Parallel Algorithms and Aggregation
for Solving Shortest-Path Problems

H. Edwin Romeijn
Erasmus University, Rotterdam

Robert L. Smith
University of Michigan, Ann Arbor

Intelligent Vehicle-Highway Systems

College of Engineering « (313) 764-4332

Professor Kan Chen, 4112 EECS, Ann Arbor, MI 48109-2122, and .

University of Michigan Transportation Research Institute « (313) 936-1066

Robert D. Ervin, 2901 Baxter Road, Ann Arbor, MI 48109-2150

IVHS Technical Report: #92-06

Parallel Algorithms and Aggregation for
Solving Shortest-Path Problems

H. Edwin Romeijn
Department of Operations Research & Tinbergen Institute
Erasmus University Rotterdam
Rotterdam, The Netherlands

Robert L. Smith
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Michigan

January 1991

Revised July 1991
Revised February 1992

1 Introduction

In this paper we will review existing algorithms for solving shortest-path
problems, and investigate the possibility of using parallel computing and/or
aggregation techniques to speed up the algorithms. This problem arises as
part of the IVHS (Intelligent Vehicle/Highway Systems) research project in
Traffic Modeling. For more on this subject, see Kaufman and Smith (1990).

2 Literature review

In this section some of the sequential and parallel shortest-path algorithms
from the literature will be discussed. We will start by introducing some
notation.

Let G = (V, A) be a graph, where V = {1,..., N} is the set of nodes, and
A C V xV is the set of arcs. Here (4,7) € A if there exists an arc from node
i € V tonode j € V. Furthermore, let t;; denote the distance (or travel time,
or some other measure of cost) from i to j. If (i, 7) € A then t;; = +00. Note
that the travel time from node i to node j is assumed to be stationary, i.e.,
independent of the actual arrival time at node i. Let f;; denote the length
of the shortest-path from 7 to j in the graph.

2.1 Sequential shortest-path algorithms
2.1.1 Acyclic graphs

If G is an acyclic graph, then without loss of generality we can assume that
the elements in V are ordered in such a way that (¢,j) € A implies ¢ < j.
The shortest-path lengths then satisfy the following recursion:

fij = gggj {fur + tej}

fori=1,....,N—1land j =4i+1,...,N. We can solve for the f-values
using dynamic programming, using either the recursive-firing method or the
reaching method:

(i) Recursive-fizing method:
DOfori=1,...,N-1 _
SETf,','=0&Ildf,'j=00f01'j=1:+1,...,N
DOforj=i+1,...,N
DOfork=14,...,5—-1
fij = min(fj, fae + tij)

(ii) Reaching method:
DOfori=1,...,N-1
SET fy=0and fij=oc0forj=i+1,...,N
DOfork=i+1,...,N-1
DOforj=k+1,...,N
fij = min(fij, fie + ti)

For both methods the time necessary to compute all shortest-paths in the
graph is O(N?) (see Denardo, 1982).

2.1.2 Cyclic graphs

For cyclic graphs the lengths of the shortest-paths satisfy the following func-
tional equation: :

fij =%§1 {far =+ tes}

In the remainder we will assume that there are no cycles of negative length
in the graph.

(i) Digkstra’s method:
This method is basically an adaptation of the reaching method for
acyclic graphs discussed above. For fixed 1, this method computes the
values of f;; in nondecreasing value sequence:

DOfori=1,...,N
SET fs = 0, SET f;; = ti for i # j = 1,...,N, and SET
T=V-{i}
REPEAT
SET k = a.rgminjgp fij
SETT =T - {k}. IF T = 0 STOP, otherwise
DOforjeT ‘
fij = min(fi, fir + tx;)

The complexity of this algorithm is O(N?®) for dense graphs, and O(nN?log N)
for sparse graphs, where n is the average number of arcs emanating from
a node (see Dreyfus and Law, 1977).

(ii) Floyd’s algorithm:
Let fi;(k) denote the length of the shortest-path from i to j, where the
shortest-path only uses nodes from the set {1,...,k}. Then obviously
fi; = fi;(N). We can now solve recursively for the values of k:

SET fi;(0) = t;; for all (3,)
DO fork=1,...,N
FOR ALL (3, 5) SET fi;(k) = min (fi;(k = 1), fue(k = 1) + fis(k — 1))

Again, the complexity of this algorithm is O(N?3).

In the following section we will see that an adaptation of the last method
(Floyd's method) is especially suited for use in a parallel-computing environ-
ment.

2.2 Parallel algorithms
2.2.1 A modification of Floyd’s algorithm

In the original version of Floyd’s algorithm, f;;(k) denotes the length of
the shortest-path from i to j using only intermediate nodes from the set
{1,...,k}. As an alternative, let us denote the length of the shortest-path
from i to j using at most k — 1 intermediate nodes (i.e., using at most k arcs)
by f£. Then, using 2M°8N=D1 > N — 1, we have that f;; = ijfbs(N—lﬂ- So,
the f-values can be computed recursively using the following algorithm:

SET ,;5- = t,;j for all (Z,j)
DOfork=1,...,[log(N-1)] -1
FOR ALL (i, §)
SET f2* = minev (5 + %)

When implemented sequentially, this algorithm has complexity O(N®log V).
However, the part of the algorithm inside the outer loop can be implemented
using (a modification of) a matrix multiplication algorithm. For the latter
problem, a variety of parallel algorithms exists, one of which we will discuss
in some more detail in the next section.

2.2.2 Matrix multiplication

Consider the problem of multiplying two N x N matrices, say A and B. Let
C = AB. A (sequential) algorithm for computing C is:

FOR ALL (i, §)
SET ¢;; = 0
FOR¢=1,...,N DO
SET Cij = Gij +a¢zbgj

In figure 1 we illustrate how this algorithm can be programmed in a parallel
fashion by using a mesh-connected parallel computer with N 2 processors.

b3 bl

bé2 b33 b24

bé] b32 b23 blé
b3l 22 b13 °
b2l bi2 ° .

bll L4 ° °

alaallall al] ==
a24a23al22al] e
a34a3las2all © O =

24424324204] ¢ @ 0 w—

Figure 1: A parallel algorithm for multiplying two matrices

The time complexity of this parallel algorithm can be shown to be O(N).
Comparing the modified Floyd’s algorithm and the matrix multiplication
algorithm it is clear that we obtain the innermost loop of the former al-
gorithm from the latter algorithm by replacing multiplication by addition
and addition by taking of minimum. So, we obtain a parallel algorithm
for shortest-path calculation having complexity O(N log N), while using N?
Processors. :

The complexity of parallel-matrix computation can be reduced to O(log N)
if we use N3 processors, which are connected as the vertices of a hyper-
cube. Using one of the algorithms of this type yields parallel algorithms for
shortest-path computation with complexity O(log® N). For more detail on
parallel algorithms for matrix computation, and their use in parallel shortest-
path computation we refer to Quinn (1987), Akl (1989), and Bertsekas and
Tsitsiklis (1989).

2.2.3 Another “parallel” algorithm

An obvious way of parallelizing (for example) Dijkstra’s algorithm for the
all-pairs shortest-path problem is to use P < N processors, and to let each
processor compute all shortest-paths from at most [/N/P] origins to all possi-
ble destinations. In this way we obtain an algorithm having time complexity
O([N/P]Nlog N) for sparse graphs, and O([N/P]N?) for dense graphs. If
we choose the number of processors to be equal to the number of nodes the
complexities become O(N log N) and O(N?) respectively.

Note that the notion of “processor” used in this context differs from the one
used in the preceding section, since the tasks that have to be performed by
the two processors differ greatly. On the other hand, the latter algorithm is
only pseudo-parallel in the sense that there is no communication necessary
between the processors. This, of course, is an enormous practical advantage,
since no real parallel computer architecture is necessary.

3 Aggregation

In the previous section we have seen that we can solve the all-pairs shortest-
path problem in O(N?log N) time (for sparse networks) when using a se-
quential algorithm. Moreover, it turns out to be possible to reduce the time
by a factor N to O(N log N) by using N? “small” or N “large” processors in
a parallel fashion. In this section we will investigate whether we can reduce
the number of processors necessary to solve the problem, while keeping the
time complexity of the algorithm equal to O(Nlog N). Obviously, we will
now have to sacrifice something other than time to be able to achieve this
goal. In particular, we will give up the goal of obtaining a truly optimal
solution.

3.1 A simple model

We will start by considering the following (simplified) model. Let G = (V, A)
be a graph, and let every node have exactly 4 neigbors (see figure 2).

- =l f == F o k= &

Figure 2: “Manhattan”

Assume the graph (having N nodes) is a VN x v/N mesh. We will aggre-
gate nodes so that we have M “macronodes.” Assume that we aggregate in
such a way that the “macronetwork” is a VM x v/M mesh, and that every
macronode itself is a /N/M x /N/M mesh. Define the arc lengths in the
macronetwork to be the shortest of the lengths of all (micro) arcs connecting
two macronodes.

We can approximately solve the shortest-path problem for G by finding
all shortest-paths in the macronetwork, and also all shortest-paths in each
macronode, and then combine these to get paths connecting all pairs of
nodes. Of course, these paths are not necessarily shortest-paths in G, even
if all subproblems are solved optimally.

Suppose we have M + 1 processors, so that the M + 1 subproblems can be

7

solved in parallel. Then:

e the time necessary to compute all shortest-paths inside one of the
macronodes is O((N/M)?log(N/M)) if we use Dijkstra’s algorithm

e the time necessary to compute all shortest-paths in the macronetwork
is O(M?log M).

We now want to minimize the time necessary for all M + 1 processors to
complete their task. We obtain this objective if we choose M in such a
way that all subproblems are of the same size; i.e., the number of nodes
inside each macronode is equal to the number of macronodes: N/M = M,
or M = v/N. So we can conclude that using M +1=+vN+1 (or M =
O(+/N)) processors, we can obtain an approximate solution to the shortest-
path problem in O(Nlog N) time. Although the model presented here is
very simple, the results still hold if we make the assumption that we only
consider partitions of the network into macronodes having the property that

1. each macronode has the same (sparsity) structure as the original net-
work (with respect to average number of neighbors etc.)

2. the macronetwork obtained by aggregating the nodes inside each macron-
ode to form one node also has the same (sparsity) structure as the
original network.

If the original network (and the macronodes) is dense, the results concerning
the number of macronodes still remain the same, but the time complexity of
the algorithm becomes O(N?) (see also section 2.3 above).

Note that a problem can occur if there are “one-way-streets” in the network;
i.e., if there exists a pair i, € V such that (i,7) € A and (j,%) € A. If
link (,7) ends up inside a macronode, it is possible that there exists a path
from 7 to 1 of finite length in the network, while the decomposition algorithm
returns with a path length of +00. The reason for this is that, for a given
pair of nodes within a macronode, it is possible that there does not exist a
path between those nodes that is completely contained in the macronode.

8

The approximate solution to the shortest-path problem that can be obtained
in O(Nlog N) time consists of a table of shortest-path lengths for each of
the macronodes, and a table for the macronetwork. To obtain approximate
shortest-path lengths for the original micronetwork these results need to be
combined. As a first step towards this we modify the entries in the ta-
ble corresponding to the macronetwork as follows: for every intermediate
macronode on a shortest-path in the macronetwork, add the shortest-path
length from the entry-micronode to the erit-micronode. This shortest-path
length can be found in the shortest-path table of the macronode. Since the
number of nodes on a shortest-path will be O(N'/4) on average, this can
be performed in O(N%4) time sequentially. Obviously this procedure can
easily be parallellized to use v/N processors, yielding a time complexity of
O(N?®/4), thereby keeping the complexity of the total algorithm unchanged.
For every pair (i,7), 1,7 € V in the original (micro) network the time to
find an approximate shortest-path length is now reduced to 2 additions and
3 table-lookups: the length of the approximate shortest-path from i to j
equals the length of the (approximate) shortest-path from i to the exit-node
of the macronode containing #; plus the (approximate) shortest-path length
from the exit-node of the macronode containing i to the entry-node of the
macronode containing j; plus the (approximate) length of the shortest-path
from the entry-node of the macronode containing j to j. Obviously, perform-
ing this procedure for every pair (i, 7) takes O(N?) time. Parallel implemen-
tation using v/ N processors reduces this to O(N v/N) time. The complexity
of Dijkstra, when implemented using v/ N processors, is O(N vV NlogN). In
other words, computing approximate shortest-path lengths using the aggre-
gation algorithm introduced in this section yields a savings of O(log N) in
time complexity. In practice, the savings could much larger: for instance,
in cases where not all shortest-paths are required, or when one needs fast
on-line shortest-path information. Note that in practice, when the macron-
odes correspond to metropolitan areas, many of the shortest-path requests
will be for paths inside a macronode. This information is readily available,
and moreover, for many origin /destination pairs this information will be ez-
act instead of approzimate. In this case the last (and most time consuming)
part of the aggregation algorithm can be avoided, since any shortest-path
length can be computed in constant time upon request, yielding an effective
time complexity of O(N log N) for the algorithm. In contrast, an equivalent
savings in time cannot be obtained when using Dijkstra’s algorithm. In this

9

case the savings in complexity of the aggregation algorithm over Dijkstra’s
algorithm increases to O(V/N).

3.2 Level of aggregation

In the preceding section we only considered the case where aggregation takes
place only one level down. In this case we will say that the aggregation
level is L = 2. It is possible to generalize the results to the case where we
consider arbitrary aggregation levels L. The idea is again to aggregate the
VN x +/N mesh into a macronetwork that is a v/M x /M mesh. Each
of the M macronodes of level 1 itself is a /N/M x /N/M mesh. Then,

aggregate each level 1 macronode into a VM x M mesh. Each macronode
of level 2 is then a \/ N/M? x \f N/M? mesh. Continue this until we have

macronodes of level L — 1 which are \/ N/ML-1x \/JV /ME=1 meshes. So now
we have 1 macronetwork of level 1 having M nodes, M macronetworks of
level 2 having M nodes, ..., MY~2? macronetworks of level L — 1 having M
nodes, and MZ=1 level L micronetworks having N/ML~! nodes. Assume we
have 1+ M +--- + ME1 = % = P processors, each solving exactly a
shortest-path problem.

Using the same reasoning as in the case of L = 2 above we obtain that it is
optimal to choose M according to N/ML~! = M, or M = NY/L. So, using

T = O(N'~!/L) processors, we can obtain an approximate solution to

the shortest-path problem in O(N%%log N) time.

As in the case of L = 2 we need to combine the results of the exact solutions
to the subproblems to get shortest-path lenghts in the original network. The
(sequential) complexity of the first phase is given by M?v/M (= the number

of operations per network of M nodes), multiplied by —I‘ﬁ;—__ll‘—l (= the number

of subnetworks of size M), yielding a complexity of O(M?**+L vVM). A parallel
implementation using P processors then gives (after substitution of M =
O(NVL)): O(N32L)y < O(N%L). The second phase (when implemented
directly, but see the notes in the previous section) takes O(N 141/L) time
when implemented in a parallel fashion.

10

It would be interesting to address the question: what is the “optimal” choice
for L? To answer this question we have to define what we mean by “optimal.”
However, one of the elements that would certainly have to be included here is
the effect of aggregating a certain number of levels down on the precision of
the solution obtained by the algorithm. Obviously, there will be a negative
influence of increasing the level of aggregation on the precision of the solution,
but at this point this is all we really can say about this effect. So for now the
question of optimal aggregation level choice remains an open issue for future
research.

3.3 The Sequential Aggregation Disaggregation Al-
gorithm

In Bean et al. (1987) an algorithm, called SADA (Sequential Aggregation
Disaggregation Algorithm) was introduced for computing approximately the
shortest-path lengths in an acyclic graph using node aggregation. An error
analysis was given, including an explicit error bound. We are interested in a
generalization of these results to the case of a cyclic graph. This will also be
a subject of future research.

4 Aggregation in practice

For an arbitrary network it is not clear how one should aggregate nodes
into macronodes. The following theorem gives an upper bound on the ab-
solute error made in approximating the shortest-path length for a given ori-
gin/destination pair.

Theorem 4.1 Let f;; denote the length of the shortest-path between nodes i

and j, and let f,-,- denote the length of the path computed by the decomposition
algorithm. Furthermore, decompose each of those lengths as follows:

C L W
fis = J5+Fi
3 FC W
fij = Ji c fij :

11

Here a superscript C denotes the length of all edges on a path that are con-
necting macronodes, and W denotes the length of all edges on a path that
are entirely within macronodes. Then

; w
fis = Jii < fij -

Proof: By construction, fg < fg, and by definition fJ > 0. So we have

; — fC C 4 W W
fij - fij = fi,j - Jij + fij — Jij
< ff.om

This theorem indicates that the network should be aggregated in such a way
that edges within macronodes are short, and edges connecting macronodes
are long. Using this, we can formulate the aggregation problem as an op-
timization problem. Let M be the desired number of macronodes, to be
specified in advance. Let z;n be a (0,1)-variable which is equal to one if
node i is an element of macronode m, and zero otherwise. Now consider the
following optimization problem:

1 N N M

M /N #
max.i ZZ Z t,-j(a:.;m _Ijm)g—- A Z—l (qu —N/M)

i=] j=1m=1 i=1

M
subject to Y _ zi; =1 i=1,...,N

m=1
zeC.

The first term in the objective function is equal to the sum of the lengths of all
edges connecting macronodes. Note that maximizing this sum is equivalent
to minimizing the sum of the lengths of all edges within macronodes. The
second term in the objective function will insure, for a suitably chosen value
for the penalty parameter), that the cardinality of each of the macronodes

12

is approximately equal to N/M. Alternatively we could choose to include
constraints that fix the size of the various macronodes. However, in general
it may not be possible to find an aggregation that satisfies the cardinality
constraints exactly. Moreover, even if such aggregations exist, they may
be undesirable with respect to the first part of the objective function as
stated above. Therefore it is preferable to incorporate this constraint in the
objective function. The first set of constraints insure that every node is in
exactly one macronode. Finally, the set C denotes the set of aggregations
that correspond to aggregations of the network in connected components.

Although it is instructive to study the aggregation problem in this form,
there can be little hope that this problem can be solved efficiently for large-
scale networks. In the remainder of this section we will construct a heuristic
for the problem where, for the time being, we only take into account the
second term in the objective function. In other words, we will concentrate
on finding a nearly feasible solution to the aggregation problem, without
paying too much attention to the quality of the solution with respect to
the part of the objective function that influences the error in shortest-path
lengths obtained using the decomposition algorithm.

The heuristic that we will introduce shortly uses the transformation of the
(directed) graph G = (V, A) to an undirected graph, G’ = (V, E), where

E={(,7):4<jand {(,5),(5,9)} N 4 # ¢}.
For an undirected graph we define the notion of a spanning tree:

Definition 4.2 A spanning tree in an undirected graph G = (V, E) is a
subset S of E such that (V,S) is connected and acyclic.

The proposed heuristic will consist of two phases:
Phase 1: Find a spanning tree in the network.

Phase 2: Decompose the spanning tree into subtrees, each representing a
macronode in the network.

13

Definition 4.3 If we have a cost function associated with the edges in the
network, the minimal-cost spanning tree will be a spanning tree such that the
sum of the cost of all edges in the tree is minimal.

In a sparse network, we can find a minimum-cost spanning tree in O(N log N)
time using Kruskal’s algorithm (see e.g. Murty, 1992).

Denote the set of nodes by V, and let the set of edges in the spanning tree
found in phase 1 be denoted by S. The following heuristic will construct a
decomposition of V' into macronodes, each given by a set Vi, C V.

Aggregation algorithm

Step 0.
Step 1.

Step 2.

m = 0.

Set
m—m-+ 1.

Find the longest path (with respect to number of nodes) in the net-
work (V,S). Let this path be (#3,...,%x). Candidate macronodes
will be of the form:

Uper ({i € V : (3,35) € S} U {ip})

or
U, ({i €V : (i,ip) € STU (i)

Choose the macronode whose cardinality is closest to v/N. Let this
macronode be given by V.

Set

V « V-V, and
S — {(i,j)€S:i,j & Vm}.

If V = ¢, stop. Otherwise, return to step 1.

14

As mentioned before, this algorithm does not take into account the first part
of the objective function of the algorithm described above. However, it is
possible to modify the algorithm as follows to try to obtain a good solution
with respect to this objective. In the first phase we can try to choose the
edge-costs in a way that is favorable towards the objective, and/or we can
add constraints to the spanning tree problem to enforce a good aggregation
in the second phase. In the second phase of the heuristic we could use a
different criterion than just cardinality for distinguishing between different
choices of macronodes.

5 Experimental results

5.1 The decomposition algorithm

In this section we will report some experimental results on the comparison of
Dijkstra’s algorithm with the decomposition algorithm introduced in section
3, for the case where the number of levels of aggregation is L = 2. We
have considered networks of the “Manhattan” type, and we have aggregated
the nodes in the obvious way, creating a situation where the macronetwork
looks exactly the same as each of the networks inside the macronodes. The
distance matrices have been randomly generated. Initially, we have generated
the matrices as follows: if (i,7) € A, then &;; is uniformly distributed on
[0,1]. As a measure of the error of the approximation algorithm we used the
following expression:

g i 2;"\;1 Ef:l(fij — fij)
Eih;l):}N=1 fii

where f;; is the exact length of the shortest-path from i to j as found by Dijk-
stra’s algorithm, and f}j is the approximate length of the shortest-path from
i to j as found by the aggregation algorithm. Note that a better aggregate
error measure would incorporate information about frequencies of the various

15

trips, to reflect the fact that an error in a very infrequent trip is less impor-
tant than an error in a frequently occuring trip. However, in the absence
of this information we will make the assumption that all origin/destination
pairs (7,) occur with the same frequencies.

In the next experiments we changed the distribution of the distances to
simulate metropolitan areas: if we assume that each macronode represents
a metropolitan area, the arc lengths within a macronode will generally be
smaller than the arc lengths connecting macronodes. To model this, we
generate arc lengths within macronodes from the uniform distribution on
[0,1], and arc lengths connecting macronodes from the uniform distribution
on [0, 7], for varying values of r > 1. This model will also illustrate theorem
4.1 from the previous section: the longer the arcs connecting macronodes are
(compared to arcs inside macronodes), the smaller the error in shortest-path
lengths obtained using the aggregation algorithm should be. The results from
the experiments are reported in tables 1 and 2. All entries are averages over
10 runs. The entries in table 1 represent the average error in shortest-path
length. In table 2, computation times for Dijkstra’s algorithm (sequential
implementation and implementation using V/N processors) and for (both
phases of) the aggregation algorithm (using v/N + 1 processors) are given.

N[r=1[r=Ni|r=+N|r=N3
16 | 0.19 0.09 0.05 0.02
8§11 041 0.18 0.04 0.01
256 || 0.44 0.20 0.04 0.01
625 || 0.53 0.21 0.05 0.01

Table 1: Average error in shortest-path lengths

Table 1 confirms the result of theorem 4.1: increasing the value of r de-
creases the relative error of the shortest-path lengths. Of course it is as
yet unclear what a reasonable value of r would be representing real-world
networks. The results also show that the difference between edge lengths
connecting macronodes and inside macronodes should be larger as the size of
the network increases in order to obtain a certain error level. Table 2 shows

16

N Dijkstra Dijkstra Aggregation
sequential | v/N processors | v/N + 1 processors

16 0.033 0.008 0.003
81 1.340 0.149 0.020
256 15.260 0.954 0.093
625 100.480 4.019 0.310

Table 2: Computation times (seconds; Macintosh IIfx)

the computational advantage of the aggregation algorithm over Dijkstra’s
algorithm.

5.2 Aggregation in practice

In this section we will show the results of running the aggregation and decom-
position algorithms presented in sections 3 and 4 on a more realistic network,
and on a “real-world” network. These networks do not have the Manhattan
type structure, but they are sparse.

The first network has 19 nodes. Choosing an aggregation level of L = 2, and
following the analysis in section 3.1, we should aim for 4 macronodes. In
figure 3 we show the network and the macronodes formed by the aggregation
algorithm.

The aggregation algorithm created 5 macronodes, of size 5 —4 -4 —4 - 2.
The target size of the macronodes was V19 ~ 4.36.

Running the decomposition algorithm for computing shortest-paths yields
the following results: the computation time is 0.017 seconds (when imple-
mented sequentially), which compares favorably with the computation time
for Dijkstra’s algorithm: 0.17 seconds (when implemented sequentially). The
average error in shortest-path length is equal to 0.14.

The second network is the network for Troy, Michigan. It has 170 nodes,

17

Figure 3: “St. Louis”

which means that the optimal number of macronodes is 13. The aggrega-
tion algorithm created 14 macronodes. The first 13 macronodes have sizes
between 10 and 14. The last macronode has cardinality 4. The target size
of the macronodes was v/170 ~ 13.04.

The sequential computation time for the decomposition algorithm is 0.57
seconds, while computing the exact shortest-paths using Dijkstra’s algorithm
takes 3.64 seconds. The average error is equal to 0.26.

Concluding, we can say that the aggregation and decomposition algorithms
yield satisfactory results. The aggregation algorithm constructs a good de-
composition of the network in macronodes, where the size of the macronodes
is roughly equal. The decomposition algorithm combines significant compu-
tational savings with an acceptable error in the solution.

18

6 Summary and suggestions for future re-
search

In this paper we have summarized existing methods for solving shortest-path
problems. In particular, we have addressed both sequential and parallel al-
gorithms. Next, we have developed a new decomposition algorithm, thereby
surrendering the optimality of the solution obtained, but gaining in terms
of computational effort and number of processors/computers needed to solve
the problem. The idea of the algorithm is to decompose the network into
smaller subnetworks, and a macronetwork in which each of the subnetworks
is a node. Then all subproblems are solved exactly (in parallel), and the
results are combined to obtain approximate shortest-paths for the original
network. We propose a heuristic for constructing the subnetworks. We have
empirically investigated the influence of the decomposition algorithm on the
precision of the solution obtained through a simulation study over a class
of networks. We also tested the preformance of the algorithms on a small,
but more realistic, network, and on a “real-world” network. These results
indicate that acceptable error levels can be attained for a suitable choice of
macronodes. Moreover, they show that the proposed heuristic for construct-
ing macronodes yields such a choice.

References

AKl, S.G. 1989. The Design and Analysis of Parallel Algorithms. Prentice-
Hall, Englewood Cliffs, NJ.

Bean, J.C., J.R. Birge, and R.L. Smith. 1987. Aggregation in dynamic
programming. Operations Research 35, 215-220.

Bertsekas, D.P., and J.N. Tsitsiklis. 1989. Parullel and Distributed Compu-
tation. Prentice-Hall, Englewood Cliffs, NJ.

Denardo, E.V. 1982. Dynamic Programming: Models and Applications. Prentice-

19

Hall, Englewood Cliffs, NJ.

Dreyfus, S.E., and A.M. Law. 1977. The Art and Theory of Dynamic Pro-
gramming. Academic Press, New York, NY.

Kaufman, D.E., and R.L. Smith. 1990. Fastest paths in dynamic networks
with applications to Intelligent Vehicle/Highway Systems. Working
paper, Department of Industrial and Operations Engineering, The
University of Michigan, Ann Arbor, MIL.

Murty, K.G. 1992. Network Programming. To appear.

Quinn, M.J. 1987. Designing Efficient Algorithms for Parallel Computers.
McGraw-Hill.

20

