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Abstract Canonical correlation analysis (CCA) will evaluate the degree of correlation between two
multivariate data sets and will uncover patterns of correlation between the two data sets. Here CCA is
applied to the multivariate solar wind data set and the multivariate geomagnetic index data set. CCA creates
a new set of solar wind variables and a new set of Earth variables. The first of the new solar wind variables can
be used as a solar wind driver function for the magnetosphere; the conjugate Earth variable can be used as
an Earth vector to describe global geomagnetic activity in the magnetosphere-ionosphere system. The
CCA-generated driver functions are found to be superior in accuracy to other driver functions in the literature.
CCA of the combined data sets provides information about (1) differences in the solar wind driving of
high-latitude geomagnetic indices (AE, AU, AL, and polar cap index) versus magnetospheric-convection
geomagnetic indices (Kp and midnight boundary index), (2) the properties of electric field-based driver
functions versus reconnection-based driver functions, and (3) improvements to solar wind/magnetosphere
correlations produced by time averaging the solar wind clock angle. The CCA process tends to focus on the
magnetospheric-convective indices over other indices: this may indicate that there is more predictable
variance in the global-convective indices than in the others.

1. Introduction

The solar wind-driven magnetosphere is a highly connected system [Vassiliadis, 2006; Valdivia et al., 2013;
Borovsky, 2014]: causes havemultiple effects, and outcomes havemultiple causes. One approach to a systems
science of the magnetosphere is to perform multivariate analysis of the driving of the magnetospheric
system by the solar wind. Canonical correlation analysis is an ideal tool when causes and effects cannot be
described or measured by single variables [Nimon et al., 2010; Hair et al., 2010].

As the properties of the solar wind at the Earth vary, activity in the Earth’s magnetosphere-ionosphere system
varies. For some decades the interaction of the solar wind with the magnetosphere coupling has been
statistically studied. Typically, a time series of one function of measured solar wind variables is cross
correlated with a time series of values of one of the geomagnetic indices. The magnitude of the correlation
coefficient is interpreted as a measure of the accuracy of the function of solar wind variables to describe the
physics of the driving of the Earth’s magnetosphere by the solar wind.

In contrast, in this report the solar wind data set will be collectively compared with the geomagnetic index
data set. Treating the multivariate geomagnetic index data set collectively is like analyzing the stock market
rather than analyzing the behavior of one stock. With the “first canonical correlation,” the canonical
correlation analysis process can be used to develop canonical solar wind driver functions that can predict the
“stock market” of geomagnetic activity. (The resulting canonical driver functions will also be very good at
predicting individual geomagnetic indices.) With “second” and “third canonical correlations,” the canonical
correlation analysis process can be used to study what drives behavior patterns within the stock market of
geomagnetic indices.

Via the correlation method, two approaches have been followed to obtain solar wind driver functions for the
magnetosphere [cf. Borovsky and Birn, 2014]. First, driver functions based on the functional form of the solar
wind motional electric field (i.e., based on vsw and B⊥) have been written and tested [Wygant et al., 1983; Reiff
and Luhmann, 1986; Newell et al., 2007]. The functional forms of these electric field driver functions include
(see Table 1 for symbol definitions) vswBz [e.g., Hardy et al., 1981], vswBs [e.g., Holzer and Slavin, 1982],
vswB⊥sin

2(θclock/2) [Kan and Lee, 1979], vsw
2B⊥n

1/2sin4(θclock/2)/(1+ 5×10
�5|Bz|

3) [Tenfjord and Østgaard, 2013];
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and vsw
4/3B⊥

2/3sin8/3(θclock/2) [Newell et al., 2007]. A second approach [Borovsky, 2008] has been used to
derive driver functions from the Cassak-Shay equation [Cassak and Shay, 2007; Birn et al., 2012] for
asymmetric reconnection: two such functions are Rquick [Borovsky and Birn, 2014] and R2 [Borovsky, 2013a].
It has also been argued that a viscous interaction between the solar wind and the magnetosphere adds to
the solar wind driving [cf. Vasyliunas et al., 1982; Borovsky and Funsten, 2003; Borovsky, 2006, 2013b; Newell
et al., 2008].

A few years ago the author and Joachim Birn accidentally arrived at a new class of solar wind driver functions
for the magnetosphere. Using a computer code specifically written to generate, test (by correlation), and
evolve (by mutations) solar wind driver functions for the magnetosphere, the function vsw + 56Bs (where vsw
is in units of km/s and Bs is in units of nT) was produced. (The coefficient 56 will vary from data set to data set.)
The solar wind function vsw + 56Bs produces a significantly higher correlation with geomagnetic indices than
any of the electric field functions or the reconnection functions. The function vsw + 56Bs has no obvious
physical interpretation. That it does so well at predicting geomagnetic activity poses a dilemma since we use
improved correlations as our test of the correctness of physics-based solar wind driver functions. Specifically,

Table 1. The Definitions of the Variables Used in This Analysis

Solar Wind Variables
vsw wind velocity
n plasma number density
Tp proton temperature
Te electron temperature
Sp proton specific entropy
α/p alpha-to-proton density ratio
Pram solar wind ram pressure
Bmag magnetic field strength
Bx component of magnetic field toward the Sun
By component of magnetic field along the Earth-Sun line
Bz north–south magnetic field component
B⊥ component of magnetic field perpendicular to the Earth-Sun line
Bs Bs=�Bz for southward field, Bs=0 for northward
θclock magnetic field clock angle from geomagnetic north
θBn angle of magnetic field from Earth-Sun line
δB fluctuation amplitude of magnetic field
MA Alfven Mach number
F10.7 10.7 cm radio flux
Q polar cap saturation parameter

Solar Wind Driver Functions
θclock quick derivation of reconnection function
R2 second generation of reconnection driver function
C1 C2 C3 CCA-generated driver functions for magnetosphere

Geomagnetic Indices
AE auroral electrojet index
AL auroral electrojet lower index
AU auroral electrojet upper index
PCI polar cap index (Thule)
Dst Disturbance storm time index
Dst* pressure-corrected Dst index
Kp planetary K index
MBI midnight boundary index

Canonical Correlation Analysis Notation
S(k) kth canonical solar wind variable
E(k) kth canonical Earth variable
r(k) kth canonical correlation coefficient
V vector of solar wind input variables
G vector of geomagnetic index input variables
Σvv correlation matrix among solar wind input variables
Σgg correlation matrix among geomagnetic index input variables
Σvg Σgv correlation matrices between solar wind and geomagnetic indices
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if a change to a driver function results in an improved correlation with geomagnetic activity, is it because the
physics of the changed driver function is nowmore correct or is it because the changed driver function has a
mathematical advantage? If it is the latter, how can we test the correctness of the physics of a driver function?

This vsw + 56Bs driver function has introduced us to the difficulty of physical interpretation and to the
question, is mathematical advantage more important than physical correctness?

The question “Why does vsw + 56Bs do so well in correlating with the geomagnetic indices?” led to the
following speculation: vsw + 56Bs does so well because it does a better job of describing variance in the solar
wind, giving it a mathematical advantage to describe the variance in the geomagnetic indices. Hence, the
speculation is that vsw + 56Bs approximates a principal component of the multivariate solar wind data set.
This (incorrect) speculation initiated the exploration of the solar wind data set by principal component
analysis and the exploration of the combined solar wind and geomagnetic index data sets by canonical
correlation analysis.

The solar wind data set is a multivariate data set with intercorrelations and redundancies among the many
variables. The full solar wind data set is made up of a large number of different measurements that can be
expressed in a number of different ways. It is, and it will remain to be, a dilemma as to what to include in the
solar wind data set and how to express it. One clear consideration is whether to use primitive variables or
physics-based variables. Primitive variables are the measured properties of the solar wind plasma: n, T, vx, vy,
vz, Bx, By, Bz, the alpha-particle number density, the heavy ion charge-state density ratios, amplitudes of
fluctuations, etc. Here what is meant by physics-based variables are the quantities that our physical analysis
indicates the Earth might care about. Such examples of physics-based variables are ram pressure nvsw

2

(which determines the magnetic field strength at the nose of the magnetosphere, which affects dayside
reconnection rate), θclock (which affects the magnetic clock angle across the dayside magnetopause, which
affects the component rate of dayside reconnection), n (which affects the mass density of the magnetosheath
plasma, which affects the dayside reconnection rate), the Alfven Mach number MA = Bmag/(4πmpn)

1/2

(which affects the strength and position of the bow shock, which determines the plasma-beta of the
magnetosheath and the flow pattern of the magnetosheath, both of which alter dayside reconnection rates),
etc. Note that the solar wind number density n can be considered to be both a primitive variable and a
physics-based variable. In the example of section 3 (Table 2) the physical solar wind variables log(nvsw

2), log(n),
log(MA), and θclock were used as input; these variables contain the same information as the more primitive
variables log(vsw), log(n), log(Bmag), and θclock.

Likewise, the geomagnetic index data set with variables polar cap index (PCI), AU, AL, Kp, midnight
boundary index (MBI), Dst, … is a multivariate data set with strong intercorrelations among the variables.
The various geomagnetic indices measure various properties of the magnetosphere-ionosphere system.
The polar cap index PCI is a direct measure of the strength of transpolar ionospheric current [Troshichev
et al., 1988; Stauning, 2013] and is related to polar cap antisunward convection [Stauning, 2013] and cross-
polar cap potential [Ridley and Kihn, 2004]; PCI shows reactions to the occurrence of substorms, although
the strength of the reaction varies with season [Janzhura et al., 2007]. The AU index is a measure of the
maximum eastward auroral electrojet in the ionosphere [Davis and Sugiura, 1966] which in active times
typically occurs in the dusk region [Allen and Kroehl, 1975]; the AU index is associated with the DP-2

Table 2. For the Physical-Variable CCA Example of Section 3, the Coefficients (Weights) of the First Canonical Variables
E(1) and S(1) Are Collected Into the First and Third Columns, and the Correlation Coefficients (Loadings) Between the
Individual Input Variables and E(1) and S(1) Are Collected Into the Second and Fourth Columns

Variable Coefficient in E(1) Correlation With E(1) Coefficient in S(1) Correlation With S(1)

Earth variables PCI0* 0.121 80.9% 68.9%
log(AE1)* 0.331 91.9% 78.2%
Kp1* 0.402 93.6% 79.7%

�MBI1* 0.238 92.9% 79.0%
Solar wind variables log(nvsw

2)* 38.5% 1.196 45.2%
log(n)* �0.7% �0.784 �1.1%
log(MA)* �20.7% �0.388 �24.4%
θclock* 50.3% 0.602 59.1%
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current system [Tomita et al., 2011] and is sometimes considered as a measure of dayside high-latitude
field-aligned currents, or at least it is associated with field-aligned currents that have a short Alfven wave
transit time [Goertz et al., 1993]. (For the DP-1 and Dp-2 current systems, see Clauer and Kamide [1985].)
The AL index is a measure of the maximum westward auroral electrojet in the ionosphere [Davis and
Sugiura, 1966] which during active times typically occurs in the postmidnight region [Allen and Kroehl,
1975]; AL is associated with both the DP-2 and DP-1 field-aligned current systems [Tomita et al., 2011], and
so AL reacts to the occurrence of substorms [Prichard et al., 1996; Troshichev et al., 2012], and AL is
sometimes considered as a measure of nightside high-latitude field-aligned currents [Goertz et al., 1993].
The AE index is the sum of the magnitudes of AU and AL and has been considered to be a measure of the
total auroral electrojet current although that has been criticized [Kamide and Rostoker, 2004]; AE has been
used as a proxy for the total amount of Joule dissipation in the high-latitude ionosphere [Baumjohann,
1986]. The midnight boundary index MBI is a measure of the latitude of the equatorward boundary of the
diffuse aurora at local midnight [Gussenhoven et al., 1983], which magnetically maps to the radial location
of the inner edge of the electron plasma sheet, which is a direct measure of the strength of global
magnetospheric convection [Elphic et al., 1999; Denton et al., 2005]. The Kp index is sensitive to the latitude
of currents at the inner edge of the electron plasma sheet [Thomsen, 2004], which is directly related to the
strength of global plasma convection in the magnetosphere [Elphic et al., 1999; Denton et al., 2005]. The
ram pressure-corrected Dst index Dst* is a measure of the plasma diamagnetic current in the inner
magnetosphere [Dessler and Parker, 1959] produced by ions with orbits trapped in the dipolar
magnetosphere [Sckopke, 1966] and by plasma flowing past the dipole from the nightside to the dayside
[Liemohn et al., 2001]; Dst* is also sensitive to the strength and downtail location of cross-tail currents
[Turner et al., 2000; Alexeev and Feldstein, 2001; Ohtani et al., 2001; Borovsky and Denton, 2010]. Since Dst*
largely depends on the properties of the plasma in the inner magnetosphere [Thomsen et al., 1998; Moore
et al., 2005], plasma transport timescales produce longer time lags in the response of Dst* to the solar
wind [Smith et al., 1999].

In this report canonical correlation analysis is utilized to mathematically look for patterns and correlations
between the solar wind and geomagnetic index multivariate data sets. Physical interpretations of the
mathematical results are made where possible.

This report is organized as follows. In section 2 an overview is given of the canonical correlation analysis
technique. In section 3 an example canonical correlation for solar wind/magnetosphere coupling is
discussed. In section 4 the first canonical correlation, in general, is examined, and in section 5 the second
canonical correlation is interpreted. In section 6 canonical correlation analysis is used to generate and
examine solar wind driver functions for the magnetosphere. The findings are summarized in section 7, and
future research is discussed in section 8. For the nonspace physics specialists, the definitions of the symbols
used in this report are listed in Table 1.

2. Canonical Correlation Analysis

Canonical correlation analysis (CCA) will evaluate the degree of correlation between two multivariate data sets,
and CCA finds patterns and correlations between two multivariate data sets [cf. Muller, 1982; Johnson and
Wichern, 2007; Gatignon, 2010; Nimon et al., 2010]. Two such multivariate data sets are the solar wind data set
and the geomagnetic index data set. Both data sets are composed of variables that are functions of time. When
applied, CCA creates new composite solar wind variables S(1), S(2), S(3), …. that are linear combinations of the
input solar wind variables, and CCA creates new composite Earth variables E(1), E(2), E(3), …. that are linear
combinations of the input geomagnetic indices. Like the original input variables, the new composite variables
S(1), S(2), … and E(1), E(2), … are functions of time. The pair S(1) and E(1) are the “first canonical variables” of the
combined data set and the correlation coefficient r(1) between them is the “first canonical correlation” between
the two data sets. The variables S(k) and E(k) are the “kth canonical variables” and the correlation coefficient r(k)
between them is the “kth canonical correlation” between the two data sets. The variable S(k) is correlated
with itself andwith E(k) and is uncorrelatedwith all other S(i) and E(i) unless i= k. Likewise, variable E(k) is correlated
with itself and with S(k) and is uncorrelated with all other S(i) and E(i) unless i= k.

The new composite solar wind S variables are linear combinations of the input solar wind variables “V”
and the new composite Earth E variables are linear combinations of the input geomagnetic indices “G”.
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The kth S(k) and E(k) time series variables can be written as follows [cf. Johnson and Wichern, 2007;
Gatignon, 2010]:

S kð Þ tð Þ ¼ a kð Þ · V tð Þ (1a)

E kð Þ tð Þ ¼ b kð Þ · G tð Þ (1b)

where at every value of time V is the vector of input solar wind variables, where at every value of time G is the
vector of input geomagnetic indices, where a(k) is the vector of coefficients that transforms V into S(k), and
where b(k) is the vector of coefficients that transforms G into E(k).

The information needed to obtain the canonical variables S and E is contained in the four covariance matrices
between the original input solar wind variable V and the original input geomagnetic variable G: a matrix of
correlation coefficients within the solar wind data set, a matrix of correlation coefficients within the
geomagnetic index data set, and two matrices of correlation coefficients between the variables of the solar
wind and the geomagnetic indices. Denote Σvv as the correlation matrix among the solar wind variables V; if
there areN solar wind variables, then Σvv will be anN×Nmatrix of the cross correlations between the solar wind
variables. Each element of the Σvv matrix is a Pearson linear correlation coefficient between two solar wind
variables obtained by cross correlating the two times series of values of the two variables. For example, if the
three variables vsw, n, and Bmag are used for the solar wind data set, then the 3×3matrix elements of Σvv are the
correlation coefficients between the three variables. Using “1” for vsw, “2” for n, and “3” for Bmag the nine
elements of the Σvv matrix are as follows: the 1,1 element (vsw↔vsw) is 1.000, the 1,2 element (vsw↔n) is�0.358,
the 1,3 element (vsw↔Bmag) is 0.178, the 2,2 element (n↔n) is 1.000, the 2,3 element (n↔Bmag) is 0.285, and the
3,3 element (Bmag↔Bmag) is 1.000. The matrix is symmetric, so the i,j element equals the j,i element. Denote Σgg
as the correlation matrix among the geomagnetic indices; if there areM geomagnetic indices, then Σgg will be
an M×M matrix of the cross correlations between the various geomagnetic indices. Again, Σgg is a symmetric
matrix with diagonal elements of unity. Denote Σvg and Σgv as the correlation matrices between the solar wind
variables and the geomagnetic indices; Σvg will be an N×M matrix, and Σgv will be an M×N matrix with Σgv
being the transpose of Σvg. The mathematical derivation of the CCA processes is based on maximizing the
Pearson linear correlation between the pairs of composite variables S(k)↔E(k). This maximizing condition leads,
after substantial matrix algebra [cf. Johnson and Wichern, 2007; Gatignon, 2010], to two eigenvalue problems.
The eigenvectors and square roots of the eigenvalues of the matrix Σvv

�1ΣvgΣgg
�1Σgv yield the coefficient

vectors a(k) and the canonical correlations r(k), and the eigenvectors and square roots of the eigenvalues of the
matrix Σgg

�1ΣgvΣvv
�1Σvg yield the coefficient vectors b(k) and the same canonical correlations r(k). The largest

eigenvalue (largest squared correlation coefficients r2) corresponds to the first canonical variables S(1) and E(1);
the second largest eigenvalue corresponds to the second canonical variables S(2) and E(2), etc.

A geometrical interpretation of the matrices Σvv
�1ΣvgΣgg

�1Σgv and Σgg
�1ΣgvΣvv

�1Σvg [Johnson and Wichern,
2007] is that the correlation matrix Σvv is used to create a principal component set of solar wind variables and
that the correlation matrix Σgg is used to create a principal component set of Earth variables. The information
in the cross-correlation matrices Σgv and Σvg is then used to separately rotate the principal-coordinate
representations of the solar wind data set and the geomagnetic index data set into projections onto each
other to yield the maximized cross correlations.

Although not required, CCA will perform best with input variables that are Gaussian distributed [Hair et al.,
2010]. For positive-definite variables that have very skew distributions (such as n, nvsw

2, or AE) using the
logarithm of the variable produces higher correlation coefficients in the CCA process. However, in general,
the solar wind variables and geomagnetic index variables are not Gaussian distributed.

For the input solar wind variables V and the input geomagnetic indices G we will normalize (standardize)
the variables by subtracting off the mean value of the variable and dividing by the standard deviation
of the variable. This also makes the variable dimensionless. For example, for use in CCA the solar wind
number density n will be transformed to n* = (n � 〈n〉)/σ(n) where 〈n〉 is the mean value of n and σ(n) is
the standard deviation of n. If the natural (base e) logarithm of n is used, then log(n) will be standardized
into log(n)* = [log(n)–〈log(n)〉]/σ(log(n)). When the input variables are all dimensionless and normalized
with zero mean and with standard deviations of unity, then all of the canonical variables S(k) and E(k) will also
be dimensionless and with zero mean and standard deviations of unity.
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To perform a CCA analysis of the solar wind and geomagnetic index data sets, the following sequence of tasks
are performed: (1) Choose the input variables from the solar wind and choose the input variables from the
geomagnetic indices, (2) eliminate missing data, (3) standardize the input variables by removing their mean
values and dividing by their standard deviations, (4) calculate all of the Pearson correlation coefficients
between all of input variables, (5) use the correlation coefficients to create the four matrices Σvv, Σgg, Σvg, and
Σgv, (6) form the two combined matrices Σvv

�1ΣvgΣgg
�1Σgv and Σgg

�1ΣgvΣvv
�1Σvg, and (7) calculate the

eigenvectors and eigenvalues of the two combined matrices.

Note that among the variables of the solar wind data set there are many intercorrelations and that among the
variables of the geomagnetic index data set there are many intercorrelations. In CCA, as in any statistical
analysis, multicollinearity makes physical interpretation of cause and effect difficult and multicollinearity
makes discerning the impact of any one variable difficult [Lambert and Durand, 1975; Hair et al., 2010; Nimon
et al., 2010]. However, for dealing with multicollinearity, CCA may provide an advantage because patterns
that contain differences of (subtractions) correlated variables appear in the second, third, and beyond
canonical correlations. These differenced variables may reveal the importance or influence of the variances of
the variables that are not intercorrelated.

By examining the magnitude of the coefficient of an input variable going into a canonical composite variable
and comparing it with the magnitude of the correlation coefficient between the input variable and the
canonical composite variable [cf. Hair et al., 2010; Nimon et al., 2010], one can obtain information about (1) the
importance of that input variable to deriving that composite variable, (2) the relative contribution that that
input variable makes to the composite variable, (3) whether the input variable is acting as a suppressor in the
composite variable (acting to cancel out the irrelevant variance of other input variables in order to improve
the overall correlations [cf. Conger, 1974; Tzelgov and Henik, 1991]), and (4) whether the input variable’s effect
in the composite variable is also explained by other input variables [cf. Robins, 1989; Frank, 2000].

Like simpler statistical methods, what you can interpret depends on the input variables that you use. With
canonical correlation analysis, the number of simultaneous input variables is not limited, so the choice of
input variables can be quite complicated. Different sets of input variables yield different results and can be
used to study different problems. In this report a limited number of cases will be explored. Other cases have
been explored in subsequent reports [Borovsky and Denton, 2014; J. E. Borovsky, The efficiency of solar-wind/
magnetosphere coupling through the solar cycle examined with an accurate driver function: No dependence
on the phase of the solar cycle, submitted to Journal of Geophysical Research, 2014].

3. An Example Canonical Correlation

In this example, for the solar wind data set the four physical variables log(nvsw
2)*, log(n)*, log(MA)*, and θclock*

are taken (where log= loge = ln is the natural logarithm), and for the Earth data set the four geomagnetic indices
PCIo*, log(AE1)*, Kp1*, and MBI1* are taken, where the * is a reminder that standardized values are used. On the
geomagnetic indices, the subscript number is the number of hours of time lag on the index relative to the solar
wind; e.g., AE1 is the hourly value of AE taken 1 h after the hourly value of the measured solar wind. These
optimal lag times for the various geomagnetic indices have been established in earlier studies [cf. Borovsky,
2013b] and are adopted here. Each variable has 102,900 h of measurements: considerably more hours of data
are available in the OMNI2 solar wind data set [King and Papitashvili, 2005], but the restriction to 102,900 h
comes from two requirements imposed in this report (1) that measurements of the Earth’s midnight boundary
index MBI [Madden and Gussenhoven, 1990] must be included and (2) that the solar wind alpha-to-proton
density ratio must be included. An hour of data is not included unless off solar wind variables and all
geomagnetic indices are available. The 102,900 h of data are from the years 1983 to 2006.

For this four-variable solar wind data set and four-variable geomagnetic index data set as input into CCA, the
first canonical variables are

S 1ð Þ ¼ 1:196 log nvsw
2

� �
* � 0:784 log nð Þ* � 0:388 log MAð Þ* þ 0:602 θclock* (2a)

E 1ð Þ ¼ 0:121 PCIo* þ 0:331 log AE1ð Þ* þ 0:402 Kp1* � 0:238 MBI1* (2b)

These coefficients are listed in the first and third columns of Table 2. For this first pair of canonical variables,
the first canonical correlation between S(1) and E(1) is r(1) = 0.851. For the 102,900 data points, E(1) is plotted as
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a function of S(1) in Figure 1; a linear
regression fit of E(1) as a function of S(1) is
plotted as the dashed green line, and a
major axis fit [Adcock, 1878; Warton et al.,
2006; Smith, 2009] of E(1) as a function of S(1)
is plotted as the dashed blue line. A 300-
point running average of the E(1) values is
plotted in red. Note the bend in the red
curve for low values of E(1) (weak geomagnetic
activity) and low values of S(1) (weak driving
of the magnetosphere). This nonlinearity
in the response of the magnetosphere
for weak driving is discussed in Borovsky
[2013b, Figure 7].

This correlation coefficient of 0.851 is quite
high. This is the correlation between the
CCA-generated driver function S(1)
(expression (2a)) and the composite Earth
variable E(1) (the stock market) given by
expression (2b)). In the fourth column of
Table 2 the correlation coefficient between
the individual geomagnetic indices and the
canonical driver S(1) are shown. Note in the
second and third columns of Table 2 that

the coefficient (weight) of log(n)* is nonzero (�0.388), whereas its correlation coefficient (loading) with E(1) is
essentially zero (�0.7%). This is an example of a variable (log(n)*) playing a suppressor role in the composite
variable S(1) [Conger, 1974; Tzelgov and Henik, 1991]: its role is to cancel off (suppress) some variance in
another input variable, where that canceled variance is uncorrelated with E(1).

S(1) can be used as a general driver function that does a very good job of predicting the variance of E(1) and
also does a fairly good job of predicting the individual geomagnetic indices. Better driver functions
generated by CCA will be seen in section 6.

In expression (2a), replacing the standardized * variables with their nonnormalized forms (i.e., log(n)* =
(log(n)–< log(n)>)/σ(log(n))) and using alog(b) + clog(d) = log(badc), the first canonical solar wind variable S(1)
can be written as

S 1ð Þ=2:055 ¼ log 3:37�10�6nvsw2n�0:561MA
�0:466 exp θclock=146ð Þ� �

: (3)

Inside the logarithm of expression (3), the form of the variables of S(1) has a resemblance to Rquick, where
[cf. Borovsky and Birn, 2014]

Rquick ¼ nvsw2=n1=2
� �

sin2 θclock=2ð Þ MA
�1:35 1 þ 680MA

�3:30
� ��1=4

: (4)

inside the logarithm of expression (3) the power of (nvsw
2) is unity, as it is in Rquick and inside the logarithm

the power of n is �0.561 which is close to the power of n of �0.5 in Rquick. In comparing expression (3) with
expression (4), the Mach number dependence of S(1) is shallower than the Mach number dependence of
Rquick, which varies as MA

�0.52 at low Mach number and as MA
�1.35 at high Mach number. This difference

in Mach number dependence between S(1) and Rquick might yield information about the Mach number
dependence of the length of the dayside reconnection X-line, which is not in the derivation of Rquick but
which must be important for solar wind/magnetosphere coupling. A theoretical argument for the length
of the reconnection X-line on the dayside magnetosphere as a function of the Mach number was presented
in Borovsky [2013b] based on the flow-shear pattern at the dayside magnetopause as a function of MA;
that argument predicted that the X-line would be shorter as MA increased, which would produce a total
reconnection rate that has a steeperMA dependence than that of expression (4), opposite to the trend of S(1).
In Figure 2 the function exp{(θclock-91)/87} of expression (3) is compared with sin2(θclock/2) of expression (4).

Figure 1. For the example canonical correlation of section 3, the first
canonical Earth variable E(1) (expression (2b)) is plotted as a function
of the first canonical solar wind variable S(1) (expression (2a)). Linear
regression (green) andmajor axis (blue) fits to E(1) as a function of S(1)
are indicated by the dashed lines.
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In Figure 3 the hourly averaged values of the
function in the interior of the logarithm of
expression (3) is plotted as a function of the
hourly averaged values of Rquick as given by
expression (4). The Pearson linear correlation
coefficient between the two functions is
rcorr = 0.918. The 300-point running average
(blue) indicates a linearity between the
two functions.

4. General Results: First
Canonical Correlations

The first canonical correlation produces
the linear combinations of input variables
that yield the highest correlation between
the two multivariate data sets. It is not
yet known if the canonical correlation
coefficients are higher if physical quantities
such as nvsw

2 and MA are used as inputs
instead of primitive solar wind variables
such as vsw and Bmag. For comparison with
the example of section 3, if the primitive
solar wind variables log(vsw), log(Bmag), log(n),

and θclock are used with the same geomagnetic index set of variables (PCIo, log(AE1), Kp1, and MBI1),
the CCA procedure yields the first canonical variables

S 1ð Þ ¼ 0:704 log vswð Þ* þ 0:386 log Bmag
� �

* þ 0:302 log nð Þ* þ 0:601θclock* (5a)

E 1ð Þ ¼ 0:120 PCIo* þ 0:331 log AE1ð Þ* þ 0:403 Kp1* � 0:239 MBI1* (5b)

with a first canonical correlation of r(1) = 0.851. This value of r(1) is the same as that of the example of section 3
using the physical variables. The coefficients of S(1) and E(1) are displayed in the third and first columns of
Table 3, respectively. The coefficients of E(1) in expression (5b) are essentially the same as those of expression (2b).
It is also the case that, to within 1 percentage point, S(1) of expression (2a) and S(1) of expression (5a) are
equal. UsingMA= vsw/vA = vswn

1/2/21.8Bmag (where vsw is in units of km/s, n is in units of cm�3, and Bmag is in
units of nT) and writing all variables in nonstandardized forms, expressions (2a) and (5a) both yield

S 1ð Þ ¼ 3:19 log vswð Þ þ 0:445 log nð Þ þ 0:916 log Bmag
� �

þ 0:0138θclock � 23:0 :
(6)

Note that if CCA is performed with the solar wind input variables not inside of logarithms, then the nvsw
2, n,

MA, and θclock data input case and the vsw, Bmag, n, and θclock data input case yield very different first canonical
variables and very different first canonical correlation coefficients.

As can be seen in the fourth column of Table 3, the Pearson linear correlation coefficient between the function
S(1) given by expression (5a) and the individual geomagnetic indices in expression (5b) is 68.9% for PCI0, 78.2%
for log(AE1), 79.7% for Kp1, and 79.1% for �MBI1. For the physical-variable case of Table 2 the fourth column
correlation coefficients between S(1) and the geomagnetic indices are the same. In general, examining the
correlation coefficients between the first canonical solar wind variables S(1) and the individual geomagnetic
indices, it is common that the correlation between S(1) and global-convection indices (Kp and MBI) is higher
than the correlations between S(1) and the high-latitude indices (AE, AU, AL, and PCI). CCA yields functions that
are better at predicting global-convection indices than high-latitude indices. The CCA procedure seems to
indicate that there is more predictable variance in the global-convection geomagnetic indices than there is
in the high-latitude indices. Note in Table 3, as was the case in Table 2, that log(n)* is playing the role of a
suppressor variable: its coefficient (weight) in S(1) is nonzero, but its correlations are near zero.

Figure 2. A comparison of the function exp(θclock/146) of expression
(3) and the function sin2(θclock/2) of expression (4). The units of θclock
are degrees.
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The coefficient of the first canonical
correlation increases as the number of solar
wind input variables increases. This could be
because more information is being added
to the analysis, or it could be because more
free parameters are available for fitting. For
the four variables of the CCA example in
section 3 log(nvsw

2), log(n), log(MA), and
sin2(θclock/2) this is explored in Table 4 where
a “cross” indicates the inclusion of a solar
wind variable as input to CCA. The second-to-
last column is the first canonical correlation
coefficient r(1), and the last column of Table 4
is the unaccounted for variance 1� r(1)

2 in
percent. (The shared variance is r(1)

2 and the
unaccounted for variance is 1� r(1)

2.) For all
cases in Table 4 seven geomagnetic indices
(AU1, �AL1, log(AE1), PCI0, Kp1, �MBI1, and
�Dst*2) are used as input. There are several
different formulas for creating the pressure-
corrected Dst* index from the Dst index
[e.g., Su and Konradi, 1975; Burton et al.,
1975; Feldstein et al., 1984; Pudovkin et al.,
1985; Vassiliadis et al., 1999; O’Brien and
McPherron, 2000]: the Borovsky and Denton

[2010] formula Dst* =Dst � bPram
1/2 + c with b = 20.7 nT(nPa)�1/2 and c= 27.7 nT (which comes from a

fit to Dst versus Pram rather than a fit to dDst/dPram) will be used here. In the first four rows of Table 4
the first canonical correlation r(1) is displayed for the individual core variables. Row 5 of Table 4 uses all four
core variables: the resulting r(1) value is 0.859. The rows below row 5 in Table 4 add other solar wind
variables one at a time into the CCA with the core variables log(nvsw

2), log(n), log(MA), and sin2(θclock/2).
As can be seen for this set of core solar wind variables, some variables (e.g., Bz) produce a noticeable
improvement in the value of r(1) and some variables (e.g., vsw and Bmag) do not. The statistical significance
of some of the small increments in r(1) are questionable, and the variables that yield those small
increments are of limited importance for the canonical correlation. Other variables (not shown in Table 4)
make no change in the value of r(1). In the final row of Table 4 an 11-variable solar wind data set is fed
into CCA: for this 11-variable case the first canonical correlation is r(1) = 0.894 with the corresponding first
canonical Earth variable E(1).

Borovsky [2013b] found that the removal of uncorrelated high-frequency noise from the solar wind data set
improves solar wind/magnetosphere correlation coefficients [see also Newell et al., 2007], and of course,
time averaging both the solar wind and the geomagnetic indices yields higher correlations [Kamide, 1983;

Table 3. For the Primitive-Variable CCA Example of Section 4, the Coefficients (Weights) of the First Canonical Variables
E(1) and S(1) Are Collected Into the First and Third Columns, and the Correlation Coefficients (Loadings) Between the
Individual Input Variables and E(1) and S(1) Are Collected Into the Second and Fourth Columns

Variable Coefficient in E(1) Correlation With E(1) Coefficient in S(1) Correlation With S(1)

Earth variables PCI0* 0.120 80.9% 68.9%
log(AE1)* 0.331 91.8% 78.2%
Kp1* 0.403 93.7% 79.7%

�MBI1* 0.239 92.9% 79.1%
Solar wind variables log(vsw)* 52.4% 0.704 61.5%

log(Bmag)* 47.5% 0.386 55.8%
log(n)* �1.0% 0.302 �1.1%
θclock* 50.3% 0.601 59.1%

Figure 3. Hourly averaged values of the interior of the logarithm of
expression (3) are plotted as a function of hourly averaged values
of the reconnection driver function Rquick. The Pearson linear corre-
lation coefficient of the plotted points is 0.918.
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Borovsky, 2013b]. Exploration of the input solar wind variables to CCA finds that time averaging the clock
angle-type variables improves the first canonical correlation coefficient r(1), whereas time averaging other
solar wind input variables negligibly improves or weakens the coefficients r(1). More of this time averaging
will be seen in section 6.

5. Interpretation of Second Canonical Correlations

The second canonical correlation involves a pair of variables, S(2) and E(2), that are uncorrelated with S(1) and
with E(1) and that have the highest correlation coefficient with each other given those
uncorrelation restrictions.

When using CCA to compare solar wind data sets to geomagnetic indices data sets, very often a pattern is
seen wherein the second-canonical-correlation composite Earth variable forms with a difference between
the magnitudes of the high-latitude indices versus the global-convection indices. Specifically, the Earth
variable E(1) of the first canonical correlation is of the form of a sum of the geomagnetic indices such that
the coefficients of AE, �AL, AU, PCI, Kp, and �MBI are all positive, and the Earth variable E(2) of the second
canonical correlation has positive coefficients of Kp and �MBI and negative coefficients of AE, �AL, AU,
and PCI. Hence, E(1) is additive in the geomagnetic indices with all indices contributing positively as
geomagnetic activity increases, and E(2) contains a differentiation between the global-convection indices
(Kp and �MBI) and the high-latitude indices (AE, �AL, AU, and PCI). Simultaneously, the pattern of
behavior of S(1) and S(2) is as follows: the signs of the coefficients of the solar wind variables tends to be
the same in S(1) and S(2) except for clock angle-type variables such as θclock, sin

2(θclock/2), and Bz, which are
reversed between S(1) and S(2).

An example of this pattern is given in Table 5. Here the solar wind variables are chosen to be log(nvsw
2),

log(n), log(MA), and θclock, and the geomagnetic indices are chosen as the simple set log(AE1), PCI0, and Kp1.
In Table 5 note the reversal of the sign of θclock and the reversals of the signs of log(AE1) and PIC0 between
the “first” and “second” rows.

Table 5. For an Example Four-Input Solar Wind and a Three-Input Geomagnetic Indices, the Coefficients of the First and Second Canonical Variables Are Listed

Solar Wind Input Variables Geomagnetic Indices

Canonical Correlation Coefficient rlog(nvsw
2)* log(n)* log(MA)* θclock* log(AE1)* PCI0* Kp1*

First +1.23 �0.81 �0.38 +0.59 +0.40 +0.18 +0.51 0.848
Second +0.87 �0.36 �0.24 �0.78 �1.17 �0.51 +1.58 0.523

aNote the signs of the coefficients. In the final column the first and second canonical correlation coefficients are listed.

Table 4. The First Canonical Correlation Coefficient r(1) (Last Column) for Various Combinations of the Solar Wind Inputs as Marked by a Crossa

log(nvsw
2) log(n) log(MA) sin2(θclock/2) vsw Bz θBn δB/Bmag α/p Bmag log(F10.7) r(1) 1 � r(1)

2

1 x 0.490 76.0%
2 x 0.194 96.2%
3 x 0.235 94.5%
4 x 0.665 55.8%
5 x x x x 0.859 26.3%
6 x x x x x 0.859 26.2%
7 x x x x x 0.889 21.0%
8 x x x x x 0.861 25.8%
9 x x x x x 0.861 25.8%
10 x x x x x 0.861 25.9%
11 x x x x x 0.860 26.0%
12 x x x x x 0.861 25.9%
13 x x x x x x x x x x x 0.894 20.0%

aThe seven geomagnetic indices AU1, �AL1, log(AE1), PCI0, Kp1, �MBI1, and �Dst*2 are used as input for E(1).
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For analysis of the first and second canonical correlations of Table 5, let us define the following four variables
from the coefficients of Table 5:

HILAT ¼ log AE1ð Þ* þ 0:450 PCI0* (7a)

CONVECT ¼ Kp1* (7b)

STRENGTH ¼ log nvsw
2

� �
* � 0:660 log nð Þ* � 0:308 log MAð Þ* (7c)

CLOCK ¼ θclock* (7d)

where HILAT represents the magnitude of the high-latitude geomagnetic indices, CONVECT represents the
magnitude of the global-convection indices, STRENGTH represents the driver strength of the solar wind, and
CLOCK represents the clock angle of the solar windmagnetic field. The values of HILAT, CONVECT, STRENGTH,
and CLOCK can be obtained as functions of time using expressions (7a)–(7d) and the OMNI2 data set (with
102,900-hourly values of each of the four variables generated using expressions (7a)–(7d) and 102,900 h of
solar wind data). Using the time series of STRENGTH and CLOCK as two solar wind input variables and using
the time series of HILAT and CONVECT as two geomagnetic index input variable, the canonical correlation
analysis of these variables yields

S 1ð Þ ¼ 0:800 STRENGTH þ 0:610 CLOCK (8a)

E 1ð Þ ¼ 0:586 HILAT þ 0:468 CONVECT (8b)

S 2ð Þ ¼ 0:601 STRENGTH � 0:792 CLOCK (8c)

E 2ð Þ ¼ � 1:556 HILAT þ 1:596 CONVECT (8d)

with canonical correlation coefficients r(1) = 0.841 and r(2) = 0.502. In a sense, S(1) is a fit to E(1) (something to
describe E(1)) and in a sense S(2) is a fit to E(2) (something to describe E(2)). If we set E(1) = S(1) and set E(2) = S(2)
and use expressions (8a)–(8d), we get the following two equations:

0:468 CONVECT þ 0:586 HILAT ¼ 0:800 STRENGTH þ 0:610 CLOCK (9a)

1:596 CONVECT � 1:556 HILAT ¼ 0:601 STRENGTH � 0:792 CLOCK : (9b)

Expression (9a) comes from the first canonical correlation, and expression (9b) comes from the second
canonical correlation. The two algebraic expressions (9a) and (9b) can be solved for HILAT and CONVECT,
which yields

HILAT ¼ 0:60 STRENGTH þ 0:81 CLOCK (10a)

CONVECT ¼ 0:96 STRENGTH þ 0:29 CLOCK : (10b)

Examining expressions (10a) and (10b), it can be seen that the HILAT geomagnetic indices have a stronger
dependence on CLOCK than do the CONVECT geomagnetic indices. One might presume that this is owed to
the 3 h averaging that goes into Kp (which makes up CONVECT) which would decrease its dependence on
the 1 h averaged value of the rapidly varying CLOCK; however, if the 1 h resolution MBI index is used instead
of Kp, this reduced dependence on the clock angle of the global-convection indices is still seen.

In comparing the solar wind data set with the geomagnetic index data set, the first canonical correlation
yields information about which solar wind variables are correlated with geomagnetic activity in general and
information about the strength of those correlations; the second canonical correlation provides information
about the difference in solar wind driving of high-latitude geomagnetic indices versus magnetospheric-
convection geomagnetic indices.

6. Generating and Examining Solar Wind Driver Functions for the Magnetosphere

By using CCA to compare multivariate solar wind data sets to multivariate geomagnetic index data sets, the
solar wind data set can be used to predict geomagnetic activity, in general, (sort of a geomagnetic index
stock market prediction) via a canonical solar wind driver function. It will turn out that the canonical solar
wind driver functions that CCA generates are also superior for describing the individual geomagnetic indices.
Hence, the driver functions generated are in a sense universal.
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An accurate and relatively simple driver function can be generated by using the seven geomagnetic indices
as inputs along with the solar wind variables log(nvsw

2), log(n), log(MA), and sin2(θclock/2) (cf. section 3 and
Table 2). Note that log is the natural (base e) logarithm. With these inputs, the CCA procedure yields the first
canonical solar wind variable

S 1ð Þ ¼ 1:196 log nvsw2
� �

* � 0:784 log nð Þ* � 0:388 log MAð Þ* þ 0:604 sin2 θclock=2ð Þ*: (11)

To make this canonical solar wind variable into a useful solar wind driver function, we convert the
dimensionless standardized variables in expression (11) into dimensional unnormalized variables. For
instance, log(n)* = [log(n)� 1.721]/0.681, so the term 0.784log(n)* becomes (0.784/0.681)log(n) plus a
constant. Because we are only interested in correlations of variances, the constants can be ignored when
unnormalizing the variables. Dividing by the coefficient that multiplies the log(nvsw

2) term, expression (11)
yields the CCA-generated driver function

C1 ¼ log nvsw2
� � � 0:561 log nð Þ � 0:445 log MAð Þ þ 0:958 sin2 θclock=2ð Þ (12)

In expression (12) nvsw
2 is in units of cm�3km2/s2, n is in units of cm�3, and MA and sin2(θclock/2) are

dimensionless. The first canonical correlation coefficient for this function is r(1) = 0.859 between C1 and E(1).
The Pearson linear correlation coefficients between the driver function C1 and the seven individual
geomagnetic indices are listed in Table 6. The average of the correlation coefficient between C1 and the
seven indices is 0.723. As can be seen by comparing C1 with the Newell function vsw

4/3B⊥
2/3sin8/3(θclock/2),

with Rquick, and with R2 in Table 6, this simple function C1 does a better job of predicting the overall variance
of individual geomagnetic indices: not quite as good on the high-latitude indices AE, AL, and PCI but
substantially better on the global-convection indices Kp and MBI.

Repeating the above procedure using the 2 h average of sin2(θclock/2) (the original hour plus the hour
beforehand), denoted as< sin2(θclock/2)> 2, yields the solar wind driver function

C2 ¼ log nvsw
2

� � � 0:556 log nð Þ � 0:454 log MAð Þ þ 1:174 < sin2 θclock=2ð Þ>2 (13)

The first canonical correlation coefficient for this function is r(1) = 0.879 between C2 and E(1). The correlation
coefficients between C2 and the seven individual geomagnetic indices are listed in Table 6: the seven-index
average of the correlation (which is defined as the average of the seven individual correlations for the seven
indices) for C2 is 0.735. As can be seen in Table 6, the correlations with AE and AL are reduced from C1 to C2 with
the introduction of the time averaging of sin2(θclock/2), and the correlations with the other five indices go up.
This could be interpreted as either (1) the indices AE and AL are more sensitive to the instantaneous value of
θclock than the other indices are or (2) the CCA’s emphasis of describing variance between the solar wind input
variables and the geomagnetic index input variables has shifted to different geomagnetic indices. In support of
interpretation (1), if direct linear correlations are calculated between the seven indices and sin2(θclock/2), time-
averaging sin2(θclock/2) improves five of the correlations but reduces the correlations with�AL1 and AE1. Also in
support of interpretation (1), the analysis of the first and second canonical correlations in section 5 found that
the high-latitude indices respond to information about the clock angle much more than the global-convection
indices do (cf. expressions (10a) and (10b)). Contradicting interpretation (1), one would think that the polar cap

Table 6. Pearson Linear Correlation Coefficients (in Percent) Between the Various Solar Wind Driver Functions and Seven
Geomagnetic Indices Are Listeda

Newell Rquick R2 C1 C2 C3

AE1 78.4 76.6 77.1 74.4 74.1 79.9
�AL1 77.1 74.0 74.6 70.1 69.2 75.2
AU1 64.7 65.7 66.0 67.7 68.6 72.8
PCI0 75.7 74.7 75.3 69.4 73.4 79.3
Kp1 64.8 68.9 69.5 80.0 80.9 83.0
�MBI1 72.0 73.4 74.0 79.6 82.5 86.4
�Dst*2 61.6 63.6 64.0 65.0 65.7 70.8
Seven-index average 70.6 71.0 71.5 72.3 73.5 78.2

aThe bottom row is the seven-index average of the coefficients (the average of the individual correlations for the
seven different indices) for each driver function.
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index PCI with its shortest time lag would be the most sensitive to the current value of θclock, but its correlation
increased substantially with the introduction of time averaging of sin2(θclock/2).

As noted in Table 4, adding more solar wind variables into the CCA procedure increases the first canonical
correlation coefficient and leads to a more accurate solar wind driver function. Applying the CCA procedure
to the seven geomagnetic index inputs plus 11 solar wind inputs of the bottom row of Table 4, and using a 3 h
averaged< sin2(θclock/2)> 3 function (the value at the original hour plus the values in the two previous
hours) yields the driver function

C3 ¼ log nvsw2ð Þ � 0:424 log nð Þ � 0:451 log MAð Þ þ 1:285 < sin2 θclock=2ð Þ>3

�0:107 Bz þ 0:165 log F10:7ð Þ þ 3:01�10�3θBn þ 0:241δB=B

þ 1:97α=p þ 0:0445 Bmag þ 2:21�10�3vsw :

(14)

The solar wind inputs going into expression (14) were chosen by trail and error; input variables that had no
effect on the first canonical correlation coefficient were eliminated, and the 11 input variables of expression (14)
were the remaining. In expression (14) Bz and Bmag are in units of nT, F10.7 is in units of solar flux, θBn is in
degrees, vsw is in units of km/s, and δB/B and α/p are dimensionless. The first canonical correlation coefficient
for this function is r(1) = 0.917 between C3 and E(1), with an unaccounted for variance 1� r(1)

2 of 15.9%.
(Note that C3 differs from the last row of Table 4 in that C3 utilizes< sin2(θclock/2)> 3, whereas the last row
of Table 4 utilizes sin2(θclock/2). As seen in Table 6, the seven-index average of the correlation coefficients
(the average of the seven individual correlations) for C3 is 0.782, a substantial improvement over the other
driver functions in Table 6. As can be seen in Table 6, the driver function C3 strongly emphasizes the
global-convection indices but does good jobs of describing the variance of all of the indices. Note in
Table 6 that the correlation coefficient between C3 and AE1 is 0.799; the correlation coefficient between C3
and log(AE1) (or equivalently between exp(C3) and AE1) is 0.819.

Figure 4. A comparison of the (left) Newell driver function, (middle) the reconnection driver function R2, and (right) the C3 driver function describing (top row) the
midnight boundary index MBI1 and (bottom row) the AE1 index. In all panels, 102,900-hourly averages are plotted.
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In Figure 4 the midnight boundary index MBI1 (top row) is plotted as a function of the Newell driver function
(left), the reconnection driver function R2 (middle), and as a function of the driver function C3 (expression (14))
(right). The Pearson linear correlation coefficients are indicated in red on the three panels (see also Table 6).
Note in Figure 4 (right) the superior tracking of MBI versus C3, whereas there are systematic differences in
the left and middle columns, particularly for low levels of driving. In Figure 4 (bottom row) the auroral
electrojet index AE1 is plotted as a function of Newell (left), R2 (middle), and C3 (right). Note again the
superior tracking by C3. In particular, for low levels of activity the C3 function provides a superior description
of geomagnetic activity.

By using solar wind driver functions as inputs into the CCA procedure, the properties of the driver
functions can be examined. In particular, driver functions can be compared with each other via the second
canonical correlation, which tends to produce composite canonical variables that involve differences
between correlated variables. In Table 7 the coefficients of the first and second canonical variables are
listed for the solar wind driver functions R2 [Borovsky, 2013a] and Newell (= vsw

4/3B⊥
2/3sin8/3(θclock/2))

[Newell et al., 2007] used as solar wind inputs along with the seven geomagnetic indices used as Earth inputs.
The second row of Table 7 is the second canonical correlation. As can be seen in the second row S(2) = 1.00,
Newell*� 1.01 R2* is a difference between the two standardized driver functions. The CCA process aims to
maximize the correlation between S(2) and E(2); large coefficients in E(2) indicate that that is where the
correlations with S(2) will be greatest. The second row of Table 7 indicates that the Newell driver function
exceeds the R2 driver function in accounting for�AL (which has a strong positive coefficient in the second row)
and the second row indicates that the R2 driver exceeds the Newell driver in accounting for Kp (which has a
strong negative coefficient in the second row). Hence, the Newell (electric field based) driver function
emphasizes high-latitude indices, and the R2 (reconnection based) driver function emphasizes magnetospheric
global convection. It has been argued [Goertz et al., 1993] that the intensity of auroral electrojet indices can be
calculated from a mapping of the solar wind electric field along open magnetic field lines into the
magnetosphere with a time lag.

7. Summary

In this report canonical correlation analysis has been applied to the multivariate solar wind data set and the
multivariate geomagnetic index data set to investigate themathematics and physics of the solar wind driving
of the magnetosphere-ionosphere system. The findings of this study are numbered as follows:

1. The concept of an Earth vector of geomagnetic indices was introduced rather than studying the reaction of
one geomagnetic index at a time. This Earth vector or Earth variable provides a more system-wide measure
of activity in the magnetosphere. An analogy is the stock market index rather than an individual stock.

2. Examining the first canonical correlations between the solar wind data set and the geomagnetic index
data set yielded information about which quantities in the solar wind contribute to the coupling. A
question was raised (but not settled) as to which is superior: the use of primitive solar wind variables as
inputs or the use of physical solar wind quantities as inputs.

3. Examining the second canonical correlations in comparison with the first canonical correlations yielded
information about the difference in solar wind driving of high-latitude geomagnetic indices (e.g., AE
and PCI) versus magnetospheric global-convection geomagnetic indices (e.g., Kp and MBI). The high-
latitude indices react more strongly to the clock angle of the solar windmagnetic field than do the global-
convection indices, and the global-convection indices react more strongly to the strength of the solar
wind driving function than do the high-latitude indices.

Table 7. The Coefficients of the Vectors S(1) and E(1) (First Row) and S(2) and E(2) (Second Row) of the Canonical Correlations Between the Two Driver Functions
Newell and R2 as Solar Wind Inputs and Seven Geomagnetic Indices as Inputsa

Canonical Correlation

S E

rNewell* R2* �AL1* AU1* PCI0* Kp1* �MBI1* �Dst*2* log(AE1)*

First 0.56 0.44 0.67 0.19 0.68 �0.04 0.12 0.24 �0.01 r(1) = 0.848
Second 1.00 �1.01 0.69 �0.05 0.17 �0.66 0.03 �0.11 �0.18 r(2) = 0.281

aThe last column is the canonical correlation coefficient.
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4. Canonical correlation analysis does a better job at describing global-convection geomagnetic indices
than it does at describing high-latitude geomagnetic indices. This may indicate that there is more pre-
dictable variance in the convection indices than there is in the high-latitude indices.

5. Time averaging the clock angle input of the solar wind yields improved canonical correlations between
the solar wind data set and the geomagnetic index data set and yields improved descriptions of the
variances of most geomagnetic indices. Two exceptions are AE and AL where clock angle time averaging
reduces the prediction of the variance of those two indices.

6. Solar wind driver functions for the magnetosphere were generated using the CCA technique. Two simple
(four input) driver functions and one more complicated (11-input) driver functions were presented. All
three driver functions are superior to existing electric field driver functions and to existing reconnection
driver functions. In particular, the functional form of the CCA driver function C3 is superior at low levels
of driving and low levels of geomagnetic activity.

7. Canonical correlation analysis was used to examine the differences between a high-quality electric field
driver functions and a high-quality reconnection driver functions. The CCA indicated that the electric
field-based function emphasized high-latitude indices, and the reconnection-based function emphasized
global-convection indices.

8. The canonical correlation analysis provides information about just how much variance of the geomag-
netic index is predictable. Without great exploration of inputs and averaging, without adjusting the
time lags, and without detrending diurnal and annual signals in the geomagnetic indices that are not in
the solar wind, a correlation coefficient of r= 91.7% between a solar wind driver function and its canonical
Earth vector has been obtained using 1 h resolution solar wind measurements and 1 h resolution geo-
magnetic indices. For this case the unpredicted variance 1 � r2 is 15.9%. Using some of the methods
described in section 8, this number should be improved upon.

8. Future Work

Canonical correlation analysis has opened up a new avenue to study the mathematics and physics of solar
wind/magnetosphere coupling. This report only contains the rudimentary application of CCA and early
findings. Below is a brief list of possible expansions of the use of CCA for the study of the solar wind-driven
magnetosphere-ionosphere system.

More measures of the state of the magnetosphere-ionosphere system are needed to fully exploit the
capabilities of the CCA technique. In a subsequent report, magnetospheric ULF indices are incorporated
[Borovsky and Denton, 2014]. In future a measure of the open flux in the polar cap could be made available and
added into the CCA process. Missing and needed are long-term continuous measures of (a) the plasma density
in the dayside and the nightside magnetosphere, (b) the rate of mass flow through the magnetosphere, (c) the
rate of ionospheric ion outflow, (d) the oxygen fraction of themagnetospheric plasmas, (e) the state of the outer
electron radiation belt, and (e) the properties of the substorm-injected particle populations.

A systematic examination of the use of primitive solar wind variables versus physical solar wind variables
needs to be performed to try to discern which are more fundamental to describing the mathematics and
physics of solar wind/magnetosphere coupling.

In the present study fixed time lags were used between the time of solar wind measurements (propagated to
the front of the magnetosphere) and the various geomagnetic indices. Those fixed lags (with 1 h time
resolution) were determined in a prior study using the first-generation reconnection driver function R
[Borovsky, 2008]. Using variable time lags (which depend, for instance, on the level of geomagnetic activity)
should improve the performance of the canonical correlation analysis between the solar wind and
the magnetosphere.

Examining solar wind and geomagnetic index autocorrelation functions, Borovsky [2013a] uncovered diurnal
and annual trends in the geomagnetic indices that are not in the solar wind. Using the residuals between
solar wind driver functions and the geomagnetic indices, these diurnal and annual trends can be fit and
removed from the geomagnetic indices. This yields an improved description of the variance of the
geomagnetic indices by the variances in the solar wind. Applying these detrending techniques in
coordination with CCA should prove improved driver functions and improved descriptions of the Earth
vector by the solar wind.
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Hints about differences in the way the solar wind drives magnetospheric convection versus how it drives
high-latitude (auroral) activity were found in the present CCA study. A more thorough investigation of what
CCA can yield about the differences is needed.

The first and second canonical correlations between the solar wind data set and the geomagnetic data set were
briefly explored. The second canonical correlation yielded information about the different reactions to the solar
wind of high-latitude activity versus magnetospheric global convection. Examining the third canonical
correlations may yield information about differences between the driving of the AL and AU indices (dayside
versus nightside current systems), or it may yield information about the differences of the driving of the Dst*
index (equatorial plasma pressure and cross-tail current) and the high-latitude and global-convection indices.

The driver functions generated by the CCA technique in this report had solar wind input variables in the
forms of logarithms. These logarithmic terms make physical interpretation of the solar wind driving
nonobvious. With more work, driver functions with more appealing functional forms can be generated.

Plots of Earth variables as functions of solar wind variables make it obvious that the coupling between the
solar wind and the magnetosphere is nonlinear. Exploring functional forms of the solar wind input variables
can uncover and account for these nonlinearities.

Finally, the CCA technique can be coupled to other techniques (such as the mutation algorithmmentioned in
section 1 that generates solar wind driver functions) to produce yet-more-powerful mathematical function to
describe the solar wind driving of the magnetosphere-ionosphere system and to uncover the physical
processes underlying that coupling.

References
Adcock, R. J. (1878), A problem in least squares, Analyst, 5(2), 53–54, doi:10.2307/2635758.
Alexeev, I. I., and Y. I. Feldstein (2001), Modeling of geomagnetic field during magnetic storms and comparison with observations, J. Atmos.

Sol. Terr. Phys., 63, 431–440.
Allen, J. H., and H. W. Kroehl (1975), Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices,

J. Geophys. Res., 80, 3667–3677, doi:10.1029/JA080i025p03667.
Baumjohann, W. (1986), Merits and limitations of the use of geomagnetic indices in solar wind-magnetosphere coupling studies, in Solar

Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 3–15, Terra Scientific Publishing Co., Tokyo, Japan.
Birn, J., J. E. Borovsky, andM. Hesse (2012), The role of compressibility in energy release by magnetic reconnection, Phys. Plasmas, 19, 082109,

doi:10.1063/1.4742314.
Borovsky, J. E. (2006), Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths,

and solar-wind/magnetosphere coupling, Phys. Plasmas, 13, 056505, doi:10.1063/1.2200308.
Borovsky, J. E. (2008), The rudiments of a theory of solar-wind/magnetosphere coupling derived from first principles, J. Geophys. Res., 113,

A08228, doi:10.1029/2007JA012646.
Borovsky, J. E. (2013a), Physical improvements to the solar wind reconnection control function for the Earth’s magnetosphere, J. Geophys.

Res. Space Physics, 118, 2113–2121, doi:10.1002/jgra.50110.
Borovsky, J. E. (2013b), Physics-based solar wind driver functions for the magnetosphere: Combining the reconnection-coupled MHD

generator with the viscous interaction, J. Geophys. Res. Space Physics, 118, 7119–7150, doi:10.1002/jgra.50557.
Borovsky, J. E. (2014), Feedback of the magnetosphere, Science, 343, 1086.
Borovsky, J. E., and H. O. Funsten (2003), Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere,

J. Geophys. Res., 108(A6), 1246, doi:10.1029/2002JA009601.
Borovsky, J. E., and J. Birn (2014), The solar wind electric field does not control the dayside reconnection rate, J. Geophys. Res. Space Physics,

119, 751–760, doi:10.1002/2013JA019193.
Borovsky, J. E., and M. H. Denton (2010), The magnetic field at geosynchronous orbit during high-speed-stream-driven storms: Connections

to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 115, A08217, doi:10.1029/2009JA015116.
Borovsky, J. E., and M. H. Denton (2014), Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF

indices into the systems science of the solar wind-driven magnetosphere, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA019876.
Burton, R. K., R. L. McPherron, and C. T. Russell (1975), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res.,

80(31), 4204–4214, doi:10.1029/JA080i031p04204.
Cassak, P. A., and M. A. Shay (2007), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas,

14, 102114, doi:10.1063/1.2795630.
Clauer, C. R., and Y. Kamide (1985), DP 1 and DP 2 current systems for the March 22, 1979 substorms, J. Geophys. Res., 90(A2), 1343–1354,

doi:10.1029/JA090iA02p01343.
Conger, A. J. (1974), A revised definition for suppressor variables: A guide to their identification and interpretation, Educ. Psychol. Meas., 34, 35–46.
Davis, T. N., and M. Sugiura (1966), Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71(3), 785–801,

doi:10.1029/JZ071i003p00785.
Denton, M. H., M. F. Thomsen, H. Korth, S. Lynch, J. C. Zhang, and M. W. Liemohn (2005), Bulk plasma properties at geosynchronous orbit,

J. Geophys. Res., 110, A07223, doi:10.1029/2004JA010861.
Dessler, A. J., and E. N. Parker (1959), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64(12), 2239–2252, doi:10.1029/

JZ064i012p02239.
Elphic, R. C., M. F. Thomsen, J. E. Borovsky, and D. J. McComas (1999), Inner edge of the electron plasma sheet: Empirical models of boundary

location, J. Geophys. Res., 104(A10), 22,679–22,693, doi:10.1029/1999JA900213.

Acknowledgments
The authors wish to thank Derek
Bingham, Joachim Birn, Mick Denton,
and Bob McPherron for useful conver-
sations and Jung-Chao Wang for use of
a matrix eigenvalue algorithm. This
work was supported at Space Science
Institute by the NASA CCMSM-24
Program, the NSF GEM Program, and
the NASA Heliophysics Guest
Investigator Program at the University
of Michigan by the NASA Geospace
SR&T Program and at the University of
Lancaster by Science and Technology
Funding Council grant ST/I000801/1.

Yuming Wang thanks Nikolai Ostgaard
and another reviewer for their assistance
in evaluating the paper.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019607

BOROVSKY ©2014. American Geophysical Union. All Rights Reserved. 5379

http://dx.doi.org/10.2307/2635758
http://dx.doi.org/10.1029/JA080i025p03667
http://dx.doi.org/10.1063/1.4742314
http://dx.doi.org/10.1063/1.2200308
http://dx.doi.org/10.1029/2007JA012646
http://dx.doi.org/10.1002/jgra.50110
http://dx.doi.org/10.1002/jgra.50557
http://dx.doi.org/10.1029/2002JA009601
http://dx.doi.org/10.1002/2013JA019193
http://dx.doi.org/10.1029/2009JA015116
http://dx.doi.org/10.1002/2014JA019876
http://dx.doi.org/10.1029/JA080i031p04204
http://dx.doi.org/10.1063/1.2795630
http://dx.doi.org/10.1029/JA090iA02p01343
http://dx.doi.org/10.1029/JZ071i003p00785
http://dx.doi.org/10.1029/2004JA010861
http://dx.doi.org/10.1029/JZ064i012p02239
http://dx.doi.org/10.1029/JZ064i012p02239
http://dx.doi.org/10.1029/1999JA900213


Feldstein, Y. I., V. Y. Pisarsky, R. M. Rudneva, and A. Grafe (1984), Ring current simulation in connection with interplanetary space conditions,
Planet. Space Sci., 32, 975–984.

Frank, K. A. (2000), Impact of confounding variable on a regression coefficient, Sociol. Meth. Res., 29, 147–194.
Gatignon, H. (2010), Statistical Analysis of Management Data, Springer, New York.
Goertz, C. K., L.-H. Shan, and R. A. Smith (1993), Prediction of geomagnetic activity, J. Geophys. Res., 98, 7673–7684, doi:10.1029/92JA01193.
Gussenhoven, M. S., D. A. Hardy, and N. Heinemann (1983), Systematics of the equatorward diffuse auroral boundary, J. Geophys. Res., 88(A7),

5692–5708, doi:10.1029/JA088iA07p05692.
Hair, J. F., W. C. Black, B. J. Babin, and R. E. Anderson (2010), Canonical Correlation: A Supplement to Multivariate Data Analysis, Pearson Prentice

Hall Publishing, Upper Saddle River, N. J.
Hardy, D. A., W. J. Burke, M. S. Gussenhoven, N. Heinemann, and E. Holeman (1981), DMSP/F2 electron observations of equatorward auroral

boundaries and their relationship to the solar wind velocity and the north-south component of the interplanetary magnetic field,
J. Geophys. Res., 86(A12), 9961–9974, doi:10.1029/JA086iA12p09961.

Holzer, R. E., and J. A. Slavin (1982), An evaluation of three predictors of geomagnetic activity, J. Geophys. Res., 87(A4), 2558–2562,
doi:10.1029/JA087iA04p02558.

Janzhura, A., O. Troshichev, and P. Stauning (2007), Unified PC indices: Relation to isolated magnetic substorms, J. Geophys. Res., 112, A09207,
doi:10.1029/2006JA012132.

Johnson, R. A., and D. W. Wichern (2007), Applied Multivariate Statistical Analysis, 6th ed., Pearson Prentice Hall, Upper Saddle River, N. J.
Kamide, Y. (1983), Comment on ‘An evaluation of three predictors of geomagnetic activity’ by R. E. Holzer and J. A. Slavin, J. Geophys. Res.,

88(A6), 4953–4954, doi:10.1029/JA088iA06p04953.
Kamide, Y., and G. Rostoker (2004), What is the physical meaning of the AE index?, Eos Trans. AGU, 85(19), 188–192, doi:10.1029/

2004EO190010.
Kan, J. R., and L. C. Lee (1979), Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577–580, doi:10.1029/

GL006i007p00577.
King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data,

J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.
Lambert, Z. V., and R. M. Durand (1975), Some precautions in using canonical analysis, J. Mark. Res., 12, 468–475.
Liemohn, M. W., J. U. Kozyra, M. F. Thomsen, J. L. Roeder, G. Lu, J. E. Borovsky, and T. E. Cayton (2001), Dominant role of the asymmetric ring

current in producing the stormtime Dst*, J. Geophys. Res., 106(A6), 10,883–10,904, doi:10.1029/2000JA000326.
Madden, D., and M. S. Gussenhoven (1990), Auroral boundary index from 1983 to 1990, Tech Report GL-TR-90-0358, Air Force Geophysics

Laboratory, Hanscom AFB, MA, 21 Dec.
Moore, T. E., et al. (2005), Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources, J. Geophys. Res., 110,

A02210, doi:10.1029/2004JA010563.
Muller, K. E. (1982), Understanding canonical correlation through the general linear model and principal components, Am. Stat., 36, 342–354.
Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from

10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015.
Newell, P. T., T. Sotirelis, K. Liou, and F. J. Rich (2008), Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with

a viscous term works best, J. Geophys. Res., 113, A04218, doi:10.1029/2007JA012825.
Nimon, K., R. K. Henson, and M. S. Gates (2010), Revisiting interpretation of canonical correlation analysis: A tutorial and demonstration of

canonical commonality analysis, Multivar. Behav. Res., 45, 702–724.
O’Brien, T. P., and R. L. McPherron (2000), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and

decay, J. Geophys. Res., 105(A4), 7707–7719, doi:10.1029/1998JA000437.
Ohtani, S., M. Nosé, G. Rostoker, H. Singer, A. T. Y. Lui, and M. Nakamura (2001), Storm-substorm relationship: Contribution of the tail current

to Dst, J. Geophys. Res., 106(A10), 21,199–21,209, doi:10.1029/2000JA000400.
Prichard, D., J. E. Borovsky, P. M. Lemons, and C. P. Price (1996), Time dependence of substorm recurrence: An information-theoretic analysis,

J. Geophys. Res., 101(A7), 15,359–15,369, doi:10.1029/95JA03419.
Pudovkin, M. I., S. A. Zaitseva, and L. Z. Sizova (1985), Growth rate and decay of magnetospheric ring current, Planet. Space Sci., 33, 1097–1102.
Reiff, P. H., and J. G. Luhmann (1986), Solar wind control of the polar-cap voltage, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide

and J. A. Slavin, pp. 453–476, Terra Scientific, Tokyo, Japan.
Ridley, A. J., and E. A. Kihn (2004), Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area, Geophys.

Res. Lett., 31, L07801, doi:10.1029/2003GL019113.
Robins, J. (1989), The control of confounding by intermediate variables, Stat. Med., 8, 679–701.
Sckopke, N. (1966), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71,

3125–3130, doi:10.1029/JZ071i013p03125.
Smith, J. P., M. F. Thomsen, J. E. Borovsky, and M. Collier (1999), Solar wind density as a driver for the ring current in mild storms, Geophys. Res.

Lett., 26, 1797–1800, doi:10.1029/1999GL900341.
Smith, R. J. (2009), Use and misuse of the reduced major axis for line-fitting, Am. J. Phys. Anthropol., 140, 476–486.
Stauning, P. (2013), The Polar Cap index: A critical review of methods and a new approach, J. Geophys. Res. Space Physics, 118, 5021–5038,

doi:10.1002/jgra.50462.
Su, S.-Y., and A. Konradi (1975), Magnetic field depression at the Earth’s surface calculated from the relationship between the size of the

magnetosphere and the Dst values, J. Geophys. Res., 80(1), 195–199, doi:10.1029/JA080i001p00195.
Tenfjord, P., and N. Østgaard (2013), Energy transfer and flow in the solar wind-magnetosphere-ionosphere system: A new coupling func-

tion, J. Geophys. Res. Space Physics, 118, 5659–5672, doi:10.1002/jgra.50545.
Thomsen, M. F. (2004), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11004, doi:10.1029/

2004SW000089.
Thomsen, M. F., J. E. Borovsky, D. J. McComas, and M. R. Collier (1998), Variability of the ring current source population, Geophys. Res. Lett., 25,

3481–3484, doi:10.1029/98GL02633.
Tomita, S., et al. (2011), Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices, Ann. Geophys.,

29, 673–678.
Troshichev, O. A., V. G. Andrezen, S. Vennerstrøm, and E. Friis-Christensen (1988), Magnetic activity in the polar cap—A new index, Planet.

Space Sci., 11, 1095–1102.
Troshichev, O., D. Sormakov, and A. Janzhura (2012), Sawtooth substorms generated under conditions of the steadily high solar wind energy

input into the magnetosphere: Relationship between PC, AL and ASYM indices, Adv. Space Res., 49, 872–882.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019607

BOROVSKY ©2014. American Geophysical Union. All Rights Reserved. 5380

http://dx.doi.org/10.1029/92JA01193
http://dx.doi.org/10.1029/JA088iA07p05692
http://dx.doi.org/10.1029/JA086iA12p09961
http://dx.doi.org/10.1029/JA087iA04p02558
http://dx.doi.org/10.1029/2006JA012132
http://dx.doi.org/10.1029/JA088iA06p04953
http://dx.doi.org/10.1029/2004EO190010
http://dx.doi.org/10.1029/2004EO190010
http://dx.doi.org/10.1029/GL006i007p00577
http://dx.doi.org/10.1029/GL006i007p00577
http://dx.doi.org/10.1029/2004JA010649
http://dx.doi.org/10.1029/2000JA000326
http://dx.doi.org/10.1029/2004JA010563
http://dx.doi.org/10.1029/2006JA012015
http://dx.doi.org/10.1029/2007JA012825
http://dx.doi.org/10.1029/1998JA000437
http://dx.doi.org/10.1029/2000JA000400
http://dx.doi.org/10.1029/95JA03419
http://dx.doi.org/10.1029/2003GL019113
http://dx.doi.org/10.1029/JZ071i013p03125
http://dx.doi.org/10.1029/1999GL900341
http://dx.doi.org/10.1002/jgra.50462
http://dx.doi.org/10.1029/JA080i001p00195
http://dx.doi.org/10.1002/jgra.50545
http://dx.doi.org/10.1029/2004SW000089
http://dx.doi.org/10.1029/2004SW000089
http://dx.doi.org/10.1029/98GL02633


Turner, N. E., D. N. Baker, T. I. Pulkkinen, and R. L. McPherron (2000), Evaluation of the tail current contribution to Dst, J. Geophys. Res., 105(A3),
5431–5439, doi:10.1029/1999JA000248.

Tzelgov, J., and A. Henik (1991), Suppression situations in psychological research: Definitions, implications, and applications, Psychol. Bull.,
109, 524–536.

Valdivia, J. A., J. Rogan, V. Munoz, B. A. Toledo, and M. Stepanova (2013), The magnetosphere as a complex system, Adv. Space Res., 51,
1934–1941.

Vassiliadis, D. (2006), Systems theory for geospace plasma dynamics, Rev. Geophys., 44, RG2002, doi:10.1029/2004RG000161.
Vassiliadis, D., A. J. Klimas, J. A. Valdivia, and D. N. Baker (1999), The Dst geomagnetic response as a function of storm phase and amplitude

and the solar wind electric field, J. Geophys. Res., 104, 24,957–24,976, doi:10.1029/1999JA900185.
Vasyliunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu (1982), Scaling relations governingmagnetospheric energy transfer, Planet. Space Sci.,

30, 359–365.
Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby (2006), Bivariate line-fitting methods for allometry, Biol. Rev., 81, 259–291, doi:10.1017/

S1464793106007007.
Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and

models of magnetopause reconnection, J. Geophys. Res., 88, 5727–5735, doi:10.1029/JA088iA07p05727.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019607

BOROVSKY ©2014. American Geophysical Union. All Rights Reserved. 5381

http://dx.doi.org/10.1029/1999JA000248
http://dx.doi.org/10.1029/2004RG000161
http://dx.doi.org/10.1029/1999JA900185
http://dx.doi.org/10.1017/S1464793106007007
http://dx.doi.org/10.1017/S1464793106007007
http://dx.doi.org/10.1029/JA088iA07p05727


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


