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Abstract: In this article, we study a biobjective economic lot-sizing problem with applications, among others, in green logistics.
The first objective aims to minimize the total lot-sizing costs including production and inventory holding costs, whereas the second
one minimizes the maximum production and inventory block expenditure. We derive (almost) tight complexity results for the Pareto
efficient outcome problem under nonspeculative lot-sizing costs. First, we identify nontrivial problem classes for which this problem
is polynomially solvable. Second, if we relax any of the parameter assumptions, we show that (except for one case) finding a single
Pareto efficient outcome is an NP-hard task in general. Finally, we shed some light on the task of describing the Pareto frontier.
© 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 386–402, 2014
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1. INTRODUCTION

In this article, we model the choice of a production plan
as a biobjective economic lot-sizing problem (BOLS). This
is a generalization of the economic lot-sizing (ELS) prob-
lem introduced by [27], in which we aim to minimize two
objectives. The first objective is the standard objective in the
classical ELS problem. It accounts for the total lot-sizing
costs across the full planning horizon, of length T, of fixed
and variable production, as well as linear inventory hold-
ing costs. The second objective accounts for the maximum
expenditure among consecutive and disjoint blocks of length
�, 1 ≤ � ≤ T . Here expenditure again refers to fixed and
variable production, as well as linear inventory costs; how-
ever, possibly evaluated with different cost parameters than
in the “total cost” objective.

There are different situations in which this second objective
is required in lot-sizing. The second objective may be used to
model the processing of a scarce resource for which the max-
imum available capacity is limited physically or due to regu-
lation. The latter is the case in terms of the carbon footprint of
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lot-sizing, where carbon emissions may be released by any of
the three processes involved, namely the setup of the machin-
ery, the functioning of the machinery during production, as
well as from holding inventory, see [3]. In this first appli-
cation, BOLS can be used to describe the tradeoff between
lot-sizing costs and carbon emissions. The second objective
may also be helpful when a resource needs to be balanced
across the blocks. In the second application of BOLS, we aim
to spread out the lot-sizing costs across the blocks, yielding
a cost-balanced plan. Here, both objectives refer to lot-sizing
costs, but the first one addresses the full planning horizon,
whereas the second addresses each block. In the third applica-
tion, we are concerned with one of the three processes, per se,
say the total production quantity in each block, and we wish
to balance the plan with respect to the production quantities.

There are some recent studies in the literature on lot-sizing
models with carbon emission constraints. These are hence
related to our first application. Ref. [3] is among the first to
include carbon emissions in the classical ELS problem, by
means of emission caps, taxes on emissions, cap-and-trade
emission mechanisms, or carbon offsets. Using a collection
of instances, and for each of these four policies, the authors
illustrate the impact of the lot-sizing decisions on carbon
emissions. Besides the fact that Ref. [3] does not study the
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block model, their focus is on managerial insights, in contrast
to our contribution, which is of a methodological nature.
Ref. [25] provides an empirical study comparing different
levels of data aggregation when estimating carbon transporta-
tion emissions. The problem is formulated as a lot-sizing
model with a carbon emission constraint, and its compu-
tational complexity is left as an open question. Refs. [19]
and [1] provide theoretical and algorithmic results on lot-
sizing models with carbon emission constraints. In [19], a
single emission constraint for the whole horizon is consid-
ered, where the costs and emissions are modeled by general
concave functions of the production values. After showing its
NP-hardness, the authors develop a Lagrangian heuristic and
a fully polynomial-time approximation scheme (FPTAS) for
the problem. Ref. [1] considers multiple production modes,
each of them with its own production cost function and unit
carbon production emission parameter. The lot-sizing prob-
lem consists of choosing a combination of these modes in
each period such that the total production and inventory
holding costs are minimized, while a cap is imposed on car-
bon emissions. Four different ways of imposing this unit
cap are proposed: periodic, cumulative, global, and rolling.
The authors prove that the periodic model is polynomially
solvable, whereas the rest of the models are NP-hard.

If more than one objective function is optimized, Pareto
efficient outcomes (in the value space) are sought. The col-
lection of Pareto efficient outcomes, the Pareto frontier, can
be used to describe the tradeoff between the different objec-
tives. In particular, for BOLS, it is of interest to know when
the expenditure has a great impact on lot-sizing costs. Pareto
efficient outcomes can be found by minimizing one objec-
tive function while constraining the others. For multiobjective
combinatorial optimization problems, such as BOLS, finding
a single Pareto efficient outcome is, in general, an NP-hard
task [8, 9, 22]. The goal of this article is to find classes of
instances for which the Pareto efficient outcome problem, in
which we minimize the lot-sizing costs and restrict the block
expenditure, is polynomially solvable. In particular, we ana-
lyze classes for which the costs are nonspeculative (i.e., it is
better to postpone production as much as possible in terms
of variable costs).

The remainder of the article is organized as follows. In
Section 2, we introduce the BOLS and its applications. In
Section 3, we formulate the Pareto efficient outcome problem.
In Sections 4–6, we will separately investigate the computa-
tional complexity of the Pareto efficient outcome problem for
whole horizon expenditure (� = T ), period by period expen-
diture (� = 1), and block expenditure (general �). In each
section, we identify NP-hard and polynomially solvable
classes of instances and discuss the tightness of the com-
plexity results. In Section 7, we shed some light on the task
of describing the Pareto frontier. We conclude the article in
Section 8 with a summary and topics for future research.

2. THE BOLS MODEL

Consider a planning horizon of length T. For period t,
t = 1, . . . , T , let ft be the setup cost, ct the unit produc-
tion cost, and ht the unit inventory holding cost. Similarly, for
period t, let f̂t be the setup expenditure, ĉt the unit production
expenditure, and ĥt the unit inventory holding expenditure.
Let dt be the demand in period t, with ds,t = ∑t

j=s dj , and
M a constant such that M ≥ d1,T . For ease of notation, an
interval of consecutive periods {s, . . . , t} is denoted by [s, t].

Let us partition the time horizon into consecutive blocks
of � periods. Without loss of generality, we assume that �

divides T. If not, we can define an equivalent problem by
adding “dummy” periods with demand equal to zero. We are
interested in minimizing the costs as well as the maximum
expenditure among the blocks of length �. The BOLS model
with block length �, hereafter (BOLS(�)), reads as follows:

minimize

(
T∑

t=1

[ftyt + ctxt + htIt ],

max
i=1,...,T /�

⎧⎨
⎩

i�∑
t=(i−1)�+1

[f̂t yt + ĉt xt + ĥt It ]
⎫⎬
⎭

⎞
⎠

subject to (BOLS(�))

xt + It−1 = dt + It t = 1, . . . , T (1)

xt ≤ Myt t = 1, . . . , T (2)

I0 = 0 (3)
yt ∈ {0, 1} t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T

It ≥ 0 t = 1, . . . , T ,

where yt indicates whether a setup has been placed in period
t, xt denotes the quantity produced in period t, and It denotes
the inventory level at the end of period t. In the following,
we will refer to a production period as a period in which a
positive amount of production occurs, that is, xt > 0. The first
objective in (BOLS(�)) models the usual lot-sizing costs, that
is, the fixed-charge and variable production, as well as lin-
ear inventory holding costs over the whole planning horizon.
The second objective function models the maximum block
expenditure. Constraints (1) model the balance between pro-
duction, inventory, and demand in period t. Constraints (2)
ensure that the production level is equal to zero if no setup is
incurred in period t. Constraint (3) states that the inventory
level is equal to zero at the beginning of the planning hori-
zon. The last three constraints define the range on which the
variables are defined. When convenient, we will use y, x, and
I to refer to the vectors (yt ), (xt ), and (It ).

The values of the expenditure parameters f̂t , ĉt , and ĥt

depend on the area of application of (BOLS(�)). In the carbon
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footprint setting, these would normally be time invariant, that
is, f̂t = f̂ , ĉt = ĉ, and ĥt = ĥ for all t. In the second applica-
tion, where we aim to balance the lot-sizing costs across the
blocks, the expenditure, and the cost parameters coincide, that
is, f̂t = ft , ĉt = ct , and ĥt = ht . Note that this application
is only of interest if the block length is not the full one, that
is, � < T . Finally, when balancing one of the three processes
all the expenditure parameters equal zero, except for the ones
associated with the process in question, which are equal to
1. For instance, when balancing production quantities, we
would have f̂t = 0, ĉt = 1, and ĥt = 0 for all t.

3. PARETO EFFICIENT OUTCOMES

Given b̂ ∈ R+, the following problem, hereafter (P (�)(b̂)),
defines a Pareto efficient outcome for (BOLS(�)):

z(b̂) = minimize
T∑

t=1

[ftyt + ctxt + htIt ]

subject to (P (�)(b̂))

xt + It−1 = dt + It t = 1, . . . , T

xt ≤ Myt t = 1, . . . , T

I0 = 0

yt ∈ {0, 1} t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T

It ≥ 0 t = 1, . . . , T
i�∑

t=(i−1)�+1

[f̂t yt + ĉt xt + ĥt It ] ≤ b̂ i = 1, . . . , T /�. (4)

To obtain a Pareto efficient outcome when � = T , Con-
straints (4) become the single constraint

T∑
t=1

[f̂t yt + ĉt xt + ĥt It ] ≤ b̂, (5)

resulting in model (P (T )(b̂)). Similarly, when � = 1, Con-
straints (4) become

f̂t yt + ĉt xt + ĥt It ≤ b̂ t = 1, . . . , T , (6)

resulting in model (P (1)(b̂)). For ease of reference, we will
call models (P (�)(b̂)), (P (T )(b̂)), and (P (1)(b̂)) the block
model, the whole horizon model and the period model,
respectively. Models (P (T )(b̂)) and (P (1)(b̂)) with the addi-
tion of backlogging can be found in [3].

If the expenditure constraints are not binding, (P (�)(b̂))
reduces to an ELS problem. When the lot-sizing cost func-
tion is concave, the ELS problem is solvable in polynomial

time in the length of the planning horizon T [27, 29]. More
efficient algorithms for special cases have been developed in
[2, 11, 26].

Furthermore, there are polynomial time algorithms for
some ELS problems that can be viewed as special cases
of (P (�)(b̂)). In particular, there exist polynomial time algo-
rithms when we limit the production in each period by time-
invariant capacities [12, 23], and thus (P (1)(b̂)) with only
time-invariant production expenditures can be solved in poly-
nomial time. Similarly, the ELS problem with upper bounds
on the inventory levels is polynomially solvable [16, 21], and
so is (P (1)(b̂)) with only inventory expenditure. In addition,
under time-invariant setup cost, the parametric study in [24]
provides a polynomial algorithm when we limit the number
of setups across the planning horizon.

While the ELS problem and some of its generalizations
are polynomially solvable, (P (�)(b̂)) is NP-hard in general,
since the capacitated lot-sizing problem (CLSP) with time-
variant production capacities is a special case of it [13, 4].

In the following sections, we will investigate which classes
of instances of (P (�)(b̂)) are NP-hard or polynomially solv-
able, where we focus on classes with nonspeculative costs,
that is, ct−1 + ht−1 ≥ ct for t = 2, . . . , T . We start with the
whole horizon model in Section 4 and then proceed to the
period model and block model in Sections 5 and 6, respec-
tively. Each section starts with the identification of classes
of instances that are NP-hard. Subsequently, we develop
decomposition algorithms for classes of instances that can be
solved in polynomial time. Finally, each section ends with
a discussion on the tightness of the complexity results. In
the remainder of the article, and when calculating optimal
lot-sizing costs, any object in the decomposition with infi-
nite cost corresponds to an infeasible (partial) solution and
provides a certificate of infeasibility if required.

We end this section with two remarks on problem (P (�)(b̂)).
The first remark is on its feasibility. It is clear that (P (�)(b̂))
is not feasible if b̂ is sufficiently small, say for b̂ < b̂min.
In case � = T , the value b̂min can be found in polynomial
time by solving a single unconstrained ELS problem with
the total expenditures as the objective function. However, in
case � < T , a similar approach (i.e., solving an unconstrained
ELS problem for each block) does not work. The reason is
that, in general, the zero inventory order (ZIO) property does
not hold at the end of each block, and hence the (minimum)
expenditures of one block depend on the (minimum) expen-
ditures of other blocks. However, we can find the value b̂min

to any desired precision by performing a binary search (so
solving (P (�)(b̂)) repeatedly for different values of b̂), where
“feasibility” is the criterion in the search.

The second remark is on the uniqueness of the solution to
(P (�)(b̂)) with objective value z(b̂). In case, the solution is
unique, we have found a strongly Pareto efficient outcome.
However, in case of multiple solutions, the solution is a
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weakly Pareto efficient outcome in general. To get the corre-
sponding strongly Pareto efficient outcome, we need to find
the value b̂L such that z(b̂L) = z(b̂) and z(b̂′) > z(b̂) for
b̂′ < b̂L. Based on this observation, the value b̂L and hence
the strongly Pareto efficient outcome can again be found by
binary search to any precision. Clearly, a necessary condition
to be able to perform both binary searches in a computation-
ally efficient way is the existence of an efficient algorithm to
solve (P (�)(b̂)), which is the topic of the next sections. How
to find the exact values b̂min and b̂L in polynomial time is left
for future research.

4. WHOLE HORIZON MODEL

4.1. NP-Hard Instances

Proposition 4.1 shows that the whole horizon model is
NP-hard, even if the setup and the production cost, as well
as the inventory holding expenditures, are time-invariant.

PROPOSITION 4.1: Problem (P (T )(b̂)) is NP-hard
under time-invariant setup cost, no production cost, and

• production expenditures only, or
• setup expenditures only, or
• time-invariant holding expenditures only.

PROOF: To show the result for cases (i) and (ii), we use
a reduction from the well-known partition problem, which
is NP-complete (see problem [SP12] in [14, p. 223]). We
will prove case (i) and only provide the reduced instances for
case (ii) since the proof is similar. For case (iii), we use a
reduction from the well-known knapsack problem, which is
NP-complete (see problem [MP9] in [14, p. 247]).

CASE (i): As mentioned above, we use a reduction from
the partition problem.

Problem partition: Given a set of positive integers
{a1, a2, . . . , an}, does there exist a set S ⊂ N = {1, . . . , n}
with the complement set Sc = N\S such that

∑
i∈S

ai =
∑
i∈Sc

ai = 1

2

∑
i∈N

ai = A?

We construct an instance for problem (P (T )(b̂)) in poly-
nomial time as follows. Let T = 2n, b̂ = A, and the other
parameters according to the following table for i = 1, . . . , n:

t dt f t ct ht f̂t ĉt ĥt

2i − 1 0 A 0 ai 0 0 0
2i 1 A 0 ∞ 0 ai 0

Note that the instance can be viewed in terms of pairs of
consecutive odd and even periods (2i − 1, 2i). We will show
that the answer to partition is yes if and only if there exists a
solution with lot-sizing cost at most (n + 1)A.

Suppose the answer to partition is yes, that is, there exists
a set S such that

∑
i∈S ai = A. We construct a solution to the

lot-sizing instance as follows: yt = xt = 1 when t = 2i − 1
with i ∈ S, or when t = 2i with i ∈ Sc. In other words,
every demand is satisfied from either the current or the previ-
ous period. Since there are n setups, the total setup costs equal
nA. Furthermore, the total holding costs equal

∑
i∈S ai = A,

while the total expenditure equals
∑

i∈Sc ai = A. Therefore,
the solution is feasible and has costs (n + 1)A.

Now suppose that there exists a feasible solution (x, y) with
costs at most (n + 1)A. Because of the holding cost struc-
ture, demand in period 2i is satisfied from period 2i − 1 or
2i. Moreover, demand will be satisfied from a single period
since otherwise the costs will exceed (n+1)A or the solution
is infeasible. This means that there are n setups incurring a
cost of nA. Let S (resp. T ) be the set of indices for which
demand is satisfied by the odd (resp. even) periods, that is,
S = {i : y2i−1 = 1} (resp. T = {i : y2i = 1}). Clearly,
(S, T ) is a partition of N and hence T = Sc. Therefore, the
total holding costs equal

∑
i∈S ai , while the total expenditure

equals
∑

i∈Sc ai . Since the sum of the two is 2A, we must have∑
i∈S ai = ∑

i∈Sc ai = A in a feasible solution with costs at
most (n + 1)A. Hence, the sets S and Sc give the desired
partition. (Note that the proof also holds if we let dt = ai for
t = 2i and replace the values of ht for the odd periods with
1 as well as the values ĉt in the even periods.)

CASE (ii): Here, again, we use a reduction from the par-
tition problem. The reduced instance has T = 2n, b̂ = A,
and the other parameters according to the following table for
i = 1, . . . , n:

T dt f t ct ht f̂t ĉt ĥt

2i − 1 0 A 0 ai 0 0 0
2i 1 A 0 ∞ ai 0 0

(Note that the result still holds if we let dt = ai for t = 2i

and replace the finite values of ht with 1.)

CASE (iii): For this case, we use a reduction from the
knapsack problem.

Problem knapsack: Given positive integersκ , κ ′, a1, a2, . . . ,
an, a′

1, a′
2, . . . , a′

n, does there exist a vector z ∈ {0, 1}n such
that

n∑
i=1

aizi ≥ k and
n∑

i=1

a′
izi ≤ κ ′?
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We construct an instance for problem (P (T )(b̂)) in poly-
nomial time as follows. Let T = 2n, b̂ = κ ′, and the other
parameters according to the following table for i = 1, . . . , n:

t dt f t ct ht f̂t ĉt ĥt

2i − 1 1 A 0 A−ai

a′
i

0 0 1

2i a′
i A 0 ∞ 0 0 1

where A is a sufficiently large number. As in cases (i) and
(ii), the instance can be viewed in terms of pairs of consecu-
tive odd and even periods (2i − 1, 2i), where d2i−1 is always
produced in period 2i − 1. We will show that the answer to
knapsack is yes if and only if there exists a solution with
lot-sizing cost at most 2nA − κ .

Suppose the answer to knapsack is yes, that is, there exists
a vector z ∈ {0, 1}n such that

∑n
i=1 aizi ≥ κ ,

∑n
i=1 a′

izi ≤ κ ′.
We construct a solution to the lot-sizing instance as follows.
For i = 1, . . . , n and t = 2i − 1, we have yt = 1. For
i = 1, . . . , n and t = 2i, yt = 0 and It−1 = dt if zi = 1,
and yt = 1 and It−1 = 0 otherwise. In other words, we
always produce in period 2i − 1, but in addition we will
produce in period 2i if zi = 0. The total setup costs equal
An + ∑n

i=1 A(1 − zi) = 2nA − ∑n
i=1 Azi . Furthermore, the

total holding costs equal
∑n

i=1
A−ai

a′
i

a′
izi = ∑n

i=1(A − ai)zi ,

while the total expenditure equals
∑n

i=1 a′
izi ≤ κ ′. There-

fore, the solution is feasible and has costs 2nA−∑n
i=1 Azi +∑n

i=1(A − ai)zi = 2nA − ∑n
i=1 aizi ≤ 2nA − κ .

Now suppose that there exists a feasible solution (y, I) with
costs at most 2nA−κ . Note that we can assume that demand
in period 2i will be satisfied either from period 2i−1 or 2i, but
not both. Otherwise, we can decrease I2i−1 to zero, reducing
thus the inventory holding expenditure as well as the inven-
tory holding costs. For each i = 1, . . . , n, we can now define
zi = 1 if y2i = 0 and zi = 0 otherwise. Due to the structure of
the inventory holding cost, I2i = 0 for all i, while I2i−1 = d2i

if zi = 0 and 0 otherwise. Therefore, the expenditure of the
lot-sizing solution is equal to

∑n
i=1 d2izi = ∑n

i=1 a′
izi and

therefore at most κ ′. With similar manipulations as above,
we can show that the lot-sizing costs can be written as

2nA −
∑
i=1

aizi

and therefore
∑n

i=1 aizi ≥ κ . �

Note that, to find a Pareto efficient solution of (BOLS(T )),
one could optimize over the second objective and constrain
the first objective as well (instead of optimizing over the
first and constraining the second objective). Moreover, if we
subsequently interchange the role of cost and expenditure,
the problem reduces to (P (T )(b̂)) again. That means that the

complexity results for problem (P (T )(b̂)) are symmetric with
respect to the parameter assumptions on cost and expendi-
ture. Therefore, the following corollary is immediate from
Proposition 4.1.

COROLLARY 4.2: Problem (P (T )(b̂)) is NP-hard under
time-invariant setup expenditures, no production expenditure
and

1. production cost only, or
2. setup cost only, or
3. time-invariant holding cost only.

4.2. Polynomially Solvable Instances

In this section, we show that (P (T )(b̂)) can be solved in
O(T 2) time if we have time-invariant ft , ct , f̂t , and ĉt , and
ĥt = αht for some α ≥ 0. Notice that under these assump-
tions, the lot-sizing costs and the expenditure are such that
there are no speculative motives to hold inventory. Two obser-
vations are given before we present the procedure to solve
(P (T )(b̂)). First, for a production plan with n production
periods, and because both the setup and the unit production
expenditure are time-invariant, constraint (5) can be written
as

α

T∑
t=1

htIt ≤ b̂ − f̂ n − ĉ

T∑
t=1

dt . (7)

Second, and similarly as above, the objective function of
(P (T )(b̂)) boils down to

T∑
t=1

(ftyt + ctxt + htIt ) = f n + c

T∑
t=1

dt +
T∑

t=1

htIt .

Thus, when the number of production periods is fixed, min-
imizing the total inventory costs is equivalent to minimizing
the total costs, as well as minimizing the total expenditure.
Note that based on the above observations, it is also clear that
the ZIO property holds in an optimal solution.

To solve (P (T )(b̂)), it is now sufficient to solve the ELS
problem with n production periods for n = 1, . . . , T . For
a given n, the solution is kept if the inventory levels of the
optimal solution satisfy (7). After evaluating all possible val-
ues of n, we will have at most T solutions, from which we
choose the one having the lowest lot-sizing costs. Solving
the ELS problem with n production periods can be done by
a straightforward O(T 3) dynamic programming (DP) algo-
rithm similar to [15], using the variables Fn(t), n = 1, . . . , T ,
t = n, . . . , T , where Fn(t) represents the optimal cost of the
ELS problem consisting of periods 1, . . . , t with n (n ≤ t)
production periods. However, Ref. [24] shows that all values
Fn(t) can be found in O(T 2) time in case of nonspeculative
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Table 1. Complexity overview for the whole horizon model.

Costs Expenditures

ft ct and ht f̂t ĉt ĥt Complexity

c Nonspeculative c c αht Polynomially solvable
c Nonspeculative v 0 0 NP-hard
c Nonspeculative 0 v 0 NP-hard
c Nonspeculative 0 0 c NP-hard

motives to hold inventory, while [10, Section 3.1] obtain the
same result in case of time-invariant setup cost. Both results
imply that (P (T )(b̂)) under the given parameter assumptions
can be solved in O(T 2) time.

4.3. Discussion of the Complexity Results

In Sections 4.1 and 4.2, we have derived NP-hardness
results and developed polynomial time algorithms for cer-
tain classes of instances. A natural question is whether the
complexity results are tight, that is, whether each class of
instances can be classified as NP-hard or polynomially solv-
able. In this section, we show that the answer to this question
is positive.

Table 1 gives an overview of the complexity results for
the whole horizon model. We use the labels “0,” “c,” “v,”
which stand for zero, time-invariant (constant), or time-
variant (variable), to specify the assumptions on the para-
meters. Furthermore, instances with constant (or zero) pro-
duction cost and time-variant holding cost are labeled as
nonspeculative, since it is well-known that any such instance
is equivalent to an instance with nonspeculative motives (see
e.g., [28]). Suppose that we relax any of the expenditure
assumptions for the polynomially solvable instances, that
is, (i) time-invariant setup expenditures become time-variant
setup expenditures, (ii) time-invariant production expendi-
tures become time-variant expenditures, or (iii) zero holding
expenditures (α = 0) become time-invariant holding expen-
ditures. Then in each of the three cases it follows that the
problem becomes NP-hard. This means that the results for
the whole horizon model are tight.

5. PERIOD MODEL

5.1. NP-Hard Instances

The NP-hardness of (P (1)(b̂)) follows from that of the
CLSP [13, 4], which is formalized in the following proposi-
tion.

PROPOSITION 5.1: Problem (P (1)(b̂)) is NP-hard
under time-invariant setup cost, nonincreasing production
cost, zero inventory holding cost and

• production expenditures only, or
• setup expenditures and time-invariant production

expenditures only.

PROOF: We will prove case (i) and only provide the
reduced instance for case (ii) since the proof is similar.

CASE (i): By rewriting the expenditure constraint (3) as

xt ≤ b̃t = b̂

ĉt

,

it is straightforward to see that the CLSP with time-invariant
setup cost, nonincreasing production cost, zero inventory
holding cost, and time-variant production capacities is a par-
ticular case of problem (P (1)(b̂)). Ref. [4] showed that this
problem is NP-hard using a reduction from the subset sum
problem (see problem [SP13] in [14, p. 223]). We refer to [4]
for the details of the proof.

CASE (ii): The reduced instance in this case has dt = 0,
for t < T, and dT = κ , b̂ = 1 + maxt=1,...,T {at }, and the other
parameters according to the following table for t = 1, . . . , T :

f t ct ht f̂t ĉt ĥt

1 at−1
at

0 b̂ − at 1 0

Using these parameters, the remainder of the proof paral-
lels the proof in [4] and hence further details are omitted.

�

5.2. Polynomially Solvable Instances

In this section, we show that (P (1)(b̂)) can be solved in
O(T 2) time if the lot-sizing costs are such that there are
no speculative motives to hold inventory and ft ≥ ft+1,
whereas for the expenditures we assume that f̂t , ĉt , and ĥt

are time-invariant. To solve the problem, we use the concepts
of subplan and regeneration period, which are widely used
in the literature on lot-sizing problems. We define a subplan
as an interval [s, t] of periods such that the starting and end-
ing periods are regeneration periods (i.e., Is−1 = It = 0),
whereas the rest of the inventory levels are strictly positive
(i.e., I > 0 for r ∈ [s, t − 1]). We will refer to a production
period as one with positive production. We will say that a
period is tight if the corresponding constraint in (3) is bind-
ing. We will say that a period is extreme if it is either tight or
it is not a production period.

Since ĥt are time-invariant, when considering constraint
(3), the only relevant periods are those in which production
occurs. Suppose that period t has positive inventory and no
production, that is, yt = xt = 0. Let t ′ be the last production
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period such that t ′ < t . Since I0 = 0, this period should exist.
Since there is no production in periods t ′ + 1, . . . , t , we have
that It ′ ≥ It . Moreover, yt ′ = 1 and xt ′ > 0 by definition.
Thus,

f̂ yt + ĉxt + ĥIt = ĥIt ≤ ĥIt ′ ≤ f̂ yt ′ + ĉxt ′ + ĥIt ′ ≤ b̂.

In other words, if Constraint (3) holds for each production
period, then it will also hold for each nonproduction period.
Moreover, if either f̂ or ĉ is strictly positive, then period t
will not be tight.

To solve (P (1)(b̂)) in polynomial time, we will use a
decomposition into subplans. In total, there are O(T 2) sub-
plans. Below, we will show that the optimal costs of all
subplans can be found in O(T 2) time, and thus (P (1)(b̂))
can be solved in O(T 2) time too. The approach that we
follow is similar to [7]. The main difference is that deter-
mining the exact production quantities in our approach poses
an additional challenge.

The following proposition shows that, for each subplan,
all periods will be extreme except for the first one.

PROPOSITION 5.2: There exists an optimal solution for
which, except for the first one, all production periods in a
subplan are tight.

PROOF: Notice that it is sufficient to show that if t ′ and
t are two consecutive production periods within the same
subplan and t ′ < t , then t is tight. This result follows from
the nonspeculative motives of the lot-sizing costs to hold
inventory.

Suppose that t is a nontight production period and recall
that t ′ is the last production period before t. We can reduce
the production in period t ′ as well as the inventory levels in
periods t ′, t ′ + 1, . . . , t − 1 by ε, at the same time that we
increase the production in period t by ε.

Constraint (6) is still satisfied in period t ′, t ′ +1, . . . , t −1,
since we have reduced the corresponding left hand side. Con-
straint (3) for period t is still satisfied if f̂ +ĉ(xt+ε)+ĥIt ≤ b̂,
which means that ε ≤ εt = (b̂ − (f̂ + ĉxt + ĥIt ))/ĉ.
Furthermore, the production in period t ′ cannot be nega-
tive, which means that ε ≤ xt ′ . Finally, we need to impose
that ε ≤ It−1 to make sure that the new inventory levels in
t ′, t ′ +1, . . . , t −1 are all nonnegative. Thus, for an appropri-
ate choice of ε, namely ε = min{xt ′ , It−1, εt }, this solution
is still feasible. Observe that because of the nonspeculative
motives assumption of the lot-sizing costs, this solution is
also optimal.

If ε = xt ′ , then the result holds for t ′ and t since t ′ is
not a production period anymore. If ε = It−1, then the new
inventory level at the end of period t − 1 is equal to zero and
the subplan decomposes into two new subplans. Finally, if
ε = εt , then period t becomes tight, and the desired result
holds again for periods t ′ and t. �

Below we show that production can only occur if the
incoming inventory is not enough to satisfy the current
demand.

PROPOSITION 5.3: There exists an optimal solution sat-
isfying It−1 < dt where t is a production period and t + 1 a
nonproduction period.

PROOF: If t is a production period and t + 1 a nonpro-
duction period with It−1 ≥ dt in an optimal solution, then
we can move the production quantity from period t to t + 1.
This solution is still feasible since the inventory levels will
not increase and the unit production expenditures are time-
invariant. Because of the assumptions on the cost structure,
in each period, the costs will not increase and so the solu-
tion is also optimal. Repeating the above procedure leads to
a solution satisfying the property. �

The next proposition will be helpful to determine the tight
production periods.

PROPOSITION 5.4: Consider a subplan [u, v] and a
period t, u < t ≤ v, with outgoing inventory It and satisfying
the properties:

• x̄t = (b̂ − f̂ − ĥIt )/ĉ > 0,
• Īt−1 = It − x̄t + dt > 0.

Then period t is a tight production period in the subplan
with production quantity x̄t , and incoming inventory equal to
Īt−1.

PROOF: We will prove the result by contradiction. Note
that x̄t is the maximum possible production in period t, and
therefore Īt−1 is the minimum inventory level in period t − 1.
Since Īt−1 > 0, if t is a production period then it will not be
the first one of the subplan, and by Proposition 5.2, t must be
tight. Moreover, the production must be equal to x̄t and the
incoming inventory should be Īt−1.

Thus, we will assume that t is not a production period and
show that this is not possible. Let period s, u ≤ s < t ≤ v, be
the last production period before t. This means that xj = 0
for j = s + 1, . . . , t and Is = It + ds+1,t . Since s should be
feasible in terms of expenditure we have

xs ≤ (b̂ − f̂ − ĥ(It + ds+1,t ))/ĉ = x̄t − (ĥds+1,t )/ĉ

and therefore

Is−1 = Is − xs + ds

≥ (It + ds+1,t ) − (x̄t − (ĥds+1,t )/ĉ) + ds

= Īt−1 + (ĥds+1,t )/ĉ + ds,t−1 > ds .
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Now we either have a contradiction with Iu−1 = 0 (in
case s = u) or a contradiction with Proposition 5.3 (in case
s > u). �

We can now use Proposition 5.4 to construct an optimal
solution to any nondegenerate subplan [u, v], that is, a sub-
plan that does not decompose into multiple subplans, in a
backward way. Assume that we arrive at some period t > u,
for which It is known (note that Iv = 0 in the initialization of
the procedure). We want to determine xt and It−1 such that
the properties of Proposition 5.4 are satisfied. We consider
the following cases:

• x̄t ≤ 0: The subplan is infeasible, since Constraint
(3) is violated for period t or some period before t. To
see this, first notice that since x̄t ≤ 0 and b̂ > f̂ , we
must have It > 0. Moreover, there should be at least
a production period in the interval [u, t].

• By definition, x̄t is the maximum production quantity
in period t without violating the expenditure con-
straint, and therefore since x̄t ≤ 0, we cannot produce
in period t.

• The same holds for any period in [u, t − 1]. Indeed, it
follows from the proof of Proposition 5.4 that any fea-
sible production quantity in period s (s < u) is at most
equal to x̄t . In other words, any period with a posi-
tive production amount before period t will violate
the expenditure constraint too.

• x̄t > 0 and Īt−1 ≤ 0: In this case, period t cannot
be a tight production period, since either production
would be too much (in case Īt−1 < 0) or the subplan
would be degenerate (in case Īt−1 = 0). Therefore,
we set xt = 0 and It−1 = It + dt .

• x̄t > 0 and Īt−1 > 0: By Proposition 5.4, period t is
tight. Hence, we set xt = x̄t and It−1 = Īt−1.

This procedure is applied for periods t = v, . . . , u + 1. If
we arrive at period u and 0 < du + Iu+1 ≤ x̄u, then sub-
plan [u, v] is feasible and nondegenerate with a production
quantity equal to xu = du + Iu+1.

For given periods u and v, the cost of subplan [u, v] can be
determined in linear time. Hence, a straightforward imple-
mentation would lead to an O(T 3) time algorithm. However,
note that when determining subplan [1, v], we also find sub-
plans [u, v] for u = 1, . . . , v. This means that the optimal
costs of all subplans can be found in O(T 2) time.

5.3. Discussion of the Complexity Results

We have summarized the complexity results of the period
model in Table 2. Since a lot-sizing problem with nonincreas-
ing production and zero holding cost is by definition equiv-
alent to a lot-sizing problem with nonspeculative motives,

Table 2. Complexity overview in case of period expenditures.

Costs Expenditures

ft ct and ht f̂t ĉt ĥt Complexity

Nonincreasing Nonspeculative c c c Polynomially
solvable

c Nonspeculative v c 0 NP-hard
c Nonspeculative 0 v 0 NP-hard
c Nonspeculative 0 0 v Open

we have labeled the variable cost of the NP-hard cases from
Section 5.1 as nonspeculative. The first three lines of the table
show that the complexity results are not tight. That is, we have
not been able to identify the complexity status of the prob-
lem with time-variant holding expenditures only, which is
neither a special case of the polynomially solvable problem
nor a generalization of the NP-hard problems. Hence, we
have classified the complexity status of this problem as open.

6. BLOCK MODEL

6.1. NP-Hard Instances

To identify classes of NP-hard instances for the block
model, we should realize that it is both a generalization of
the whole horizon and the period models. Therefore, any
class of instances that is NP-hard for any of these two is
also NP-hard for the block model. In Section 6.5, we will
discuss these instances in more detail.

In the next sections, we will show that (P (�)(b̂)) can be
solved in polynomial time if the lot-sizing costs are such
that there are nonspeculative motives, whereas for the expen-
ditures we assume that f̂t and ĉt are time-invariant and
ĥt = 0. We will first prove that the problem can be solved
in O(T 2�) time if we face setup expenditures only (Section
6.2). Then, we will move on to the more general case show-
ing an O(T 7/�) time algorithm (Section 6.3), and improve it
to O(T 5) if we face production expenditures only (Section
6.4). To enhance readability, we focus on the main ideas and
present the proofs and other details in the appendix.

6.2. Time-Invariant Setup Expenditures

In this section, we show that (P (�)(b̂)) can be solved in
O(T 2�) time if f̂t are time-invariant and ĉt = ĥt = 0, using
a variant of the DP algorithm to solve the ELS problem. First
note that the ZIO property holds, as stated in the following
proposition.

PROPOSITION 6.1: Consider problem (P (�)(b̂)) under
the additional condition of nonspeculative motives for the
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lot-sizing costs and zero production expenditures. Then,
without loss of optimality, the ZIO property holds.

Proposition 6.1, together with the expenditure assump-
tions, implies that an optimal solution can be found under
the ZIO solutions with an upper bound on the number of pro-
duction periods in a block. Let b̄ = �b̂/f̂ 	 be the maximum
number of production periods in any block. Note that we can
focus on b̄ < �, and therefore b̄ ∈ O(�), since otherwise the
expenditure constraints will be redundant.

Our approach is based on finding a shortest path in a net-
work with nodes (u, n), 1 ≤ u ≤ T , 1 ≤ n ≤ b̄, representing
that the nth setup of the corresponding block occurs in period
u. There are two types of arcs from periods u to v, for which
demand du,v−1 is satisfied by production in period u. For each
u and v in the same block and n < b̄, we have an arc from
(u, n) to (v, n + 1), showing that the number of setups in the
block increases by one. Similarly, if u and v are in different
blocks, we have an arc from (u, n) to (v, 1), since v is the
first setup in its associated block. The number of arcs of the
first type is O(T �b̄) (each block has O(�b̄) arcs and there
are O(T/�) blocks), while the number of arcs of the second
type is O(T b̄). Because of the interpretation of the arcs, the
costs of arcs ((u, n), (v, n + 1)) and ((u, n), (v, 1)) can be
computed in constant time from arcs ((u + 1, n), (v, n + 1))

and ((u + 1, n), (v, 1)), respectively. Hence, the problem can
be solved in O(T 2b̄) ⊆ O(T 2�).

6.3. Time-Invariant Setup and Production
Expenditures

In this section, we show that (P (�)(b̂)) can be solved in
O(T 7/�) time if the lot-sizing costs are such that there are
no speculative motives to hold inventory, f̂t and ĉt are time-

invariant and ĥt = 0. Defining b̃ = b̂
ĉ

and f̃ = f̂

ĉ
, Constraints

(4) can be written as

f̃

i�∑
τ=(i−1)�+1

yτ +
i�∑

τ=(i−1)�+1

xτ ≤ b̃ i = 1, . . . , T /�.

If the number of setups γi ∈ {1, . . . , �} in block i is known,
the constraints reduce to

i�∑
τ=(i−1)�+1

xτ ≤ b̃ − γif̃ i = 1, . . . , T /�. (8)

To develop a DP approach for (P (�)(b̂)), we use the
following definition.

DEFINITION 6.2: Two consecutive subplans are called
connected if they have production in the same block.

(P (�)(b̂)) can be decomposed into a collection of maximal
sequences of connected subplans, where a sequence is maxi-
mal if no other subplan is connected to it. We naturally have

Figure 1. Illustrating the two-tier decomposition for T = 16 and
� = 4.

a two-tier decomposition for (P (�)(b̂)), where the planning
horizon is split into maximal sequences and each sequence is
subsequently split into a collection of suplans. This decom-
position is illustrated in Fig. 1 for T = 16 and � = 4, where
the time horizon is split into two maximal sequences, namely
[1, 5] and [6, 16]. Some of our results will be illustrated for
sequence [6, 16] and therefore we present there a possible
plan. The vertical arcs represent production periods, whereas
the horizontal arcs represent positive inventory periods. Note
that t = 5 will not be a production period, otherwise [6, 16]
is not maximal.

We now analyze the running time of our two-tier decompo-
sition approach. Clearly, there are O(T 2) maximal sequences.
Given the optimal costs of these sequences, the optimal col-
lection of them can be found by a straightforward DP algo-
rithm in O(T 2) time. We will show that finding the optimal
cost of a maximal sequence can be done by solving a short-
est path problem on a network with O(T 4/�) arcs (Section
6.3.2). Given the O(T 2) maximal sequences, this would lead
to a total number of O(T 6/�) arcs. However, since networks
corresponding to different maximal sequences share identical
arcs, the total number of different arcs is O(T 5/�) (Section
6.3.2). We will show that each arc cost can be computed
in O(T 2) time (Section 6.3.3). Altogether, this leads to an
O(T 7/�) time algorithm for (P (�)(b̂)) when both setup and
production expenditures are time-invariant. In the following,
we present some structural properties that will be used in
Sections 6.3.2 and 6.3.3.

6.3.1. Structural Properties

In this section, we prove some structural properties that
will allow us to find the production quantities in a maximal
sequence of subplans. The following lemmas will be used to
prove that, except for the first one, all blocks fully contained
in the maximal sequence are extreme. We say that a block is
split if it contains at least two (partial) subplans. For exam-
ple, in Fig. 1, Block 3 is a split block. Furthermore, the block
containing the period v is denoted by [b(v), e(v)].

LEMMA 6.3: Each production period in a subplan
belongs to a different block.

LEMMA 6.4: There exists an optimal solution for which,
except for the first one, all production periods in a subplan
are contained in a tight block.
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LEMMA 6.5: Let [u, v] and [v + 1, w] be connected sub-
plans starting in different blocks. Then, the connecting block,
[b(v), e(v)], is tight.

PROPOSITION 6.6: Let [t , w] be a maximal sequence of
connected subplans. Except for the first one, all blocks fully
contained in the maximal sequence are extreme. Moreover,
if the last block of the sequence [b(w), e(w)] is split, then
there is no production in [b(w), w].

As a consequence of Proposition 6.6, we are now able
to determine the relevant production quantities, given the
number of tight blocks and setups in the remainder of the
maximal sequence. This is formalized in Propositions 6.8
and 6.9, where the specific production quantities are given
by the following definition.

DEFINITION 6.7: Define s
η,γ
v,w = dv,w − ηb̃ + γ f̃ and

r
η,γ
v,w = ηb̃ − γ f̃ − dv,w.

PROPOSITION 6.8: Let [t , w] be a maximal sequence of
connected subplans. Let v be the last regeneration period of
a block in the sequence with v < w. Let η be the total number
of tight blocks in [e(v) + 1, w] and γ be the total number of
setups placed in [e(v) + 1, w]. Then xv+1 = s

η,γ
v+1,w.

PROPOSITION 6.9: Let [t , w] be a maximal sequence of
connected subplans. Let v < w be the first regeneration period
of a split block. Let η be the total number of tight blocks
in [e(v) + 1, w] and γ the total number of setups placed in
[v+1, w]. The only production in [b(v), v] is at most rη+1,γ+1

v+1,w .
We illustrate these results using the maximal sequence

[6, 16] in Fig. 1. From Proposition 6.6, Block 4 must be tight,
while from the figure we see that we incur there one single
setup. For Block 3, the first and last regeneration points are 9
and 11, respectively. Proposition 6.8 implies that x12 = s

1,1
12,16,

while from Proposition 6.9 x9 = r
2,4
10,16.

6.3.2. The Inner DP Approach

As aforementioned, to find the optimal solution of a max-
imal sequence [t , w], each maximal sequence is split into a
collection of subplans. In the following, we will show that we
can use a network with O(T 4/�) arcs to construct a maximal
sequence with minimum cost.

We will assume without loss of generality that t = b(t) and
w = e(w). If t > b(t), using Proposition 6.6, there is no pro-
duction in [b(t), t −1]. We can solve instead a new sequence,
[t ′, w], beginning at period t ′ = b(t), and where the demand
between t ′ and t − 1 is equal to zero, while there is no pro-
duction in [t ′, t − 1]. If w < e(w), again using Proposition
6.6, there is no production in [b(w), w]. We can solve instead
a new sequence, [t , w′], ending at period w′ = b(w) − 1,

and where the demand at the new end period w′ is equal to
db(w)−1,w.

To find the optimal cost of a maximal sequence [t , w],
we use a shortest path approach. A node (u, η, γ ) represents
a partial solution for periods [u, w] with u − 1 a regenera-
tion period, η the number of tight blocks in [e(u) + 1, w],
and γ the number of setups in [u, w]. Since we construct
the maximal sequence moving backwards in time, the initial
node is (w+1, 0, 0). There are two types of arcs, representing
either a subplan spanning across multiple blocks or a subplan
contained in a block.

Let us discuss the first type of arcs, that is, a subplan [u, v]
spanning across multiple blocks. In that case, u < v will be
two periods in different blocks, that is, e(u) < e(v). Given a
partial solution represented by (v + 1, η, γ ), the demand du,v

uniquely determines the number of tight blocks and the num-
ber of setups in [u, v], say ηuv and γ uv , respectively, as shown
in the appendix. Hence, we have an arc from (v + 1, η, γ ) to
(u, η + ηuv + 1, γ + γ uv). Note that we have η + ηuv + 1
tight blocks, since the connecting block [b(v), e(v)] is tight.
Clearly, for a given node (v+1, η, γ ), the number of outgoing
arcs of this type is O(T ).

We now present the second type of arcs, that is, a subplan
[u, v] contained in a block. In that case,u ≤ v will be two peri-
ods in the same block, and we have an arc from (v + 1, η, γ )

to (u, η, γ + 1). Clearly, for a given node (v + 1, η, γ ), the
number of outgoing arcs is O(�). Finally, to complete the net-
work, we add a sink node with incoming arcs from the nodes
(t , η, γ ) with costs zero.

We now count the total number of arcs in the network cor-
responding to a maximal sequence [t , w]. The total number
of nodes (u, η, γ ) is O(T · T

�
·T ) = O(T 3/�). Since the num-

ber of incoming type 1 and type 2 arcs is O(T ) and O(�), the
total number of type 1 and type 2 arcs is O(T 4/�) and O(T 3),
respectively. Hence, the optimal cost of a maximal sequence
[t , w] can be found by solving a shortest path problem on a
network with O(T 4/�) arcs.

Note that when solving the whole problem, (P (�)(b̂)), we
can achieve some savings. Since the number of maximal
sequences is O(T 2), a straightforward approach leads to a
total number of O(T 6/�) type 1 arcs and O(T 5) type 2 arcs.
However, the arcs used in the computation of the maximal
sequence [t , w] are a subset of the arcs used in the maximal
sequence [t −1, w]. Hence, the total number of different type
1 and type 2 arcs is equal to O(T 5/�) and O(T 4), respectively.

6.3.3. Determining the Optimal Cost of a Subplan

Subplans Spanning Across Multiple Blocks. Consider a sub-
plan [u, v] spanning across multiple blocks which is not the
last one in a maximal sequence, and hence the predecessor of
the partial solution (v + 1, η, γ ). The case where it is the last
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one can be handled in a similar way and hence is omitted.
We will sketch how to develop a DP approach yielding the
optimal cost for such a subplan. The details can be found in
the appendix.

From the results derived so far, we can determine the pro-
duction amounts. In the appendix, we show that the last and
first production quantities of the subplan can be determined
by Proposition 6.8 and Proposition 6.9, respectively. Further-
more, since each production period in a subplan belongs to a
different block (Lemma 6.3) and this block is tight (Lemma
6.4), any other production amount equals b̃ − f̃ .

Hence, what remains is the allocation of these produc-
tion amounts (if possible). We propose an extension to the
approach in [12], where we allocate the full production peri-
ods to blocks, and then to a period within the chosen block.
In the appendix, we show how this can be done in O(T 2) time
for a single subplan. Since the total number of type 1 arcs is
O(T 5/�) (see Section 6.3.2), the total running time spent on
computing type 1 arc costs is O(T 7/�).

Subplans Contained in a Block. Consider a subplan cover-
ing the interval [u, v], contained in block [b(u), e(u)] =
[b(v+1), e(v+1)], with η tight blocks in [e(v+1)+1, w] and
γ setups in [v+1, w], represented by an arc from (v+1, η, γ )

to (u, η, γ + 1). In this case, checking feasibility of a single
arc is a trivial exercise and takes constant time. As usual, the
cost is set to infinity in case of infeasibility. We know that
the number of setups placed in [u, e(u)] is equal to γ + 1.
By Proposition 6.9, the remaining capacity is r

η+1,γ+1
v+1,w , and

hence the subplan is feasible if du,v ≤ r
η+1,γ+1
v+1,w . As an exam-

ple, subplan [10, 11] in Fig. 1, contained in Block 3, will be
feasible if d10,11 ≤ r

2,3
12,16.

The cost of a single arc can be found in constant time by
noting that the cost of subplan [u, v + 1] can be computed
from subplan [u, v] (similar to Section 6.2). Hence, checking
feasibility and computing the cost can be done in constant
time for a single arc. Since the total number of type 2 arcs
is O(T 4) (see Section 6.3.2), the total running time spent on
type 2 arcs is O(T 4).

6.4. Time-Invariant Production Expenditures

In this section, we deal with the case where the lot-sizing
costs are such that there are no speculative motives to hold
inventory, f̂t = ĥt = 0, and ĉt are time-invariant. The analy-
sis is similar to the one of the previous section. The main
difference is that the state space of the inner DP algorithm can
be reduced. Since there are no setup expenditures, we do not
have to keep track of the number of setups. Moreover, the total
demand in an interval [u, w] consisting of connected sub-
plans exactly determines the number of tight blocks, namely
�du,w/b̃	. Therefore, to find the optimal cost of a maximal
sequence [u, w], it is sufficient to define a network with nodes

Table 3. Complexity overview in case of block expenditures.

Costs Expenditures

ft ct and ht f̂t ĉt ĥt Complexity

v Nonspeculative c c 0 Polynomially solvable
c Nonspeculative v 0 0 NP-hard
c Nonspeculative 0 v 0 NP-hard
c Nonspeculative 0 0 c NP-hard

(v), a partial solution for periods [v, w] where v − 1 is a regen-
eration period. It can be verified that the number of nodes
reduces from O(T 3/�) to O(T ), and the number of arcs from
O(T 5/�) to O(T 3). Since the running time for the construc-
tion of the arcs remains unchanged and hence equals O(T 2),
the total running time becomes O(T 5).

6.5. Discussion of the Complexity Results

As aforementioned, any class of instances that is NP-
hard for either the whole horizon or the period models is also
NP-hard for the block model. An overview of the obtained
complexity results is given in Table 3. We only show the
classes of NP-hard instances with the strongest assump-
tions on the parameters, which turn out to be the NP-hard
instances for the whole horizon model. As for the whole hori-
zon model, we see that relaxing any of the assumptions on the
polynomially solvable instances leads to an NP-hard prob-
lem. Therefore, we can conclude that the complexity results
for the block model are tight as well.

7. ON THE PARETO FRONTIER

The Pareto frontier of (BOLS(�)) can be used to describe
the tradeoff between lot-sizing costs and expenditure and
whether expenditure has a great impact on lot-sizing costs. In
this section, we examine the shape of the Pareto frontier and
the task of describing it. In Section 7.1, we study a polyno-
mially solvable case of the whole horizon model (BOLS(T )).
In particular, under the class of instances in Section 4.2, with
time-invariant ft , ct , f̂t , and ĉt , and ĥt = αht for some α ≥ 0,
we show that the Pareto frontier has O(T ) points and is con-
vex, and it can be described in O(T 2) time. In Section 7.2,
we illustrate that none of these properties will hold in gen-
eral. For (BOLS(T )), we illustrate this with an instance where
the parameters are time-variant, while for (BOLS(1)), we use
one where (P (1)(b̂)) is polynomially solvable, described in
Section 5.2. In Section 7.3, we outline how to approximate a
subset of the Pareto frontier of (BOLS(�)), � = 1, . . . , T − 1,
by using the results of Sections 5.2 and 6.3 on (P (�)(b̂)).
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7.1. A Polynomially Solvable Case for (BOLS(T))

In this section, we show that for the class of instances
in Section 4.2, where the production parameters are time-
invariant and the inventory holding parameters satisfy ĥt =
αht , the Pareto frontier has O(T ) points, is convex, and can
be described in O(T 2) time.

PROPOSITION 7.1: If ft , ct , f̂t , and ĉt are time-invariant,
and ĥt = αht for some α ≥ 0, the Pareto frontier of
(BOLS(T )) satisfies the following properties

1. it has O(T ) points,
2. it is convex, and
3. it can be described in O(T2) time.

PROOF: Recall from Section 4.2 that, for this class of
instances, once the number of setups n is fixed, minimizing
the lot-sizing costs is equivalent to minimizing the expendi-
ture across the whole planning horizon. Given n, let (Ln, En),
the lot-sizing costs and expenditure of the solution with min-
imum lot-sizing costs among those having n setups. It is easy
to show that (Ln, En) is the only possible Pareto efficient
outcome with n setups. Thus, the first claim follows.

To show the convexity of the Pareto frontier, it is sufficient
to prove that there are no other Pareto efficient outcomes
than the supported ones, that is, Pareto efficient outcomes on
the lower convex envelope of the Pareto frontier. It is well-
known that the supported outcomes can be found by taking a
convex combination of the lot-sizing costs and the expendi-
ture. Given λ ∈ [0, 1], finding the corresponding supported
outcome boils down to solving an ELS problem with the
following objective function

T∑
t=1

[λ(fyt + cxt + htIt ) + (1 − λ)(f̂ yt + ĉxt + ĥt It )],

which, using ĥt = αht , can be rewritten as

T∑
t=1

[(λf + (1 − λ)f̂ )yt + (λc + (1 − λ)ĉ)xt

+ (λ + (1 − λ)α)htIt ].
After ignoring the variable production cost term (it is just

a constant) and scaling, we obtain

T∑
t=1

[(
λ

λ + (1 − λ)α
f + (1 − λ)

λ + (1 − λ)α
f̂

)
yt + htIt

]
.

Thus, under this class of instances, finding all supported
outcomes of (BOLS(T )) can be viewed as performing a para-
metric analysis on the setup cost of an ELS problem with
nonspeculative motives. This parametric problem has been

studied by [24] in the case that the setup cost changes in an
additive way, that is considering setup cost changes of the
form ft − δ, in contrast to a multiplicative way, that is con-
sidering setup cost changes of the form δft . However, in case
of time-invariant setup cost, there is a one-to-one correspon-
dence between both additive and multiplicative changes, and
hence we can use their results. In particular, Ref. [24] shows
that when performing a parametric analysis, the number of
setups in an optimal solution change one-by-one in a struc-
tured way, and the value of λ for which the number of setups
changes from n to n + 1 can be found in linear time. In particu-
lar, it follows from their analysis that no solution with n setups
is “skipped over,” that is, if (Ln, En) (resp. (Ln+2, En+2)) is
a Pareto efficient outcome with n (resp. n + 2) setups in the
frontier, we also find a Pareto efficient outcome (Ln+1, En+1)

with n + 1 setups. (For the details, we refer to [24]; see the
proof of Theorem 4.) Combining this with claim 1 of this
proposition, the desired result follows.

To construct the Pareto frontier, we use the following
approach. We start with λ = 0 and add the corresponding
outcome to the Pareto frontier. Because the value of λ for
which the number of setups changes can be found in linear
time (as mentioned in the previous part), the next Pareto effi-
cient outcome can be found in O(T ) time. In turn, because
the frontier consists of O(T ) points, it can be constructed in
O(T 2) time. �

7.2. The Shape of the Pareto Frontier of (BOLS(�))

These two well-behaving properties of the Pareto frontier,
convexity, and polynomiality of the number of points, do not
hold in general. In this section, we present counterexamples
for (BOLS(T )) and (BOLS(1)). Similar conclusions can be
drawn for the block case, (BOLS(�)), using the fact that it is
a generalization of the period model.

The 15-period instance with cost, expenditure, and demand
parameters given in Table 4 illustrates that the Pareto frontier
of (BOLS(T )), shown in Fig. 2, has a point, (877, 50), which
is not in the convex envelope of the Pareto efficient outcomes.
The figure has been constructed by solving (P (T )(b̂)) for dif-
ferent values of b̂ (note that multiples of 5 are sufficient to
find all strongly Pareto efficient outcomes, because we only
have setup expenditures, and those are multiples of 5). Thus,
the Pareto frontier is not convex for this instance, where the
production parameters are time variant. A nonconvex Pareto
frontier is also observed in [6] in an economic order quantity
setting.

In addition, there are instances for which the number of
points in the Pareto frontier of (BOLS(T )) is exponential. Con-
sider again the 2n-period instance from Proposition 4.1 given
in Table 5. Let S ⊂ {1, . . . , n} and consider a solution where
the production periods are given by t = 2i−1, i ∈ S, and t =
2i, i ∈ Sc. It follows from the proof of Proposition 4.1 that

Naval Research Logistics DOI 10.1002/nav



398 Naval Research Logistics, Vol. 61 (2014)

Table 4. The data for the 15-period instance of the whole horizon model.

ct ht ĉt ĥt

5 1 0 0

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ft 25 25 25 25 25 25 25 10 25 25 25 25 25 25 25
f̂t 10 10 10 10 10 10 10 25 10 10 10 10 10 10 10
dt 10 10 4 2 1 40 10 10 10 10 10 3 4 7 3

Figure 2. The Pareto frontier of (BOLS(T )) for the 15-period
instance in Table 4. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Table 5. Instance from Proposition 4.1.

t dt ft ct ht f̂t ĉt ĥt

2i − 1 0 A 0 ai 0 0 0
2i 1 A 0 ∞ 0 ai 0

the total costs equal nA+∑
i∈S ai , while the total expenditure

equals
∑

i∈Sc ai = 2A−∑
i∈S ai . Therefore, each Pareto effi-

cient outcome is of the form (nA+a, 2A−a) for some a ∈ N.
It follows that checking whether the point (nA + a, 2A − a)

belongs to the Pareto frontier boils down to the question
whether there exists a subset S such that

∑
i∈S ai = a. The

latter problem is the well-known NP-complete subset sum
problem. Moreover, if the values ai have enough variation
(e.g., if

∑
i∈S ai �= ∑

i∈S ′ ai for S �= S ′), then the number of
Pareto efficient solutions is of exponential order.

We now turn to the period model (BOLS(1)) and show
that the Pareto frontier may have nonconvex sections, even
for instances where (P (1)(b̂)) is polynomially solvable. Con-
sider the 15-period instance with parameters given in Table 6,
where all production and inventory parameters are stationary.
Its Pareto frontier, shown in Fig. 3, has nonconvex sections
(e.g., when the expenditure values range between 150 and
200).

The shape of the Pareto frontier seen in Figs. 2 and 3 can
be explained using arguments that hold for any biobjective

mixed integer problem. The Pareto frontier can be partitioned
into maximal intervals [b̂L, b̂U ] on which it is piecewise lin-
ear and convex, as in Fig. 3, and the y-vector is the same. To
see why this holds, consider (BOLS(�)) in which we fix the
y-vector. Finding the Pareto frontier of this restricted prob-
lem is equivalent to performing a parametric analysis on b̂ of
(P (�)(b̂)), which is now a linear programming (LP) problem.
The value b̂L is the point where (P (�)(b̂)) under y becomes
infeasible, while b̂U is the point where the expenditure con-
straints are not binding anymore. From LP theory, we know
that the result of this parametric analysis is a piecewise linear
and convex function on [b̂L, b̂U ]. Now the result follows by
noting that the Pareto frontier is equal to the lower envelope
of a finite number of piecewise linear and convex functions
(namely, for each feasible solution of y-variables we have
such a function). Note that if the frontier consists of points
only such as in Fig. 2, then we are dealing with the special
case where b̂L = b̂U .

7.3. Constructing ε-Dominating Sets of the Pareto
Frontier

In this section, we focus on the instances of (BOLS(�)),
� = 1, . . . , T − 1, for which (P (�)(b̂)) is polynomially
solvable. It is not difficult to verify that using a weighted
approach as in Section 7.1, does not lead to a problem which is
easier than (P (�)(b̂)). Therefore, even finding supported solu-
tions of (BOLS(�)) seems not an easy task. Therefore, instead
of trying to construct the supported points of the frontier, one
can make use of the concept of ε-dominating sets (see [5]
and references therein) to approximate a subset of the Pareto
frontier in a running time which is pseudopolynomial in the
input size and polynomial in the inverse of the required pre-
cision 1

ε
assuming (P (�)(b̂)) is polynomially solvable. (Note

that we exclude � = T since in this case the Pareto frontier
can be described in polynomial time as shown in Proposition
7.1.).

To formalize the concept ε-dominating set, consider the
following general biobjective problem

min
z∈Z

(f (z), g(z)).
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Table 6. The data for the 15-period instance of the period model.

ft ct ht f̂t ĉt ĥt

25 5 1 0 5 1

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dt 10 10 4 2 1 40 10 10 10 10 10 3 4 7 3

Figure 3. The Pareto frontier of (BOLS(1)) for the 15-period
instance in Table 6. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

DEFINITION 7.2: The set Z∗ is called an ε-dominating
set in the value space if, for each z ∈ Z, there exists a z∗ ∈ Z∗
such that

f (z) ≥ f (z∗) − ε and

g(z) ≥ g(z∗) − ε.

Given upper and lower bounds on b̂, the following straight-
forward algorithm can be used to construct an ε-dominating
set for (BOLS(�)).

Algorithm for finding an ε-dominating set on [L, U ]
Step 0. Set Z∗ = Ø. Let L and U be a lower bound

and an upper bound on b̂. Let {b̂i} be a grid of
[L, U ], such that b̂i+1 − b̂i = ε.

Step 1. For each i, solve (P (�)(b̂i)) and add its optimal
solution to Z∗.

For the polynomially solvable instances in Sections 5–6,
it is trivial to see that this algorithm runs in polynomial time
in U – L, 1/ε and T. Clearly, if the interval [L, U ] is rela-
tively small, then the above algorithm will be able to find
the ε-dominating set in a reasonable amount of computation

time. However, the running time is pseudopolynomial in gen-
eral, because the number U – L may be pseudopolynomial in
the input size of the instance. Clearly, for fixed L and U, for
example, specified by a decision maker, the running time of
this algorithm becomes polynomial.

8. CONCLUSIONS

In this article, we study a biobjective Economic Lot-Sizing
model, (BOLS(�)), which arises, when not only the lot-sizing
costs, but also expenditures are a concern. The parameter �

defines the level of aggregation used to measure the expen-
diture, the lower � the more granular we are in terms of
recording the expenditure. Apart from the truly block case,
the two extreme cases are also relevant. In the whole horizon
case, (BOLS(T )), the level of aggregation is the same for both
the lot-sizing costs and the expenditure, while in the period
case, (BOLS(1)), we record the expenditure for each period.

Besides incorporating environmental issues into the lot-
sizing problem, (BOLS(�)) can also be used when restricting
the type of plan that the classical lot-sizing model may return.
With the modelling in this article, we can impose a constraint
in each block to have a plan that spreads out the burden, say
the number of setups, amount of inventory, or even the total
lot-sizing costs.

We have shown that the Pareto efficient outcome problem,
(P (�)(b̂)), is NP-hard in general, and we have identified non-
trivial problem classes for which this problem is polynomially
solvable. Being able to solve (P (�)(b̂)) in polynomial time is
not only important on its own, but it is also relevant when
describing segments of the efficient frontier defined by the
decision maker.

We have shown that (P (T )(b̂)) can be solved in O(T 2) time
in the almost time-invariant case, in which all production
parameters are time-invariant while for the inventory hold-
ing parameters we assume ĥt = αht . For the period case,
we have shown that (P (1)(b̂)) can be solved in O(T 2) time
if the lot-sizing costs are such that there are no speculative
motives to hold inventory, the setup costs are nondecreas-
ing and the expenditure parameters are time-invariant. For
the general block case, we have shown that (P (�)(b̂)) can
be solved in O(T 7/�) time if the lot-sizing costs are such
that there are no speculative motives to hold inventory, the
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production expenditure parameters are time-invariant, and
there are no inventory expenditures, where the running time
can be improved to O(T 2�) and O(T 5) for the correspond-
ing single-process expenditure cases. These polynomiality
results are tight for the whole horizon and the block cases,
while for the period case, they are tight, except for one single
case. Indeed, it remains an open question whether (P (1)(b̂))

under inventory expenditures only is an NP-hard problem.
In addition to the complexity of the open problem and

the issues mentioned at the end of Section 3, there are other
interesting lines of future research. The first one is the study
of generalizations of the problem, for example, problems
with general cost parameters and production capacities. The
second one is an alternative way of aggregating the expen-
ditures. In (BOLS(�)), the blocks in which the expenditure
are recorded define a partition of the planning horizon. We
are currently investigating the case in which the expenditures
are recorded in every block of � consecutive periods, and
therefore the blocks may overlap. The third one is the devel-
opment of solution approaches for the NP-hard instances of
(P (�)(b̂)), based on strong mixed integer programming for-
mulations, finding valid inequalities, or developing FPTASes.
The fourth one is the approximation of the Pareto frontier
itself by for example a constant factor approximation or an
FPTAS (instead of a pseudopolynomial algorithm), see also
[17] and [18]. The fifth one is the development of exact
approaches to describe the entire Pareto frontier for some
classes of the problem, see for example [20].

APPENDIX

In the following, we present the proofs of the propositions and lemmas
in Section 6 as well as an O(T2) time algorithm for the optimal cost of a
subplan spanning across multiple blocks.

PROOF OF PROPOSITION 6.1: Consider an optimal solution for which
the ZIO property does not hold, that is, there exists a period t with It−1xt > 0.
Let s be the last production period before period t (this period exists since
I0 = 0). By decreasing production in period s and increasing production in
period t by the same sufficiently small amount, the solution remains feasible
w.r.t. the inventory balance constraints. Furthermore, the inventory levels in
periods [s, t−1] will decrease, and there are no additional setups in the modi-
fied solution. This means that (i) the lot-sizing costs will not increase because
of the nonspeculative motives assumption, and (ii) the solution remains feasi-
ble w.r.t. the expenditure constraints. It is not difficult to see that by choosing
the change in production amount as large as possible, and by repeating the
above procedure, we end up with a solution satisfying the ZIO property and
having equal or lower lot-sizing costs, and the desired result follows. �

PROOF OF LEMMA 6.3: The result follows since the ZIO property
holds within blocks.

Indeed, let u and v be two consecutive production periods within a block.
We will show below that there exists an optimal extreme point solution with
Iv−1 = 0. Since the production expenditures are time-invariant, moving pro-
duction within a block does not effect the expenditures. Because the costs are
nonspeculative, the total costs will not increase by postponing production in

some period. By postponing, the highest amount in period u while keeping
feasibility, we obtain a solution with Iv−1 = 0. �

PROOF OF LEMMA 6.4: Recall that each production period in a sub-
plan belongs to a different block, see Lemma 6.3. Therefore, it is enough
to show that if we have two consecutive production blocks with production
in the subplan, say blocks i and j, then block j should be tight. The result
follows using the nonspeculative motives of the lot-sizing costs.

Suppose that block j is nontight, and therefore it has spare capacity δj > 0,
which can be used to increase the production level in any of the existing pro-
duction periods in the block. Let t be the only production period from block j
in the subplan and t ′ be the last production period before t. Therefore, period
t ′ belongs to block i and also to the subplan. Recall that within a subplan
all the inventory levels are strictly positive. We can reduce the production in
period t ′ as well as the inventory levels in periods t ′, t ′ + 1, . . . , t − 1 by ε,
at the same time that we increase the production in period t by ε.

Constraint (8) is still satisfied for block i since we have reduced the corre-
sponding left hand side, and perhaps increased the right hand side if ε = xt ′ .
Constraint (8) for block j is still satisfied if ε ≤ δj . Furthermore, the produc-
tion in period t ′ cannot be negative, which means that ε ≤ xt ′ . Finally, we
also need to impose that ε ≤ It−1 to make sure that the new inventory levels
in t ′, t ′ + 1, . . . , t − 1 are all nonnegative. Thus, for an appropriate choice of
ε, namely ε = min{xt ′ , It−1, δj }, this solution is still feasible. Observe that
because of the nonspeculative motives assumption of the lot-sizing costs,
this solution is also optimal.

If ε = xt ′ , then the result holds for blocks i and j since t ′ is not a pro-
duction period anymore. If ε = It−1, then the new inventory level at the
end of period t − 1 is equal to zero and the subplan decomposes into two
new subplans. Finally, if ε = δj , then block j becomes tight, and the desired
result holds again for blocks i and j. �

PROOF OF LEMMA 6.5: Note that v + 1 ∈ [b(v), e(v)] because the
subplans are connected, while by definition u ∈ [b(u), e(u)]. Because sub-
plans [u, v] and [v + 1, w] start in different blocks, this means that block
[b(v), e(v)] is different from [b(u), e(u)]. Therefore, block [b(v), e(v)] is not
the first block of the subplan [u, v], and by Lemma 6.4, it must be tight. �

PROOF OF PROPOSITION 6.6: The first part of the result follows from
the fact that (i) a block fully contained in a subplan is extreme (see Lemma
6.4), and (ii) a block associated with two connected subplans starting in
different blocks is extreme as well (see Lemma 6.5). Since a block fully
contained in [t , w] (which is not the first one) is one of such blocks, it must
be extreme.

The second part of the result is trivial. If the last block [b(w), e(w)] is
split, that is, w < e(w), there should not be production in [b(w), w], since
otherwise the sequence would not end at w. �

PROOF OF PROPOSITION 6.8: Since v is the last regeneration period
in its block and v < w, we have that v < e(v) and hence the interval
[v + 1, e(v)] is well-defined. By Proposition 6.6, all blocks following block
[b(v), e(v)] (if any) are extreme (in case of a complete block) or have no
production (in case the last block is split). With the definition of η and γ , we
have that the total production in [e(v)+1, w] is equal to ηb̃−γ f̃ . Therefore,
the total production in [v + 1, e(v)] equals dv+1,w − (ηb̃ − γ f̃ ). Since there
is only a single production in [v +1, e(v)] which must be in period v + 1, the
desired result follows. �

PROOF OF PROPOSITION 6.9: First, we will show that there is exactly
one production in [b(v), v]. Since v < w, and because of the connectivity,
we know that there should be production in [b(v), v]. Now, the unique-
ness follows from the fact that v is the first regeneration period of block
[b(v), e(v)].
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Note that the amount of production in [b(v), v], say x, is maximal if it
makes the block [b(v), e(v)] tight. So suppose that the block is tight. Then,
the total expenditure capacity of the tight blocks in [v, w] should be equal
to the total expenditure in [v, w]. The first is equal to (η + 1)b̂. Moreover,
the latter is equal to the expenditure resulting from the total amount of units
produced (x + dv+1,w) plus the expenditure resulting from the setups used
((γ +1)f̂ ). Equating these amounts gives x = (η+1)b̂−(γ +1)f̂ −dv+1,w =
r
η+1,γ+1
v+1,w . �

Determining Optimal Subplans Spanning Across
Multiple Blocks in O(T2) Time

Consider a subplan [u, v] spanning across multiple blocks which is not
the last one in a maximal sequence, and hence the predecessor of the partial
solution (v + 1, η, γ ). In this section, we develop a DP approach yielding
the optimal cost for such a subplan. In case the subplan is the last one in a
maximal sequence, the required modifications are straightforward.

Let m be the number of production periods in the subplan. We will show
that the subplan starts and ends with some specific production quantity and
has m – 2 full production periods, that is, where b̃− f̃ units are produced, in
between. The optimal cost will then be calculated using an approach similar
to [12]. Note that the parameters ηuv and γ uv in Section 6.3.2 equal m − 2
and m, respectively. For ease of notation, we use the single parameter m in
this section.

Since subplan [u, v] is an intermediate subplan or the first one in the maxi-
mal sequence, we know that the subplan will have a single production period
in the interval [b(v), v]. Moreover, it follows from Proposition 6.9 and the
fact that the block is tight, that the production quantity is equal to r

η+1,γ+1
v+1,w .

Using Lemma 6.3, Lemma 6.4 and the value of the fractional productions,
we derive the following corollary.

COROLLARY A.1: We have that m =
⌊

du,v−r
η+1,γ+1
v+1,w

b̃−f̃

⌋
+ 2.

We can now also identify the production quantity in period u. It follows that
there are η+m−1 tight blocks and γ +m−1 setups in [e(u+1), w]. Hence, by
applying Proposition 6.8 to [u, e(u)], we should have xu = s

η+m−1,γ+m−1
u,w .

(Note that if b̃ − f̃ divides du,v − r
η+1,γ+1
v+1,w , then we have a full production

in period u and the expenditure constraint is tight for periods [u, e(u)]. This
is only possible in case [u, v] is the first subplan in the sequence. Otherwise,
the subplan cannot be part of a maximal sequence.)

To develop the DP algorithm, we introduce some notation to define the
range of feasible periods for each production. Let nb = (e(v)−e(u))/� be the
number of blocks covered by the subplan (including the blocks [b(u), e(u)]
and [b(v), e(v)]). Let n(t) ∈ {1, . . . , nb} be the block number of period t in
the interval [u, v], where we start counting at the block that contains period
u, so n(u) = 1. Let ti be the latest feasible period for the ith production
period in the subplan. So,

ti =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u i = 1

max{j : du,j−1 < xu + (i − 1)(b̃ − f̃ )} i = 2, . . . , m − 1

max{j : du,j−1 < xu

+ (m − 2)(b̃ − f̃ ) + r
η+1,γ+1
v+1,w } i = m.

To have a feasible solution, we should have n(ti ) ≥ i, since we need at
least i blocks for the first i production periods, and tm ≥ b(v), to make sure
that the last production occurs in [b(v), v]. Note that, if these inequalities are
satisfied, it is feasible to associate a production period with every period ti .
Otherwise, we set the cost of the subplan to infinity to reflect its infeasibility.

The following proposition identifies the range of feasible periods for
each full production. (Note that we are assuming that the inventory hold-
ing costs have been incorporated into the production costs using the balance
constraints, allowing us to talk about the cheapest full production period.)

PROPOSITION A.2: The optimal production period associated with the
ith production is either the cheapest full production period in a complete
block before block number n(ti ), or the cheapest full production period in
the partial block [b(ti ), ti ].

PROOF: In the first case, every period in the full block is feasible by con-
struction of ti and hence we can choose the cheapest period in the block. In
the second case, only periods in [b(ti ), ti ] are feasible and hence we choose
the cheapest among these. �

Using this proposition, we are now ready to present the DP algorithm. We
use the recursion variable f (i, j) for i = 1, . . . , m and j = i, . . . , n(ti ): the
minimum cost of assigning i production periods in [u, ti ] when only using
blocks 1, . . . , j . In case j = n(ti ), the block j is the partial block [b(ti ), ti ].
Note that the first and the last production quantities equal s

η+m−1,γ+m−1
u,w

and r
η+1,γ+1
v+1,w , respectively, while the other quantities are equal to b̃ − f̃ .

Using the DP variable f (i, j) and letting f (0, 0) = 0 and f (1, 0) = ∞, the
following recursions hold:

f (i, j) = min{f (i, j − 1), f (i − 1, j − 1) + c(j)},

where c(j) is the lowest cost of a full production period in block number j
(again the block j may be split), and

f (m, nb) = f (m − 1, nb − 1) + c(nb),

where, with some abuse of notation, c(nb) is the cost of producing r
η+1,γ+1
v+1,w

in the cheapest period of [b(v), tm]. Clearly, the running time of this DP
algorithm is O(T2).
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