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Tolerance to competition has been hypothesized to reduce the negative impact of plant–plant competition on fitness. Although

competitive interactions are a strong selective force, an analysis of net selection on tolerance to competition is absent in the

literature. Using 55 full/half-sibling families from 18 maternal lines in the crop weed Ipomoea purpurea, we measured fitness and

putative tolerance traits when grown with and without competition in an agricultural field. We tested for the presence of genetic

variation for tolerance to competition and determined if there were costs and benefits of this trait. We also assessed correlations

between tolerance and potential tolerance traits. We uncovered a fitness benefit of tolerance in the presence of competition and

a cost in its absence. We failed to detect evidence of additive genetic variation underlying tolerance, but did uncover the presence

of a significant maternal-line effect for tolerance, which suggests its evolutionary trajectory is not easily predicted. The cost of

tolerance is likely due to later initiation of flowering of tolerant individuals in the absence of competition, whereas relative growth

rate was found to positively covary with tolerance in the presence of competition, and can thus be considered a tolerance trait.

KEY WORDS: Adaptation, competition, fitness, genetic variation, selection—natural, trade-offs.

Darwin (1859) hypothesized that interspecific competitive inter-

actions could impact fitness trajectories as much or even more

than an organism’s physical environment. Since that time, ecolo-

gists have determined that competitive interactions can play a fun-

damental role in structuring natural communities (Wilbur 1972;

Grime 1977; Holt 1977; Fowler 1986; Goldberg 1996; Fridley

et al. 2007), and influence ecosystem functioning (Grace 1990)

and the productivity of agricultural fields (Pierik et al. 2012).

Competitive interactions are of particular importance to plants due

to their sessile nature (Tilman 1994)—such interactions may limit

important resources such as the availability of nutrients, water, and

light (Schmitt and Wulff 1993) and ultimately lead to adverse ef-

fects on plant fitness (Reichenberger and Pyke 1990; Goldberg

and Barton 1992). In turn, a plant may exhibit a variety of traits

to reduce the negative impact of competition (Cipollini 2004;

Boege 2010; Pierik et al. 2012), such as shade avoidance through

stem elongation (Dudley and Schmitt 1996), and reduced branch-

ing and leaf production (Dorn et al. 2000; Schmitt et al. 2003).

Plants may also employ competitive strategies that miti-

gate the impact of competition on fitness. Two such strategies—

competitive response, the ability of a species to tolerate compe-

tition, and competitive effect, the ability of a species to suppress

its neighbor—were clarified in the ecological literature approxi-

mately 20 years ago (Goldberg 1990). These competitive strate-

gies have since been studied largely with the aim of understand-

ing the role of interspecific competition on community assembly

(Aarssen 1983; Goldberg and Landa 1991; Keddy et al. 1994)

and/or the role that genotypic variation in competitive ability

may play in the outcome of interspecific competitive interac-

tions (Taylor and Aarssen 1990; Fridley et al. 2007; Lankau and

1 6 9 8
C© 2014 The Author(s). Evolution C© 2014 The Society for the Study of Evolution.
Evolution 68-6: 1698–1709



THE EVOLUTION OF TOLERANCE TO COMPETITION

Strauss 2007). Surprisingly, the evolutionary dynamic of these

competitive traits—that is, their potential cost and/or benefit—

has gone largely unexamined in the plant evolutionary ecology

literature. For example, it is unknown if competitive ability incurs

a fitness cost, and if any potential costs may outweigh the ben-

efits. Such a scenario would constrain the evolution of maximal

levels of competitive ability, which may in turn affect patterns of

community assembly.

Tolerance to competition—a type of competitive response

trait—can reduce the negative impact of plant–plant competition

on fitness (Willis et al. 2010). Tolerance is a term generally used

across plant subdisciplines as the ability to “cope” with various

stresses, but in the evolutionary ecology literature it is defined

more precisely as an organism’s ability to maintain fitness while

sustaining damage (reviewed in Baucom and de Roode 2011).

Tolerance has mainly been studied in the context of herbivory

(Mauricio et al. 1997; Strauss and Agrawal 1999; Hochwender

et al. 2000; Pilson 2000; Stowe et al. 2000; Stinchcombe 2002;

Fornoni et al. 2004), and although some studies have looked at

the role of tolerance to herbivory in a competitive environment

(Tiffin 2002; Uriarte et al. 2002; Siemens et al. 2003; McNutt

et al. 2012), tolerance to competitive interactions themselves, as

measured in the currency of plant fitness, have received little

examination. Of studies that have examined tolerance to competi-

tion, one uncovered the presence of genetic variation for tolerance

among inbred lines of Arabidopsis thaliana (Willis et al. 2010)

and another detected genetic variation for tolerance in Ipomoea

purpurea, the common morning glory (Tiffin 2002). However,

it is not clear if this genetic variation, in either species, has an

additive genetic component, which would allow for predictable

responses to natural selection. It is also unknown if fitness costs

of tolerance to competition may outweigh any potential benefit,

thus constraining the evolution of increased levels of tolerance.

Furthermore, although the identification of traits that underlie

competitive ability has been a major goal in both plant ecology

(Goldberg 1996) and studies of plant tolerance evolution (Strauss

and Agrawal 1999; Juenger and Bergelson 2000; Tiffin 2000;

Weinig et al. 2003), the influence of putative tolerance traits on

the evolution of tolerance to competition remains unexamined.

Here, we investigate tolerance to competition in the crop

weed I. purpurea and determine if the requirements for the evolu-

tion of increased competitive tolerance are present in this species.

We asked the following questions: (1) Is there genetic variation

for tolerance to competition? (2) Do the patterns of selection on

tolerance to competition differ in the presence of competition in

contrast to its absence? (3) Is there evidence that tolerance is ge-

netically correlated with tolerance traits? We perform this study

in the context of an agricultural landscape and our design uses

a focal individual—the agricultural weed I. purpurea—grown in

interspecific competition with maize.

Methods
EXPERIMENTAL SYSTEM

Study species
The common morning glory, I. purpurea (L.) Roth.

(Convolvulaceae), is a climbing annual vine that is commonly

found in disturbed sites and agricultural fields in the United States.

It can lead to significant crop yield losses in maize, soy, and cotton

fields (Cordes and Bauman 1984; Defelice 2001) and is included

in the top 10 troublesome weeds in agriculture in the southern

United States (Webster and Coble 1997). Germination occurs be-

tween mid-May and August. Six weeks after emergence, plants

begin to flower; flowering lasts until the plant senesces or is killed

by frost (Brown and Clegg 1984; Uva et al. 1997). Plants bear

multiple showy flowers daily (upwards of 80) that open for a

single morning. Flowers are pollinated by bumblebees and other

generalist species but are also capable of self-fertilization (Brown

and Clegg 1984; Epperson and Clegg 1987; Chang and Rausher

1998). Fruits are dehiscent capsules, which mature four weeks

after pollination and contain one to six seeds (Mojonnier and

Rausher 1997).

Crossing design
Seeds of I. purpurea were originally collected from an agricultural

field in Oconee Co., Georgia, and selfed once in the greenhouse.

Experimental individuals were then generated using the partial

diallel crossing design initially described in Chaney and Baucom

(2012; Supporting Information Fig. S1). Briefly, we crossed 20

plants such that each individual was crossed as a maternal plant

to five paternal plants, and as a paternal plant with five maternal

plants, producing one hundred full/half-sibling families total. Due

to limitations in seed number and field space, replicate seeds

from 55 full-sib families (hereafter “families”) from 18 maternal-

half-sib families (hereafter “maternal lines”) were used for the

experiment described below.

Field experiment
The field experiment was planted in a fenced and tilled agri-

cultural field and protected from herbivory by a 12-foot deer

fence at the University of Cincinnati’s Center for Field Studies in

Harrison, Ohio. We planted four replicates of I. purpurea from 55

full-sib families in each of two treatments—the absence and pres-

ence of interspecific competition—for a total of 440 experimental

individuals. To prevent competitive effects (e.g., shading, root

competition) on control plants, we used a completely randomized

split-plot design with three spatial blocks; each block consisted

of a competition and control plot. Because we first randomized

within our whole-plot factor (competition, no competition), our

design was not completely balanced for each family line; how-

ever, each spatial block had on average 8.148 plants per each of

the representative 18 maternal lines (range: 2–18). The statistical
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methods we outline below are robust when modeling unbalanced

data, and the split-plot design is statistically powerful for detect-

ing genotype-by-environment interactions, which are needed to

detect genetic variation in tolerance (Siemens et al. 2003). Prior to

planting our experimental seeds, we planted 220 pairs of Golden

Cross Bantam Sweet Corn (Ferry Morse, Fulton, KY) spaced

1 m2 apart on 16th June 2011, in the competition treatment. After

the maize germinated, we removed one germinant per plot so that

our experiment could examine the effects of competition at a 1:1

ratio. Eleven days later, we planted replicate nicked I. purpurea

seeds in both treatments. We kept the distance between the focal I.

purpurea and competitor maize plant consistent at approximately

0.10 m apart and we allowed the maize to establish (approx. 0.25

m tall) prior to planting the morning glory, as this is the general

trend seen in agricultural fields. Seedlings grown in the absence

of competition were provided 1.20-m-high bamboo stakes. Each

I. purpurea seed was clearly marked with a straw to facilitate

distinguishing experimental plants and the plots were kept rela-

tively weed free by a combination of hoeing and hand weeding

throughout the experiment. Germination and survival were high,

with 92% germination success rate (403/440) and 90% survival

to flowering (398/440), leaving n = 398 for analysis. Likelihood

ratio tests revealed no significant genetic effect (P > 0.999; for

maternal and paternal lines) or treatment effect (P = 0.412) on

the likelihood of individuals to survive. We elected to keep com-

petition of the I. purpurea with its crop competitor maize at a

1:1 ratio because we wanted to perform a relatively simple ex-

periment for this initial test of the costs and benefits of tolerance

to competition. This design reflects real scenarios of how morn-

ing glories grow in agricultural fields. Many observations in U.S.

agricultural land find a single morning glory individual vining up

a single maize plant, and most often on the edge of the maize crop,

rather than within the crop itself, where competition is likely more

intense (R. S. Baucom, pers. obs.). This design does, however, ex-

clude the combination of intra- and interspecific competition on

a focal experimental individual, which has also been observed

in nature.

Phenotypic measurements
For this experiment, we examined plant tolerance to competi-

tion, defined as the ability to maintain fitness across competitive

treatments, as well as three candidate traits that may contribute

to tolerance in I. purpurea. These candidate traits were chosen

because they have previously been considered important weedy

characteristics in this species (Chaney and Baucom 2012). Specif-

ically, we focused on relative growth rate, the day that the vine

“grabbed on” to its competitor maize plant or its stake, and the

day of first flower (hereafter, phenology). For simplicity, these

traits will be called our focal traits.

To estimate relative growth rate in I. purpurea, the length of

all true, fully expanded leaves were measured four weeks after

planting and again nine days later. Forty-three nonexperimental I.

purpurea plants were harvested at this time, and using the ImageJ

software (National Institute of Health, http://imagej.nih.gov/ij/)

and methods described by O’Neal et al. (2002), we measured the

length of each leaf from the harvested nonexperimental plants,

and thereafter dried the shoot material in a drying oven at 37°C.

A linear regression of summed leaf length and dry shoot biomass

showed leaf length to be an excellent predictor of plant biomass

(n = 43, R2 = 0.891, y = 0.039x − 0.337, P < 0.001). We thus

calculated relative growth rate (rgr) for each individual with the

following formula: rgr = (�L2 − �L1)/t2 − t1, where �Lt is the

sum of leaf length at time t. One individual did not have any fully

emerged leaves at the time of the first measurement; this plant is

recorded as not available (NA) for data analysis. Relative growth

rate was examined because it has been previously shown to have

an important relationship with tolerance (Weis et al. 2000).

We recorded the day of grabbing on for each plant as a mea-

sure of the day when the vining stem of I. purpurea creates a

“C-shaped” hook around either the adjacent maize plant or stake.

Due to the vining growth habit of this species, and to prevent in-

dividuals from becoming tangled, all plants that had not “grabbed

on” by 3rd August were manually vined on to their respective

corn or bamboo stake. These individuals (n = 164) were treated

as NAs for that data point during data analysis. Likelihood ra-

tio tests revealed no significant genetic effect on the likelihood

of individuals to “grab on” (P = 0.717 and P = 0.160; pater-

nal and maternal lines, respectively). We previously determined

that individuals that grabbed on earlier to its competitor are also

larger and thus putatively better competitors (genetic correlation

between day of grabbing on and biomass in competition: r =
−0.730, P < 0.001; Chaney and Baucom 2012).

Ipomoea purpurea plants began to flower on 8th August. Phe-

nology, defined here as day of first flower, was recorded through-

out the experiment for a total of 28 census dates. Seeds were

collected from all plants upon maturation. The first killing frost

occurred on October 29 and two weeks later plants were har-

vested and bagged for further seed collection. All fruits were re-

moved from the plants and seeds were shucked and free of chaff

prior to being counted. To estimate plant fitness, total number

of viable seeds was counted using the 750–2 Total Count Sys-

tem seed counter (International Marketing and Design Co., San

Antonio, TX). Precision and accuracy of the seed counter was

verified by hand-counting 189 samples (n = 189, R2 = 0.999,

y = 1.008x + 1.313, P < 0.001). Relative fitness was then calcu-

lated for each individual as observed fitness divided by the mean

fitness in the population. All the data files used in this analysis,

as well as the R code, were uploaded for public access to the
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online data repository Dryad (http://www.datadryad.org, Dryad

doi: 10.5061/dryad.v2b8t).

DATA ANALYSIS

Impact of competition and genetic variation for
tolerance
All statistical analysis was conducted in R (version 2.15.2; R

Development Core Team). To test for the presence of genetic

variation for tolerance to competition we used the lmer function

from the lme4 package (Bates et al. 2011). We fit the following

mixed linear model:

y = μ + treatment + block + (block × treatment)

+ maternal line + paternal line + (maternal line × treatment)

+ (paternal line × treatment) + ε,

where y, the response variable, is relative fitness, μ is the inter-

cept or mean of the model (fit by default), treatment and block

are fixed-effect terms, terms involving pedigree (maternal and pa-

ternal line and their interactions) are random effects, and ε is the

error term (fit by default). The interaction effect of maternal and

paternal line, and the three-way interaction effect of maternal and

paternal line and treatment were not included in the final model as

preliminary analysis indicated they were not significant—further,

their inclusion does not inform the main conclusions of this study.

To meet the assumptions of normality for this analysis, relative fit-

ness was log(1+y)-transformed. To determine the significance of

each random effect in the model, a likelihood ratio test (LRT) was

used to compare the full model and the reduced model with the

effect removed. The P-value for random effects was determined

with a chi-squared test with one degree of freedom. Because the

competition treatment was implemented in a split-plot design,

we tested the treatment effect in our ANOVA’s over the block ×
treatment interaction to obtain F-statistics. A significant effect of

treatment would demonstrate that growing alone versus in com-

petition impacts fitness. A significant paternal or maternal-line

effect would indicate the presence of genetic variation for rela-

tive fitness, or differences in vigor by paternal or maternal line.

The term of interest is a significant interaction between paternal

line and treatment, which indicates that the fitness of genotypes re-

sponded differently to competition and provides evidence of addi-

tive genetic variation for tolerance to competition. Furthermore, a

significant interaction between maternal line and treatment would

indicate the presence of potential additive and nonadditive compo-

nents of genetic variation. To determine if competition with maize

impacted our focal traits (relative growth rate, grabbing on, and

phenology), we performed similar analyses of variance, as above,

using each trait as the response variable in separate models. To

meet the assumptions of normality, relative growth rate and grab-

bing on were square root-transformed, and significance of each

effect in the model was once again determined using an LRT.

Costs and benefits of tolerance
Tolerance to competition was operationally defined as the mean

relative fitness of maternal lines grown in the presence of com-

petition minus the mean relative fitness of replicates of the same

maternal line when grown in the absence of competition (WP −
WA; Tiffin and Rausher 1999; Willis et al. 2010). We elected to

perform these and subsequent analyses utilizing maternal half-

sibling lines (n = 18) and for comparison in some places with

full-sib family lines (n = 55) because we did not detect paternal-

line genetic variation for tolerance to competition—we did, how-

ever, uncover evidence of maternal-line genetic variation for tol-

erance (see Results). We determined if tolerance to competition

incurred a cost and/or a benefit among maternal lines by esti-

mating the covariance between tolerance and the untransformed

maternal line mean of relative fitness in both the absence and

presence of competition. This test is inherently confounded due

to the fact that fitness and tolerance are correlated. We removed

this artifactual covariance using standard methods (Mauricio

et al. 1997; Tiffin and Rausher 1999). An artifactual covariance

was calculated for each maternal line and was subtracted from

the calculated covariance to obtain an unbiased estimate of the

relationship between tolerance and fitness in each environment.

Confidence intervals were estimated by jackknifing maternal line

corrected estimates and a one-tailed t-test was used to calculate if

this corrected covariance was significantly different from zero.

Selection acting on tolerance to competition
We used the regression method described by Rausher (1992) to

perform a joint selection analysis acting on tolerance to competi-

tion and tolerance traits separately for each competitive environ-

ment. Rausher’s method is similar to the analysis described by

Lande and Arnold (1983) but eliminates environmentally induced

biases (Stinchcombe et al. 2002). Further, it is relevant here be-

cause tolerance cannot be measured on a single individual, and this

analysis is based on genotypic maternal-line values rather than in-

dividual phenotypic values (Tiffin and Rausher 1999). Each selec-

tion analysis regressed maternal line means of untransformed rel-

ative fitness on standardized values of four traits: relative growth

rate, grabbing on, phenology, and tolerance to competition. Lin-

ear selection gradients were estimated in models containing only

the linear terms. Quadratic selection gradients were estimated in

a full model that contained linear terms, quadratic terms, and

cross-product terms of focal traits. The strength of total selection

for each trait was estimated by calculating genetic correlations

as Pearson product moment correlations between maternal-line

mean values of each trait and relative fitness. Total selection

includes both direct selection and indirect selection caused by

genetic correlations.
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Genetic correlations
The strength and direction of genetic correlations were calcu-

lated among tolerance to competition and our three focal traits in

each environment separately using maternal-line means. We hy-

pothesized that relative growth rate, grabbing on, and phenology

might contribute to I. purpurea’s ability to tolerate competition.

One maternal line in the absence of competition was missing

data for grabbing on, resulting in a reduced sample size for ge-

netic correlations with this trait (n = 17). We also evaluated

the potential for correlations between tolerance to competition

and the plasticity of candidate tolerance traits, because tolerance

to competition is the plastic response of fitness in competition

(Abrahamson and Weis 1997). Plasticity to competition was ex-

amined for each focal trait that exhibited differential expression

across competitive treatment (i.e., significant treatment effect).

Plastiticy to competition was calculated as the maternal-line mean

values grown in the presence of competition minus the maternal-

line mean values grown in the absence of competition (XP − XA),

following the analysis of Weinig et al. (2003). For comparative

purposes, we also performed selection analyses and assessed cor-

relations using the full-sib families (n = 55), similar to Tiffin

(2002). For these analyses, tolerance was calculated for each of

the 55 families, and family-line mean values of each trait were

used.

The statistical analyses used for these data are standard for

this type of experiment. Despite the strengths of these methods,

they do have some weaknesses. For example, using maternal-

line or family-line means greatly reduces variation compared

with the phenotypic data from which they are calculated, there

is potentially less power due to the reduction in sample size, and

there may be biases introduced from dominance and environ-

mental effects. Additionally, the genetic correlations presented

here do not take into consideration error in the estimation of the

maternal- or family-line mean. We elected not to use best linear

unbiased predictors (BLUPs) because of their poor properties in

regression-based analyses and estimation of selection gradients

(Hadfield et al. 2010).

Results
IMPACT OF COMPETITION AND GENETIC VARIATION

FOR TOLERANCE

Interspecific competition significantly affected phenotypic ex-

pression in I. purpurea for two of the three focal traits—relative

growth rate and the competitive measure “grabbing on” (Table 1,

significant treatment effect; Table 2). We found that I. purpurea

grown in the presence of competition had on average 6.54 cm/day

(315%) decline in relative growth rate compared to those grown

alone. When grown in the presence of competition, I. purpurea

“grabbed on” to its adjacent maize plant on average 2.2 days

(9%) faster than plants “grabbing on” to adjacent stakes in the ab-

sence of competition. A significant maternal-line effect in relative

growth rate and phenology was uncovered (Table 1). However, we

found no evidence for either a maternal- or paternal-line effect in

day of grabbing on, or evidence of genetic variation for plasticity

in the three putative tolerance traits (i.e., no significant treatment

× paternal- or maternal-line interaction for relative growth rate,

grabbing on, or phenology; Table 1). This indicates the presence

of at least nonadditive genetic variation in relative growth rate

and phenology, but no evidence for additive genetic variation for

plastic responses in these putative tolerance traits.

Competition significantly impacted fitness (Table 2); plants

grown in the presence of competition produced 1550 fewer seeds

(216% lower relative fitness) on average than those grown alone.

We found a significant interaction of maternal line and treatment

for relative fitness (Table 1; Fig. 1), providing evidence that this

species exhibits genetic variation for tolerance to competition.

However, we uncovered no evidence of a paternal line by treat-

ment interaction (Table 1), suggesting that the genetic variation

in tolerance observed in this study population is due to genetic

Table 1. Results from mixed-model ANOVA demonstrating variation in I. purpurea traits.

Trait Growth Grabbing on Phenology Relative fitness
Random effects:

Maternal line 4.035 (0.045)∗ 0.000 (1.000) 4.657 (0.031)∗ 0.000 (1.000)
Paternal line 0.000 (1.000) 0.000 (1.000) 0.360 (0.549) 0.419 (0.518)
Mat × Trt 0.000 (1.000) 0.000 (1.000) 0.400 (0.528) 9.084 (0.003)∗

Pat × Trt 0.047 (0.828) 0.000 (0.998) 0.750 (0.387) 0.668 (0.414)
Fixed effect:

Treatment 43.686 (0.022)∗ 158.900 (0.006)∗∗ 0.163 (0.726) 107.433 (0.009)∗∗

Block 5.935 (0.003)∗ 0.577 (0.563) 1.722 (0.180) 0.904 (0.406)
Block × Trt 7.471 (0.001)∗∗∗ 0.190 (0.827) 0.631 (0.533) 0.869 (0.420)

Each model was fit separately for each trait listed along the top. Values for random effects correspond to χ2 taken from likelihood ratio tests and fixed

effects show F-statistic with P-value in parenthesis. Significance of treatment was tested using the block × treatment term as the denominator in the F-test.

Significant effects are in bold and indicated with asterisks: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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Table 2. Impact of interspecific competition on I. purpurea traits.

Growth Grabbing on Phenology Relative fitness
Trait (cm/day) (day) (day) (no. of seeds)

Presence of competition
Mean 3.043 27.229 60.183 0.632
Standard error (0.128) (0.230) (0.358) (0.029)

Absence of competition
Mean 9.587 25.000 60.323 1.361
Standard error (0.363) (0.375) (0.217) (0.045)

Shown are means and standard errors of three focal traits and tolerance both in the presence of competition and the absence of competition. Numbers in

bold are significantly different between treatments (see Table 1 treatment effect).
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treatment for 18 maternal lines of I. purpurea. Different lines de-
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of interspecific competition with maize. Evidence for genetic vari-
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whereas a steeper slope a less tolerant genotype.

differences among maternal lines, which can reflect an additive

and nonadditive genetic basis as well as any potential lingering

environmental maternal effects. Operationally defined tolerance

for maternal lines indicated incomplete tolerance for all genotypes

(genotypes grown in competition have lower relative fitness than

genotypes grown alone). Tolerance values ranged from −2.1750

to −0.412 (mean = −0.786, SD = 0.430).

Costs and benefits of tolerance
Our analysis of the relationship between tolerance and fitness in

the presence of competition found a benefit of being tolerant to

competition (Fig. 2A). The corrected covariance between toler-

ance to competition and fitness in the presence of competition
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Figure 2. Relationship between relative fitness and tolerance

in (A) presence and in the (B) absence of interspecific competi-

tion with maize. Maternal-line means of 18 I. purpurea plants are

shown.
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was equal to 0.025 (0.020, 0.029; 95% confidence interval) and

is significantly different from zero (t = 10.549, P < 0.001).

We further found that in the absence of competition, tolerance

imposes a cost—the relationship between tolerance to compe-

tition and fitness was negative (Fig. 2B). The corrected covari-

ance was equal to −0.082 (−0.133, −0.032; 95% confidence

interval) and is significantly different from zero (t = −3.178,

P = 0.003).

Selection acting on tolerance to competition and
genetic correlations
In line with our cost/benefit analysis, the genotypic linear regres-

sion supports the notion that tolerance to competition is impacted

by natural selection in I. purpurea. The regression of fitness on

tolerance in the presence of competition indicates that tolerance

is under positive directional selection (Table 3; r = 0.542, P =
0.020); however, a joint analysis of selection found that this re-

lationship is mediated through direct linear selection on relative

growth rate (Table 3; β = 0.079, P = 0.008) and a near significant

positive correlation between tolerance and relative growth rate

(Fig. 3A; r = 0.452, P = 0.060). We also uncovered a negative

correlation between relative growth rate and date of "grabbing on"

to a maize plant (Fig. 3A; r = −0.597, P = 0.009) in the presence

of competition such that genotypes that grew faster also grabbed

on earlier. Likewise, there was a negative correlation between

date of "grabbing on" to a maize plant and tolerance—those that

grabbed on to a maize plant were also more tolerant to competi-

tion (Fig. 3A; r = −0.528, P = 0.024). Most likely due to this

correlation, we found negative directional selection on date of

"grabbing on" (Table 3; r = −0.728, P < 0.001) in the presence

of competition indicating that genotypes that grabbed on earlier

are at a fitness advantage compared to those that grabbed on later

in the season. Because date of "grabbing on" does not exhibit ge-

netic variation of any kind (Table 1) selection is unlikely to act on

this trait, and earlier "grabbing on" is likely due to the increased

relative growth rate of those individuals.

In the absence of competition, there was strong negative di-

rectional selection on tolerance and phenology as indicated by

significant negative correlations between each trait and fitness

(Table 3; r = −0.943, P < 0.001 and r = −0.770, P < 0.001,

respectively). Examination of the linear selection gradients uncov-

ered negative direct selection on tolerance (Table 3; β = −0.315,

P < 0.001)—likely due to flowering patterns in this species. We

uncovered no evidence that phenology was phenotypically plastic

(Table 1; treatment effect: F1,2 = 0.163, P = 0.726), and we found

that tolerance was significantly positively correlated to phenology

(Fig. 3; r = 0.720, P < 0.001), that is, maternal lines that are more

tolerant flowered later in the season in the absence of competition.

Taken together, these patterns suggest that early flowering is not a

mechanism of tolerance to competition in I. purpurea and, in fact,

the cost of tolerance to competition is likely due to the later flow-

ering time of more tolerant individuals compared to less tolerant

individuals. Similarly, the analysis using full-sibling family lines

(n = 55) revealed positive linear selection on relative growth rate

and tolerance in the presence of competition; and as well, neg-

ative linear selection on tolerance in the absence of competition

(Supporting Information Table S1). Furthermore, an analysis of

correlations between traits based on family-line averages show

that tolerance is positively correlated with relative growth rate in

the presence of competition (r = 0.415, P = 0.002; Supporting

Information Fig. S2) and phenology in the absence of competition

(r = 0.518, P < 0.001; Supporting Information Fig. S2).

Quadratic selection gradients did not uncover evidence for

nonlinear or correlated selection in any of our investigated traits

(Table 3). We found no evidence for genetic correlations between

tolerance to competition and the plasticity values of grabbing on

(r = −0.365, P = 0.150) or relative growth rate (r = 0.311, P =
0.209). The same artifactual covariance between fitness and tol-

erance that was accounted for in the fitness cost/benefit analysis

will also bias our selection analyses. Unfortunately, a procedure

for removing this artifact with multiple regression has not been

developed. However, in our cost/benefit analysis, we find this bias

to be small and that it only marginally impacts our conclusions

from the no-competition environment; the artifact does not sig-

nificantly influence the covariance between fitness and tolerance

in the presence of competition.

Discussion
Here, we present empirical evidence that tolerance to competi-

tion confers both a benefit and a cost in the agricultural weed,

I. purpurea, and, correspondingly, that tolerance to competition

is under positive selection in the presence of competition and

negative selection in the absence of competition. However, our

analysis does not find evidence for additive genetic variation un-

derlying tolerance through paternal-line variation but rather finds

significant maternal-line variation for this trait. This suggests that

although natural selection favored lines that were more tolerant in

the presence of competition, selection on this trait might not result

in evolutionary change—or, alternatively, natural selection could

result in evolutionary change, but predicting the response to such

selection will be complicated by nonadditive genetic factors. Ma-

ternal effects can include additive and nonadditive genetic effects

(e.g., dominance, epistasis) as well as inherited environmental

influences; such effects originate from cytoplasmic genetic, en-

dosperm nuclear, and maternal phenotypic sources (Roach and

Wulff 1987). We grew parents in a common greenhouse envi-

ronment for one generation prior to performing crosses, which

should lessen, but perhaps not completely ameliorate the poten-

tial for field-derived maternal effects in our study population.
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Table 3. Selection analysis showing direct and indirect selection on tolerance to competition and focal traits.

Trait β SE P γ SE P r P

Presence of competition
Growth 0.079 0.025 0.008 −0.042 0.075 0.595 0.807 <0.001
Grabbing on −0.039 0.028 0.194 0.034 0.096 0.732 −0.728 <0.001
Phenology −0.024 0.023 0.322 0.036 0.083 0.680 −0.260 0.298
Tolerance 0.030 0.027 0.279 0.016 0.125 0.902 0.542 0.020
Growth × grab −0.038 0.134 0.787
Growth × phen 0.005 0.121 0.967
Phen × grab −0.070 0.117 0.571

Absence of competition
Growth 0.069 0.027 0.057 0.174 0.155 0.313 0.268 0.282
Grabbing on 0.005 0.032 0.869 −0.008 0.102 0.938 −0.084 0.749
Phenology −0.042 0.044 0.367 −0.067 0.208 0.834 −0.770 <0.001
Tolerance −0.315 0.042 <0.001 0.066 0.208 0.764 −0.943 <0.001
Growth × grab 0.197 0.230 0.432
Growth × phen −0.032 0.110 0.785
Phen × grab 0.051 0.233 0.837

Linear (β) and quadratic (γ) selection gradients, and total selection (r) with associated standard errors (SE) and P-values (P).

Linear coefficients were determined in each treatment from the first-order model only (R2 = 0.774, P < 0.001 and R2 = 0.934, P < 0.001; presence and absence

of competition, respectively), whereas the second-order coefficients were determined from the full model with the linear, squared and cross-product terms

(R2 = 0.904, P = 0.028 and R2 = 0.959, P = 0.009; presence and absence of competition, respectively). Quadratic regression coefficients were converted to

selection gradients by doubling them and their respective standard errors. The r column represents the genetic correlations between the trait and fitness,

estimated as Pearson product–moment correlations between maternal line means. Significant selection gradients and correlation coefficients are shown in

boldface.

Furthermore, preliminary analyses indicated that there were no

significant paternal × maternal effects (no effect of specific cross)

for fitness or any other trait, and, analysis of reciprocal family ef-

fects was also not significant (F4,55 = 1.131, P = 0.352), indicat-

ing that offspring from the same full-sibling family did not differ

depending on the identity of their seed parent. The absence of

reciprocal effects but the presence of a maternal-line main effect

indicates the presence of heritable genetic variation in tolerance

(sensu Simms and Rausher 1989); however, because our breeding

design generated a low number of reciprocal crosses (four recip-

rocal pairs) we are unable to draw this conclusion with a high

degree of confidence.

Maternal effects underlying tolerance to competition may

likewise be important in other plant species and/or experimen-

tal populations—previous work found a strong maternal effect

responsible for competitive ability in Desmodium paniculatum

(Wulff 1986), and Tiffin (2002) uncovered a significant family

effect for tolerance to competition in I. purpurea grown in compe-

tition with crabgrass, Digitaria sanguinalis. Although the family-

line variation identified in the Tiffin (2002) study was likely due

to maternal variation, the crossing design employed did not al-

low for assessing the influence of paternal versus maternal-line

variation, as did the design presented here. Although crossing de-

signs that partition variation in traits into maternal environmental

and maternal genetic effects are still relatively rare, based on the

results from our study, we suggest future studies of tolerance to

competition should consider taking a multigenerational approach

as well as one that uses a complete diallel design so that maternal

environmental effects can be disentangled from maternal genetic

effects.

Furthermore, we examined the potential that relative growth

rate, phenology, and the date on which plants grabbed on to their

competitor maize plant were tolerance traits. We found a trend for

a positive correlation between tolerance and relative growth rate

in the presence of competition using maternal-line means; analy-

sis of family lines found a highly significant relationship between

tolerance and relative growth rate. Our selection analysis on toler-

ance, which also included our putative tolerance traits, indicated

that selection on competitive tolerance was indirect and mediated

through direct, linear selection on relative growth rate and the

positive correlation between tolerance and relative growth rate.

Thus, relative growth rate contributes to tolerance to interspecific

competition in the common morning glory and can be consid-

ered a tolerance trait—because it is both positively correlated to

tolerance and increases plant fitness when in competitive stress

(as per the definition of tolerance trait, Juenger and Bergelson

2000). Although this is the first study to show that relative growth

rate is a tolerance trait when in interspecific competition, this re-

sult is broadly in line with our expectations. Another study in a

sister species, I. hederacea, similarly found positive directional
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Figure 3. Genetic correlations among tolerance to competition and focus traits in the (A) presence and (B) absence of competition.

Pearson’s correlations coefficients (upper diagonal) were calculated using maternal line means. Scatter plots with 95% confidence region

ellipsoids for each pairwise trait combination is displayed in the lower diagonal. Significant values are in bold and indicated with asterisks:

ˆP < 0.10, ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. Growth, relative growth rate; grab, day of grabbing on; phenology, day of first flower;

tolerance, tolerance to competition.
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selection on growth when in interspecific competition (Simonsen

and Stinchcombe 2010). Compensatory regrowth has previ-

ously been found as a tolerance to herbivory trait (Juenger and

Bergelson 2000; Tiffin 2000); however, more recently, it was

found that growth can be a defense trait itself (Turley et al. 2013).

Additionally, plant growth has previously been found as a key trait

for plant competitive success, particularly in agriculture (Radose-

vich and Roush 1990) and in Impatiens capensis and Arabidopsis

thaliana grown in inter- and intraspecific competition, respec-

tively (McGoey and Stinchcombe 2009; Willis et al. 2010).

In comparison, we found no relationship between tolerance

to competition and relative growth rate in the absence of com-

petition; instead, we found evidence that tolerance is positively

correlated to phenology. The cost of tolerance is likely due to this

correlation—maternal lines that are more tolerant initiated flower-

ing later in the absence of competition in comparison to lines that

were less tolerant, putting them at a fitness disadvantage. In line

with this result, our selection analysis uncovered strong negative,

direct linear selection on tolerance in the absence of competition.

These patterns of selection indicate that tolerance should decrease

in the absence of competition. Unlike relative growth rate and time

to grabbing on the competitor plant, we uncovered no indication

that phenology was phenotypically plastic. These results together

suggest that phenology, although genetically correlated with toler-

ance, does not contribute to tolerance in I. purpurea. Such findings

are counter to expectations—other studies have found that earlier

flowering following stress is related to tolerance (Juenger and

Bergelson 2000; Tiffin 2000; Willis et al. 2010), and, early flow-

ering has long been hypothesized to be correlated to tolerance

because plants that exhibit the shortest delay in reproduction fol-

lowing damage or stress will likely be able to maintain their fitness

(Tiffin 2000).

Interestingly, and similar to tolerance to competition, both

traits—relative growth rate and phenology—did not exhibit addi-

tive genetic variation in our breeding population but did exhibit

maternal-line variation. Thus, the evolutionary dynamic of toler-

ance to competition, relative growth rate, and flowering time are

each under maternal genetic and/or maternal non-genetic influ-

ences. Although maternal effects can strongly affect evolutionary

processes (McGlothlin and Galloway 2013), this may come in

unexpected and counterintuitive ways due to cross-generation ef-

fects of both the current previous generations. Maternal effects

in a population may result in enhanced or reduced responses to

selection, reversals in the direction of the response, or oscilla-

tory dynamics (Galloway et al. 2009). Because direct and indirect

components underlying genetic variation alter our usual predic-

tions about changes in genetic values associated with selection

(Wolf et al. 1998), the response to selection reported on the traits

in our study should be viewed as an upper limit to responses that

are possible.

Taken together, these results provide a broad view of toler-

ance to competition as a competitive response trait. Ipomoea pur-

purea plants that grow faster are at an advantage in the presence

of competition, because faster growing plants can emerge from

vegetation to access photosynthetic resources. However, geno-

types that are more tolerant will flower later and thus be at a

disadvantage when grown in the absence of competition com-

pared to those that are less tolerant. Our results show that tol-

erance to competition can likely increase in natural populations

of this weed species (assuming the maternal-line variation we

uncovered is heritable), and, relative growth rate of individuals

contribute to this tolerance. The evolution of increased tolerance

is constrained by a fitness cost—and the source of this cost ap-

pears to be driven by day of first flowering. However, the presence

of maternal-line variation underlying tolerance and the traits cor-

related to tolerance suggest that their evolutionary dynamics may

in fact be more complicated, especially because maternal effects

can either hinder or enhance adaptive evolution (McGlothlin and

Galloway 2013).

Conclusion
Variation among species’ competitive abilities has long been rec-

ognized (Goldberg 1996), as have fitness declines due to plant–

plant competition (Reichenberger and Pyke 1990; Goldberg and

Barton 1992; Schmitt and Wulff 1993). However, the potential

that competitive tolerance exhibits either a benefit or a cost has

not previously been reported. Weedy plants are known to un-

dergo rapid adaptive evolution on short ecological time scales

(Vigueira et al. 2013) and are confronted with powerful and fluc-

tuating selection pressures that result from changes in cropping

systems (Clements et al. 2004). Studying competition in an agri-

culture system offers a simplified plant community that provides

links to the mechanisms and implications of competition in plant

communities, as well as provides an ecological and evolution-

ary basis for crop–weed management (Radosevich and Roush

1990).
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