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1. TECHNICAL ASSUMPTIONS AND PROOFS

This section contains technical assumptions and proofs. These assumptions and proofs rely heav-
ily on the results in Kitamura, Tripathi, & Ahn (2004). To better demonstrate the main steps of
the proofs, some tedious theoretical details are omitted, which can be found in Kitamura, Tri-
pathi, & Ahn (2004). Hereafter, let B denote the domain of 3, and let By C B be some closed

ball around 3. For a matrix A with elements A;;, define || A [|= /3, ; A?j.

Assumptions:

(i) There exists wo € ), such that for any B # B, we can find Xg, so that P(x € Xg) >0
and E{g;(B) | X; =z} # 0 for every x € Xg and i € S“°.
(ii) Forany1 <i < N, E {supgep [|g;(B)||™} < oc for some m > 8.
(iii) B is compact.
(iv) p(-) is continuously differentiable on By.
(v) Forany €] =1,0 < infx, ges, & Vi(B)E < supx, gep, & Vi(B)€ < oc.
(vi) The range of X is compact.
(vii) by — 0, Nl’z”’w‘sb?\? — ooandN1*2”b?\?/2 — ooas N — oo, wherev € (0,1/2), 6 >
8 and ¢ = max; q;.
(viii) Xi(B) € {Xi € R ¢ ||\l < c|Si| 7Y™} for some ¢ > 0 for B € By.
() E{supgep, [|Gi(B)[*} < oc.

Remark: Assumption (i) guarantees the identifiability of B,. Assumption (v) guarantees that
the variance-covariance matrix restricted on each stratum is invertible. The restrictions on by
in Assumption (vii) follow that in Smith (2007). Assumption (viii) is similar to Assumption 3.6 in
Kitamura, Tripathi, & Ahn (2004). Since Lemma D.2 in Kitamura, Tripathi, & Ahn (2004) shows
that maxi<i<n supgep, || 9;(8) |= 0p(NY/™), Assumption (viii) ensures that

< T

1< T g, SUp 1A (B)g;(B)] = 0p(1); M

which will be used in the proofs of Theorem 2 and Theorem 3. Actually, from (6) and (7) below

and Assumption (vii), Assumption (viii) is true in a small neighborhood of 3. Here we explicitly

make Assumption (viii) so that (1) can be readily used in the proofs. Assumption (ix) is used to
guarantee the uniform weak law of large numbers in the proof of Theorem 3.
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Proof of Theorem 1.  Let

N
det 1

Iv(B) S5 S —wylog {1+ A (8)g,(8) )
N

i=1 | jES;

:ZW | 2wt {148 0,00} 2 3 Sliges

i,jESY weN

then By, = argmaxgep Ly (8). Let

E{g:(B) | =i}

u;(B) = 1+ [|E{g:(B) | =i}l

and g°(8) = g(B)I{(Y, X) € Dy}, where Dy = {(Y, X) : supgep [|g(B)|| < eN'/"} and
0 < ¢ < min{|S¥|"/™/NY™ : € Q). Forany w € Q and B € B, we have

|S@ /Mm% (8) < W > —wy log{1+|SW| 1/m T(I@)gj(ﬁ)}
i.jese
- @ Z —u] (B)E{g;(B) | wi}| +oy(1)
i€se

= —E [u] (9)E{g,(8) | z:)] +0,(1)

T @) |
- E[1+E{gz< >|m1}|] or(D):

where the inequality follows from the fact that (Equation (7) in the main paper)

Xi(B) = arg | min | — Z w;; log {1 + )\;rgj(ﬁ)} ,

ERM™i
JES;

the first equality is Lemma B.8 in Kitamura, Tripathi, & Ahn (2004), and the second equal-
ity follows from the uniform law of large numbers. Note that the introduction of g®(3) above
guarantees that the arguments inside the log functions are all positive. The uniform law of large
numbers is applicable because, first, B is compact; second, —u ' (3)E{g(3) | =} is continuous
in 3; and third, E [supgcs [u' (B)E{g(8) | #}|] < oo from Assumption (ii).

Based on the above results and the compactness of B, for any w € €2, we have

wi\ 1—1/m
s (B57) 151 2408) < 0,00,

In particular, for any € > 0, let B(/3;, €) be an open ball centered at 3, with radius €, we have

gw 1-1/m
sw (B sz <o ®
BEB\B(By,€)
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In addition, for stratum wy as in Assumption (i), we have

[Se /Ly (8)

T B @ =) ]

E [1 1E9,®)] mi}n} onll)
1E{g:(8) | =}

T 1E2{g,(8) | 2]

IN

-F [I(mi € Xg) ] + 0,(1).

By Assumption (i), the last quantity above is strictly negative at each 3 # 3. Therefore, there
exists H(e¢) > 0, which is a constant depending on e, such that

|Sw0| L t/m wo [1/m 7w 1-1/m
sup |S<OFMLR(B) < =T H(e) + 0p(1). 4)
BEB\B(By.e) \ IV

The facts (3) and (4) lead to that

gw 1-1/m
sup  NYmLy(B) < Z sup <|N|> 1S« VMm% (8)
BEB\B(By.¢) 70 BEB\B(By.0)

‘Sw0| o wo |1/m 7w
ST ) B
0:€

< —r ™ H(e) + op(1). (5)

On the other hand, for any w €  and i € S, Lemma B.1 in Kitamura, Tripathi, & Ahn (2004)
proves that

-1

Ai(By) = Z wijgj(/@O)gj(BO)T Z wijg;(Bo) ¢ {1+ 0p(1)}

jese JjES®
and Lemma B.7 in Kitamura, Tripathi, & Ahn (2004) proves that

-1

> wijg;(B0)9;(B0)T ¢ =VilBy) {1l +0p(1)} = 0,(1).

jESW
Thus, we have
Ai(Bo) = 0p(1) D wijg;(By) ¢ {1+ 0p(1)}. (6)
jeESW

In addition, Lemma C.1 in Tripathi & Kitamura (2003) proves that

log | S«
max || 3 wig,(80) = 0p< |S%,bqu'>7 )
N

€S«
jeS«w
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where ¢, is the dimension of the continuous components of X for the subjects in stratum w.
Now using the fact that log(1 + x) < x and (6) and (7), we have

|5/ (Bo) > —|S°J|1/m|5w| [" Bo) {Z wijgjmo)}]
€S

jeES®

2
——|SW|1/mop<1>{op< ﬁf;)} 1+ 0,(1)

log |S“|
= Ol

= Op(l)a

where the last equality comes from Assumption (vii). This fact implies that

gw 1-1/m
v = 3 (B0) T ISR 8 2 o0 ®
we

Since B, maximizes Ly (3), based on the facts (5) and (8), B¢, must lie inside B(8,, ).
The consistency of 35, then follows from the arbitrariness of e. ]

Proof of Theorem 2.  Since Bop; maximizes Ly(B) in (2), we must have

OLN(Bog)/0B = 0. From Taylor expansion around 3, for some 3 between B, and 3,
we have

OLn(By) , 0*Ln(B >
0=VN gé o) + 8ﬂgIC§T)\/N(IBCEL - Bo)

_ \/»Z |S‘”| 3Lw /30) + Z @MW(BCEL — Bo)-

weN weN N 8/68ﬂT
Therefore,
X 5@ 92L% (3 V5% oL
\/N(IBCEL_/@O):_{Z|N| 9 (ﬁ)} {Z | \/| S| Nﬁo } )
we /68’6 weN

Now we have

27OLR (Bo)
T

wij )TA OXi( w;;g;(Bo)
— |Sw Z zT(ﬂo (Bo) |Sw Z{ /30 Z ATg 0 }

i,jESw 1+ )\ (/30) j(ﬁo) ieSw JjeESw 1+ )‘i (/30)93'(50)

T -1
= \/wﬁ Z { Z Dij :60 } { Z DPij /30 Q;(ﬁo)gj(ﬁo) } {Z wijgj(/go)}

ieSw | jesw JESw JeES®

2 N(0,J,(8y)), (10)
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where the first equality follows from direct calculation, the second equality follows from
Wi

Pij(Bo) = 1+ ;\i(ﬂo)—rgj(ﬁo)’

wijgj(/BO) _
g;i 1+ 5\z‘(ﬁo)ng (Bo)

and

Z Pij(ﬁo)gj (,30)9;(,60) Z wijgj(/go) )

JES: JES:

which are Equations (5), (6) and (10) in the main paper, respectively. The convergence in distri-
bution above is proved by Lemma B.2 in Kitamura, Tripathi, & Ahn (2004).
On the other hand, direct calculation leads to

CLYE) _ 1y~ w 2O DI BTGB 1 w6 B)T
0808 11 S (144 (B)g,(B))? 1591, 7% 1+ A (B)g,(B)

1 Wi o 3g](l) (B) S\(l) e }
_ L . =1 503
5] Z; 1+ A, (B)g;(B) {2 T
&of T1(B) — T2(B) — T5(B).

Lemmas C.2, C.3 and C.4 in Kitamura, Tripathi, & Ahn (2004) prove that Tl(B) = 0,(1),
T2(B8) = Ju(By) + 0p(1) and T'5(B) = o0,(1), respectively. Thus, we have

L% (B)
=J, + 0,(1). 11
9808 (Bo) + op(1) (11)
Combining the facts (9), (10) and (11) we get the desired result. [ |

Proof of Theorem 3. From (1), p;;(8) = w;; {1 + op(1)} and the 0, (1) term is independent

of 4, j and B € By. This result, together with the consistency of By, implies that for any
1<: <N,

Z Pij(Berr)9;(Ber)9;Bersr) " = VilBorpy) + 0p(1).

JES;
Then by Assumption (v) we have

-1

N
Z ﬂCEL Z Pij (BCEL)gj (BCEL)gj (BCEL)T Gi (BCEL)

JES:

Z STL Z Gi(Berr) " {Vi(BCEL)il +0p(1)}Gi(BCEL)'
wen

LES“’
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Therefore Theorem 3 follows from Assumption (ix) and the uniform weak law of large numbers.
|

2. EXTRA SIMULATION RESULTS

This section contains some extra numerical results. The simulation settings considered here are
built around the same basic simulation model as that used in Section 5, but with different fea-
tures. More specifically, we consider three covariates: a continuous baseline covariate b;, a binary
treatment indicator d;, and the visit time ¢. Assuming that there are five designed follow-up visits,
we generate the longitudinal outcomes Y;; from the following model:

Yy = B + Pobi + Bad; + Bat + Bsdy x t +e€y, t=1,---,5, i=1,--- N,

where (B1,...,85)" = (0.5,0.5,1.0,0.3,0.3) T, b; ~ N(0,3%) and is truncated between —7
and 7, d; ~ Bernoulli(0.5), d; x t is the treatment and time interaction, and (€;1,. .., €)' ~
N5 (0, V} / 2RVZ1 / 2). We consider two settings with balanced data. In the first setting, V'; is a
5 x 5 diagonal matrix with the ¢-th diagonal element 02 = exp(0.4 + 0.6|b;| + 0.4t), and R
takes the first-order autoregressive structure with correlation coefficient p = 0.5. In the second
setting, V'; is a 5 x 5 diagonal matrix with the ¢-th diagonal element o2 = (0.4 + b;)?, and R
takes the compound symmetry structure with correlation coefficient p = 0.8. For both settings,
the bandwidth is selected by cross-validation. We use N = 300 and summarize the results in
Table 1 and Table 2 based on 500 replications. The observations from these two tables agree with
those in Section 5.
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TABLE 1: Comparison of different estimators in the first setting (N = 300). cel: CEL; gee: GEE; gell,
gel2, gel3: GEL with o2 being modeled by (a1 + ast)?, exp(cu + aot) and the truth, respectively; ar:
first-order autoregressive; cs: compound symmetry. Three summary statistics are calculated: bias,
empirical standard error (number in ( )), and mean square error (number in [ ]). For the CEL estimator, the
numbers in { } and ( ) are the means of standard errors calculated based on (11) and (12) in the main
paper, respectively.

cel gee.ar gee.cs gell.ar  gell.cs  gel2.ar  gel2.cs  gel3.ar  gel3.cs

0.0186 00119 00085 00150 0.0108 00146 00100 00127  0.0119

(0.3319)  (0.4597) (0.4891) (0.4185) (0.4302) (0.4185) (0.4334) (0.2645) (0.2775)

Bi [0.1105] [0.2114] [0.2393] [0.1754] [0.1852] [0.1753] [0.1879] [0.0701] [0.0771]
{0.3537} - - - - - - - -
(0.3640) - - - - - - - -

-0.0005  -0.0038 -0.0046 -0.0024 -0.0024 -0.0026  -0.0026  0.0008  0.0011
(0.0946)  (0.1415) (0.1416) (0.1177) (0.1209) (0.1178) (0.1223)  (0.0815)  (0.0850)
B> [0.0090] [0.0200] [0.0201] [0.0139] [0.0146] [0.0139] [0.0150] [0.0066] [0.0072]
{0.0653} - - - - - - - -
(0.0664) - - - - - - - -

0.0093 00107 00207 0.0012 00137 00029 00155 -0.0083  -0.0068
(0.4808)  (0.6489) (0.6859) (0.5948) (0.6069) (0.5946) (0.6108) (0.3771) (0.3882)
Bs  [02313] [04212] [04709] [0.3538] [0.3685] [0.3536] [0.3733] [0.1423] [0.1508]
{05006} - - - - - - - -
(0.5144) - - - - - - - -

0.0062  -0.0036 -0.0028 -0.0050 -0.0037 -0.0050 -0.0035 -0.0016 -0.0014
(0.1332)  (0.1856) (0.1872) (0.1661) (0.1695) (0.1656) (0.1694) (0.1069)  (0.1095)
Bi  [0.0178] [0.0344] [0.0351] [0.0276] [0.0287] [0.0275] [0.0287] [0.0114] [0.0120]
{0.1422} - - - - - - - -
(0.1464) - - - - - - - -

0.0013  -0.0079 -0.0105 -0.0041 -0.0079 -0.0045 -0.0082 -0.0034  -0.0045

0.1901)  (0.2586) (0.2599) (0.2325) (0.2370) (0.2325) (0.2374)  (0.1507)  (0.1538)

Bs  10.0361] [0.0669] [0.0676] [0.0541] [0.0562] [0.0541] [0.0564] [0.0227] [0.0237]
{0.2015} - - - - - - - -
(0.2073) - - - - - - - -
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TABLE 2: Comparison of different estimators in the second setting (N = 300). cel: CEL; gee: GEE; gell,
gel2, gel3: GEL with o2 being modeled by (a1 + at)?, exp(aq + asb;) and the truth, respectively; ar:
first-order autoregressive; cs: compound symmetry. Three summary statistics are calculated: bias,
empirical standard error (number in ( )), and mean square error (number in [ ]). For the CEL estimator, the
numbers in { } and ( ) are the means of standard errors calculated based on (11) and (12) in the main
paper, respectively.

cel gee.ar gee.cs gell.ar  gell.cs  gel2.ar  gel2.cs  gel3.ar  gel3.cs

0.0048  -0.0009 0.0016 -0.0006 0.0016  0.0012  0.0034  0.007  0.0017

(0.1809)  (0.2323) (0.2256) (0.2305) (0.2255) (0.2274) (0.2227)  (0.0894)  (0.0868)

Bi 003271 [0.0540] [0.0509] [0.0531] [0.0509] [0.0517] [0.0496] [0.0080] [0.0075]
{0.1958} - - - - - - - -
(0.2017) - - - - - - - -

00022 -0.0046 -0.0035 -0.0043 -0.0035 -0.0032 -0.0024 -0.0049 -0.0043
0.0711)  (0.0829) (0.0811) (0.0822) (0.0813) (0.0809) (0.0798) (0.0588)  (0.0578)
B> [0.0051] [0.0069] [0.0066] [0.0068] [0.0066] [0.0065] [0.0064] [0.0035] [0.0034]
{0.0505} - - - - - - - -
(0.0520) - - - - - - - -

-0.0097  -0.0100 -0.0089  -0.0097 -0.0090 -0.0126 -0.0123  -0.0083  -0.0094
(0.2560)  (0.3288) (0.3206) (0.3266) (0.3206) (0.3219) (0.3168) (0.1275) (0.1236)
Bs  [0.0656] [0.1082] [0.1029] [0.1068] [0.1029] [0.1038] [0.1005] [0.0163] [0.0154]
{0.2764} - - - - - - - -
(0.2850) - - - - - - - -

0.0015 -0.0008 -0.0018 -0.0009 -0.0018 -0.0010 -0.0019 -0.0003  -0.0006
(0.0253)  (0.0349) (0.0318) (0.0345) (0.0318) (0.0342) (0.0313) (0.0135) (0.0121)
Bi  [0.0006] [0.0012] [0.0010] [0.0012] [0.0010] [0.0012] [0.0010] [0.0002] [0.0001]
{0.0273} - - - - - - - -
(0.0281) - - - - - - - -

0.0007  0.0003  0.0014 00005 0.0014 0.0004 00017 -0.0002  0.0001
(0.0354)  (0.0491) (0.0446) (0.0485) (0.0446) (0.0484) (0.0441) (0.0187) (0.0167)
Bs  [0.0013] [0.0024] [0.0020] [0.0024] [0.0020] [0.0023] [0.0020] [0.0004] [0.0003]
{0.0388} - - - - - - - -
(0.0399) - - - - - - - -
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