The University of Michigan

Intelligent Vehicle-Highway Systems

Notes on Parallel Algorithms and Aggregation
for Solving Shortest Path Problems

H. Edwin Romeijn
Department of Operations Research & Tinbergen Institute
Erasmus University
Rotterdam, The Netherlands
and
Robert L. Smith
Department of Industrial and Operations Engineering

University of Michigan
Ann Arbor, Michigan 48109

January 1991

IVHS Technical Report 91 - 03
For Release on May 1, 1992

UNIVERSITY OF MICHIGAN
TRANSPORTATION RESEARCH INSTITUTE » (313) 936-1066
2901 Baxter Road, Ann Arbor, MI 48109-2150, and

COLLEGE OF ENGINEERING -« (313) 764-4333
4112 EECS, Ann Arbor, MI 48109-2122

Notes on Parallel Algorithms and Aggregation
for Solving Shortest Path Problems

H. Edwin Romeijn
Department of Operations Research & Tinbergen Institute
Erasmus University
Rotterdam, The Netherlands
and
Robert L. Smith
Department of Industrial and Operations Engineering

University of Michigan
Ann Arbor, Michigan 48109

January 1991

IVHS Technical Report 91 - 03
For Release on May 1, 1992

1 Introduction

In this paper we will review existing algorithms for solving shortest path problems, and
investigate the possibility of using parallel computing and, or aggregation techniques to speed
up the algorithms. This problem arises as part of the IVHS (Intelligent Vehicle/Highway
Systems) research project. For more on this subject, see e.g. Kaufman and Smith (1990).

2 Literature review

In this section some of the sequential and parallel shortest path algorithms from the literature
will be discussed. We will start by introducing some notation.

Let G = (V, A) be a graph, where V = {1,...,N} is the set of nodes,and A C V x V
is the set of arcs. Here (i,j) € A if there exists an arc from node 7 € V to node j € V.
Furthermore, let t;; denote the distance (or travel time, or some other measure of cost) from :
to j. If (1,7) & A then t;; = +oc. Note that the travel time from node 7 to node j is assumed
to be stationary, i.e. independent of the actual arrival time at node :. Let f;; denote the
length of the shortest path from ¢ to j in the graph.

2.1 Sequential shortest path algorithms
2.1.1 Acyclic graphs

If G is an acyclic graph, then without loss of generality we can assume that the elements in
V are ordered in such a way that (i,j) € A implies ¢ < j. The shortest path lengths then
satisfy the following recursion:

fij = ,-f_ffi“,- {fie +tx;}

fori=1,...,N—1land j=:¢+1,...,N. We can solve for the f-values using dynamic
programming, using either the recursive-fizing method or the reaching method:

(i) Recursive-fizing method:
DOfori=1,...,N-1
SET f,',' =0 and f;j = -0 fOl‘j ='|‘:+1,...,N

DOforj=:+1,...,N
DOfork=1i,...,j—1
fi; = min(fij, fir + ;)

(i1) Reaching method:
DO for:=1,...,N -1
SET f,-;:Oand f‘-j = —OOfOI‘j =1+1,....N
DOfork=i+1,...,N =1
DOforj=k+1,....,N
fi; = min(fi;, fie + tej)

For both methods the time necessary to compute all shortest paths in the graph is O(N3)
(see Denardo, 1982).

2.1.2 Cyclic graphs

For cyclic graphs the lengths of the shortest paths satisfx the following functional equation:
fii = min {fix + trj}

In the remainder we will assume that there are no cycles of negative length in the graph.

(1) Dijkstra’s method:
This method is basically an adaptation of the reaching method for acyclic graphs
discussed above. For fixed 7, this method computes the values of f;; in nondecreasing
value sequence: '

DO ford = 1, seaedV
SET f; =0, SET f;; =ty fori#j=1,...,N.and SETT = V — {i}
REPEAT
SET k= arg min,-eq- f,‘j
SETT=T-{k}. IFT = 0 STOP, otherwise
DOforjeT
fiz = min(fes, fie+ i3)

The complexity of this algorithm is O(N?) for dense graphs, and O(nN?log N) for

sparse graphs, where n is the average number of arcs emanating from a node (see

Dreyfus and Law, 1977).

(ii) Floyd’s algorithm:
Let f;;(k) denote the length of the shortest path from i to j, where the shortest path
only uses nodes from the set {1,...,k}. Then obviously f;; = fi;(N). We can now
solve recursively for the values of k:
SET f;;(0) = t:; for all (i, 5)
DO fork = L. slN
FOR ALL (i,) SET fi;(k) = min (fi;(k — 1), fue(k = 1) + fis(k = 1))

Again, the complexity of this algorithm is O(N?).

In the following section we will see that an adaptation of the last method (Floyd’s method)
is especially suited for use in a parallel computing environment.

2.2 Parallel algorithms
2.2.1 A modification of Floyd’s algorithm

In the original version of Floyd’s algorithm, f;;(k) denotes the length of the shortest path
from ¢ to j using only intermediate nodes from the set {1,...,k}. As an alternative, let us
denote the length of the shortest path from 2 to 7 using at most k—1 intermediate nodes (i.e.,

using at most k arcs) by f5. Then, using 2Mes(N-1)1 > N — 1, we have that f;; = ffjn"m_m_

So, the f-values can be computed recursively using the following algorithm:

SET f}; = ti; for all (2, 7).
DOfork=1,...,[log(N -1)] -1
FOR ALL (3, 7)
SET f2* = mineev (£ + f%)

When implemented sequentially, this algorithm has complexity O(N3log N). However, the
part of the algorithm inside the “k-loop™ can be implemented using (a modification of) a
matrix multiplication algorithm. For the latter problem, a variety of parallel algorithms
exist, one of which we will discuss in some more detail in the next section.

3

2.2.2 Matrix multiplication

Consider the problem of multiplying two N x N matrices, say A and B. Let C = AB. A
(sequential) algorithm for computing C is:

FOR ALL (i,)
SET G; = 0
FOR¢=1,...,N DO

SET cij = ¢ij + aiebs;

By
- *»
By4 L By
% By By
Byy g
Bay L
1 :
1
&y 8 8y 8, 83 —
Lo iR] Loy b -] ma
Iy By By By By . —g
) R [T}
Oy Oy B By 89y - . o
. =an M
Gy Bg g 8y 09 -
L 8) ~8 ma

Figure 1: A parallel algorithm for multiplying two matrices’

In figure 1 we illustrate how this algorithm can be programmed in a parallel fashion by using
a mesh-connected parallel computer with N? processors. The time complexity of this parallel
algorithm can be shown to be O(N). Comparing the modified Floyd’s algorithm and the
matrix multiplication algorithm it is clear that we obtain the innermost loop of the former
algorithm from the latter algorithm by replacing multiplzcation by addition and addition by
taking of minimum. So, we obtain a parallel algorithm for shortest path calculation having
complexity O(N log N), while using N? processors (see Akl, 1989).

'From Akl (1989).

2.2.3 Another “parallel” algorithm

An obvious way of parallelizing (for example) Dijkstra’s algorithm for the all-pairs shortest
path problem is to use N processors, and to let each processor compute all shortest paths
from a single origin to all possible destinations. In this way we obtain an algorithm having
time complexity O(N log N) for sparse graphs, and O(N?) for dense graphs. Note however
that the notion of “processor” used in this context differs from the one used in the preceding
section, since the tasks that have to be performed by the two processors. differ immensely.
On the other hand, the latter algorithm is only pseudo-parallel in the sense that there is no
communication necessary between the processors. This of course is an enormous practical
advantage, since no real parallel computer architecture is necessary.

3 Aggregation

In the previous section we have seen that we can solve the all-pairs shortest path problem
in O(N?log N) time (for sparse networks) when using a sequential algorithm. Moreover, it
turns out to be possible to reduce the time by a factor N to O(N log N) by using N? “small”
or N “large” processors in a parallel fashion. In this section we will investigate whether we
can reduce the number of processors necessary to solve the problem, while keeping the time
complexity of the algorithm equal to O(Nlog V). Obviously, we will now have to sacrifice
something other than time to be able to achieve this goal. In particular, we will give up the
goal of obtaining a truly optimal solution.

3.1 A simple model

We will start by considering the following (simplified) model. Let G = (V, A) be a graph,
and let every node have exactly 4 neighbors

Assume the graph (having N nodes) is a v/N x /N mesh. We will aggregate nodes so that we
have M “macronodes”. Assume that we aggregate in such a way that the “macro-network”

is a VM x /M mesh, and that every macronode itself is a \/N /M x \/N /M mesh.

'We can approximately solve the shortest path problem for G by finding all shortest paths in
the macronetwork, and also all shortest paths in each macronode, and then combine these to
get paths connecting all pairs of nodes. Of course, these paths are not necessarily shortest

paths in G, even if all subproblems are solved optimally.

Suppose we have M + 1 processors, so that the M + 1 subproblems can be solved in parallel.
Then: ;

e the time necessary to compute all shortest paths inside one of the macronodes is
O((N/M)*log(N/M)) if we use Dijkstra’s algorithm;

e the time necessary to compute all shortest paths in the macronetwork is O(M?log M).

We now want to minimize the time necessary for all M + 1 processors to complete their task.
In other words, we should minimize

max (0 ((%)2 log (%)) ,O(M?log M)) .

We can minimize this function if we only consider solutions of the form M = O(N®), for
a € [0,1]. Then the problem becomes:

min max (O (N*"**log N) ,0 (N**log N))

the solution of which is given by: a = 1.

So we can conclude that using M +1 = v/N +1 (or M = O(v/N)) processors, we can obtain
an approximate solution to the shortest path problem in O(N log N) time. Although the
model presented here is very simple, the results still hold if we make the assumption that we
only consider partitions of the network into macronodes having the property that:

1. each macronode has the same (sparsity) structure as the original network (with respect
to average number of neighbors etc.);

2. the macronetwork obtained by aggregating the nodes inside each macronode to form
one node also has the same (sparsity) structure as the original network.

If the original network (and the macronodes) are dense, the results concerning the number
of macronodes still remains the same, but the time complexity of the algorithm becomes
O(N?) (see also section 2.3 above).

3.2 Level of aggregation

In the preceding section we considered only the case where aggregation takes place only one
level down. In this case we will say that the aggregation level is L = 2. It is possible to
generalize the results to the case where we consider arbitrary aggregation levels L. Using
the same type of analysis as above, we obtain that the number of macronodes of the lowest
level (i.e. the number of macronodes of the smallest size) should be O(NV/L) = O(V/N).
The running time of the algorithm then becomes equal to O(N*Llog N).

It would be interesting to address the question: what is the “optimal” choice for L. To
answer this question we have to define what we mean by “optimal”. However, one of the
elements that would certainly have to be included here is the effect of aggregating a certain
number of levels down on the precision of the solution obtained by the algorithm. Obviously,
there will be a negative influence of increasing the level of aggregation on the precision of
the solution, but at this point this is all we really can say about this effect. So for now the
question of optimal-aggregation-level-choice remains an open issue for future research.

3.3 The Sequential Aggregation Disaggregation Algorithm

In Bean et al. (1987) an algorithm, called SADA (Sequential Aggregation Disaggregation
Algorithm) was introduced for computing approximately the shortest path lengths in an
acyclic graph using node aggregation. An error analysis was given, including an explicit
error bound. For our purposes we are interested in a generalization of these results to the
case of a cyclic graph. This will also be a subject of future research.

4 Summary and suggestions for future research

In this paper we have summarized existing methods for solving shortest path problems. In
particular, we have addressed both sequential and parallel algorithms. Next we have made
a start with trying to use aggregation techniques, thereby surrendering the optimality of the
solution obtained, but gaining in terms of computational effort and/or number of proces-
sors/computers needed to solve the problem. The main question that has to be addressed in
the future is the influence of aggregation on the precision of the solution obtained. This will
allow us to make a more rigorous statement about how to aggregate the problem, or even
on whether to use aggregation at all.

References

Akl, S.G. 1989. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood
Cliffs, NJ.

Bean, J.C., J.R. Birge, and R.L. Smith. 1987. Aggregation in dynamic programming.
Operations Research 35, 215-220.

Denardo, E.V. 1982. Dynamic Programming: models and apphcatzons Prentice-Hall, En-
glewood Cliffs, NJ.

Dreyfus, S.E., and A.M. Law. 1977. The Art and Theory of Dynamic Programming. Aca-
demic Press, New York. NY.

Kaufman, D.E., and R.L. Smith. 1990. Fastest paths in dynamic networks with applications
to Intelligent Vehicle/Highway Systems. Working paper, Department of Industrial
and Operations Engineering, The University of Michigan, Ann Arbor, MI.

