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Figure 5.10 Vector plots show the short-time diffusion AX(¢) in systems of N = 16384 spinners at
density of 0.6 where crystallization occurs. The system is driven by @y = 1 and 50:50 ratio. The
observation time windows is t = 100¢.
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Figure 5.11 A system of 566 active spinners and 10 inactive spinners at density of 0.5. (a) Tra-
jectories of inactive particles (green) at density of 0.5 and (b) their probability density close to an
interface for different densities. The light blue spinners are driven by wy = 1.

and hard interaction as a spinner, but is not subject to a rotational driving torque. From
their trajectories, Fig. [5.11[(a), we observe that inactive particles diffuse to the interface and
get dragged along the interface by the current of the active spinners. This observation is
confirmed by the density of inactive particles as a function of the distance x to the interface,
p1(x), relative to their density in the bulk, p;(eo), which is strongly peaked at the interface,
Fig.[5.11}b). The preference of inactive particles to sit at the moving interface increases

with density and could be utilized for collective transport at mesoscopic scales.

5.6 Discussion

The phase separation of rotationally driven active particles is realizable in experiment pro-
vided the particles are permanently assigned a rotation direction while being free to move
translationally and collide with one another. Applying torques to photo-sensitive spinners
through optical trapping is one promising route [121]] and may even be possible on
the colloidal scale where the dynamics can be observed through the microscope [119, 16].
In many situations, however, a restriction of the rotation direction is not possible. This

is in particular the case for three-dimensional systems. Our observation of an emergent
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preferential interaction between like rotating particles suggests a possible alignment [[126] of
the rotation axes in three dimensions. Whether actively rotated particles in three dimensions
can indeed synchronize spontaneously into such a nematic spinner phase (alignment of the
rotation axes) remains to be seen.

We also observe phase separation, rotating crystals, and collective transport at the in-
terface with Brownian Dynamics simulations, where the inertial term is absent and the
dynamics is dominated by viscous drag forces. Our choice of drag forces in the Langevin
simulations induces particle motion comparable to Brownian dynamics [22]]. This means
inertia is not essential for the phenomena reported here and raises interesting questions
about the presence or absence of local conservation of angular momentum. Finally, we note
that the dynamics and interaction of actively rotated particles in a fluid can be influenced by
hydrodynamic interactions [18, 118} 126], which are not taken into account here. We believe
the tendency towards phase separation and synchronization is robust, if hydrodynamics
induces an effective attraction between like rotating particles as in [[122, [125]]. Studying the
phase behavior of externally driven or self-rotating (internally driven) spinners in a fluid

environment remains an interesting open question.
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Chapter 6

Self-Rotated Particles in Confinement

6.1 Introduction

This Chapter presents and discusses preliminary results of systems of driven spinners con-
fined in a boundary. The research has been carried out in collaboration with Prof. Kyle
Bishop’s research group, an experimental group from the Pennsylvania State University.
The research aims to 1) realize some of the results discovered in Chapter [5|and 2) explore a
burgeoning research direction in confinement of active particles.

The effect of confinement on system dynamics and steady-state configurations has been
studied in various contexts, from colloidal packing, liquid crystals, self-assembly of block
copolymers, and microfluidic devices, to bacteria swarming and active matter. For example,
colloids pack into novel polyhedral structures unlike minimum-potential clusters when
confined in emulsion droplets [[144] or pack more efficiently in sheared parallel plates [[145].
In addition, confinement can induce a long-ranged pairwise-additive attraction between
similarly charged colloidal spheres in equilibrium [146]. Colloidal crystals confined on
a curved surface can self-heal their topological defects by a collective re-arrangement of
the particles in response to the added interstitial [147]. Liquid crystals in confinement
have been shown to impart ordered nanophases of surfactants on the boundary [148]]. For
polymeric systems, hard and soft confinement has been utilized to engineer copolymers
into a variety of morphologies [149, 150, 151]. A single DNA experiences a crossover

between two dynamical regimes as a result of changing its confined nanochannel width
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Figure 6.1 (a) An initial condition of 16 spinners of 50:50 mixture driven by @y = 1, in a rigid
circular boundary at area density ¢ = 0.43. (b) and of 142 interior spinners of 50:50 mixture driven
by @y =1, in a flexible boundary at ¢ = 0.5. The boundary 36 spinners are connected by FENE
springs (green) and are driven clockwise (blue). One spinner is colored red to track to motion of the
boundary.

[152]. When confined within a 2D boundary, swimming bacteria exhibit interesting dynam-
ics induced by hydrodynamic interactions, including concentration-dependent collective
behavior [153, and preferential surface attachment [156]. Similarly, active rods
confined in a boundary aggregate to the confining walls [63]], exhibiting local ordering and
swirling [116]], and anomalous density fluctuation [17].

The research to date shows that confined systems can give rise to interesting, novel
structures and properties not found in bulk systems. The studied systems have been limited
mostly to hard surfaces serving as physical boundaries; however in a few examples, in which
flexible boundaries and interacting boundaries were used, even richer physics
have been discovered. In this Chapter, we investigate the behavior of self-rotated spinners
confined by fixed and flexible boundaries. Our preliminary results show that fixed-boundary

systems behave, in many ways, similar to the system in Chapter [5 and flexible-boundary

systems give rise to new, rich phenomena.
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Description Symbol Value Unit

Radius of the Satellite Disks o 10.8 mm
Spinner mass m 4.1 g

Spinner moment of inertia I 2970 g-mm’
Spinner steady-state angular velocity @, 2.3 (14.5) Hz (rad/s)
Characteristic angular acceleration time scale , 7.6 S
Rotational drag coefficient 7. =1/t 390 g-mm’s™
Applied torque ¥~ @y, 5.6 mN-mm

Figure 6.2 The experimental parameters of the spinners (Figure excerpted from a Bishop group’s
report).

6.2 Model and method

A typical confined system consists of a boundary and interior spinners. The interior spinners
are modeled in the same way as in Chapter [5] A fixed boundary is a circular ring made of
WCA beads that do not move (Fig.[6.1[(a)). The flexible boundary is made of spinners that
are linked by springs each spring consists of six WCA beads bonded by finitely extensible
nonlinear elastic (FENE) springs (Fig. [6.1|(b)). The force of a FENE spring relates to the

distance between its ends, r, by

k
Frene(r) = T (2 _’;L)2 (6.1)
R

0

where £k is the stiffness and R, is the maximum distance. If R, = o, a FENE spring becomes
a typical linear spring. The interactions between boundary spinners and interior spinners is
WCA. A typical system is initialized in a square boundary with density of 0.5 (Fig.[6.1[(b)).
In all cases of flexible boundaries, the initial square boundary turns into a spherical one as

its surface area is minimized and the boundary spinners can also be driven.
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6.3 Systems of fixed boundaries

6.3.1 Experimental results

The experimental group realized the fixed boundary version of the system in Chapter [3]
by using plastic discs floating on an air hockey table Fig.[6.3] The discs were fabricated
by a 3D printer and rotated by blowing air through their holes in an azimuthal direction.
The boundaries have been made “soft” by re-directing the air to blow horizontally from
the boundaries; this is to avoid particles “frozen” into immobile states by sticking to the
boundary. The physical parameters of a spinner are summarized in Table

The rotation of a spinner is characterized by a dimensionless parameter, @wyt,, where
Wy = Ty—l: is the terminal angular velocity and ¢, = % is the time constant (eq. . This
parameter also characterizes the importance of inertia relative to friction: for wpt, < 1,
friction dominates, and for @yt > 1, inertia dominates. For the experimental system, inertia
dominates and wyt, = 109. However, for the simulational system in Chapter[5 wyz, = 0.64
and thus friction dominates. Nevertheless, we will show in subsequent sections that the
characteristic behavior of the steady-state system is the same in both regimes.

At an intermediate density (¢ = 0.43), the demixing behavior was observed for even
a small system of 16 particles. The system time evolution is summarized in the Fig. [6.4]
The demixing is measured by an association coefficient, c() that is defined as the ratio of
the mean pairwise distance between like colors (white-white and blue-blue) to the mean
pairwise distance between all unlike colors (white-blue). The system is initialized as a least
associated (or most random) state with ¢ = 1.1 and evolves to a nearly complete demixing
with ¢ = 0.6. Despite the small system size, the system still occasionally tends toward a
more ordered, de-mixed state.

At higher density (¢ = 0.45), the system “locks”: the particles cannot rotate because
they become kinetically stuck to each other and the boundary. This locked state could be

a result of 1) the fixed boundary and/or 2) not strong enough driving torque that allows
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(b) 12

0 20 40 60 80 100 120
time (min)

Figure 6.3 (a)lmages of spinner system (¢ = 0.43) at regular intervals of 10 min. (b) Association
coefficient c¢(¢) for the same system; the solid red line is a 120 s moving average and the dashed
red line is the mean. Back points are from randomized disc assigments; as expected the mean of
these data (dashed black line) is nearly 1. The insets show (from left to right) minimum association
(c = 1.1), random association (¢ = 1) and maximum association (c = 0.6) (Figure excerpted from a
Bishop group’s report).

particles to unlock.

6.3.2 Simulational results

In order to 1) confirm the experimental results and 2) guide further experiments by exploring

a broader parameter space, we perform simulations as described in Section [6.2]
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Figure 6.4 a) Simulation of 16 spinners at area density ¢ = 0.43 and wyt, = 109, which cor-
responds to the experimental system in Fig. [6.3] The plot shows the instantaneous association
coefficient ¢ every 1000 time units. The system tends toward demixing as it evolves from a minimally
associated state (c = 1.1) to a strongly associated state (c = 0.79). We also observe random remixing
and demixing in the system as indicated by large fluctuations in ¢ as expected for a small, finite
system. b) The average association coefficient and its standard deviation calculated over 100 runs of
different random initial conditions. Other parameters are the same as in a). The system exhibits large
fluctuations as one would expect from this small system size.

Mapping to experimental parameters

7P1

W. For

We employ the dimensionless parameter suggested by the Bishop group, wyt, =
wpt << 1 friction dominates; for wy?, >> 1 inertia dominates. We achieve the experimental
value awot, = 109 by setting % = 1 and 7”2 = 1.7 in our simulations. The moment of inertia
is fixed by the geometry to I = 64mc? and the translational friction coefficient is kept at

% = 1. Equating the simulation time unit #y to the experiment time unit 7, = % =64ty =7.6s

gives tp = 0.119s.

Confirming experimental results

We performed simulations that map to the experiment in Fig. [6.3]and found good agreement
in the results as shown in Fig. [6.4] Specifically, the system starting from a minimally
associated state occasionally evolves toward strongly associated states. At area density
¢ = 0.48 and 18 spinners, we observed a ‘locked’ state similar to that observed experimen-

tally. In addition, we simulated 16 spinners at ¢ = 0.43 and wy?, = 109 with one particle

87



t=120 min

Figure 6.5 Simulation of 100 spinners at ¢ = 0.43 and wpt, = 109. The system exhibits a clear
trend towards phase-separation.

immobilized. Part of the system became locked, while the remaining particles rotated at the
optimal velocity @y. The immobilized particle acts as a nucleation site to immobilize others.
We hypothesize that the system will become entirely locked,if there are more immobilized
particles or if the system is at higher density; this hypothesis remains to be tested. The
locked states represent a loss of ergodicity of the system and can be attributed to the fact the

boundary is fixed.

Further simulations

Because of the influence of the fixed boundary, we expected the spinners to exhibit clearer
phase-separation and even crystallization in a larger system. To confirm this expectation,
we first simulated a system of 100 spinners at density ¢ = 0.43. Indeed, demixing is much
more pronounced as shown in Fig.[6.5]

However, at a system size of 100 particles, we did not observe crystallization even at den-
sity ¢ = 0.5. Even when we increased the driving torque by a factor of 10 to @yt = 1090,
still no crystallization was observed. Only when the system size is increased to 1000
particles, did we observe rotating crystals after 200 min in experimental time units.

Based on our preliminary simulations, we would recommend the following next steps

for experiments to realize the phenomena reported in Chapter [5|and our PRL manuscript
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Figure 6.6 Simulation of 1000 spinners at ¢ = 0.5 and wpt, = 109. The system is initialized in
a disordered state but exhibits phase-separation (left) and the formation of rotating crystals over
time (right).

[23]:

1. Larger systems: We expect a stronger trend towards phase-separation at larger system
size (on the order of 100 spinners). Even larger systems are needed to observe rotating
crystals (in the order of 1000 spinners). As the system size increases, the influence of
the fixed boundary on the system dynamics will decrease.

2. Stronger torques: A stronger driving torque would minimize the chance of the system
getting stuck and speed up the dynamics at the same time.

3. We believe that the following directions might be interesting for experiment:

(a) Add an inactive spinner that is not driven externally and compare its dynamics to
the dynamics of active spinners. We observe the same super-diffusive behavior
[23]] that we observed at the boundary between phase-separated domains, around
the edge of the crystal domains (Fig. [6.6)) in these smaller systems; the spin-
ners translate faster around the crystals. Studying dynamics of inactive particle
would help elucidate the phenomenon and demonstrate potential applications in
transport.

(b) Study a one-component system. This allows the formation of rotating crystals at
smaller system sizes and a better study of the crystal growth. Simulation work
along these lines is being carried out by Spellings and Glotzer.
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t=6 min t=12 min t=20 min

Figure 6.7 Time evolution of 142 spinners from 0 to 10000#y or 20 minutes with a non-driven
boundary initialized as in Fig.[6.1(b). The interior spinners are driven oppositely with CW:CCW
ratio of 50:50 and by @y = 1. The interior spinners tend to demix into domains of like particles that
seem to influence the system shape. The boundary rotates randomly (as opposed to exhibiting net
rotation)

6.4 Systems of flexible boundaries

Because a flexible boundary is made of spinners connected by FENE springs, its spinners
can be driven in similar manner to the interior ones. This ability can give one various ways
of engineering interaction between a boundary and its interior and even with other confined
systems. In the following sections, we will explore two main scenarios: non-driven and
driven boundaries. Within the driven-boundary scenario, we explore cases of boundaries
comprised of multiple spinner types (CW and CCW). The preliminary results show demixing

and complex collective dynamics.
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6.4.1 Non-driven boundaries

We simulated a system of 142 interior active spinners and a flexible boundary of 36 passive
spinners, initialized at a density ¢ = 0.5. The interior spinners are driven oppositely by a
CW:CCW ratio of 50:50 while the boundary spinners are not driven but are free to rotate.
As one would expect, the system demixes into domains of like spinners similar to the bulk
and fixed-boundary systems (Fig.[6.7). The boundary rotates randomly and adopts different
shapes depending on the demixing domains of the interior spinners. At ¢ = (.2 minutes, the
interior spinners are still well mixed, and the boundary has a circular shape. But at ¢ = 20,
when the interior spinners demix into stripes, the boundary adopts an ellipsoidal shape. This
ellipsoidal shape could be due to the decomposition of the spinners into stripes, breaking

the circular symmetry, but this hypothesis requires testing.

6.4.2 Driven boundaries

Active boundary of spinners rotating in a single direction

In this case, the spinners of the boundary are driven clock-wise while those of the interior
have a 50:50 ratio of CW:CCW. As a result, the interior spinners demix into annuli of like
particles as shown in Fig. The boundary rotates in the clockwise direction, the same
as the direction of its individual spinners. This directional rotation of the boundary is due
to the imbalanced numbers of driven spinners in the two opposite directions within the
interior. Because the boundary spinners rotate, they push against interior spinners to move
forward (Fig. [6.9) and thus, on average, the boundary will rotate in the direction of its
majority spinner. As the boundary spinners and the spinners in contact with the boundary
push against each other, they move in opposite directions. The inner spinners move about
the annuli axis in the same direction. The demixing here is consistent with the finding in

Chapter [5]that particles of the same type tend to aggregate.
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Figure 6.8 A snapshot of the system after 10000 time units. The boundary spinners are driven
clockwise and the interior spinners driven with a 50:50 ratio of oppositely rotating spinners. For
both types of spinner, @y = 1. The system phase separates into a core of (yellow) particles rotating
counter-clockwise surrounded by spinners rotating oppositely. At the interface, the interior particles
collectively translate in a counter-clockwise circular motion. The boundary rotates clockwise. The
red arrows show translational motion directions.

Active boundary with 50:50 ratio of oppositely rotating spinners

In this case, the spinners of the boundary and the interior each are comprised of a 50:50 ratio
of oppositely rotating spinners. The spinners demix into what we call a dynamical Janus
[157]] particle: like spinners occupy each half of the circular domain and are in contact with
the part of the boundary with opposite spinners (Fig. [6.10). The spinners circulate in their
domains in opposite directions. The formation of such configuration is supposed to be a
result of the system avoiding frustration in the spinners collective motion. If the halves were

to switch positions, collective motion would not possible because like particles push each
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Net motion

#

=—>

Reaction force

Figure 6.9 A schematic drawing of how a net boundary rotation arises from boundary spinners
pushing against the interior particles. The reaction forces on the CW boundary spinners resulting
from particle contacts dominantly point in the directions that cause the entire boundary to rotate CW.

other but are blocked by particles in the opposite half. The Janus configuration is not always
perfect because some particles occasionally diffuse along the boundary to the opposite half
and back to their own. When this diffusion happen, the boundary seems to rotate in one

direction. In the perfect configuration, the boundary exhibits no directional rotation because

the numbers of spinners are balanced.

Boundary of 67:33 ratio and interior spinners of 33:67 ratio of oppositely rotating
spinners

In this case, the spinners of the boundary have a 67:33 ratio of CW to CCW of oppositely
rotating spinners while the interior have the opposite ratio 33:67. This set-up is to test
whether assigning the boundary and the interior spinners by opposite ratios would again
yield a Janus-like configuration where particles at the surfaces are of opposite types. Indeed,
we find Janus-like configurations, of course with imbalanced halves, in this case as well

( Figl6.1T). We note, however, that the migration of the interior minority particles along the
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Figure 6.10 A snapshot of the system after 5000 #y. The boundary and interior spinners each con-
tain a 50:50 ratio of active spinners driven in opposite directions. The interior spinners separate into a
dynamical Janus-like particle. Each domain of like particles are in contact with the oppositely-drive
boundary. Translational motion of the interior spinners is shown by the red arrows. The spinners
form two oppositely vortices, while the boundary does not exhibit any net rotation. The system
does not always maintain a perfect Janus-like shape as a few spinners occasionally diffuse into the
opposite domain at the boundary and translate along the it.
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Figure 6.11 The interior spinners are driven oppositely by CW:CCW ratio of 67:33 while boundary
spinners are driven oppositely by CW:CCW ratio of 33:67. (a) A snapshot of the system after 10000
time units. The interior spinners separate into a dynamic, imbalanced Janus-like particle. Each
domain of like particles is in contact with the oppositely-driven boundary. The spinners’ translational
motion is illustrated by the red arrows. (b) Yellow spinners occasionally diffuse into the blue domain
and translate along the boundary.

boundary is much stronger in this case as compared to the case where both the boundary
and the interior have 50:50 ratio. It seems that the system fluctuates between two competing
steady states: the Janus and the annulus ( Fig.[6.8). We learned that when the boundary
spinners are driven in only one direction, the system tends to form annuli of like particles.
In this case, the majority spinner of the boundary (yellow) tends to drive the system to form
an annulus configuration; however, having not enough like-rotating (yellow) spinners in
the interior to spread along the boundary prevents it from doing so. In the following case,
we will see when the majority spinners of the boundary and interior are of the same type,

annulus configurations are favored.

Boundary and interior spinners each with 67:33 ratio of active spinners

In this case, the spinners of both the boundary and interior have a 67:33 ratio. The system
forms an annulus of blue spinners (majority type) with yellow ones contained in the core
(Fig.[6.12). The boundary rotates in clock-wise direction, the driving direction of a blue

spinner. This configuration is structurally similar to that in Fig. [6.8] but is dynamically
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Figure 6.12 A snapshot of the system after 10000 time units. The boundary and interior spinners
are driven by 67:37 ratio. Instead of phase-separating into a Janus-like particle as one might expect,
the interior spinners phase-separate into a moving core surrounded by oppositely particles that form
complex vortices. The core seems to keep the same position relative to its boundary while the
boundary is rotating clockwise. The spinners’ translational motion is illustrated by the red arrows.

much more complex. Instead of moving in one direction as in Fig.[6.8] the blue spinners
(majority type) move in two vortices that are separated by the two different portions of the
boundary. The bigger vortex contains the core of yellow particles, which is rotating in the

same direction of the vortex.

6.5 Discussion

Although the results in this Chapter are preliminary, they help qualitatively confirm the
phenomena reported in Chapter [5|by the experiments. The results also suggest remarkable

richness in the behavior of systems with flexible boundaries and open up further exciting
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(a) The boundary spinners are driven (b) The boundary and interior spin-
in a single direction and the interior ners each are driven oppositely with
spinners are driven oppositely with CW:CCW ratio of 50:50.

CW:CCW ratio of 50:50.

(d) The boundary and interiors spin-
ners are driven oppositely with
CW:CCW ratios of 33:67 and 67:33,
respectively.

(¢) The boundary and interior spin-
ners each are driven oppositely with
CW:CCW ratio of 67:33.

Figure 6.13 Summary of all studied cases with flexible boundaries. A driving torque of wy =1
was used for all cases.

97



research. Quantifying the dynamics of the systems should be the immediate next steps and is
likely to reveal how the boundaries influence the collective behavior of the interior particles.
Quantities such as mean square displacement, kinetic and potential energy distributions,
and “sticking” time between a pair of particles at different positions, are some important
parameters to be investigated.

Beside exploring the current cases more deeply, other scenarios could be interesting to
consider. One example is a system of driven boundary with non-driven or partially-driven
interior spinners. The relevant questions are how a driven boundary influences the interior
and is there a minimal composition of driven particles required to achieve curtain behavior?
Secondly, using different patches of driven/non-driven spinners for a boundary one could
potentially impart different kinds of dynamics in the interior. For example, can a dynamical
quaternary Janus particle [[158]] be formed, instead of the binary version seen in the existing
cases, by using a boundary of four alternatively driven patches? Lastly, varying parameters
such as driving torque homogeneity and spring stiffness may impart interesting system
behavior as well.

Beyond understanding the behavior of a system, one could imagine employ each of
this flexibly confined system as molecular machines that can self-assemble or exhibit some
interesting collective behavior. For an example, how a system of many rotating, flexible cells
like that in Fig. behave could be interesting: will they exhibit any effective interaction
when the system is dense enough as individual driven spinners exhibit in bulk systems
(Chapter [5))? What if different halves of the cells are rotating oppositely? One could also
potentially utilize the collective rotation in imparting directional translation by setting up
racks that the rotating cells can integrate and run on. A mixture of the dynamical Janus
particles could exhibit interesting phenomena because they are much like normal Janus
particles but, in addition, can interact dynamically with neighbors through their rotating

spinners and boundaries.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

Understanding how systems behave in regimes far from equilibrum is considered to be a key
to realizing tomorrow’s generation of smart materials that can adaptively and controllably
change their properties on command. The knowledge can also be beneficial to a host of
other fields, including distributed control of unmanned vehicles, assembly of mobile sensor
networks, and transport, where engineering useful collective behavior out of individual
agents or particles is important. Computer simulations hold a key to advancing the body of
knowledge and high-performance computing is of particular importance. A vast parameter
space and a lack of a governing theory all make high-speed computer simulations a necessary
first step in a unified effort of tackling the challenge.

In this thesis, by utilizing high-performance codes, we make contributions to the field on
three fronts. First, swarming behavior of interacting self-propelled particles in 3D (Chap-
ter ) has been investigated, yielding several new findings. A wide range of 3D swarming
structures, many of which are reported for the first time, were discovered and characterized
as a function of their interactions. The understanding of how the interaction potential
influences system dynamics and morphology could potentially be helpful in engineering
swarming systems with long-range interactions. We also reported novel properties of a
system of SPP that includes sensitivity to initial conditions, swarm co-existence and different

mechanisms of structural switching. Second, we reported the first systematic study of SRPs
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(Chapter [5)) that not only proposes a new alternative mechanism for driving a system out
of equilibrum but also presents a remarkable wealth of dynamical and structural behavior.
We found that a mixture of SRPs that are driven oppositely with a ratio 50:50 of CW:CCW
exhibits spinodal decompositions in a manner similar to the equilibrium equivalent. In
addition, we observed rotating crystals, cooperative and heterogeneous dynamics leading to
super-diffusive motion, and complex phase behavior. This rich behavior of a simple model
not only suggests even more exciting opportunities to investigate more complex systems but
also presents an alternative route in understanding far-from-equilibirum behavior. Lastly,
our preliminary work in confined systems (Chapter [6) of active particles demonstrates
promising results and many interesting possibilities for engineering novel applications such
as molecular machines. In addition, the confined systems are both simple and elegant
enough to serve as experimental test beds for developing theory of far-from-equilibirum

self-assembly.

7.2 Outlook

As the field is moving fast and gaining attention rapidly, there are many opportunities
to explore. Below is a list of research directions that, we believe, are both exciting and

immediately significant to advancing the current state of the art.

7.2.1 Self-assembly of driven shapes

The gear shape studied in Chapter [5]is a good example of how shape, when combined
with activity, can give rise to rich behavior. Although we believe that the shape is not
inherently responsible for the spinodal decomposition but rather it serves as a mechanism
for energy transfer through collisions, shapes can greatly influence the system dynamics
and morphology. For example, the square-lattice structure of the rotating crystals is a result

of the gear shape. Imagine replacing the gear shape by other shapes such as triangles,
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squares, hexagons or a mixture of different shapes: what sort of structures will the system
adopt? How do shapes influence the nature of phase-separation and crystals growth? Is the
cooperative and heterogeneous dynamics reported in Chapter [5|unique to geared shape?

Similar questions may be asked regarding the role of shapes in self-propulsion.

7.2.2 Confined systems of active particles

Beyond the future work outlined in Chapter [6.5] confined systems of SPPs or of mixtures
of SPPs and SRPs may be interesting. Studies of systems of self-propelled hard rods and
bacteria confined in hard boundaries reported a tendency to aggregate to walls [65] and
concentration-dependent collective behavior [[153) 1154, [155]]. This suggests that confined
systems of SPPs with flexible boundaries has the potential to be even richer in behavior.
SPPs in a mixture with SRPs could impart motility to the (rotating or non-rotating) flexible
cells (discussed in Chapter [5)) and therefore make them behave in many ways similar to
biological cells such as amoeba. Studies of such artificial “amoeba” could be very interesting

and have far-reaching practical implications.

7.2.3 Active modifiers

How do a number of active particles change the behavior of an otherwise well-understood
equilibrium system? An early study [159] has shown that doping a mixture of hard spheres
with a small amount of active particles assists the coalescence of crystalline clusters and
speeds up the crystallization dynamics at high densities. Systems of self-propelled hard
spheres also exhibit a glass transition at a higher densities [[160] and significantly shifted
freezing densities [110] compared to equilibrium freezing of passive particles. Of course,
not only the nature of the phase transitions could be influenced, but the dynamical and
structural properties of the phases could potentially be modified by activity and shapes

of the added particles. Examples of future studies in this direction include 1) a mixture
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of passive shaped particles and smaller SPPs acting active “depletant” and 2) a confined
system of passive shapes with a small number of SPRs. Potential outcomes include faster
self-assembly, self-assembly with better yield, novel structures and new collective dynamics

compared to the non-active equivalents.

7.2.4 3D systems

All the aforementioned directions of research could be done for both 2D and 3D. Most of
the studies so far in active matter have been conducted in 2D. In 3D, however, a system
may behave differently, especially for SRPs because going from 2D to 3D gives them two
more rotation axes. Therefore, it will be harder for 3D versions of the SRPs in Chapter E]
to synchronize their rotational axes compared to in 2D. But it would be interesting if 3D
SRPs align their rotational axes to form what we call a nematic spinner phase in which the
spinners’ rotations are synchronized. Furthermore, since most practical applications are in

3D, investigating 3D systems would potentially have wider-ranging implications.
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Appendix A
Supplementary materials for Chapter 4

A.1 Codes

The code for performing LD can be found in open-source package HOOMD Blue. Codes
for simulating self-propelled particles and implementing the Morse potential can be found
at codeblue.umich.edu repository, under SPPForce and SPPPotential plug-ins. A typical

Python script for running a system of self-propelled particles is as following.

from hoomd_script import x
from hoomd_plugins import SPPPotential

from hoomd_plugins import SPPForce

import os

import random

#Packing fraction 0.03925 corresponds to 600 l—diameter partilces \
in 20x20x20 box

system = init.read_xml(filename="data_hoomd_3DN600ri.xml”)
random . seed (12345)

T=1.0

for p in system. particles:
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mass = p.mass;

vx = random. gauss (0 ,T/mass)
vy = random. gauss (0,T/mass)
vz = random. gauss (0 ,T/mass)
p.velocity = (vx,vy,vz)

# Intial run to randomize the particles
#assign WCA potential for the initial runs
sly = pair.slj(r_cut=2%x(1.0/6.0))

slj.pair_coeff.set(’A’, A’ ,epsilon=1.0,sigma=1.0)

#integrate . mode_standard (dt=0.005)
bd=integrate .bdnvt(group.all (), T=1.0, seed=12345)
bd.set_params (T=1.0)

#randomize the particles

run (le5)

#disable 1j interaction

1j.disable ()

# Set noise level for the system

bd.set_params (T=0)

#apply morse potential
morse = SPPPotential . pair. morse_soft_core(r_cut=5.0)

morse . pair_coeff.set(’A’, A’, Cr=0.5, Ir=0.5, Ca=1.0, la=1.0)
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# assign self —propelled force
sppforce = SPPForce.force.sppforce ()

sppforce.set_coeff (1,0.5)

# dumping outputs

mol2=dump.mol2 (filename="particle”,period=1e5)
dump.dcd(filename="particle .dcd”,period=1e4)
xml2=dump.xml(filename="particle”,period=1e5)

xml2.set_params (velocity=True, acceleration=True)

analyze.log(quantities =[  potential_energy ’,
“kinetic_energy ’, temperature '], period=1000, \

filename="full .log )

dump.bin(filel="restart.l.bin.gz”, file2="restart.2.bin.gz”, \

period=1eSd)

run(le6)

A.2 Videos

The videos of the swarms can be found on the Supplemental Materials of the paper [21]],
hosted by aps.org website http://pre.aps.org/supplemental /PRE/v86/11/

e0ll136.
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Appendix B
Supplementary materials for Chapter

B.1 Codes

The code for performing LD can be found in open-source package HOOMD Blue. Codes
for BD and simulating self-rotated particles can be found at codeblue.umich.edu repository,
under BDIntegrator and SPPTorque plug-in. A typical Python script for running a system of
self-rotated particles is listed below, followed by the code for calculating the structure factor

in Chapter 5.

# hoomd stuff
from hoomd_script import =
from math import sqrt

from hoomd_plugins.SPPTorque import spp_torque

# numeric stuff

import numpy as np
import math as m

import scipy.stats as sp

import random

# other stuff
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import os, sys

# intialize system

sys=init.read_xml(” gear16384 _phi04 .xml”)

# Assigning potential

#hardcore by WCA
sly = pair.slj(r_cut=2%x(1.0/6.0))

# Standard slj for all particle types
slj.pair_coeff.set(sys.particles.types,sys.particles.types,\
epsilon=1.0, sigma=1.0)

slj.set_params (mode="shift”)

nlist.reset_exclusions ([ "body’, ’bond’])

# Creating groups

rigid=group.rigid ()

#Dump outputs

#set dump xml

xml = dump.xml(filename="dump”, period=1e5)

xml.set_params (position=True, velocity=True)

#set dump bin
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dump.bin(filel ="restart.l.bin.gz”, file2="restart.2.bin.gz”,\

period=5¢6)

#set log of thermodynamic quantities
loggerl=analyze.log(quantities=["potential _energy ’,\

“kinetic_energy ', temperature '], period=1e5, filename="full.log’)

# Intergrator

integrate . mode_standard (dt=0.001)
bdnvt=integrate .bdnvt_rigid (group.all (),T=1,seed=12345)
#Set gamma

bdnvt.set_gamma(’A’, gamma=1, gammar=100)

bdnvt.set_gamma(’B’, gamma=1, gammar=100)

# enforce 2D simulation

update . enforce2d ()
#### Simulation parameters
#Driving torque

torque=100

#BD temperature or thermal noise

noise=0

#time to shrink box

#shrink steps=1le5
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#time to run at a constant density

t_steady=21e6

#fraction of bodies rotating CW

CWfrac=.5

#H#H#HAH#H#S#H#H## Simulation runs

# adding self —rotated torques
spptorque = spp_torque.spptorque (group=rigid)
spptorque .set_coeff (0,0, torque ,1,CWfrac)

#Set noise

bdnvt.set_params (T=noise)

# log msd for all rigid bodies
msdl = analyze .msd(filename="msd_all.log’, groups=[rigid],)\

period=1e3)

# create group of bodies rotating CW

tag_max = int(CWfracx16384)

CW = group.tag_list(name="B”, tags = range(0,tag_max))
OCW = group.tag_list (name="B”, tags = range(tag_max, \
16384))

# log msd for bodies rotating CW

msd2 = analyze.msd(filename="msd CW.log’, groups=[CW],\
period=le4)
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msd3 = analyze .msd(filename="msd.CCW.log’, groups=\
[CCW], period=1le4)
#set dump mol2

mol2 = dump.mol2(filename="dump”,period=5¢e6)

#set dump dcd

dcd = dump.dcd(filename="dump.dcd”,period=1e5)

#run Imil steps at intial box size

run(t_steady)

The code for calculating the structure factor in Chapter 5 is listed below.

#include <iostream>
#include <fstream>
#include <vector>
#include <string .h>
#include <math .h>

#include <stdlib .h>
//#include ”fftw3.h”
#include <stdio .h>
#include <gsl/gsl_math.h>

#include <gsl/gsl_sf_bessel .h>

#define PI 3.1415926
#define anint(x) ((x >= 0.5) ? (1.0) : (x < =0.5) ? (—=1.0) : (0.0))
#define sign(x) ((x >0) ? (1.0) : (x < 0) ? (—=1.0) : (0.0))
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using namespace std;

struct Particle
{
int particlelD;
int visited;
double vx, vy, vz;
double x,y,z;
double ax,ay,az;
int cell; // cell index that the body containing the particle
// belongs to
int partype;

}s

class system_of_par
{
public:
vector <Particle > particle;
double xcm,ycm,zcm;
double vcemx,vcemy, vemz;
double acmx,acmy,acmz;

double Ix, ly,lz ;
}s

void read_hoomd(charx filename , system_of_par& sys)
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// this function read hoomd xml output file , and output
/la system of particle

int numparticle ,parID =0, posmarkl ,posmark2,\
numberlengthl ,numberlength2 ,11 ,12;

double vx,vy,vz,x,y,z,ax,ay,az,lbox;

char s1[100],s2[100],type[10], tempstr1[10],tempstr2[10];
char* num;

string bufferl , buffer2;

size_t lengthl ,length?2;

ifstream inFile (filename);

// Extract the box dimension from the xml file in line

// number 4
/1 Just to skip 4 lines in the file — refer to an xml file
for (int 1=0;1i<4;i++)
inFile . getline (s1,100);
bufferl = sli;
l1=bufferl .length ();
for (int j=1;j<=11;j++)
{

if (bufferl .compare(j,2,”1x7)==0)
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posmarkl=j+4;

if ((bufferl.compare(j,l1,”\””)==0)&&(j <=15))
{

posmark2=j ;

numberlengthl=posmark2—posmarkl ;
lengthl=bufferl .copy(tempstrl ,numberlengthl , posmarkl );
tempstrl [lengthl]="\0";

lbox = atof(tempstrl);
sys.lx=lbox;
sys.ly=lbox;

sys.lz=1lbox;

// Extract the box dimension from the xml file in line

// number 4

/!l Just to skip 1 more line in the file to the line number 5
/1 —refer to an xml file
for (int 1=0;i<Il;i++)

inFile . getline (s2,100);
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buffer2 = s2;

12=buffer2 .length ();

for (int j=1;j<=12;j++)

{
if (buffer2.compare(j,3, num”)==0)
{
posmarkl=j+5;
}

if (buffer2.compare(j,1,”\””)==0)
{

posmark2=j ;

numberlength2=posmark2—posmarkl ;
length2=buffer2 .copy(tempstr2 ,numberlength2 , posmarkl );
tempstr2 [length2]="\0";

numparticle = atoi(tempstr2);

Particle p[numparticle ];
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// Read cordinates
for (int i=0;i<numparticle;i++)
{
inFile >>x>>y>>7;
pli]. particleID=parlD;
pli].x=x;
plil.y=y;
pli].z=z;
pli]. visited =0;
parID+=1;

pli]. partype=1;

/!l Skip a number of lines to jump to the velocity portion in

// the xml file

// for (int i=0;i<numparticle+5;i++)
for (int 1=0;i<3;i++)
{

inFile . getline (s1,100);

/!l Read velocity
for (int i=0;i<numparticle;i++)

{

inFile >>vx>>vy>>vz
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pli].vx=vx;
pli].vy=vy;
pli].vz=vz;

sys.particle . push_back(p[i]);

/« /] Skip another 2 lines to jump to the acceleration

// portion in the xml file

for (int 1=0;1<3;i++)
{
inFile . getline (s,100);

}
x/

void center_of _mass(system_of_par& sys)
{
/!l this function finds the center of mass of a system
sys .xcm=0;
sys .ycm=0;
sys.zcm=0;
sys.vemx=0;

sys.vemy=0;
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Sys
Sys
Sys

Sys

int

.vemz=0;
.acmx=0;
.acmy=0;

.acmz=0;

1, numofpar;

numofpar=sys. particle .size ();

for

{

(1=0;

SysS .Xcm

sys.ycm

Sys .zcm

SysS .vémx

Sys .vemy

Sys.vcmz

SysS .acmx

Sys .acmy

SysS .acmz

Sys
Sys
Sys
Sys
Sys

Sys

.Xcm /=
.ycm /=

.zcm /=

i<numofpar; i++)

+= sys.particle[i].
+= sys.particle[i].
+= sys.particle[i].
+= sys.particle[1].
+= sys.particle[i].

+= sys.particle[i].

numofpar;
numofpar;

numofpar;

.vemx /= numofpar;
.vemy /= numofpar;

.vemz /= numofpar;

118

+= sys.particle[i].x;
+= sys.particle[i].y;

+= sys.particle[i].z;

VX,
Vy
VZ,
ax;
ay ;

az;



sys.acmx /= numofpar;
sys.acmy /= numofpar;

sys.acmz /= numofpar;

double distance (Particle pl, Particle p2, double Lx, double
\Ly, double Lz)

{

// Calculate distance between two particles in box by \
/1 Lx—Ly—Lz

double dx, dy, dz, r;

dx = pl.x — p2.x;
dy = pl.y — p2.y;
dz = pl.z — p2.z;

// Counter potential pbc effects

dx —= Lx % anint(dx / Lx);
dy —= Ly % anint(dy / Ly);
dz —= Lz % anint(dz / Lz);

r = sqrt(dx *x dx + dy * dy + dz x dz);
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return r;

/!l function ifSameParType determines whether two bodies

/] are same type

// Bodies with idices greater than a threshold than they rotating
//CCW, otherwise CW

bool ifSameParType ( int i, int j, int separator)

{

if ( (1> separator) && (j > separator))

{

return true;

}
else if ( (i<= separator) && (j <= separator))
return true;

else

{

return false ;

unsigned int factorial (unsigned int n)

{
if (n == 0)

return 1;
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return n x factorial(n — 1);

// real coordinate distance between two particles are smaller
//or equal than half of the box size
// from all 3 dimension
// 1f the coordinate distance between two particles
//'is greater than half of the box size
// then the distance needs to be accounted for periodic
// boundary condition
void boxWrapper(double& dx, double& dy, double& dz, \
double Lx, double Ly, double Lz)
{
// dx, dy, dz are coordinate distance and Lx, Ly, Lz
/1 are box lengths
if ((dx>=Lx/2) || (dx<=-Lx/2))

dx = dx — sign(dx)*xLx;

if ((dy>=Ly/2) || (dy<=-Ly/2))

dy = dy — sign(dy)*Ly;

if ((dz>=Lz/2) || (dz<=Lz/2))
dz = dz — sign(dz)xLz;

// Structure factor: classical way — reference to

/1l ?Computer simulation of liquids?”
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void structure_factor_1d (doublex r, doublex g, int nBinRdf,)\
int nBinStruc, double bulkDensity , doublex k, doublex S, \

double L)
{

int 1, j;
double dr = r[1] — r[0];
double kr, Jo;

// ofstream ofs;

// double fs = 1.0 / (r[1] — r[0]);
// double fspan = fs / 2.0;

// double dq = fspan / nBins;
/1ST0]=0;

for (i=0; i<nBinStruc; i++)

k[i] = 2«PI*i/L;

for (j=0; j<nBinRdf; j++)

{
kr = k[i] * r[j];
/l estimate zero Bessel function of first kind
Jo = gsl_sf_bessel_JO (kr);
S[i] += (g[j]—=1) % Jo * r[j]* dr;
}
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S[i] = 1+2%PIx bulkDensity* S[i];

/1l direct calculation: looping over all pairs of particles

void structure_factor(Particlex bodyArray, int numBody, int \
nBinStruc , doublex kx,doublex ky, double %xS2, double L)
{

double coskr, sinkr;

// Initialize wave vector

for (int 1=0; i<nBinStruc; i++)

{
kx[1]

ky[1i]

2xPIxi/L;

2xPIxi1i/L;

for (int 1=0; i<nBinStruc; i++)
for (int j=0; j<nBinStruc; j++)

{

coskr=0;
sinkr=0;
for (int n=0; n<numBody; n++)

{
coskr += cos(kx[i]xbodyArray[n].x +\
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ky[j]*bodyArray[n].y);
sinkr += sin(kx[i]*bodyArray[n].x +\

ky[j]*bodyArray[n].y);

S2[i][j] = (coskrxcoskr + sinkrxsinkr))\

/nmumBody ;

}

/%
void structure_factor (doublex r, doublex g, int nBins,)\

double bulkDensity)
{

int i, nc;
fftw_complex xout;

fftw_plan plan_forward;

nc = (nBins / 2) + 1;

out = (fftw_complex*)fftw_malloc(sizeof (fftw_complex) * nc);

plan_forward = fftw_plan_dft_r2c_1d(nBins, g, out, \
FFTW_ESTIMATE ) ;

fftw_execute (plan_forward);
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ofstream ofs;
double fs = 1.0 / (r[1] — r[0]);
double fspan = fs / 2.0;

ofs.open(”S_q.txt”7);

ofs << 7q\tS\n”;

for (1=0; i<nc; i++)

{

double q = i % fspan / nc;

out[i][0] /= nc;

out[i1][1] /= nc;

ofs << q << "\t” << sqrt(out[i][0] * out[i][O] + out[i][l] =\
out[i][1]) << std::endl;

}

ofs.close ();

fftw_destroy_plan(plan_forward);

fftw_free (out);

}
*/

/+ [/ Filon’s sine transformation
void structure _factor_1d (doublex r, doublex g, int nBins, \

double bulkDensity , doublex q, doublex S)
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{

cout << ”Ref: Filon’s sine transformation\n”;

int i, jJ;

double dr = r[1] — r[0];

ofstream ofs;
double fs = 1.0 / (r[1] — r[0]);
double fspan = fs / 2.0;

double dq = fspan / nBins;

double theta, sintheta , costheta, sintheta2 , costheta2,)\
theta2 , theta3;
double fourPI, alpha, beta, gamma, Se, So ;

fourPI = 16.0 % atan(1.0);

for (i=0; i<nBins; i++)
{

qli] = (i + 0.5) = dq;
theta = q[i] * dr;

sintheta = sin(theta);

costheta = cos(theta);
sintheta2 = sintheta % sintheta;
costheta2 = costheta x costheta;

theta2 = theta x theta;

theta3 = theta * theta2;
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if (theta < le—6)
{

alpha = 0.0;

beta = 2.0 / 3.0;

gamma = 4.0 / 3.0;

}

else

{

alpha = (1.0/theta3) x (theta2 + theta % sintheta x\

costheta — 2.0 % sintheta2);
beta = (2.0/theta3) % (theta % (1.0 + costheta2) — \
2.0 x sintheta *x costheta);

gamma = (4.0/theta3) *x (sintheta — theta x costheta);

}

/! The integral is g(r) * r for the 3D transform

// Do the sum over the even ordinates
Se = 0.0;
for (j=0; j<nBins; j+=2)

Se += (glj] — 1) = r[j] * sin(q[i] = r[j]);
// Subtract half the first and last terms: here g[0] = 0.0

Se —= 0.5 % ((g[nBins—1] — 1) % r[nBins—1] % sin(q[i] =x\

r[nBins —1]));
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// Do the sum over the odd ordinates
So = 0.0;
for (j=1; j<=nBins —1; j+=2)

So += (g[jl = 1) = r[j] * sin(q[i] * r[j]);

S[i] = (—alpha *x (g[nBins—1] — 1) % r[nBins—1] x \

cos(q[1] * r[nBins—1]) + beta * Se + gamma * So) x dr;

// Include normalizing factor

S[i] = 1 + fourPI x bulkDensity x S[i] / q[i];

/%
// Structure factor: Escobedo’s method
void structure_factor_1ld(vector<_vertex >& \

vertices ,
double Lx, double Ly, double Lz, \

vector<double>& q, vector<double>& S)

{

cout << ”Ref: Escobedo’s method\n”;
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int i, nNumBeads, x, y, z, nBins=5;

ofstream ofs;

vector<double> S, q;
double magq, magS, terml, term2, qdotr;

double twoPI = 8.0 % atan(1.0);

nNumBeads = vertices.size ();
for (x=0; x<nBins; x++)
for (y=0; y<nBins; y++)
for (z=0; z<nBins; z++)
{
if (x==0 && y==0 && z==0)

continue ;

magq = twoPIl x sqrt(x x X \

/ (Lx % Lx)\

+y*xy / (Ly « Ly) + z x z]\
/ (Lz x Lz));

q.push_back (magq);

0.0;

terml
term2 = 0.0;

for (i=0; i<nNumBeads; \
1++)

{
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qdotr = twoPI % (x / \

Lx % vertices[i].x\

+y / Ly x vertices[i].y\
+ z [/ Lz % vertices|[1].2);

terml += sin(qdotr);

term2 += cos(qdotr);

magS = (terml x terml +\
term2 * term2))\
/ nNumBeads;

S.push_back (magS);

ofs.open(”S_q.txt”);
ofs << ”q\tS\n”;
for (1=0; i<q.size (); 1++)

{

ofs << q[i] << "\t” << S[i] << std

ofs.close ();
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int main (int argc, char*x argv)

{
int nBinRdf,nBinStruc,ibin;
double *r,xg,xx,*xy,xz,*k,xkx,xky,*S,vb,dist,\
dr ,dx,dy,dz,r2;

system_of_par sysofpar;
int numparticle, ParPerBody=5, numbody;

double CWfrac;

ofstream outFilel , outFile2;

double Lx,Ly, Lz;

// get the file name and other input parameters
ifstream inFile (argv[1]);

// get the bin number for the rdf

nBinRdf = atoi(argv[2]);

// get the bin number for the struc

nBinStruc = atoi(argv[3]);

// percentage of bodies rotating CW

CWfrac = atof (argv[4]);

r = new double [nBinRdf];
g = new double [nBinRdf];

-
1l

new double [nBinStruc ];
kx = new double [nBinStruc];

ky = new double [nBinStruc];
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S = new double [nBinStruc];

//read the input file

read _hoomd (argv[1],sysofpar);

//number of particle
numparticle=sysofpar. particle .size ();

numbody = numparticle/ParPerBody;

int numbody CW = int (numbody*CWfrac+0.5);

int numbody CCW = numbody — numbody CW;

//box sizes

Lx=sysofpar.lx;

Ly=sysofpar.ly;

Lz=sysofpar.lz;

// Initialize vector x,y,z

x= new double [numparticle ];

y= new double [numparticle ];

z= new double [numparticle ];

dr = Lx/2.0/nBinRdf; //Lx=Ly

for (int i=0;i<numparticle;i++)

{
x[i]=sysofpar.particle[i].x;
y[i]=sysofpar.particle[i].y;

z[i]=sysofpar.particle[i].z;
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/!l creating vector of the center of masses

Particle * bodyCOM = new Particle [numbody];

int bodycount=0;

for (int 1=0; i<numparticle; 1++)
{
if ((i+1)%ParPerBody==0 )
{
bodyCOM [ bodycount]=\
sysofpar. particle[1i];

bodycount+=1;

// Calculate g(ibin)
for (int 1=0; i<nBinRdf; i++)
{
g[i] = 0.0;
r[1]=0.0;
}
for (int 1=0; i<nBinStruc; i1++)

{
S[i] = 0.0;
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k[i] = i#2%PI/Lx:
kx[i]=0.0;
ky[i] =0.0;

int indexi, indexj; \

// indices of the central disks of the gears

for (int 1=0;i<numbody—1;1++)

{

indexi = 1x*5+4;

for (int j=i+1;j<numbody;j++)
{
indexj = j*5+4;
dx=x[indexi]—x[index]j ];
dy=y[indexi]—y[index] ];

dz=z[indexi]—z[index] ];

boxWrapper (dx,dy,dz,Lx,\

Ly,Lz);

r2= dxxdx+dyxdy+dzx*dz;

dist = sqrt(r2);

ibin=(int)(dist/dr);
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if (ibin<nBinRdf)

{

if ( ifSameParType
(indexi ,indexj ,\
numbody CW=x5—1) )
glibin [+=2;
/1 else

/1 glibin]—=2;

double bulkDensity , factor , Nideal;

bulkDensity= (double)numbody/(LxxLy);

// factor = 4.0 = PI x pow(dr, 3.0) / 3.0; //for 3D
factor = PI x pow(dr, 2.0); // 2d
for (int 1=0; i<nBinRdf; i++)
{
r[i] = (i + 0.5 + 1) % dr/10; \

//dividing the radius by particle diameter

//vb = factor * (pow(i+1, 3.0) — \
pow(i, 3.0)); //for 3D

vb = factor x (pow(i+l, 2.0) — \
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pow(i, 2.0)); // 2d
Nideal = vb % bulkDensity;

gli] = g[i]*2 / (numbody * Nideal);

/!l Create output file for rdf
outFilel .open(”rdf_spin.txt”);
for (int 1=0;i<nBinRdf;i++)
outFilel <<r[i]<<”\t"<<g[i]l<<endl;

outFilel . close ();

// set first element of S

/1S[0]=0;

!/ structure _factor_1d(r, g, nBinRdf,nBinStruc,\

bulkDensity , k, S, Lx);

doublexx S2 = new doublex[nBinStruc];

for (int n=0;n<nBinStruc;n++)

{

S2[n] = new double[nBinStruc ];

structure_factor (bodyCOM, numbody CW,\

nBinStruc, kx,ky, S2, Lx);
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// calculate S from averaging S2 at fixed wave \
vector magnitute
int counter;
for (int n=0;n<nBinStruc;n++)
{
counter = 0;
for (int 1=0;i<nBinStruc;i++)
for (int j=0;j<nBinStruc;j++)
{
if ((nxn<=(ixi+j*j)) && \
((n+1)*(n+1) > (i*x14+j%j)))
{
Sin] +=S2[1][j I;

counter +=1;

}

if (counter >0)

S[n] /= counter;

outFile2 .open(” strucFact. txt”);
for (int i=1;i<nBinStruc;i++)
outFile2 <<k [i]<<”\t"<<S[i]<<endl;

outFile2 .close ();

inFile .close ();
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delete [] g;
delete [] r;
delete [] k;
delete [] kx;
delete [] ky;
delete [] S;
delete [] x;
delete [] y;
delete [] z;

delete [] bodyCOM;
for (int 1=0;i<nBinStruc;i++)
delete [] S2[1];

delete [] S2;

return O;

B.2 Movies and Figures

This Supplementary Materials section contains representative snapshots from each movie

and figures supplementing the discussion of the main text.

B.3 Non-equilibrium phase boundaries

The non-equilibrium phase boundaries are extracted from simulation data as follows:
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e Frozen state to fluid. This transition is easily detected by a jump in the ratio of transla-
tional to total kinetic energy K as a function of density, see Fig. 1(b). The transition is
discontinuous and thus the boundary is indicated by a solid line in Fig. 1(c).

e Phase separated fluid to rotating crystal. This transition is quantified through the
crystal fraction y, see Fig. We typically observe coexistence between the phase
separated fluid and the rotating crystal in our simulations and do not attempt to deter-
mine the coexistence region precisely. Instead, we only determine the density where
crystallization is first observed in simulation. The transition is discontinuous and thus
the boundary is indicated by a solid line in Fig. 1(c).

e Mixed fluid to phase separated fluid. This transition seems to be continuous, but is
more complicated due to critical fluctuations, which will be explored elsewhere. For
the current work we analyze the domain size growth as a function of time, see Fig.
and search for appearance of its divergence. We indicate the boundary by a dashed
line in Fig. 1(c).

As the applied torque is decreased in our simulations in the absence of noise (wy as low
as 0.01 in Fig. 1(c)), the dynamics slows down. Phase separation and the appearance of
rotating crystals are not affected by the slowdown. If the torque is exactly zero, there is
no dynamics in the system and we cannot study its time evolution. In practice, however,
there is always some noise which will compete with the active torque: in the case where the
active torque is low enough (or zero) that noise dominates over it, equilibrium behavior is

recovered continuously.

B.4 Effective demixing potential

This section contains a derivation and discussion of the effective demixing potential for the
interaction of two B spinners in a dense matrix of A spinners.

We start with the single particle density function for an individual particle i at position

pl(f) :5(7_?1')- (B.l)
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It can be extended to the two spinner types,

pa(F) = ) 8(F—F),

icA

p(F) = ) 8(F—7), (B.2)

i€B

where i € A and i € B mean that particle i is of type A and B, respectively. We assume there
are Ny particles of type A and Np particles of type B moving in a system of volume V. The

pair correlation function is defined as

() = PF)P)(2))

(Pr){ps)
v? s
= ]T]\Q<pl(rl)pj(r2)>’ (B.3)

where I,J € {A,B}. By taking into account translational symmetry, we can write

7 N = 1 = - — —
gu(7) = gIJ(Oﬂ”):§/Vg11(’”/,i”'+”)drl
V =/ —/ — —f
= TN d
s | P ps( 4 ) a7

= oY Y -G, (B.4)

NiN; i jie]
and since particles of the same type are identical,

Ny—1,.

gaa(F) =V N (6(F = (Fay —Tay))),

A
g = VISE—(Fa—7), ®.5)
gun() = VOB (7 7)),

B

where a,a;,a; € A and b,by,b; € B. Finally, we can calculate the radial distribution
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functions (RDFs) from simulation (shown in Fig. B.7) using this equation:

1
= li 7)d7. B.6
81:(r) ArILHO 2mwrAr /r<||?||<r+Arg”(r) " (B.6)

We now map the non-equilibrium system of rotationally driven spinners on an equilib-
rium system of isotropic particles interacting with pair potentials. The mapping is achieved
by determining pair potentials Upa(r), Uap(r), Upp(r) that give rise to RDFs similar to
the RDFs gaa(r), gap(r), gpp(r) observed in simulation. Note that symmetry dictates the
equality of the potentials for like-particle interactions: Upa (r) = Upp(r).

In the limit of a strong majority of component A, the pair potential for the B particles

can be estimated via the potential of mean force,
UBB(I’) = —kT lim 10g gBB(I’), (B.7)
nB%O

where ng = Np/(N4s + Np). Furthermore, we can approximate the potential for unlike-

particle interactions using the same method:
Upa(r) = —kT lim log gpa(r). (B.8)
nBHO

This is indeed an approximation, because unlike in the situation for Upp where each B
particle is usually surrounded by only one other B particle, the B particle will have several A
neighbors. This means gg4 (r) includes many-particle effects and is not fully describable by
a pair potential approximation.

The quantity responsible for inducing spinodal decomposition is the energy difference
Ugep(r) = Upa(r) + Upp(r) — 2Upa(r). We call this difference the effective demixing (ED)

potential. Using the approximations above we can write

kT i g5(r)
Uep(r) = —anl‘gglolog (gBA(V)) . (B.9)
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A value Ugp(r) < 0 indicates a preference for demixing at distance r. If the particles A and
B are indistinguishable, for example in a system of non-driven spinners, then the potential
vanishes: Ugp(r) = 0.

The effective demixing force is the gradient of the effective demixing potential,

FED(F) = —VUED(Y‘). (BlO)

It is an indicator for how strongly like particles are being pushed together on the expense
of unlike-particle contacts. In other words, it is a measure for the strength of spinodal
decomposition. ﬁED is an effective force that could be measured directly in experiment, for
example using optical tweezers for colloids. We can therefore say that like particles are
“sticky” or that they feel an “effective attraction” favoring the local aggregation of particles

of the same type.
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Figure B.1 Snapshots from Movie 1. A binary system of N = 576 spinners, where half of the spin-
ners rotate clockwise and the other half rotate counter-clockwise. Simulation parameters: ¢ = 0.5,
g =1, T* = 0. The movie shows spinners (left column) and vector plots of the short-time diffusion
Ax(10zy) (right column) at three different times during spinodal decomposition. The simulation starts
from an initially mixed configuration (top row, ¢ = 0) and proceeds through phase separation (middle
row, t = 1,000¢7), until in steady state two vertical stripes are formed (bottom row, t = 5,000¢).

From Ref. [23].
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Figure B.2 Snapshots from Movie 2. A binary system of N = 16,384 spinners, where half of
the spinners rotate clockwise and the other half rotate counter-clockwise. Simulation parameters:
¢ =0.5, g =1, T* = 0. The movie shows spinners (left column) and vector plots of the short-
time diffusion Ax(100z) (right column) at three different times during spinodal decomposition.
The simulation starts from an initially mixed configuration (top row, t = 0) and proceeds through
phase separation (middle row, = 1,0007y). At the end of the simulation, steady state is not yet
reached (bottom row, 1 = 10,000¢y). From Ref. [23]].
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Figure B.3 Snapshots from Movie 3. A binary system of N = 16,384 spinners, where half of the
spinners rotate clockwise and the other half rotate counter-clockwise. Simulation parameters: ¢ = 0.6,
wy =1, T* = 0. The movie shows spinners (left column) and vector plots of the short-time diffusion
Ax(100z)) (right column) at three different times during simultaneous spinodal decomposition and
the formation of rotating crystal within single component domains. The simulation starts from an
initially mixed configuration (top row, ¢t = 0) and proceeds through phase separation (middle row,
t = 1,000¢1y). At the end of the simulation, steady state is not yet reached (bottom row, ¢ = 10,000¢).
From Ref. [23]].
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Figure B.4 Snapshots from Movie 4. Ten inactive particles (dark green) immersed into phase sepa-
rated system of an even mixture of N = 566 spinners (light blue and orange). Simulation parameters:
¢ =0.5, wy =1, T* = 0. The inactive particles are observed moving along the interface. Snapshots
are shown through time: t = 0 (left), r = 3,000¢y (middle), r = 6,000¢ (right). From Ref. [23]].
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Figure B.S Snapshots from Movie 5. Comparison of Langevin Dynamics (left side) and Brown-
ian Dynamics (right side) in simulations with fine time resolution (0.1#y between two consecutive
snapshots in the videos). Particles’ positions fluctuate more in the Brownian Dynamics simulation
(because of noise and the absence of inertia), but otherwise the systems behave very similarly with
both simulation techniques. A binary system of N = 576 spinners, where half of the spinners rotate
clockwise and the other half rotate counter-clockwise. Simulation parameters: ¢ = 0.5, @y =1,
T* = 0. The simulation starts from an initially mixed configuration (top row, t = 0) and slowly
proceeds towards phase separation (middle row, r = 50¢y and bottom row, t = 100z(). From Ref. [23].
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Figure B.6 Phase diagram in the ¢-@y plane at (or near) steady state for systems of N = 16,384
spinners, where half rotate clockwise and half rotate counterclockwise. Four phases are identified:
frozen state, mixed fluid, phase separated fluid and rotating crystal phase. Each data point corre-
sponds to one independent simulation, where we identified the prevailing steady state in the final
simulation frame. Lines are drawn to separate regions where the same steady state is observed.
Rotating crystals typically coexist with phase-separated fluid. The transition from mixed fluid to
phase-separated fluid is smeared out, all the other transitions are sharp. From Ref. [23]].
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Figure B.7 Radial distribution function g(r) = p(r)/p(L/2) at three densities for the following
systems (L is the edge length of the square simulation box): (a) N = 100 inactive (non-driven)
particles, wy = 0, T* = 5; (b-d) a mixture of Ny = 98 clockwise spinners (matrix) and Ng = 2
counter-clockwise spinners (intruders), @y = 1, T* = 0. We compare correlations for matrix-matrix
pairs (b), intruder-matrix pairs (c), and the intruder-intruder pair (d). Each intruder strongly prefers
the vicinity of the other. Note that compared to the inactive pairs, the position of the first well of
g(r) the active particles shifts to higher r values at low densities. This shift happens because there is
still enough space at these densities for the active gears to move apart from each other to minimize
collisions. From Ref. [23]].
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Figure B.8 Heat maps showing the kinetic energy for an even mixture of 16,384 spinners at
wp=1,T"=0and ¢ = 0.5 (a,b) or ¢ =0.6 (c,d). Red and blue colors represent A and B spinners,
respectively, with intensities based on the translational (Ey., (a,c)) and rotational (E\, (b,d)) kinetic
particle energy. Choosing the intensities linearly does not work well, because the distribution of
energies (Eyo or Ey) has a long tail. Instead, we choose intensities by first calculating the cumulative
probability distribution of the energy by sorting the energy into bins. As a result, particles with the
lowest (highest) kinetic energies are assigned the darkest (brightest) colors. We observe in all cases
that the kinetic energy is uniform throughout each phase of the fluid, which means the interface has
no significant effect. This demonstrates that the super-diffusive behavior along the interface is not
the consequence of an enhanced translational and rotational velocity, but rather caused by collective
directed motion. In (c,d), crystals are visible by darker colors, because particles move slower once
crystallized. From Ref. [23].
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Figure B.9 (a) Radial distribution function g(r) for an even mixture of 16,384 spinners at ¢ = 0.5,
wy =1, T* =0, taken at three different times while the system is phase separating. We analyze
the domain size growth over time (Fig. 2a) by following the first zero in g(r). (b) Crystal fraction
x (1) (ratio between the number of spinners in crystals and the total number of spinners) for the
same system at higher density ¢ = 0.6 for three levels of activity. ) achieves a steady state value,
demonstrating the coexistence of fluid and rotating crystals. From Ref. [23]].

103 ' ' j ' i 0.66
—— R/ =4.95 (t/15)** T Speak =015 (1/10)
b _;é 102 E
~10% 8
N
1 Spinners 10::' Spinners
10 : : : :
10" 10° 10° 10" 10° 10° 10° 10° 10°
tlty tlty

Figure B.10 The Lifshitz-Slyozov (LS) theorem predicts that in two dimensions the growth expo-
nent of the peak of the structure factor Syeqx is twice the exponent of growth of the domain size R in
real space (see Ref. [35] of the main text). We find the LS theorem holds for our system of actively
rotated spinners. (a) The growth exponent for the domain size is consistent with 1/3. (b) The growth
exponent for the peak height of the structure factor is consistent with 2/3. Simulations are conducted
with 16,384 particles at density ¢ = 0.5. The spinners are driven with @y = 1 at 7* = 0. Note that
(a) is identical to Fig. 2(a) in the main text. From Ref. [23]].
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