
Research Article

Received 9 October 2012, Accepted 3 June 2013 Published online 19 July 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.5892

Time-varying effect moderation using
the structural nested mean model:
estimation using inverse-weighted
regression with residuals
Daniel Almirall,a*† Beth Ann Griffin,b Daniel F. McCaffrey,b
Rajeev Ramchand,b Robert A. Yuenc and Susan A. Murphya,c,d

This article considers the problem of examining time-varying causal effect moderation using observational,
longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The
structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in
a conditional mean model for a continuous response given time-varying treatments and moderators. We present
an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach
with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to
identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying
confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal
effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying
confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression
approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of
the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying
moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying
substance use moderates treatment effects on future substance use. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: effect modification; time-varying covariates; time-varying treatment; time-varying exposure; time-
varying confounding; inverse-probability-of-treatment weighting

1. Introduction

Across a wide spectrum of the behavioral, medical, and social sciences, there is considerable interest
in examining research questions assessing the impact of time-varying treatments (or exposures) using
longitudinal data. The methodology we discuss in this manuscript focuses on time-varying causal effect
moderation [1,2], known as time-varying causal effect modification in the epidemiology literature [3–5].
In interventions research developing time-varying treatments or dynamic treatment regimes [6,7], exam-
ining time-varying moderators is valuable because it can be used to shed light on conceptual models, or
to generate hypotheses, about tailoring variables used to guide the timing, sequencing, and duration of
treatment over time.

In point-treatment studies, moderator variables specify for whom (or under what conditions) treat-
ment is more or less effective [8, 9]. In the study of time-varying treatments, time-varying moderators
are variables that specify for whom (or under what conditions) both the initial treatment and the next
step in treatment (e.g., treatment switch, augmentation, or dis/continuation) is more or less effective.
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A key distinction between point-treatment moderators and time-varying moderators is that time-varying
moderators may be measured during, or in response to, prior treatment.

To illustrate time-varying causal effect moderation, consider a simplified version of our motivating
example. The aim is to examine the effect of time-varying sequences .A1; A2/ of adolescent substance
use treatment (A1 D yes(1)/no(0) initial treatment; A2 D yes(1)/no(0) later treatment) on post-treatment
substance use frequency (Y ). (For simplicity, in this manuscript, we consider a non-time-varying end-
of-treatment outcome Y .) One set of possible questions compares the population mean of Y under
different sequences of treatment, such as ‘What is the average effect of always receiving treatment
.A1; A2/ D .1; 1/ versus receiving only initial treatment .A1; A2/ D .1; 0/?’ These are called marginal
time-varying treatment effects, which have received considerable methodological attention by means
of the marginal structural model (MSM) [10–14]. In this manuscript, we are interested in asking more
detailed questions, that is, concerning the moderated (or conditional) effects of time-varying treatment.
Examples are ‘How does the average effect of always receiving treatment .1; 1/ versus receiving only
initial treatment .1; 0/ differ as a function of the evolving frequency of substance use prior to (S0) and
during (S1) initial treatment?’ and ‘How does the average effect of receiving only initial treatment .1; 0/
versus not receiving treatment .0; 0/ differ as a function of the frequency of use prior to (S0) treatment?’
In these examples, substance use (S0; S1) is a candidate moderator of the impact of treatment (A1; A2)
on Y . Understanding these effects is interesting for clinical practice, for example, because they provide
information about the value (or need) for additional substance use treatment conditional on how the ado-
lescent has responded to prior treatment. The marginal effects, on the other hand, provide information
about additional treatment on average for the entire population.

An important challenge in the estimation of time-varying causal effects is that adjusting naively for
other time-varying covariates may result in bias if the covariates are themselves impacted by prior
treatment [15–18]. In observational studies examining time-varying effect moderation using traditional
regression techniques, this problem arises from adjusting for two types of time-varying covariates: First,
these analyses require adjusting for time-varying covariates, which are candidate moderators, because by
definition, the aim is to understand the impact of time-varying treatments conditional on (i.e., as a func-
tion of) candidate time-varying moderators. Second, in observational studies examining time-varying
effect moderation, data analysts often adjust for time-varying covariates, which may be directly related
to both subsequent treatment and outcome to reduce or eliminate time-varying confounding bias. How-
ever, in either case—that is, whether adjusting for a time-varying covariate because it is a candidate
moderator or whether adjusting for a time-varying covariate to eliminate bias due to possible time-
varying confounding—the time-varying covariate may itself be impacted by prior treatment, possibly
leading to bias in the estimated time-varying effects of interest.

To better appreciate the problems with adjusting for time-varying covariates and to set the context
for the proposed methodology, consider a naive extension of the standard treatment-moderator interac-
tions approach [8] for studying effect moderation in which a regression model such as the following one
is used:

E.Y jX0; S0; A1; X1; S1; A2/D ˇ0C �1X0C �2S0C ˇ1;1A1C ˇ1;2A1S0C �3A1X0

C �4X1C �5S1C ˇ2;1A2C ˇ2;2A2S0C ˇ2;3A2S1 (1)

C �6A2X0C �7A2X1:

where (X0; X1) are time-varying confounders. In this traditional regression approach, the analyst adjusts
for .S0; S1/ (e.g., substance use) because, as a candidate time-varying moderator, it is of particular sci-
entific interest, whereas the analyst adjusts for .X0; X1/ (e.g., social support) because it is a candidate
time-varying confounder possibly associated with both subsequent treatment and Y .

Unfortunately, using this type of regression creates at least three problems for making causal infer-
ences about the moderated time-varying effects of interest, in particular with the effects of A1 given S0
(the parameters ˇ1;1 and ˇ1;2). First, conditioning on S1 and X1 cuts off any portion of the effect of A1
on Y that occurs via S1 or X1 (including moderated effects). Second, there are likely common, possibly
unknown, causes of .S1; X1/ and Y which, by conditioning on .S1; X1/ (possible outcomes of treatment
A1), may introduce bias in the coefficients of the A1 terms. The result is that the moderated effects of A1
may appear to be (un)correlated with Y simply because A1 impacts .S1; X1/ and because both .S1; X1/
and Y are affected by a common cause. This problem, known as collider bias [19], is particularly subtle;
intuitive discussions of it are given in [20] and [1]. The third problem is that a regression approach such
as (1) forces the analyst to consider time-varying effect moderation by .X0; X1/ (consider .�3; �6; �7/)
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even though it is not of scientific interest! This is because failure to model effect moderation by .X0; X1/,
should it be present, leads to mis-specification of the regression model; this, in turn, leads to bias in the
moderated effects of .A1; A2/ on Y because, by definition as candidate time-varying confounders, the
Xt ’s are correlated with the At ’s. The practical implication of this is that the meaning of the parameters
describing the effect of treatment conditional on St may change; the parameters will describe, instead,
the effect of time-varying treatment conditional on both Xt ’s and St ’s. The third problem is especially
problematic in most observational study settings, such as ours, where the list of observed time-varying
confounders, the Xt ’s, is significantly larger than the list of time-varying moderators. The data analyst
interested in moderated time-varying effects would benefit from an alternative to model (1) that gets
around these barriers to causal inference.

Importantly, the three previous problems are not the result of unknown or unmeasured time-varying
confounders (i.e., bias may occur even when .X0; S0; X1; S1/ are the only time-varying covariates asso-
ciated with treatment and outcome); indeed, these three problems can occur even when A1 and/or A2
are randomized such as in a sequential multiple assignment randomized trial (SMART) [21]. Further,
the first two problems are not due to model mis-specification (e.g., bias may occur even in correctly
specified models for the conditional mean of Y ; for discussion, see [1]).

The structural nested mean model (SNMM) [17] provides a principled alternative to model (1). The
SNMM specifies the moderated time-varying causal effects of interest in a conditional mean model for
a continuous response given time-varying treatments and candidate moderators. The structure of the
SNMM provides a clue for how to condition on .S0; S1/ to avoid the first two problems mentioned
previously. With regard to the third problem, one can use the SNMM to specify a model for only the
time-varying moderated effects of interest (in our case, time-varying effects conditional on St ); this is a
model that averages over all other time-varying covariates, includingXt . Therefore, the SNMM does not
require adjusting for the Xt ’s in the conditional mean model itself. Rather, the candidate time-varying
confounders can be dealt with in the estimation of the causal parameters (via weighting, see later) of the
SNMM but not as part of the conditional mean model itself defining the causal effects of interest.

This article contributes to the methodological literature by extending and illustrating the use of an
estimator of the SNMM that combines an existing, easy-to-use regression-with-residuals (RR) approach
together with an inverse-probability-of-treatment weighting (IPTW) strategy. In the previous work
[1, 2, 22–24], the RR approach (when used without IPTW) has been used to estimate the moderated
time-varying causal effects in the SNMM, assuming the time-varying moderators of interest are also the
only time-varying confounders. In this manuscript, we show how the proposed, combined RR+IPTW
strategy identifies the moderated time-varying causal effects by St in the presence of an additional, aux-
iliary, larger set of known, measured, candidate time-varying confounders Xt . Following Robins and
colleagues [25–27], such an estimator is particularly attractive in observational study settings in which
the dimensionality of the auxiliary dataXt (used to control for time-varying confounding) is much larger
than that of the candidate moderators St . Or, even when the dimensionality of Xt is not much larger, it
is useful in settings in which the measures in Xt are too costly to consider as tailoring variables for the
embedded regimes (or treatment sequences) in actual clinical practice. In these cases, the researchers
are interested in using Xt to adjust for confounding, but they are not interested in it scientifically
(i.e., as a moderator).

In Section 2, we define the moderated time-varying causal effects more formally using the SNMM
[17]. In Section 3, we consider parametric models for the SNMM. In Section 4, we present the RR+IPTW
estimator of the SNMM and discuss implementation issues. In Section 5, we carry out a small simulation
study to illustrate the issues and to examine asymptotic versus bootstrap standard error (BOOT) estimates
for the IPTW regression-with-residuals (IPTW+RR) estimator. In Section 6, we illustrate the methods
by examining the moderated effects of additional adolescent substance abuse treatment. Section 7 offers
a discussion, including limitations of the IPTW+RR estimator and directions for future work.

2. A model for time-varying causal effect moderation

2.1. Notation

Suppose there are K time intervals under study. Treatment at each time interval t is denoted by at
(t D 1; : : : ; K); at is not a random variable. For shorthand, denote the time-varying treatment history
up to interval t by Nat D .a1; : : : ; at /, t D 1; : : : ; K. For simplicity, we consider binary time-varying
treatments at , where at D 1 denotes treatment receipt and at D 0 denotes no treatment receipt in
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time interval t . Let AK be the countable collection of all possible treatment vectors (e.g., for K D 2,
A2 D f.0; 0/; .0; 1/; .1; 0/; .1; 1/g, whereas for K D 3, A3 is the set of 23 D 8 triplets of 0 or 1).

We use the potential outcomes framework [15, 28, 29] to define the causal parameters of interest in
Section 2.2. For each fixed value of the treatment vector, NaK , we conceptualize potential, candidate time-
varying moderators fS1.a1/; ::::; SK�1. NaK�1/g and a potential final response Y. NaK/ for each individual
in the study. Thus, St . Nat / is the vector of candidate time-varying moderators at the beginning of the
t th interval had the individual followed the treatment pattern Nat�1 through the end of the t � 1 interval;
similarly, Y. NaK/ is the value of the response at the end of study had the individual followed the treat-
ment vector NaK . Baseline moderators (pre- NaK) are denoted by the vector S0. For shorthand, let NSt . Nat /D
fS0; S1.a1/; : : : ; St . Nat /g, the history of candidate moderators up to the start of the t th time interval. By
indexing St . Nat / by treatment Nat , we acknowledge the potential for the moderators to be impacted by
prior treatment.

In our example in Section 6, K D 3: a1 denotes substance use treatment in months 1–3, a2 denotes
substance use treatment in months 4–6, a3 denotes substance use treatment in months 7–9, the vector S0
includes frequency of substance use prior to treatment intake and other demographic characteristics such
as age, S1.a1/ is frequency of substance use during months 1–3, S2.a1; a2/ is frequency of substance
use in months 4–6, and Y. Na3/, our outcome of interest, is an end-of-study measure of substance use
frequency during months 10–12. For simplicity in defining the causal effects of interest, presenting the
RR+IPTW estimator, and giving intuition about the method, henceforth, we focus on K D 2. Thus, we
work with the following: in temporal order, fS0; a1; S1.a1/; a2; Y.a1; a2/g D f NS1.a1/; Na2; Y. Na2/g. We
return to K D 3 in Section 6.

2.2. Moderated time-varying causal effects

This section introduces time-varying effect moderation notationally using two functions (�1 and �2),
which are defined using the potential outcomes introduced previously. We assume a continuous response
Y.a1; a2/. We focus on modeling the mean of the response Y. Na2/ as a function of Na2 and NS1.a1/.

The first causal effect function of interest is at t D 1. It is defined as

�1.s0; a1/DE.Y.a1; 0/� Y.0; 0/ j S0 D s0/D a1 �E.Y.1; 0/� Y.0; 0/ j S0 D s0/: (2)

This function defines the average causal effects of .a1; 0/ versus .0; 0/ on the outcome conditional on
S0. In the context of our motivating example, �1.s0; 1/ represents the causal effect of receiving only
initial treatment .1; 0/ versus not receiving treatment .0; 0/ as a function of the frequency of use prior
to (S0) treatment. �1.s0; 1/ is a comparison of substance use frequency at the end of the study had all
individuals with a fixed value of S0 D s0 received an initial dose/duration of treatment versus had they
not received any treatment at all.

The second causal effect function of interest is at t D 2. It is defined as

�2.s0; a1; s1; a2/D �2.Ns1; Na2/DE.Y.a1; a2/� Y.a1; 0/ j S0 D s0; S1.a1/D s1/

D a2 �E.Y.a1; 1/� Y.a1; 0/ j S0 D s0; S1.a1/D s1/: (3)

This function defines the average causal effects of .a1; a2/ versus .a1; 0/ on the outcome, conditional
on both S0 and S1.a1/. In the context of our motivating example, �2.s0; a1; s1; 1/ represents the causal
effect of receiving treatment during months 4–6 as a function of S0, a1, and S1.a1/. For example,
�2.s0; 1; s1; 1/ is a comparison of substance use frequency at the end of study had all individuals with
a fixed value of S0 D s0 who responded to initial treatment with a fixed value of S1.1/ D s1 received
additional treatment versus had they not; that is, �2.s0; 1; s1; 1/ is the effect of additional substance use
treatment given the baseline frequency of use and response to prior treatment.
�1 and �2 are causal effect functions because at each time point, they represent comparisons of the

potential outcomes at two (possibly) different levels of treatment: �1 is a contrast of the potential out-
comes for the treatment at time 1 using a1 versus 0, whereas �2 is a contrast of the potential outcomes
for the treatment at time 2 using a2 versus 0. They represent moderated causal effects because by con-
ditioning on covariates that occur prior to each treatment, �1 and �2 describe the heterogeneity of the
effects of a1 and a2, respectively, as they depend on these covariates.

Note that �1 isolates the causal effect of treatment at time 1 by setting future treatment at its inactive
level, that is, a2 D 0. On the other hand, �2, which corresponds to the effect at the last time point, is
defined exclusively as a contrast in a2 where, in general, a1 can take on any value in its domain. Robins
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[17] refers to �1 and �2 as blip-to-zero functions. It is easy to extend these definitions to define �1
with future treatment set to a level other than zero, such as to the active level a2 D 1, to the average
future treatment level, or to the optimal decision rule (regime) at t D 2 (see the work of Robins [27]
and Henderson et al. [23, 24]) However, given that our substantive interest is in examining the effects of
an additional duration of substance use treatment as we move through time, setting future a2 D 0 is a
sensible choice dictated by our scientific interests. Moreover, setting future treatment to zero provides
an easier starting point to illustrate the methodology.
�1 averages over S1.a1/. Therefore, it constitutes the total effect of a1 (conditional on S0 and setting

a2 D 0), including effects of a1 on the outcome that may be mediated [30, 31] by S1.a1/ or any other
covariates on the pathway between a1 and the outcome. Similarly, �2 averages over any covariates on
the pathway between a2 and the outcome.

2.3. The structural nested mean model

For continuous Y.a1; a2/, the SNMM is an additive, telescoping, decomposition of the conditional mean
of Y.a1; a2/ given NS1.a1/ that includes the causal terms �1 and �2 in the decomposition. Specifically,
for K D 2, the SNMM is

E
�
Y.a1; a2/ j NS1.a1/D Ns1

�
D ˇ0C �1.s0/C�1.s0; a1/C �2.Ns1; a1/C�2.Ns1; Na2/; (4)

where the intercept ˇ0 D E.Y.0; 0// is the mean outcome for the population under no treatment and
the functions �1.s0/ and �2.Ns1; a1/ are defined as �1.s0/ D E.Y.0; 0/jS0 D s0/ � E.Y.0; 0// and
�2.Ns1.a1//DE.Y.a1; 0/j NS1.a1/D Ns1/�E.Y.a1; 0/jS0 D s0/.

Note that �1.s0/ and �2.Ns1; a1/ are defined just so the right-hand-side of (4) equals the conditional
mean on the left-hand-side. Following [17], we label the functions �1 and �2 as ‘nuisance functions’ to
distinguish them from the causal functions of interest �1 and �2. The nuisance functions connote both
causal and non-causal relationships (associations) between the candidate time-varying moderators and
the response. The nuisance functions exhibit a special property that forms the basis for how we model
these quantities using the RR approach in Section 4. Namely, the nuisance functions are mean-zero
functions conditional on the past; that is,

E.�1.S0//D 0; and (5)

E.�2. NS1.a1//jS0/D 0; (6)

where the first expectation is over the random variable(s) S0 and the second expectation is over the ran-
dom variable(s) S1.a1/ conditional on S0. Following [2, 23, 24], these properties form the basis for how
we model the conditional mean E.Y.a1; a2/ j NS1.a1// using the RR approach later.

3. Linear parametric models for the SNMM

In this section, we consider parametric linear models for the SNMM, which we will later estimate using
the proposed RR+IPTW approach. We begin by defining the linear models for the causal functions, then
introduce linear models for the nuisance functions, and end by combining the two sets of linear models
to create a model for the SNMM.

3.1. Linear models for the causal functions

We consider parametric linear models for the �t ’s of the form:

�t .Nst�1; Nat Iˇt /D at
�
Ht�1ˇt

�
(7)

where ˇt is an unknown qt -dimensional column vector of parameters and Ht�1 is a corresponding
row vector that is a function of . NSt�1. Nat�1/; Nat�1/ D .Nst�1; Nat�1/. Ht�1 stands for H istory up to
and including time t � 1. This functional form for the causal functions is an extension of the stan-
dard treatment-moderator interaction framework [8] (i.e., covariate-by-treatment product terms) to the
time-varying setting. For example, for t D 2, let H1 D .1; s1; a1/ and ˇ2 D .ˇ2;0; ˇ2;1; ˇ2;2/T (where
vT means transpose of v) so that

�2.Ns1; Na2Iˇ2/D a2.ˇ2;0C ˇ2;1s1C ˇ2;2a1/D ˇ2;0a2C ˇ2;1s1a2C ˇ2;2a1a2: (8)
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In this example, the effects of additional substance abuse treatment depend on the previous treatment
a1 (according to ˇ2;2) and also vary linearly in S1.a1/ (with slope equal to ˇ2;1); here, S1.a1/ is a
moderator if ˇ2;1 ¤ 0.

3.2. Linear models for the nuisance functions

We also consider parametric linear models for the �t ’s. We consider models such as the following:

�t .Nst�1; Nat�1I �t ; �t /D �tıt .Nst�1; Nat�1I �t / (9)

where �t is an unknown scalar parameter and the unknown ‘residual’ ıt is equal to st�1. Nat�1/ �
mt .Nst�2; Nat�1I �t / where mt .Nst�2; Nat�1I �t / D gt .Ft�t / is a generalized linear model (GLM [32]) for
the conditional expectation E.St�1. Nat�1/ j NSt�2. Nat�2/ D Nst�2/, with link function gt ./, unknown jt -
dimensional column vector of parameters �t , and Ft is a corresponding row vector that is a function of
NSt�2. Nat�2/D Nst�2. For instance, for binary St�1. Nat�1/, gt ./ can be the ‘inverse logit’ transform, or for

continuous St�1. Nat�1/, gt ./ would be the identity function.
Consistent with properties (5) and (6), E.�t . NSt�1. Nat�1/I �t ; �t / j NSt�2. Nat�2// D 0 because the

residuals ıt average to zero conditional on . NSt�2. Nat�2//. (Note that this expectation is over the con-
ditional distribution ŒSt�1. Nat�1/ j NSt�2. Nat�2/�.) Indeed, this is the motivation for calling the estimator
‘regression with residuals’.

As an example, suppose S1.a1/ is a continuous measure (e.g., frequency of substance use in months
1–3 in our motivating example). Consistent with (9), an example model for �2 is

�2.s0; a1; s1I �2; �2/D �2 .s1 �m1.s0; a1I �2// ; where (10)

m1.s0; a1I �2/D �2;0C �2;1s0C �2;2a1C �2;3s0a1 (11)

is a linear model for the conditional mean E.S1.a1/ j S0 D s0/. In this example, note that F2 D
.1; s0; a1; s0a1/, �2 D .�2;0; �2;1; �2;2; �2;3/, and g2./ is the identity function.

The parametric form in (9) is for univariate St . Nat /. For multivariate St . Nat / (say, St . Nat / D .Stk. Nat / W
k D 1; : : : ; rt /, a vector of rt candidate moderators at time t ), we propose postulating models such as
�tk D �tkıtk , one for each Stk as in (9), and then summing these models together to create an overall
parametric model for t th time-point nuisance function: �t D

Prt
k
�tk (see the appendix in [2]). Note that

in the multivariate case, ıt is an rt -dimensional row vector and �t the appropriate column vector whereas
in the univariate case (one moderator per time point), �t is scalar, so that rt D 1 for all t .

3.3. Combining the causal and nuisance parametric linear models

Combining the linear parametric models for the causal (�t ) and nuisance (�t ) functions, we arrive at a
linear parametric SNMM, denoted mY . For instance, assuming the candidate time-varying moderator
St . Nat / is univariate continuous and using the previous example models, plus letting H0 D .1; s0/ and
ˇ1 D .ˇ1;0; ˇ1;1/

T make up the model for �1 and letting F1 D .1/ and �1 D .�1;0/make up the ‘model’
m1 D �1 for E.S0/, imply the following example linear SNMM:

mY .Ns1; Na2Iˇ; �; �/D ˇ0C ı1�1C ˇ1;0a1C ˇ1;1s0a1C ı2�2C ˇ2;0a2C ˇ2;1s1a2C ˇ2;2a1a2; (12)

where ˇ D .ˇ0; ˇT1 ; ˇ
T
2 /
T , �D .�1; �2/T , � D .�1; �T2 /

T , ı1 D s0 �m1, and, ı2 D s1 �m2.
It is noteworthy that this linear SNMM is very similar to the traditional regression analysis approach,

Equation (1), except in two important ways: First, in Equation (12), the ‘main associational effects’
of the candidate time-varying moderators are conditional-mean centered. That is, the St ’s in Equation
(1) are replaced by ıt ’s in Equation (12). The intuition here is that by ‘residualizing’ the St ’s using a
conditional model for St given the past—in particular, residualizing S1—we avoid the potential prob-
lems described in the Introduction related to naively conditioning on candidate moderators impacted by
prior treatment. Second, Equation (12) focuses solely on relating the outcome Y with time-varying
treatments and candidate moderators. It does not adjust for candidate time-varying confounders Xt
because they are not of particular scientific interest. This allows for a more parsimonious model which
focuses on the science. The next two subsections describe how to estimate the parameters of the SNMM
all the while adjusting for the candidate time-varying confounders Xt using a weighted least squares
regression approach.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3466–3487
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More generally, letting D� D .1; ı1; a1H0; ı2; a2H1/ denote the SNMM ‘design’ vector and letting
� D .ˇ0; �

T
1 ; ˇ

T
1 ; �

T
2 ; ˇ

T
2 /
T denote the .1 C

P
rt C

P
qt /-dimensional vector of unknown SNMM

parameters, we can write linear parametric models for the SNMM more succinctly as mY D D�� . We
index the design matrix D by � as a reminder that it is a function of unknown parameters � used in the
residuals, the ıt ’s, which make up the models for the nuisance functions, the �t ’s.

Apart from the special case of fully saturated SNMMs ([1]), which by definition cannot be mis-
specified, the previous parametric models constitute modeling assumptions. This is the first of four
assumptions made in this methodology. The other three are described later.

4. Estimation

Now, we turn to estimation of the SNMM. This section describes the observed data and additional
assumptions. Further, we discuss the proposed RR+IPTW, and we provide steps for implementing it.
Finally, we discuss approaches for obtaining standard errors.

4.1. Observed data and assumptions

In this subsection, we describe the observed data that are used to estimate the SNMM and additional
assumptions. The observed data in temporal order is O D fV0; A1; V1; A2; : : : ; VK�1; AK ; Y g, where
Vt D fXt ; Stg includes candidate time-varying moderators St and auxiliary time-varying variables Xt
used to control for confounding (which we define later). At is the observed value of treatment; unlike
at , At is a random variable. We envision estimation of the causal functions in the SNMM in settings
in which the dimensionality of Xt is large as compared with St . As before, NAt D .A1; : : : ; At / for
t D 1; : : : ; K, and similarly, NSt D .S1; : : : ; St / for t D 1; : : : ; K � 1.

There are three assumptions in addition to the parametric modeling assumptions described in
Section 3. We invoke the Consistency Assumption [17] for the St ’s and Y to establish the link between
the potential outcomes and O . The Consistency Assumption states that Y D Y. NAK/, where the Y. NAK/
denotes the potential outcome indexed by values of NaK equal to NAK . This assumption says that the
observed outcome Y for an individual that follows the trajectory of observed treatment values AK agrees
with the potential outcome indexed by the same trajectory of values. Similarly, we assume consistency
for the candidate time-varying moderators SK .

To identify the �t ’s using the observed data, we assume the No Unmeasured or Unknown Direct Con-
founders Assumption [17]: For every t .t D 1; 2; : : : ; K/, At is independent of the set fY. NaK/ W NaK 2
AKg conditional on . NVt�1; NAt�1/. In a SMART [21], this assumption is satisfied by design, whereas in
observational studies, it is not possible to know whether this assumption is satisfied. In observational
studies, this assumption informally states (for every t ) that aside from the history of candidate time-
varying moderators, history of treatment, and auxiliary time-varying covariates measured up to time t ,
there exist no other pre-At variables (measured or unmeasured, known or unknown) that are directly
related to both At and the potential outcomes.

The following Positivity Assumption is also made: For all Vt and every t ,

0 < P r
�
At D 1 j NVt�1; NAt�1

�
< 1: (13)

This assumption states that every individual could potentially be assigned to any of the treatments (at
each time t ). This assumption ensures we do not have true weights (defined later) with infinite values.

4.2. Inverse-probability-of-treatment-weighted regression with residuals

We now turn to the proposed RR+IPTW estimator for the SNMM. The estimator is the solution � D O�
to the following set of d D 1C

P
rt C

P
qt weighted estimation equations:

0D Pn  � .OI �; �; ˛; �/D Pn W.˛; �/.Y �D��/D
T
� ; (14)

where n is the number of individuals in the data set and Pnv is shorthand for the average 1=n
Pn
i vi . (�

is d � 1 dimensional; D� is 1� d dimensional.) The inverse-probability-of-treatment weights W.˛; �/

3472

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3466–3487



D. ALMIRALL ET AL.

are defined as

W
�
NVK�1; NAK I˛; �

�
D

KY
tD1

Wt
�
NVt�1; NAt I˛t ; �t

�
; (15)

where

Wt
�
NVt�1; NAt I˛t ; �t

�
D At

pnum
t .�/

pden
t .˛/

C .1�At /
.1� pnum

t .�//

.1� pden
t .˛//

I (16)

the numerator propensity score pnum
t .�/ is a model (say, a logistic regression) for P r.At D 1 j

NSt�1; NAt�1/, and the denominator propensity score pden
t .˛/ is a model for P r.At D 1 j NVt�1; NAt�1/.

Estimator .14/ is nothing more than a weighted least squares regression estimator: Y is regressed on
D� , in a regression fit weighted by W . The regression focuses on obtaining estimates of the parameters
of the SNMM (including the effect estimates ˇ), whereas the weights focus on reducing or eliminating
time-varying confounding bias. Importantly, note that the auxiliary candidate time-varying confounders
Xt are not a part of the linear SNMM (D� ) but are adjusted for via the weights (W ). In a slightly different
context, Murphy et al. [25], van der Laan et al. [26] (Section 6.5), and Robins [27] (see Section 7.3, pp.
78–80) provide the theory that shows that under the assumptions listed previously and known W.˛; �/,
the previous weighting approach can be used to identify the ˇ parameters.

At each time point, the purpose of Wt is to re-weight the data such that confounding due to NVt�1
is eliminated (under the assumption of no unknown or unmeasured time-varying confounders, and
hopefully greatly reduced even if those assumptions do not hold). The denominator in Wt adjusts for
imbalances due to NVt�1 in the types of individuals who are treated (At D 1) versus those who are
untreated (At D 0). The denominator in Wt accomplishes this by up-weighting individuals who are
unlikely to receive the treatment they received given . NAt�1; NVt�1/ and by down-weighting individuals
who are likely to have received the treatment they received given . NAt�1; NVt�1/.

The numerator’s role in Wt is not to adjust for confounding (the denominator does this on its own);
pnum
t is not required for eliminating or reducing bias due to time-varying confounding. Indeed, pnum

t can
be set to any function p. NSt�1; NAt�1/ 2 .0; 1/ including the constant function. To ensure that (14) is an
asymptotically unbiased estimating equation, pnum

t should not depend on the variables in NXt�1 or any
variables after time t � 1.

Rather, the reason for using numerator probabilities is that it potentially improves the statistical effi-
ciency in the estimates O� by making the weightsWt less variable because 0 < pnum

t .�/ < 1. Robins et al.
[12] have labeled weights with this property as ‘stabilized weights’. The form of pnum

t differs from the
form of the numerator used in weights to estimate MSMs. Specifically, because MSMs are conditional
only on baseline covariates, the numerator of the weights is only a function of baseline covariates and
prior treatment, whereas, because SNMMs are conditional on time-varying moderators NSt�1, the numer-
ator of Wt may be a function of both NSt�1 and prior treatment. The weights used here are also discussed
in Petersen et al. [3] and used by Rosthøj et al. [33] to estimate history-adjusted MSMs.

The use of pnum
t is also intuitive. For instance, the numerator is used to project the 1=pden-weighted

sample back to the space of conditional distributions given NSt�1. Given that we are interested in and we
explicitly model the effect of At on Y given NSt�1, projecting the sample back to ‘within observed levels
of NSt�1’ is sensible. Another intuitive way to think about this projection in the context of SMARTs—
which are used to obtain high-quality randomized data specifically for the purpose of examining time-
varying moderators—is that the numerator projects the sample back to the SMART design that is ‘closest
to’ or ‘implied by’ the observational data.

4.3. Implementation steps: IPTW regression with residuals

In practice, additional steps are needed prior to solving Equation (14) because both W and � are
unknown. This suggests a three-step estimation procedure, where estimates of theW and � are obtained
first, prior to carrying out the weighted least squares regression. This subsection describes steps to imple-
ment estimator (14) by first obtaining estimates of the weights W and � and then plugging these into
 .OI �; O�; Ǫ ; O�/ prior to solving for � .

Step 1: Estimate the weights. As discussed previously, for each t , the numerator propensity score is
a function of . NSt�1; NAt�1/. The denominator propensity score, which is used to balance treated

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3466–3487
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(At D 1) and untreated (At D 0) groups (i.e., used to reduce or eliminate confounding), is a function
of . NVt�1; NAt�1/.

1a: Estimate the numerator model (obtain O�). For each t , estimate pnum
t using a logistic regression

model for P r.At D 1 j NSt�1; NAt�1/ with unknown parameters �t . Calculate and save the
Opnum
t . O�t /’s.

1b: Estimate the denominator model (obtain Ǫ ). For each t , estimate pden
t using a logistic regres-

sion model for P r.At D 1 j NVt�1; NAt�1/ with unknown parameters ˛t . Calculate and save the
Opden
t . Ǫ t /’s.

1c: Calculate final weights (obtain OW . Ǫ ; O�/).

OWt WD OWt
�
NVt�1; NAt I Ǫ t ; O�t

�
D At

Opnum
t . O�/

Opden
t . Ǫ /

C .1�At /
.1� Opnum

t . O�//

.1� Opden
t . Ǫ //

at each time t , and then calculate the final combined weight OW . Ǫ ; O�/D
QK
tD1
OWt .

Step 2: Residualize candidate moderators (obtain O� ). For each t , specify and estimate the appropriate
weighted GLM, gt .Ft�t /, for E.St�1 j NSt�2; NAt�1/ with design matrix Ft and unknown parame-
ters �t . For the trivial t D 0 models for E.S0/, the GLM is unweighted (or, equivalently, weighted
with known weight W0 D 1); for t > 1, use the estimated weights

Qt
jD1

OWj . (For multivariate
St�1 D .St�1;1; : : : ; St�1;k; : : : ; St�1;rt /, specify and estimate weighted GLMs for each of the
St�1;k’s given the past.) From each fitted GLM, calculate the estimated residual Oıt . O�t /. In Step 3,
the Oıt ’s will be used as covariates in the model for the SNMM.

Step 3: Estimate the SNMM using RR+IPTW (obtainb�). Specify a modelD O� for the SNMM. Note that
the models for the nuisance functions (e.g., main effects of the candidate time-varying moderators)
in D O� use the residuals Oıt ’s from Step 2. To obtain the estimate O� , employ a weighted least squares
regression of Y on D O� with weights OW .

4.4. Standard errors

The nominal standard errors (i.e., those reported from standard regression procedures using over-the-
counter statistical software packages such as SAS) for the weighted least squares regression estimates of
� (Step 3) are inappropriate because they assume that the residuals ıt .�t / and the weights Wt .˛t ; �t /
are known; that is, nominal standard errors do not take into account estimation of .�; ˛; �/ in the final
estimates O�. O�; Ǫ ; O�/ of the SNMM. Consequently, the use of nominal standard errors may result in
p-values and confidence intervals for b� that are smaller than appropriate. Asymptotic standard errors
(ASEs) obtained using the delta method (e.g., Taylor series arguments, see Appendix B), which take
into account sampling error in the estimation of . O�; Ǫ ; O�/ are used instead. However, because not all
investigators have the resources to computer program the ASEs, we also compare results with bootstrap
(BOOT) estimates for the standard error of O� , which are easier to calculate using most over-the-counter
statistical software packages. To obtain the BOOT, we implement the RR+IPTW estimator on 500 data
sets of size n sampled at random (with replacement) from the original data set of size n and take the
standard deviation (SD) of the 500 estimates.

5. Simulations

We conducted two small simulation experiments: (1) to illustrate and compare IPTW+RR, RR, and the
traditional regression estimators of the causal parameters in an SNMM for E.Y.a1; a2/ j S0; S1.a1//
and (2) to compare small and large sample properties of asymptotic versus bootstrap estimators of
the standard errors for the IPTW+RR approach. We generated the data fU; V0; A1; V1; A2; Y g D
fU; .X0; S0/; A1; .X1; S1/; A2; Y g to mimic the adolescent substance use data with K D 2. We did
this by ensuring that the marginal distributions (e.g., proportions, means, and SDs) of the generated data
were similar to the adolescent substance use data.‡ We give the details concerning the data generating
models in Appendix A. Key features of the data generating model include the following:

‡The conditional distributions we specified, however, differ from the results of the adolescent substance use data analysis
described in the next section.
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(1) The generating model implies a linear SNMM for E.Y.a1; a2/ j S0; S1.a1//.
(2) St is a time-varying moderator of the effect of At on Y .
(3) Both S1 and X1 are affected by A1, which, in turn, are associated with Y . Intuitively, S1 and X1

may be mediators of the effect of A1 on Y .
(4) We generated a baseline variable U that affects both S1 and Y . (U is not on the causal pathway

between A1 and Y , and it is neither a time-varying moderator nor a confounder.) This variable
creates a spurious (non-causal) correlation between A1 and Y when adjusting naively for S1.

(5) In the first simulation, we vary whether there exists time-varying confounding by including or
removing the association between NVt�1 and At .

5.1. IPTW+RR versus RR versus traditional regression

The first simulation illustrates, in the context of a simple example, how the IPTW+RR estimator com-
pares with RR and two versions of the traditional regression approach in terms of bias. We consider two
versions of the data generating model in this experiment: with and without time-varying confounding.
Both IPTW+RR and RR use the correct functional form for E.Y.a1; a2/ j S0; S1.a1//. The first tradi-
tional regression estimator (TRAD1) fits the same functional form as fitted with the IPTW+RR and RR
estimators except that the ıt are replaced with St . The second traditional regression estimator (TRAD2)
in addition adjusts naively forXt . Under each condition (with or without time-varying confounding), we
generated 1000 data sets of size n D 2870. We give the details concerning the data analysis models in
Appendix A.

Table I shows the results of the first simulation experiment. We report summaries of the bias and SD
for the .ˇ1; ˇ2/ parameters indexing .�1; �2/ in the generative model, as well as for ˇ0 D the marginal
mean outcome under no treatment. We make the following general observations:

� When there is time-varying confounding, RR and TRAD1 were generally biased, whereas the
IPTW+RR was unbiased. This is because RR and TRAD1 do not adjust for Xt in any way.

� Whether there is time-varying confounding, TRAD2 was biased for .ˇ0; ˇ1/ but unbiased for ˇ2.
TRAD2 is unbiased for ˇ2 because it adjusts for all measures associated with A2 and Y . However,
even though it also adjusts for all measures associated with A1 and Y , it is biased for .ˇ0; ˇ1/
because it adjusts for .S1; X1/ naively. The bias we see in TRAD2 is due to both cutting off the

Table I. Results from a simulation experiment to illustrate and compare the bias and standard deviation
between IPTW+RR, RR, and traditional regression (TRAD) approach.

Bias (100� SD)

Generative model Effect IPTW+RR RR TRAD1 TRAD2

Time-varying confounding ˇ0 0:0 .0:7/ 2:4 .0:7/ 31:0 .2:8/ 41:5 .2:5/
ˇ1;0 0:0 .3:1/ 1:9 .3:0/ 5:1 .2:8/ 7:4 .2:5/
ˇ1;1 0:1 .5:3/ 0:1 .5:0/ 3:5 .4:7/ 2:3 .4:1/
ˇ2;0 0:0 .1:6/ 1:4 .1:5/ 1:4 .1:5/ 0:0 .1:4/

ˇ2;1 0:1 .3:7/ 0:1 .3:5/ 0:1 .3:5/ 0:0 .3:2/

No time-varying confounding ˇ0 0:0 .0:3/ 0:0 .0:4/ 29:9 .2:0/ 41:4 .1:9/
ˇ1;0 0:0 .2:4/ 0:0 .2:4/ 3:6 .2:3/ 7:4 .2:1/
ˇ1;1 0:0 .3:9/ 0:0 .3:9/ 3:5 .3:7/ 2:2 .3:2/
ˇ2;0 0:1 .1:4/ 0:1 .1:4/ 0:1 .1:4/ 0:0 .1:3/

ˇ2;1 0:1 .2:9/ 0:1 .2:9/ 0:1 .2:9/ 0:0 .2:5/

Appendix A describes the data generating and analysis models. IPTW+RR refers to the inverse-probability-of-treatment
weighted regression with residuals estimator. RR refers to the regression with residuals estimator. TRAD1 refers to the
traditional regression estimator that adjusts naively for St only (the candidate time-varying moderator). TRAD2 is the
traditional regression estimator that adjusts naively for both St and Xt (a time-varying confounder). We used 1000 data
sets of size nD 2870 in all simulation conditions. We define bias as 100� jTRUE - ESTj. SD is the empirical standard
deviation of the 1000 estimates. Conditions for which BIAS > SD/2 (i.e., greater than a ‘moderate’ amount of bias
using Cohen’s [34] rules of thumb) are shown in bold.
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effect of A1 on Y via .S1; X1/ and due to the non-causal association between A1 and Y via U as a
result of adjusting naively for S1.

� When there is no time-varying confounding, both IPTW+RR and RR are unbiased. In this case, it is
not necessary to use weighting: RR by itself is sufficient because the goal of IPTW is to adjust for
time-varying confounders.

� When there is no time-varying confounding, TRAD1 and TRAD2 continue to be biased for the
parameters in .ˇ0; ˇ1;0/. This bias occurs because of the problems with traditional regression noted
in the Introduction. The bias is generally greater in TRAD2 than with TRAD1 in these simulations
(although this will not in general be the case).

� When there is no time-varying confounding, all four estimators are unbiased for ˇ2;0.
� Whether there was time-varying confounding, estimates of the parameters in �2 (and there-

fore bias) were identical for RR and TRAD1. This is as expected: Given the same model
for �2, RR and TRAD1 will always yield identical estimates for �2. This is because the
estimating equations for the parameters in �2 are identical for RR and TRAD; see [2]
for details.

5.2. Asymptotic versus bootstrap standard errors

The second experiment focuses on comparing the large and small sample properties of the bootstrap
versus asymptotic estimates of the standard errors of the IPTW+RR. For this experiment, we employed
the data generating model with time-varying confounding used previously, but we varied the sample
size: nD 100 (small); 250 (medium); 500 (large); 2870 (very large). In Table II, we report the SD of the
IPTW+RR estimates, mean BOOT, mean ASEs, and coverage of the 95% confidence intervals for both
the bootstrap (BOOT95) and asymptotic (ASE95) standard errors over the 1000 simulated data sets. At
very large samples, such as with nD 2870 (the sample size of our substance use data set), the bootstrap
and the ASE were nearly indistinguishable in our simulation experiments. However, in small samples
sizes nD 100, the 95% confidence interval calculated using the ASE sometimes had lower than nominal
coverage (0.932 for ˇ0) and much lower than nominal coverage (0.919 for ˇ1;0). In general, BOOT95
had closer to nominal coverages than ASE95. On the basis of these results, we use BOOT in the data
analysis in Section 6.

Table II. Results from a simulation experiment to compare the large and small
sample properties of the bootstrap and asymptotic estimates of the standard errors of
the IPTW+RR.

Sample size Effect SD BOOT BOOT95 ASE ASE95

nD 100 ˇ0 0.041 0.041 0.942 0.043 0.932
ˇ1;0 0.185 0.204 0.953 0.177 0.919
ˇ2;0 0.087 0.088 0.952 0.087 0.945

nD 250 ˇ0 0.025 0.024 0.947 0.027 0.965
ˇ1;0 0.113 0.111 0.942 0.109 0.933
ˇ2;0 0.053 0.053 0.944 0.054 0.942

nD 500 ˇ0 0.017 0.017 0.949 0.019 0.968
ˇ1;0 0.078 0.077 0.941 0.077 0.934
ˇ2;0 0.037 0.037 0.945 0.038 0.944

nD 2870 ˇ0 0.007 0.007 0.948 0.008 0.944
ˇ1;0 0.031 0.032 0.961 0.032 0.964
ˇ2;0 0.016 0.016 0.946 0.016 0.954

Appendix A describes the data generating models. We used 1000 data sets in all simulation
conditions and report the empirical standard deviation (SD) of estimates. BOOT95 and ASE95
refer to the coverage probabilities (over the 1000 data sets) for the 95% confidence inter-
val constructed using either the bootstrap standard error (SE) (BOOT) or the asymptotic SE
(ASE), respectively.
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6. Illustrative data example

6.1. Data

We illustrate the methodology by using data (n D 2870 individuals) pooled from a number of ado-
lescent treatment studies funded by the Substance Abuse and Mental Health Services Administra-
tion’s (SAMHSA’s) Center for Substance Abuse Treatment (CSAT) involving adolescents entering
community-based substance abuse treatment programs. We collected all data by using the Global
Appraisal of Individual Needs (GAIN [35]), a structured clinical interview of individual characteris-
tics and functioning administered at baseline/intake and at the end of 3, 6, 9, and 12 months for a total of
five measurement occasions. At each measurement occasion, GAIN questions ask about constructs over
the past 90 days (past 3 months). Later, subscript values t D 0; 1; 2; 3 denotes that the measurement was
taken at baseline and the end of 3, 6, and 9 months, respectively.

Time-varying treatment At D 1 (t D 1; 2; 3) if an individual reports receiving any substance use treat-
ment in the past 90 days, and At D 0 otherwise: 82%, 40%, and 26% reported At D 1, respectively.
The primary time-varying moderator of interest is the Substance Frequency Scale (SFS) collected at
baseline (S0;1; Mean.SD/ D 0:18.0:18//, and at the end of months 3 (S1; Mean.SD/ D 0:07.0:11//

and 6 (S2; Mean.SD/ D 0:08.0:13//. Higher scores indicate increased frequency of substance use in
terms of days used, days staying high most of the day, and days causing problems. In addition to S0;1,
we also consider the following as candidate baseline moderator variables in S0: S0;2 is age (continuous;
Mean.SD/ D 15:98.1:4/ years), and S0;3 denotes whether the adolescent reports being in a controlled
environment in 90 days prior to baseline assessment (binary; rateD 49%). Y is the SFS collected at the
end of month 12 .Mean.SD/D 0:09.0:13//.

The analysis included a large number of auxiliary, candidate confounder variables in Xt (description
of measures not shown due to space, but see [36]). In total, V0 D .X0; S0/ included 46 pre-A1 measures,
.V0; A1; V1/ included 86 pre-A2 measures, and .V0; A1; V1; A2; V2/ included 128 pre-A3 measures.

Of observations, 13.4% (across all individuals, measures, and time points) was missing. We generated
ten data sets via multiple imputation to replace missing values using a sequential regression multivariate
imputation algorithm [37, 38]. The imputation model was congenial with all analysis models. We calcu-
lated estimates and standard errors (SEs) reported later using rules [39, 40] for combining the results of
identical analyses performed on each of the 10 imputed data sets.

6.2. Estimating the weights

We estimated pnum
t .�t / and pden

t .˛t / (used in the weights) using logistic regression. The primary
role of pden

t .˛t / is to reduce or eliminate the imbalance between treated (At D 1) and untreated
(At D 0) individuals on the basis of observed time-varying confounders up to t � 1. Therefore,
following [41], we employed a strategy for selecting the denominator logistic regression models for
pden
t .˛t / that leads to improved balance between treated and untreated individuals at time t . At each

time point t , we assessed balance before versus after IPTW (using only the denominator model) for
each candidate time-varying confounder Xt . For each covariate, we measure balance as the stan-
dardized mean difference (effect size) between those who are treated versus untreated at time t .
Figure 1 summarizes pictorially the balance before versus after weighting. The denominator-only
weights were well behaved, with a maximum value of 37.93 (across all t ); exhaustive details con-
cerning weight diagnostics, as well as how the weights were chosen, are given elsewhere [36]. The
maximum effect size in the denominator-only IPTW sample (across all t ) was 0.16, reduced from
as high as 1.15 in the unweighted sample. The average effect size (averaged over covariates) was
reduced significantly from as high as 0:198 (unweighted at t D 3) to lower than 0:024 (t D 2).
As shown in Figure 1, the IPTW sample resembles a sequentially randomized experiment (with
respect to the observed data), whereas prior to weighting, there is clear potential for observed time-
varying confounding.

6.3. Exploratory data analysis

Prior to estimation, we conducted an exploratory data analysis (EDA) to inform our choice of models for
the SNMM. To keep the exploratory and illustrative analyses simple, we found it useful to dichotomize
age at the median (also the mean) of 16 years old: Therefore, we set S�0;2 D 1 if S0;2(age) > 16 or
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Figure 1. Balance before versus after denominator-only inverse-probability-of-treatment weighting�
Wt D At=p

den
t C .1�At /=

�
1� pden

t

��
. Each line represents a covariate. For each covariate, balance is

measured as the mean difference (weighted or unweighted, as appropriate) between treated versus untreated
individuals divided by unweighted, pooled standard deviation. B is the average balance score over all covariates.

S�0;2 D 0 if S0;2 < 16. The top, middle, and bottom four panels in Figure 2 compares data for adolescents
treated with .1; 0; 0/ versus .0; 0; 0/, .1; 1; 0/ versus .1; 0; 0/, and .1; 1; 1/ versus .1; 1; 0/, respectively,
to inform our choice of models for �1, �2, and �3. The y-axis in each panel is the outcome Y D SFS
in months 9–12; the x-axis for the top, middle, and bottom four panels are the time-varying candidate
moderators S0, S1, and S2, respectively. Each panel presents a scatter plot of Y versus St , with smooth-
ing curves for each treatment trajectory for each of the four combinations of whether the adolescent had
a history of controlled environment prior to intake � whether the adolescent is > 16 years of age. The
points and the fitted smoothing splines were IPTW weighted to adjust for time-varying confounding in
the EDA.§ For �1, the top four panels of Figure 2 suggest that the distal effect of treatment is iatro-
genic among adolescents > 16 years old and is more strongly iatrogenic among adolescents with higher
severity at intake. For �2, the EDA suggests that among adolescents still using frequently at the end of
3 months despite treatment, the medial effect of treatment is beneficial to those who had been in a con-
trolled environment prior to treatment yet iatrogenic among those who had no exposure to a controlled
environment prior to treatment. For �3, there appears to be a beneficial proximal effect of treatment for
adolescents who remain severe at the end of 6 months under treatment, regardless of age or history of
controlled environment. An EDA for the non-monotonic comparisons of treated versus untreated indi-
viduals in �2 and �3 (EDA not shown) showed beneficial medial and proximal effects of treatment. For
all �t , EDA suggested no effect of additional treatment among adolescents who are not severe at t � 1
regardless of age or history of controlled environment (i.e., it is difficult to see in Figure 2, but all the
curves come together at St�1 D 0).

6.4. Estimating the SNMM

On the basis of the EDA, we fitted the following SNMM to the adolescent substance use data using the
IPTW+RR estimator:

§For simplicity, Figure 2 presents EDA using only data from the first imputed data set; trends were similar (although magnitudes
differed) for the other imputed data sets.
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µ1 = Distal effects of initial treatment, given baseline SFS, age, and baseline CE status

µ2 = Medial effects of additional treatment, given SFS in months 0−3, age, and baseline CE status

µ3 = Proximal effects of additional treatment, given SFS in month 3−6, age, and baseline CE status

Figure 2. Exploratory data analysis of the distal, medial, and proximal effects of treatment on 12-month sub-
stance use frequency, conditional on baseline, 3-month, and 6-month substance use frequency, respectively, age
(< 16 vs. > 16) and whether the adolescent was in a controlled environment (CE) prior to beginning any treat-
ment. Treatment group-specific smoothing spline curves are weighted (denominator-only model); curves are
plotted over the range of St in each treatment group. The key in the right margin indicates the treatment sequences
.a1; a2; a3/ being compared in the panels for each row. The size of each data point is proportional to the weights.

mY D ˇ0C

�1‚ …„ ƒ
�1;1ı1;1C �1;2ı1;2C �1;3ı1;3C

�1‚ …„ ƒ
a1
�
ˇ1;0C ˇ1;1s0;1s

�
0;2

�
C

�2‚…„ƒ
�2ı2 C

�2‚ …„ ƒ
a2a1 .ˇ2;0C ˇ2;1s1s0;3C ˇ2;2s1.1� s0;3//C a2.1� a1/ .ˇ2;3C ˇ2;4s1/

C

�3‚…„ƒ
�3ı3 C

�3‚ …„ ƒ
a3a2a1 .ˇ3;0C ˇ3;1s2/C a3.1� a2a1/ .ˇ3;2C ˇ3;3s2/; (17)

where ı1;j D s0;j �m0.�1;j / D S0;j � �1;j for 8j ; ı2 D s1 �m1.s0; a1I �2/; where m1.s0; a1I �2/ D
�2;0C�2;1s0;1C�2;2s0;2C�2;3s0;3C�2;4a1C�2;5a1s0;1C�2;6a1s0;2; and ı3 D s2�m2.Ns1; Na2I �3/;where
m2.Ns1; Na2I �3/D �3;0C�3;1s0;1C�3;2s0;2C�3;3s0;3C�3;4a1C�3;5s1C�3;6a2C�3;7a2s0;1C�3;8a2s1.

Estimates for �1;j 8j , and for �2 and �3 are given elsewhere [36]. Table III shows IPTW+RR
estimates for the parameters of the SNMM in Equation 17.

To facilitate interpretation of the fitted SNMM, Table IV describes the meaning of some linear con-
trasts of interest and presents their estimates. Table IV also reports effect sizes (standardized estimates,
see [34]) and confidence intervals for the effect sizes (using BOOT). Except for the medial effects of
additional treatment, the results of the fitted model are consistent with the EDA: First, initial treatment
alone may be iatrogenic for older kids with high severity at intake (small effect size, ES D 0:240,
p-val D 0:09). One conjecture for this is that adolescents who are severe and only receive initial treat-
ment will not only fail to benefit from treatment (because of insufficient time in treatment) but may also
associate with other severe adolescents during treatment and, in turn, increase use in the long term. This
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Table III. Estimates of the SNMM using the adolescent substance use data set.

Estimate
(SE)

Term � IPTW+RR RR TRAD�

(Intercept) ˇ0 0:094�� 0:091�� 0.13
(0.008) (0.008) (0.033)

ı1;1 �1;1 0:124�� 0:121�� 0.029
(0.020) (0.020) (0.020)

ı1;2 �1;2 0.004 # 0.002
(0.003) (0.002) (0.002)

ı1;3 �1;3 # �0.003 0.003
(0.008) (0.005) (0.005)

A1 ˇ1;0 �0.001 # �0.002
(0.011) (0.009) (0.009)

A1 S0;1 S
�
0;2 ˇ1;1 0:065�� 0:074�� 0:080��

(0.036) (0.023) (0.055)

ı2 �2 0:268�� 0:333�� 0:115��

(0.047) (0.028) (0.030)

A2 A1 ˇ2;0 �0.009 �0.005 #
(0.010) (0.007) (0.007)

A2 A1 S1 S0;3 ˇ2;1 �0.080 � 0:127�� �0.080
(0.083) (0.057) (0.055)

A2 A1 S1 .1� S0;3/ ˇ2;2 0.066 �0.054 �0.019
(0.105) (0.057) (0.053)

A2 .1�A1/ ˇ2;3 �0.033 �0.002 0.004
(0.024) (0.019) (0.019)

A2 .1�A1/ S1 ˇ2;4 0.294 �0.090 �0.048
(0.263) (0.161) (0.162)

ı3 �3 0:483�� 0:439��

(0.047) (0.026)

A3 A2 A1 ˇ3;0 �0.006 �0.012
(0.010) (0.008)

A3 A2 A1 S2 ˇ3;1 � 0:338�� � 0:194��

(0.079) (0.061)
A3 .1�A2 A1/ ˇ3;2 0.021 0.002

(0.017) (0.011)
A3 .1�A2 A1/ S2 ˇ3;3 � 0:359�� � 0:293��

(0.090) (0.064)

SNMM, structural nested mean model; SE, standard error; IPTW+RR, inverse-
probability-of-treatment weighted regression with residuals estimator; RR, regression
with residuals estimator; TRAD, traditional regression estimator.
�TRAD fits the same model fitted with IPTW+RR and RR, except that the ıt are
replaced with St .
#Indicates that jEstimatej< 1� 10�3.
��Indicates that p-val < 0:10 for the hypothesis test that the parameter is zero.

is a hypothesis for which there is some support [42]. Second, receiving treatment during months 6–9
is most beneficial in terms of frequency of use at the end of the year among adolescents who are still
severe at the end of month 6 (stressing perhaps the importance of treatment retention and engagement, as
shown in [43, 44]). These effects were large and were slightly stronger among those who had consistent
prior treatment in the last 6 months (ES D�1:32, p-val< 0:01) than among those who had intermittent
treatment (ES D�1:20, p-val< 0:01).
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Table IV. IPTW+RR estimated linear combinations of particular interest and their meaning.

Term Description of the effect EST ES 90% CI

Mean distal effect of initial 0–3 month treatment
alone, Y.1; 0; 0/ versus Y.0; 0; 0/:

ˇ1;0 Among individuals who report not using 90 days �0.001 �0.006 (�0.132, 0.119)
prior to intake or younger than 16 years

ˇ1;0C ˇ1;1=2 Among individuals who are older than 16 years 0.032 0.240 (0.028, 0.452)
and with baseline substance frequency use
of s0;1 D 1=2

Mean medial effect of additional 4–6 month
treatment, Y.1; 1; 0/ versus Y.1; 0; 0/:

ˇ2;0 Among individuals who report not using in �0.009 �0.068 (�0.175, 0.038)
months 0–3

ˇ2;0C ˇ2;1=2 Among individuals who have been in a controlled �0.049 �0.371 (�0.803, 0.062)
environment in the 90 days prior to intake and with
months 0–3 substance use frequency of s1 D 1=2

ˇ2;0C ˇ2;2=2 Among individuals who were not in a controlled 0.024 0.179 (�0.364, 0.722)
environment in the 90 days prior to intake and with
months 0–3 substance use frequency of s1 D 1=2

Mean medial effect of 4–6 month treatment alone,
Y.0; 1; 0/ versus Y.0; 0; 0/:

ˇ2;3 Among individuals who report not using in �0.033 �0.248 (�0.516, 0.020)
months 0–3

ˇ2;3C ˇ2;4=2 Among individuals with months 0–3 0.114 0.862 (�0.453, 2.177)
substance use frequency of s1 D 1=2

Mean proximal effect of additional 7–9 month
treatment, Y.1; 1; 1/ versus Y.1; 1; 0/:

ˇ3;0 Among individuals who report not using �0.006 �0.042 (�0.157, 0.072)
in months 4–6

ˇ3;0C ˇ3;1=2 Among individuals with months 4–6 substance �0.174 �1.32 (�1.719, �0.913)
use frequency of s2 D 1=2

Mean proximal effect of 7–9 month treatment
& no or inconsistent past treatment, Y.a1; a2; 1/
versus Y.a1; a2; 0/ with a1a2 ¤ 1:

ˇ3;2 Among individuals who report not using 0.021 0.158 (�0.028, 0.343)
in months 4–6

ˇ3;2C ˇ3;3=2 Among individuals with months 4–6 substance �0.159 �1.20 (�1.629, �0.766)
use frequency of s2 D 1=2

ESTD estimate; ESD effect size; CID confidence interval

In addition to IPTW+RR estimates, Table III also shows estimates for the other two estimators RR and
TRAD. As expected, RR and TRAD provide identical estimates of the ˇ3 parameters in �3. Compar-
ing these estimates to those obtained using IPTW+RR, we find that the estimates of IPTW+RR are more
negative (further away from zero). We conjecture that this is because the adolescents who were the worse
off (that is, those with most severity up to the end of month 6) who were more likely to obtain full treat-
ment NA3 D .A1; A2; A3/ D .1; 1; 1/, were also those with more substance use Y , leading to a positive
confounding bias in the estimates which the IPTW+RR helps to reduce or eliminate. Estimates of the
parameters in �1 and �2 were more similar across the three estimators, except in a few cases. Estimates
of ˇ1;1 were slightly smaller under IPTW+RR than they were under RR and TRAD. We conjecture that
this is due to a positive spurious bias that results from the TRAD estimator: For example, initial treatment
may reduce severity at the end of month 3, but if there exist factors (such as social support at home) that
are associated with lower use at the end of month 3 and subsequently, there will be a spurious positive
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association between initial treatment and Y in TRAD (as a result of naively conditioning on month 3
use) that is reduced or eliminated by the IPTW+RR and RR estimators ([1]). For ˇ2;2, the results of the
IPTW+RR were much more consistent with the EDA and differed substantially from the RR and TRAD
estimates. Finally, the estimate of ˇ2;4 was large and positive for IPTW+RR and substantially different
from the small and negative (close to zero) obtained under RR and TRAD. We do not have a reasonable
explanation for this difference in estimates.

7. Discussion

This manuscript presents an application of the SNMM [17] for examining time-varying causal effect
moderation. As stated in the Introduction, in interventions research, understanding time-varying moder-
ation or time-varying treatments is valuable because it can be used to shed light on conceptual models,
or to generate hypotheses, about tailoring variables used to guide the timing, sequencing, and duration
of treatment (or treatment components) over time. For instance, in the context of our motivating exam-
ple, time-varying covariates found to be moderators of the impact of additional treatment could be used
in the design of a SMART [21] for further developing an individualized sequence of decision rules to
guide the duration of adolescent substance use treatment. Such decision rules are also known as dynamic
treatment regimes [6, 7].

This manuscript fits within the current statistical and epidemiological literature seeking to develop,
evaluate, compare, and apply various methods for estimating the effects of time-varying treatments.
First, we can use the proposed IPTW+RR estimator to obtain high-quality starting values for the
G-Estimator [2, 17] of the SNMM. The G-Estimator has the advantage over the IPTW+RR of being
doubly robust; that is, it does not require correct specification for the nuisance functions for unbiased
estimation of the causal parameters. However, as suggested in the previous work [2], in certain situations,
this may come at a cost in terms of statistical efficiency. The IPTW+RR may help improve the efficiency
of the G-Estimator [2] by providing high-quality guesses for estimates of the nuisance functions. Sec-
ond, in the context of the SNMM, the IPTW+RR shows one way to hybridize parametric estimators
and IPTW estimators (often thought of as ‘semi-parametric’ in the time-varying confounders). Third,
the methodology presented may serve as a useful starting point for applied statisticians and quantitative
clinicians or behavioral scientists seeking to understand why and how to implement SNMM. For exam-
ple, analysts may first understand how to fit the SNMM using the RR+IPTW estimator (which, as we
show, resembles the traditional regression approach) prior to moving to more sophisticated estimators
such as the G-estimator [17]. Finally, this methodology helps to further clarify the distinction between
time-varying moderators and time-varying confounders. In particular, this article describes how to use
IPTW methodology as a tool that allows scientists to deal with the nuisance of time-varying confounding
bias, yet reserve the linear model for examining scientific questions of interest (in this case, moderated
time-varying causal effects).

This methodology also helps clarify the distinction between the SNMM and the MSM [12], which
is more commonly used in the epidemiological, behavioral, and medical sciences. Indeed, by aver-
aging over the NSt�1. Nat�1/ in the SNMM, we recover a model for the MSM. To appreciate this,
consider the marginal time-varying causal effect 	.a1; a2/ D E.Y.a1; a2/ � Y.0; 0//, and note that
E.E.�2.S0; a1; S1.a1/; a2/ j S0//�E.�1.S0; a1//D	.a1; a2/. Similarly, if there is no effect moder-
ation by NS1. Na1/ in �2 (e.g., ˇ2;1 D ˇ2;2 D 0 in Equation (3)), for example, then �2 D ˇ2;0 represents
the marginal time-varying effect of additional treatment at time t , E.Y.1; 0/� Y.0; 0//.

As is well known in the epidemiology literature [45], effect moderation depends on the scale of
measurement [46]. For this reason, the more descriptive term ‘effect-measure modification’ is often
considered more appropriate because it emphasizes that the presence or magnitude of a moderator on
one scale may change when considered on a different scale.

This manuscript considers the SNMM for time-varying effect moderation for a continuous outcome.
As is common for continuous outcomes, the effects of interest were defined on the linear scale (mean
differences). The SNMM has been extended for binary outcomes under a log-linear scale [47–49]. As
pointed out by a reviewer, it may be possible to consider the SNMM in Equation (4) with a binary out-
come Y.a1; a2/. In this case, the causal effects would be defined on the risk difference scale; for example,
�1 D P r.Y.a1; 0/D 1 j S0/�P r.Y.0; 0/D 1 j S0/. It may be possible to apply the IPTW+RR in this
setting. A key challenge with ‘linear probability models’ is that such models do not require probabilities
to stay within (0,1), so additional diagnostics related to modeling assumptions may be needed.
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We present simulation experiments in Section 5 to illustrate the methodology (vs. traditional regres-
sion, TRAD) under various scenarios. More careful simulation experiments could be conducted to
quantify the biases incurred by the traditional regression estimator under other realistic scenarios, includ-
ing under different assumptions about the extent of the time-varying confounding. For example, we
conjecture that in scenarios where time-varying confounding bias is small to moderate (say, Cohen’s
[34] d � 0:1 at each time point), these small potentially inconsequential biases may amount to large
cumulative ones, especially for the parameters associated with the effect at earlier time points.

The pattern of biases observed in the first simulation experiment will not always hold in practice. For
example, our choice of data generative model led to bias under TRAD that was always greater than the
bias under RR for the parameters in �1. This served the purpose of illustrating a scenario where TRAD
was worse than both RR and IPTW+RR; however, there are scenarios in which RR may incur only one
type of bias (that due to time-varying confounding), whereas TRAD may incur multiple types of bias
(that due to time-varying confounding plus the other two problems with the traditional regression esti-
mator discussed in the Introduction). In such cases, it is possible for these biases to have opposing signs
and cancel each other out in such a way that TRAD may yield estimates closer to IPTW+RR than RR.
We conjecture that this is what happened in the case study of the adolescent substance use data.

Our illustrative data analysis suggested interesting moderated effects of time-varying adolescent sub-
stance use treatment. For �1 and �3, we observed that the magnitude of treatment effect was larger
for adolescents who were more severe prior to treatment. However, the direction of the effects were
not consistent: The distal effects of treatment (�1) were not beneficial, whereas the proximal effects of
additional treatment (�3) were beneficial. We offered a plausible scientific explanation for the iatrogenic
effects of initial treatment, via association with more severe children. In the future work, it would be
interesting to utilize and extend modern methods for causal mediation analysis [30] for unraveling the
mechanisms by which initial treatment alone may have iatrogenic effects.

In the data analysis, it was also interesting to observe that the larger the t , the more potential there
was for time-varying confounding. This was evident from the growing imbalance as measured by the
maximum balance score for larger t (see largest value in left column of each of the panels in Figure 1).
Although this may not be true of all applications, the pattern may not be surprising because as time
progresses, many more covariates accumulate, leading to more chances for the analyst to see potential
for confounding. Or this may be the result of stronger selection into treatment as time progresses: That
is, over time, individuals may be more selective about staying in treatment, or, perhaps as treatment pro-
gram managers get to know their clientele better, they may be more selective about who is encouraged
to remain in treatment.

The methodology presented in this article does not explicitly aim to estimate the optimal dynamic
treatment regime. However, we can use the methods presented as preliminary analyses for, or supple-
mented by, more sophisticated analyses or methodological development aimed explicitly at developing
optimal dynamic treatment regimes [23,27,33,50–53]. In particular, Henderson et al. [23,24] use regret
regression [50], which is an analogue of the RR estimator for estimating optimal dynamic treatment
regimes. In future work, it is possible to extend regret regression with inverse weighting, analogous to
how we extended RR with inverse weighting in this manuscript.

Appendix A. Data generating model for the simulation experiments

For the simulation experiments in Section 5, we generated data sets fU; S0; X0; A1; S1; X1; A2; Y g of
size n according to the following scheme (ƒ.v/ that denotes the inverse-logit function D exp.v/=.1C
exp.v//):

U �N.0; 
/; 
 D 0:1
S0 �N.�0; 
/; �0 D 0:4
S1.a1/jS0; U �N.F1�1C �UU; 
/; F1 D .1; a1; S0; a1S0/;

�1 D .0:5;�0:5; 0:1;�0:1/
T ;

�U D 0:1
�1.S0; a1/D ˇ1;0a1C ˇ1;1a1S0; ˇ1;0 D�0:1; ˇ1;1 D�0:1

�2
�
NS1.a1/; Na2

�
D ˇ2;0a2C ˇ2;1a2S1.a1/; ˇ2;0 D�0:1; ˇ2;1 D�0:1

�1.U; S0/D �1.S0 � �0/C �UU; �1 D 0:15
�2.U; S0; a1; S1.a1//D �2.S1 �F1�1 � �UU/; �2 D 0:30
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Y.a1; a2/jU; NS1.a1/�N.ˇ0C �1C�1C �2C�2; 
/; ˇ0 D 0:8
X1.a1/jY . Na2/�N.�1C �2a1C �3

P
a1;a22.0;1/

Y.a1; a2/; 
=2/; �1 D�0:65

�2 D�0:25;
�3 D 0:50

X0jY . Na2/�N.�4
P
a1;a22.0;1/

Y.a1; a2/; 
/; �4 D 0:25

A1jS0; X0 � Bernoulli .p Dƒ.G1˛1//; G1 D .1; S0; X0/;
˛1 D .�1:3; 1:5; 2:5/

S1 D A1S1.1/C .1�A1/S1.0/
A2jS1; X1 � Bernoulli .p Dƒ.G2˛2//; G2 D .1; S1; X1/;

˛2 D .�1:3; 2:0; 2:5/
Y D Y.A1; A2/D

P
a1;a22.0;1/

I.A1 D a1; A2 D a2/Y.a1; a2/

We used the parameter values given previously for the first simulation in Section 5.1. For the second
simulation in Section 5.2, we set ˛1 D ˛2 D 0 (no confounding).

From the earlier equations, we derive the SNMM for the conditional mean of Y.a1; a2/ given
.S0; S1.a1//. In the earlier equations, Y is generated according to the following known SNMM for
Y.a1; a2/ conditional on .U; S0; S1.a1//

mY .U; S0; S1.a1//DE.Y.a1; a2/ j U; S0; S1.a1//D ˇ0

C �1.U; S0/C�1.S0; a1/C �2.U; S0; a1; S1.a1//

C�2. NS1.a1/; Na2/:

(A.1)

By definition �1.U; S0/ D E.Y.0; 0/ j U; S0/ � E.Y.0; 0/ and it is generated using the linear form
�1.U; S0/ D �1.S0 � E.S0//C �U .U � E.U // where E.S0/ D �0 and E.U / D 0, whereas, by def-
inition �2.U; S0; a1; S1.a1// D E.Y.a1; 0/ j U; S0; S1.a1// � E.Y.a1; 0/ j U; S0/ and it is generated
using �2.U; S0; a1; S1.a1// D S1.a1/ �E.S1.a1/ j U; S0/ where �1F1 C �UU is the linear model for
E.S1.a1/ j U; S0/.

In the simulation experiments, we are interested in estimating SNMMs for Y.a1; a2/ given
.S0; S1.a1// (i.e., integrating over U ). The baseline variable U is an unknown or unmeasured common
cause of both S1.a1/ and Y (e.g., genetic make-up). It is used in the simulations to illustrate problems
with the traditional regression estimator. Note that in this data generative model, U is neither a moder-
ator (i.e., the �t ’s are independent of U ) nor an unmeasured confounder (i.e., U is not used to generate
At ).

To obtain the SNMM of interest for E.Y.a1; a2/ j S0; S1.a1//, we integrate U out of
mY .U; S0; S1.a1// by taking the following conditional expectation E.mY .U; S0; S1.a1// j S0; S1.a1//.
Because only the �t ’s are a function of U , all we need is

E
�
�1.U; S0/C �2.U; S0; a1; S1.a1//

ˇ̌̌
S0; S1.a1/

�
DE

�
�1.S0 �E.S0//C �UU

ˇ̌̌
S0; S1.a1/

�
CE

�
�2
�
S1.a1/�E

�
S1.a1/

ˇ̌
U; S0

� �ˇ̌̌
S0; S1.a1/

�
D�1.S0 �E.S0//C �UE

�
U
ˇ̌̌
S0; S1.a1/

�
C �2

�
S1.a1/�E

�
E
�
S1.a1/

ˇ̌̌
U; S0

� ˇ̌̌
S0

��
;

D�1.S0 � �0/C �UE
�
U
ˇ̌̌
S0; S1.a1/

�
C �2

�
S1.a1/�

�
�1F1C �UE .U jS0/

��
;

(A.2)

which relies on knowing the conditional means E.U j S0/ and E.U j S0; S1.a1//. Because U is inde-
pendent of S0 and E.U /D 0, then E.U jS0/D 0. By using standard normal theory, it can be shown that
E.U j S0; S1.a1//D

�U
1C�2

U

.S1.a1/� �1F1/. It follows that

E
�
�1.U; S0/C �2.U; S0; a1; S1.a1//

ˇ̌̌
S0; S1.a1/

�
D �1.S0 � �0/C .�2C

�2U
1C �2U

/.S1.a1/� �1F1/:
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Therefore, we can use the following design matrix in an IPTW+RR fit of the SNMM for E.Y.a1; a2/ j
S0; S1.a1//: D� D .1; S0 � �0; A1H1; S1.a1/� �1F1; A2H2/ where H1 D .1; S0/ and H2 D .1; S1/.

Appendix B. Asymptotic standard errors of the IPTW+RR estimator

Asymptotic standard errors for the IPTW+RR estimates of � of the SNMM should take into account
sampling error in the estimation of (˛t ; �t ) in the weights and the �t used in the residuals. The esti-
mates b� t are solutions for �t to the bt estimating equations 0 D Pn �t D Pn .At �ƒ.Lt�t // LTt
where Lt is a 1 � bt model vector of the data . NSt ; NAt�1/ and ƒ.�/ is the inverse-logit function
ƒ.�/D exp.�/=.1Cexp.�//; these are the logistic regressions to estimate the numerator probabilities. The
estimates b̨t are solutions for ˛t to the ct estimating equations 0 D Pn ˛t D Pn .At �ƒ.Gt˛t //GTt
where Gt is a 1�ct model vector of the data . NVt ; NAt�1/; these are the logistic regressions to estimate the
denominator probabilities (recall Vt D .St ; X0/). On the basis of standard Taylor series approximations,
it follows that

p
n . Ǫt � ˛t /D�

p
nJ�1˛t Pn ˛t CoP .1/ and

p
n . O�t � �t /D�

p
nJ�1�t Pn �t CoP .1/,

where J˛t D E @
@˛t
 ˛t (bt � bt matrix) and J�t D E @

@�t
 �t (ct � ct matrix). Next, the esti-

mates b�t are solutions for �t to the kt estimating equations 0 D Pn �t D Pn QWt .St �Ft�t / F Tt
where Ft is a 1 � kt model vector of the data . NSt�1; NAt /, and QWt D

Qt
jD1

OWj . Ǫj ; O�j / (see Step
1c in Section 4). On the basis of standard Taylor series approximations and taking into account
the fact that the estimates b�t rely on the estimates of Ǫj and O�j (j D 1; : : : ; t ), it follows that
p
n . O�t � �t / D �

p
nJ�1�t Pn

�
 �t �

Pt
jD1 J�t˛j J

�1
˛j
 ˛j �

Pt
jD1 J�t�j J

�1
�j
 �j

�
C oP .1/, where

J�t D E @
@�t
 �t . N̨ t ; N�t / (kt � kt matrix), J�t˛j D E @

@˛j
 �t . N̨ t ; N�t / (kt � bj matrix), and J�t�j D

E @
@�j

 �t . N̨ t ; N�t / (kt � cj matrix) where . N̨ t ; N�t / D .˛1; : : : ; ˛t ; �1; : : : ; �t /. Finally, the esti-

mates b� are solutions for � to the d D .1 C
P
rt C

P
qt / estimating equations 0 D Pn � D

Pn OW . Ǫ ; O�/
�
Y �D O��

�
DT
O�

where OW . Ǫ ; O�/ D
QK
tD1
OWt . Ǫ t ; O�t /, D O� is a 1 � d model vector corre-

sponding to the SNMM for the conditional mean of Y given . NVK�1; NAK/. For ease of notation in the
next step, denote Q �t D  �t�

Pt
jD1 J�t˛j J

�1
˛j
 ˛j �

Pt
jD1 J�t�j J

�1
�j
 �j . On the basis of Taylor series

approximations, it follows that

p
n
�
O� � �

�
D�
p
nJ�1� Pn

 
 � �

KX
tD1

J��tJ
�1
�t
Q �t �

KX
tD1

J�˛tJ
�1
˛t
 ˛t �

KX
tD1

J��tJ
�1
�t
 �t

!
C oP .1/;

where J� D E @
@�
 � (d � d matrix), J��t D E @

@�t
 � (d � kt matrix), J�˛t D E @

@˛t
 � (d � bt

matrix), and J��t D E @
@�t
 � (d � ct matrix). For simplicity, let Q � D  � �

PK
tD1 J��tJ

�1
�t
Q �t �PK

tD1 J�˛tJ
�1
˛t
 ˛t �

PK
tD1 J��tJ

�1
�t
 �t . Because E. Q � / D 0, then by the Central Limit Theorem,

p
n
�
O� � �

�
 N

�
0; J�1

�
E
�
Q � Q 

T
�

�
J�T
�

�
: Therefore, O� is unbiased in large samples, with variance–

covariance matrix †� D n�1J�1� E
�
Q � Q 

T
�

�
J�T
�

. To estimate †� , we use a ‘plug-in’ estimator where

we replace all .�; ˛; �; �/’s in †� by . O�; Ǫ ; O�; O�/, and we replace all the matrices in †� that are defined
using expectations with their corresponding empirical means (e.g., replace J� with OJ� D Pn

@
@�
 � ).
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