonally packed columnar phase. Follow up studies in this direction for nanorods

[34, 35], cubes [36, 37] and V-shaped particles [38] yields even richer phase behavior

that are not otherwise attainable. Finally, interaction specificity can also be achieved by
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Figure 2.3 Self-assembly of from building blocks with directional interactions. (a) Building blocks
with attached tethers [6]. (b) Building blocks with interaction patches [7]. (c) Hexagonally packed
columnar phase formed by 120 tethered nanodisks from two views. The disks are similar to particle
b in (a) but with six tethers attached to it [6]. (d) Rings formed via self-assembly of patchy sphere
h in (b) (left) and patchy particle i in (b) (right) [7]. (e) Self-assembly of polymer-tethered gold
nanorods into different structures in selective solvents: a- rings, b-chains, c-bundles of nanorods,
d-nanospheres, e-bundles of nano chains [8].
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having attractive patches on specific sites of a building block, which is called a patchy

particle [7]. Zhang and Glotzer demonstrated that these patchy particles self-assemble into

a variety of structures that include rings, chains, sheets, and icosahedra. Interestingly, some

of these complex structures such as rings, chains are predictable from the pre-programmed

directional interactions. The ability to predict a priori the self-assembling structure from

the building block attributes demonstrated here suggests that, perhaps with some inverse

engineering to inform what kinds of interaction the building block should possess, one could

eventually design buildings blocks that self-assemble into a desired structure.

The second approach of self-assembly is inverse engineering. As the name suggests,

this approach involves breaking down a given target structure into design rules that are

subsequently encoded into its assembling building blocks. The goal is to find the right set of

rules that will enable the building blocks to self-assemble into the target structure. For an

example, how does one design building blocks that will self-assemble into the ring structure

found in [7], which includes six spherical particles connecting to each other Fig. 2.3 b? One

way is to stick two patches on each sphere that are 60 degrees apart, as it was done in the

paper. In this method, one could also replace the patches by DNA complementary strands

for the specific binding. Another alternative is to design the building block as a V-shaped

structure that consists of 2 spheres making a 120 degree angle with the central one. The ends

of the V-shape can attract each other via attraction patches. All the aforementioned methods

involve clever combination of binding sites and particle shape to engineer target structure

but do not vary the interaction. One then may want to design interaction potential to achieve

the same purpose. Recently, researchers have employed successfully inverse optimization

techniques to find the optimal interaction potentials that stabilize target structures [39, 40].

In spite of initial promises, one possible limitation of this approach is that the optimal

interaction potentials may not be practical. Rather than optimizing a theoretical potential,

Hormoz et al. [41] proposed design principles that involve relative interaction strengths

of short-range colloidal potentials to maximize yields in self-assembly. The principles

13



have been demonstrated successfully with systems of small number of colloids. From the

above methods, we hypothesize that successful implementation of the inverse engineering

approach involves identifying the attributes that are essential to the self-assembly and then

imparting those attributes to the building blocks. There will often be more than just one

way of inverse engineering but the solution practicality will vary greatly with the design

parameters.

2.2 Active matter

2.2.1 Introduction

Most of us might have been in awe by “silky” coordinated movement of thousands of fishes

or a dexterous change of formation of a bird flock. Then, how one could not be fascinated

by a grand herd of hundreds of thousands of caribous migrating north in a surprisingly

ordered fashion? Beyond the natural appreciation, one may inevitably ask “how could such

a large number of animals coordinate movement so adeptly with presumably the awareness

of only few neighbors?” and “what drives the dynamics of the group and in what ways?”.

Answering these types of questions serves both as a motivation and a challenge to the field

of active matter. It is a field that studies systems of self-driven particles or active particles

that convert stored or ambient free energy into their own systematic movement [42]. These

particles are not limited to macroscopic units such as birds and fishes but can be on all

length scales, from nanometer (active nano particles) to micron (self-propelled colloids,

bacteria) to meters (animals). The self-driving force is what adds complex, novel behavior

to an active system and distinguishes it from other classes of driven systems such as sheared

fluids or directed assembly using external fields. The difference is that, in an active system,

energy input needs to be applied directly to the particles, as opposed to via a medium, and

the particle directions are not imposed by external fields.

Active matter [43, 44, 45] as a field can be regarded as a branch of condensed matter
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Figure 2.4 Examples of (active) biological self-assembly. (a) Vortex of fishes [9]. (b) ant circle
of death: Army ants blindly follow circular trails of pheromone excreted by them until they die of
exhaustion [10].(c) a swarm of bacteria [11].(d) Microtubule filaments driven by kinesin complexes,
or simply motor proteins, transform from randomly oriented to vortices and eventually asters as the
density of kinesin increases from left to right [12].

physics that focuses on far-from-equilibirum regimes. Scientists from diverse disciplines

such as physics, biology, engineering approach active matter at different angles and tech-

niques. However, all share some common goals. First, understanding the generic behaviors

of active matter across different length scales, living and not, has become an important

priority. The achievement of this goal will have far-reaching impacts, not only in explaining

the swarming phenomena but also potentially elucidate extraordinary properties inherent

to living matter such as adaptation and reproduction. Approaches to this goal have been a

combination of statistical mechanics theory, computer modeling and experiments. In spite

of encouraging findings so far, this goal still remains distant and particularly challenging

because of the problem complexity. Second, the application of what we learn from active

matter may ultimately lead to the realization of truly active, smart materials–ones that can,
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for example, dynamically change their properties on demand. To this end, extracting and

applying a minimal set of rules from biological system to materials can be a fruitful approach.

Alternatively, one could employ the self-assembly approaches discussed in the previous

section using computer simulation to design and predict behavior of active materials.

In the following section, we will briefly discuss the recent effort and progress of the field

of active matter.

2.2.2 Summary of the literature

The last two decades or so have witnessed significant progress toward understanding and

realizing active matter. Relying on minimal models and computer simulation, researchers

have uncovered a wealth of strange behavior of active systems that are not possible in a

typical system, including anomalous statistical fluctuation [46, 17], novel phase transitions

[13], emergent collective behavior, and pattern formation [47, 24]. Some of these interesting

properties have been recently verified and demonstrated experimentally, taking us one step

closer to realizing truly active materials. The field now is entering an exciting era where

the experimental techniques are ripe to test and take the vast body of theoretical findings to

the next step of practicality. In the following paragraphs, we will discuss briefly the recent

advancements in theory, model development and experiments.

Agent-based (microscopic) approach

We will start with a review of the agent-based (microscopic) models (Fig. 2.5) adopted first

in the field. In his pioneering work, Vicsek and co-workers [13] modeled the dynamics of

point particles, where each moves at a constant velocity and assumes the average direction

of its neighbors’ with an added angular noise. In spite of the simplicity, the model shows

a novel transition from disordered to ordered states, in which the particles move in the

same direction, as the noise decreases or number density increases. The long-range order
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Figure 2.5 Models of self-propelled particles. (a) Particles moving in the same direction in the
Vicsek model [13]. (b) Self-propelled rods interacting via excuded volume cluster into nematic
ordering [14]. (c) Self-propelled hardcore particles phase-separate into dense and gas phases [15]

is surprising because the 2D XY model [48], which shares many similarities, does not

exhibit any long-range order for non-zero noise. Later, Toner and Tu explained how this

happens due to the added active term using field theory [49]. The Viscek model lead to a

host of follow-up work [50, 51, 52], including the effort in elucidating the elusive nature

of the phase transition. In spite of the support for a continuous phase transition [13] and

that subtle change in the model, including how noise is introduced, could alter the nature

of the transition [53, 54], a currently more-widely-agreed-one theory is of discontinuous

transition [55, 56, 57, 58].

In an attempt to model biological swarming such as bird flocking, Couzin et al. models

particle interaction via three zones: attraction, orientation and repulsion, qualitatively similar

to that of real animals. The results show a remarkable resemblance of natural swarming

behavior and give first evidence of collective behavior in animal groups. Another alternative

in modeling the interaction between active particles is using a pair-wise potential, e.g. Morse

potential, as introduced first by Levine in 2000 [47]. Employing this method, researchers

have shown a wealth of structures and behavior that further elucidate how self-propelled

particles self-organize [47, 59, 60, 61, 62, 21]. Recently, by adding a hard core to the

self-propelled particles, mimicking colloidal particles, researchers discovered interesting

phenomena, including phase separation into dense-gas phases and crystalizing at critical
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density lower than that in corresponding non-active system [15, 63, 64]. In addition to

self-propelled point particles, a considerable effort has focused on modeling active rods

[14, 65, 66, 67]. In 2006, motivated by aggregation phenomena in gliding bacteria, Peruani

et al. studied the collective behavior of 2D self-propelled rods interacting via excluded

volume [14]. They showed that the rods undergo clustering that are facilitated by high

packing fraction and length-to-width ratio. This behavior is also observed in a minimal

model developed later for polar point particles that exhibits other interesting phenomena

[66].

Continuum (macroscopic) approach

Another useful approach in describing macroscopic behaviors of an active system is by

coarse-graining the system using a number of continuum fields. The evolution of the fields

are obtained by solving a set of hydrodynamic equations that are modified from the estab-

lished liquid crystal hydrodynamics to include new active parameters [68]. This can be

done through three approaches [45]. The first involves simplifying a microscopic model and

then applying statistical mechanics tools to coarse-grain the model to obtain long-time scale

solutions [69, 70]. While this approach can provide direct connections between parameters

of the macroscopic equation with specific microscopic mechanisms, it is usually difficult to

be carried out without approximations. In the second approach, the hydrodynamics equa-

tions are phenomenologically obtained by treating the active system as a result of applying

a small perturbation to a well-defined equilibrium state. The perturbation is assumed to be

small so that the system is still in a linear non-equilibirum regime and its hydrodynamic

equations can be systematically derived using Onsager procedure. An obvious drawback of

this approach is that most active states are not in a linear regime and therefore can not be

described by the method. Lastly, the more popular and practical approach is to write directly

hydrodynamics equations for macroscopic fields [49, 71, 72, 46] with the proper addition

of active terms. In the following paragraph, we will discuss in detail notable works using
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these approaches.

In their pioneering work, Toner and Tu proposed a continuum model that explains the

physics found in the Vicsek model. The system is characterized by two continuum fields,

number density and velocity, which can be expressed by the position vector and unit vector

of instantaneous particle orientation. The active term, which is the driving velocity in this

case, comes into dynamical equations for both the fields. As a result, the mean-field analysis

gives two solutions that correspond to disordered and ordered states in the Vicsek model.

Using a similar approach, Ramaswamy et al. [46] discovered a ”giant” fluctuation in

number density of vibrated rods on a solid surface, which was later confirmed by experi-

ment [17]. At first, the anomalous fluctuation was explained as a result of spontaneously

breaking orientational symmetry of the rods. However, later observation of clustering of

self-propelled hard disks without any alignment rule [15] suggests a more generic origin

for this ubiquitous phenomenon. On a slightly different apporach, Baskaran and Marchetti,

by employing Smoluchowski equation, derived a hydrodynamic theory for self-propelled

hard rods on a substrate [73, 74] from the microscopic model in [14]. The model provides a

first theoretical analysis of roles of size and shape in active matter. In addition, a continuum

model was developed by the same authors to describe bacterial suspensions that interact via

hydrodynamics interactions [75]. The authors start with a microscopic model for different

types of bacteria and derive coarse-grained hydrodynamics for the system.

Experimental progress

In the last decade or so, significant experimental progress has been achieved in both fab-

ricating individual active particles and designing experiments to demonstrate their novel

collective properties. In the following paragraphs, we will discuss the progress of each area

in detail (Fig. 2.6).

Since the development of the first self-propelled (nano) rods by Paxton et al. in 2004

[76], a wide range of self-propelled particles has been fabricated in different shapes and by
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using different self-propulsion techniques. The driving mechanisms can be classified into

two categories: internally and externally powered. In the internally powered mechanism,

the power source to drive the particle is carried on the particle itself. This can currently be

achieved through three mechanisms: self-diffusiophoresis, self-electrophores and bubble

release. The directional motion is often obtained by breaking symmetry of the forces by

coating different substances, e.g. reactive and inert, on particle surface.

In self-diffusiophoresis, the particle generates a local gradient of concentration or fields

around its otherwise homogenous medium through, e.g., chemical reaction between the

particle surface and its medium. For an example, a polystyrene Janus particles, coated by

platinum on one side, is able to diffuse at an effective rate that is a factor of thirty larger

than typical Brownian motion in a hydrogen peroxide solution [77] . The self-propulsion

happens due to the decomposition of hydrogen peroxide into hydrogen and water under

catalytical reaction with platinum. This generates an asymmetric chemical gradient around

the particle surface and, hence, self-propulsion.

The self-electrophores mechanism, which was used to realize the first reported au-

tonomous nano-scale swimmers [76], involves redox reaction between two metallic ends of

a bi-metallic swimmer. For example, the nano-rod in [76] is made of platinum and gold

ends, which behave as anode and cathode, respectively, in a hydrogen peroxide solution. As

the redox reaction happens, a proton flux is generated and moves from the platinum to the

gold ends along the rod interface, causing the fluid to move in the same direction. This fluid

motion results in a net propulsion of the rod in the opposite way.

In the bubble release mechanism, the self-propulsion comes from the release of bubbles

on one side of a Janus particle. For example, a micron silica sphere is coated with platinum

on one hemisphere that, again, interacts with a hydrogen peroxide solution to generate

bubbles on the surface [78]. As the bubbles grow to a large enough size they will detach

from the surface, imparting momentum to the particle that drives it forward.

The external driving mechanism employs an external power source such as magnetic
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Figure 2.6 Experimental examples of active matter: (a) Microtubules in a mixture with kinesin
self-assemble into steady-state vortices and asters as the concentration of kinesin increases (from
left to right) [12]. (b) Self-propelled colloids form “living” crystals that self-assemble and break
dynamically [16]. (c) Vibrated rods exhibit nematic phase with “giant” number fluctuation, with
noticeable dilute and dense regions that move on the surface [17]. (d) Millimeter magnetic disks
that are driven by rotating external magnetic self-assemble into different patterns on a fluid surface
as the rotation changes [18]. (e) Magnetic Janus particles that are driven by a precessing magnetic
field synchronize their motion and self-assemble into different configurations [19].

fields to drive particles [79, 80, 81, 82, 83] . A well-known example of this mechanism is

the microscopic, bio-inspired swimmers that mimic motion of bacteria that move around by

flagella [79]. Each swimmer is a linear chain of colloidal magnetic particles that are linked

by DNA strands and is attached to a red-blood cell at one end. This flexible flagellum-like

structure actuates under an external oscillating magnetic fields. As a result, the chain moves

in a beating pattern similar to that of bacteria, propelling it in a controllable manner. The

speed and direction of a swimmer can be adjusted by changing the external field. Similarly,

researchers designed a rigid flagellum-like swimmer that moves by rotating about its body

axis under an external magnetic field [83] with great controllability. The swimmer can

be controlled to navigate a pre-defined trajectory and even carry a load from one location

to another with millimeter-level precision. The ability to transport loads in a controllable
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manner of micro swimmers has also been demonstrated previously [81, 82].

The progress in fabricating mesoscopic swimmers has paid the way for experiments on

the collective behavior of many swimmers. Recently, experiments [84, 16] demonstrated

dynamic clustering of self-propelled colloids as theoretically predicted in [15]. The colloids,

propelled by self-phoretic effect (a combination of diffusiophoresis and self-electrophoresis)

by catalytic reaction [84] or light-activation [16], cluster into crystals that break and re-form

dynamically at low densities and that grow in size with self-propulsion speed at high density.

Self-propelled colloids have also been used to explore the “thermodynamic properties”

of far-from-equilibrium systems [85]. The authors showed that a suspension of active

colloids can be described within the framework of the fluctuation-dissipation theorem with

an effective temperature that increases with activity level. Although the concept of effective

temperature and its applicability is still an active topic of debate [15], this sort of experiment

provides a promising test-bed for a theory of far-from-equilibirum thermodynamics.

Prior to [85, 84, 16], some interesting experiments of active system have been realized

with particles on larger scales and driven by external fields. In 2007, using vibrated centime-

ter rods, the researchers demonstrated a signature of many active systems: long-lived and

giant fluctuations. The rods lying on a vibrating flat surface exhibit number fluctuation that

does not obey the central limit theorem. In fact, the fluctuations scale with N, the number of

particle, as opposed to
√

N as dictated by the theory for equilibrium systems. Furthermore,

the fluctuation decays only as a logarithmic function of time. Another interesting experiment

is that comprise of millimeter magnetic disks rotating on a fluid surface by an rotating

external magnetic fields [18]. Depending on the rotation speed of the driving field and the

number of disks, the system self-assembles into different regular patterns that are controlled

by competing forces: the magnetic attraction and hydrodynamic repulsion. Recently, using

externally driven Janus particles, researchers demonstrated a linkage between synchroniza-

tion and self-assembly through activity that gives rise to interesting behavior [19]. The

micron silica particles are coated by a thin nickel film on one hemisphere that both rotates
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and oscillates in precessing magnetic fields. As a result, the particles synchronize their

rotation and self-assemble into microtubes, zigzag chains and planar sheets depending on

the external field frequency and precessing angle. Another realization of active matter is

in vitro experiments with suspension of protein filaments, e.g. microtubules, and motors,

e.g. kinesin. The microtubules, driven by kinesin, self-assemble into different steady-state

structures, including vortices and asters, depending on the relative concentration of kinesin

[86, 12].
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Chapter 3

Simulation Models and Methods

3.1 Overview

Since the first simulation of liquids for non-military purposes in 1953 by Metropolis et

al. [87], computer simulation has become a popular and important front of research investi-

gation. It has been used, for example, to simulate galaxies’ collisions, trajectories of space

shuttles, and self-assembly of nano-particles. The power of computer simulation, hence its

importance, lies in its ability to provide essentially exact results for a model system that

are often analytically insolvable and experimentally impractical. For example, even the

relatively simple Newton laws become unsolvable for a system of more than two interacting

bodies. Further, computer simulation is a wise, sometimes the only viable, choice when the

system at hand is too large (galaxy), too small (electrons), too dangerous (atomic explosion),

or too expensive (test of space shuttle).

However, computer simulation is not used in lieu of theory and experiment, but rather

as a bridge between the two. For a given model, one often has to rely on approximations

to describe it because deriving an exact solution may not be possible. This comes with the

uncertainty of whether the approximate theory is accurate enough. In this case, computer

simulation can be used to test the theory as well as potentially provide insights for further

developments. This point is illustrated vividly by the early history of the theory of dense

liquids. Before computer simulation came to the scene, the only way to model liquid was

using macroscopic spheres such as ball bearings in a very tedious way [88]. Although
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the model provides some realistic results, it is just too prohibitively time-consuming and

practically difficult to pursue. Therefore, it is not surprising when computer simulation

became available to scientific community, first simulations were about models of liquids.

First Monte Carlo (MC) simulation was carried out by Metropolis et al. [87] to investigate

equation of state for interacting molecules. Similarly, Alder and Wainwright utilized com-

puter simulation in the first Molecular Dynamics (MD) simulation [89] to study phase

transition in hard sphere. Simulation in these examples serves as a confirmation of theory

(former example) and a prediction for experiment (later one).

Although Alder and Wainwright’s results [89] are a classic example of how simula-

tion can make correct prediction that are sometimes well ahead of theory and experiment,

simulation results should always be validated by experiments whenever possible. The

fidelity of simulation results can always be questioned if they do not come from a theoretical

background or are not confirmed by an experiment. On the other hand, simulation provides

physical insights and promising ”shortcuts” that are otherwise not possible to experiments.

For an example, the simulation of tetrahedral patchy spheres in [90] can be a great starting

place if one tries to self-assemble the diamond structure experimentally. Without the sim-

ulation prediction, the experimentalist would have to resort to trial-and-error methods to

explore larger phase space that are probably much more time- and cost-consuming. To this

end, computer simulation is playing an increasingly important role because of two reasons.

First, recent advancement in computing technology enables much longer, larger and cheaper

simulations that make modeling virtually any system a relatively simple task. Second, new

advancements in theory and experiment nowadays increasingly depends on simulation as

researchers venture into less-known and more complex scientific territories. The work in

this thesis is an example of how computer simulation is used to predict behaviors of complex

systems that can later be verified by experiments.

Simulation of a typical system of, say, liquid usually involves two elements. First, the

system at hand needs to be coarse-grained properly into a tractable and reasonable model.
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This involves using phenomenological pair potentials (e.g. Lennard-Jones) or empirical

ones (e.g. DLVO) to model interatomic interactions. These coarse-grained potentials enable

reasonably accurate approximation of the real system without having to deal directly with

the complexity, e.g. quantum mechanics, of the actual interactions in ideal cases. The

coarse-graining step also involves representing the particle shape and size. This can often be

achieved by representing a spherical particle by a “hard” potential such as Lennard-Jones

(LJ) ( “hard” is used because LJ allows some overlapping, although small) and a non-

spherical shape as a composite body of small spheres. Second, once the coarse-graining for

the system is accomplished, a proper simulation method needs to be selected for the model.

Depending on the nature of the system, such as at a constant temperature or energy, in a

solution or not, NVT or Brownian Dynamics simulation methods, for examples, could be

employed. In the following sections, we will discuss in more details about the coarse-grained

pair potentials and simulation methods used in this thesis.

3.2 Coarse-grained pair potentials

3.2.1 Lennard-Jones potential

Lennard-Jones potential, originally developed to model interaction between Argon atoms,

has become one of the most used pair potentials in Molecular Dynamics. It represents a

short-range repulsive core and a long-range attractive tail by the following form

ULJ(ri j) = 4ε[(
σ

r
)12− (

σ

r
)6] (3.1)

where r = ri j is the distance between two particles i,j. The potential has a negative well

depth of ε and is zero at r = σ . For r ≤ σ the potential becomes increasingly steep or

strongly repulsive, thus giving the particle an effective hard core of diameter σ . The term

(σ

r )
6 makes the first derivative of the potential negative and enables the long range attraction
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for r > 2
1
6 . The long range attraction is often truncated at a cutoff radius, e.g. rc = 2.5σ , for

1, reducing the computational expense in a distance range that the potential has negligible

effect 2, modeling electrostatic screening of a solution on a long range interaction. In this

case, the potential should be shifted to zero to avoid potential discontinuity at the cutoff

radius. The truncated and shifted LJ potential has the following form

ULJ(r) =

 4ε[(σ

r )
12− (σ

r )
6]+4ε[(σ

rc
)12− (σ

rc
)6] r < rc = 2.5σ

0, r ≥ rc = 2.5σ

(3.2)

Note that the equations 3.1 and 3.3 are for a pair of particles of the same diameter σ . For

a pair of different diameters, the LJ potential is shifted to the surface of the particles to

achieve the desired diameters. The shifted potential has the following form

ULJ−shi f ted(r) =

 4ε[( σ

r−δ
)12− ( σ

r−δ
)6], r < rc +δ

0, r ≥ rc +δ

(3.3)

where δ = d1 +d2, d1 and d2 are the diameters of particle 1,2 respectively.

3.2.2 Weeks-Chandler-Andersen potential

Weeks-Chandler-Andersen (WCA) potential is a special case of LJ potential in which the

long range attraction is eliminated. Mathematically, WCA is a LJ being truncated and

shifted at 2
1
6 . The potential has the following form

ULJ(r) =

 4ε[(σ

r )
12− (σ

r )
6]+ ε, r < rc = 2

1
6 σ

0, r ≥ rc = 2
1
6 σ

(3.4)

WCA potential represents only excluded volume of a spherical particles and is often used to

model hard particles. For example, a hard triangle can be modeled as a rigid body composing

of many smaller WCA spheres.
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3.2.3 Morse potential

Morse potential is a soft potential that allows a varying degree of overlapping between two

particles and has the following form

~UMorse(~r) =Cr exp
(−~r

lr

)
−Ca exp

(−~r
la

)
(3.5)

where r = ri j is the distance between two particles i,j. The potential shape can be adjusted

flexibly to various forms by tuning the four parameters Cr, repulsion strength, Ca, attraction

strength, lr repulsion length and la attraction length. Unlike LJ potential, Morse potential

does not really give a particle an effective diameter because of its soft core. However,

Morse potential can be very useful in studying the effect of potential energy because of its

tunability. In this thesis, the Morse potential is employed to investigate how interaction pair

potentials influence swarming behavior of self-propelled particles by tuning it to various

profiles ranging from purely attractive to pure repulsive. For more details of how the Morse

potential is implemented, the reader can refer to Chapter 4.

3.3 Molecular Dynamics methods

3.3.1 Overview

Molecular Dynamics (MD), as the name suggests, describes the dynamics of a system that

typically comprises a large number (hundreds to millions) of small particles with length

scale ranging from 10 to 1000 nm. Examples of real systems that can be modeled using

MD include a suspension of colloids, a solution of nano particles, or a mixture of folding

proteins. Because of the large system size, it is impossible to solve for the system dynamics

analytically. Instead, the system dynamics is obtained by numerically integrating the clas-

sical Newton’s equations over time. In an equilibrium system, MD gives the macroscopic

thermodynamics properties of the system under the assumption of ergodicity, which states
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that ensemble average equals time average in equilibria. Molecular Dynamics simulations

are usually preferred over other simulation types such as Monte Carlo (MC) when the system

dynamics are of the interest, in addition to the system final equilibrium properties (MC). For

this reason, Molecular Dynamics methods are employed in this thesis. In particular, Brown-

ian Dynamics (BD) and Langevin Dynamics (LD) are employed with proper modifications

to model active systems. In following sections of this chapter, the implementation of BD

and LD will be discussed in details along with the software packages utilized in the thesis.

3.3.2 Modified Langevin Dynamics for active particles

Langevin Dynamics

Langevin Dynamics, named after a French physicist – Paul Langevin, is a simplified mathe-

matical approach that accurately describes the dynamics of a particle of a system of particles

in a viscous fluid. As a particle moves through a fluid, it is subject to a friction force from

the fluid, forces from random collisions with surrounding fluid particles and interaction with

other neighboring particles. Langevin Dynamics models the forces through the following

equation.

mi
∂~vi(t)

∂ t
= ~FC

i (~ri j(t))+~FR
i (t)+~FD

i (~vi(t)) (3.6)

Ii
∂~ωi(t)

∂ t
=~τC

i (~ri j(t))+~τR
i (t)+~τD

i (~vi(t)) (3.7)

where mi and Ii are the mass and moment of inertia of the particle. Because the terms

for translational and rotational motion are similar, we only describe in details the terms

for translational motion. ~FC
i is the sum of conservative forces, or the pair-wise interaction

forces, between the particle i with all of its neighbors.

~FC
i (~ri(t)) = ∑

i 6= j
−∇U(~ri j(t)). (3.8)
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where~ri j =~ri−~r j and U(~ri j) is the interaction potential. ~FD
i is the friction force acting on

the particle by the fluid and is modeled by:

~FD
i =−γmi~vi(t) (3.9)

The random force and drag force are related through the fluctuation-dissipation theorem,

〈~FR
i 〉= 0 (3.10)

〈~FR
i (t)~FR

j (t
′)〉= 2γkBT δi jδ (t− t ′) (3.11)

where γ is the Stoke’s drag, which is proportional to fluid viscosity, T is the temperature

and kB is the Boltzmann constant. δi j is the Kronecker delta function and δ (t) is the Dirac

delta function.

The Dirac delta function δ (t) is approximated as 3Ri
2

∆t , where Ri is a random number

uniformly distributed in [-1,1]. The factor 3 is to ensure the distribution of δ (t) approaches

normal distribution in the limit of large number particle. Plugging in the new formula of

δ (t) into equation 3.11 gives us

〈~FR
i (t)~FR

j (t
′)〉= 6γkBT δi j

R2
i

∆t
(3.12)

Modified Langevin Dynamics

The activity of a particle is modeled by simply adding a force or torque to the equations

of motion 3.6 and 3.7. In this thesis, a constant force and constant torque are added to

model self-propulsion and self-rotation respectively. The reader can refer to Chapter 4 for

self-propelled particles and Chapter 5 for self-rotated particles for more details.
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Code Implementation

The Langevin Dynamics is implemented by modifying the Brownian Dynamics integrator

of HOOMD Blue [91, 92]. (Note that in spite of the name, the the current Brownian Dy-

namics integrator of HOOMD Blue (2013) actually models Langevin Dynamics.) However,

instead of applying the Brownian forces to the constituent particles of a body and calculating

Brownian torques from the forces as currently implemented in HOOMD Blue, Brownian

forces and torques are applied separately to the body. The Brownian forces and torques can

be assigned by specifying the translational, γt , and rotational, γr, drag coefficients and the

temperature. The coupling between translational and rotational diffusions can be realized

by relating the drag coefficients in a right ratio that depends on the body geometry. For an

example, γr =
4
3σ2γt for a spherical disk of diameter σ . The modification speeds up the code

because the number of iteration loops in calculating Brownian force and torque decreases

from the number of constituent particles to the number of bodies. Furthermore, the modified

version should model the Brownian Motion more realistically because the Brownian forces

should be distributed on the bodies, not the constituent particles. As the matter of fact, sums

of the normally distributed forces on the constituent particles do not equate to the normal

distribution of force with the same mean and variances. Instead, the mean and variance are

the sums of the constituent means and variances, respectively.

The active torque and force are added to a body by two separate plugins – a plugin is

a piece of software developed by an user to add a feature to HOOMD without having to

modify its source code. The force plugin adds a constant force to a group of particles in their

velocity directions. The torque plugin adds a constant torque, specified either in clockwise

or counter-clockwise directions by the user, on particles of a same type.

Code Verification

The LD code was verified correct by reproducing the fluctuation-dissipation theorem, which

determines that in time large time scale (t� τr =
1
γ
, where τr is the characteristic relaxation
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Figure 3.1 MSD over time for a system of 16384 gears simulated by the LD code at temperature of
5. Each gear has a mass of 5 and a translational drag coefficient of 100. The theoretical translational
diffusion coefficient is, according to equation 3.14, 0.01. The value is exactly equal to 1

4 of the slope
of the MSD versus time, thus satisfying the fluctuation-dissipation theorem.

time) the mean squared displacement (MSD) of a particle in a 2D system relate to its

diffusion coefficient by [93]

< ri
2 >= 4Dt (3.13)

t is time and D is the diffusion coefficient and is determined by

D =
kBT
γm

(3.14)

The relations 3.13 and 3.14 are confirmed in the Fig. 3.1. The code is further verified by

reproducing the results in [59] as discussed in Chapter 4. The plugins are verified by compar-

ing the steady state velocities and the time constants (to reach the values) of non-interacting

particles in a zero-temperature system with easily-obtained theoretical values.
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3.3.3 Modified Brownian Dynamics for active particles

Brownian Dynamics

In the limit that the viscous drag γ goes to infinity, LD becomes BD. In this regime, viscosity

is dominant while inertia is neglected. There is no acceleration associated with the motion

but random, abrupt changes in velocity and position are expected. The equations of motion

for BD are as following

~vi(t) =
~FC

i D
kBT

+
√

2D~FR(t) (3.15)

~ωi(t) =
~τC

i Dr

kBT
+
√

2Dr~FR(t) (3.16)

Dr is rotational diffusion coefficient; other terms are explained in the previous sub-section.

~FR(t) is a delta-correlated stationary Gaussian process with zero-mean in all the dimensions,

satisfying

< Fu
R(t)>= 0 (3.17)

< Fu
R(t)Fu

R(t ′)>= δ (t− t ′) (3.18)

where u is either x,y,z. In the limit of high viscosity but where inertia still plays a role, i.e. in

a valid domain of LD, the diffusion coefficients are related to the viscosity as following [94]

D =
kBT
γm

(3.19)

Dr =
kBT
γr

(3.20)
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where the Stokes drag coefficients γ and γr are determined by viscosity and the particle

geometry. For a sphere of radius R, the drag coefficients are

γ = 6πηR (3.21)

γr = 8πηR3 (3.22)

where η is viscosity coefficient.

Modified Brownian Dynamics

Similar as in LD, driven force and torque are added to particles through two plugins. In this

thesis, modified LD is used mostly because of two reasons. Firstly, as a mesoscale particle is

driven, its inertia is likely to play an role in its dynamics. Secondly, with LD we can flexibly

turn off the noise (“temperature”) term to study a wider range of dynamics. The BD code

is used to reproduce some literature results such as [63] and compare its with results with

using LD. We also compare our results using LD with BD in Chapter 5. In general, both BD

and LD (with relatively high drag coefficients) give similar results.

Code Implementation

The BD is implemented in both Central Processing Unit (CPU) and Graphical Processing

Unit (GPU) using second order stochastic Runge-Kutta algorithms [95]. The algorithm is

chosen because it gives relatively better accuracy while still being computationally efficient

[95]. The algorithm consists of two steps: Predictor and Corrector. In the Predictor step,

the positions of a body are calculated by a conventional BD algorithm. The positions are

updated with corrected terms calculated from the old and newly-obtained positions. In the

following, the detailed algorithm is presented for translation; a similar procedure applies for

rotation.
1. Predictor step (at time t)
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(a) Calculate forces, including Brownian forces, acting on the bodies from~ri and T
and record it as Fi

a

(b) Update velocities t +∆T by equations 3.15
(c) Update positions by using a conventional BD algorithm ~ri(t +∆t) =~ri(t) +

∆t~vi(t)
2. Corrector step (at time t +∆t)

(a) Calculate forces, excluding Brownian forces, acting on the bodies from the new
~ri(t +∆t), record it as Fi

b

(b) Add a corrected term to the position~ri(t +∆t) =~ri(t +∆t)+ (Fi
b−Fi

a)D
2kBT ∆t

The code is implemented by modifying the current Brownian Dynamics integrator of

HOOMD Blue.

Code Verification

The code was verified correct by different ways. First of all, the fluctuation-dissipation

theorem was confirmed by reproducing the relation between MSD and time. As shown in

the Fig. 3.2, the MSD scales with 4Dt as expected for a 2D system. Secondly, the code

was further verified by reproducing the results reported in [63]. Lastly, the code was

independently verified by Daniel Beltran from Prof. Ron Larson’s group and Ben Schultz

from Prof. Sharon Glotzer’s group, from the Chemical Engineering Department, University

of Michigan at Ann Arbor, in their researchs using the BD code.

3.4 Software packages

The research has been conducted using various software, which are duly acknowledged and

described in the following sections.

3.4.1 HOOMD Blue

The simulations in this thesis have been carried out using HOOMD Blue [91, 92]. HOOMD,

standing for Highly Optimized Object-oriented Many-particle Dynamics, is a highly-

accelerated Molecular Dynamics Software package that employs paralleling computing and
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Figure 3.2 MSD over time for a system of 10000 gears simulated by the BD code with translational
diffusion coefficient of 0.01.The value is exactly equal to 1

4 of the slope of the MSD versus time, thus
satisfying the fluctuation-dissipation theorem.

runs on both CPU and GPU. HOOMD was originally developed by Dr. Joshua Anderson at

the Iowa State University [91] and is now being primarily developed and maintained by

the Glotzer group at the University of Michigan at Ann Arbor. It is available to the public

under an open source license [92] and it allows users to flexibly add functionalities by using

software plugins. In a benchmark, HOOMD run on a GPU is shown to achieve a speed

equivalent to LAMMPS [96] parallelized over 50-90 GPU cores [20]. Important reasons

for the speed-up include 1) avoid serial code the bottlenecks and 2) slow memory transfers

between host and device. HOOMD performs all steps of a computation on the GPU and,

thus, avoids all memory transfers between host and device, unless it is needed for disk I/O

[20]. HOOMD also utilizes neighbor and cell lists to further speed up its simulations. In

each MD time step, particles are binned into cell lists. From these cell lists, each particle is
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Figure 3.3 Performance measured in time steps per second of HOOMD Blue compared with
LAMMPS. The benchmark simulation is one thousand tethered nanorods (14000 total particles) and
is performed 50 times for each benchmark [20].

assigned a neighbor list that includes indices of particles within a specified interaction range.

The neighbor lists are referred to when pair forces are calculated for each particle, reducing

computational costs because only interacting pairs are considered in calculation.

3.4.2 Other software

Visual Molecular Dynamics

VMD is a free software designed for displaying, animating and analyzing large bio-molecular

systems using 3-D graphics and built-in scripting. VMD is primarily designed for biological

system but may be used for general systems. The visualization software is developed and

maintained by the Theoritical and Computational Biophysics Group at the University of

Illinois at Urbana-Champaign. In this thesis, VMD were used to visualize snapshots and
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dynamics of the system. Customized scripts were also developed to produce videos of

swarms in Chapter 4.

Interactive Java Visualization

Injavis, developed and maintained by Dr. Michael Engel, a research scientist in the Glotzer

group, is for rendering and analysis of complex atomistic or nanoparticle configurations. It

currently includes analysis tools such as the radial distribution function (RDF), diffraction

pattern (FFT) and bond order diagram (BOD). Injavis allows the user to flexibly render

configurational and dynamical information a molecular system of particles with different

shapes into high quality graphics. In this thesis, Injavis was used in combination with other

software to render the snapshots and videos in Chapter 5.

VisualizeX

VisualizeX is a visualization software package developed by Dr. Trung Nguyen, a former

PhD student of the Glotzer group. The software allow users to visualize and render a

molecular system. Particle shapes and other visualization settings such as particle size,

ambient lighting can be flexibly set by the user. VisualizeX was primarily used in rendering

the images of swarming patterns in Chapter 4.

Packmol

Packmol is a free software package that allows users to generate an initial condition for an

MD simulation by satisfying simultaneously constraints such as density and particle shapes.

The software is developed by Leandro Martnez, State University of Campinas, Brazil. It

was used to generate initial conditions for some simulations in the thesis.
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Personal codes

A significant number of code programs have been developed for generating initial conditions,

running jobs, analyzing data, and visualizing data. In particular, all the analysis in this thesis

were conducted using personally developed codes.
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Chapter 4

Self-assembly of Self-Propelled Particles

4.1 Introduction

The emergence of ordered swarms from a collection of autonomous self-propelled

agents is a ubiquitous natural phenomenon. In biology, swarming is a common fea-

ture of social organisms, and flocks of birds, schools of fish, and herds of buffalo

have been described by simple models [24, 44, 71, 97, 98]. Non-biological systems

of self-propelled particles, including rotating magnetic disks[18] and microdiodes [99],

also exhibit of steady-state swarms [97, 74, 73, 100, 75], and recent work has elu-

cidated many ways the interactions between particles can influence swarm structure

[13, 51, 47, 24, 55, 59, 50, 52, 101, 60, 102, 103, 61, 104], primarily in two dimensions.

Understanding how the interactions between agents result in swarms of a particular

shape has a wide range of applications, including the distributed control of unmanned

vehicles [104], assembly of mobile sensor networks [105], and microscale mixing [99].

Interaction potentials that are qualitatively similar to the potentials that describe nanoparticle

interactions but scaled to larger lengths have been utilized to control and reconfigure mobile

vehicles flocks that would otherwise require complex and costly centralized control systems

to achieve the same task[104, 105]. Self-propelled microsensors powered by alternating

electric fields have demonstrated mixing within microchannels [99]. Creating a swarm that

performs a preprogrammed task, whether within a microchip or between cities, depends

on our ability to robustly control the structure of a swarm through the manipulation of the
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interactions between agents.

One inter-particle interaction that has received considerable attention is the generalized

Morse potential, first introduced for modeling swarms by Levine et al. [47]. In two dimen-

sions, D’Orsogna et al. [59] discovered rings, vortex-like swarms, and circular clumps in

systems of self-propelled particles interacting via a Morse potential and showed how the

swarm stability varies with swarm size. The Morse potential has been used to demonstrate

the control of swarming vehicles [104], and in three dimensions was used to model systems

of toroidal swarms whose translational motion was tuned with thermal noise [62]. The

structural diversity observed for 2D Morse swarms is impressive and it is natural to ask

what other sorts of 3D swarms might be stable and how robust their stability is to thermal

fluctuations. Unfortunately, no predictive theory for swarm stability currently exists and the

parameter space from which 3D Morse swarms can be chosen is enormous. With four Morse

parameters and three independent thermodynamic parameters (volume, particle number,

and temperature), we rely on computer simulations as the primary tool for predicting the

conditions under which swarms are stable, and the structural and dynamical character of

potentially achievable swarms.

Here we perform computer simulations of self-propelled Morse particles using graph-

ics processing unit (GPU) optimized software [92] to explore the formation of 3D stable

swarms in both thermal and athermal environments and gain insights on their dynamics

and stability. Our simulation code allows for sampling of vast regions of parameter space

where we observe swarms including tori, hollow shells, and two-dimensional rings. The

“phase diagram” we report as a function of Morse potential parameters is richly diverse, with

large regions where one swarm is stable over all others, but other regions where swarms

are observed over only narrow parameter ranges. We observe notable deviations from

equilibrium pattern formation in this far-from-equilibrium system, including assembly of

competing swarms at a given state point, and we demonstrate that initial conditions can be

chosen to bias the formation of one structure over another. We observe that thermal noise
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can influence the stability of one structure over another and we demonstrate how noise can

be used to reproducibly and repeatedly switch between different swarms. Beyond these

new findings, our work highlights the need for efficient computational tools and predictive

analytical techniques for the study of swarm formation, and demonstrates the precise control

over swarm morphology that can be accomplished with a model system.

This Chapter is organized following Ref. [21], in which the contents of this Chapter

are published. In Section 4.2 we describe the pairwise interaction parameters and “active”

particles that define our model, the methods we employ to perform simulations on graph-

ics processing units (GPUs), and the quantities we calculate to characterize swarms and

their structure. In Section 4.3 we present the results of our extensive simulations. These

results include a “phase diagram” that summarizes the swarms we find in the absence of

thermal noise, two case studies for structural transitions induced by thermal noise, and an

evaluation of swarm structure sensitivity to initial conditions. In Section 4.4 we discuss

similarities and differences of the swarm self-assembly as compared to equilibrium self-

assembly. In Section4.5 we conclude with a summary of our work and highlight future

possible extensions.

4.2 Model and method

4.2.1 Model

We consider particles interacting via the generalized two-body Morse potential [47]

U(ri j) =Cr exp
(−ri j

lr

)
−Ca exp

(−ri j

la

)
(4.1)

where ri j is the distance between two particles i and j, Ca is the attraction strength, Cr is

the repulsion strength, la is the attraction length scale, and lr is the repulsion length scale.

These parameters can be chosen to model a wide range of interaction types, from purely
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repulsive and/or long-range attractive, to particles that can overlap but have an energetic

barrier to doing so. To model the motion of self-propelled Morse particles in a thermal bath,

we update particle positions using the Langevin equation of motion [106]

mi
∂~vi

∂ t
= ~FC

i + ~FR
i + ~FD

i . (4.2)

Here, mi and vi are the mass and velocity of particle i, t is time, and ~FC
i , ~FR

i , and ~FD
i

represent the conservative, random, and drag forces, respectively. The conservative force be-

tween two particles is the usual negative gradient of the potential summed over all neighbors

~FC
i = ∑

i 6= j
−∇U(ri j). (4.3)

The random force and drag force are related through the fluctuation-dissipation theorem,

〈 ~FR
i 〉= 0 (4.4)

〈 ~FR
i (t) ~FR

i (t ′)〉= 6γT ∗δi jδ (t− t ′) (4.5)

where γ is proportional to fluid viscosity, T ∗ is the reduced temperature that is related to real

temperature by T ∗ = kBTreal and δi j is the Kronecker delta function and δ (t) is the Dirac

delta function. We model particle self-propulsion as in Refs. [59, 62] with a modified drag

force

~FD
i = (α− γ−β |~vi|2)~vi (4.6)

where α− γ determines the net propulsion strength and β determines the amplitude of the

non-linear drag force. The propulsion and drag forces act parallel to a particle’s velocity

vector and define an optimal velocity v∗ =
√

α−γ

β
towards which particles are driven.
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4.2.2 Method

We implement the above model in HOOMD-blue, an open-source GPU-based Molecular

Dynamics package developed by our group, which we have extended with packages for

calculating and applying self-propulsion forces and the Morse potential via CUDA kernels

executed on NVIDIA Tesla S1070 graphics cards[92]. The Morse potential (Eq. 4.1) is

truncated and shifted to zero at ri j = 5σ , which avoids the potential energy drift that can

occur with an un-shifted potential. We employ generic units of distance σ , particle mass m

and energy ε . The Morse potential energy at ri j = 0 is equal to 1ε for Cr = 2, Ca = 1, lr = 1,

la = 1. The “temperature” of the system is a thermal energy related to real temperature by

T ∗ = kBTreal in units of ε . The value of kB is uniquely determined by the choice of real

units for energy, distance and mass. The time unit τ is derived from τ =
√

mσ2

ε
. We update

particle velocities and positions using the two-step velocity Verlet integration scheme [107]

with dt = 0.001 or dt = 0.005. Generally we find dt = 0.005 to be sufficiently small for

reliable integration of the Langevin equation, except for very low values of C and large

values of l, where swarm artifacts can appear for dt > 0.002. For N = 600 point particles

in a 20σ cubic simulation box with periodic boundary conditions, a simulation of 2×106

time steps with dt = 0.005 requires about an hour on a single GPU. The 4000 simulations

required to create Fig. 4.2 were completed in three days, and would have required two to

three months if performed with LAMMPS [108, 109] on a parallel CPU cluster.

A typical trial run begins with N = 600 particles initialized randomly within a 5σ cubic

region (cell) centered within the larger 20σ cubic simulation box. Initializing particles within

the 5σ cell ensures one swarm is formed from all particles and avoids finite-size effects that

could be imposed by having a simulation volume commensurate with the interaction poten-

tial length scale. Each component of the particle velocities are initialized randomly from a

Gaussian distribution with mean T ∗ = 1.0 and standard deviation δT ∗ = 1.0. Henceforth,

when we refer to “random initial velocities” we mean they are drawn from this distribution.

We typically set α = 2.0, γ = 1.0, and β = 0.5, and perform 2×106 time steps with a step
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size of dt = 0.005. Simulation runs that differ from these initial conditions are noted and

explained. Different system densities result in the same overall swarm morphologies at a

given state point, but where the number of swarms observed per simulation and the size of a

given swarm can vary from run to run.

The simulation times of 2×106 time steps are chosen to allow for sufficient sampling

of steady state structures after transient swarms die out. Generally, we find that transients

have disappeared after 1×106 time steps. We define a steady state swarm for a simulation

run if there exists a structure or collection of structures that persist over the final 1×106

time steps with a well-defined average and standard deviation for their total energy. We

distinguish among different swarms by calculating relative eigenvalues of their moment of

inertia tensors and comparing them with the corresponding values that are characteristic to

symmetric, circular structures such as spherical shells and rings. If the values match within

an allowable tolerance of 10%, the structure is identified as a swarm.

To distinguish between swarms where particles travel about a fixed central point (e.g. a

shell - Fig. 4.1b) and swarms where particles travel about a fixed central axis (e.g. a ring -

Fig. 4.1c) we define the alignment order relative to particle i

Ai = 2

(
∑

N
j=1|~Mi · ~M j|

∑
N
j=1|~Mi|| ~M j|

−0.5

)
(4.7)

where

~Mi =~ri×~vi (4.8)

is the angular momentum for particle i traveling at a velocity vi located at position ri relative

to its swarm center of mass. In practice we select A to be the maximum value of Ai from

the N measurements for a swarm, indicating the correlations in angular momentum about

the axis where they are most correlated. When A = 0 particles move in circles whose

axes have no average correlation, as is the case for the shell (Fig. 4.1b). When A = 1.0

the circular paths traveled by all particles share the same axis, as is the case for the ring
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(Fig. 4.1c). In addition to distinguishing between shells and rings, we show that A is useful

in characterizing the velocity correlations for the other swarms studied in this work. A

metric similar to Eq. 4.7 is used to distinguish 2D vortexes and flocks in Ref. [61].

4.3 Results and discussion

We perform 4000 MD simulations using HOOMD-Blue to determine the athermal steady-

state swarms that emerge for Morse particles in 3D in Section 4.3.1. We validate our

approach by confirming previously reported swarm behavior from Refs. [59] and [62] and

report new swarms and new behaviors including swarm coexistence. In Section 4.3.2 we

perform 1760 MD simulations of different initial conditions and find that correlations in

angular momentum largely determine the trajectory of a swarm and can influence the steady

state swarm observed in coexistence regions. We perform 950 MD simulations of thermal

systems and find random thermal fluctuations can influence structural stability and provide a

means to switch between different swarms.

4.3.1 3D swarms

We observe the morphology of 3D Morse swarms depends upon the shape of the interaction

potential, as has been demonstrated in detail for 2D systems [47, 59, 103, 61]. We perform

10 independent simulations at each of 400 different combinations of two reduced interacting

potential parameters l = lr
la

and C = Cr
Ca

, with lr = 1, Cr = 1, and T ∗ = 0. Henceforth when

we specify values of C or l without specifying Ca or la, we take Ca = 1 and la = 1. Sim-

ulations are initialized with N = 600 particles randomly distributed in a 5σ cubic region

with random velocities, within a 20σ simulation box with periodic boundary conditions.

For most values of l and C in the range 0.1 ≤ l ≤ 2.0 and 0.1 ≤C ≤ 2.0 we observe one

of six distinguishable swarms: balls, shells, rings, spherical clumps, cylindrical clumps,

and tori (Fig. 4.1). We summarize the relationship between observed swarm morphologies
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(a) Ball (b) Shell (c) Ring 

(d) Spherical clump  (e) Cylindrical clump (f) Torus 
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A=0.130 A=0.690 A=0.674

Figure 4.1 Three-dimensional self-propelled swarms of N = 600 Morse particles at T ∗ = 0, α = 2,
γ = 1, and β = 0.5. Steady state swarms are observed in MD simulations after 2×106 time steps
have evolved for particles within a 20σ simulation box with periodic boundary conditions. Particles
are initialized with random velocities and are randomly distributed within a 5σ cubic region inside
the simulation box. Blue arrows indicate particle velocities. Orange spheres represent particle
positions, but the sphere diameters to not correspond to particle size. Scale bars are shown in the
upper right and alignment order A is shown in the lower left of each swarm. Swarm radii range from
0.06σ to 0.3σ (ball). (a) Ball (C = 1.5, l = 0.5) composed of concentric spherical layers of particles
and identical velocities. (b) Stationary hollow shell (C = 0.5, l = 0.5) composed of particles that
travel in circular orbits. (c) Stationary ring (C = 0.5, l = 0.5) with all particles traveling in the same
circular orbit. (d) Stationary spherical swarm (C = 0.6, l = 0.5) with clumps of particles that travel in
circular orbits. (e) Stationary cylindrical swarm (C = 0.6, l = 0.5) composed of clumps of particles
traveling about the same circular orbit. The particles within the clumps move in a cylindrical fashion,
but follow a complex path such that the cross-sectional shape of the cylinder appears to be time
dependent. (f) Torus (C = 0.6, l = 0.3) composed of particles that travel in circular orbits of different
radii, but share an axis of rotation. Particle paths within the torus span the entire volume: a particle
that is near the hole eventually moves to the outer part and back again. See Supplemental Material
videos 1-6 for movies of these swarms.
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and Morse potential parameters in Fig. 4.2. There are three primary types of observations

summarized in the phase diagram; regions where one swarm always self-assembles, regions

where two swarms coexist (e.g., “Torus-Ball” and “Shell-Ring”), and regions where no

coherent swarms emerge (“Mixture” and “Random” in Fig. 4.2). In the Random region the

repulsion portion of the Morse potential dominates, precluding swarm coalescence. In the

Mixture region there is an energy barrier to particle agglomeration, but occasionally small

(N = 2 to N = 10) translating clusters appear. From Ref. [21].

A large portion of Fig. 4.2 is represented by the ball structure (Fig. 4.1a). The ball

structure is only found for potentials that are repulsive when particle separation is small and

attractive when separation is large, similar to the Lennard-Jones potential. All particles in

a steady-state ball travel with an identical linear trajectory with speed v̄B = 2.0±0.0. The

structure of the particles within the ball, concentric spherical shells, is a minimum for the

potential energy function 4.1. Another significant portion of Fig. 4.2 is represented by the

shell swarm (Fig. 4.1b). The shell swarm is hollow, with individual particles traveling in

circular paths on the surface of a sphere and with no correlation between particle orbits.

Shells are formed when the attraction between particles is large, and have average velocity

v̄S = 1.993±0.003. Between the shell and ball regions of Fig. 4.2 we finds regions where

rings (Fig. 4.1c), clumps (Fig. 4.1d,e), and tori (Fig. 4.1f) are observed. Rings have average

velocity v̄R = 1.994±0.003, and differ from shells in that all of the particles share an axis

of rotation. Tori (v̄T = 1.89± 0.410) differ from rings in that not all particles travel in a

circular orbit of the same radius. Cylindrical clumps (v̄CC = 1.96±0.28) are similar to tori,

but particles are clumped and not uniformly distributed as they are in the torus. Spherical

clumps (v̄SC = 1.93±0.36) are similar to shells in that all particles travel in circular orbits

of the same radius, but the particles are not uniformly distributed. The average velocities

we report above correspond to the state points indicated in Fig. 4.1 and, except for the ball

swarms, can differ slightly for different state points.

The 3D phase diagram we report in Fig. 4.2 is qualitatively similar to the 2D phase

48



0.0

0.5

1.0

1.5

2.0
l=

l r/
l a

0.0 0.5 1.0 1.5 2.0
C=Cr/Ca

Ball
Shell

Ring
Mixture

Torus
Torus-Ball

Clumps
Random

Shell-Ring

Figure 4.2 “Phase diagram” for 3D stable structures assembled at values of 0.1 ≤ l ≤ 2.0 and
0.1≤C≤ 2.0, T ∗ = 0, α = 2, γ = 1, and β = 0.5. The ratio of repulsion to attraction strength C = Cr

Ca

and the ratio of repulsion to attraction length scales l = lr
la

determine the shape of the interaction
potential and the swarms observed at steady state. In the upper right quadrant (l > 1, C > 1) repulsion
dominates the potential, preventing organized clusters from assembling. In the lower right quadrant
(l < 1, C > 1) the repulsion is short-ranged and the attraction is long-ranged, resulting in translating
spherical balls. In the lower left quadrant (l < 1, C < 1) attraction dominates the potential and the
phase diagram is most complex, with shells, rings, tori, balls, and clumps all stabilized within narrow
ranges of l and C. In the top left quadrant (l > 1, C < 1) particles are attractive, but the repulsive
length scale dominates, giving rise to hollow shells.From Ref. [21].
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diagram calculated analytically in D’Orsogna et al.[59]. Both phase diagrams have regions

of instability in the upper right quadrant and show the richest swarm diversity along the

l/C = 1 line. We check our implementation reproduces 2D results from Ref. [59] and find

the expected swarms at corresponding state points: Clumps (N = 100, α = 1.0, β = 0.5,

lr = 0.5, la = 1, Cr = 0.6, Ca = 1), ring clumping (N = 100, α = 1.0, β = 0.5, lr = 0.5,

la = 1.2, Cr = 0.6, Ca = 1), rings (N = 100, α = 1.0, β = 0.5, lr = 0.5, la = 1, Cr = 0.5,

Ca = 1), and vortexes (N = 300, α = 1.0, β = 0.5, lr = 0.5, la = 2, Cr = 1.0, Ca = 0.5).

Some of the structures we report here are analogues of the two-dimensional swarms pre-

dicted in Ref. [47, 59, 103, 61]. The 3D ball is similar to the 2D coherent flock state reported

in Ref. [61], in which particles travel at identical velocities and reside in their potential

minima. The 3D hollow spherical shell corresponds to the 2D ring [47, 59, 103, 61], and

the 3D spherical clumps are analogous to the circular swarm of clumps in 2D [59, 61].

We also observe some differences between our 3D swarms and Morse swarms reported

in other work. At C = 1 and l = 0.2, conditions where a vortex is formed in 2D, we expect

to observe its 3D analogue, the torus. In our MD simulations we observe the torus as an

initial transient, but find that it eventually transforms into a ball. When not confined to a

2D plane, particles are able to reconfigure into a potential energy minimizing sphere and

achieve v∗ simultaneously at this state point. These findings are consistent with Strefler

et al.[62], where transitions between torus and ball swarms are reported when the Morse

potential is tuned to have a repulsion at small ri j.

It is not obvious that we should observe 2D rings in our 3D simulations and that they

should be stable across many (l,C) values, as seen in Fig. 4.2. We observe coexistence of

shells and rings at l = 0.9 and C = 0.9, which is interesting because swarm coexistence is

not reported in previous Morse swarm work. In a departure from equilibrium statistical

mechanics, we find that in the regions of swarm coexistence the probability of forming

one swarm can be biased by choice of initial conditions, which we discuss in detail in the

following section.
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4.3.2 Initial conditions

Here we consider three points on the phase diagram and investigate ways in which initial

conditions can be chosen to bias swarm formation. First we show that although swarms

may not assemble spontaneously in the Random region of Fig. 4.2, a pre-assembled swarm

can be maintained there. Second we show in a region of torus-ball coexistence that swarm

formation is not sensitive to initial conditions. Third, we show that while either initial

velocity correlations or initial spatial arrangement can bias swarm formation at the shell-ring

coexistence point (l = 0.5, C = 0.5), a metric that combines these measurements (alignment

order A, Eq. 4.7) is a good predictor for the final steady state.

At l = 1.7 and C = 1.2 we observe no ordered structure assembling from particles

initialized randomly within a 5σ cubic region centered within a 20σ simulation box with

periodic boundary conditions. If we instead initialize particles as a small shell that fits within

the attraction region of the potential, we observe that the shell shrinks or expands, depending

on its initial size, to another shell that becomes stable for the remainder of 1× 106 time

step simulations. The necessary condition for shell formation is that particles are initialized

within the attraction region and have sufficiently low kinetic energy that they will not escape

to the repulsive regime of the Morse potential. Indeed, we also find shells stabilized in

the Random region by initializing particles on a single point with random initial velocities.

By initializing the system as a shell, we find shells are stable within the region (l = 1.7,

C ≤ 1.5), which spans the Mixture region as well as the Random region.

Next we consider l = 0.8 and C = 1.0, where the ball and torus coexist in our simulations.

We perform simulations initialized as a ball, as a cylinder, and randomly distributed within

a 5σ cube, with 100 independent runs with different random initial velocities. At these

parameters, we find the probability of observing a toroidal swarm to be 6% for all three

initial conditions. In all cases that the torus does not form, a spherical ball forms instead and

translates through the simulation box.

Finally, we consider ring and shell coexistence at l = 0.5 and C = 0.5. We note that
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whenever we observe a ring, we also observe that it is preceded by a hollow shell which

then transforms into a ring. The shell-to-ring transition occurs over 4×104 time steps, and

can occur as many as 4×104 time steps after the shell has self-assembled. We perform sim-

ulations in which particle positions are initialized as a shell, sphere, cylinder, and randomly

distributed within a 5σ cube to investigate sensitivity to initial conditions at this state point.

For each initial condition we perform 100 runs with random initial velocities and record the

structure observed after 1×106 time steps (Fig. 4.3). When initialized as a shell, only 2%

of swarms transition into rings, a substantially lower percentage than the 98% of swarms

that form rings from spatially randomized initial conditions, all of which pass through a

hollow shell transition state. For each of the 100 runs initialized as a cylinder, all transition

into rings. For the runs initialized as balls, 12% transition into rings.

The sensitivity of swarm morphology to initial conditions we report is similar to that

reported in Ref. [18], in which magnetic, millimeter-sized disks are driven by an external

rotating permanent magnet to self-assemble ordered patterns on a liquid-air interface. A

variety of ordered patterns are formed as a result of competing magnetic attraction and

hydrodynamics repulsion as the disks spin in the fluid. The authors demonstrate that, de-

pending on initial conditions, a system of one large and nine small disks self-assembles into

two different stable configurations. Another similarity between our ring-shell coexistence

and the swarm coexistence in Ref. [18] is that swarm size can be increased as self-propulsion

is increased. In the system of 10 equally-sized disks from Ref. [18], two different ordered

patterns can self-assemble and interconvert. While we observe transitions from shells to

rings, we never observe the reverse transition. The one-way conversion we observe is

interesting because the ring has neither a lower potential energy nor higher entropy than the

shell, though the particles are traveling at slightly more constant velocities. The smaller

energy dissipation in the ring associated with more constant velocities is consistent with the

hypothesis of Grzybowski et al. [18] where lower dissipation enhances swarm stability.

We find as a shell transforms into a ring the axes of rotation for the individual particles
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Shell: 2%
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Random: 98%
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0.22 0.01 

Figure 4.3 Four initial conditions and their probabilities of transitioning to a ring. The shell
and cylinder initial conditions have radii of 0.062. The ball has a radius of 1.35 and the random
configuration is distributed randomly in cubic box with side length of 5. Ring transition probabilities
are calculated from 100 independent runs performed for each of the indicated initial condition with
T ∗ = 0, α = 1, γ = 1, β = 0.5, Cr = 0.5, lr = 0.5, Ca = 1, la = 1, and N = 600 with random initial
velocities.From Ref. [21].
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Figure 4.4 Probability of a random shell transforming into a ring as a function of alignment order
A (Eq. 4.7) at T ∗ = 0, α = 1, γ = 1, β = 0.5, Cr = 0.5, lr = 0.5, Ca = 1, la = 1, and N = 600. The
blue line is drawn as a guide to the eye. Inset are representative alignment order trajectories for
swarms that form a shell (red) and ring (blue).From Ref. [21].

gradually align, resulting in cylindrical bands, the subsequent alignment of which results

in a ring. See Supplemental Material video 3 to view this transition. To investigate the

alignment of angular momenta further, we initialize 1000 random shells with random initial

velocities and run for 1×106 time steps. We record the initial alignment order A and the

final steady state swarm, and summarize the correlation between the two in Fig. 4.4. The

more the particle angular momenta are initially aligned, the higher the probability that the

shell would transform to a ring. In particular, Fig. 4.4 shows that if a shell experiences an

instantaneous A greater than 0.15 we would expect it to transition into a ring.

We perform additional simulations with three different spatial initializations and two
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velocity distributions and observe the initial A trajectories in detail. Simulations are ini-

tialized as the random, ball, or shell arrangements from Fig. 4.3 with either a random

Gaussian velocities of mean 2 and standard deviation 1, or velocities drawn from a ring

swarm (velocities parallel with mean 1.994 and standard deviation 0.003). We then run 10

independent 0.5-million-step simulations for each of the six cases and record the number

of rings formed. The average A over initial 1×104 step trajectories for these six cases are

shown in Fig. 4.5. We see here that the combined choice of spatial arrangement and velocity

distribution determine the initial A trajectory, which can predispose a swarm to give rise to a

ring vs. a shell. In all cases where the A trajectory has a positive slope after 2000 steps, A

increases past 0.15 and rings result. If the initial A trajectory is sufficiently low, as was the

case for one random initial condition initialized with velocities from a ring, the A trajectory

can begin above 0.15, but dip below and stay below, resulting in a shell. The three instances

of Ball initial conditions with random velocities resulting in a ring have slightly positive A

slopes that eventually cross A = 0.15 after a few hundred-thousand steps.

In summary, the sensitivity of steady state swarm morphology to initial conditions is

not uniform across the state space sampled in Fig. 4.2. In some regions we find swarm

formation to be robust to initial conditions, while in others we find both spatial correlations

and velocity correlations can have an impact on the rates of swarm formation. For the case of

the shell-ring coexistence in particular we find that alignment order A, a metric that combines

velocity and spatial correlations in its measurement of angular momentum correlations,

provides predictive capabilities between the two competing swarms. The combined choice

of initial positions and velocities determine whether A shall increase or decrease initially,

and whether this trajectory stabilizes above or below 0.15 determines the proportion of rings

observed. In regions where we observe sensitivity to initial conditions, we also expect to

observe sensitivity to random noise, which we explore in the next section.
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Figure 4.5 Initial time evolution of the alignment order A averaged over 10 independent runs for
six different combinations of initial arrangements and initial velocities. The particles are spatially
initialized either randomly within a 5σ cube, within a 2.7σ ball, or on a 0.062σ shell within a 20σ

cubic simulation box with periodic boundary conditions. Velocities are initialized from a Gaussian
distribution with mean 2 and standard deviation 1 (random~v) or drawn from the ring velocity dis-
tribution with mean 2, standard deviation 0.15, and z-component = 0 (parallel~v). The number of
observed rings after 1×106 time steps are shown in parentheses. Error bars are plotted every 2000
steps and denote one standard deviation.
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4.3.3 Noise

In this subsection we perform simulations at T ∗ > 0 to investigate how thermal fluctuations

can influence the formation of swarms. We find in general that for T ∗ > 0.20 the attractive

forces between particles are not large enough to stabilize ordered swarms anywhere in the (l,

C) range reported in Fig. 4.2. The highest temperature at which a swarm can be assembled

at a particular state point (the order-disorder transition temperature) depends upon the shape

of the interaction potential and the initial conditions for self-propelled particles, and is an

interesting area of future study. Here we focus on the torus/ball and ring/shell coexistence

regions and find that increasing temperature stabilizes one swarm over the other, as long as

T ∗ is below the order-disorder transition temperature.

At Cr = 0.9, lr = 0.6, Ca = 1, and la = 1, a parameter combination at which tori are

found, increasing temperature can transform a torus swarm into a swarm shaped like a

bumpy sphere. We begin with a pre-assembled N = 600 torus and gradually increase the

noise intensity from 0 to 0.08 and then reduce the intensity back to zero with a change of

δT ∗ = 0.01 every 1 million time steps. We find that when T ∗ > 0.03 the torus transforms

into a bumpy sphere, which translates randomly throughout the simulation box. As the noise

intensity is reduced to zero, the bumpy sphere transitions back to a torus. This noise-induced

transition from stationary swarm to mobile swarm and back again is qualitatively similar

to the transition reported in Strefler et al. [62]. As in Ref. [62] we find the velocity of the

translating bumpy sphere scales with T ∗. Our observations of torus stability differ slightly

from those of Strefler et al., where stable tori are found at Cr =Ca = lr = 0.5, la = 2, and

T ∗ = 0. At that state point we find the torus always transitions into a ball after 4× 105

steps.

To investigate the sensitivity of ring/shell formation to thermal fluctuations we perform

100 independent MD simulations at each temperature from T ∗ = 0 to T ∗ = 0.008 at incre-

ments of δT ∗ = 0.001. Here, α = 2, γ = 1, β = 0.5, l = 0.5, and C = 0.5. Particles are

initialized randomly within a 5σ cubic region within the 20σ simulation box with periodic
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Figure 4.6 Probability of shell (red) and ring (blue) formation as a function of T ∗ at α = 2, γ = 1,
β = 0.5, Cr = 0.5, lr = 0.5, Ca = 1, la = 1, and N = 600. 100 independent runs are performed at
each noise level, with particles initially randomized in a 5σ cube within a 20σ cubic simulation box
and are evolved for 1×106 time steps. Error bars denote one standard deviation.From Ref. [21].

boundary conditions and simulated for 1×106 time steps. We find that the probability of

assembling a ring decreases as T ∗ increases (Fig. 4.6), undergoing a sharp transition at

T ∗ = 0.003, above which shell self-assembly is enhanced.

We also observe the rings formed at T ∗ > 0 are no longer flat, but cylindrical. We

perform additional simulations initialized from a ring configuration and ramp temperature

from T ∗ = 0 to T ∗ = 0.008 by a step increase in temperature of δT ∗ = 0.001 every 1×106

time steps, followed by a reverse ramping back to T ∗ = 0, for a total of 16×106 time steps.

We perform these simulations for swarms of size N = 100, N = 200, N = 400, and N = 600

and find that cylinder height increases linearly with T ∗ from T ∗ = 0.001 to T ∗ = 0.007

(Fig. 4.7). Furthermore, we find that by normalizing the cylinder height by the cylinder

diameter, this trend is independent of swarm size (Fig. 4.7). When T ∗ > 0.007, cylinders
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Figure 4.7 Normalized cylinder height Λ as a function of dimensionless temperature T ∗ and num-
ber of particles N. Particles are initialized as a ring with random velocities. α = 2, γ = 1, β = 0.5,
Cr = 0.5, lr = 0.5, Ca = 1, and la = 1. Λ are averaged over 10 simulation snapshots and over 10
independent simulation runs, where the snapshots are the last 10 at 1×104time step increments. The
standard deviations of Λ are less than 3% of the mean values and are not shown.From Ref. [21].

transition into hollow shells. This transition can be used as part of a reversible sequence of

steps to convert rings into cylinders into shells and back into rings (Fig. 4.8). We find that

by dropping the temperature from T ∗ = 0.008 to T ∗ < 0.007, a shell will transform into a

ring or cylinder (depending on the temperature) if its instantaneous alignment order A is

sufficiently large (Fig. 4.4).

4.4 Driving forces

Swarm formation in self-propelled particles can be considered as a perturbation to equi-

librium self-assembly. In the limit that α → 0 and β → 0, Eq. 4.2 becomes the traditional
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Figure 4.8 Mechanisms of structural transitions among shells, rings, and cylinders. Increasing the
temperature of a ring causes it to transition into a cylinder of increasing height. At large enough
T ∗, cylinders transition into hollow shells. The transformation of a hollow shell into a cylinder or
ring requires not only that the temperature be decreased below T ∗ = 0.007, but also that an instan-
taneous fluctuation in alignment order is sufficiently large to initiate the transition. The transition
involves the shell polarizing into cylindrical bands, which align eventually turning into a cylinder
with noise-dependent height or a ring if the noise is zero.From Ref. [21].
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Langevin equation modeling Brownian motion, from which equilibrium distributions of

configurations can easily be sampled. From the systems studied here with nonzero α and β ,

we observe the formation of swarms over a wide range of Morse potential shapes, but for

which the variational principle controlling structure formation is not simply minimization of

a traditional (e.g. Helmholtz) free energy. In fact, the question of what general variational

principles governing the behaviors of driven systems is a challenging and unanswered

one [26]. Here we discuss how the swarms studied in this work are both similar to and

different from structures formed via equilibrium self-assembly as a possible step towards

answering this question.

The two most relevant driving forces for steady-state swarm formation are the balance of

conservative forces between neighboring particles and the simultaneous achievement of the

optimal velocity. All of the swarms we observe are comprised of particles traveling at, or

nearly at, v∗. In the case of ball swarms, these driving forces are relatively decoupled, with a

potential energy minimizing structure that is stationary in reference frame moving at v∗. In

the case of ring, shell, clumps, and tori the two driving forces are not so cleanly decoupled,

and particles in these swarms have velocities that vary over time with averages near v∗. For

these swarms with stationary centers of mass, the centripetal forces from particle rotation

are balanced by the conservative forces between particles. It is straightforward to predict the

size of the shell and ring swarms by equating these forces.

If these structures were emerging in non-dissipative equilibrium systems we would

expect structures with lower free energy (lower potential energy and higher entropy) to

be more stable. Energetically, the ring and shell have nearly identical potential energy

(Uring = −88010.46, Ushell = −88012.56). Entropically, there are more ways to arrange

particles on a shell than there are ways to arrange particles around a ring of the same diame-

ter. Considering only the free energy of a swarm we would expect shells to be more stable

than rings, which is inconsistent with our observation that rings never transform into shells.

Perhaps there exists an “extended” free energy that can be written for self-propelled swarms
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that provides predictive capabilities. Previous work by Schweitzer et al.[102] provides a

promising direction for such a development. The free energy would be extended in the

sense that it adds additional non-equilibrium driving forces to a well-known equilibrium

ensemble free energy. For the systems we study here, it seems natural that this extended

free energy should include α , β , and γ , as these parameters provide the deviation from a

standard equilibrium simulation. Because these terms describe the work put into the swarms

and the dissipation of energy to the surrounding bath it follows that the free energy extension

should incorporate dissipation.

Derivations for the functional form and demonstration of such an extended free energy

are beyond the scope of the current work, but are an exciting challenge with important

implications for theories of non-equilibrium self-assembly. Regions of parameter space

in which structures coexist provide test-cases for points at which extended free energies

should equate, therefore models such as the propelled Morse particles studied here are ideal

candidates for theory development. The co-existing states in experimental systems such as

in Ref. [18] can be used to compare and validate the theory.

4.5 Conclusions

We have performed extensive GPU-enabled simulations of self-propelled swarming particles,

characterizing the structures that can be assembled over a wide range of parameters that tune

the Morse interaction potential in three spatial dimensions. The diversity of the swarms sta-

bilized in this system, their coexistence regions, and their sensitivity to thermal fluctuations

(noise) highlights the need for efficient computer simulations with which parameter space

can be explored and detailed experiments performed. We observe behaviors that are marked

deviations from equilibrium self-assembly, including swarm coexistence and sensitivity to

initial conditions, but our results suggest that modifications to equilibrium statistical mechan-

ics approaches may have predictive capabilities. We propose a way forward, combining the
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swarms found in regions of coexistence as test cases for extended free energy development.

Finally, the diversity of structures we observe here and the demonstrated control over their

morphology may have immediate implications in the exploitation of swarms of practical

interest.
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Chapter 5

Self-assembly of Self-Rotated Particles

5.1 Introduction

Active matter is a rapidly growing branch of non-equilibrium soft matter physics with

relevance to fields such as biology, energy, and complex systems [45]. In active matter,

dissipative, steady-state structures far-from-equilibrium can emerge in systems of particles

by converting energy to particle motility [44, 45]. Recent works reported novel collective

behavior, not possible with passive matter, such as giant number fluctuations [46], cluster-

ing [14], swarming [59, 21], fluid-solid phase separation of repulsive disks [110, 63, 15],

and collective rotors [111]. Effective interactions emerging between hard, self-propelled

particles were shown to cause phase separation and coexistence [112, 113, 63, 114, 115].

Experimentally, some of these phenomena were demonstrated by driving the system via

vibration [17, 116, 117], chemical reaction [85, 84], diffusiophoresis [115], and light ac-

tivated propulsion [16]. To date, most studies have focused on self-propulsion where the

constant input of energy to each particle goes directly into translational motion and hence

active forces couple to particle velocities. Converting the input of energy into rotational

motion, however, does not directly influence translational motility, and couples only to the

particles’ angular momentum. We denote such a coupling of active driving forces to angular

velocity as active rotation.

Active rotation may be achieved by various methods, e.g. external magnetic fields [18,

118, 19] and optical tweezers [119, 120, 121]. Biological organisms, such as dancing
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algae [122] and clusters of sperm cells [123], can spin naturally. Certain self-propelled

anisotropic shapes exhibit circular motion [111, 124]. Rotating particles submersed in a

fluid experience hydrodynamic interactions that can be attractive or repulsive through the

formation of vortices [18, 118, 125]. Collective phenomena involve synchronisaton and
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Figure 5.1 (a) Clockwise (‘A’) and counterclockwise (‘B’) spinners. (b) The ratio of translational to
total kinetic energy κ indicates the presence of a phase transition (ω0 = 1). Error bars are smaller than
the symbols. The inset shows the critical density φc as a function of noise T ∗. (c) Non-equilibrium
phase diagram based on simulation data [22] at T ∗ = 0. Lines indicate phase boundaries. Insets show
representative snapshots as the system approaches steady state. A and B spinners in the fluid (crystal)
phase are shown in dark (light) blue and orange (red) colors. 50:50 mixtures are used in (b,c). From
Ref. [23].
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self-proliferating waves [126], and vortex arrays [127]. Beyond these examples, however,

the potential use of active rotation for pattern formation and self-organization in driven

systems is only starting to be investigated systematically. In this Letter, we show with

computer simulations that effective interactions emerge between spinners rotating in the

same direction, and between oppositely rotating spinners, due to the active motion itself.

The result is phase separation, rotating crystals, cooperative and heterogeneous dynamics

leading to superdiffusive motion, and complex phase behavior. The contents of this Chapter

are being published and on the arXiv [23].

5.2 Model and methods

Our spinner particle is modeled by four peripheral disks of radius σ rigidly attached to a

central disk of radius 3σ at each of the compass points, Fig. ??(a). The system is governed

by a set of coupled Langevin equations for translation and rotation,

M
∂~vi

∂ t
= ~Fi− γt~vi +~FR

i , (5.1)

I
∂ωi

∂ t
= τ

D
i + τi− γrωi + τ

R
i , (5.2)

where M, I,~vi, and ωi have the usual meanings of mass, moment of inertia, and translational

and angular velocity. Each spinner is driven by an external torque τD
i =±τD of constant

magnitude, but with positive sign for clockwise spinners (‘A’) and negative sign for coun-

terclockwise spinners (‘B’). Spinners are hard particles that interact via a purely repulsive

contact potential, resulting in internal forces ~Fi and torques τi. Energy is dissipated through

translational and rotational drag coefficients γt and γr. Noise is included via random forces

~FR
i =

√
2γtkT0R(t) and torques τR

i =
√

2γrkT0R(t) that model a heat bath at temperature

T0. Random forces are applied directly to the centroid of each spinner. R(t) are normalized

zero-mean white-noise Gaussian processes, which assure thermodynamic equilibrium in the
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absence of the externally applied torques.

Langevin Dynamics simulations are performed on graphic processing units (GPUs) with

our HOOMD-blue software package [91, 92] using up to 16,384 spinners (81,920 disks),

half of which are driven to always spin clockwise, and the rest driven to spin counterclock-

wise. Each disk is treated as a point mass m located at the center, which means M = 5m

and I = 64mσ2. The hard contact is modeled via a Weeks-Chandler-Andersen potential

with parameter ε [128] shifted to the surface of the spinner such that its range is a small

fraction of the particle diameter, thereby approximating “perfectly” hard shapes. In the low

Reynolds number limit, the translational and rotational drag coefficients are related through

the Stokes-Einstein and Stokes-Einstein-Debye relations. If we approximate the spinner as a

disk of effective radius σ̃ , the relations for disks give γr =
4
3 σ̃2γt = 100σ2γt . We choose σ

and ε as the basic units of length and energy, respectively. The unit of time is t0 =
√

mσ2/ε .

Thermal noise is specified by T ∗ = kT0/ε . Throughout the paper, we report results only for

τD/ε = 1 and γt/(t−1
0 m) = 1 unless stated otherwise.

5.3 Non-equilibrium phase behavior of spinners

5.3.1 Uneven distribution of energy

Following the random initialization of particle positions and orientations, and equilibration

with active rotation turned off, the time evolution of the active system is characterized by an

approach towards steady state.

Energy input to rotational motion by the applied torque is transferred to the translational

degrees of freedom through collisions and dissipated by drag forces and torques. In steady

state, we observe that the energy balance κ = Etrans/Etotal between translational and total

kinetic energy converges. While the non-driven 2D system has κ = 2/3 as dictated by

the equipartition theorem, a value κ < 2/3 quantifies the non-equilibrium character of the

system. We analyze the behavior of κ as a function of density φ and noise T ∗. As shown
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in Fig. 5.2, at low density the driven rotational motion dominates translational motion

and κ → 0. With increasing density, the number of collisions increases and κ approaches

the equipartition value. Interestingly, we find a phase transition for densities in the range

0.25 < φc < 0.48.

For zero noise, the increase in κ is sharp, and possibly discontinuous, but becomes less

sharp as the noise increases. Based on the observation of a rapidly increasing length scale

in the pair distribution function gAB(r) of opposite spinners, we identify this transition as

the phase separation of the system into A-rich and B-rich domains. As shown in the inset of

Fig. 5.2, increasing the noise from zero at fixed values of applied torque initially lowers the

critical density φc, because particle collisions that facilitate the onset of phase separation

are more frequent. If the system is too noisy, phase separation is hindered and the trend is

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6

T * = 1

T * = 0.5

T * = 0.1

T * = 0

0.32

0.34

0.36

0.38

0.4

c

0.0 2.5 5.0

T *

Figure 5.2 The ratio of translational to total kinetic energy κ indicates the presence of a phase
transition (ω0 = 1). Error bars are smaller than the symbols. The inset shows the critical density φc as
a function of noise T ∗. The system consists of 16384 spinners driven by 50:50 ratio. From Ref. [23].
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reversed: the system phase-separates at a higher density as the noise increases.

For the remainder of the chapter, we follow Refs. [129, 111, 127] and neglect the role

of noise by setting T ∗ = 0. In this limit, the dynamics of the system is fully characterized

by two parameters, the density φ and the low-density dimensionless steady-state angular

velocity ω0 = τDt0/γr, which is a measure of activity. Fig. 5.1(b) shows the φ -ω0 non-

equilibrium phase diagram at (or near) steady state. Movies of the spinner dynamics can be

found in the Appendix B.

5.3.2 Frozen state

At low densities, we find a frozen (absorbing [130] or dilute [127]) state, where the spinners

are fixed in place and rotate at angular velocity ω0. Translational motion does not couple

to rotation, the system is non-ergodic, and drag forces dominate. The few collisions that

occur from the initial kinetic energy die out quickly due to dissipation. The frozen states are

reproducible for different initial conditions, including ones with high potential energy such

as when the spinners are compressed into a central core of a high local density (0.7). Note

that our frozen state is different from those observed under oscillatory shear [131] or with

self-propulsion [132], where particles (translationally) retrace their trajectories.

5.3.3 Mixed and phase-separated fluids

At higher density, the frequency of collisions increases. When the time interval between

collisions is sufficiently short, i.e. comparable to the characteristic time m/γt for energy

dissipation, non-stop chained collisions can sustain the transfer from rotational to transla-

tional energy. Depending on ω0, we observe a transition to either a mixed fluid or a phase

separated fluid. While spinners with high activity, ω0 ≥ 1.2, display two transitions (first to

the mixed fluid, then phase separation), these transitions merge for lower ω0. The spinners

of a mixed fluid can have similar κ to that of a separated fluid but without exhibiting any
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Figure 5.3 Fractions of rotating crystal domains co-existing with fluid. The crystal (fluid) are
colored red (orange) for B spinners and light (dark) blue for A spinners. The crystal spinners arrange
in square lattices. From Ref. [23].

ordered pattern or collective motion. In contrast, spinners in a phase-separated fluid de-mix

and move collectively as discussed in details in Chapter 5.4.

5.3.4 Rotating crystals

As the density increases further, the spinners organize into crystals that rotate collectively

about their centers of mass;particles no longer rotate about their individual centers. The
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Figure 5.4 Crystal fraction χ(t) for a system of 16384 A spinners at density φ = 0.6 for three
levels of activity. χ achieves a steady state value, demonstrating the coexistence of fluid and rotating
crystals. The data points are averaged over 10 runs. From Ref. [23].

critical density decreases as the activity increases in agreement with [110, 63], but not

with [15]. If crystallization occurs before phase separation is completed, the crystal size

is limited by the phase separating domains. The angular velocity of a crystal decreases

with radius, similar to rotors assembled from polymers by self-propelled bacteria [133].

Dynamically, this phase represents a new kind of active crystal, a rotating crystal distinct

from the two previously reported types, traveling and resting crystals [134].

The crystal is detected and characterized by a simple order parameter that captures its

square-lattice structure Fig. 5.3. The order parameter is the averaged cosine of the four times
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of the angle of a gear with a neighbor and has the following form

Xo =
1
n

n

∑
j=1

cos(4θi j) (5.3)

where θi j is the angle between the body vector, connecting between the central disk and the

peripheral disk 1, of the spinner i and a neighbor j. n is the number of neighbors of spinner

i. Neighbors of a spinner are within a distance of 8σ . The formula 5.3 can be expressed in

term of θ as following

Xo =
1
n

n

∑
j=1

(1+8cos4(θi j)−8cos2(θi j)) (5.4)

In order to characterize the crystal growth, we define a parameter, χ , that measures the

fraction of spinners in crystals in the total number of spinners. Plot of χ over time for a

system of a single component,e.g. A, shows that the crystal grows rapidly to a fluid-crystal

co-existing steady state Fig. 5.4. At steady state, the crystal exists in many rotating domains

of different sizes, which are never observed to merge into one single domain after 105to.

Interestingly, crystal growth rates and steady-state crystal fractions depend on the magnitude

of the driving torque: the larger the torque, the faster and larger crystals grow. Practical

applications of the rotating crystal are largely imaginative at this point but one could poten-

tially utilize crystals rotating at controllable speeds to scatter lights at different frequency to

create interesting photonic properties.

5.4 Effective interaction between spinners.

5.4.1 Spinodal decomposition

We measure the time evolution of the characteristic domain size. Domains coarsen over time

with t1/3 as shown in Fig. 5.5 by determining the first zero of gAB(r) (Appendix B). The

peak height of the structure factor scales as t2/3(Appendix B). Together, these behaviors are
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typical for spinodal decomposition of a binary mixture in two dimensions in the absence

of hydrodynamics [135, 136, 137, 138]. The domain size growth exponent is similar to

that measured in a biological system of self-organizing mussels [139], but different from

that found in other systems of self-propelled colloids [63, 114]. The fact that a system of

driven particles interacting solely via excluded volume follows spinodal decomposition is

interesting and raises a question about the origin of the phenomenon, which is investigated

in details in the following sub-sections
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Figure 5.5 Domain size growth for a 50:50 mixture of 16384 spinners at φ = 0.5 and ω0 = 1
during phase separation (φ = 0.5). Each data point is averaged over 10 runs and has a standard
deviation smaller than the markers. From Ref. [23].
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Figure 5.6 Comparison of (a) translational diffusion coefcient D and (b) mean-squared displace-
ments for an (B) intruder in a matrix of 100 opposite (A) spinners. The spinners are driven by ω0 = 1.
Curves in (b) at different densities are offset for clarity. Each data point in (a) is averaged over 10
runs. From Ref. [23].

5.4.2 Density-dependent motility

The origin of the phase separation is investigated with a system of one B spinner (the

intruder) in a dense matrix of A spinners. We compare their mean-squared displacements

MSD = 〈|~xi(t)−~xi(0)|2〉 in Fig. 5.6. While matrix particles have higher translational kinetic

energy as seen in the ballistic regime t < t0, the curves cross and diffusion of the intruder is

faster for t� t0.

The MSD of the matrix has a plateau indicative of caging. We extract the translational

diffusion coefficient D and plot it as a function of density in Fig. 5.6(a). With increasing

density, diffusion speeds up and the gap between intruder and matrix spinners widens. This

differs from a common finding for self-propelled particles that the diffusion coefficient of

particles in the dense phase of the phase-separated states decreases to zero as the density

increases [15, 113, 114]. Thus, the theory developed for self-propelled particles such as

in [112, 113, 114] may not be applicable to actively rotated particles and highlights the need

for a more comprehensive theory.
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Figure 5.7 Effective demixing potential obtained for NA = 100 and NB = 2 at ω0 = 1 and different
densities. The data is sampled every 100 time steps over 100 million time steps after the system
reaches a steady state. From Ref. [23].

5.4.3 Effective Demixing Potential

We investigate the effective interaction between NB intruders among NA matrix spinners

by mapping our non-equilibrium system to an equilibrium system of isotropic particles

interacting with pair potentials. The mapping is achieved via the effective demixing (ED)

potential, which describes the preference for demixing [22]. The ED potential quantifies

the difference in kinetic behavior between like spinners and unlike spinners in the limit of a

vanishing density of intruders, nB = NB/(NA +NB). It is defined as

UED(r) =−kT lim
nB→0

log
(

gBB(r)
gBA(r)

)
. (5.5)
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Figure 5.8 Typical interaction of two opposite spinners (a) and two like spinners (b). Like spinners
tend to “stick” longer during a collision than opposite spinners, leading to an effective attraction
between them.

Here, gBB and gBA are type-specific radial distribution functions. The definition guarantees

that in the absence of external torque, UED(r) = 0. In the presence of external torque we find

an attractive well in UED(r) of several kT 1 that deepens with increasing density, Fig. ??(d).

At the critical density φc = 0.35, the well depth is about 2kT . We note that this value of

interaction strength is comparable to the critical attraction strength for the vapor-liquid

transition of 2D Lennard-Jones liquids [140] and to the critical reduced interaction in the

2D Ising model, 2.269kT [141].

The microscopic origin of the effective interaction can be understood by comparing

pairs of neighboring spinners. Consider the interaction of two opposite spinners, Fig. 5.8(a).

The “teeth” of the gear-like spinners move together for part of the cycle, synchronizing

their rotation when in contact due to steric restriction, and then move apart. Now consider

the interaction between two spinners rotating in the same direction, Fig. 5.8(b). Since the

1The temperature T appearing in the ED potential is not related to the noise T ∗.
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tangential velocities at contact are in opposite directions, the spinners momentarily “stick”

sterically. They cannot spin about their individual axes and instead transfer their angular

momentum momentarily to the pair and rotate together for part of the cycle before moving

apart. The consequence is a longer contact time for like spinners compared to opposite

spinners, breaking the symmetry between otherwise identical particles and resulting in an

emergent, effective attraction (repulsion) between like (unlike) neighboring spinners.

5.5 Collective dynamics at interfaces and transport

5.5.1 Heterogeneous dynamics

As spinners phase separate, they form interfaces separating regions of opposite rotation.

The short-time diffusion ∆~x(t) =~x(t)−~x(0) is visualized for a density where phase separa-

tion, Fig. 5.9, and also crystallization, Fig. 5.10, occur. We observe that the translational

dynamics of the spinners is heterogeneous and cooperative, in particular at the interfaces.

While diffusion is Brownian in the bulk, spinners move linearly along the interface in a

super-diffusive manner with MSD ∝ t2.

As phase separation progresses, the total length of the interfaces decreases, reducing

the number of super-diffusive spinners. Interestingly, we find that both the translational

and rotational kinetic energies are uniform across the demixed fluid (Appendix B). This

means spinners at interfaces do not move faster, but instead move farther in a given time

window. Such dynamical behavior is reminiscent of the string-like dynamical heterogeneity

in supercooled liquids and dense colloids [142, 143].

5.5.2 Interfacial transport

To investigate the possibility of extracting useful work from the active motion of the spinners,

we add inactive test particles to the system. An inactive particle has the same shape, size,
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Figure 5.9 (a)-(d) Vector plots show the short-time diffusion ∆~x(t) in systems of N = 576 spinners
with different numbers of intruders: (a) one, (b) 2%, (c) 10% and (d) 50%. The snapshots (a)-(c) are
zoomed in. We use ω0 = 1 and densities of 0.5. The observation time windows are 10t0.
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