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Abstract We report the in situ observation of a plasma vortex induced by a solar wind dynamic pressure
enhancement in the nightside plasma sheet using multipoint measurements from Time History of Events
and Macroscale Interactions during Substorms (THEMIS) satellites. The vortex has a scale of 5–10 Re and
propagates several Re downtail, expanding while propagating. The features of the vortex are consistent with
the prediction of the Sibeck (1990) model, and the vortex can penetrate deep (~8 Re) in the dawn-dusk
direction and couple to field line oscillations. Global magnetohydrodynamics simulations are carried out, and
it is found that the simulation and observations are consistent with each other. Data from THEMIS ground
magnetometer stations indicate a poleward propagating vortex in the ionosphere, with a rotational sense
consistent with the existence of the vortex observed in the magnetotail.

1. Introduction

Flow vortices are common in ordinary fluids. In a plasma, they also exist but their structure and evolution are
complicated by the presence of electric and magnetic fields. Plasma vortices can transport plasma across
boundaries [e.g., Miura, 1984; Hasegawa et al., 2004]. They can also generate field-aligned currents (FACs)
and contribute to the aurora [e.g., Birn et al., 2004; Keiling et al., 2009; Lui et al., 2010]. Vortices on different
scales have been found in the heliosphere [Burlaga, 1990], the Earth’s ionosphere, and the magnetosphere
under different external or internal conditions [e.g., Hones et al., 1978; Friis-Christensen et al., 1988; Glassmeier
et al., 1989; Lyatsky et al., 1999; Murr et al., 2002; Motoba et al., 2003; Sibeck et al., 2003; Sundkvist et al., 2005;
Juusola et al., 2010; Tian et al., 2010].

Many previous observations of plasma flow vortices have been made at the dayside ionosphere based on
ground magnetic field or SuperDarn radar observations [e.g., Friis-Christensen et al., 1988; Glassmeier et al.,
1989; Yahnin et al., 1996; Lyatsky et al., 1999; Motoba et al., 2003; Murr et al., 2002; Sibeck et al., 2003; Juusola
et al., 2010]. Nightside magnetospheric vortex observations have also been reported [e.g., Hones, 1978;
Hasegawa et al., 2004; Keiling et al., 2009; Lui et al., 2010; Tian et al., 2010] and simulated [El-Alaoui et al., 2010;
Wang et al., 2010; Sun et al., 2011, 2012; Shi et al., 2013; Samsonov and Sibeck, 2013], but we are not aware
of any clear in situ observations of such vortices attributed to by solar wind pressure enhancements either
in the dayside or nightside plasma sheet. Wang et al. [2010] and Sun et al. [2011, 2012] looked at the
response of the nightside magnetotail to a pressure increase and examined the magnetic field response
using a global MHD simulation and comparative GOES/THEMIS/Double Star data. Although they did not
explicitly report it, a vortex was clearly seen in their simulation. Observational evidence of such a sudden
impulse (SI)-associated vortex is still lacking. Sibeck [1990] proposed an interaction model between solar
wind pressure pulses and the magnetosphere, in which a single- or double-vortex structure inside the
magnetosphere near the magnetopause, with a concomitant ionospheric signature was predicted. The
ionospheric counterpart was later observed using SuperDarn radar and ground magnetometers [e.g., Sibeck
et al., 2003]; however, there are still no in situ observations of solar wind dynamic pressure-induced vortices
near the magnetopause and the adjacent tail plasma sheet.
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Recently, Shi et al. [2013] reported standing Alfvén waves in the nightside plasma sheet after SIs. They
proposed that those are field line resonances (FLRs) driven by the solar wind dynamic pressure
enhancements through a pressure-induced vortex at the boundary. The authors suggested this as a new
mechanism for FLR excitation. They proposed that where the vortex perturbation frequency matches the
local standing Alfvén wave frequency, an FLR will be excited. The ULF response to the vortex structure
induced by an SI is different from the direct response to the SI. In the former case, the spatial structure and
propagation of the vortex can lead to a frequency selection, exciting standing Alfven waves at discrete
frequencies and locations. In the latter case, a broadband frequency response is expected, since the SI
contains rapid step-like (or spiky) variations in the time domain. Analysis of the magnetospheric response to
the SI in the time domain—in particular, identification of vortex structures using in situ observations—is
required to confirm the operation of either ULF wave excitation mechanism in the nightside magnetosphere.
Although vortices can be found in simulations [e.g., Samsonov and Sibeck, 2013; Shi et al., 2013] after an SI,
until now no direct evidence of such vortices has been reported from in situ observations. In this paper, we
report the first in situ observation of such vortices attributed to solar wind dynamic pressure pulse in the
nightside plasma sheet using coordinated observations from multiple THEMIS satellites. Global MHD
simulations and ground magnetometer measurements are also performed to confirm the finding.

2. Observations and Global MHD Simulations

On 24 April 2009, the Wind satellite detected an interplanetary shock (see Figure 8 in Shi et al. [2013]) with a
dynamic pressure increase from ~0.7 to 1.7 nPa. In response, THEMIS B, C, and D in the dusk magnetotail
observed magnetic field and ion velocity perturbations after the SI at ~00:53 UT, as shown in Figure 1 for
THEMIS C and D where the vertical lines indicate the SI start time/solar wind dynamic pressure pulse arrival
time. In this case THEMIS D was separated from B and C by about 4 Re along X, and THEMIS B and C were
separated by about 1.8 Re along the Y direction, as shown in Figure 2b (all coordinates are in the GSE
coordinate system). The velocity vectors versus time as shown in Figures 1c and 1h are consistent with
motion through a typical vortex, as exemplified by trajectory 3 in Figure 7 of Keiling et al. [2009]. The shaded
areas correspond to the vortex proper, while the time between the SI start time (vertical lines) and the
shaded area indicates a tailward flow response after the lateral compression of the magnetosphere by the
solar wind dynamic pressure enhancement which has been studied in Shi et al. [2013].

Figure 1. THEMIS observations of the magnetotail response to the solar wind pressure pulse and global MHD simulation result. The time corresponding to the vortex
passage is illustrated in the shaded region. The vertical lines indicate the SI start time/solar wind dynamic pressure pulse arrival time. (a) magnetic field observed
by THD. (b) Ion velocity observed by THD. (c) Ion velocity vector in xy plane in GSE. (d) Simulated ion velocity at THD position in the simulation domain. (e) Simulated
ion velocity vector in xy plane at THD position. (f)–(j). Same as Figures 1a–1e but for THC.
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We have carried out a global MHD simulation through the Community Coordinated Modeling Center
(CCMC) using the OpenGGCM MHD code [Raeder et al., 2008] to simulate this kind of solar wind pressure
pulse/magnetosphere interaction. The solar wind input parameters for the MHD simulations before
(after) the solar wind pressure are 4.0 n/cm3 (7 n/cm3) for density, [320,0, 0] km/s ([380, 0, 0] km/s) in
GSE for solar wind velocity, and [0, 3, 3] nT ([0, 7, 5] nT) in GSE for the interplanetary magnetic field
(IMF). Both at the dawn and dusk sides of the magnetotail a tailward moving single vortex can be found
in the simulation result. Here we only show the dusk part of the magnetotail in Figure 2a. An animation
can be seen in the supporting information (Note that the default time of the model simulation in CCMC
starts from 2001, which does not correspond to the real time of the observation.). We plot the time
series of the plasma velocities/vectors at (�7.2, 7.7, 0.0) Re (corresponding to THEMIS D position) and
(�11.1, 8.3, 0.0) Re (corresponding to THEMIS C position) in the simulation domain in Figures 1d/1e
and 1i/1j, respectively. The shaded areas in Figure 1 correspond to the simulated vortex in Figure 2. It
can be seen that the velocity vectors observed by THEMIS are consistent with those simulated by the
MHD model.

The vortex was followed at THD’s position by field line oscillations. The vortex continued moving tailward
and was later observed by THB and THC which were 4 Re away from THD. Shi et al. [2013] have studied the
wave activity observed by THD after the time corresponding to the shaded area in the left-hand panel of
Figure 1. They found that it was a standing Alfvén wave consistent with an FLR and proposed that the wave
was driven by a passing vortex driven by the solar wind SI. The ensuing standing Alfvén wave activity is not
captured well by the MHD simulations, perhaps due to the simulation accuracy or due to the boundary
condition settings at the ionosphere. The vortex is the topic of this report.

Figure 2. Comparison of vortex perturbations corresponding to rotation as observed by THEMIS B and C with MHD simulation results. (a) The global MHD simulation
results shown in duskside. The background color indicates plasma pressure, and the arrows represent the plasma velocities. (b) THEMIS probe potions for satellite B,
C, and D. (c–d) Plasma velocity vectors observed by THEMIS B and C at different moments.
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Two of our satellites (THB and C) were downtail of THD and separated mostly along Y by about 1.5 Re. We can
therefore plot the flow vectors at every moment, as shown in Figures 2c–2f and compare the observed
velocities to what is expected from simulations of a passing vortex. Before the SI (Figure 2c), we find that the
flow vectors observed by THB and C are very small. Upon arrival of the SI (Figure 2d), we find tailward flows
from both THB and C, consistent with a lateral compression of the magnetopause. Several minutes later, the
flow vectors at THB and C become quite different from each other (Figures 2e and 2f), and the sense of
rotation is consistent with counterclockwise motion, as seen in the simulation (Figure 2a) and as expected
from the Sibeck [1990] model. Therefore, from simulation and multipoint observations, we confirm that this is
a tailward moving vortex that is caused by magnetospheric compression by the solar wind dynamic
pressure enhancement.

From simulations and observations we also notice that the vortex is deep inside the magnetosphere,
rather than simply near the magnetopause, since THC is ~8 Re from the statistical location of the
magnetopause boundary under these dynamic pressure conditions ([Shue et al., 1998], with Pdyn = 2 nPa;
Bz=1 nT). According to the simulation the inner edge of the vortex is near Y = 5 Re. From the simulation,
the scale of the vortex appears to be 5–10 Re, which is consistent with our observations (Our MHD
simulation results are also similar to the simulation results of Wang et al. [2010] and Sun et al. [2011,
2012]). From both simulation and observations it appears that the size of the vortex is growing while
propagating tailward.

From approximately 0052 UT transient magnetic variations in the H component were observed by THEMIS
ground stations along a latitude profile near the foot points of the THEMIS satellites, as shown in Figure 3a.
The bipolar signature in the H component is consistent with observations of traveling convection vortices by
Friis-Christensen et al. [1988] and Glassmeier et al. [1989]. The time shift of the negative peak indicates a
poleward propagation of the transient and is consistent with the observed tailward propagation of the driver
in the magnetosphere. Figure 3b shows equivalent ionospheric currents (EICs) derived from the ground
magnetic disturbance of ground magnetometer arrays (CANMOS, CARISMA, GIMA, MACCS, THEMIS, DTU,
STEP, and USGS) at 00:57 UT (see Weygand et al. [2011] and Keiling et al. [2009] for a description of these
techniques). A single vortex with counterclockwise rotation is seen near the ionospheric footpoints of THEMIS B,
C, and D and is demarcated by a circled area in Figure 3b. The sense of rotation of the equivalent
ionospheric Hall current has a divergence that is consistent with an upward FAC from current continuity [e.g.,
Birn et al., 2004; Keiling et al., 2009; Yao et al., 2012], consistent with the FAC generation by the magnetospheric
flow vortex that we observed in the magnetotail.

Figure 3. (a) H component of the transient magnetic variation recorded at stations near the foot points of THEMIS B, C, and D.
(b) Equivalent ionospheric currents (EICs). The stars indicate the ground stations and the solid circles indicate the foot
points of THEMIS B (red), C (green), and D (cyan). The vectors indicate the current direction and intensity. The yellow circle
highlights the vortex position.
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3. Summary and Discussions

In this paper we report in situ and ground observations of a solar wind dynamic pressure enhancement-
induced vortex in the nightside plasma sheet and reproduce the in situ signature using global MHD
simulations. Simulation and observations consistently show a vortex driven by a sudden impulse in the solar
wind and extending deep inside the magnetosphere, not only near the magnetopause.

The depth of penetration of the vortex into the tail (and the excitation of field line resonance) indicates
that the energy coupling between the solar wind and the magnetosphere/ionosphere is significant. Other
events (e.g., events on 28 May 2008 and 28 May 2009) from THEMIS single satellite data show that this
response of the nightside plasma sheet to solar wind dynamic pressure enhancement is rather common.

At THD’s position the vortex was followed by the field line oscillations after it passed. Thus, the magnetic field
response in the plasma sheet to an interplanetary shock/pressure change is not always a smooth increase
or decrease, sometimes there are persistent perturbations. This vortex continued propagating toward the tail
and was later observed by THB and THC at a location 4 Re away from THD. From the simulation results we
find that there is no net plasma transport; however, the front/phase of the vortex perturbation in the
magnetotail plasma sheet is moving tailward—see Animation S1 in the supporting information. The response
of the plasmas at different locations makes the plasma velocity vectors form a vortex-like picture as a whole.
When the perturbations move tailward, the vortex also moves tailward. According to the Sibeck [1990] model,
the compression and recovery of the field lines lead to a vortex formation. If the timing of this compression
and recovery (or the timing of this vortex) matches the local field line frequency, then an FLR can be excited
as suggested by Shi et al. [2013] and then we seemore than one period of thewave, while at other places where
the local field line frequency does not match the FLR the waves damp very fast. The ULF wave and the vortex
are excited at the same time, and they actually may be the same feature observed with different methods:
the wave is seen locally while the vortex requires a global view. The observations herein are not unique as
mentioned above. Shi et al. [2013] have also discussed several formation mechanisms of the FLRs other than
vortex, such as surface waves at the magnetopause driven by the Kelvin-Helmholtz instability [e.g., Chen and
Hasegawa, 1974; Southwood, 1974; Claudepierre et al., 2008], cavity/waveguide modes [e.g., Kivelson and
Southwood, 1985, Walker et al., 1992; Rickard and Wright, 1994, 1995], and direct excitation by a solar wind
pressure pulse [e.g., Samson and Rostoker, 1972;Waters et al., 1995]. We found that none of these mechanisms
could explain the ULF wave observations. Since there are no obvious density and pressure fluctuations the
generation mechanism described by Kepko et al. [2002] (also seen in Claudepierre et al. [2010]) is also not
applicable here. In addition, IMF variationsmight also drive vortices or low-frequencywaves directly [e.g.,Walker
et al., 2006; El-Alaoui et al., 2009; Nedie et al., 2012]. Nedie et al. [2012] have seen waves in the solar wind as
variations in IMF Bz at the frequency of SuperDARN FLRs. For the case we present in this paper, there are
some IMF fluctuations which may contribute to the vortex and FLR formation processes. We have conducted
spectral analysis (not shown here) and find that the frequency of the IMF Bx oscillation is close to 2 mHz,
which is close to the FLR frequency of this event. These IMF fluctuations may contribute to the observed wave
activity—it is not possible to rule them out since the MHD simulation does not fully capture the physics of
standing Alfven waves and thus cannot directly establish what causes the waves. However, we find that the IMF
fluctuations start ~4min earlier than the dynamic pressure enhancement (which coincides with the SI start
time as well as the ULFwave start time). Also, for the other two events we studied in Shi et al. [2013], there are no
such IMF oscillations, but the ULF wave start times all coincide with the SI arrival or the dynamic pressure
enhancement. Thus, IMF oscillations may affect the ULF wave activity, but they are not crucial for generating
the ULF waves.

A large amount of previous observations and models have discussed ionosphere traveling convection
vortices, which are observed on the dayside and are also related to solar wind dynamic pressure
enhancements [e.g., Friis-Christensen et al., 1988; Glassmeier et al., 1989; Kivelson and Southwood, 1991].
These ionospheric vortices map to the dayside or flank magnetopause or low-latitude boundary layer (LLBL)
[e.g., McHenry et al., 1989; Kivelson and Southwood, 1991; Glassmeier, 1992]. Our in situ observations at the
nightside differ significantly from those of the dayside ionospheric convection vortices and their predicted
magnetospheric driver locations, since we observed the driver plasma vortex deep inside the nightside
magnetosphere. The difference between dayside and nightside is likely due to the fact that the restoring
force from the magnetosphere changes from being normal to the boundary at the dayside to be oblique to
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the boundary tailward of the terminator. At the nightside the restoring force becomes weaker, since the
boundary field is weaker there and its gradient points at an angle to the magnetopause. This makes the
pressure pulse on the nightside protrude farther inside the magnetosphere. Some studies have suggested
that some dayside ionospheric traveling convection vortices maymap to the nightside plasma sheet near the
flanks [Yahnin and Moretto, 1996; Yahnin et al., 1997]. This would not be inconsistent with our observations on
the nightside, and in situ observations of these phenomena in the ionosphere and magnetosphere covering
both nightside and dayside are needed.

To generate the ionosphere vortex, the Kivelson and Southwood [1991] model requires a deformation of the
magnetopause to generate a FAC connecting to the ionosphere. Glassmeier [1992] suggested that the
compression would perturb the magnetopause current and in turn generate the upward and downward FAC
corresponding to the vortex in the ionosphere. The aforementioned models do not require an in situ vortex
in the magnetosphere or near the magnetopause. The Sibeck [1990] model, however, considers in situ
vortex near the magnetopause. According to this model, when the shock impinges the magnetopause, a fast
wave will be launched inside the magnetosphere. If this fast mode wave propagates faster than the
magnetosheath part of the shock, the magnetospheric field lines move outward where the fast wave arrives
and then we can expect a tailward moving double vortex. If the fast mode wave inside the magnetosphere
does not advance in front of the magnetosheath discontinuity, then we should only expect one single
vortex. This situation should happen under northward IMF when the LLBL is thick and, in turn, the fast mode
speed inside the magnetosphere is not that fast. In our observation and simulation results it appears that a
single vortex is evident. This may be due to the northward IMF condition, consistent with Sibeck’s [1990]
model. In addition, the fact that his vortex as an FAC source is deeper inside the tail, not only near the
magnetopause, has not been predicted before.

In the future we need to continue data analysis in different regions, especially on the dayside, and compare
with simulation and models. We plan to examine how these vortices transfer energy to waves and particles,
generate aurorae, or heat the ionosphere. These studies will help us understand the effects of pressure-
induced vortices and nonsteady solar wind conditions on the space environment.

References
Amm, O., M. J. Engebretson, T. Hughes, L. Newitt, A. Viljanen, and J. Watermann (2002), A traveling convection vortex event study:

Instantaneous ionospheric equivalent currents, estimation of field-aligned currents, and the role of induced currents, J. Geophys. Res.,
107(A11), 1334, doi:10.1029/2002JA009472.

Birn, J. M., J. Raeder, Y. L. Wang, R. A. Wolf, and M. Hesse (2004), On the propagation of bubbles in the magnetotail, Ann. Geophys., 22,
1773–1786.

Burlaga, L. F. (1990), A heliospheric vortex street?, J. Geophys. Res., 95(A4), 4333–4336, doi:10.1029/JA095iA04p04333.
Chen, L., and A. Hasegawa (1974), A theory of long-period magnetic pulsations: 2. Impulse excitation of surface eigenmode, J. Geophys. Res.,

79(7), 1033–1037.
Claudepierre, S. G., S. R. Elkington, and M. Wiltberger (2008), Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity

shear at the magnetopause, J. Geophys. Res., 113, A05218, doi:10.1029/2007JA012890.
Claudepierre, S. G., M. K. Hudson, W. Lotko, J. G. Lyon, and R. E. Denton (2010), Solar wind driving of magnetospheric ULF waves: Field line

resonances driven by dynamic pressure fluctuations, J. Geophys. Res., 115, A11202, doi:10.1029/2010JA015399.
El-Alaoui, M., M. Ashour-Abdalla, R. J. Walker, V. Peroomian, R. L. Richard, V. Angelopoulos, and A. Runov (2009), Substorm evolution as

revealed by THEMIS satellites and a global MHD simulation, J. Geophys. Res., 114, A08221, doi:10.1029/2009JA014133.
El-Alaoui, M., M. Ashour-Abdalla, R. L. Richard, M. L. Goldstein, J. M. Weygand, and R. J. Walker (2010), Global magnetohydrodynamic

simulation of reconnection and turbulence in the plasma sheet, J. Geophys. Res., 115, A12236, doi:10.1029/2010JA015653.
Farrugia, C. J., M. P. Freeman, S. W. H. Cowley, D. J. Southwood, M. Lockwood, and A. Etemadi (1989), Pressure driven magnetopause motions

and attendant response on the ground, Planet. Space Sci., 37, 589.
Friis-Christensen, E., M. A. McHenry, C. R. Clauer, and S. Vennerstrom (1988), Ionospheric traveling convection vortices observed near the

polar cleft: A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 15, 253–256, doi:10.1029/GL015i003p00253.
Glassmeier, K.-H. (1992), Traveling magnetospheric convection twin vortices—Observations and theory, Ann. Geophys., 10, 547–565.
Glassmeier, K.-H., M. Hönisch, and J. Untiedt (1989), Ground-based and satellite observations of traveling magnetospheric convection

twin-vortices, J. Geophys. Res., 94, 2520–2528, doi:10.1029/JA094iA03p02520.
Goertz, C. K., E. Nielsen, A. Korth, K. H. Glassmeier, C. Haldoupis, P. Hoeg, and D. Hayward (1985), Observation of a possible ground signature

of flux transfer events, J. Geophys. Res., 90, 4069, doi:10.1029/JA090iA05p04069.
Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro (2004), Transport of solar wind into

Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, 755–758.
Hones, E. W., Jr., G. Paschmann, S. J. Bame, J. R. Asbridge, N. Sckopke, and K. Schindler (1978), Vortices in magnetospheric plasma flow,

Geophys. Res. Lett., 5(12), 1059–1062, doi:10.1029/GL005i012p01059.
Juusola, L., K. Andreeova, O. Amm, K. Kauristie, S. E. Milan, M. Palmroth, and N. Partamies (2010), Effects of a solar wind dynamic pressure

increase in the magnetosphere and in the ionosphere, Ann. Geophys., 28(10), 1945–1959.
Keiling, A., et al. (2009), Substorm current wedge driven by plasma flow vortices: THEMIS observations, J. Geophys. Res., 114, A00C22,

doi:10.1029/2009JA014114.

Acknowledgments
We acknowledge NASA THEMIS contract
NAS5-02099; J. Bonnell and F. S. Mozer
for the use of the EFI data; and C. W.
Carlson and J. P. McFadden for the use of
the ESA data; K. H. Glassmeier, U. Auster,
and W. Baumjohann for the use of FGM
data provided under the lead of the
Technical University of Braunschweig
and with financial support through the
German Ministry for Economy and
Technology and the German Center for
Aviation and Space (DLR) under contract
50 OC 0302. Simulation results have
been provided by the Community
Coordinated Modeling Center at
Goddard Space Flight Center through
their public Runs on Request system
(http://ccmc.gsfc.nasa.gov). The CCMC is
a multiagency partnership between
NASA, AFMC, AFOSR, AFRL, AFWA, NOAA,
NSF, and ONR. The OpenGGCM was
developed by Joachim Raeder and
coworkers at the University of New
Hampshire. We are grateful to CDAWeb
for providing the WIND data. We are
grateful to Cindy Russell for help with
software. This work is supported by
NNSFC 41031065, 41074106, 41322031,
the Shandong Natural Science
Foundation JQ201112, and the Ministry
of Education of China (NCET-12-0332).
M.D. Hartinger was supported by NSF
AGS-1230398.

Larry Kepko thanks Robert Rankin and
Mostafa El-Alaoui for their assistance
in evaluating this paper.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019551

SHI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4279

http://dx.doi.org/10.1029/2002JA009472
http://dx.doi.org/10.1029/JA095iA04p04333
http://dx.doi.org/10.1029/2007JA012890
http://dx.doi.org/10.1029/2010JA015399
http://dx.doi.org/10.1029/2009JA014133
http://dx.doi.org/10.1029/2010JA015653
http://dx.doi.org/10.1029/GL015i003p00253
http://dx.doi.org/10.1029/JA094iA03p02520
http://dx.doi.org/10.1029/JA090iA05p04069
http://dx.doi.org/10.1029/GL005i012p01059
http://dx.doi.org/10.1029/2009JA014114
http://ccmc.gsfc.nasa.gov


Kepko, L., H. E. Spence, and H. J. Singer (2002), ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett.,
29(8), 1197, doi:10.1029/2001GL014405.

Kivelson, M. G., and D. J. Southwood (1985), Resonant ulf waves: A new interpretation, Geophys. Res. Lett., 12(1), 49–52.
Kivelson, M. G., and D. J. Southwood (1991), Ionospheric traveling vortex generation by solar wind buffeting of the magnetosphere,

J. Geophys. Res., 96(A2), 1661–1667.
Lui, A. T. Y., E. Spanswick, E. F. Donovan, J. Liang, W. W. Liu, O. LeContel, and Q.-G. Zong (2010), A transient narrow poleward extrusion from

the diffuse aurora and the concurrent magnetotail activity, J. Geophys. Res., 115, A10210, doi:10.1029/2010JA015449.
Lyatsky, W. B., G. J. Sofko, A. V. Kustov, D. Andre, W. J. Hughes, and D. Murr (1999), Traveling convection vortices as seen by the SuperDARN HF

radars, J. Geophys. Res., 104(A2), 2591–2601, doi:10.1029/1998JA900007.
McHenry, M. A., C. R. Clauer, E. Friis-Christensen, and J. D. Kelly (1989), Observations of ionospheric convection vortices: Signatures of

momentum transfer, Adv. Space Res., 8, 315–320.
Miura, A. (1984), Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction,

J. Geophys. Res., 89, 801–818, doi:10.1029/JA089iA02p00801.
Motoba, T., T. Kikuchi, T. Okuzawa, and K. Yumoto (2003), Dynamical response of the magnetosphere-ionosphere system to a solar wind

dynamic pressure oscillation, J. Geophys. Res., 108(A5), 1206, doi:10.1029/2002JA009696.
Murr, D. L., W. J. Hughes, A. S. Rodger, E. Zesta, H. U. Frey, and A. T. Weatherwax (2002), Conjugate observations of traveling convection

vortices: The field-aligned current system, J. Geophys. Res., 107(A10), 1306, doi:10.1029/2002JA009456.
Nedie, A. Z., R. Rankin, and F. R. Fenrich (2012), SuperDARN observations of the driver wave associated with FLRs, J. Geophys. Res., 117,

A06232, doi:10.1029/2011JA017387.
Raeder, J., D. Larson, W. H. Li, E. L. Kepko, and T. Fuller-Rowell (2008), OpenGGCM simulations for the THEMIS mission, Space Sci. Rev., 141(1–4),

535–555.
Rickard, G. J., and A. N. Wright (1994), Alfven resonance excitation and fast wave propagation in magnetospheric waveguides, J. Geophys. Res.,

99(A7), 13,455–13,464.
Rickard, G. J., and A. N. Wright (1995), Ulf pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data,

J. Geophys. Res., 100(A3), 3531–3537.
Samson, J. C., and G. Rostoker (1972), Latitude-dependent characteristics of high-latitude pc 4 and pc 5 micropulsations, J. Geophys. Res.,

77(31), 6133–6144.
Samsonov, A. A., and D. G. Sibeck (2013), Large-scale flow vortices following a magnetospheric sudden impulse, J. Geophys. Res. Space Physics,

118, 3055–3064, doi:10.1002/jgra.50329.
Shi, Q. Q., et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys.

Res. Space Physics, 118, 284–298, doi:10.1029/2012JA017984.
Shue, J.-H., et al. (1998), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103(A8), 17,691–17,700, doi:10.1029/

98JA01103.
Sibeck, D. G. (1990), A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations, J. Geophys. Res.,

95(A4), 3755–3771, doi:10.1029/JA095iA04p03755.
Sibeck, D. G., N. B. Trivedi, E. Zesta, R. B. Decker, H. J. Singer, A. Szabo, H. Tachihara, and J. Watermann (2003), Pressure-pulse interaction with

the magnetosphere and ionosphere, J. Geophys. Res., 108(A2), 1095, doi:10.1029/2002JA009675.
Southwood, D. (1974), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22(3), 483–491.
Sun, T. R., C. Wang, H. Li, and X. C. Guo (2011), Nightside geosynchronous magnetic field response to interplanetary shocks: Model results,

J. Geophys. Res., 116, A04216, doi:10.1029/2010JA016074.
Sun, T. R., C. Wang, and Y. Wang (2012), Different Bz response regions in the nightside magnetosphere after the arrival of an interplanetary

shock: Multipoint observations compared with MHD simulations, J. Geophys. Res., 117, A05227, doi:10.1029/2011JA017303.
Sundkvist, D., V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. André, S. Buchert, and H. Rème (2005), In situ multi-satellite detection of coherent

vortices as a manifestation of Alfvénic turbulence, Nature, 436, 825–828.
Tian, A. M., Q. G. Zong, Y. F. Wang, Q. Q. Shi, S. Y. Fu, and Z. Y. Pu (2010), A series of plasma flow vortices in the tail plasma sheet associated

with solar wind pressure enhancement, J. Geophys. Res., 115, A09204, doi:10.1029/2009JA014989.
Walker, A., J. M. Ruohoniemi, K. Baker, R. Greenwald, and J. Samson (1992), Spatial and temporal behavior of ulf pulsations observed by the

goose bay hf radar, J. Geophys. Res., 97(A8), 12,187–12,202.
Walker, R. J., M. Ashour-Abdalla, M. El Alaoui, and F. V. Coroniti (2006), Magnetospheric convection during prolonged intervals with south-

ward interplanetary magnetic field, J. Geophys. Res., 111, A10219, doi:10.1029/2005JA011541.
Wang, C., T. R. Sun, X. C. Guo, and J. D. Richardson (2010), Case study of nightside magnetospheric magnetic field response to interplanetary

shocks, J. Geophys. Res., 115, A10247, doi:10.1029/2010JA015451.
Waters, C., J. Samson, and E. Donovan (1995), The temporal variation of the frequency of high latitude field line resonances, J. Geophys. Res.,

100(A5), 7987–7996.
Weygand, J. M., O. Amm, A. Viljanen, V. Angelopoulos, D. Murr, M. J. Engebretson, H. Gleisner, and I. Mann (2011), Application and validation

of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and
Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, doi:10.1029/2010JA016177.

Yahnin, A., and T. Moretto (1996), Travelling convection vortices in the ionosphere map to the central plasma sheet, Ann. Geophys., 14,
1025–1031.

Yahnin, A., and V. Sergeev (1996), Simultaneous satellite and ground-based observations of polar cap aurora, Adv. Space Res., 18(8), 111–114.
Yahnin, A., V. Sergeev, B. Gvozdevsky, and S. Vennerstrem (1997), Magnetospheric source region of discrete auroras inferred from their

relationship with isotropy boundaries of energetic particles, in Annales Geophysicae, vol. 15, pp. 943–958, Springer.
Yao, Z. H., et al. (2012), Mechanism of substorm current wedge formation: THEMIS observations, Geophys. Res. Lett., 39, L13102, doi:10.1029/

2012GL052055.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019551

SHI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4280

http://dx.doi.org/10.1029/2001GL014405
http://dx.doi.org/10.1029/2010JA015449
http://dx.doi.org/10.1029/1998JA900007
http://dx.doi.org/10.1029/JA089iA02p00801
http://dx.doi.org/10.1029/2002JA009696
http://dx.doi.org/10.1029/2002JA009456
http://dx.doi.org/10.1029/2011JA017387
http://dx.doi.org/10.1002/jgra.50329
http://dx.doi.org/10.1029/2012JA017984
http://dx.doi.org/10.1029/98JA01103
http://dx.doi.org/10.1029/98JA01103
http://dx.doi.org/10.1029/JA095iA04p03755
http://dx.doi.org/10.1029/2002JA009675
http://dx.doi.org/10.1029/2010JA016074
http://dx.doi.org/10.1029/2011JA017303
http://dx.doi.org/10.1029/2009JA014989
http://dx.doi.org/10.1029/2005JA011541
http://dx.doi.org/10.1029/2010JA015451
http://dx.doi.org/10.1029/2010JA016177
http://dx.doi.org/10.1029/2012GL052055
http://dx.doi.org/10.1029/2012GL052055


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


