Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201302845

The Bottom Up Approach is Not Always the Best Processing Method: Dense α -Al₂O₃ /NiAl₂O₄ Composites

Nathan J. Taylor, Andrew J. Pottebaum, Veli Uz, and Richard M. Laine*

Supporting Information

Figure S1. XRD pattern for LF-FSP NiAl₂O₄. The NiAl₂O₄ spinel phase is denoted by S, and NiO is denoted by N. A small amount of bunsenite (NiO) is present, but as previously noted, the sample fully transforms to NiAl₂O₄ at high temperatures.

Figure S2. TGA/DTA for Nanotek Al₂O₃. DTA shows an exotherm corresponding to α -Al₂O₃ phase nucleation at 1250° C, and a smaller exotherm around 1150° C corresponding to Θ -Al₂O₃ phase transformation. TGA mass loss around 2.1 wt%.

Figure S3. X-ray diffraction pattern for Nanotek Al₂O₃. Sample is mostly δ -Al₂O₃ and δ *-Al₂O₃. No α -Al₂O₃ is present. (δ *-Al₂O₃ PDF# 00-046-1215, δ -Al₂O₃ PDF# 00-046-1131, γ -Al₂O₃ PDF# 00-050-0741)

Figure S4. TGA/DTA for as-produced LF-FSP NiAl₂O₄. TGA mass loss 3.3 wt% at 1000° C. No discernible DTA events are observable. Mass loss above 1000° C may be to Ni volatility.

Figure S5. a) Dilatometry trace of NiO·3Al₂O₃, ramp rate 10° C/min/air Al₂O₃ rich NiAl₂O₄. The dilatometry curve has a quicker onset of densification, but looks quite similar to the ball milled sample, including the two separate densification rates. b) Dilatometry trace of NiAl₂O₄ + Al₂O₃, ramp rate 10° C/min/air. Significant densification begins around 1150° C, with a second slower densification mechanism beginning around 1250° C.