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1 Introduction

An assignment of flow in a traffic network in which no vehicle can alter its route choice so
that its trip duration is reduced is described as satisfying user equilibrium. This condition
models drivers behaving noncooperatively with perfect information about the available route
choices. There are well known models and methods for determining static user equilibrium
flows, under the assumption that traffic conditions are constant over time (see, €8, [8D).
The problem of dynamic user equilibrium, where traffic conditions change over time, has not
been solved so satisfactorily.

Classical approaches try to construct a single mathematical model including route choices
as decision variables, which are used to compute link travel times and corresponding trip
durations. The model is given constraints or an objective function intended to force the
trip durations to satisfy user equilibrium. These models have difficulties guaranteeing the
existence of a user-equilibrium solution and computing 2 solution when one exists.

We decompose the classical approach into two parts. We consider assignment mappings,
which give link travel times and trip durations that result from fized vehicle routings. We
also construct routing mappings, which determine user-equilibrium routings given fixed link
travel times. The resulting routings are not user equilibrated, in general, because they are
based on input link travel times that might not be reproduced by the calculated routings.
If the calculated routings reproduce the input link travel times through the assignment
map, however, then the routings do satisfy user equilibrium. We describe such routings as



fixed points of the combined routing/assignment mapping. We use this characterization to
investigate existence of user-equilibrium solutions through fixed-point theory. We consider
the effects of modelling in discrete or continuous time and with all-or-nothing or multipath
routing.

2 All-or-nothing routing

Let the traffic network be G = (N, L), where N is the set of nodes, D C N the set of
destinations, and L the set of links. Let T be the set of time indices at which decisions can
be made. We call a function 7 : N x D x T — L an all-or-nothing routing policy, so called
because all the traffic at node n € N at time ¢t € T with destination d € D must choose
m(n,d,t) as its next link. (We call routings that split the traffic at (n, d,t) onto two or more
next links multipath policies.) Denote by II the set of all-or-nothing policies.

Wecall c: L x T — R* a travel time function (R* denotes the nonnegative reals); ¢(¢,1)
will be interpreted as the link travel time experienced by a vehicle that enters link £ at time
t. Denote by C the set of link travel time functions.

We require a function A : II — C, which we call an assignment mapping; ¢ = A(r)
gives the link travel times that would occur in the traffic network G when all vehicles in the
network are routed according to policy . We also introduce R : C — II, which computes
as m = R(c) the time-dependent fastest paths in the network under link travel times c; we
call R the routing mapping. We call a routing policy satisfying R(A(r)) = 7 a fized point.

The problem of calculating time-dependent fastest paths, i.e., evaluating R, has been
explored in [4], where it was shown that finding the fastest paths for trips starting at any
fixed time ¢ requires no additional computational effort beyond static shortest-path calcula-
tion. The nature of the assignment mapping A is very general; our definition encompasses
the range from mathematical models based on link impedance functions (e.g. (1,3,5,6]) to
traffic simulations (e.g. [10]). We now make formal the characterization of user-equilibrium
solutions as fixed points.

Definition 1 A policy = € II satisfies user equilibrium if, when all vehicles follow =, the
ensuing link travel times are such that all paths that are used by some vehicle from any node
n € N starting at any time t € T to any destination d € D have equal duration, and the
paths that are not used have equal or greater duration.

Theorem 1 A fized-point routing policy satisfies user equilibrium.

Proof: By contradiction. Suppose a policy 7 € Il is a fixed point, i.e., 7 = R(A(x)), but =
does not satisfy user equilibrium. Then under the link travel times A(r), which prevail
in the network under =, for some n € N, t € T, d € D the trip duration from n to d
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at time t choosing link £ = n(n,d,t) leaving n is greater the trip duration choosing a
different link ¢ leaving n. But since R determines 7 as the fastest-path routing under
link travel times A(x), 7(n;d,t) =€, a contradiction. ®

The theorem completely characterizes user-equilibrium solutions, but does not specify
how to compute them. The natural approach is to choose an arbitrary initial routing policy
%o, set k = 1, and proceed iteratively by the steps cx = A(Tx-1); Tk = R(ci); increment
k. The iteration terminates when 7 = 7; for some j < k. The iterative method has been
applied by Kaufman, Waunderlich, and Smith [2] under the acronym SAVaNT (Simulation of
Anticipatory Vehicle Network Traffic), using the INTEGRATION traffic simulation [10] as
the assignment mapping. In a small test network, the iteration frequently terminated with
j=k—1,ie,witha fixed point 7%, where k was typically about 10 iterations. However, in
some experiments, j < k —1; i.e, the method encountered cycling without finding a fixed
point, and thus no user-equilibrium solution was found.

In general, we cannot guarantee that a fixed point exists under all-or-nothing routing.
In the discrete-time case this is demonstrated trivially by an example consisting only of two
nodes and two identical links from node 1 to node 2, where a vehicle platoon wishes to travel
from 1 to 2 at time zero. Only two routing policies exist, one choosing the first link and
the other choosing the second. Under the usual assumption that link travel times are an
increasing function of the load on the link, both policies have the property that the link not
chosen appears to give a shorter trip duration, and hence the SAVaNT iteration would cycle
between the two policies, neither being a fixed point. The cause of the nonexistence dilemma
is twofold. First is the essential discreteness of all-or-nothing routing, which does not permit
us to seek an equilibrium solution by splitting the platoon until the flow on the two paths
s balanced. This motivates our investigation of multipath routing, which follows. Second,
our definition of user equilibrium is somewhat restrictive. In the example, neither policy is
a fixed point because the unused path always looks faster; but when the route is changed
the travel time is the same as before. Both policies would satisfy a weaker definition of user
equilibrium, encompassing policies that allow alternate paths that are faster when unloaded
but which would be slower when the route is changed, as in the example. However, the
weaker definition would require a more general assignment mapping, producing link travel
times corresponding to a multiplicity of “what-if” alternate-route scenarios. This would be a
considerable computational burden for traffic simulation models, and would also be difficult
in mathematical assignment models.

It might appear that we could get around the discreteness of all-or-nothing routing by
choosing a time interval small enough to allow us to achieve flow balance. The general
expression of this approach is the idea of bang-bang continuous-time control, in which the
time index set T is an interval [0, f), partitioned into a number of subintervals. The admissible
bang-bang routing policies are those that are all-or-nothing on each of the subintervals of



the partition. Even this generalization is not sufficient to guarantee existence of fixed points.
To show this, we reconsider the network of our previous example. Let the first subinterval of
the partition be [0,t]. Under a bang-bang policy, the route choice must be the same during
all of [0,t1]. Then no matter how small we make 1, the other link looks better at time t;/2
and thus the policy is not a fixed point. To generalize further, we must include policies that
are not necessarily piecewise constant, leading again to our treatment of multipath routing,
which follows.

3 Multipath routing

Where previously we specified a route choice as a next link £ € L, we now give route choice
as a vector of fractional splits. Strictly for simplicity of notation, we assume that G has
exactly two links departing each node. Let

L= {(vhvz) eR? v, 20,1 tv2 = 1}

be the space of routing split vectors; if v = (v1,vq) is the routing split vector to be applied to
a flow of z vehicles at node n, time ¢ with destination d, then for : = 1,2 the destination-d
flow onto the *® link away from n at time t is v;z. We do not require that the resulting
vehicle flow assignments be integer.

We define the set of multipath policies by I ={7:NxDxX T — L}; a multipath
policy gives a routing split vector for each decision point (n,d,t). Il is a multidimensional
continuum to which we seek to apply fixed-point theory to conclude existence of fixed points.
In particular, we wish to apply the following (see e.g. [9]):

Theorem 2 (Schauder’s theorem) Let X be a complete metric space, and let K be a compact
convez subset of X. Then any continuous function f: K = K has a fized point z € K.

In our case, we consider X as a space of routing/assignment functions similar to R(A(+))
and K as imposing restrictions that the elements of the routing functions, i.e., the routing
split vectors, have nonnegative components summing to one.

In this section we discuss how to formulate routing mappings so that the combined rout-
ing/assignment function is continuous. We then discuss approaches to casting the whole of
the problem in a form that meets the topological requirements of metrizability, completeness,
and compactness. If we meet these requirements, we can conclude by the theorem that a fixed
point exists. We also prove that for the routing map we present, a fixed point satisfies user
equilibrium. Note that our prior definition of user equilibrium requires no generalization.



3.1 An iterative routing mapping

To apply Schauder’s theorem, we must define the routing/assignment function so that it is
continuous. It is not our purpose here to concentrate on the assignment half of the loop; we
simply assume a continuous assignment mapping A : Il — C giving the link travel times that
follow from multipath routings. It then suffices to construct a continuous routing function,
since the composition of continuous functions is continuous. In the all-or-nothing case, we
used a routing function R, which simply produced a single fastest path for each decision
point. If we proceed in the multipath case in the same way, by calculating fastest paths
based on no other input than time-dependent link travel times c € C, the resulting routing
split vectors will always be either (1, 0) or (0,1), i.e., an all-or-nothing choice. Therefore, we
must construct a routing map that uses more information.

We will present an iterative routing mapping which can be seen as part of a SAVaNT-type
loop, taking a previous routing policy as its additional input. This mapping has the form
B : 1 x C — 1I. In the current paper, W€ will restrict our attention to the case of networks
with only one destination; we expect the generalization to multiple destinations to present
more difficulty in exposition than in technical content. Henceforth, we suppress notation for
the destination set D and its representative element d.

Consider a “current” policy 7o € Il and let ¢ = A(#o) be the resulting link travel times.
Consider a particular decision point (n,t) and let ¢, and £; be the links leaving n. We begin
by calculating the time-dependent fastest path from (n,t) to the destination exactly as we
did in the all-or-nothing case; but we also store a byproduct of that computation, namely
the dynamic programming slacks s, and s2 associated with £, and £3. The DP slacks are
defined as follows: if p is the duration of the fastest path from (n,t) to the destination, then
p+ s; is the duration of the fastest path from (n,1) to the destination choosing l; as the nezt
link of the trip. Put another way, s; is the unnecessary delay incurred by choosing l; as the
next link, and /; is an optimal next link if and only if s; = 0. The following properties hold:

e the slacks are continuous as functions of ¢
® 31,52 ?_ 0
e min{s;,s2} =0

o If s; = s, = 0 then the paths starting with [, and I, have the same duration and are
both optimal.

We use the slacks to adjust the current policy; the greater the potential delay of a
suboptimal route choice, the more we will adjust the current split vector to favor the optimal
choice. Formally, write the current split vector mo(n,t) as v = (v?,v9) and the new split



vector T, (n,t) (the (n,t) component of 7y = R(mo, A(mo))) as v' = (v!,v}). We calculate the
new split vector by

1 s

v o= o 1v§’+ (2 — 1) (1)
1 a3

‘Ué = prrpr 11)3 +(e { 1)

for some choice of @ > 0. The denominator is present only to preserve the normalization
of the vector, i.e.; to make the components of the split sum to one. Technically, this may
result in split vectors with elements outside [0,1]; when this happens, write zero in place
of anything smaller and one in place of anything larger before normalizing. Note that v’
is continuous as a function of the previous split »° and the slacks s. We noted previously
that the slacks are continuousin c. Therefore, the routing mapping for each decision point
is continuous over the domain I x C, which was our goal in adding the iterative element
to the routing mapping. We can now prove that a fixed point of R(-,A()) satisfies user
equilibrium.

Theorem 3 A routing policy @ € I satisfies user equilibrium if and only if * = R(x, A(%)).

Proof: Let ¢ = A(%) and @ = R(#,c). By definition, ¥ satisfies user equilibrium if and
only if for each decision point (n,t), ®(n,t)i = v; >0 if and only if the i*® link away
from n is optimal at time ¢ according the link travel times c, or equivalently if s; = 0.
We denote v’ = #/(n,t). We consider three cases. First, v = (v1,v2) = (1,0). Then
from equation (1), v = v' if and only if s; = 0. In the second case, when v = (0,1),
v = o if and only s, = 0 by symmetry. In the third case, when v = (8,1 — ) for some
0<fB<1,thenv="1 if and only if s, = s2 = 0. This last is easy to see because at
most one of s1, 2 is nonzero.

Thus at each decision point (n,t), v = v if and only if 7 directs flow only onto links
that are optimal according to ¢, i.e., if and only if 7 is user equilibrium. =

The iterative routing mapping suggests an ad hoc computational procedure just like SA-
VaNT, beginning with an arbitrary routing policy and applying the assignment and iterative
routing mappings until some convergence criterion is met. However, even if we succeed in
proving the existence of fixed-point multipath policies, we cannot guarantee that this version
of SAVaNT will terminate. To prove convergence of this successive approzimation method,
we would have to prove that R(:, A(+)) is a contraction mapping (cf. [9]), which would depend
on the specific form of the assignment mapping.



3.2 Existence of fixed points

We close by discussing the topological issues involved in applying Schauder’s theorem to
conclude existence of fixed points and hence by theorem 3 user-equilibrium routing policies.

Schauder’s theorem requires a definition of the policy space that admits of a metric, sat-
isfying the usual axioms of nonnegativity, symmetry, and the triangle inequality. The space
must be a Banach space, i.e., complete under this metric. Completeness, the property that
any Cauchy sequence has a unique limit, is a relatively common property of metric spaces;
we do not consider this issue to be one of the major obstacles. The set of admissible policies
must be compact, which in a metric space is equivalent to the condition that any infinite
sequence contains a convergent subsequence. Finally the routing/assignment mapping must
be continuous over the set of admissible policies. We have noted above that the individual
component of the routing/assignment mapping corresponding to a single routing split vec-
tor is continuous, but any proof that the product mapping across all routing split vectors
(i.e., all decision points) is continuous depends on the particular choice of metric. The last
requirement for the theorem, convexity, is not a topological property; the policy space is
convex if for any two policies Ty, 72, Am 4+ (1 =A)mp is also a routing policy for all 0 < A<l
This is trivial independent of the metric.

In a discrete-time framework, the topology seems deceptively simple. In that case, we can
express the policy space as a finite-dimensional Euclidean space, with the usual Euclidean
metric making the space complete. In Euclidean space, for the set of admissible policies II
to be compact, we only need it to be closed and bounded, which follows from the restrictions
of nonnegativity and split vectors summing to one. Furthermore, a function on Euclidean
space is continuous if and only if its components are continuous, hence the routing mapping
‘s continuous. The difficulty is in the assignment mapping. If vehicles only have decision
opportunities at discrete time epochs 0, At, 24, .. ., then the link travel times must all occur
in exactly the same discrete units. Thus the assignment mapping cannot yield a continuum
of travel times, i.e. it is not continuous. Unless we find a new way of looking at this situation,
the discrete-time case will remain a potentially valuable computational approach that has
theoretical validity only as an approximation to a more general mathematical framework.

The continuous-time case is more complicated. Here the routing split vectors appear as
functions into Euclidean space over a continuous time interval [0,%]. We have considerable
freedom in choosing a topology within these function spaces, but the well-known choices all
have drawbacks. One way to ensure compactness is to restrict our attention to routing split
vector functions that are continuous over time and try to apply Ascoli’s theorem. However,
it is not apparent that a class of continuous functions over time is rich enough to model
the vehicle routing controls we wish to study. Among other well-known topologies, the L
space (induced by the supremum norm) can be shown to fail compactness, and the product



off theorem but fails to be metrizable. (For more

.4 is compact by the Tychon
e have invoked, see [7].)
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