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1. TECHNICAL ASSUMPTIONS AND PROOFS

This section contains technical assumptions and proofs. These assumptions and proofs rely heav-
ily on the results in Kitamura, Tripathi, & Ahn (2004). To better demonstrate the main steps of
the proofs, some tedious theoretical details are omitted, which can be found in Kitamura, Tri-
pathi, & Ahn (2004). Hereafter, let B denote the domain of β, and let B0 ⊆ B be some closed

ball around β0. For a matrixA with elementsAij , define ‖ A ‖=
√∑

i,jA
2
ij .

Assumptions:

(i) There exists ω0 ∈ Ω, such that for any β 6= β0, we can find Xβ, so that P (x ∈ Xβ) > 0
and E {gi(β) |Xi = x} 6= 0 for every x ∈ Xβ and i ∈ Sω0 .

(ii) For any 1 ≤ i ≤ N , E
{

supβ∈B ‖gi(β)‖m
}
<∞ for some m ≥ 8.

(iii) B is compact.
(iv) µ(·) is continuously differentiable on B0.
(v) For any ‖ξ‖ = 1, 0 < infXi,β∈B0 ξ

>V i(β)ξ ≤ supXi,β∈B0
ξ>V i(β)ξ <∞.

(vi) The range ofXc is compact.
(vii) bN → 0,N1−2ν−2/δb2qN →∞ andN1−2νb

5q/2
N →∞ asN →∞, where ν ∈ (0, 1/2), δ ≥

8 and q = maxi qi.
(viii) λ̂i(β) ∈

{
λi ∈ Rni : ‖λi‖ ≤ c|Si|−1/m

}
for some c > 0 for β ∈ B0.

(ix) E
{

supβ∈B0
‖Gi(β)‖2

}
<∞.

Remark: Assumption (i) guarantees the identifiability of β0. Assumption (v) guarantees that
the variance-covariance matrix restricted on each stratum is invertible. The restrictions on bN
in Assumption (vii) follow that in Smith (2007). Assumption (viii) is similar to Assumption 3.6 in
Kitamura, Tripathi, & Ahn (2004). Since Lemma D.2 in Kitamura, Tripathi, & Ahn (2004) shows
that max1≤i≤N supβ∈B0

‖ gi(β) ‖= op(N
1/m), Assumption (viii) ensures that

max
1≤i≤N, j∈Si

sup
β∈B0

|λ̂
>
i (β)gj(β)| = op(1), (1)

which will be used in the proofs of Theorem 2 and Theorem 3. Actually, from (6) and (7) below
and Assumption (vii), Assumption (viii) is true in a small neighborhood of β0. Here we explicitly
make Assumption (viii) so that (1) can be readily used in the proofs. Assumption (ix) is used to
guarantee the uniform weak law of large numbers in the proof of Theorem 3.
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Proof of Theorem 1. Let

LN (β)
def
=

1

N

N∑
i=1

∑
j∈Si

−wij log
{

1 + λ̂
>
i (β)gj(β)

} (2)

=
∑
ω∈Ω

|Sω|
N

1

|Sω|

 ∑
i,j∈Sω

−wij log
{

1 + λ̂
>
i (β)gj(β)

} def
=
∑
ω∈Ω

|Sω|
N

LωN (β),

then β̂CEL = arg maxβ∈B LN (β). Let

ui(β) =
E{gi(β) | xi}

1 + ‖E{gi(β) | xi}‖

and gb(β) = g(β)I{(Y ,X) ∈ DN}, whereDN = {(Y ,X) : supβ∈B ‖g(β)‖ ≤ cN1/m} and
0 < c < min{|Sω|1/m/N1/m : ω ∈ Ω}. For any ω ∈ Ω and β ∈ B, we have

|Sω|1/mLωN (β) ≤ 1

|Sω|1−1/m

 ∑
i,j∈Sω

−wij log
{

1 + |Sω|−1/mu>i (β)gbj(β)
}

=
1

|Sω|

[∑
i∈Sω

−u>i (β)E{gi(β) | xi}

]
+ op(1)

= −E
[
u>i (β)E{gi(β) | xi}

]
+ op(1)

= −E
[
‖E{gi(β) | xi}‖2

1 + ‖E{gi(β) | xi}‖

]
+ op(1),

where the inequality follows from the fact that (Equation (7) in the main paper)

λ̂i(β) = arg min
λi∈Rni

−∑
j∈Si

wij log
{

1 + λ>i gj(β)
} ,

the first equality is Lemma B.8 in Kitamura, Tripathi, & Ahn (2004), and the second equal-
ity follows from the uniform law of large numbers. Note that the introduction of gb(β) above
guarantees that the arguments inside the log functions are all positive. The uniform law of large
numbers is applicable because, first, B is compact; second, −u>(β)E{g(β) | x} is continuous
in β; and third, E

[
supβ∈B |u>(β)E{g(β) | x}|

]
<∞ from Assumption (ii).

Based on the above results and the compactness of B, for any ω ∈ Ω, we have

sup
β∈B

(
|Sω|
N

)1−1/m

|Sω|1/mLωN (β) < op(1).

In particular, for any ε > 0, let B(β0, ε) be an open ball centered at β0 with radius ε, we have

sup
β∈B\B(β0,ε)

(
|Sω|
N

)1−1/m

|Sω|1/mLωN (β) < op(1). (3)
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In addition, for stratum ω0 as in Assumption (i), we have

|Sω0 |1/mLω0

N (β) ≤ −E
[
‖E{gi(β) | xi}‖2

1 + ‖E{gi(β) | xi}‖

]
+ op(1)

≤ −E
[
I(xi ∈ Xβ)

‖E{gi(β) | xi}‖2

1 + ‖E{gi(β) | xi}‖

]
+ op(1).

By Assumption (i), the last quantity above is strictly negative at each β 6= β0. Therefore, there
exists H(ε) > 0, which is a constant depending on ε, such that

sup
β∈B\B(β0,ε)

(
|Sω0 |
N

)1−1/m

|Sω0 |1/mLω0

N (β) < −r1−1/m
ω0

H(ε) + op(1). (4)

The facts (3) and (4) lead to that

sup
β∈B\B(β0,ε)

N1/mLN (β) ≤
∑
ω 6=ω0

sup
β∈B\B(β0,ε)

(
|Sω|
N

)1−1/m

|Sω|1/mLωN (β)

+ sup
β∈B\B(β0,ε)

(
|Sω0 |
N

)1−1/m

|Sω0 |1/mLω0

N (β)

< −r1−1/m
ω0

H(ε) + op(1). (5)

On the other hand, for any ω ∈ Ω and i ∈ Sω , Lemma B.1 in Kitamura, Tripathi, & Ahn (2004)
proves that

λ̂i(β0) =

∑
j∈Sω

wijgj(β0)gj(β0)>


−1∑

j∈Sω

wijgj(β0)

 {1 + op(1)}

and Lemma B.7 in Kitamura, Tripathi, & Ahn (2004) proves that

∑
j∈Sω

wijgj(β0)gj(β0)>


−1

= V i(β0)−1 {1 + op(1)} = Op(1).

Thus, we have

λ̂i(β0) = Op(1)

∑
j∈Sω

wijgj(β0)

 {1 + op(1)}. (6)

In addition, Lemma C.1 in Tripathi & Kitamura (2003) proves that

max
i∈Sω

‖
∑
j∈Sω

wijgj(β0) ‖= Op

(√
log |Sω|
|Sω|bqωN

)
, (7)
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where qω is the dimension of the continuous components of X for the subjects in stratum ω.
Now using the fact that log(1 + x) ≤ x and (6) and (7), we have

|Sω|1/mLωN (β0) ≥ −|Sω|1/m 1

|Sω|
∑
i∈Sω

λ̂>i (β0)

∑
j∈Sω

wijgj(β0)




= −|Sω|1/mOp(1)

{
Op

(√
log |Sω|
|Sω|bqωN

)}2

{1 + op(1)}

= Op(
log |Sω|

|Sω|1−1/mbqωN
)

= op(1),

where the last equality comes from Assumption (vii). This fact implies that

N1/mLN (β0) =
∑
ω∈Ω

(
|Sω|
N

)1−1/m

|Sω|1/mLωN (β0) ≥ op(1). (8)

Since β̂CEL maximizes LN (β), based on the facts (5) and (8), β̂CEL must lie inside B(β0, ε).
The consistency of β̂CEL then follows from the arbitrariness of ε. �

Proof of Theorem 2. Since β̂CEL maximizes LN (β) in (2), we must have
∂LN (β̂CEL)/∂β = 0. From Taylor expansion around β0, for some β̃ between β̂CEL and β0,
we have

0 =
√
N
∂LN (β0)

∂β
+
∂2LN (β̃)

∂β∂β>

√
N(β̂CEL − β0)

=
√
N
∑
ω∈Ω

|Sω|
N

∂LωN (β0)

∂β
+
∑
ω∈Ω

|Sω|
N

∂2LωN (β̃)

∂β∂β>

√
N(β̂CEL − β0).

Therefore,

√
N(β̂CEL − β0) = −

{∑
ω∈Ω

|Sω|
N

∂2LωN (β̃)

∂β∂β>

}−1{∑
ω∈Ω

√
|Sω|√
N

√
|Sω|∂L

ω
N (β0)

∂β

}
. (9)

Now we have√
|Sω|∂L

ω
N (β0)

∂β

= − 1√
|Sω|

∑
i,j∈Sω

wijGj(β0)>λ̂i(β0)

1 + λ̂
>
i (β0)gj(β0)

− 1√
|Sω|

∑
i∈Sω

∂λ̂i(β0)

∂β>

∑
j∈Sω

wijgj(β0)

1 + λ̂
>
i (β0)gj(β0)


= − 1√

|Sω|

∑
i∈Sω

∑
j∈Sω

pij(β0)Gj(β0)


>∑

j∈Sω

pij(β0)gj(β0)gj(β0)>


−1∑

j∈Sω

wijgj(β0)


d−→ N (0,Jω(β0)), (10)
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where the first equality follows from direct calculation, the second equality follows from

pij(β0) =
wij

1 + λ̂i(β0)>gj(β0)
,

∑
j∈Si

wijgj(β0)

1 + λ̂i(β0)>gj(β0)
= 0,

and

λ̂i(β0) =

∑
j∈Si

pij(β0)gj(β0)g>j (β0)


−1∑

j∈Si

wijgj(β0)

 ,

which are Equations (5), (6) and (10) in the main paper, respectively. The convergence in distri-
bution above is proved by Lemma B.2 in Kitamura, Tripathi, & Ahn (2004).

On the other hand, direct calculation leads to

∂2LωN (β̃)

∂β∂β>
=

1

|Sω|
∑
i,j∈Sω

wij
∂{λ̂i(β̃)>gj(β̃)}

∂β λ̂i(β̃)>Gj(β̃)

{1 + λ̂
>
i (β̃)gj(β̃)}2

− 1

|Sω|
∑
i,j∈Sω

wij
∂λ̂i(β̃)
∂β Gj(β̃)>

1 + λ̂
>
i (β̃)gj(β̃)

− 1

|Sω|
∑
i,j∈Sω

wij

1 + λ̂
>
i (β̃)gj(β̃)

{
qω∑
l=1

∂g
(l)
j (β̃)

∂β∂β>
λ̂

(l)
i (β̃)

}
def
= T 1(β̃)− T 2(β̃)− T 3(β̃).

Lemmas C.2, C.3 and C.4 in Kitamura, Tripathi, & Ahn (2004) prove that T 1(β̃) = op(1),
T 2(β̃) = Jω(β0) + op(1) and T 3(β̃) = op(1), respectively. Thus, we have

−∂
2LωN (β̃)

∂β∂β>
= Jω(β0) + op(1). (11)

Combining the facts (9), (10) and (11) we get the desired result. �

Proof of Theorem 3. From (1), pij(β) = wij {1 + op(1)} and the op(1) term is independent
of i, j and β ∈ B0. This result, together with the consistency of β̂CEL, implies that for any
1 ≤ i ≤ N , ∑

j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)> = V i(β̂CEL) + op(1).

Then by Assumption (v) we have

1

N

N∑
i=1

Gi(β̂CEL)>

∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)>


−1

Gi(β̂CEL)

=
∑
ω∈Ω

|Sω|
N

1

|Sω|
∑
i∈Sω

Gi(β̂CEL)>
{
V i(β̂CEL)−1 + op(1)

}
Gi(β̂CEL).
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Therefore Theorem 3 follows from Assumption (ix) and the uniform weak law of large numbers.
�

2. EXTRA SIMULATION RESULTS

This section contains some extra numerical results. The simulation settings considered here are
built around the same basic simulation model as that used in Section 5, but with different fea-
tures. More specifically, we consider three covariates: a continuous baseline covariate bi, a binary
treatment indicator di, and the visit time t. Assuming that there are five designed follow-up visits,
we generate the longitudinal outcomes Yit from the following model:

Yit = β1 + β2bi + β3di + β4t+ β5di × t+ εit, t = 1, · · · , 5, i = 1, · · · , N,

where (β1, . . . , β5)> = (0.5, 0.5, 1.0, 0.3, 0.3)>, bi ∼ N (0, 32) and is truncated between −7
and 7, di ∼ Bernoulli(0.5), di × t is the treatment and time interaction, and (εi1, . . . , εi5)> ∼
N5(0,V

1/2
i RV

1/2
i ). We consider two settings with balanced data. In the first setting, V i is a

5× 5 diagonal matrix with the t-th diagonal element σ2
it = exp(0.4 + 0.6|bi|+ 0.4t), and R

takes the first-order autoregressive structure with correlation coefficient ρ = 0.5. In the second
setting, V i is a 5× 5 diagonal matrix with the t-th diagonal element σ2

it = (0.4 + bi)
2, and R

takes the compound symmetry structure with correlation coefficient ρ = 0.8. For both settings,
the bandwidth is selected by cross-validation. We use N = 300 and summarize the results in
Table 1 and Table 2 based on 500 replications. The observations from these two tables agree with
those in Section 5.
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TABLE 1: Comparison of different estimators in the first setting (N = 300). cel: CEL; gee: GEE; gel1,
gel2, gel3: GEL with σ2

it being modeled by (α1 + α2t)
2, exp(α1 + α2t) and the truth, respectively; ar:

first-order autoregressive; cs: compound symmetry. Three summary statistics are calculated: bias,
empirical standard error (number in ( )), and mean square error (number in [ ]). For the CEL estimator, the

numbers in { } and 〈 〉 are the means of standard errors calculated based on (11) and (12) in the main
paper, respectively.

cel gee.ar gee.cs gel1.ar gel1.cs gel2.ar gel2.cs gel3.ar gel3.cs

β1

0.0186 0.0119 0.0085 0.0150 0.0108 0.0146 0.0100 0.0127 0.0119

(0.3319) (0.4597) (0.4891) (0.4185) (0.4302) (0.4185) (0.4334) (0.2645) (0.2775)

[0.1105] [0.2114] [0.2393] [0.1754] [0.1852] [0.1753] [0.1879] [0.0701] [0.0771]

{0.3537} - - - - - - - -

〈0.3640〉 - - - - - - - -

β2

-0.0005 -0.0038 -0.0046 -0.0024 -0.0024 -0.0026 -0.0026 0.0008 0.0011

(0.0946) (0.1415) (0.1416) (0.1177) (0.1209) (0.1178) (0.1223) (0.0815) (0.0850)

[0.0090] [0.0200] [0.0201] [0.0139] [0.0146] [0.0139] [0.0150] [0.0066] [0.0072]

{0.0653} - - - - - - - -

〈0.0664〉 - - - - - - - -

β3

-0.0093 0.0107 0.0207 0.0012 0.0137 0.0029 0.0155 -0.0083 -0.0068

(0.4808) (0.6489) (0.6859) (0.5948) (0.6069) (0.5946) (0.6108) (0.3771) (0.3882)

[0.2313] [0.4212] [0.4709] [0.3538] [0.3685] [0.3536] [0.3733] [0.1423] [0.1508]

{0.5006} - - - - - - - -

〈0.5144〉 - - - - - - - -

β4

-0.0062 -0.0036 -0.0028 -0.0050 -0.0037 -0.0050 -0.0035 -0.0016 -0.0014

(0.1332) (0.1856) (0.1872) (0.1661) (0.1695) (0.1656) (0.1694) (0.1069) (0.1095)

[0.0178] [0.0344] [0.0351] [0.0276] [0.0287] [0.0275] [0.0287] [0.0114] [0.0120]

{0.1422} - - - - - - - -

〈0.1464〉 - - - - - - - -

β5

0.0013 -0.0079 -0.0105 -0.0041 -0.0079 -0.0045 -0.0082 -0.0034 -0.0045

(0.1901) (0.2586) (0.2599) (0.2325) (0.2370) (0.2325) (0.2374) (0.1507) (0.1538)

[0.0361] [0.0669] [0.0676] [0.0541] [0.0562] [0.0541] [0.0564] [0.0227] [0.0237]

{0.2015} - - - - - - - -

〈0.2073〉 - - - - - - - -
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TABLE 2: Comparison of different estimators in the second setting (N = 300). cel: CEL; gee: GEE; gel1,
gel2, gel3: GEL with σ2

it being modeled by (α1 + α2t)
2, exp(α1 + α2bi) and the truth, respectively; ar:

first-order autoregressive; cs: compound symmetry. Three summary statistics are calculated: bias,
empirical standard error (number in ( )), and mean square error (number in [ ]). For the CEL estimator, the

numbers in { } and 〈 〉 are the means of standard errors calculated based on (11) and (12) in the main
paper, respectively.

cel gee.ar gee.cs gel1.ar gel1.cs gel2.ar gel2.cs gel3.ar gel3.cs

β1

0.0048 -0.0009 0.0016 -0.0006 0.0016 0.0012 0.0034 0.0007 0.0017

(0.1809) (0.2323) (0.2256) (0.2305) (0.2255) (0.2274) (0.2227) (0.0894) (0.0868)

[0.0327] [0.0540] [0.0509] [0.0531] [0.0509] [0.0517] [0.0496] [0.0080] [0.0075]

{0.1958} - - - - - - - -

〈0.2017〉 - - - - - - - -

β2

-0.0022 -0.0046 -0.0035 -0.0043 -0.0035 -0.0032 -0.0024 -0.0049 -0.0043

(0.0711) (0.0829) (0.0811) (0.0822) (0.0813) (0.0809) (0.0798) (0.0588) (0.0578)

[0.0051] [0.0069] [0.0066] [0.0068] [0.0066] [0.0065] [0.0064] [0.0035] [0.0034]

{0.0505} - - - - - - - -

〈0.0520〉 - - - - - - - -

β3

-0.0097 -0.0100 -0.0089 -0.0097 -0.0090 -0.0126 -0.0123 -0.0083 -0.0094

(0.2560) (0.3288) (0.3206) (0.3266) (0.3206) (0.3219) (0.3168) (0.1275) (0.1236)

[0.0656] [0.1082] [0.1029] [0.1068] [0.1029] [0.1038] [0.1005] [0.0163] [0.0154]

{0.2764} - - - - - - - -

〈0.2850〉 - - - - - - - -

β4

-0.0015 -0.0008 -0.0018 -0.0009 -0.0018 -0.0010 -0.0019 -0.0003 -0.0006

(0.0253) (0.0349) (0.0318) (0.0345) (0.0318) (0.0342) (0.0313) (0.0135) (0.0121)

[0.0006] [0.0012] [0.0010] [0.0012] [0.0010] [0.0012] [0.0010] [0.0002] [0.0001]

{0.0273} - - - - - - - -

〈0.0281〉 - - - - - - - -

β5

0.0007 0.0003 0.0014 0.0005 0.0014 0.0004 0.0017 -0.0002 0.0001

(0.0354) (0.0491) (0.0446) (0.0485) (0.0446) (0.0484) (0.0441) (0.0187) (0.0167)

[0.0013] [0.0024] [0.0020] [0.0024] [0.0020] [0.0023] [0.0020] [0.0004] [0.0003]

{0.0388} - - - - - - - -

〈0.0399〉 - - - - - - - -
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