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Abstract 
 
The circadian system is the body’s internal clock that generates rhythms over a 24-hour time 

period. If not properly aligned, our circadian rhythms can affect our mood or emotional state. By 

studying models of mood disorders in rats, we can better understand the connections between 

mood and circadian rhythms. This study analyzed existing data on novelty-induced locomotor 

scores, a measure of anxiety-like behavior, in relationship to time of day in rats. The rats were 

selectively bred for 40 generations based on their locomotion behavior in a novel environment to 

amplify two lines of behavior: high-responders (bHRs or low anxiety-like behavior) or low-

responders (bLRs or high anxiety-like behavior). Over ten scripts were manually written in 

MATLAB to analyze and sort 10,833 data points from both male and female bHRs and bLRs. 

The software R was used for the final linear regression analysis. This study found that phenotype 

and generation number were related to novelty-induced locomotion (Phenotype: β = 1566.29, p < 

2x10-16, Generation: β = -6.4741, p < 0.0065), whereas sex and time of day, independently, 

showed no significant relationship (Sex: β = -35.7058, p = 0.2649, Time of Day: β = -1.5560, p 

= 0.8964). However, there was a significant interaction between sex and phenotype (β = 

330.9929, p < 2.68x10-13). These results are important because they help to identify variables that 

could affect emotional behaviors. By understanding how these variables affect emotional 

behaviors, we may be able to tailor solutions for mood disorders, including depression and 

addiction, to individual characteristics. 

 
Keywords: mood disorders, circadian systems, anxiety, depression, rats 
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The Effect of Circadian Rhythms on Emotional-like Behavior in Rats Selectively Bred to 

Model Mood Disorders 

Our daily patterns of sleep, activity, and release of hormones are controlled by the 

circadian system. The circadian system is the body’s endogenous or internal clock that generates 

rhythms within a 24-hour time period, or cycle length (Hagenauer & Bradley, 2013). If not 

properly aligned, our circadian rhythms can affect our mood or emotional state. Mood disorders, 

a broad category of illnesses that affect the underlying emotional state of a person, have a 

lifetime prevalence of 20.8% and range from major depressive disorder (MDD) to bipolar 

disorder (DSM-IV-TR). By studying models of mood disorders in rats we can further understand 

the connections between mood and circadian rhythms. With such a high prevalence rate and a 

strong impact on societal functioning, understanding the connection between circadian rhythms 

and mood disorders is essential for the promotion of communal welfare.  

 The circadian timekeeping system is responsive to daily time cues (such as sunlight), also 

known as zeitgebers, allowing the endogenous rhythm of our bodies to synchronize, or entrain, 

to a 24-hour solar day (Gorman & Lee, 2002, Hagenauer et al., 2013). One important aspect of 

circadian rhythms is their free-running period. The freerunning period, τ, is defined as the length 

of the daily cycle under constant conditions, or those lacking environmental cues. To entrain the 

cycle to a 24-hour solar day, circadian clocks reset in response to light or dark (Gorman et al., 

2002). Therefore, the circadian clock will shift to an earlier or later phase in response to a 

realignment of the 24-hour light:dark cycle. For example, whenever an individual travels from 

New York to India, their clock will initially be out of phase with the local time in India. As the 

internal clock readjusts to environmental cues, the individual may experience symptoms of jet 
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lag, which are a result of desynchrony, or uncoupling, between behavioral and psychological 

rhythms (Gorman et al., 2002). 

Research has shown that the brain region most closely associated with circadian rhythms 

is the suprachiasmatic nucleus (SCN), which is a tiny region of the hypothalamus that lies at the 

base of the brain (Hagenauer et al., 2013). Individual cells in the SCN express genes responsible 

for our internal clocks. These genes, associated with circadian rhythms, are collectively referred 

to as “clock genes.” A few genes that make up this list are Bmal1, Clock, Period (Per1, Per2, 

Per3), and Cryptochrome (Cry1, Cry2) molecules. These genes generate transcription-and 

translation based feedback loops with a periodicity of roughly 24 hours (Dunlap, Loros, & 

DeCoursey, 2004). CLOCK and BMAL1 activate the transcription of a family of PER and CRY 

genes. PER and CRY are the negative elements, which encode proteins that block expression of 

PER and CRY and interfere with BMAL1 production (Dunlap et al., 2004).  

Several studies have demonstrated the connections between circadian rhythms and 

emotional behavior in both humans and rats. In one very famous study, human subjects were 

isolated from all possible factors that could act as zeitgebers by being placed in an underground 

bunker for approximately 3-4 weeks. The men, most of whom were college students and eager to 

be isolated in order to study for final exams, were asked to lead “regular lives” while 

underground. Rectal temperature and urinary metabolite rhythms were measured throughout the 

experiment as a means for gauging the endogenous clocks.  This experiment proved vital in 

learning more about circadian rhythms because it became evident that human bodies do not need 

to rely solely on the light/dark to create a rhythmic cycle. They will create a cycle endogenously 

that will be constantly repeated. In addition, this study showed how rhythmic functions that 

become out of phase, or desynchronized, have a major impact on mood, as seen in the journal 
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entries by several subjects. While in isolation, one subject had sleep rhythms with a very long 

mean period of 32.6 hours, but maintained a normal period for all other bodily functions of 24.7 

hours. Therefore, the subject’s functions drifted in and out of phase. He noted in his diary that he 

felt very ‘fit’ whenever all functions were in phase. However, the subject did not feel as ‘fit’, 

whenever his sleep was out of phase with other physiological rhythms (Aschoff, 1965). This 

illustrates that when circadian rhythms are aligned, the bodies’ emotional state is content and 

healthy.  

  More recently, studies have shown that disruptions in circadian gene expression are 

characteristic of MDD (Edgar & McClung, 2013). It was found that MDD is accompanied by a 

desynchronization between clock gene rhythms in the brain and the day/night cycle, 

demonstrating that MDD patients have both time-shifted rhythms and disrupted regulation of 

cyclic genes (Edgar et al., 2013). Understanding the relationship between abnormal phasing of 

circadian rhythms and MDD could be the next step in finding the right treatment for readjusting 

the clock.  Stabilization between endogenous clocks and zeitgebers is important for mood 

stabilization in both MDD patients and manic patients (Roybal et al., 2007). Therefore, it is vital 

in the study of circadian rhythms to understand the connection between mood disorders and the 

desynchronization of endogenous clocks in order to tailor the right treatments for individual 

patients.  

Animal models have proven useful in studying the interactions between mood disorders 

and circadian rhythms due to the ability to control certain factors, such as genotype and stress 

exposure (Nestler & Hyman, 2010). For example, a study showed that disruption of the CLOCK 

gene in mice induces mania-like behavior. This mania-like behavior, was similar to human 

mania and included hyperactivity, decreased sleep, lowered depression-like behavior, and lower 
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anxiety (Roybal et al., 2007). For example, in the forced swim test, it was found that CLOCK 

mutant mice experienced reduced helpless-like behaviors, and in the learned helplessness test 

they showed fewer escape failures. Therefore, a mutation of the CLOCK gene causes increased 

mania-like behavior and decreased depressive-like behavior (Roybal et al., 2007).  

Historically, mood and anxiety disorders have been difficult to model in animals because 

they have a complicated pathophysiology arising from both genetic and environmental factors. In 

animal models, individual tests are geared at looking at specific aspects of either anxiety-like or 

depressive-like behavior. In our lab, two lines of rats, “high responders” (bHRs) and “low 

responders” (bLRs), have been selectively bred for behavior in one such anxiety-like behavioral 

test. Characterizing these selectively bred strains of rats, both behaviorally and 

neurobiologically, gives clues to the genetics behind mood and anxiety disorders. High 

responders (bHRs) correspond to rats that show a high locomotor response to novelty and have 

low anxiety. Low responders (bLRs) refer to rats that show a low locomotor response to novelty 

and have high anxiety. Both extremes vary in several basal and maternal behaviors, such as the 

elevated plus-maze (which is a measure of anxiety-like behavior), forced swim test (which is a 

measure of depression-like behavior), addiction-like behavior, and maternal behavior during 

lactation (Stead et al., 2006).  

 bHR and bLR rats differ in circadian as well as emotional behavior. Similarly, bLR and 

bHR rats show differing rhythms in CLOCK gene expression (Kerman et al., 2011). It was found 

that bLR rats expressed an increase in CLOCK towards the evening within the SCN, whereas 

bHR expressed an increase in CLOCK towards the morning hours (Kerman et al., 2011). These 

differences could be caused by an alteration in the length of the circadian cycle (Kerman et al., 
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2011). These studies indicate that the circadian functioning in rodents that are behaviorally low 

anxiety-like (bHR) are innately different from those that are high anxiety-like (bLR).  

 In addition to seeing bHR and bLR differences in the expression of CLOCK genes, 

behavioral data has shown differences in daily locomotor rhythms. Male rats were tested for 

diurnal rhythms in homecage locomotor scores. The homecage locomotor testing showed that 

bHRs were more active than bLRs. Most of the animals both bHR and bLR – were most active 

during the dark phase (nocturnal). However, the majority (80%) of bHR animals had their peak 

activity early in the dark phase (ZT2 and ZT18), whereas the bLRs either peaked really early 

(ZT2-ZT18) or really late (ZT18-ZT24) during the dark phase. This experiment indicated that 

bHR/bLR behavioral differences may represent a divergent circadian profile in addition to 

differences in baseline locomotor activity. Since previous studies in mice indicate that altering 

the CLOCK gene changes emotionality, these circadian differences could exacerbate emotional 

differences between the bLR/bHR animals (Kerman et al., 2011).  

 Similar to the differences in behavioral rhythms seen in bHR/bLR rats, human patients 

that are depressed have different behavioral rhythms than healthy individuals. Numerous studies 

conducted in humans have found that two independent mood variables, positive affect (PA) and 

negative affect (NA), vary with time of day (Nicolson, 2006). Positive affect is defined by 

enthusiasm, delight, and activeness, while negative affect is associated with feelings of sadness, 

distress, and disgust (Courtet & Olie, 2012). One study tested NA and PA separately to examine 

the prevalence of both variables in depressed and non-depressed individuals. They found that the 

average reported PA level was lower in depressed patients than healthy patients, but it followed a 

linear increase throughout the day in depressed individuals. In depressed patients, NA had 

increased diurnal variation and peaked in the morning and decreased over the course of the day 
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compared to healthy participants (Peeters, Berkhof, Delespaul, Rottenberg, & Nicolson, 2006). 

Similar results were found in another study, which tested categorically depressed patients and 

defined them either as highly depressed or lowly depressed. Highly depressed patients were 

defined as receiving a score of above 23 or above on the Center for Epidemiological Studies-

Depression Scale (CES-D). The CES-D is a 20-question survey used to detect depression 

symptoms in subjects. The lowly depressed participants looked similar to healthy controls. 

Highly depressed patients had a low PA once awoken, which progressively increased until 

afternoon, where it began to decline (Murray, 2006). This pattern suggests that the circadian 

system is disrupted or misaligned greatly when the patient is in a depressive state (Murray, 

2006). In another study that observed over 509 million Twitter messages, from 2.4 million 

people, in 84 countries, it was found that PA was high in the morning, then decreased mid – 

morning (right before work) and increased in the evening (end of work; Golder & Macy, 2011). 

However, the shape of the affective cycle was not simply due to the workday because it was 

similar on weekends, but with a two hour delay. This pattern shows that sleep and the biological 

clock are important in determining affect, regardless of environmental stress (Golder et al., 

2011).  

 Not as many studies on circadian rhythms in mood and emotional behavior have been 

conducted in rats. One study examined sex differences in relation to circadian rhythms in rats 

with anxiety and depressive behavior, but there was a confounding light variable (Verma, 

Hellemans, Choi, Yu, & Weinberg, 2009). The rats were tested under white light during the day 

and red light at night. Since white light makes nocturnal rats more anxious, it is inconclusive 

whether the rhythms in depressive- and anxiety-like behaviors that they observed were 

endogenous or if they were a reaction to the lighting. In another experiment that tested rats using 
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the forced swim test during different times of the day was limited by the same light confound 

(Kelliher et al., 2000). In addition, another confounding variable was sex. In the experiment, only 

males were tested making it difficult to compare the differences between males and females. 

However, a study by Chaudhury and Colwell (2002) was performed under constant conditions. 

This experiment tested the effects of circadian rhythms on learning and memory in fear 

conditioned mice. The researchers compared whether the mice acquired conditioning better in 

the morning or night. It was found that performance and recall were greater for the mice that 

were conditioned during the day than night. Loss of conditioning was greater in the mice that 

were conditioned at night (Chaudhury et al., 2002).   

Several gaps remain in the study of circadian rhythms and mood disorders in rats. Most 

importantly, none of the previous animal studies have analyzed an animal model of mood 

disorder to determine whether depressed or anxious animals have altered emotional rhythms that 

are similar to human depressed subject. Additionally, it is vital to not only further investigate the 

effects of mood disorders on circadian rhythms but to also analyze the differences between males 

and females. In a behavior study conducted by Kerman et al. (2012), only male rats were tested. 

However, the results should differ if both sexes were tested because males have different 

circadian rhythms than females. Furthermore, in humans, chronotype, or the phasing of the 

internal clock relative to the solar day, is dependent on both sex and age. Children are early 

chronotypes, meaning they wake early and sleep early. Their chronotype progressively gets later 

during pubertal development, with the maximum occurring around age 20. Typically females 

reach their peak earlier than males and are more morning-type overall. These differences 

between chronotypes of males and females continue until females reach menopause, after which 

the difference disappears (Roenneberg et al., 2004). In other species (hamsters, rats, mice, 
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humans, and degus), freerunning rhythms and stability of entrainment of males and females 

significantly differ. Females maintain a stable pattern of activity, while males recover from 

phase-shifts with ease. These sex differences owe to the fact that males and females have 

different steroid hormones being released from the gonads (Gorman et al., 2002). The removal of 

gonads, or activational hormones, eliminates the differences between males and females.  

Knowing this information, we propose to examine differences between male and female 

bHRs and bLRs within daily rhythms in novelty-induced locomotor behavior (Kerman et al., 

2010). The bHR/bLR rats that are in the lab have been selectively bred over 40 generations. Due 

to the in-breeding, the high responder traits and low responder traits have become even more 

extreme, making it easier to identify bHRs from bLRs. We hypothesize that as the generations of 

inbreeding progress, bLR locomotor scores will be low, no matter the time of day, and bHR 

locomotor scores will peak in the morning, decrease in the afternoon. We also expect to see 

higher sex differences amongst the bHRs, and not as much in the bLRs. We will include data 

from 29 generations in our analysis, with 10,833 data points being analyzed. 

Method 

All experiments were approved by the University Committee on the Use and Care of 

Animals at the University of Michigan and were conducted in accordance with the National 

Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals, dictated by the 

National Research Council in 1996.  

Animals  

Several generations of male and female bHR and bLR Sprague Dawley rats were bred 

and acquired in-house. The original population began with purchasing 60 males and 60 females 

from three separate Charles River Laboratory breeding colonies. Upon arrival, all animals were 
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separated based on their locomotor response to novelty. Males and females with the highest and 

lowest scores were bred together to create the first generation of bHR and bLR lines. Each 

successive generation encompassed twelve litters, and we tested every adult male and female for 

novel locomotor response.  

Breeding pairs of animals that were derived from separate colonies initially limited 

inbreeding. For every litter a viable or “best” female and male are chosen to breed for the next 

generation. In the chance that one female did not get pregnant, a second female who was also 

mated was chosen as a back up.  

For breeding purposes, one male and one female were housed together for a single week. 

Females that were pregnant were pair housed until gestational day 18, after which they were 

singly housed again. All litters were culled (reduced) to 12 pups, 6 males and 6 females, if 

possible, on postnatal day 1 and then raised by the mother. More than 12 pups were never kept 

since the dam only has 11-12 teets to feed the pups. Animals were pair-housed and food and 

water were available ad libitum (Kerman et al., 2011). Behavioral testing for locomotor response 

to a novel environment took place when the rats were between 45-60 days old (P45 – P60). At 

this age the rats were still adolescents. The females would have started showing secondary sex 

characteristics and ovulating between P29-P36, and the males would just be starting to show 

some of their secondary sex characteristics between P37-P49 (Hagenauer et al., 2011).  It is 

important to note that the onset of MDD is prevalent in late adolescence in humans, and 

therefore late adolescence is an appropriate time to examine circadian rhythms in emotional 

behavior in animals selectively-bred to model mood disorder (DSM-IV). Prior to testing, female 

animals were not screened to see if they were undergoing estrous during testing.  
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All male rats were housed in a 12:12 light  - dark cycle (lights on at 6 a.m./Zeitgeber 

Time (ZT) 0, and lights off at 6 p.m./ZT12) from November through March. During this same 

time period, all females had lights on at 4 a.m. and lights off at 6 p.m.  March through 

November, all males were kept on a 12:12 light-dark cycle, with a 7 a.m. lights on and 7 p.m. 

lights off policy, females had lights on at 5 a.m. and lights off at 7 p.m. The clock shifted for 

daylight savings time, which was accounted for through an automatic, computerized process.  

Screening for Locomotor Response to Novelty  

Animals from the bHR/bLR lines were all screened to analyze novelty induced locomotor 

activity. With no prior exposure to the testing site, “rats were individually placed in standard 

clear acrylic cages (43 cm x 21.5 cm, 25.5 cm high) equipped with infrared photocell emitters 

mounted 2.3 and 6.5 cm above the floor to record horizontal and rearing movement”, which were 

placed in a separate location from the housing quarters (Kerman et al., 2011). Horizontal and 

rearing (vertical) movements were monitored in 5 min intervals over a period of 60 min via a 

computer (Kerman et al., 2011). Cumulative data collected after all 60 minutes encompassed 

both the horizontal and rearing scores for the total testing time. Up to 18 animals were tested 

simultaneously, with males and females being tested on separate days. All males and females 

from a single litter were tested at the same time, and if possible HR and LR bred pups were 

tested simultaneously (Stead et al., 2006). Rats were tested between the hours of 7 a.m. – 2 p.m., 

depending on the generation. Most generations were tested between 9 a.m. – 12 p.m.  

Generation Selection  

Based on our analysis of locomotor scores, divergence between the two-bred lines was 

not seen until generation 12 (for definition of divergence, see description in “Labeling LRs & 

HRs”). Therefore, data was discarded from generations 1-11 because bLRs were not clearly 
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distinguishable from bHRs. Generation 40 is the most recent generation from which colony data 

was collected. Therefore, this experiment contains data from 29 generations, specifically 

generations 12-40.  

Importing All Data 

 Once locomotor data collection had finished, all spreadsheets were saved as separate 

excel files based on generation, sex, and litter. Manually, all folders were reorganized by 

generation number, then by sex, then by number of files present in each folder. In total, there 

were 29 generations, with approximately 12 excel files in each folder (separated by sex), and 

approximately 200 data points in each excel file. A MATLAB code was created to compile all of 

the separate excel files into one cell array, where all the data points could be accessed. The code 

inserted all of the raw data that was necessary, such as the locomotor data, unique identifier 

code, time, time interval, and cumulative lateral and cumulative rearing scores. However, the 

code only included the data gathered in interval 12 (at the end of the 60 minute testing since it 

included all cumulative data) for all animals. An issue arose when the time column was listed as 

a decimal in the cell array and not as standard military time. Therefore, another code was created 

called Time Conversion that was used to convert the decimal time into an hour and minute time 

(specifically military time). For statistical analysis, the hour, not the minute, was used when 

binning generations/animals together.  

Using a “for loop”, we were able to tailor the code to recognize the “string” or name of 

the folder, as male or female and generation number and then inserted two new columns into the 

cell array, labeling the animal as male or female and providing its specific generation number. 

We did the same for the Time Conversion function by creating a “for loop” and a new column. 

The last “for loop” that was created combined the cumulative lateral and cumulative rearing 
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scores for all animals into a cumulative locomotor column. Not that only this column was used 

as the dependent variable, not the individual rearing and lateral score columns.  

Labeling bLRs and bHRs 

 Once all the data were imported into a cell array, we had to confirm that the animals that 

were bred as bHRs and bLRs had locomotor scores that fit their phenotype. We used several 

strategies to do this. We first chose to use a function called k-means, which finds data clusters 

and uses that information to find the centroid, or center, of the clustered data. In this case, k-

means took the cumulative locomotor scores for all animals and found that the data had two 

centroids, and therefore, two clusters. The two clusters were bHR and bLR locomotor scores, 

respectively. Using k-means, we divided all the data into a bHR cell array (bHR cluster) and bLR 

cell array (bLR cluster). In the earlier generations, from generation 12 – 20, there were a few 

outliers or animals bred to bHR or bLR lines that had abnormal locomotor scores. The outliers 

were removed by creating another code that analyzed the unique identifier, which either began 

with an H or L, as that was assigned to every animal. After the function k-means ran, a “for loop” 

was used to cross-reference the bHR and bLR groups with the unique identifiers. If there was an 

animal that was grouped in with the bHRs, but had an L listed in unique identifier, or vice-versa, 

it was removed entirely from the sample. Overall, there were approximately 40 outliers between 

generations 12 – 20 out of a total of 10,833 rats.  

Generating Graphs 

 Several types of graphs were generated based on the need to analyze the data in multiple 

manners. All of the analyses/graphs that were generated were separated based on sex. The first 

type of graph created was a histogram, with an x-axis of “time of testing” and y-axis of “count” 

for each phenotype and sex. These graphs were used to initially determine whether the time of 
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testing differed by sex, phenotype, or generation. The graph binned all generations together and 

was created for male and female bLRs and male and female bHRs.  The purpose of this graph 

was to find a correlation between time of day and phenotype or sex. Another histogram 

generated had the same x and y-axis as before, but generations were split and binned by fours, 

for example generations 12 – 15 were grouped together and graphed. The purpose was to see if 

there was a phenotype and time of day correlation across generations. A third type of graph that 

was created was a bar graph, which averaged locomotor scores across all generations. This graph 

was used to examine time of day against the average locomotor score for each phenotype and 

sex. In addition, a line graph to analyze locomotor activity in relation to sex and phenotype was 

also used to similarly analyze this data. Lastly, in order to accurately analyze the locomotor data 

for time of day effects and remove any large changes due to generation, median centered graphs 

were created in which the median for the cumulative locomotor score was calculated for each 

generation. Once the median was determined, it was subtracted from every score in the 

generation and then graphed against time of day. This method was used to see how much the 

locomotor scores, for each generation, differed from the median at different times of day. It also 

removed any large generational differences that may have skewed the results.  

Statistical Comparisons 

 We statistically analyzed our data using a linear regression model. We looked at four 

independent variables: sex, time of day, generation, and phenotype. The dependent variable was 

locomotor score. The following equation was used to analyze individual variables, as well as 

interaction terms within the data set:  

Locomotor Score ~ Intercept + Phenotype (HR vs. LR) + Gender (M vs. F) + 

Binned Generation + Time of Day + Phenotype*Gender + 
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Phenotype*Generation + Gender*Generation + (Time of Day)*Phenotype + 

(Time of Day)*Gender (M vs. F) + (Time of Day)*Generation + (Time of 

Day)*Phenotype*Gender + (Time of Day)*Phenotype*Generation + (Time of 

Day)*Gender*Generation + Phenotype*Gender*Generation + (Time of 

Day)*Phenotype*Gender*Generation.  

Although this model is complex, we felt confident that we had sufficient power to evaluate each 

term because the final data set included over 10,000 data points. Similarly, visual inspection of 

the data suggested that a linear model was appropriate for modeling time of day effects across 

this time period.  

Results 

In total 5,664 bLRs and 5,169 bHRs were analyzed for this experiment. When subdivided 

by sex, there were 3,211 male bLRs, 2,453 female bLRs, 2,683 male bHRs, and 2,486 female 

bHRs. Overall, our data fit the model very well: R2 = 0.4365, F (15, 10,817) = 558.6, p = 2.2x10-

16.  

In our investigation, only two independent variables, phenotype and generation number, 

showed an effect on the dependent variable, locomotor score (Phenotype: β = 1566.29, p = 2x10-

16, Generation: β = -6.4741, p = 0.0065; Figures 1 and 2). In terms of phenotype, bHRs showed a 

higher locomotor score than bLRs, where the differences in scores increased as generation 

number increased. Statistically there was a significant interaction between the effects of 

phenotype and generation (β = 37.4375, p = 2x10-16) on locomotor score. A possibility for this 

finding could be that as the generations increased, the variability within phenotypes decreased, 

causing bLRs to become more anxious and vice-versa for bHRs. As seen by the line graph 

(Figure 1), bHRs (males and females) increase in locomotor score as generation number 
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increased, whereas bLRs (males and females) decreased, at a very similar rate, as generation 

number increased. The bLRs seemed to bottom-out around generation 40, but bHRs continued to 

increase, with the female locomotor scores increasing quicker than the male locomotor scores. 

Indeed, there was a significant interaction between phenotype and sex (β = 330.9929, p = 

2.68x10-13), which can be seen in most of the figures, but most clearly in the line graph (Figure 

1). However, a significant interaction between sex x generation x phenotype was not seen (β = 

6.3865, p = 0.2643). In addition, sex also did not show a significant effect on locomotor score (β 

= -35.7058, p = 0.2649).  

Initially when examining the average locomotor score bar graphs for all generations, it 

appeared that there might have been an effect of time of day on locomotor score that differed by 

sex and phenotype (Figures 2 and 3a-d). However, after analyzing the average locomotor score 

bar graphs binned by generation, there was no consistent effect of time of day. Therefore, we 

decided to median-center the locomotor scores to remove any generational differences and any 

outliers (any major locomotor scores causing the average to severely shift) to see if a subtle 

relationship between time of day and locomotor score existed (Figures 4a-d). While there seems 

to be a decreasing trend, where bHRs are more active in the morning than the evening (most 

easily seen with males), time of day did not have a significant impact on locomotor score (β = -

1.5560, p = 0.8964). There was also no relationship between time of day and locomotor score 

across all generations for each phenotype (β = -1.9558, p = 0.3598). The appearance of the time 

of day effect in the original bar graphs that averaged locomotor score across all generations is 

most probably due to differences in the distributions of testing times, as illustrated by the 

histograms. Histograms were created to reflect the frequency of testing times across the day 

(each histogram was divided by sex, phenotype, and generation; Figures 5a-d). It is clear from 
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examining these histograms that the rats were tested at different time points during different 

generations.  

To conclude, our results showed that phenotype, generation, and sex tend to have the 

largest impact on locomotor score for rats that were bred for anxiety-like traits.  

Discussion 

Our hypothesis that as the generations of inbreeding progress, the difference between 

bLR locomotor scores and bHR locomotor scores would increase, no matter the time of day, was 

supported by the results of our study. The hypothesis that bHR locomotor scores would peak in 

the morning and then decrease in the afternoon, and that bLR locomotor scores would peak later 

in the day was not supported by our results. More generally, our hypothesis that time of day, 

would affect locomotor score was not supported by our results. In addition, our third hypothesis, 

that we expected to see a higher sex difference amongst the bHRs than the bLRs, was supported 

by our results. 

Previous studies have shown an effect of time of day on both positive and negative affect 

in depressed patients (Golder et al., 2011, Murray, 2006, Peeters et al., 2006). Our results 

showed no correlation between locomotor response to a novel environment and time of day in 

rats bred for different emotional behaviors. However, other animal studies have shown a 

relationship between circadian rhythms and emotional behavior, such as Verma et al. (2009) and 

Kelliher et al. (2000). Verma et al. (2009) conducted behavioral tests, such as open field and 

elevated plus maze, in outbred rats during light and dark phases of the day. They found that both 

circadian phase and sex significantly influenced behavioral responses to stress. Kelliher et al. 

(2000) examined rat behaviors in the forced-swim test under both light (diurnal) and dark 

(nocturnal) conditions. They found that rats adapted to stress better during the day than at night. 



CIRCADIAN RHYTHMS AND EMOTIONAL-LIKE BEHAVIOR                           

	
  

20	
  

Although, these studies had light as a confounding variable, their results show that time of day 

may be important for the study of mood disorders in animal models. If our study had tested rats 

throughout the day (both morning and evening) and controlled for light variables (light and dark 

cycles) we might have seen similar results. Studies analyzing differences in phenotypic behavior, 

such as Kerman et al. (2011), similarly found that bHRs were more active than bLRs. In 

addition, the Kerman et al. (2011) study also found that circadian functioning in rodents that are 

behaviorally less anxious (bHR) are innately different from those that are more anxious (bLR). 

Although we did not see differences in the timing of locomotor behavior due to phenotype, we 

did see that phenotype, itself, was significant.  

Our results suggest several things about circadian rhythms and mood disorders. The first 

is that studying circadian rhythms and emotional behavior in rats may vastly differ from the 

study of circadian rhythms affect in humans. The concepts of positive and negative affect are not 

easily represented in rats since we do not have the ability to measure what they subjectively feel. 

Although several studies have been conducted in humans to understand the patterns that positive 

and negative affect presents in depressed patients, it is hard to reliably state if this type of 

understanding can be applied to rats. We are only able to assess emotionally driven responses 

based on behavior. Studies conducted by Verma et al. (2009), Kelliher et al. (2000), and 

Chaudhury et al. (2002) have all used other behavioral tests to measure emotional behavior and 

daily rhythms in rats. These tests have included the elevated plus maze, open field test, forced 

swim test, and sucrose preference test. By using different anxiety- or depression-like behavioral 

tests, such as in the open field and elevated plus maze, we may see a more significant 

relationship between locomotor scores and time of day, and possibly even sex. In addition, 

different emotional behavioral tests, such as forced swim test and sucrose preference, have also 
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been shown to differ in both male and female rats (Verma et al., 2009). If these tests were added 

to our experiment, we may be able to see a significant effect of both sex and time of day.  

Our study does show that bHR/bLR model is a reliable means for modeling mood 

disorders. Both phenotypes can be used to model not only anxiety-behaviors, but depressive 

states and even addictive behaviors (Kerman et al., 2011). Our results also emphasize how 

extreme the genetic influence on mood can be. As the generations progressed, beginning at 

generation 12, bHRs became more responsive to novelty and bLRs became less responsive to 

novelty, demonstrating the heritability of emotional traits and mood disorders.  

In terms of sex, our results varied from those found in Roenneberg et al. (2004). We 

found no significant effect of sex on the influence of time of day on locomotor score in our rats. 

However, Roenneberg et al. (2004) had found that in humans females typically reach their 

maximum eveningness peak, or tiredness, at an age earlier than males and are more prone to 

being morning-type overall. Animal research has shown that other species also have free-running 

rhythms that differ by sex. These sex differences are most likely due to steroid hormones being 

released from the gonads (Gorman & Lee, 2002). Our results may have not shown any 

significant sex differences in daily rhythms since rats were tested at different stages of their 

estrous cycle and no significant time of day effects were seen for locomotor score overall 

(Gorman et al., 2002 & Hagenauer et al., 2011).  

In addition, there is an interaction between the effects of phenotype and sex. Another 

phenotypic difference that we have obscured in our lab is that past generation 40, many bLRs are 

struggling to reproduce. The exact reasons for this behavior remains unknown but it is 

potentially due to stress-suppressing hormone release that inhibits reproduction (Gorman et al., 

2002). Therefore, there may be smaller hormonal sex differences in bLRs than in bHRs. It might 
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be interesting to address these questions by doing a comparison of hormone binding in the brain 

tissue of both bLRs and bHRs or testing peripheral circulating hormones. It also would be 

important to test animals in later generations that have reached adulthood, rather than focusing 

exclusively on those in late adolescence (Hagenauer et al., 2011).  

One weakness of this study is that every generation of rats was only tested during the 

lighted hours and more specifically during morning hours (with the exception of a few 

generations that were tested at 1 p.m. and 2 p.m.). None of the rats were truly tested during the 

dark cycle or late afternoon. This impacts our results because we do not truly know if time of day 

affects locomotor response. Not seeing any overall significant effect of time of day in our results 

could potentially change if we compared light cycle novel locomotor responses to dark cycle 

novel locomotor responses. Another weakness is that the rats were also only tested for novel 

locomotor scores once during the day. Testing the rats at multiple times of day could give us 

more locomotor scores to analyze, which would truly help us to conclude if time of day is a 

factor in anxiety-like behaviors in rats. However, it is worth noting that it would be difficult to 

ensure that the locomotor responses represented a reaction to novelty if the rats were repeatedly 

tested. Another weakness of this experiment could be that the rats were tested during the 

adolescent phase (between 45-60 days old). Ronneneberg et al. (2004) showed that sex 

differences usually appear during adulthood when sex hormones have been more clearly 

developed. Therefore, testing the animals during late adolescence could have given different 

results than testing the animals during adulthood. We also did not run a second set of analyses 

that might be less susceptible to the influence of outliers, such as robust regression. Since we had 

several data points (over 10,000), manually sorting through the data to remove outliers within 

bLRs and bHRs was impractical. Therefore, our data could potentially contain very large 
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outliers, which could be skewing our results. However, had we ran a robust regression, we would 

have been able to statistically remove any significant outliers helping to reduce variability within 

our results.   

In the future we could address these weaknesses by designing an experiment that 

included only adult rats (past day 60), as well as screening female animals to see if they were 

undergoing the estrous cycle during testing. In addition, we would test the animals for each 

generation at the same time intervals during the day. We would also test the animals twice a day, 

once during the light cycle and once during the dark cycle. We would run a robust regression 

analysis to exclude any outliers in our statistical data compilation.  

However, overall we feel this experiment is strong because we tested 29 generations of 

animals, with a total of over 10,000 animals. Our sample size was quite large and included many 

animals from each phenotype. The data that was collected for each independent variable was 

analyzed in several methods and overall our model fit the data well. In order to take into account 

different potential confounds, approximately 50 graphs were generated when analyzing this data 

set. In terms of breeding colonies, our results support the approach that was used by the lab in 

breeding these rats. The breeding protocol does not take into consideration time of day effects 

when gathering behavioral data between the hours of 7 a.m. and 2 p.m. This protocol aided in 

our breeding project because it demonstrated consistency between generation 12 through 

generation 40, thereby illustrating that the data in generation 14 is comparable to the data in 

generation 36. In a long – term lab project, this consistency in the breeding strategy reduces the 

influence of confounding variables within the entire data set. 

These results are important and necessary for the further progression of circadian rhythms 

and mood disorder research because it helps to identify factors that could potentially affect 
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emotional behaviors. By understanding how sex, phenotype, time of day, and age affect 

emotional behaviors, we might encounter solutions for psychiatric disorders, not just anxiety but 

also MDD and even addiction. Understanding the relationships between circadian rhythms and 

mood disorders could potentially help psychologists tailor programs for their patients to specific 

times of the day (Carpenter, Kupfer, & Frank, 1986).  
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Figure 1: The graph demonstrates the increasing divergence between bLR and bHR phenotypes 

as generations progress. 

This graph is a line graph that reflects average locomotor score on the y-axis and generations on 

the x-axis. The locomotor scores have been averaged together across all time intervals for each 

binned generation. The generations, reflected on the x-axis, are binned together in intervals of 

four. As the generations increased, average locomotor scores increased for both male and female 

bHRs, while significantly decreasing for both male and females bLRs. The two green lines are 

bHRs (high responders), where the upside down triangle refers to males and clear square are 

females. The two red lines refer to bLR (low-responders) rats, where the clear, facing up triangle 

are males and filled circle are females. Greater sex differences are present in the bHRs than the 

bLRs (phenotype*sex: p = 2.68x10-13). 
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Figure 2: The amplification of phenotypic traits due to selective breeding with little evidence for 

time of day effects on locomotor score. 

These bar graphs are sorted by phenotype, sex, and generation. On the x-axis for all graphs is the 

time of locomotor testing on a 24-hour scale. The generations shown are 12-15, 24-27, and 26-40 

(earliest, middle, and latest generations). On the y-axis for bHRs, or high responders, (both males 

and females), is the average locomotor score on a scale from 0 – 3,000 beam breaks. On the y-axis 

for bLRs, or low-responders, (both males and females) is the average locomotor score on a scale 

from 0 – 1,500 beam breaks. Though the scale used for the bLR group is half the scale used for the 

bHR group, and the difference between average locomotor scores is still significantly visible. 

Overall, the figure is supposed to demonstrate and compare the extent to which phenotypic traits 

presented themselves as generations progressed for both males and females in relationship to time of 

day. The error bars on each bar represent the standard error of mean. 
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Figure 3(a – d): bHRs, across all generations and all times of day, have much greater average 

locomotor scores than bLRs.  

All graphs bin data from all generations. The x-axis is the time of locomotor testing between the 

hours of 7 and 14, on a 24-hour clock. The y-axis is the average locomotor score for all animals 

for a specific sex and phenotype, which has been scaled to 2,500 beam breaks for all graphs. The 

error bars on each bar represent the standard error of mean. Overall, the graphs show how bHRs, 

both males and females, have a greater average locomotor score across the day than bLRs for 

both males and females, and little evidence of a change in locomotor score as the day progresses.  
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Figure 4(a – d): Median centered locomotor score graphs do not show a time of day effect on 

locomotor score for both phenotypes and sex.  

This graph was created by subtracting the median score, for each hour of testing across all 

generations, from the average locomotor score. This was done to remove any generational effects 

and extreme outliers that may have existed when averaging the locomotor scores to test to see if 

time of day affects locomotor score. The y-axis has been made uniform by setting the maxium to 

500 and minimum to -100 beam breaks relative to the median locomotor score for each 

generation. The x-axis is the time of day the locomotor score was collected between the hours of 

7 and 14 on a 24-hour clock. The error bars on each bar represent the standard error of mean.  
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Figure 5(a – d): Representative generational histograms demonstrate the lack of consistency in 

times that the animals were tested.  

These representative histograms are a sampling used to demonstrate the inconsistency in testing 

time across generations, phenotypes, and sex. The x-axis is the time of locomotor testing 

between from 7 to 14 on a 24-hour clock. The y-axis is the count or number of animals being 

tested for every hour for a specific binned generation. The y-axis has been scaled to 200 counts 

for all animals. bHR and bLR are abbreviations for high- and low-responders, respectively.  	
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