
by

Yinghao Huang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Information Systems Engineering)

in the University of Michigan-Dearborn

2014

Doctoral Committee:

Professor Yi Lu Murphey, Chair

Professor William Grosky

Assistant Professor Hafiz Malik

Associate Professor Paul Watta

Intelligent Typo Correction and Text Categorization Using Machine Learning

and Ontology Networks

©2014

Yinghao Huang

All Rights Reserved

ii

DEDICATION

I dedicate this dissertation to my beloved family – to my parents, as without their love and

support over the years this work would not be possible, and to my loving wife, Yi Gao, and my

dear daughter, Mackenzie, who make our life an inspirational journey.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Yi Lu Murphey for her valuable guidance, advices, support,

and the inspirational discussions we had. I thank her for not only training me with professional

research abilities, but also teach me rules and principles that will become knowledge and wisdom

in my future. I would also like to thank members of my doctoral committee, Professors Bill

Grosky, Paul Watta and Hafiz Malik for their suggestions and guidance.

I have been lucky to be a part of a group of enthusiastic researchers at the UM – Dearborn ISL

lab. I appreciate the opportunities for collaborations and discussions with variety of people,

including Jungme Park, Chen Fang, Qi Dai, Wenduo Wang, Shen Xu, Dai Li, Xipeng Wang, etc.

It has been a precious experience to work with them and learn from them. Special thanks to

Xipeng Wang, for helping me with experiments and having discussion with me about research

problems and exchange ideas.

Finally, I would like to thank my wife, Yi Gao, for her support over the years and encouragement

for continuing my research work.

iv

TABLE OF CONTENTS
Page

DEDICATION... ii

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

ABSTRACT ... x

 INTRODUCTION ... 1 CHAPTER 1.

1.1. Motivation .. 1

1.2. Problem description and research focus ... 3

1.3. Major research contributions .. 6

1.4. Structure of dissertation ... 8

 BACKGROUND AND RELATED WORK .. 9 CHAPTER 2.

2.1 Text mining .. 10

2.2 Typo correction .. 12

2.3 Ontology networks ... 18

2.4 Text representation models .. 21

2.4.1 Vector Space Model (VSM) ... 21

2.4.2 Latent Semantic Indexing (LSI).. 25

2.4.3 Statistical topic models ... 27

2.5 Text categorization ... 33

2.5.1 Text categorization based on machine learning algorithms 33

2.5.2 Text categorization based on statistical topic models ... 36

2.5.3 Text categorization based on ontology network ... 37

 AUTOMATIC TYPO CORRECTION USING MACHINE LEARNING CHAPTER 3.

AND EXTERNAL KNOWLEDGE BASES ... 39

3.1 Machine learning algorithms to extracting knowledge for typo correction 40

3.1.1 Extracting knowledge of domain-specific terms and acronyms 41

v

3.1.2 Building a lexicon of similar typos and domain-specific abbreviations 42

3.1.3 Extracting contextual knowledge .. 47

3.1.4 Assessing typo correction candidates ... 51

3.2 Intelligent Typo Detection and Correction (ITDC).. 58

3.2.1 Typo detection and correction candidate generation .. 59

3.2.2 Word boundary error detection and correction ... 60

3.2.3 Abbreviation processing ... 62

3.2.4 Correction candidate weight generation, ranking and selection 63

3.3 Empirical study .. 67

3.3.1 Building general knowledge bases.. 67

3.3.2 Building domain specific knowledge bases .. 68

3.3.3 Typo detection and correction .. 68

 TEXT CATEGORIZATION BASED ON MACHINE LEARNING, CHAPTER 4.

STATISTICAL MODELING AND ONTOLOGY NETWORK ... 78

4.1 Text categorization based on VSM and PLSA topic modeling 80

4.1.1 A VSM Model with a new global weighting scheme ... 80

4.1.2 A VSM augmented with PLSA topic modeling ... 82

4.1.3 A VSM augmented with semi-supervised PLSA topic modeling 88

4.2 A VSM augmented with WordNet ontology ... 99

4.2.1 An augmented TD matrix generated using WordNet ... 99

4.2.2 Generate document-document connection for semi-supervised PLSA using

WordNet .. 105

4.3 A step-by-step example of proposed text representation model generation procedure 108

4.3.1 Build VSM model with CE_W global weighting scheme 109

4.3.2 Build VSM model with PLSA topic modeling ... 110

4.3.3 Build VSM model with WordNet ontology .. 115

4.3.4 Build VSM model with semi-supervised PLSA ... 117

4.3.5 System evaluation based on document distance measure 127

4.4 Generate hybird VSM model for classification.. 130

 EMPIRICAL CASE STUDY AND EXPERIMENTAL RESULTS CHAPTER 5.

EVALUATION ON TEXT CATEGORIZATION .. 132

vi

5.1 Datasets .. 133

5.2 Experiment setup .. 135

5.3 Build VSM model with PLSA ... 136

5.4 Build VSM model with WordNet ontology ... 139

5.5 Build VSM model with semi-supervised PLSA .. 142

5.6 Text categorization performance summary & analysis .. 146

 CONCLUSION AND FUTURE WORK ... 150 CHAPTER 6.

REFERENCES .. 153

vii

LIST OF FIGURES

Fig. 1. Examples of well-structured and unstructured text documents .. 3

Fig. 2. Results of POS tagging on well-structured and unstructured text documents 17

Fig. 3. Example of WordNet ontology instance visualization .. 19

Fig. 4. Example of TD matrix generation ... 23

Fig. 5. Mathematical Representation of Singular Value Decomposition 26

Fig. 6. Graphical model representation of PLSA ... 28

Figure 7. Graphical model representation of PLSA ... 31

Figure 8. Graphical model representation of PLSA ... 35

Fig. 9. Extracting knowledge for typo detection and correction .. 41

Fig. 10. Four types of topographical spelling errors .. 43

Fig. 11. Example of n-gram statistics .. 50

Fig. 12. NN_TC_Conf: a neural network for measuring the confidence about a correction

candidate of a typo .. 52

Fig. 13. QWERTY keyboard distance matrix .. 54

Fig. 14. Overview of ITDC (Intelligent Typo Detection and Correction) system 58

Fig. 15. Candidate ranking and selection ... 66

Fig. 16. Example of text categorization accuracy w/o typo correction 77

Fig. 17. Example of text categorization feature size w/o typo correction 77

Figure 18. Proposed text categorization model framework ... 79

Figure 19. Graphical model representation of semi-supervised PLSA .. 90

Figure 20. Proposed text categorization model framework ... 98

Figure 21. Example of generating related words in WordNet ... 101

Figure 22. Example of weighting edges in the tree structure generated for synset 102

Figure 23. Example of concept generation in “add” rule ... 104

Figure 24. Example of EM algorithm Initialization... 111

Figure 25. Example of EM algorithm E-Step .. 112

Figure 26. Example of EM algorithm M-Step ... 113

Figure 27. Example of EM algorithm result after convergence ... 114

Figure 28. EM algorithm result for testing document Du .. 115

Figure 29. Example of EM algorithm Initialization for semi-supervised PLSA 119

Figure 30. Example of EM algorithm E-Step for semi-supervised PLSA 120

Figure 31. Example of EM algorithm M-Step for semi-supervised PLSA 121

Figure 32. Example of EM algorithm result for semi-supervised PLSA after convergence 122

Figure 33. Semi-supervised PLSA EM algorithm result for testing document Du 124

file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260949
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260950
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260951
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260952
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260953
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260954
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260955
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260956
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260957
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260958
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260959
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260960
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260960
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260961
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260962
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260963
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260964
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260965
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260966
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260967
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260968
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260969
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260970
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260971
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260972
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260973
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260974
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260975
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260976
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260977
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260978
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260979
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260980
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260981

viii

Figure 34. PTr(D|z) generated for semi-supervised PLSA ... 125

Figure 35. Comparison between PLSA and semi-supervised PLSA ... 126

Figure 36. VSM matrix generation and combination .. 131

Figure 37. Example of log-likelihood maximization for PLSA .. 136

Figure 38. Text categorization performance based on different number of topics generated by

PLSA ... 138

Figure 39. Text categorization performance based on different number of topics generated by

PLSA ... 145

Figure 40. Text categorization performance based on different number of topics generated by

PLSA ... 145

file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260982
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260983
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260984
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260985
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260986
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260986
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260987
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260987
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260988
file:///C:/Users/yinghaoh/Desktop/Thesis_V6%20(1).docx%23_Toc390260988

ix

LIST OF TABLES

Table 1 Example of similar term groups ... 47

Table 2 Example of Levenshtein distance .. 53

Table 3 Example of entries in T&C_L1 .. 60

Table 4 Example of entries in T&C_L2 .. 62

Table 5 Example of entries in T&C_L3 .. 63

Table 6 Example of word boundary errors ... 70

Table 7 Example of uncommon ABBREVIATIONS ... 71

Table 8 Example of Typos recognized by GTKB2 ... 72

Table 9 Example of Typos recognized by DB2 .. 72

Table 10 Typos recognized by DB3 ... 73

Table 11 Performance Comparison with State-of-art Spell Checkers on T1 74

Table 12 Performance comparison with state-of-art spell checkers on T2 75

Table 13 Correction candidate List comparison ... 75

Table 14 Tf-idf representation for HCI_GF .. 109

Table 15 Tf-CE_W representation for HCI_GF .. 109

Table 16 CD matrix generation for Tr and Du .. 116

Table 17 Tf-CE_W representation for Tr and Du after using WordNet “replace” rule 117

Table 18 Connection matrix for HCI_GF ... 118

Table 19 Euclidean distance between Du and training documents based on different text

representation - I ... 127

Table 20 Euclidean distance between Du and training documents based on different text

representation - II .. 128

Table 21 Text categorization performance based on different number of topics generated by

PLSA ... 137

Table 22 Text categorization performance using WordNet based on different word class 140

Table 23 Text categorization performance using WordNet based on different

hypernym/hyponym and meronym/holonym weighting ... 141

Table 24 Text categorization accuracy using semi-supervised PLSA based on different hyper-

weight values ... 143

Table 25 Text categorization accuracy using semi-supervised PLSA based on different hyper-

weight values ... 144

Table 26 Text categorization accuracy comparison .. 148

Table 27 Text categorization average F-1 measure comparison .. 149

file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846779
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846780
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846781
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846782
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846783
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846784
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846785
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846786
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846787
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846788
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846789
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846790
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846791
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846792
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846793
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846794
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846795
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846796
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846797
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846797
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846798
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846798
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846799
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846799
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846800
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846801
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846801
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846802
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846802
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846803
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846803
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846804
file:///C:/Users/yhuang/Downloads/Thesis_V7.docx%23_Toc390846805

x

ABSTRACT

In this dissertation, we present our research work in text mining field, mainly focusing on

accurately and efficiently performing the task of text preprocessing and text categorization, using

machine learning techniques and ontology networks. Specifically, an innovative intelligent typo

correction system, ITDC, is proposed to automatically correct misspellings in text documents

using general language knowledge and domain specific knowledge extracted by machine learning

algorithms. It has the capability of correcting a broad range of typos, from simple typos such as

duplication, omission, transposition, substitution characters, to complex spelling errors, such as

word boundary errors, unconventional use of acronyms, and multiple versions of abbreviations of

the same words. It uses the generated knowledge for identifying unconventional acronyms,

grouping similar words (correctly spelled and misspelled), and ranking correction candidates.

An innovative text categorization model, VSM_WN_TM, is also presented. VSM_WN_TM is a

special Vector Space Model (VSM) that incorporates word frequencies, ontology networks and

latent semantic information. Unlike the traditional text representation using only Bag-of-words

(BOW) features, it also incorporates semantic and syntactic relationship among words such as

synonymy, co-occurrence and context, with the purpose of providing more inclusive and accurate

text representation.

The results from the performed experiments are highly encouraging. The ITDC system is

evaluated through a case study that involves the automatic processing of automotive fault

diagnostic text documents. The performance generated from more than 580000 automotive fault

xi

diagnostic documents provided by two different automotive manufacturers show that the

proposed system outperforms state-of-art spell checking systems.

The proposed VSM_WN_TM model is evaluated on three publicly available datasets and one

domain-specific dataset. Experiment results show that our approach significantly improves text

classification by outperforming baseline approaches such as using only latent features and

traditional VSM approaches.

Indexed Keywords: text mining, text preprocessing, text categorization, typo correction, machine

learning, ontology networks, statistical language modeling.

1

 INTRODUCTION CHAPTER 1.

1.1. Motivation

We have witnessed the blooming of web-based text resource volume in recent decades within

different domains, such as social networks (Email, Twitter, Micro blogs, customer reviews, etc.),

automotive industries (vehicle diagnostics, customer queries, etc.) and medical science (physician

diagnostics, patient medical records, etc.). With the proliferation of text data, text mining

techniques have drawn significant attention by people in both academic and industrial field for

quite a long time. Text mining is generally defined as finding interesting patterns and trends of

data. Especially in the age of “Big Data” [1], when data management systems are overloaded

daily by data in free text form, text document processing brings more and more necessity for

automated, accurate and efficient text mining algorithms. These algorithms could be used to fulfill

different objectives, such as data preprocessing, text clustering and categorization, information

retrieval, etc.

Text mining is characterized as the process of analyzing text to extract information that is

useful for particular purposes. The key point that makes text mining so special in the field of data

mining, which is already a well-developed area that is entering a mature phase [2], is that text

needs to be transferred into numerical representations before conducting further analysis, and in

most of the text mining applications, text has an unstructured and causally written form that

causes difficulties for extracting useful information, such as clinical document analysis [3,4],

2

emails, instant messages, automotive diagnostic text mining [5], etc. For example, a lot of

spelling errors occur in text data and can be problematic for text data mining.

One of the most crucial tasks in the text mining field is text categorization. This is the task of

building a classifier that assigns a pre-defined category to each text document in the text

collection, the source of which highly depends on the problem and the application domain. Due to

the fact that the document category is usually defined based on various application requirements,

the typical approach of text categorization is to derive numerical features that represent text. After

that, supervised machine learning techniques are used to train a classifier based on those extracted

features and the categories of pre-classified text documents, to later perform categorization tasks

on previously unseen text documents. As a result, the performance of text categorization task

depends on the feature generation method used and the machine learning techniques adopted.

In this dissertation, we present our research work in intelligent text mining that focuses on

accurately and efficiently performing the task in two main areas. The first area includes

developing a system that automatically corrects misspellings in text documents so that they are

much more comprehensible by machines and much more accurate for further processing such as

text categorization. The second area is to develop a text categorization model that incorporates

word based text features with semantic relationship learned from ontology networks and latent

semantic structure information from statistical topic modeling. This hybrid text representation

model could significantly help improving text categorization accuracy.

3

1.2. Problem description and research focus

As discussed in section 1.1, unstructured and free-style written text documents are commonly

found in many text mining applications. These documents often do not follow grammar rules, and

contain misspelled words, abbreviations and specific terminologies that are not found in standard

English dictionaries and may be barely comprehensible to people outside the application field. We

use an example to illustrate the different problem complexity comparing well-structured text

documents with unstructured text documents. Fig. 1 illustrates those two document examples. In

both documents, non-word misspellings are marked in red. It is obvious that unstructured

documents are much harder to understand, and the typos are much more difficult to be identified

and corrected. In terms of accuracy, misspelling correction in such applications is indisputably

essential for automatic text retrieval, categorization or clustering systems, since typos can be

misinterpreted in many different ways by automatic text processing systems. In terms of

efficiency, automated intelligent typo correction is also of significant necessity in text mining

applications that deals with vast amount of data, which makes manual inspection almost

impossible.

Fig. 1. Examples of well-structured and unstructured text documents

4

Many automatic spelling correction systems have already been developed to help people with

their typing tasks, such as texting, web searching, etc. However, the current automatic typo

correction technologies are still short in accuracy [6,7].

In text categorization, the document category is defined by users based on the application

requirements, such as the topic that a news article discusses, the importance of a vehicle

diagnostic record that describes vehicle repair details [5], and the fact stated in a medical

diagnostic document that whether or not an injury condition sustains [4], etc. Consider the

following automotive diagnostic records in two categories: The first record is defined as category

A, which is an “important” document because it describes the “root cause” of the vehicle problem:

“connector corroded”. The second is defined as category B, which is unimportant, because it only

describes the vehicle inspection process generally.

Category-A document: “perform abs self roadtest found rear wheel speeds sensor

connector corroded into sensor replace sensor and connector road tester ok clear

code”

Category-B document: “road roadtest traction control lamp on eec roadtest code c1280

u415 om rcm contact hot line 103912699 check connection at rcm check mounting bolts

ok clear code”

To solve the above categorization problem, a typical approach of representing a text document

is the Vector Space Model (VSM) [8], in which each document is represented by a weighted

vector that provides a mathematical representation which is convenient for computation and

analysis. However, this approach does not consider the semantic relationship between words, such

as synonyms, hyponyms (IS-A relationship between words), etc. The classification accuracy is

5

especially deteriorated in document sets where different categories have similar word occurrences

[4, 9]. As a result, a text categorization model that captures underlying semantic and syntactic

information besides single word occurrence features is of great necessity.

The major research focuses in this dissertation include:

 Automatic typo detection and correction for an unstructured and large-scale text corpus

by incorporating general language knowledge and domain specific knowledge generated

by machine learning algorithms.

 Incorporating ontology network information and machine learning techniques to

automatic text categorization, by capturing semantic and syntactic relationship between

words.

6

1.3. Major research contributions

The major original contributions of this dissertation include research work in intelligent typo

correction and text categorization. First of all, we developed and implemented an intelligent typo

detection and correction algorithm, which is a significant step forward towards fully-automatic

spelling correction for processing large size corpora of unstructured text documents. Secondly, we

propose a systematic way of building accurate text representations using single word information,

as well as syntactic and semantic relationship between words to improve the performances of

various text mining tasks, such as text categorization, text clustering, predictive analysis,

information extraction, etc. Third, our approaches in these two fields can be combined together

for other real-world applications that require text preprocessing and text categorization. Last but

not least, they can be easily transplanted and applied to other text corpus, besides those discussed

in this dissertation, e.g. text used in social networks such as instant messages and Twitter.

A summary of the major research achievements is presented here, including:

 Proposed an automated intelligent typo correction framework for unstructured and large-

scale text collections, using general language knowledge and domain specific knowledge

extracted by machine learning algorithms for identifying unconventional acronyms,

grouping similar words (correctly spelled and misspelled), and ranking correction

candidates.

 Proposed a hybrid text categorization approach that focuses on building VSM models with

both ontology networks and statistical language model. We first generate the original

7

BOW representation by using an intuitive global weight scheme, and then build VSM

models based on the WordNet ontology and statistical topic modeling.

 Evaluated our methods on publicly available datasets and domain-specific datasets:

 Freeform technician verbatim problem descriptions (VDR)

 Reuters-21578

 Nist Topic Detection and Tracking corpus (TDT2)

 20 newsgroups

 Evaluated our system by comparing with state-of-art systems and baseline approaches:

 Google spell checker

 Aspell spell checker

 Text categorization based on VSM only

 Text categorization based on latent semantic feature only

 Analysis of text categorization performance, including the influence of number of latent

topics, hyper weight of document connectivity in topic model, word class used for

synonym set generation, and ontology weighting between words.

 Created open source packages for typo correction system, called ITDC, and text

categorization system, called VSM_WN_TM, which can be adapted to other text mining

applications.

8

1.4. Structure of dissertation

The remainder of this dissertation is organized as follows: Chapter 2 discusses the technical

background and literature survey in the area of typo correction and text categorization. Chapter 3

introduces the ITDC typo correction system. Chapter 4 presents the VSM_WN_TM text

categorization model and details of how to build text representation model using an ontology

network and statistical language model. Chapter 5 discusses the details of our empirical case study,

the evaluation of our system and the performance analysis. Finally, Chapter 6 gives an concise

conclusion and discusses future work that can build on the ideas presented here.

9

 BACKGROUND AND RELATED WORK CHAPTER 2.

This chapter describes the background information related to text mining, typo correction and

ontology networks. Text representation models are also discussed including the vector space

model and statistical language models. The chapter also gives a literature survey on relevant text

categorization approaches including machine learning algorithms, statistical language models and

ontology networks.

10

2.1 Text mining

Text mining, also known as knowledge discovery from text (KDT), is first mentioned in

Feldman et al. [10]. It is defined as the applications of text processing and analysis that utilize

combined techniques from information retrieval, natural language processing (NLP) that extract

data from text, as well as machine learning and data mining algorithms, with the goal of finding

useful patterns from text [11]. Decent estimates show that more than 80% of information is

represented in the form of text [12], and this percentage will likely increase due to the continuous

availability of online textual information. As a result, there has been significant development of

text mining techniques in previous two decades.

A typical text mining tool first extracts a text document from text collection and conduct

preprocessing steps, such as spell checking, removing special symbols or punctuations, tokenizing

sentences into stream of words, etc. These procedures aim at providing a clean and

understandable format of text for both human and machines. Even though there are plenty of

efforts made to explore syntactic and semantic information from text, at the document level, most

approaches are based on the concept that a text document is represented by a set of tokenized

words; That is, a bag-of-words (BOW) [13]. The next step is to convert the cleaned text into

numeric representations that are more appropriate for further automated processing and analysis

by machines. The step is called text encoding [14], and state-of-art predominant approaches

include vector space model [15] and statistical language models [16], which will be discussed in

detail in section 2.4.

11

The text analysis phase, following with the text encoding, is used to extract interesting patterns

or trends from text based on different application requirements. For instance, automatically label

previously unseen documents based on user-defined category (text classification), find groups of

documents with similar content (text clustering), extract parts of text and assign specific attributes

(information extraction), etc. Common approaches here include machine learning, data mining

and statistical analysis.

In summary, a typical work flow for text mining problems includes the following aspects:

 Extracting information for human consumption, including text summarization,

document retrieval, information retrieval, etc.

 Assessing document similarity, including text categorization, document clustering,

identifying key-phrases, etc.

 Extracting structured information, including entity extraction, information

extraction, learning rules from text, etc.

 Mining structured text, including document clustering with links, wrapper induction,

etc.

The scope of this dissertation, as mentioned in Chapter 1, mainly includes typo correction and

text categorization based on machine learning, statistical language modeling techniques and

external knowledge, which will also be discussed in detail in section 2.3 and 2.5.

12

2.2 Typo correction

As we mentioned earlier in Chapter 1, typo detection and correction is an important text

process in many text mining applications. The major objective here is to reduce the errors made

by machines due to the misinterpretation of misspelled text, and to provide a more

understandable format for both human and machines for text mining tasks.

In this dissertation, our research focuses on correcting a broad range of typos, including simple

duplication, omission, transposition, substitution characters, spelling errors, and unusual use of

shorthand and acronyms. Typos can be divided into two major categories: “non-word errors” and

“real-word errors”. Conventional spelling checkers typically use dictionaries to detect typos.

Each term within a text document is compared against the valid words in a dictionary or a

lexicon. Any term that does not match any word in the dictionary is flagged as an error. This

kind of typos is called “non-word errors” [17,18], for instances, “abreviate” instead of

“abbreviate”, “veruified” instead of “verified”, etc. Typing errors that result in a valid word, but

not the one that the user intended, is called “real-word errors” [19,20], such as “font seat” instead

of “front seat”, etc. The focus of our research in this paper is mainly on detecting and correcting

non-word typos.

In general, two types of applications require typo corrections: the online programs involving

text as input, and the offline automatic text document processing. Many online applications,

such as web search engines and text based user interface programs, provide a list of correctly

spelled words to user as he/she is typing each word on computers/phones/handheld devices.

13

Many automatic spelling correction systems have already been developed to help people with

their typing tasks, such as texting, web searching, etc. However, the current automatic typo

correction technologies are still short in accuracy [21,22]. In many text mining applications,

such as text documents analysis, retrieval, and categorization, typos need to be detected and

corrected automatically in order to achieve accurate results efficiently. Our solution is to

combine domain specific knowledge with the general language knowledge to achieve accurate

typo correction. In this research, we focus on the application of unstructured text mining in

vehicle diagnostic records.

Discovering knowledge from unstructured text documents has many important applications

including automotive fault diagnostics, medical document processing, and social network

[23,24,25,26]. Large amounts of data have been collected in daily operations in many

corporations, hospitals and government agencies, many of which are unstructured text data. The

sheer volume of data makes manual or even semi-manual categorization or classification

cumbersome and fallible. Automatic text categorization technologies have been developed and

applied to many application problems including finding answers to similar questions or queries,

classifying news by subject or newsgroup, categorizing web pages, organizing e-mail messages,

etc. Many challenges exist in automatic text processing technologies, including representing

semantics and abstract concepts and processing words with semantic ambiguity, such as

polysemy and synonymy. Typos add another layer of complexity in automatic text document

process.

The particular type of documents we are interested in has the following characteristics. These

documents are short, and typically typed hastily in very short time period, e.g. in seconds or

minutes, by people with varying education background and interests. Examples of such

14

documents are short text messages, email text, medical descriptions of patients’ symptoms,

vehicle diagnostic documents such as customer’s descriptions of vehicle problems, and

technicians’ descriptions of repair process, and etc. These documents often do not follow

grammar rules, and contain misspelled words, abbreviations and domain specific terminologies

that are not found in standard English dictionaries and barely comprehensible to people outside

the application field.

Most of the current state-of-art typo correction systems are “interactive spelling checkers”,

which return multiple spell correction candidates, and allows user to select the intended

correction [21]. Early in 1960s, researchers have already started working on text spelling error

detection and correction. Many studies have been conducted with the purpose of developing

correction techniques for non-word errors. Over time various approaches and successful systems

were developed. Popular methods for finding misspellings and assessing suggestion candidates

for misspellings include part-of-speech (POS) tagging [27,28], minimum editing distance [28,29],

nearest neighbor search procedure, similarity key methods such as SoundEX systems and

Metaphone algorithms [28,30], and modified version of Longest Common Subsequence

algorithm [19]. Error correction methods, especially real-word error correction, are typically

based on syntactic and semantic knowledge such as n-gram based techniques [17,32,33], and

statistical learning from training data sets such as web documents are used as context to help

correcting typos [33,34,20]. Many methods have been developed to create and rank correction

candidate lists of detected typos, such as statistical language models [31], machine learning

techniques [18,27,32,35], complex network approaches [36], and noisy channel models [33,37].

The spell checkers used for online applications mostly use online text as the resource for typo

correction, such as news pages from the Web that are clean and well-spelled [33]; web queries

15

input to search engines by Internet users [20]; and Google n-gram dataset [34,39,40]. These

interactive spelling checkers discussed above require user to manually select a candidate to

replace the typo, which are good for interactive software systems such as MS Office, but, not

applicable to automatic document processing, such as document retrieval or classification, in

which a system having the capability of performing fully automated error detection and

correction is required.

A number of automatic typo correction algorithms have being developed so far. A typical

approach is to select the best candidate generated for each typo based on word context or

semantic information such as POS tagging [21,41,42]. Two interesting typo correction

algorithms were proposed by Sebastian and David [41], one based on supervised learning and

another unsupervised learning. The supervise learning algorithm uses a reverse edit distance

method to generate a candidate list and then one on the list that has the highest score based on

word occurrence or word’s bigram stemmer score. The unsupervised algorithm attempts to

correct spelling errors by first using low-frequency word as candidate typo, with the assumption

that low-frequency word is usually a typo and a word will be misspelled in exactly the same way

very few times. After the candidate typos are selected, the algorithm uses other words in the

document set as valid lexicon, and select best candidate based on predefined rule set of word

context. They reported over 90% accuracy generated by the supervised learning system on the

2200 misspellings words provided from a NASA database, and over 70% accuracy by the

unsupervised system on 5833 misspellings from Orbiter Structure database. An example of text

documents in the NASA database is shown in Fig. 1. However, for processing unstructured text

documents, several issues need to be addressed. First, low-frequency words could also be valid

words, especially those words in document sets that have smaller sizes. For example, in the

16

vehicle diagnostic corpus we processed has more than 10% of the valid words only appear 1 time,

such as “contaminate”, “erratic”, “unsecured” and so forth. Secondly, a word could be

misspelled in the same way repeatedly due to the typing pattern of users. Last but not least, a

single English dictionary as external source for typo detection and correction is insufficient,

especially for unstructured domain-specific text with valid words not in typical lexicon. Patrick

et al. developed an automatic spell correction system that takes advantage of the entire context

surrounding misspelling [42]. They also explore the use of the part-of-speech for selecting

candidates. The system they proposed has 97-98% of accuracy on over 600 randomly selected

medical documents. However, this approach is based on the assumption that POS tagging result

is reliable.

Although the systems discussed above all reported high accuracy on typo correction, they were

developed and evaluated on text documents that were well written in terms of grammar, structure,

and sentence and word boundary. For the unstructured and causally written text documents, such

as the engineering diagnostic records [43] we are dealing with, these methods do not work well.

We use an example to illustrate the different problem complexity in these two types of

documents. Fig. 1 illustrates two document examples: one is a well-structured text, and the other

is unstructured text. In both documents, misspellings were marked in red. The parsing results

generated by using Stanford POS tagger [38] on the two documents in Fig. 1 are shown in Fig. 2,

in which incorrect POS tags were followed by true POS tags marked by red. Obviously, POS

tagging is not reliable when it is applied to the unstructured document, i.e. the vehicle diagnostic

records, considering the ambiguity of sentence boundary and poor quality of grammar in the

document.

17

The above discussion leads to our work in typo correction for processing unstructured

documents with a focus on typo correction techniques for three types of non-word typos: word

boundary errors, self-invented abbreviations, and ambiguous acronyms. We attempt to fill in the

gap between the interactive and fully-automatic spelling correction techniques for processing

large size corpora of unstructured text documents. The corrected text documents can then be

used for further text processing, such as text document categorization and text document retrieval.

Fig. 2. Results of POS tagging on well-structured and unstructured text documents

18

2.3 Ontology networks

Concerning that although machines can do a lot of things under human directions, they do not

understand human language. People are always trying to find a way that makes machine process

languages in a more sophisticated manner, besides the simple BOW representation. The basic

idea here is that, if every document is marked or enriched by some knowledge that captures

syntactic or semantic information between words, machines are able to “understand” text better.

In the field of computer science and text mining, ontology network is generally defined as “a

formal, explicit specifications of shared conceptualizations of a domain of interest that are shared

by a group of people” [44]. Therefore, it provides a solution to facilitate text understanding and

automatic processing of textual resources. It is explained in detail as follows by Ding and Foo,

in [45]:

“ ‘Conceptualization’ refers to an abstract model of phenomena in the world by

having identified the relevant concepts of those phenomena. ‘Explicit’ means that the

type of concepts used, and the constraints on their use are explicitly defined. ‘Formal’

refers to the fact that the ontology should be machine readable. ‘Shared’ reflects that

ontology should capture consensual knowledge accepted by the communities.”

More specifically, the most widely used type of ontologies in text mining applications is called

“terminological ontologies”, which are mainly specified by subtype-supertype (IS-A) relations

and describe concepts by using concept labels or synonyms [44]. Examples of well-known

terminological ontologies include WordNet [49], Semantic Wiki [50], etc. Fig. 3 shows an

example of WordNet ontology instance that explicitly provides relationship between words such

as synonym, hyponym, etc. Since our focus in this dissertation is based on terminological

19

ontologies, this will be further discussed in detail in Chapter 4.

In this research we define a concept as a set of synonyms that have similar semantic meanings

in a specific application domain. In Fig. 3, concepts are highlighted in blue. The undirected

connections connect word to its semantic meanings, and the directed connection represents IS-A

relationship between words, which is also called as Hyponym/Hypernym relationship.

An immediate question for using ontology in text mining applications is that how to construct

one that can be effectively used for data mining. Ontologies can be learnt from various resources

such as structured, semi-structured or unstructured text corpus in specific domain, relational

databases, publicly available taxonomies, etc. As a result, ontology learning techniques are

divided into two groups: Constructing ontologies from scratch using unsupervised learning

Fig. 3. Example of WordNet ontology instance visualization

20

methods, and extending existent ontologies using supervised learning and classification methods

[44,52,53]. The first approach usually requires a lot of manual or semi-manual work to build

word ontology from scratch, and the adaptability of such ontology is usually restrained by

domain-specific resources [50,54,55]. Therefore, to a large extent, current research work mainly

focuses on learning ontologies from existing resources such as English lexicons [56].

Furthermore, most of the state-of-art approaches use only nouns for ontology building, and a

large extent of methods aims at constructing IS-A-related concept hierarchies. [44,57,58].

Currently, a number of ontology learning algorithms has already been well-developed and

powerful text ontology systems such as WordNet have generated and publicly available for use

of academic or industry purpose. However, how to appropriately utilize such information

effectively to facilitate various text data mining applications is still open for exploring. For

example, in the field of text categorization, a mostly used approach is to use publicly available

ontology to generate “Concept” level features as additional information to the text representation

[46,47,48], while several issues still brings in great difficulties and challenges for solving the

above problem, such as mapping ontology relationship to text feature representations, weighting

word features based on ontology relationships, etc. [59,60].

As a result, this dissertation research focuses on how to incorporate information provided by

ontology into text mining tasks such as text categorization, rather than on how to learn ontology

from textual resources. We believe that a hybrid approach that combines conventional methods

with appropriately generated ontology network information can enhance the quality of text

representation, and thus improve the performances of text mining tasks using such representation.

This leads to several well-known representation models developed by researchers for textual

resources in recent decades, which will be discussed in the following section 2.4.

21

2.4 Text representation models

2.4.1 Vector Space Model (VSM)

As mentioned above in section 1.2, the conventional approach of representing a text document

is the Vector Space Model (VSM) [8], where a text document is modeled as elements in a vector

space. Each element is representing an index term that is most useful identifying the main theme

of a document. Baeza-Yates and Ribeiro-Neto gave the definition of vector space model as

follows [61]:

“For the vector model, the pair (ki, dj) represents the occurrence frequencies that term ki in

the document dj. A weight wi,j associated with the pair (ki, dj) is positive and non-binary.”

From the above definition, it is clear that VSM generation usually includes three stages:

term selection, document indexing and weighting scheme selection.

In the first stage, text are tokenized into a stream of words, and a bag of content bearing

terms, also known as indexed terms, are extracted from the document text. This term selection

step, in the development of VSM, is considered as the most important step that largely impacts

the system's performance. Generally speaking, it is done the words in the following several

ways:

 Stop word removing: Words in a document do not describe the content which are

called stop words (function words) are removed from document. The stop words can

be identified with some automatic way. For example, terms which have very high or

very low frequency can be considered as function words [62].

22

 Stemming: It is the process for reducing inflected words to their stem. For example,

the words "accelerate", "acceleration", and "accelerating" are stemmed to the root

word, "accel". As a result, it is considered as reducing dimension of selected words

and help identifying similar words. The most widely used stemming algorithm is

Porter Stemming algorithm [63]. The idea is that the suffixes in English mostly

consist of a combination of smaller and simpler suffixes. In this dissertation, the

stemming process is not our focus, considering that although stemming algorithm

could reduce feature dimension, it also lose the information of full terms, and

additional storage might be required to store both the stemmed and unstemmed

forms [64].

 In the case of the classification problem, research works have been done in feature

selection by using labeled training documents. This process ensures that the selected

terms are highly related to the presence of a particular class, using a variety of

measuring approaches such as Gini Index, Information Gain, Mutual Information,

etc [65,66]. Again, this is not the focus in this dissertation, because that these

measures are mostly based on training data, and important features for previously

unseen documents may possibly be removed from this stage.

 In a lot of domain-specific applications in which text documents are usually

unstructured, causally written, with plenty of grammar and spelling mistakes, as

mentioned in section 1.2, misspelling correction is also a very essential step in

removing noisy terms that could significantly help feature selection. Our work in

this field will be presented in detail in Chapter 3.

23

 The second stage is to construct a term-document (TD) matrix using indexed terms. Each

entry in TD matrix indicates how many times that one term occurs in one document. More

specifically, a document collection containing a total number of N documents identified by K

terms is represented as a K * N TD matrix. With the purpose of measuring how well each term

describes the document contents, each entry of the TD matrix is represented by a “local weight”

that is typically the occurrence frequency of individual term in one document [67]. Note here,

each document is represented as a row vector in the TD matrix. An example of TD matrix

generated from three documents is illustrated in Fig.4. To simplify the problem, all the words

within these three documents are selected as indexed terms.

Research work has shown that using only local weight is insufficient to evaluate the

importance of indexed terms [68]. For instance, some terms, due to their rare appearance in a few

documents, do a better job to discriminate these documents from others. Some terms, on the

contrast, appear too frequently in the whole collection to distinguish documents in different

categories. As a result, after the TD matrix is generated, each entry needs to be weighted using a

“global weight”, which is used to reflect the overall importance of the index term in the whole

document collection. The idea is that a term occurring rarely should have a high global weight

and frequently occurring terms should be weighted low. Several well-known global weights are

introduced in [69]:

Fig. 4. Example of TD matrix generation

24

Normal:


j

ijtf 2

1

GfIdf:
i

i

df

gf

Idf: 1log 2 








idf

ndocs

1-Entropy or Noise: 
j

ijij

ndocs

pp

)log(

)log(
1 where

i

ij

ij
gf

tf
p 

tfij –occurrence frequency of term i within document j;

dfi– document frequency, which is the total number of documents in the document

collection that contain term i.

gfi– global frequency at which term i occurs in the entire document collection

ndocs – total number of documents in the whole document collection.

Generally speaking, each entry wi,j of TD matrix is assigned with two-part values,

iijji GWLw ,
, where Lij is the local weight and GWi is the term’s global weight. The most

commonly used term weighting scheme is tf-idf (term frequency-inverse document frequency)

[67]. It assigns a high degree of importance to terms occurring rare in a document collection.

From the above discussion, when we take a deep look at those global weighting schemes, it is

obvious that they are all focused on the entire document collection. Based on our observation,

important term words or their synonyms appear frequently in documents in a specific category,

especially when the user defined category is determined by some specific keywords [4].

Therefore, we designed a new global weighting scheme during the generation of VSM models,

which will be discussed in detail in Chapter 4.

25

The advantage of using VSM model to represent text is that, instead of fully “understanding”

the content of a document, the VSM simply generates a logical view of the document. For those

applications with short, poorly-structured text documents or those documents that having

grammar errors or spelling errors, VSM simplifies the procedure of natural language processing

and ease the system implementation. These simplifications are proved effective by many

research results [2,4,11,13,68]. This is the major reason that our work on text categorization is

also using VSM as our fundamental text representation approach. However, VSM also has

several limitations [70], such as poor representation of long documents, ignoring the semantic

relationship between documents with similar context or synonyms, informal weighting schemes,

etc. As a result, this dissertation presents our great effort in improving the conventional VSM

model.

Considering the fact that traditional VSM can be inaccurate under the condition that a given

word is expressed in many ways (synonymy) or a word has multiple meanings (polysemy) with

different context, approaches that dig out underlying semantic relationships between words are

required in many text mining applications. Latent semantic indexing (LSI) is one of the earliest

techniques that try to solve the above problem.

2.4.2 Latent Semantic Indexing (LSI)

LSI algorithm, also called latent semantic analysis (LSA), is first introduced in 1988 for

natural language processing [71]. It is a variant of the VSM that allows the low-rank

approximation to the original TD matrix.

In the LSI each document is mapped into a lower dimensional space by decomposition of the

TD matrix. The assumption made by LSI is that, some “latent” semantic structure exists

26

according to the overall pattern of term occurrence. The low-rank approximation aims at merging

the dimensions associated with similar terms, as well as enhancing or eliminating polysemy

relationships based on right word meaning used in the context. The lower dimensional space is

build using singular value decomposition (SVD) which is associated with the latent semantic

structure [72]. The major steps of LSI are presented as following:

 Given a mn matrix A, it is decomposed into the products of three matrices by using SVD

method.

TVUA  , where
n

TT IVVUU  , In is a size n identity matrix,),...,,(21 ndiag  ,

0i for ri 1 , and 0j for njr 1 , r is the rank of A, U and V contains left and

right singular vectors of A, respectively, and diagonal matrix  contains the singular values of A.

Then we get new matrices Uk ,Vk by keep only the k largest singular values of , a rank-k

approximation matrix to A is constructed with the following formula:

T

kkkk VUAA  .

The mathematical representation of SVD is shown in Fig. 5.

Ak U V
T

k

k

k

Term

Vectors

Document

Vectors

k

m×n m×r r×r r×n

= ∑

Fig. 5. Mathematical Representation of Singular Value Decomposition

27

The above SVD method attempts to capture underlying semantic structure in the association of

terms and documents, as well as reducing feature dimensions by defining a much smaller value k

than the number of indexed terms. It greatly reduces the memory requirement and the computing

time of measuring the similarity between an unseen document and a known document. However,

in this dissertation, we do not use this approach to capture the semantic relationship in text, due

to the following drawbacks of LSI:

 The core technique of LSI, SVD, is a mathematical method; therefore the resulting

singular values are not interpretable.

 SVD is very sensitive to the change of data. Sometimes the low-rank approximation

has negative values which are meaningless [72].

 LSI requires relatively high computational performance and memory in comparison to

other information retrieval techniques. Without distributed implementation it is not

applicable to large-scaled document corpus [73].

 It still remains to be verified experimentally whether the LSI outperforms the VSM in

text mining tasks such as text categorization. The concept in the LSI reduced-

dimension space is assumed to be a weighted average of multiple meanings, while

losing single term information and some real meaning information [68]. Under such

cases, the LSI might exhibit a less satisfying classifying ability.

2.4.3 Statistical topic models

We now move from LSI to the discussion of statistical topic models, which is derived from

LSI but interpret LSI from statistical point of view to provide a better understanding for text

28

data. This is a major focus of improving conventional VSM model in this dissertation, since it

provides a solid statistical foundation for finding hidden semantic structure of text documents.

2.4.3.1 Probabilistic Latent Semantic Analysis (PLSA)

Probabilistic latent semantic analysis (PLSA) is a well-known statistical topic model for text

clustering and information retrieval [74]. It represents a document with a mixture distribution

over “latent topics”, which are characterized by a distribution over the indexed terms. The latent

topics provide a reduced dimension representation of documents in a given collection. It is a

statistical variant of LSI developed based on a statistical generative model called Aspect Model

[74]. The starting point of PLSA is the term-document frequency (TDF) matrix, and it follows

the bag-of-words assumption, in which each word appears independently, and the occurring

order of each word is not considered. Fig. 6 shows the graphical model representation of PLSA,

based on Bayesian Networks [109].

In the above graphical model, the solid circles D and t represent a document and a term that are

observed respectively. The PLSA model is a generative model that assumes there is a latent

“topic” variable z between documents and terms. The two rectangles, marked by K and N,

represent the number of sample words and documents observed, respectively.)(DP ,)|(DzP ,

Fig. 6. Graphical model representation of PLSA

29

)|(ztP represents the probabilities of observing a document D, a latent topic z occurring in D,

and word t belonging to z, respectively.

The typical approach of PLSA modeling, is to estimate the probability functions)|(DzP and

)|(ztP , for all document-topic and term-topic pair (z, D) and (t, z) through machine learning.

For each pair of document-topic, (z, D), and term-topic, (t, z), we attempt to find the values for

functions)|(DzP and)|(ztP that maximize the following log–likelihood objective function:

))|()|()(log(),(
,

 
tD z

DzPztPDPtDnL , (1)

where),(tDn denotes the term frequency of t appears in document D.

The variables)|(DzP and)|(ztP are what we are interested in and want to estimate, since

)(DP is not related to the parameter we want to estimate and we assume that it is constant

among documents in Tr, we then have:

))|()|(log(),(maxarg)max(arg
,

 
tD z

DzPztPtDnL (2)

We will use the well-known Expectation Maximization (EM) algorithm [75] to solve this

maximization likelihood estimation problem. Each iteration of EM algorithm consists of

expectation step (E-step) and maximization step (M-step). In E-step, based on the current

estimated)|(DzP and)|(ztP , the posterior probability of),|(tDzP is computed for each

document-word pair. In M-Step,)|(DzP and)|(ztP are updated by maximizing equation (2).

This is an unsupervised machine learning process, and the detailed steps of EM algorithm will be

discussed in Chapter 4.

30

2.4.3.2 Latent Dirichlet Allocation (LDA)

Similar with PLSA, Latent Dirichlet Allocation (LDA) is a generative probabilistic model for

text collection [78]. In LDA, each document is modeled as a finite mixture over a set of latent

topics. The basic idea is that documents are represented as random mixtures over latent topics,

where each topic is characterized by a distribution over words [78]. LDA assumes the following

generative process for each document D in a corpus Tr:

1. Choose)(~ PoissonK for each of the N documents in Tr.

2. Choose)(~  Dir

3. For each of the K words in D,

a. Choose a topic)(~ lMultinomiazn

b. Choose a word nt from),(nn ztp , a multinomial probability conditioned on zn.

There are several assumptions to be made in this model. First of all, the latent topic

dimensionality G of the Dirichlet distribution is known and fixed. Secondly, the word

probabilities are determined by a G * K matrix  where. Finally, K is independent of all the

other data generating variables ( and z) [78]. The G-dimensional Dirichlet random variable 

has the following probability density function:

 

11

1

1

1
...)(1 




















G

G

i

G

i

G

i

i

p
 





 ,

31

where  is a size G vector with 0i , and)(x is the Gamma function. Given the

parameters  and  , the joint distribution of a topic mixture  , a set of K topics z, and a set of

K words t is given by:

),()()(),,,(
1

 nnn

N

n
ztpzpptzp




Therefore, the LDA model is represented as a probabilistic graphical model in Fig. 7. It is

obvious that LDA is a three-level hierarchical Bayesian model.

Although LDA is claimed to overcome some shortcomings of PLSA, such as reducing number

of parameters being estimated, and treating the topic mixture weights as a hidden random

variable rather than a large set of individual parameters linked to training set [78], in this

dissertation, we mainly focuses on extending basic PLSA model rather than applying LDA,

based on the following several reasons:

 PLSA approximation is based on maximum likelihood estimation, while LDA is based on

Bayesian estimation, by using both prior knowledge and available data [77]. When data

size is large, their performance tends to be very similar [76].

Figure 7. Graphical model representation of PLSA

32

 Considering the complexity of variational inference of LDA, PLSA is much easier to be

implemented and extended using semi-supervised manner. We would rather focus on

how to combine statistical topic model with supervised information from training set as

well as external ontology resources, than find out which model or estimation method is

better.

 With parameters partially fixed after training, PLSA could also be applied to process

previously unseen document, thus makes text categorization possible. This will be further

discussed in Chapter 4.

The following section will mainly discuss research works have been done in the field of text

categorization, which is one of the major focuses in this dissertation.

33

2.5 Text categorization

Text categorization, as introduced in section 1.1, is one of the most popular tasks in text mining

field nowadays, due to the increased availability of documents in digital form and the ensuing

need to organize and differentiate them for further analysis. Mathematically, as described in [79],

if Tr is a set of N documents,  NDDDTr ,...,, 21 , and C is a set of predefined categories,

 McccC ,...,, 21 , the task is to approximate the classifier that maps each Trdi  to a Cc j  , so

that the estimated target mapping function CTr :̂ coincide the real mapping function

CTr : as much as possible.

Document categories defined by users always vary by different application requirements, such

as the topic a news article discusses, the importance of a vehicle diagnostic record that describes

vehicle repair details [80], the fact stated in a medical diagnostic document that whether or not

an injury condition sustains [4], etc. One way to solve the text categorization problem is to use

human experts to manually classify documents. Of course, this approach is costly and time-

consuming. In the research community today, the dominant approach to this problem is based on

machine learning techniques, which is proved to be effective in analyzing large amount of data

and has the straight portability to different application domains [81].

2.5.1 Text categorization based on machine learning algorithms

34

Machine learning approach for text categorization has gained popularity since early 90’s. In

this approach, a general inductive process is adopted to develop a classifier that classifies

previously unseen documents by gleaning the characteristic of available training documents.

There are already plenty of research works that focus on developing and improving machine

learning techniques adopted for building classification models, which are generally reviewed in

[76,81]. A list of major techniques that have been applied in text categorization literature is

presented as following:

 Classifiers based on document clustering algorithms such as k-means clustering [82],

hierarchical clustering [83], self-organizing maps [4,84], etc.

 Example based classifiers such as k-nearest-neighbor classifiers [92,93] that classify

unseen data by finding the closest data samples in the training set using similarity

measures.

 Probabilistic classifiers such as Naïve Bayes classifiers [85,86] that measures the

probability of a sample belongs to a certain category.

 Decision tree classifiers, which is a hierarchical decomposition of the training data

space. At each node of the tree, the attribute that most effectively splits data samples

into respective subsets is selected, based on information gain ratio. The splitting is

recursively conducted until the leaf nodes contain a certain minimum number of

samples, or some conditions on class purity are met [76].

 Classifiers that are derived from regression related algorithms, such as Linear Least

Squares Fit (LLSF) method [87], logistic regression classifier [88], neural network

classifier which is based on logistic regression and usually is considered as a nonlinear

combination of a number of logistic regression classifiers [89,90,91].

35

 Linear classifiers such as support vector machines (SVM) [94,95], which is a type of

classifiers that attempt to determine “good” linear separators among categories. It is

proposed first by Vladimir Vapnik in 1979, but did not receive much attention until

late 90’s. The basic idea is to find out a separation hyperplane for data samples so that

the normal distance of any of the data points from the hyperplane is the largest. Fig. 8

shows an example of 2-dimensional case for SVM classifier learning. The crosses and

circles represent training examples in different categories, whereas lines represent

decision surfaces, and the thicker line represents the best separation hyperplane, since

the distance from it to the nearest data point is maximized. Small squares indicate the

support vectors, which are training samples lying on the maximum margin surface [81].

In this dissertation, we consistently use SVM as our text categorization classifier throughout

different experiments, with the following major reasons:

 SVM provides much more robust performance as compared to many other machine

learning techniques such as rule based classifiers and decision trees [97].

Figure 8. Graphical model representation of PLSA

36

 SVM is quite robust to high dimensionality. It is ideally suited for text categorization

because of the sparse high-dimensional nature of text [96].

 Term selection is often not needed in SVM classification, as SVMs tend to be fairly

robust to over-fitting and can scale up to considerable dimensionalities [76].

 Whatever machine learning techniques are used to build text classifiers, the

classification accuracy will be “bottlenecked” if the representation quality of the

document is poor, i.e., the representation of a document does not reflect close

relationship with its assigned category. Furthermore, based on [98], research works

have proved that the sophistication of feature selection in text categorization is more

important than choosing the best classifier. Therefore, our research focus in this

dissertation on the text categorization task is rather improving text representation and

combining with a consistent and promising machine learning approach for evaluation,

than choosing and improving the classifier itself.

2.5.2 Text categorization based on statistical topic models

Statistical topic models, including PLSA, LDA, etc., provide a solid probabilistic foundation

for document modeling and representation, in terms of digging out latent semantic structures

from text. In the literature, these models are mainly used for unsupervised text clustering,

information retrieval and dimension reduction, and research works of utilizing them for text

categorization is still rare. Most of the work been done on applying topic model to text

categorization is to purely use estimated latent features for classification, such as

[99,100,101,102], which is claimed in [103] to be less accurate than using bag-of-word (BOW)

features, especially when training data size is large. The major limitation of the above work is

37

that, text categorization requires a sophisticated feature selection approach that generates a well-

developed text representation. Using semantic or syntactic structure learned from text is not

sufficient in fully representing the content of the document, and different application

requirements for text categorization make it essential to develop a hybrid classifier with enriched

features from multiple resources such as single words, relationship between words, semantic

structure, word context, etc.

2.5.3 Text categorization based on ontology network

Considering the necessity of improving BOW features for more accurate text categorization, as

mentioned in Section 1.2, researchers have been working on utilizing external or background

knowledge to help build text classifier [104,105]. These external knowledge has a great

advantage in helping extract semantic relationships, match important phrases, strengthen co-

occurrences, etc. As discussed in section 2.3, WordNet is one of the best known sources of

external knowledge used for text categorization. It is a large lexical database of English first

developed and maintained by Princeton University [49]. The main relation among words in

WordNet is synonymy, e.g., as between the words shut and close or car and automobile. Nouns,

verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each

expressing a distinct concept, together with short explanations and general definitions. For the

purposes of text categorization, it is successfully used to unify the vocabulary across the

documents by modifying the document features with use of the related words. The key rules

defined in the most well-known and widely used approach in [46] are listed as follows:

 Add rules: extend each row vector DW


 in TD matrix defined in section 2.4.1 by adding

new entries for WordNet concepts c appearing in the document set. DW


 is replaced by

38

the concatenation of DW


 and DC


 , where)],()...,(),,([21 VD cDcfcDcfcDcfC 


, where

),(cDcf denotes the frequency that a concept c appears in document D, and V denotes

the total number of concepts generated.

 Replace: Each row vector DW


 in TD matrix is replaced by the concatenation of DW 


 and

DC


, where DW 


 denotes the new vector after removing all term entries from DW


 that

appear in WordNet. Terms that do not appear in WordNet are not discarded.

 Concept only: remove all terms from the vector representation that do not appear in

WordNet. Only DC


 is used to represent document D.

 It is obvious that the above rules have plenty room of improvement. Several open issues

include:

 Which rule/combination of rules should be selected to apply to the document features?

 What value should be assigned to the concept features added to TD matrix after global

weighting scheme for indexed terms is applied?

 How to determine the scope of synset with multiple meanings, for a word with multiple

word categories in a document?

 How to make full use of word relationships other than synonymy (e.g.,

Hypernym/hyponym)?

These problems discussed above are important indications that text categorization using

ontology networks is worth further investigation and perfection. Therefore, it is one of the major

focuses in this dissertation, and will be discussed in detail in Chapter 4, with proposed solutions.

39

 AUTOMATIC TYPO CORRECTION USING CHAPTER 3.

MACHINE LEARNING AND EXTERNAL KNOWLEDGE

BASES

In this chapter, we present our research in typo correction for processing unstructured

documents with a focus on three types of non-word typos: word boundary errors, self-invented

abbreviations, and ambiguous acronyms. We present an innovative automatic typo correction

system, ITDC (Intelligent Typo Detection and Correction), that uses hybrid knowledge, i.e.

general language lexicon and domain-specific knowledge extracted through machine learning.

We developed algorithms for misspelling detection and correction candidate generation,

approximate word matching, topographically similar word grouping, extracting contextual

knowledge from general and application domains, and candidate ranking based on machine

learning and statistical analysis. The corrected text documents can then be used for further text

processing, such as text document categorization and text document retrieval.

40

3.1 Machine learning algorithms to extracting knowledge for typo

correction

Automatic typo detection and correction is a challenging problem, in particular in unstructured

text documents that contain acronyms, abbreviations and symbols that are specific to application

domains. We propose to use a hybrid of knowledge, general language specific typo knowledge,

and domain specific knowledge. Two general language knowledge bases, GTKB1 (General

Typo Knowledge Bases), and GTKB2 are important for typo detection and corrections. GTKB1

is a valid word lexicon that can be automatically generated from online English dictionaries such

as WinEdt English_US and/or English_UK [20]. GTKB1 can be used for typo detection and

generating typo correction candidates. The most challenging part in typo processing is to correct

detected typos, which can be either typographical errors or non-word terms that can were used as

abbreviations or symbols meaningful only to a specific application domain. To correct

typographical errors, a general language knowledge base of commonly misspelled words,

GTKB2, can be automatically generated from internet sources including Wikipedia Common

Typo List, Oxford English Corpus Misspelling List, and Student's Book of College English

Misspelling list and [39-41]. The focus of our research is to explore the use of machine learning

technologies to extract domain specific knowledge that are useful for correcting challenging

typos, such as word boundary errors, self-invented or domain specific acronyms and

abbreviations. Fig. 9 gives a summary of the knowledge useful for typo correction. In this

section we introduce the machine learning algorithms developed to extract domain specific typo

http://oxforddictionaries.com/us/words/the-oxford-english-corpus

41

knowledge from text corpus collected within a specific domain, including true words for the

acronyms and abbreviations, topographically similar words/typos groups, and typos due to

wrong word boundaries.

3.1.1 Extracting knowledge of domain-specific terms and acronyms

We propose to build an enhanced domain-specific dictionary that can used to identify valid

terms commonly used in an application domain, and acronyms that are valid and represent words

meaningful within an application domain. For example, in automotive diagnostic applications,

NPF is a common acronym known as “No Problem Found”, and CAN known as Controller Area

Network, which can be ambiguously interpreted.

 From a given training data set we first generate a list of valid words and their frequencies

occurring in a training data set, which is denoted as DB1. We developed a semi-automatic

process to extract a list of acronyms from a given corpus of training documents collected from a

specific application domain. It first extracts all typos with short lengths from the training

Fig. 9. Extracting knowledge for typo detection and correction

42

documents. For each of these typos, we search for the valid phrases in the training set that can

form the typo with its initials. For example, for the typo “NPF”, we searched in the training

documents and found the phrase “No Problem Found” occurring 5 times, “Noise Possibly From”

5 times, and “Not Put Fuel” 3 times. The extracted phrases are then ranked according to their

frequencies of occurrences. The phrase with the highest frequency of occurrences is assigned to

the typo as the correction candidate. If there is a tie, such as the example given above, a domain

expert manually identifies the best correction candidate. This knowledge base is denoted as DB2:

))}.(,)),...((,()),(,{(22112 HH acexacacexacacexacDB  (1)

Where aci denotes an acronym and ex(aci) denotes the correct phrase aci represents.

3.1.2 Building a lexicon of similar typos and domain-specific

abbreviations

One of the characteristics of unstructured text in a specific application domain, for instance,

vehicle diagnostic text records, is that they contain many abbreviations and casual word patterns

that cannot be easily corrected by only using common English dictionaries. For example, “wheel”

-> “whl”, “check” -> “chk”, “diagnose” -> “diagn”, etc. As a result, it is necessary to build a

domain-specific lexicon [22] to correct these word errors. The following is an algorithm we

developed to build a domain-specific lexicon, which is represented in groups of words and typos

such that the words and typos in each group share the same stem word. For example, typos

“cusomer”, “cutomer”, “custmer”, “customers”, “cusotmer” and “customer” all shares the same

stem word “custom”.

The algorithm uses four similarity measures to detect four basic types of typing/spelling errors,

deletion (Type 1), insertion (Type 2), substitution (Type 3) and transposition (Type 4). Research

43

showed that more than 80% of typos belong to one of these four error types [38]. Suppose A and

B are two words,
nAAAA ...21 is a typo and

mBBBB ...21 is a valid word, where Ai and Bj,

,,...2,1;,...2,1 mjni  are letters within the alphabet. If A is formed by deleting one or more

letters from B, such as: A = ENINE, and B = ENGINE, then A belongs to Type 1 topographical

spelling error. If A is formed by inserting one or more letters into B, such as: A = FOUOND, and

B = FOUND, then A belongs to Type 2. If A is formed by substituting one or more letters with

wrong letters, such as: A = STSTEM, and B = SYSTEM, then A belongs to Type 3. If A is

formed by transposing two letters in B, such as: A = PERFROM, and B = PERFORM, then A

belongs to Type 4. Fig. 10 illustrates the four types of misspelling words.

We designed the following algorithm to calculate the distance between two words, A and B,

based on the above four types of spelling error.

 Similarity measure calculated based on type 1 spelling errors:

1) Let 01 s . Starting from the first letter of A and B, 1x , 1y .

2) Compare Ax and By,

2.1) If yx BA  , then 111  ss , and 1 xx , 1 yy .

2.2) If yx BA  , then go to the next letter of B, 1 yy .

2.3) If nx  and my  , go to step 2.1, otherwise exit.

Fig. 10. Four types of topographical spelling errors

44

 Similarity measure calculated based on type 2 spelling errors:

1) Let 02 s . Starting from the first letter of A and B, 1,1  yx .

2) Compare Ax and By,

2.1) If
yx BA  , then 122  ss , and 1 xx , 1 yy .

2.2) If
yx BA  , then go to the next letter of A, 1 xx .

2.3) If nx  and my  , go to step 2.1, otherwise exit.

 Similarity measure calculated based on type 3 spelling errors:

1) Let 03 s . Starting from the first letter of A and B, 1,1  yx .

2) Compare Ax and By,

2.1) If
yx BA  , then 133  ss , and 1 xx , 1 yy .

2.2) If
yx BA  , then go to the next letter of both A and B, 1 xx , 1 yy .

2.3) If nx  and my  , go to step 2.1, otherwise exit.

 Similarity measure calculated based on type 4 spelling errors:

1) Let 04 s . Starting from the first letter of A and B, 1,1  yx .

2) Compare Ax and By,

2.1) If yx BA  , then 144  ss , and 1 xx , 1 yy .

2.2) If yx BA  , 11   yx BA and 1 yx BA ,
yx BA 1

, then 144  ss , and

1 xx , 1 yy .

2.3) Else if
yx BA  , then go to the next letters in both A and B, 1 xx , 1 yy .

2.4) If nx  and my  , go to step 2.1, otherwise exit.

 The distance between two terms A and B is then calculated as:

45

)
),max(

(1Dist
BA

s
(A,B)  , (2)

where  4,3,2,1max  iss i .

For example, for terms PEEFROM and PERFORM, we have similarity measures s1, s2, s3 and

s4 equal to 2, 3, 4 and 5, respectively. As a result, 5s , which means the best matching case

of typo “PEEFROM” is type 4. The term distance measure function, Dist, is used in the

following algorithm for grouping similar terms, so the typographically similar terms, which can

be valid words or typos, are placed in the same term group with the same correction candidate.

Typo correction algorithm based on grouping similar terms

Let D be a set of training documents.

1) Extract a list of distinct terms from D, denoted as T.

2) Generate groups of term words in T that are topographically similar. The following steps

find the topographically similar terms in T and generate groups of similar terms,

 Kggg ,...,, 21
.

2.1) Let 1,1  kj .

2.2) Create a new group gk. Take the term tj from term list T, and add it into group gk.

2.3) Increment j. If Tj  , go to step 3.

2.4) Take the term tj from term list T.

2.5) If
ljtlength )(, where l is a threshold used for filtering out short terms, go to step

2.3.

2.6) Calculate i , the average distance between tj and each word tq in each existing term

46

group gi.

.,...2,1;,...2,1,,

),(
1

1

 






iQqgt
Q

ttDist

iiq

i

Q

q

qj

i

i

 (3)

Where η is the number of the currently existing groups, and Qi denotes the number of

terms in group gi.

2.7) Find the closest group gC to tj , i.e. iC   for all i, .1  i

2.8) If  C , where  is the maximum distance allowed between the terms of the

same term group, add tj+1 into gC, and go to step 3. Otherwise, increment k, add tj to gk

and go to step 2.3.

3) Assigning a correct word to each group.

3.1) Let 1i ,

3.2) If ki  , output:

)}_,),...(_,(),_,{(22113 kk wggwggwggDB  (4)

And then exit.

3.3) If there are valid words in gi, find a valid word in gi that has the highest frequency of

occurrences in training data D, and denote the word as g_wi. Add (gi, g_wi) to DB3,

and go to step 3.5.

3.4) Find a valid word in T that has the closest distance go each term in gi, assign the word

to g_wi, and add (gi, g_wi) to DB3.

3.5) Increment i and go to step 3.2.

Table 1 shows the two word/typo groups generated by the above algorithm from a set vehicle

fault diagnostic text documents. For instance, topographically similar terms such as

47

“ENGI”,”ENGNIE” are grouped together and labeled as the most frequently occurred valid word

“ENGINE”.

3.1.3 Extracting contextual knowledge

Contextual information such as n-gram has been found useful in detecting real-word errors [24,

25]. An n-gram is defined as a sequence of n adjacent words from a given text. A 1-gram is

referred to as a "unigram"; 2-gram is a "bigram"; 3-gram is a "trigram". Google has been using n-

gram word models in a variety of projects, including statistical machine translation, misspelling

correction, entity detection, information retrieval, etc. We developed algorithms to extract two

types of contextual knowledge and use the knowledge to rank the correction candidates for a

given typo. The first type is generated based on the Google book n-gram corpus [23], which

provides the frequencies of words and phrases appearing in American English books published

from 1500s to 2000s. The second type of contextual knowledge is represented by the

Table 1 EXAMPLE OF SIMILAR TERM GROUPS

Group

sample
Elements Label

1

ACCELERATION,

ACCELLERATE,

ACCELLERATING,

ACCELLERATION,

ACCELLING,

ACCELING,

ACCELORATION,

ACCELRATE,

ACCELRATION

ACCELERATE

2

ENGI, ENGIEN,

ENGIN, ENGINE,

ENGINES, ENGING,

ENGINR, ENGNIE,

ENGNINE, ENIGINE,

ENIGNE, ENINE,

ENGINE

http://en.wikipedia.org/wiki/Unigram
http://en.wikipedia.org/wiki/Bigram
http://en.wikipedia.org/wiki/Trigram
http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/N-gram
http://googleresearch.blogspot.com/2006/04/statistical-machine-translation-live.html
http://www.google.com/jobs/britney.html
http://www.google.com/jobs/britney.html

48

probabilities of n-grams occurring in the training documents D.

Algorithm for extracting contextual knowledge from Google book n-gram

1) Detect and extract all typos from the training document set D through dictionary search, and

store them in a list, D_typos.

2) For each typo t in D_typos,

2.1) For n = 3 to G,

 Extract three types of n-grams, prefix n-grams, suffix n-grams and centered n-grams

from training data D:

1)( npre Rtngram , such that ,||1 DtRn  where Rn-1 represents n-1 words

immediately precede t.

1)( nsuf Stngram , such that ,|| 1 DSt n  where Sn-1 represents n-1 words

immediately follow t.

 mmcen SRtngram ,)( , such that DStR mm |||| , where Rm represents m words

immediately precede t, Sm represents m words immediately follow t, where

nm  12 . Note here, if either Rm or Sm is empty, then ngramcen (t) is empty.

 Extract *||1nR , 1||* nS and mm SR ||*|| from Google book n-gram corpus, where *

represents any valid word.

2.2) The n-grams generated by step 2.1 are denoted as ngi, Li ,...,2,1 . For each ngi,

we extract its normalized frequency of occurrences in the Google book n-gram corpus using

the following formula:







Y

j yr

iyr

yri

j

j

j counttotal

ngf
ngH

1

)
_

1)(
()( (5)

49

Where Yj ,...2,1 , Y represents the number of years of the Google book n-gram are used, yrY

represent the most recent year and yr1 represent the most least recent year in the last Y years.

)(iyr ngf
j

 represents the normalized frequency of ngi appears in year yrj in the Google book

n-gram corpus. Here,)(iyr ngf
j

 is added by 1 to avoid 0 values.
jyrcounttotal _ represents

the total count of words appear in year yrj, and
year is a weight coefficient that can be used

to give different weights to different years, e.g., one can assign higher weights to n-gram

frequencies of more recently years by using the exponential function,

)(
1yryr

yryr

year
Y

jY

e





 .

The output from the above step is presented as knowledge base, DB4:

))}.(,)),...((,()),(,{(22114 LL ngHngngHngngHngDB  (6)

We will use an example to illustrate the contextual knowledge generating process. Suppose for

a typo x = “whele” occurred in a training document, and the training data set contained a 3-gram

phrase “right front whele”. We searched the Google book n-gram corpus from yr1 = 1980 to yrY =

2008, and found 100 3-gram phrases, “right front *”, where * represent a valid word. Examples

of such 3-grams include “right front panel”, “right front wall”, “right front wheel”, “right front

where” and “right front window”. Fig. 11 illustrates frequencies of occurrences of these n-grams

in each year in the Google book n-gram corpus. It is obvious that the 3-gram phrase “right front

wheel” occurred far more frequent than other phrases.

50

The second type of contextual knowledge is represented by the probabilities of n-grams

occurring in the training documents D. Thus a knowledge base DB5 is generated to contain

domain-specific contextual information. Specifically, we extract three types of statistics for each

valid word x in D:

 Probability of prefix 2-grams ()(2 RxP gram
): This is the probability of the occurrences

of all the 2-grams consisting of x and the preceding token R. For instance, for the word

“front” in a 2-gram “left front”, R is the word “left”.

 Probability of suffix 2-grams ()(2 xSP gram
): This is the probability of the appearance of

all the 2-grams consisting of x and the subsequent token S. For instance, for the word

“front” in the 2-gram “front wheel”, S is the word “wheel”.

 Probability of centered 3-grams ()(3 RxSP gram
): This is the probability of the

appearance of all the 3-grams consisting of the preceding token R, the word x, and the

Fig. 11. Example of n-gram statistics

51

subsequent token S. For instance, for the word “front” in the 3-gram “left front wheel”, R

is the word “left”, S is the word “wheel”.

Using Bayes formula, we obtain:

(*)

)(

*)(

)(
)()|()(2

f

Rf

Rf

Rxf
RPRxPRxP gram 

 (7)

(*)

)(

)(*

)(
)()|()(2

f

Sf

Sf

xSf
SPSxPxSP gram 

 (8)

(*)

)(

)(*

)(

)(*

)(

)()|()|()(3

f

Sf

Sf

xSf

xSf

RxSf

SPSxPxSRPRxSP gram





 (9)

Where)(**),((*), SfRff denotes the frequency of all words in D, the frequency of any 2-gram

in D that starts with R, and the frequency of any 2-gram in D that ends with S, respectively.

As a result, DB5 is represented as:

))}(),(),(()(|{ 3225 RxSPxSPRxPxPTxDB gramgramgram 


 (10)

DB5 is used to generate statistical features for the neural network trained for assessing typo

correction candidates, which will be discussed in section 2.4.

3.1.4 Assessing typo correction candidates

In many cases, the closest correction candidate generated by topographical similarity matching

may not be the correct one. The knowledge bases described above were generated based on

various aspects of characteristics of typos, each one of the candidates generated based on these

knowledge bases has a possibility to be the right correction. We developed a Neural Network

52

system, NN_TC_Conf, to measure the confidence about a candidate word for a given typo over a

broad range of typo-word features. Fig. 12 illustrates the architecture of the NN_TC_Conf

system. The neural network uses the following ten features to characterize the weight of a

correction candidate.

 Typo length: We chose this feature to take into consideration that the effect of typo length

may have on its correction candidates. Based on our observation, the longer a typo is, less

correction candidates it might have, but the possibility of a candidate being the correct word

increases.

 Levenshtein distance: The second feature we considered is the Levenshtein distance [21]

between the correction candidate and the typo, which is defined as follows. Let

Fig. 12. NN_TC_Conf: a neural network for measuring the confidence about a correction candidate of a typo

53

nAAAA ...21 be a typo and
mBBBB ...21 be a valid word, where Ai and Bj,

,,...2,1;,...2,1 mjni  are letters within the alphabet, and A0 and B0 denote nil. The

Levenshtein distance between A and B,),(_),(_ mn BADLBADistL  , where L_D(Ai, Bj)

is a recursive function defined as follows: for each i, j,



 



























otherwise

BA
V

BADLBADLVBADLMinU

otherwiseU

jij

iji

ji

BADL

ji

jijiji

ji

,1

,0

)1),(_,1),(_,),(_(

,

0&0,

0&0,

0,0

),(_

1111

Where L_D(Ai, Bj) denotes the number of single-character edits (insertion, deletion, substitution)

required to transfer sequence A1A2…Ai to sequence B1B2…Bj. For example, for the typo word A =

“engne”, if the candidate B = “engine”, the distance between A and B,

1),(_),(_ 65  BADLBADistL , as shown in Table 2, because only one insertion edit of

letter “i” is needed from A to B. Similarly, if the candidate B = “engineer”,

3),(_),(_ 85  BADLBADistL . As a result, “engine” is more likely to be the correct word

for typo “engne.” The smaller this distance is, the more likely the candidate is the correct word.

Table 2 EXAMPLE OF LEVENSHTEIN DISTANCE

 j=0 j=1 j=2 j=3 j=4 j=5 j=6

 e n g i n e

i=0 0 1 2 3 4 5 6

i=1 e 1 0 1 2 3 4 5

i=2 n 2 1 0 1 2 3 4

i=3 g 3 2 1 0 1 2 3

i=4 n 4 3 2 1 1 1 2

i=5 e 5 4 3 2 2 2 1

54

 Topographic similarity based distance: This is the distance between a correction

candidate, A, and the typo, B, calculated using the distance function Dist(A, B) introduced in

(2) in section 2.2.

 Error position: This feature, denoted as EP, gives the position of the first error in the typo

with respect to the correction candidate. Based on [7], this feature is important because

studies have shown that errors were more frequent in certain positions. For a typo A and its

correction candidate B,
A

e
EP  , where e is the index of the first letter that satisfy ee BA  .

 Frequency of a typo: This is the frequency of the typo occurring within the training

document set, which can be extracted from DB1.

 Frequency of a correction candidate: This is the frequency of the correction candidate

occurred within the training document set, which can be extracted from DB1. This feature is

useful when a typo is actually an abbreviation or a term frequently used in the application

domain. In this case, the typo’s occurrence in the training documents may be high, but the

suggested correct candidate may not occur very often.

 Keyboard distance: The value of this feature, denoted as K_D, is calculated based on the

distance between keys on a keyboard using the QWERTY keyboard mapping [26], as shown

in Fig. 13.

Fig. 13. QWERTY keyboard distance matrix

55

For a typo A and a correction candidate B, the K_D is calculated as follows:

1) Calculate the four similarity measures, s1, s2, s3 and s4 between A and B as discussed in

Section 2.2.

2) If 4,3,2,1  iss i , then A is a deletion (Type 1) error.

2.1) Detect  zzz BBB ...21
 within candidate B such that after deleting these letters from B

we can obtain A.

2.2) Obtain the coordinates of
11 ,,,   zzzz BBBB based on Fig. 7. For example, if

""aBz  , its coordinates are)1,2(
zBco .

2.3) Calculate the K_D value between A and B:

11

,,_



 zzzz BBBB cocococoDK (11)

3) If 4,3,1,2  iss i , then A is an insertion (Type 2) error.

3.1) Detect  zzz AAA ...21 in A such that after deleting these letters from A we can obtain

B.

3.2) Obtain the coordinates of 11 ,,,   zzzz AAAA based on Fig. 7.

3.3) Calculate the K_D value between A and B:

11
,,_




 zzzz AAAA cocococoDK (12)

4) If 4,2,1,3  iss i , then A is a substitution (Type 3) error.

4.1) Detect  zzz BBB ...21 in B such that B will equal to A after substituting these letters in

B by  zzz AAA ...21 from A.

4.2) Get the coordinates of all letters in  zzz AAA ...21 and  zzz BBB ...21 based on Fig.

7.

56

4.3) Calculate the K_D value between A and B:







z

zi

BA ii
cocoDK

1

,_ (13)

5) If 3,2,1,4  iss i , then A is a transposition (Type 4) error.

5.1) Detect the transpose 21  zz AA in A,

5.2) Get the coordinates of 21  zz AA based on Fig. 7.

5.3) Calculate the K_D value between A and B using the following formula:

21
,_




zz AA cocoDK (14)

The K_D feature is useful when two candidates have the same distance to the misspelled

word, but one is more likely to be a good correction if the error character distance on the

keyboard is smaller than the other candidate. For instance, for the misspelled word “ans”,

“and” is more likely to be a good correction than “ant” because “d” is adjacent to “s” on the

QWERTY keyboard.

 Probability of prefix 2-grams: This is the probability of the appearance of the 2-gram made

up of the correction candidate C and the preceding token R of the typo, which can be found

in DB5.

 Probability of suffix 2-grams: This is the probability of the appearance of the 2-gram made

up of the correction candidate C and the subsequent token S of the typo, which can be found

in DB5.

 Probability of centered 3-grams: This is the probability of the appearance of 3-gram made

up of the preceding token R of the typo, the correction candidate C, and the subsequent

token S of the typo, which can be found in DB5.

57

The NN_TC_Conf is trained with a set of misspelled words and their correction candidates.

The misspelled words were detected in the training documents, and each candidate of each

misspelled word is labeled with a confidence value. Specifically, the training data consist of

tuples in the form of (x, C(x), conf(C(x))), a typo x, its correction candidate C(x), and conf(C(x)),

the confidence about the candidate C(x) being the correct word for typo x. For each pair of (x,

C(x)), we generate the above 10 features as the input vector to the neural network, and use

conf(C(x)) as the target confidence value of C(x) being the correct word to replace typo x. After

training, for any pair of typo x’ and a correction candidate C(x’), the neural network

NN_TC_Conf is used to generate a real value]1,0[))'((xCconf based on the ten features

extracted from (x’, C(x’)), where))'((xCconf represents the confidence about C(x’) being the

correct word to replace typo x’.

58

3.2 Intelligent Typo Detection and Correction (ITDC)

Fig. 14 gives an overview of the proposed automatic typo correction system, Intelligent Typo

Detection and Correction (ITDC). The ITDC system contains four major computational

components, typo detection and correction candidate generation, word boundary error correction,

abbreviation processing, and correction candidate confidence generation and candidate selection.

For a given text document, the ITDC system first detects typos and generates a candidate list

using the general and domain specific knowledge about typos described in Section 2. It then

detects and corrects two types of spelling errors: word boundary errors and uncommonly used

abbreviations. Correction candidates for remaining non-word errors are then generated and

weighted, and the best candidate is selected as the output from the ITDC system.

Fig. 14. Overview of ITDC (Intelligent Typo Detection and Correction) system

59

3.2.1 Typo detection and correction candidate generation

When a document is send to ITDC system for typo detection and correction, each term within

the document is checked for its validity using the general knowledge base, GTKB1, the lexicon.

If a word is not in GTKB1, then it is considered a typo. The ITDC system then generates a list of

correction candidates based on GTKB2, the general language typo list, DB2, the list of acronyms

commonly used in the application domain, and DB3, the list of similar word groups and their

correction candidates. The algorithm is described as follows.

Algorithm for typo detection and correction candidate generation

1) For each word x on the term list of the input document, check whether 1GTKBx . If it is,

then exit, since x is not a typo.

2) If x is a commonly misspelled word found in GTKB2 , then use its correction candidate,

C(x), provided by GTKB2 as the correction candidate for x, add (x, C(x)) to T&C_L1, and

exit.

3) If there is a 2))(,(DBacexac  such that x = ac, then C(x) = ex(ac), add (x, C(x)) to

T&C_L1, and exit.

4) If there is a 3)_,(DBwgg  such that gx , add (x, g_w) to T&C_L1, and exit.

5) Search in GTKB1 to find the N valid words that best match with x using the Levenshtein

distance function, which are denoted as NixCi ,...2,1),( , add)})(),...(),({,(21 xCxCxCx N
 to

T&C_L1, and exit.

The Output from the above algorithm is T&C_L1, which contains all the typos found in an input

document along with up to N correction candidates for each typo. Examples of entries in the

list T&C_L1 are shown in Table 3.

60

3.2.2 Word boundary error detection and correction

Word boundary errors are defined as words either missing white space characters between

multiple words (run-on error), or a valid word split by a white space (split error) [16]. It is very

important to process word boundary errors separately, since they are very different from the other

typos. For instance, for the split error “or dered”, the correction candidate list could only be

generated on typo “dered”, because “or” is a valid word. The following describes the two

algorithms we developed to solve word boundary errors, one for split error correction, and another

for run-on error correction.

Split Error Correction algorithm

1) For each typo x in T&C_L1, find its adjacent words in the input document X, w1 and w2.

2) Check the dictionary for xwwx 1 , and
2wxxw  .

Table 3 EXAMPLE OF ENTRIES IN T&C_L1

Misspelling Correction candidate List

abandonned
abandoned (Generated from GTKB2, in Step 2

above)

KOEC
Key On Engine Cranking (Generated from DB2,

in Step 3 above)

engien Engine (Generated from DB3, in Step 4 above)

ststem
system, systems, state, states, stem (Generated

from GTKB1, in Step 5 above)

noisehard
noseband (Generated from GTKB1, in Step 5

above, not a good candidate)

diagn

diag, drag, drain, drags, dragon (Generated from

GTKB1, in Step 5 above, not a good candidate

list)

61

If wx is a valid word, calculate the probability of appearances of w1, x and wx, denoted as

p(w1), p(x) and p(wx), where
(*)

)(
)(1

1
f

wf
wp  , f(w1) denotes the frequency of word w1

appearing in the knowledge base DB1, and f(*) denotes frequencies of all words in DB1. p(x)

and p(wx) are calculated using the same way.

3) If w1 is a valid word and)()(xpwxp  , update T&C_L1 by setting wx as the only

correction candidate of two terms “w1 x” and exit.

4) If w1 is also typo and)()(,)()(1wpwxpxpwxp  , update T&C_L1 by setting wx as

the only correction candidate for the two terms “w1 x” and exit.

5) Step 6: Repeat Step 3 to process xw.

We use one example to illustrate the rationale behind Step 4 and 5. Let w1= “or”, x = “dered”.

We have wx = “ordered”. If p(“ordered”) > p(“dered”), which implies that only if the combined

word wx appears more often than the typo x in the training documents, then we use wx as

correction for “w1 x”. If both w1 and x are invalid, Step 5 makes sure that wx has to appear more

often than both w1 and x. Because if “wx” never appeared in D, but “x” appeared many times,

then x might have its own correction candidate instead of “wx”.)

Run-on Error Correction algorithm

To detect and correct run-on typos, the system checks each typo, x, on the list T&C_L1 to see if

it can be split into two valid words w1 and w2, while 0)(,0)(21  wpwp . If so, let (w1 w2) be the

only correction candidate for typo x, and update T&C_L1 accordingly. If x can be separated into

multiple pairs of valid words, for instance, both
21 wwx  and

43 wwx  , we use Bayes formula to

calculate their occurrence probability in training data D:

62

(*)

)(

)(*

)(
)()|()(

,
(*)

)(

)(*

)(
)()|()(

4

4

43
44343

2

2

21
22121

f

wf

wf

wwf
wPwwPwwP

f

wf

wf

wwf
wPwwPwwP





 (15)

Where f(*w2) denotes the frequency of any two word sequence that has w2 as the second word.

The pair of words with higher appearance probability is selected as the candidate to replace typo x.

The output of these two algorithms is an updated typo list of T&C_L1, denoted as T&C_L2, in

which the word boundary typos are corrected. Table 4 shows the results after applying the two

word boundary algorithms to the T&C_L1 shown in Table 3.

3.2.3 Abbreviation processing

Abbreviations are defined as the segment of a valid word starting with the first character of the

valid word [4]. For instance, “diagn” is the abbreviation of “diagnose”. For these abbreviations,

simple similarity comparison methods may not find the correct candidates. For example, a

Table 4 EXAMPLE OF ENTRIES IN T&C_L2

Misspelling Correction candidate List

abandonned abandoned

KOEC Key On Engine Cranking

engien Engine

ststem system, systems, state, states, stem

noisehard
noise hard (updated after word boundary error

correction)

diagn diag, drag, drain, drags, dragon

63

candidate list for “diagn” generated based on word distances may contain “diag, drag, drain, drags,

dragon”, but not correct candidate.

In many note taking or records keeping applications such as vehicle diagnostic records, people

often type in the first several characters of a word as its abbreviation. For example, “conn”

represents “connection”, “comm” represents “communication”, and etc. In order to detect those

uncommon abbreviations, we compare each typo, x, in D_typos with every valid word, w, in DB1.

If x matches the beginning |x| letters in w, add w to x’s candidate list, where |x| denotes the number

of letters in x.

The output of this stage is a further updated typo list T&C_L3 where the abbreviations are

processed. Table 5 shows the result of this process on the words shown in Table 4.

3.2.4 Correction candidate weight generation, ranking and selection

In an automatic typo correction system, when more than one correction candidates are generated,

a crucial task is to determine which word within the correction candidate list should be selected to

Table 5 EXAMPLE OF ENTRIES IN T&C_L3

Misspelling Correction candidate List

abandonned abandoned

KOEC Key On Engine Cranking

engien Engine

ststem system, systems, state, states, stem

noisehard noise hard

diagn
diagnose, diag, drag, drain, drags, dragon

(updated after abbreviation processing)

64

replace the misspelled word. Our solution to this problem is to use contextual knowledge to re-

rank the candidates. The following algorithm is developed to rank the candidates of typo x based

on the n-gram statistics knowledge contained in DB4 and the neural network NN_TC_Conf.

Algorithm for ranking typo candidates based on contextual knowledge

For n = 3 ~ G, where G denotes the maximum length of n-gram we used in generating DB4:

1) For a typo x detected in the testing document X, extract the prefix n-grams, suffix n-grams

and centered n-grams of x from X, which are denoted as
1)(
 npre Rxngram ,

1)(
 nsuf Sxngram , and  mmcen SRxngram  ,)(. This is similar to the process of

generating n-grams for typos in training documents discussed in section 2.3.

2) For each candidate word C(x) generated for x, let 0))((xCHn
, where Hn(C(x)) represents

the normalized frequency of C(x) appears in the Google book n-gram corpus.

2.1) If)(||'

1 xCRn
 equals to any ngi in DB4, where Li ,...2,1 ,)())((in ngHxCH  .

2.2) If '

1||)(nSxC equals to any ngi in DB4, where Li ,...2,1 ,

)())(())((inn ngHxCHxCH  .

2.3) If '' ||)(|| mm SxCR equals to any ngi in DB4, where Li ,...2,1 ,

)())(())((inn ngHxCHxCH  .

The output from this process is a weighted frequency Fx(C(x)) for each C(x) generated for typo

x, where 



G

n

nx xCHxCF
3

))(())((. Take the same example typo “whele” as we discussed in

section 2.3, two candidates “where” and “wheel” generated for “whele” are found in phrases of

DB4. Suppose 3G , we have Fwhele(where)=1.63E-09, and Fwhele(wheel)=2.68E-07, which

indicates that the “wheel” is better than “where” as the correction candidate for typo “whele.”

65

Let },...2,1),({ NixCi  be N correction candidates for each typo x in T&C_L3.

 For each Ci(x) generated for x, within in the time period yr1 to yrY, calculate weighted

frequency Fx(C(x)) in google n-gram corpus.

 For each pair of (x, Ci(x)), extract the 10 features discussed in section 2.4 and apply them

to NN_TC_Conf, which outputs a confidence value conf(Ci(x)).

 Calculate the weight V(Ci(x)) for each Ci(x), where))((*))(())((xCFxCconfxCV ixii  .

 Re-rank these N correction candidates Ci(x) in descending order based on V(Ci(x)).

 For all Cj(x) having the same value of V(Cj(x)), calculate Dist((x, Ci(x))) as discussed

above in (2) of section 2.2, and re-rank these correction candidates Cj(x) for typo x based

on this similarity distance.

 Select top N’ correction candidates from re-ranked candidate list, as }',...2,1),({ NixCi  .

 After correction candidate weight generation, ranking and selection, for each misspelled

word x, the auto correction is quite straightforward: Check whether the first candidate

)(1 xC in the re-ranked candidate list has 5.0))((1  xCconf . If so, replace the

misspelled word x in text using)(1 xC . Otherwise, x is flagged but not corrected, and

top N’ correction candidates are stored for manual correction afterwards.

The flowchart of candidate ranking and selection algorithm for each typo x in the testing

document X is summarized in Fig. 15.

66

Fig. 15. Candidate ranking and selection

67

3.3 Empirical study

We conducted an empirical study in the application domain of automotive fault diagnostics

text data mining, where the text documents are warranty claims and repairing descriptions

recorded in verbatim. These text records contain rich information about the various cases of

vehicle malfunctions, root causes, and repair processes, yet are difficult to manually extract

knowledge or formulate reliable rules to associate an effective repair procedure with a given

problem description. Moreover, the records have poor grammar structure, and contain many

typos, self-invented abbreviations and domain specific terminologies, which are big challenges

to data mining systems. We implemented the proposed ITDC system and applied it to the text

documents in this application domain. The following subsections describe the constructed

knowledge bases and experiment results.

3.3.1 Building general knowledge bases

In this study, we constructed the valid lexicon, GTKB1, from the WinEdt English_US and

English_UK dictionary developed by Patrick Daly [20]. WinEdt is a powerful and versatile text

editor for Windows, with a strong predisposition towards the creation of LaTeX documents.

GTKB1 contains more than 150,000 valid English words, and is used to recognize non-word

errors. A list of common typos collected by Wikipedia Typo Team was used as our general

knowledge base GTKB2. GTKB2 contains 4238 misspellings frequently appearing in online

documents throughout Wikipedia.

68

3.3.2 Building domain specific knowledge bases

In this empirical study, we used a set of 200,000 customers' claim reports on various vehicle

problems provided by an automotive company as the training document set D to generate domain

specific knowledge bases DB1, DB2 and DB3. Initially 10233 distinct index term words were

extracted from D, and stored in DB1 along with their term frequencies. By dictionary searching,

we found 1763 distinct typos with length less than l_ac = 5, and, among them, 144 acronyms

were finally identified and extracted. Examples of nontrivial acronyms in the DB2 knowledge

base are: CEL - Check Engine Light, CKT - Circuit, DLC - Data Link Connector, KOEC is used

frequently in the context of DTC (Diagnostic Trouble Code) extraction referring to “Key On

Engine Cranking”, etc. We also applied word grouping algorithm presented in section 2.2 to

obtain 3972 word groups, which are used as DB3.

In the experiments, we used Google Book corpus: American English, which contains words that

occurred in books published during 1980 ~ 2008 to generate the contextual knowledge base DB4,

and, due to the space limitation of storing the dataset, only the 3-gram phrases of each typo were

extracted. The training data D was used to generate domain specific contextual knowledge base

DB5.

3.3.3 Typo detection and correction

Two sets of test documents, T1 and T2, provided by two different automotive manufacturers

were used to evaluate the ITDC system. The first testing set T1 contains 603 freeform technician

verbatim problem descriptions. The second testing set T2 contains 580,000 vehicle fault

diagnostic records. We set the thresholds for word length and average word grouping distance

http://googlebooks.byu.edu/

69

discussed in section 2.2 as follows: 2l , where only words with length larger than 2 will be

processed, and in approximate string similarity matching, 3.0 , which is the average

distance threshold for word comparing.

ITDC used GTKB1 to detect typos in T1 and T2. There were 392 typos detected in T1 and

29113 typos detected in T2. From those typos, the word boundary processing algorithms detected

and corrected 74 split errors and 59 run-on errors in T1, and 1292 split errors and 5273 run-on

errors in T2. The false alarm in T1 and T2 was 0% and 0.4%, respectively. Note here, most of the

wrong corrections in T2 were those typos being detected incorrectly as run-on errors. For

examples, “holtline”, which should have been detected and corrected as “hotline,” was detected

as a run-on error, so it was split into “holt line”; “performace”, which should have been

corrected to “performance,” was detected incorrectly as a run-on error, and so it was split into

“perform ace.”

The abbreviation process corrected 14 non-word errors in T1, and 242 non-word errors in T2.

Examples of detected word boundary errors and abbreviations are shown in Table 6 and Table 7.

These terms are domain specific, so the domain specific knowledge played an important role in

correcting these typos. Particularly, these abbreviations are neither commonly used in news

articles nor in general web documents.

70

Table 6 EXAMPLE OF WORD BOUNDARY ERRORS

Split error Correction

thro ttle throttle

repla ced replaced

shie ld shield

hea vily heavily

exc essive excessive

Run-on error Correction

sensorand sensor and

connectionat connection at

roadtest road test

differentialpossible differential possible

drivebelt drive belt

71

The knowledge bases GTKB2 (general misspellings), DB2 (Domain-specific acronyms) and

DB3 (Domain-specific word groups) were used to correct 29 non-word errors in T1, and 1127

non-word errors in T2. Some examples are listed in Table 8 - 10.

Table 7 EXAMPLE OF UNCOMMON ABBREVIATIONS

Abbreviations Correction

conn connection

diagn diagnose

cont continue

comm communication

veh vehicle

diff different

eng engine

cust customer

sig signal

72

Table 8 EXAMPLE OF TYPOS RECOGNIZED BY GTKB2

Error CORRECTION

recieved received

continous continuous

intergration integration

ocasionally occasionally

bewteen between

procede proceed

fromed formed

neccesary necessary

taht that

thsi this

reponse response

Table 9 EXAMPLE OF TYPOS RECOGNIZED BY DB2

Error CORRECTION

ECU Engine Control Unit

EVAP Evaporative Emission

IPC Instrument Panel Cluster

KOEC Key On Engine Cranking

TP Torque Converter Clutch

VSS Vehicle Speed Sensor

TCC Torque Converter Clutch

73

The training data for the neural network, NN_TC_Conf are processed as follows. First we

collected a set of 2230 freeform technician verbatim documents from the training data set D,

which contained 1547 typos. We used Levenshtein distance algorithm to generate up to five

candidates for each misspelled word by finding the closest valid words in DB1 to the typo. These

typos and their respective candidates are manually labeled as high or low confidence for being

the correct candidates. This process generated 783 likely candidates and 6166 unlikely

candidates.

As discussed in section 3.4, for each typo detected, we set 3G , where G denotes the

maximum length of n-gram we look into, and generated 20 correction candidates first, i.e.

20N . After the candidate weight generation and ranking, we selected top 5 correction

candidates, where 5N . Note G, N and N’ were used in section 3.4.

Table 10 TYPOS RECOGNIZED BY DB3

Error CORRECTION

erractic erratic

trac track

whl wheel

programed programmed

manuvers maneuver

chekc check

fse fuse

exhuast exhaust

sytem system

tryed tried

74

For the purpose of comparison, we applied the two state-of-art spell checkers: Google Spell

check and Aspell check, to the same two testing document sets, T1 and T2. We use the following

three Suggestion Intelligence First (SIF) measures [6,7] to evaluate the performances of the typo

correction systems:

 typosofnumber Total

liston first found ssuggestioncorrect Total
SIF 

 typosofnumber Total

list of 3 in top found ssuggestioncorrect Total
SIF3 

 typosofnumber Total

list of 5 in top found ssuggestioncorrect Total
SIF5 

The performance results of the three systems are shown in Table 11 and Table 12. The

proposed ITDC system made 3.83% false auto correction on T1, and 3.54% false auto correction

on T2.

Table 11 Performance Comparison with State-of-art Spell Checkers on T1

 SIF5 SIF3 SIF

Google Spell 50.77% 48.72% 45.41%

Aspell 27.81% 26.02% 25.51%

ITDC without

candidate ranking

process

54.85% 52.81% 50.77%

ITDC after candidate

ranking process
65.56% 64.28% 62.24%

75

Table 13 shows a few examples of typo corrections made by the ITDC system, the Google and

Aspell systems. It is obvious that ITDC system outperforms these two systems by abbreviation

processing, word boundary errors and correction candidate re-ranking based on neural learning

of the confidence of candidate correctness and n-gram statistical analysis.

The accuracy of all three spell checker systems evaluated above may not be considered very

high. This is due to the fact that the testing set contains many non-word typos or domain-

Table 12 Performance comparison with state-of-art spell checkers on T2

 SIF5 SIF3 SIF

Google Spell 57.96% 55.05% 51.29%

Aspell 44.25% 42.20% 39.51%

ITDC without

candidate ranking

process

63.87% 61.61% 60.47%

ITDC after candidate

ranking process
68.43% 67.34% 65.10%

Table 13 Correction candidate List comparison

Typo Correction Candidates

nece

Google neck Becca Mecca mecca enc

Aspell neck

ITDC necessary

whele

Google whale wheel while whole Wheeler

Aspell where wheel whale whelp while

ITDC wheel while where whole whelp

speend

Google spend speed spent spawned spurned

Aspell spend speed

ITDC speed spread spend spent steed

servi

Google servo serve server serf servos

Aspell serve

ITDC service serve servo swerve

76

specific abbreviations that cannot be recognized easily, such as “bjb”, “btwn”, “ops”, “ssms”, etc.

These errors were detected and marked as typos by the ITDC system, but left without correction.

In order to prove the assumption that typo correction could provide a better quality and more

comprehensible text for both human and machines and help with further text processing tasks,

we conducted text categorization on the same text collections, T1 and T2, as those used in the

above typo correction experiments, in which each document has a category label. For both of the

dataset, we use conventional VSM model discussed in section 2.4.1 as text representation

approach, with the same local and global weighting scheme, tf-idf approach [67]. From each

dataset, we choose 2/3 documents from each class as training set, and the remaining 1/3

documents as testing set, and conduct 3-fold cross validation to get the average accuracy of the

system. More details about text categorization could also be found in the following Chapter 4.

The accuracy of the text categorization is measured using the following evaluation metric:

documents testingofnumber Total

classifiedcorrectly documents testingofnumber Total
Accuracy 

The experiment results are shown in the following Fig. 16 and Fig. 17, from which it is

obvious that typo correction improves text categorization accuracy by 2% and 5%, and reduce

term feature space by 7.7% and 14%, respectively. We can observe that this improvement is

more significant especially in larger dataset where typos are more frequently occurs, e.g., text

collection T2, since it greatly reduces the noisy terms and merges topographically similar terms.

In terms of efficiency of ITDC, all the knowledge bases generated above are automated

programs that extract and store general language knowledge and domain specific knowledge

from digital resources effectively. The only manual work involved are to determine which

77

resources to use and preparing the data, as well as labeling training data for NN_TC_Conf. These

steps usually take only 3-4 hours before typo detection and correction.

Fig. 16. Example of text categorization accuracy w/o typo correction

74

76

78

80

82

84

86

T1 T2

A
cc

u
ra

cy
 (

%
)

Dataset

Text categorization accuracy w/o typo correction

Before typo
correction

After typo
correction

Fig. 17. Example of text categorization feature size w/o typo correction

0

1000

2000

3000

4000

5000

6000

7000

8000

T1 T2

Te
rm

 f
e

at
u

re
 s

iz
e

DataSet

Size of indexed term features w/o typo correction

Before typo
correction

After typo
correction

78

 TEXT CATEGORIZATION BASED ON CHAPTER 4.

MACHINE LEARNING, STATISTICAL MODELING AND

ONTOLOGY NETWORK

As mentioned in section 2.5.1, the traditional VSM model does have its strength: it is efficient

and provides a compact way of text representation, instead of fully understanding the content

using natural language processing techniques, which is usually time and space consuming.

However, since only single word information is considered, text categorization accuracy may be

affected if single words do not fully interpret the document content, meaning information such as

word co-occurrence, word context within documents and semantic ambiguity of words including

synonymy and polysemy, are missing. Therefore, a text representation model that has

sophisticated structure and as inclusive as possible in terms of text information is of great

necessity. In this chapter, we present our research work in text categorization by introducing

VSM-based text representation models using machine learning, statistical modeling and ontology

networks. We use an innovative hybrid text mining framework, which contains a global weighting

scheme, a VSM model built from WordNet ontology network, and a VSM model augmented with

statistical topic modeling. Fig. 18 illustrates the proposed framework. Our system takes in the

training document collection and generates a list of indexed terms. After that, each indexed terms

are weighted, and the document corpus is modeled by traditional VSM as a weighted TD matrix.

PLSA model is applied to generate a “latent topic” level (LTD) matrix, and WordNet ontology is

feed into the system to generate a new term-document matrix, and a “concept” level (CD) matrix.

These matrixes are then combined together for final document representation, and used for SVM

classifier training. More details will be further discussed in the following sections.

79

Figure 18. Proposed text categorization model framework

80

4.1 Text categorization based on VSM and PLSA topic modeling

This section discusses our work in building a VSM model using an entropy-based global

weighting scheme, using PLSA topic modeling to extract latent topics and build a VSM model

that reflect word relationships, as well as using semi-supervised PLSA topic modeling to build a

VSM model that reflect document relationships, based on pre-defined document “connectivity”

information.

4.1.1 A VSM Model with a new global weighting scheme

As discussed in Section 2.4.1, text document is usually represented by VSM for the ease of

computation and analysis. A vector space model should be built based on carefully selected

terms and weighting schemes. More specifically, for a given set of training documents Tr,

  CN TTTDDDTr  ...,...,, 2121 , where lD is the
thl training document, C is the number of

document categories, and cT is the set of documents that belong to category c, Cc ,...,2,1 , our

vector space model is built through the following machine learning process:

First of all, we generate an indexed term list from Tr, denoted as T_L, },...,,{_ 21 KtttLT  ,

where it is the
thi indexed term, through a number of preprocessing tasks, including word

tokenization, symbol and punctuation removing, automatic typo correction as discussed in

Chapter 3, stopping word removal and low-frequency term removal, etc. While generating the

list of indexed term words, we need to keep only content bearing words, implying that the

function words having both low and high frequency have to be removed [68]. As a result, we

81

removed the high frequency stop words at the first stage, and then set up a term frequency

threshold  as a filter for low frequency words.

Secondly, for a document TrDl  , its vector representation is defines as following:

.,...,2,1,*

],,...,,[

,

,,, 21

KiGWtfw

wwwW

iilDt

DtDtDtD

li

lKlll





Where iltf is the occurrence frequency of term it within lD , iGW is a global weight for term

it , and K is the number of term features.

VSM models based on appropriate term weighting schemes is particularly essential for

information retrieval and text categorization [67]. An appropriate global weighting scheme

should be applied to each indexed term with the purpose of reducing or enhancing the effect they

have on particular documents. As mentioned in section 2.4.1, although there are plenty of global

weight approaches available, most of them are designed for the entire dataset, i.e., in idf global

weighting, 1log 2 









idf

ndocs
idf , dfi denotes the total number of documents in the document

collection that contain term it , and ndocs represents total number of documents in the whole

document collection Tr. However, based on our observation, important term words or their

synonyms often appear frequently in documents within a specific category, especially when the

user defined categories are highly relevant to some specific keywords [24]. As a result, we

developed the following category-entropy global weighting scheme, denoted as CE_W:

 For each term it in the term list T_L, calculate the proportion of the documents in Tr that

contain it within C different categories.

Cj
cN

cN
p

j

ij

ij ,...2,1,
_

_
 ,

82

where
ijcN _ is the number of documents within the

thj categories that contains it , and

jcN _ is the total number of documents in the
thj category.

 Normalize
ijp , so that





C

j

ij

ij

ij

p

p

1

 .

 Calculate the entropy with respect to it : 



C

j

ijijiE
1

log .

The entropy measure is a good indicator of how term it is distributed over different

document categories. The higher the entropy, the less important item it is, since it is

more evenly distributed among different document categories.

 Calculate the global weight CE_Wi for it :
C

E
WCE i

i
log

1_  , where C is the total number

of categories. This global weight function gives more weights to terms that have small

entropy values.

We will show in Chapter 5 that the category-entropy based global weight function performs

much better than the most widely used inverse document frequency (idf) method.

At the end of VSM generation step, the output is a TD matrix 0M ,],...,,[
210

T

D

T

D

T

D N
WWWM  .

For a previously unseen document uD , we generate its vector representation
uDW in the same

manner,],,...,,[,,, 21 uKuuu DtDtDtD wwwW  for the testing purpose.

4.1.2 A VSM augmented with PLSA topic modeling

83

In this section, we mainly discuss the details of how to use PLSA topic modeling introduced in

section 2.4.3 to extract latent semantic topics from text, which are used to generate an augmented

VSM model for text representation and help improving the accuracy of text categorization tasks.

4.1.2.1 Learning PLSA model from training documents

As already presented in section 2.4.3, PLSA model is a well-known statistical language model

mostly used for unsupervised text clustering and information retrieval. The starting point of

PLSA is the term-document frequency (TDF) matrix before applying global weight scheme, and

it follows the bag-of-words assumption, in which each word appears independently, and the

occurring order of each word is not considered. As shown in Fig. 6,)(DP ,)|(DzP ,)|(ztP

represents the probabilities of observing a document D, a latent topic z occurring in D, and word t

belonging to z, respectively. The generative process of each document-word pair in the text

corpus, Tr, is shown as following:

1. Select a document D from Tr based on)(DP .

2. Pick a topic z according to)|(DzP .

3. Given z, generate a word t based on)|(ztP .

The hidden variable set during this process, denoted as  ,  )|(),|(ztPDzP , is what we

are interested in and want to estimate, for each word-topic pair and topic-document pair.

Again, we know that the joint probability of each document-word pair could be derived as

following, based on Bayes’ Theorem [40]:

))|()|(()()|()(),(
z

DzPztPDPDtPDPtDP ,

84

Here,)|(DtP is derived based on Bayes’ rule, with the following two assumptions [74]: First,

observation of document-word pairs),(tD are assumed to be generated independently, which is

corresponding to the “bag-of-words” approach. Secondly, given latent topic z, t is also generated

independently of D. Therefore, we have:










z

z

zzz

DzPztP
DP

DPztPDzP

DP

zPztPzDP

DP

zPztDP

DP

ztDP

DP

tDP
DtP

))|()|((
)(

))()|()|((

)(

))()|()|((

)(

))()|,((

)(

),,(

)(

),(
)|(

The likelihood function of the entire document collection, Tr, could also be derived as:


D t

tDn

L tDPP),(),(, based on the observation of all document-word pairs, where),(tDn

denotes the frequency of word t appears in document D. Our objective is thus estimating the

hidden variables by maximizing this likelihood function. Because it is difficult to maximizing the

above exponential likelihood function, it is more convenient to work with its logarithm, called

the log-likelihood. The objective of this estimation is thus to maximize the log–likelihood

function of  , as shown in formula (1):

))|()|()(log(),()(
,

 
tD z

DzPztPDPtDnL  , (1)

Since)(DP is not related to the parameter we want to estimate and we assume that it is

constant among documents in Tr, and also we assume that for each document,)(DP is a constant

value. As a result, we then have:

))|()|(log(),(maxarg))(max(arg
,

 
tD z

DzPztPtDnL  (2)

85

As mentioned in section 2.4.3, (2) can be solved using Expectation Maximization (EM)

algorithm [75]. We now take a deep look at the derivation of why and how EM algorithm can be

applied for estimating  .

Derivation of EM algorithm

From (2), we can see that it is still difficult to find the solution for  with the “ log ” format.

As a result, we introduce a distribution over topic z into (2), denoted as)(zA , where 0)(zA

and 1)(
z

zA . We then have:

)
)(

)|()|(
)(log(),(maxarg)2(

,

 
tD z zA

DzPztP
zAtDn , (3)

Based on the law of unconscious statistician [106], let
)(

)|()|(
)(

zA

DzPztP
zg  , we have


z

zAzgzgE)()())((. Therefore,

)
)(

)|()|(
(log),(maxarg)3(

,


tD zA

DzPztP
EtDn (4)

From (4), it is still difficult to find the solution for  with “))((log zgE ” format. However,

because)
)(

)|()|(
(log

zA

DzPztP
E is a concave function, based on Jensen’s inequality [110], we

could find a lower bound function for (4):









ztD

tD

zA

DzPztP
zAtDn

zA

DzPztP
EtDn

)(

)|()|(
log)(),(maxarg

)
)(

)|()|(
(log),(maxarg)4(

,

,

86

Note here, when 
)(

)|()|(

zA

DzPztP
, where  is a constant, we have:


z

r

tD zA

DzPztP
zAtDn

)(

)|()|(
log)(),(maxarg)4(

,

 (5)

Because 1)(
z

zA , 
z

DzPztP)|()|(. Also, based on Bayes’ rule and the independency

of),(tD , we have:

))|()|((

)|()|(

))|()|(()(

)()|()|(

))|()|(()(

)()|()|(

))|()|(()(

)()|,(

),(

),,(
),|(









zz

zz

DzPztP

ztPDzP

DzPztPDP

DPztPDzP

DzPztPDP

zPztPzDP

DzPztPDP

zPztDP

tDP

tDzP
tDzP

Thus,);,|(
)|()|(

)|()|(
)(r

z

tDzP
DzPztP

DzPztP
zA 


, which shows that to find the maximum

solution for (4), at every iteration r,)(zA should be the posterior probability of z, with observed

document-word pair (D, t). Therefore, EM algorithm could be used as following:

Computational steps of EM algorithm

 Each iteration of EM algorithm consists of expectation step (E-step) and maximization step (M-

step). In E-step, based on the current estimated)|(DzP and)|(ztP , the posterior probability of

),|(tDzP is computed for each document-word pair at each iteration. In M-Step,)|(DzP and

)|(ztP are updated by maximizing (4), which will be used in the E-step of next iteration until

convergence. Detailed steps of EM algorithm are discussed below:

87

Initialization: Define the maximum number of iterations R, and the number of latent topics G to

be generated. For each document-topic and topic-word pair, assign random values to)|(0 DzP

and)|(0 ztP between 0 and 1, with the constraints 1)|(0 
z

DzP , and 1)|(0 
t

ztP .

E-step: At iteration r, for each observed topic, word and document,
pz , bt , and aD , compute:

 




z

arbr

aprpbr

bapr
DzPztP

DzPztP
tDzP

)|()|(

)|()|(
),|(

11

11
 (6)

where)|(1 apr DzP 
 and)|(1 pbr ztP 

 are derived from iteration r-1.

M-step: At iteration r, for each document-topic and topic-word pair, compute)|(apr DzP and

)|(pbr ztP based on the following updating formulas:






tD

pr

D

bprb

pbr
tDzPtDn

tDzPtDn

ztP

,

),|(),(

),|(),(

)|((7)






t

a

t

apra

apr
tDn

tDzPtDn

DzP
),(

),|(),(

)|((8)

More detailed derivation of (7) and (8) can be referred to [106,107,110].

The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood function

)(rL in (1) met the criterion that   )()(1rr LL , where  is set as the convergence goal of

the model.

88

The output from this stage after EM learning that is used for building VSM model is a latent

topic-document (LTD) matrix tdM , in which each document has a vector representation
lDH that

is mapped from indexed term space to latent topic space,],...,,[,,2,1 llll DGDDD PPPH  , and

)|(, liRDi DzPP
l
 , Gi ,...2,1 , where R denotes the maximum number of iterations EM went

through, and G denotes the number of topics generated. As a result, we have:

],...,,[
21

T

D

T

D

T

Dtd N
HHHM  .

4.1.2.2 Generate topic-document vector for previously unseen document

Although PLSA is originally designed for unsupervised learning, it can be extended to

previously unseen (testing) documents. For a testing document uD , we run through the same EM

algorithm to generate the conditional probability of each latent topic z given Du. However, during

parameter estimation, all other parameters are kept fixed except)|(uDzP . In initialization step,

only)|(0 uDzP is assigned with random values between 0 and 1, with the constraints

1)|(0 
z

uDzP . In E-step, based on)|(1 ur DzP  , the posterior probability of),|(tDzP u is

computed. In M-Step, only)|(DzPr is calculated by equation (8). Therefore, a vector

representation
uDH is generated for uD , with the same dimension as

lDH .

4.1.3 A VSM augmented with semi-supervised PLSA topic modeling

The PLSA algorithm introduced in the above section 4.1.2 generates latent topics by exploring

the co-occurrence relationship of words in the document collection under a probabilistic

framework, in order to discover the underlying semantic structure. However, it is originally

89

designed for unsupervised learning, since it assume that none prior knowledge of the text is

available. Therefore, documents in the same category might have different latent topic distribution

due to different word occurrence. In the application of text categorization, usually we will have

some information about the inter-connectivity between documents, such as category label, citation

links and references, web page links and so forth [108,111]. As a result, a mixed probability

model that couples the conditional probabilities for both words and inter-connectivity between

documents could be extremely useful, in terms of providing more meaningful features and better

understanding from text. The most well-known model that incorporates such information is

proposed by Hoffman [108], which presents a joint probabilistic model of document content and

connectivity. However, there are several issues needs to be solved. First of all, in the task of text

categorization, usually only training documents have inter-connectivity available, that model is

not able to model previously unseen documents. Secondly, the inter-connectivity variable,

denoted as)|(zcP , increases the dimension of parameters need to be estimated, so that the

efficiency of the system is decreased. Last but not least, the connection between documents

should also be weighted, instead of simply using binary values (1 as connected, and 0 as not

connected).

In this dissertation, we propose a semi-supervised PLSA algorithm that addresses the above

issues, while incorporating the relationship between documents derived from both category labels

and ontology networks. Details will be discussed both in this section and section 4.2.2.

4.1.3.1 Learning semi-supervised PLSA model from training documents

For a given latent topic, the probability of document connectivity is interpreted as the

document’s authority on that topic [108]. By introducing a joint probability model for document

90

content and connectivity, as well as a hyper-weight  that balance the affection, the semi-

supervised PLSA model is presented in Figure 19. Similarly as PLSA algorithm, the generative

process of each observed document-word pair and connected document-document pair in the text

corpus, Tr, is shown as following:

1. Select a document D from Tr based on)(DP .

2. Pick a topic z according to)|(DzP .

3. Given z, generate a word t based on)|(ztP .

4. Given z, generate a document D’, based on)|'(zDP . This represents the probability of

observing D’ that is connected with D, given latent topic z.

The variables)|(DzP ,)|(ztP and)|'(zDP are what we want to estimate. As a result, we

come up with the following joint log-likelihood function:

,)1(

),)|()|'()(log()',(

))|()|()(log(),(

',

,

ct

DD z

c

tD z

t

LLL

DzPzDPDPDDlL

DzPztPDPtDnL

 





 

 

 (9)

Figure 19. Graphical model representation of semi-supervised PLSA

91

Where)',(DDl indicates whether document D and D’ are connected (1)',(DDl) or not

(0)',(DDl). For now, to simplify our problem,)',(DDl is a binary value, and whether D is

connected to D’ or not is based on whether they both fall into the same category.)',(DDl will

be further updated by the word connection between documents in section 4.2.2.

Based on (9), we want to find)|(DzP ,)|(ztP and)|'(zDP that maximize the log-

likelihood function L. we then have:

)))|()|'(log()',()1(

))|()|(log(),(max(arg))1(max(arg)max(arg

',

,

 

 





DD z

tD z

ct

DzPzDPDDl

DzPztPtDnLLL





 (10)

Similarly, we introduce)(zAt and)(zAc as two probability distributions of z, so that

)
)(

)|()|'(
)(log()',()1(

)
)(

)|()|(
)(log(),(max(arg)max(arg

',

,

 

 





DD z c

c

tD z t

t

zA

DzPzDP
zADDl

zA

DzPztP
zAtDnL





 (11)

Based on the law of unconscious statistician, the above equation (11) yields to:

))
)(

)|()|'(
(log()',()1(

))
)(

)|()|(
(log(),(max(arg)11(

',

,









DD c

tD t

zA

DzPzDP
EDDl

zA

DzPztP
EtDn





 (12)

Using Jensen’s Inequality, we find a lower bound function for the above equation (12), and when

C
zA

DzPztP

t


)(

)|()|(
 and C

zA

DzPzDP

c


)(

)|()|'(
, we have:

92

))
)(

)|()|'(
(log()()',()1(

))
)(

)|()|(
(log()(),(max(arg

))
)(

)|()|'(
(log()',()1(

))
)(

)|()|(
(log(),(max(arg)12(

',

,

',

,

 

 













DD cz

c

tD tz

t

DD c

tD t

zA

DzPzDP
zADDl

zA

DzPztP
zAtDn

zA

DzPzDP
EDDl

zA

DzPztP
EtDn









 (13)

 Since we know that  
z

t zA 1)(,  
z

c zA 1)(, we have:

),|(
)|()|(

)|()|(
)(DtzP

DzPztP

DzPztP
zA

z

t 


, (14)

)',|(
)|()|'(

)|()|'(
)(DDzP

DzPzDP

DzPzDP
zA

z

c 


.

Hence,)(zAt and)(zAc are posterior probabilities of z when we maximize (13), given the

observation of each document-word pair and connected document-document pair, respectively.

However, from the above equation (14) and (15), we could see the probability of)|z(DP and

)|'(zDP needs to be estimated separately for each document-topic pair, similar as the approach

in [108]. It will be much easier if we could make some transformation so that we could estimate

the same parameter instead. Based on the Bayes’ Theorem, we have:









z

c

z

t

zPzDPzDP

zPzDPzDP
DDzPzA

zPzDPztP

zPzDPztP
tDzPzA

)()|()|'(

)()|()|'(
)',|()(

)()|()|(

)()|()|(
),|()(

. (15)

93

This problem is then transferred into estimating)|(zDP ,)|(ztP and)(zP , which significantly

reduces the size of parameters. Suppose the size of Tr is N and the number of topics generated is

G, we now only need to estimate G additional parameters from)(zP instead of GN  parameters

from)|(DzP .

Similar to the PLSA, for semi-supervised PLSA, the maximization likelihood estimation in (9)

can thus be solved using EM algorithm. During EM algorithm learning, in E-step, based on the

current estimated)|(zDP ,)|(ztP and)(zP , the posterior probability of),|(tDzP and

)',|(DDzP is computed for each document-word pair and connected document-document pair at

each iteration. In M-Step,)|(zDP ,)|(ztP and)(zP are updated by maximizing (13), which

will be used in the E-step of next iteration until convergence. Considering that

 
zz

zPzDP
DP

DzP 1)()|(
)(

1
)|(, 

z

zPzDPDP)()|()(, the final conditional

probability)|(DzP for each document-topic pair can be calculated using:




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP , which means that)(DP could be considered as a

normalization constant for)|(DzP .

Computational steps of EM algorithm for semi-supervised PLSA

Initialization: Define the maximum number of iterations R, and number of topics G to be

generated. For each document-topic and topic-word pair, assign random values to)|(0 zDP and

94

)|(0 ztP between 0 and 1, with the constraints 1)|(0 
D

zDP , and 1)|(0 
t

ztP . For each topic,

initialize
G

zP
1

)(0  , which evenly distribute the probability of each topic at the beginning.

E-step: At iteration r, for each observed topic, word and document,
pz , bt , aD , and mD that is

connected to aD , compute:

 




z

rarbr

prparpbr

baprprt
zPzDPztP

zPzDPztP
tDzPzA

)()|()|(

)()|()|(
),|()(

111

111

, (16)

 




z

rmrar

prpmrpar

maprprc
zPzDPzDP

zPzDPzDP
DDzPzA

)()|()|(

)()|()|(
),|()(

111

111

, (17)

where)|(1 par zDP 
 ,)|(1 pmr zDP 

,)|(1 pbr ztP 
 and)(1 pr zP 

 are derived from iteration r-1.

M-step: At iteration r, for each document-topic and topic-word pair, we want to calculate

)|(par zDP ,)|(pbr ztP and)(pr zP in order to maximize (13). As a result, at iteration r,

 

 

























 

 

 

 

',

,

',

,

))(log())|(log())|'(log()',|()',()1(

))(log())|(log())|(log(),|(),(

maxarg

))
)()',|(

)()|()|'(
(log()',|()',()1(

))
)(),|(

)()|()|(
(log(),|(),(max(arg)13(

DD

rrr

z

r

tD

rrr

z

r

DD r

rrr

z

r

tD rr

rrr

z

r

zPzDPzDPDDzPDDl

zPzDPztPtDzPtDn

DPDDzP

zPzDPzDP
DDzPDDl

DPtDzP

zPzDPztP
tDzPtDn









(18)

Let )18(, since we know that 1)|(
t

r ztP , 1)|(
D

r zDP and 1)(
z

r zP , the above

optimization problem could be solved using Lagrange multipliers [107], such that:

95

0)1)(()1)|(()1)|((  
z

r

z D

rz

t

r

z

z zPzDPztP  (19)

Take derivative for (19) with respect to)|(pbr ztP ,)|(par zDP and)(pr zP leads to the

following stationary equations:

),|(),()|()(bpr

D

bpbrz
tDzPtDnztPp  (20)

 
'

)',|()',()1(2),|(),()|()(

D

apraapr

t

aparz
DDzPDDltDzPtDnzDPp  (21)


',

)',|()',()1()(
DD

prpr DDzPDDlzP  (22)

Note here,)|(zDP ar and)|'(zDPr are actually representing the same parameter, considering

they are connected with each other and exchangeable. Therefore, in (21) they are merged

together, so that)1( is multiplied by 2.

By summing up (20) by t, summing up (21) by D, and summing up (22) by z, we are able to

solve the Lagrange multipliers 
z

z , 
D

D and  , and finally we get the updating equations

for)|(pBr ztP ,)|(par zDP and)(pr zP :






tD

pr

D

bprb

pbr
tDzPtDn

tDzPtDn

ztP

,

),|(),(

),|(),(

)|((23)











',,

'

)',|()',()1(2),|(),(

)',|()',()1(2),|(),(

)|(

DD

pra

tD

pr

D

apraapr

t

a

par
DDzPDDltDzPtDn

DDzPDDltDzPtDn

zDP




 (24)

96











',,

',,

)',()1(2),(

)',|()',()1(2),|(),(

)(

DDtD

DD

prpr

tD

pr
DDltDn

DDzPDDltDzPtDn

zP




 (25)

The above E-step and M-step keep iterating until the maximum iteration R, or the log-likelihood

function rL in (9) met the criterion that  1rr LL , where  is set as the convergence goal of

the model. The final conditional probability)|(lDzP for each topic given TrDl  can be

calculated using:




z

l

l

l

l
zPzDP

zPzDP

DP

zPzDP
DzP

)()|(

)()|(

)(

)()|(
)|(.

Same as PLSA algorithm, the output from semi-supervised PLSA after EM learning is a semi-

supervised topic-document (SSTD) matrix sstdM , in which each document has a vector

representation
lDH that is mapped from indexed term space to latent topic space,

],...,,[,,2,1 llll DGDDD PPPH  , and)|(, liRDi DzPP
l
 , Gi ,...2,1 , where R denotes the maximum

number of iterations EM went through, and G denotes the number of topics generated. As a

result, we have:

],...,,[
21

T

D

T

D

T

Dsstd N
HHHM  .

4.1.3.2 Generate semi-supervised topic-document vector for previously

unseen document

In order to extend semi-supervised PLSA to previously unseen (testing) documents, similar to

PLSA, for a testing document uD , we run through the EM algorithm to generate the conditional

probability for Du given latent topic z. During parameter estimation, all other parameters are kept

97

fixed, except)|(zDP u . However, for a unseen document uD ,)|(zDP u cannot be initialized

directly. The following steps explain how EM algorithm is applied to uD :

 In the initialization step, since
)(

)|(

)(

)()|(
)|(

zP

DzP

zP

DPDzP
zDP uuu

u  , we assign

random value to)|(0 uDzP between 0 and 1, with the constraint 1)|(0 
z

uDzP . Then

)|(0 zDP u is calculated using)(zP that has already been estimated during training, based

on the following formula:




z

u

u

u

zP
DzP

zP
DzP

zDP

)(

1
)|(

)(

1
)|(

)|(

0

0

0 .

 In E-step, at iteration r, based on)|(1 zDP ur , the posterior probabilities,),|(tDzP ur and

)',|(DDzP ur are computed, where TrD' , and 'D is connected to uD .

 In M-Step, only)|(zDP ur is calculated by equation (24).

 The final conditional probability)|(uDzP for each topic given uD can be calculated

using:




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP

u

u

u

u

u .

Therefore, a vector representation
uDH is generated for uD , with the same dimension as

lDH .

It is obvious that there is a problem about how to find out what 'D in Tr is connected to the

testing document, and how. This is done by using word semantic information extracted from

ontology network, which will be discussed in detail in section 4.2.2. As a result, the system

framework of using semi-supervised PLSA is shown in Fig. 20, where the VSM augmented with

98

PLSA topic modeling also takes the CD matrix generated from VSM augmented with WordNet

ontology.

The above discussion in section 4.1 mainly focuses on how to generate latent semantic features

from text documents, which are incorporated into conventional VSM model. The connectivity

between documents, together with the relationship between words, allows us to generate a mixed

joint probabilistic model for a text collection that provides a solid foundation for an accurate and

meaningful text representation.

Figure 20. Proposed text categorization model framework

99

4.2 A VSM augmented with WordNet ontology

Word ontology networks, as discussed in section 2.3, provide semantic word relationships that

could be utilized to facilitate text mining applications. This section presents the detail of building

text categorization model using WordNet ontology network, in terms of generating an augmented

TD matrix and a “concept” level CD matrix.

4.2.1 An augmented TD matrix generated using WordNet

In our proposed text categorization model, WordNet is used in two ways, derived from and

modified based on basic approaches introduced in [46]: “Add” and “Replace” rules, considering

the “Concept only” rule lost single term information, and did not achieve as good performance as

other two rules in text clustering tasks, as reported in [46]. This answers the question in section

2.5.3 about which rules should be selected to apply to VSM features.

For each indexed term it generated by VSM model, we first use POS tagging such as Stanford

POS tagger [112] to identify its lexical category. After that, it is feed into WordNet ontology to

find its list of synonyms,
jS . Note here, word sense disambiguation (WSD) can be applied to

obtain more accurate synonym generation, however it is beyond our research scope, and it is not

our intention to find a most appropriate WSD model. As a result, we find the synset
jS based on

the first meaning of it , to simplify our problem.

100

In some applications, POS tagging may not be very reliable, e.g., text documents are noisy and

lack of grammar structure and sentence boundary [5]. In those cases, we generate the synset for it

only considering one word class from “Noun”, “Verb” or “Adjective”, and choose the best one

based on system performance evaluation. Through our experiment we found out that “Noun”

synsets always have the best accuracy, which will be presented in Chapter 5.

The above discussion answers the question raised in section 2.5.3 about determining the scope

of synset for a word with multiple word categories.

Although in WordNet, the major relationship is synonymy, we also find out that most synsets

are connected to other synsets via a number of semantic relations. These relations vary based on

the type of word. For “Noun” synsets, the relations mainly include hypernym/hyponym (word A

is a kind of word B or vice versa, e.g., dog vs. canine), and meronym/holonym (word A is a part

of word B or vice versa, e.g., window vs. building), which are our major focus in this dissertation.

For “Verb” or “Adjective” synsets, we only consider the synonymy relation. This solves the issue

of making full use of word relationships other than synonymy, as mentioned in section 2.5.3.

The ultimate goal of finding the related synsets for a given term, including synonymy,

hypernym/hyponym and meronym/holonym, is to find out all terms within these synsets, and use

this term relationship information to augment VSM model. The following Fig. 21 illustrates an

example of generating the list of related words, L_syn, in WordNet for an indexed term it ,

especially when it is a noun. Here, yxt , denotes the y
th

 term included in the x
th

 synset. Starting

from
jS , denoted as root level 0, we find out its hypernym/hyponym and meronym/holonym

synsets, extract all unique terms included in these synsets, and add them into L_syn. The next

level starts from synsets
aS ,

bS ,
cS and

dS , and their hypernym/hyponym and

101

meronym/holonym synsets are extracted respectively. This procedure continues to explore

through the entire “graph” of
jS until there are no synsets related to the current synset. All unique

terms included in the list of related synsets generated for
jS are then added into L_syn.

In order to build a hierarchical semantic relationship between synsets, we assign a weight for

each edge in the graph generated for
jS . The basic idea here is that, terms found in different level

of synsets, should be assigned with different semantic weight, the deeper the synset level is, the

lower weight we are expecting. One example is shown in Fig. 22. Two coefficients,]1,0(

and]5.0,0( , are defined to represent the weight of the edge for hypernym/hyponym and

meronym/holonym relationships, respectively. Here, considering that meronym/holonym

relationship is less significant than hypernym/hyponym in terms of semantic similarity, e.g.,

document talks about “window” might not have any relationship with document talks about

“building”, we use 
2

1
 throughout our experiments.

Figure 21. Example of generating related words in WordNet

102

After assigning weight to each edge, we then assign a weight for each synset that is related to

jS , in order to reflect the weight decrease along the path from
jS to its related synsets. Starting

from the root synset
jS , its weight, denoted as

jS , equals to 1. After that, the weight
xS for any

synset
xS that is related to

jS , is calculated by multiplying the weights of all the edges along the

shortest path from
xS to

jS . If multiple paths are found, then the maximum value is selected for

xS . For example, in Fig. 22,
2

fS for synset
fS , 

eS for synset
eS .

4.2.1.1 Generate concept-document (CD) matrix (“add” rule)

Figure 22. Example of weighting edges in the tree structure generated for synset

103

Under this rule, a CD matrix cM is generated using WordNet by introducing the “concept”

level features, which represents the V related groups of terms generated from the term list T_L of

document collection Tr, denoted as VisynL i ,...2,1,_  . Mathematically, for a document

TrDl  , its “concept” vector representation
lDQ is defined as following:

],,...,,[,,2,1 llll DVDDD qqqQ  ViStsynLtwq xrir

t

SDtDi

r

xlrl
,...,2,1,,_,)(,,  , (26)

where V represents the total number of synsets generated from the term list T_L,
lDiq ,
denotes

the weight of “concept” isynL _ , which is calculated by first multiplying weighted term

frequency value
lr Dtw ,
 (e.g., tf-idf) for each term rt in isynL _ with the weight of synset

xS that

includes rt , and then summing them together. For example, in the following Fig. 23, assume the

concept 1_ synL generated from term “car” contains the following terms: “car”, “motorcar”,

“motorbus”, “bus”, “minibus”, “window” and “quarterlight”, therefore, for a document TrDl  ,

lll

lllll

DDhtquarterligDwindow

DmotorbusDbusDmotorcarDcarD

www

wwwwq

.,minibus

2

,,

,,,,,1)(








.

104

This procedure makes the full use of synonymy, hypernym/hyponym and meronym/holonym

to assign an appropriate weight for each “concept” features used for augmented VSM model. It

answers the question mentioned in section 2.5.3 about what value should be assigned to the

concept features added to TD matrix. Thus, for the output of this stage, we have:

],...,,[
21

T

D

T

D

T

Dc N
QQQM  .

Similarly, for a previously unseen document uD , we generate the “concept” vector representation

uDQ ,],,...,,[,,2,1 uuuu DVDDD qqqQ  for the testing purpose.

4.2.1.2 Generate augmened TD matrix (modified “repl” rule)

Figure 23. Example of concept generation in “add” rule

105

Under this rule, the term-document matrix 0M in section 4.1.1 is replaced by a new term-

document matrix generated using WordNet, in a way that for a term it having synset iS , its

weight in document lD is updated using the following equation:

)_,max(,

'

, LTtStww rirDtDt lrli
 .

The above equation ensures that semantically similar terms share the same weighting value, so

that they are considered as equally important. For example, if term xt = “entire” appears in

document A and
yt = “total” appears in document B, and suppose },{ yxyx ttSS  , then we will

have
'

,

'

,

'

,

'

, ByBxAyAx wwww  . The output from this stage is a TD matrix 1M that has the same

dimension as 0M , where],...,,[
211

T

D

T

D

T

D N
WWWM  , and

iDW  denotes the vector representation

for document Di in Tr,],...,,['

,

'

,

'

, 21 lKlll DtDtDtD wwwW  .

4.2.2 Generate document-document connection for semi-supervised

PLSA using WordNet

We mentioned in section 4.1.1.2 that when applying semi-supervised PLSA to previously

unseen document uD , there is a problem about how to find out what documents in Tr are

connected to the testing document, and how. This leads to the problem of determining),(DDl u

as shown in the log-likelihood function in (9), which indicates whether uD and D are connected

or not. From the perspective of joint probability of all observed documents pairs that are

connected with each other, we propose the following approach of generating),(DDl u for the pair

of uD and each TrD .

106

Suppose we have V related “concepts” generated from the term list T_L of document collection

Tr, denoted as VisynL i ,...2,1,_  :

 Extract weighted frequency based vector representation for uD and D, denoted as
uDW

and DW , as discussed in section 4.1.1, where 0MWD  .

 Generate a sub-list if T_L, denoted as T_L_sub that has O terms, where for each term

OosubLTto ,...2,1,__  , to does not belong to any of the V “concepts”.

 Generate “concept” vector representation for uD and D, denoted as
uDQ and DQ ,

respectively, based on equation (26), where cD MQ  .

 The connection value),(DDl u between uD and D is thus calculated as following:





O

k

DD

V

j

DDu kWkWjQjQDDl
uu

11

))(),(min())(),(min(),(, where)(jQD denotes the j
th

concept in vector DQ , and)(kWD denotes the k
th

 weighted term frequency in T_L_sub.

The basic idea here is that,),(DDl u is the “weighted frequency” that we observe both

uD and D have concept occurrence or “non-concept” term occurrence, which represents

the connection value between uD and D.

After generating),(DDl u for the pair of uD and D, it is obvious that)',(DDl generated for

training document collection Tr should also be updated. Instead of using binary values

(1)',(DDl or 0)',(DDl), for all pair of D and D’, where both TrDD , , if 1)',(DDl ,

)',(DDl is updated using the same approach discussed above. With the procedures discussed

above, we are able to apply semi-supervised PLSA model for both training set Tr and unseen

107

document uD , by generating the semi-supervised topic-document (SSTD) matrix sstdM , and a

vector representation
uDH , respectively.

108

4.3 A step-by-step example of proposed text representation

model generation procedure

To provide a more comprehensive illustration of how the above section 4.1 and 4.2 works, we

hereby designed a “toy” dataset that is derived from [113] and walk through the whole procedure

of VSM model generation using PLSA, semi-supervised PLSA and WordNet ontology. This

dataset is named as Human Computer Interface and Graph Theory (HCI_GT).

The HCI_GT contains 9 documents as training data separated into two categories, and one

“unseen” document Du for testing, defined as following, where bolded words denote indexed

terms:

Category A: Human Computer Interface (HCI) Category B: Graph Theory(GT)

A1: Human machine Interface for ABC computer applications

A2: A survey of user opinion of computer system response time

A3: The EPS user interface management system

A4: System and human system engineering testing of EPS

A5: Relation of user perceived response time to error management

B1: System of random, binary, ordered tree

B2: The intersection graph of paths in tree

B3: Graph minors IV: Widths of tree and well-quasi-ordering

B4: Graph minors: A study

Du: A survey of decision tree system

109

4.3.1 Build VSM model with CE_W global weighting scheme

Hence, in this training set Tr, 9N , 13K . As discussed in section 4.1.1, the vector

representation generated for each document in Tr and for testing document Du, based on term

frequency (tf) with idf global weighting and tf with CE_W global weighting, are shown in the

following Table 14 - 15.

Table 14 Tf-idf representation for HCI_GF

human interface computer user system response time EPS survey trees graph minors study

A1 0.577 0.577 0.577 0 0 0 0 0 0 0 0 0 0

A2 0 0 0.410 0.299 0.221 0.410 0.410 0 0.598 0 0 0 0

A3 0 0.595 0 0.435 0.321 0 0 0.595 0 0 0 0 0

A4 0.594 0 0 0 0.542 0 0 0.594 0 0 0 0 0

A5 0 0 0 0.459 0 0.628 0.628 0 0 0 0 0 0

B1 0 0 0 0 0.594 0 0 0 0 0.805 0 0 0

B2 0 0 0 0 0 0 0 0 0 0.707 0.707 0 0

B3 0 0 0 0 0 0 0 0 0 0.508 0.508 0.696 0

B4 0 0 0 0 0 0 0 0 0 0 0.381 0.522 0.763

Du 0 0 0 0 0.313 0 0 0 0.849 0.425 0 0 0

Table 15 Tf-CE_W representation for HCI_GF

human interface computer user system response time EPS survey trees graph minors study

A1 1 1 1 0 0 0 0 0 0 0 0 0 0

A2 0 0 1 1 0.126 1 1 0 1 0 0 0 0

A3 0 1 0 1 0.126 0 0 1 0 0 0 0 0

A4 1 0 0 0 0.213 0 0 1 0 0 0 0 0

A5 0 0 0 1 0 1 1 0 0 0 0 0 0

B1 0 0 0 0 0.126 0 0 0 0 1 0 0 0

B2 0 0 0 0 0 0 0 0 0 1 1 0 0

B3 0 0 0 0 0 0 0 0 0 1 1 1 0

B4 0 0 0 0 0 0 0 0 0 0 1 1 1

Du 0 0 0 0 0.126 0 0 0 1 1 0 0 0

110

Comparing with idf global weighting, when applying CE_W, the word “system” is assigned

with a lower weight because that it occurs in both category A and B and therefore not as important

as others in terms of differentiating documents in A and B categories. All other terms are assigned

with global weight equals to 1.

4.3.2 Build VSM model with PLSA topic modeling

Following the EM algorithm for PLSA discussed in section 4.1.1.1, we first define the number

of maximum iteration R = 500, and  = 1E-5. We found out that in our empirical case studies,

generally speaking, the number of latent topics should be defined as around K , where K is the

number of indexed terms. We will further discuss the effect of selecting different number of

topics in section 5.3. Here, because that the HCI_GT has 9 indexed terms, it is reasonable to

define G = 3. The three latent topics are denoted as z1, z2 and z3, respectively.

The steps of building LTD matrix for training documents in Tr are described as following:

 At the initialization step, for each document-topic and topic-word pair, assign random

values to)|(0 DzP and)|(0 ztP between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

DzP ,

and
3210 ,,,1)|(zzzzztP

t

 . As a result, we have the following two matrixes, zDPM _

and tzPM _ , as shown in the following Fig. 24:

111

 At E-step (expectation step), at iteration r,),|(),,|(),,|(321 tDzPtDzPtDzP rrr are

calculated for each term-document pair using equation (6), which use the)|(1 DzPr and

)|(1 ztPr initialized before. Fig. 25 shows this E-step process in iteration 1.

Figure 24. Example of EM algorithm Initialization

112

 At M-step (maximization step), at iteration r, for each document-topic and topic-word pair,

compute)|(DzPr and)|(ztPr based on the updating formulas in (7) and (8).

Apparently, this step uses the calculated conditional posterior probability),|(tDzPr to

update the probability)|(1 DzPr and)|(1 ztPr into)|(DzPr and)|(ztPr , Fig. 26

shows this M-step process in iteration 1, in zDPM _ and tzPM _ .

Figure 25. Example of EM algorithm E-Step

113

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood

function)(rL in (1) met the criterion that   )()(1rr LL , at iteration r. Here, we

denote the final estimation for each topic-word pair after the above training process as

)|(ztPTr .

The final results of zDPM _ and tzPM _ after convergence, with size 39 and 313

respectively, is shown in Fig. 27.

Figure 26. Example of EM algorithm M-Step

114

In zDPM _ , latent topic z1 and z2 can be considered as “sub-categories” in category A, and most

of category B documents only have occurrence of latent topic z3, except document B1, which

contains both term “system” and “tree”, therefore both z2 and z3 have 0.5 probability of occurrence.

In tzPM _ , it is obvious that latent topic z3 contains all terms that only occurs in category B, and

term “computer”, “user” and “system” all have probability on latent topic z1 and z2.

For testing document Du, we run through the EM algorithm to generate the conditional

probability of each latent topic z for Du using the following procedure with the same parameter

setting for R, G and  :

Figure 27. Example of EM algorithm result after convergence

115

 At the initialization step, for each topic z for the given uD , assign random values to

)|(0 uDzP between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

uDzP .

 At E-step, at iteration r,),|(),,|(),,|(321 tDzPtDzPtDzP ururur are calculated using

equation (6) and)|(ztPTr from the training process..

 At M-step, at iteration r, compute)|(ur DzP based on the updating formula in (8).

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood

function)(rL in (1) met the criterion that   )()(1rr LL , at iteration r. Here, we

denote the final estimation for each topic-Du pair as)|(uF DzP .

Therefore, for testing document Du, the final topic-document representation is an 31 vector

uDV , where  )|(),|(),|(321 uFuFuFD DzPDzPDzPV
u
 , as shown in Fig. 28.

4.3.3 Build VSM model with WordNet ontology

Figure 28. EM algorithm result for testing document Du

116

In this example dataset, HCI_GT, two terms could be found in WordNet as synonym: “survey”

and “study”. These two terms occurs in document A2, B4 and testing document Du. No other

hypernym/hyponym and meronym/holonym relationship is found in HCI_GT.

As discussed in section 4.2.1.1, based on “add” rule, the CD matrix cM generated for training

documents in Tr and the “concept” vector representation
uDQ generated for testing document Du,

using CE_W global weighting, therefore only have one “concept” that contains “survey” and

“study”, as shown in Table 16, where  























4

2

1

421

,1

,1

,1

...
,...,,

B

A

A

T

B

T

A

T

Ac

q

q

q

QQQM ,
lll DDD wwq ,study,survey,1  ,

and
uuuu DDDD wwqQ ,study,survey,1  .

As discussed in section 4.2.1.2, based on “replace” rule, the vector representation generated for

HCI_GT based on CE_W global weighting is updated using the following equation:

Table 16 CD matrix generation for Tr and Du

Document Concept (survey, study)

A1 0

A2 1

A3 0

A4 0

A5 0

B1 0

B2 0

B3 0

B4 1

Du 1

117

 DDDtudyD wwww ,study,survey

'

,s

'

,survey ,max . The augmented TD vector for each document in

HCI_GT is shown in the following Table 17, where both “survey” and “study” has weight equals

to 1 in document A2, B4 and Du:

4.3.4 Build VSM model with semi-supervised PLSA

Following the EM algorithm for semi-supervised PLSA discussed in section 4.1.1.2, we first

define the number of maximum iteration R = 500, number of latent topics G = 3, and  = 1E-5.

For the simplicity of problem, we define  = 0.9. The three latent topics are denoted as z1, z2 and

z3, respectively. We also need to generate the connection matrix connM between each document-

document pair (D, D’) in HCI_GT, where each entry denotes connection value),('DDl between

D and D’, as discussed in section 4.2.2. The result is shown in Table 18:

Table 17 Tf-CE_W representation for Tr and Du after using WordNet “replace” rule

human interface computer user system response time EPS survey trees graph minors study

A1 1 1 1 0 0 0 0 0 0 0 0 0 0

A2 0 0 1 1 0.126 1 1 0 1 0 0 0 1

A3 0 1 0 1 0.126 0 0 1 0 0 0 0 0

A4 1 0 0 0 0.213 0 0 1 0 0 0 0 0

A5 0 0 0 1 0 1 1 0 0 0 0 0 0

B1 0 0 0 0 0.126 0 0 0 0 1 0 0 0

B2 0 0 0 0 0 0 0 0 0 1 1 0 0

B3 0 0 0 0 0 0 0 0 0 1 1 1 0

B4 0 0 0 0 0 0 0 0 1 0 1 1 1

Du 0 0 0 0 0.126 0 0 0 1 1 0 0 1

118

The steps of building SSTD matrix for training documents in Tr are described as following:

 At the initialization step, for each document-topic and topic-word pair, assign random

values to)|(0 zDP and)|(0 ztP between 0 and 1, with the constraints 1)|(0 
D

zDP ,

and 1)|(0 
t

ztP . For each topic, initialize
3

1
)(0 zP , 321 ,, zzzz  . As a result, we have

the following two matrixes, DzPM _ and tzPM _ , as shown in the following Fig. 29.

 At E-step, at iteration r,),|(),,|(),,|(321 tDzPtDzPtDzP rrr are calculated for each term-

document pair using equation (16). Also,)',|(),',|(),',|(321 DDzPDDzPDDzP rrr are

calculated for each document-document pair in Tr using equation (17), where

0)',(,',  DDlTrDD . The process of E-step in iteration 1 is shown in Fig. 30.

 At M-step, at iteration r, for each document-topic and topic-word pair, compute)|(zDPr

and)|(ztPr based on the updating formulas in (23) and (24), and compute)(zPr based

on the updating formula in (25). Apparently, this step uses the calculated conditional

Table 18 Connection matrix for HCI_GF

A1 A2 A3 A4 A5 B1 B2 B3 B4

A1

A2 1

A3 1 1.126

A4 1 0.126 1.126

A5 1 3 1 0

B1 0 0 0 0 0

B2 0 0 0 0 0 1.126

B3 0 0 0 0 0 1 2

B4 0 0 0 0 0 0 1 2

Du 0 1.126 0.126 0.126 0 1.126 1 1 1

119

posterior probability),|(tDzPr and)',|(DDzPr to update the probability)|(1 zDPr ,

)|(1 ztPr and)(1 zPr into)|(zDPr ,)|(ztPr and)(zPr . The process of M-step in

iteration 1 is shown in Fig. 31.

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood

function)(rL in (1) met the criterion that   )()(1rr LL , at iteration r. Here, we

denote the final estimation for each topic-document pair, each topic-word pair and each

latent topic after the above training process as)|(zDPTr ,)|(ztPTr and

321 ,,),(zzzzzPTr  .

 We then generate matrix zDPM _ , where each entry represents the final conditional

probability)|(DzPTr , and




z

TrTr

TrTrTrTr
Tr

zPzDP

zPzDP

DP

zPzDP
DzP

)()|(

)()|(

)(

)()|(
)|(.

 The final results of zDPM _ and tzPM _ after convergence, with size 39 and 313

respectively, is shown in Fig. 32.

Figure 29. Example of EM algorithm Initialization for semi-supervised PLSA

120

Figure 30. Example of EM algorithm E-Step for semi-supervised PLSA

121

Figure 31. Example of EM algorithm M-Step for semi-supervised PLSA

122

In zDPM _ , comparing with Fig. 27 for PLSA, we observed an increase on the probability of

latent topic z1 given document A1 and A3. This is because that A1 is connected to A2 by term

“computer”, and A3 is connected to A2 by term “user”. These two terms all have probability of

occurrence on z1, which contributes to the increase of)|(11 AzP and)|(31 AzP . Also, the

probability of latent topic z3 given document B1 increased, because that B1 only connects to B2 and

B3 by term “tree”, which only occurs in latent topic z3.

For testing document Du, we run through the EM algorithm to generate the conditional

probability of each latent topic z for Du using the following procedure with the same parameter

setting for R, G and  :

Figure 32. Example of EM algorithm result for semi-supervised PLSA after convergence

123

 At the initialization step, for each topic given uD , assign random values to)|(0 uDzP

between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

uDzP . Then)|(0 zDP u is calculated

using the following formula:




z Tr

u

Tr

u

u

zP
DzP

zP
DzP

zDP

)(

1
)|(

)(

1
)|(

)|(

0

0

0 , 321 ,, zzzz  .

,
)(

1
)|()|()(00

zP
DzPzDPDP

Tr

uuu 

 At E-step, at iteration r,),|(),,|(21 tDzPtDzP urur and),|(3 tDzP ur are calculated for

each term given uD using equation (16), which use)|(ztPTr and)(zPTr generated from

the training process. Also,),|(),,|('

2

'

1 uuruur DDzPDDzP and),|('

3 uur DDzP are

calculated for each pair of),('

uu DD using equation (17), where 0),(, ''  uuu DDlTrD ,

which use)|(' zDP uTr
 and)(zPTr generated from the training process.

 At M-step, at iteration r, compute)|(zDP ur based on the updating formulas in (24).

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood

function)(rL in (1) met the criterion that   )()(1rr LL , at iteration r. Here, we

denote the final estimation for Du given latent topic z as)|(zDP uF .

 The final conditional probability)|(uF DzP for each topic given uD can be calculated

using:




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP

TruF

TruF

u

TruF

uF .

Therefore, for testing document Du, the final topic-document representation is an 31 vector

uDV , where  )|(),|(),|(321 uFuFuFD DzPDzPDzPV
u
 , as shown in Fig. 33.

124

Comparing with Fig. 28 for PLSA, the probability of latent topic z3 increases, while the

probability of latent topic z2 decreases, given testing document Du. This is due to the fact that,

when we take a look at)|(zDPTr generated for training documents in Fig. 34 as well as the

connection matrix in Table 18, Du is connected to B2, B3 and B4 that have a high probability on z3,

and is connected to A2 that has a high probability on z1, with high connection values. Also,

although Du is connected to A3 and A4 that have high probability on z2, the term “system” has a

low weight in TD matrix, which contributes to the low value of),(3ADl u and),(4ADl u . These

above factors all contributes to the final estimation of)|(uF DzP , where)|(2 uF DzP is much

lower than)|(1 uF DzP and)|(3 uF DzP .

Figure 33. Semi-supervised PLSA EM algorithm result for testing document Du

125

We can see that instead of only considering word co-occurrence information in PLSA, the semi-

supervised PLSA approach also incorporates document connectivity information extracted from

both semantic information provided by WordNet and document category labels, thus provides

more reasonable topic-document features than PLSA. An overview of PLSA and semi-supervised

PLSA comparison is presented in the following Fig. 35.

Figure 34. PTr(D|z) generated for semi-supervised PLSA

126

Figure 35. Comparison between PLSA and semi-supervised PLSA

127

4.3.5 System evaluation based on document distance measure

In order to evaluate each procedure during VSM generation, we calculate the Euclidean distance

of the vector representation between testing document Du and each of the 9 training documents in

Tr, as shown in the following Table 19 and 20.

From Table 19, the effect of global weighting scheme is obviously significant. With only tf

representation, it cannot differentiate A2, A3 and A4, as well as A1, A5 and B4. With tf-idf

representation, A2, A3 and A4 are differentiated, with A2 identified as the closest document to Du,

because that two terms, “survey” and “system” occurs in both A2 and Du, which is not a very good

assignment. With tf-CE_W representation, the closest document to Du is changed to B1, because of

Table 19 Euclidean distance between Du and training documents based on different text representation - I

Document Content
Euclidean distance to Du

tf tf - idf tf - CE_W

A1
Human machine Interface for

ABC computer applications
2.449 1.414 2.240

A2
A survey of user opinion of

computer system response time
2.236 0.919 2.236

A3
The EPS user interface

management system
2.236 1.341 2.236

A4
System and human system

engineering testing of EPS
2.236 1.288 2.002

A5
Relation of user perceived response

time to error management
2.449 1.414 2.240

B1
System of random,

binary, ordered tree
1.000 0.972 1.000

B2
The intersection graph

of paths in tree
1.732 1.183 1.420

B3
Graph minors IV: Widths of tree

and well-quasi-ordering
2.000 1.252 1.737

B4 Graph minors: A study 2.449 1.414 2.240

Du A survey of decision tree system

128

the low weight assigned to “system”, which is more reasonable. However, A2 and A3, as well as A1,

A5 and B4 still cannot be differentiated.

From Table 20, we can see the significant effect of PLSA and WordNet ontology. With tf-idf

representation, plus the three latent topic features generated from PLSA, similar to the effect of

applying CE_W, the closest document to Du is changed to B1, because of their similar topic

probability distribution (both have probability on z2 and z3). Also A2 and A3, as well as A1, A5 and B4

are differentiated from each other, based on the probability of occurring terms in these documents on the

three latent topics.

Table 20 Euclidean distance between Du and training documents based on different text representation - II

Document Content

Euclidean distance to Du

tf-idf
tf-idf

+PLSA

tf-CE_W

+PLSA

+WordNet

tf-CE_W

+semi-

supervised

PLSA

+WordNet

A1
Human machine Interface for

ABC computer applications
1.414 1.671 2.794 2.734

A2
A survey of user opinion of

computer system response time
0.919 1.166 2.349 2.346

A3
The EPS user interface

management system
1.341 1.610 2.791 2.735

A4
System and human system

engineering testing of EPS
1.288 1.566 2.608 2.667

A5
Relation of user perceived response

time to error management
1.414 1.586 2.744 2.745

B1
System of random,

binary, ordered tree
0.972 1.096 1.805 1.814

B2
The intersection graph

of paths in tree
1.183 1.457 2.177 2.135

B3
Graph minors IV: Widths of tree

and well-quasi-ordering
1.252 1.514 2.396 2.358

B4 Graph minors: A study 1.414 1.650 1.934 1.886

Du A survey of decision tree system

129

By adding CD matrix and modifying TD matrix using WordNet, apparently, A2 and B4 are ranked closer

to Du, due to the semantic similarity between “survey” and “study”. After this stage, we have a strong

confidence that Du has a higher probability of belonging to category B.

From the final column of Table 20, we can see that the semi-supervised PLSA has the similar

effect as PLSA, showing that this approach is as robust as PLSA. Moreover, A1 and A3 are ranked

closer to Du than A5, because that connectivity among A category documents increase their probability on

latent topic z1. Distance from Du to A4 increases because of the probability decrease on)|(2 uF DzP ,

and distances from Du to B2 , B3 and B4 decreases because of the probability increase on)|(3 uF DzP .

Therefore, we may conclude that semi-supervised PLSA provides a more reasonable text

representation by generating semi-supervised topic-document features based on semantic

relationship between words and connectivity between documents.

130

4.4 Generate hybird VSM model for classification

Considering the task of text categorization, the procedures discussed in section 4.1 and 4.2 are

combined together to generate a hybrid VSM text representation. For training set Tr, the process

of VSM matrix generation and combination in our final system, using WordNet ontology and

semi-supervised PLSA, is shown in the following Fig. 36. Starting from TD frequency matrix, our

system generates TD matrix
0M with global weighting scheme. TD matrix

0M is then used to

generate concept-document matrix
cM using WordNet ontology, and

0M is also replaced by 1M

based on word relationships extracted from WordNet ontology. The topic-document matrix
LtdM

or
sstdM using PLSA / semi-supervised PLSA modeling is then generated based on 0M and

cM .

Note here, the feature size of the final matrix is the sum of original indexed terms, number of

concepts generated from Tr and number of latent topics we defined. These features could be

further selected using feature selection techniques such as Gini Index, Information Gain, Mutual

Information, etc [65,66]. However, to make the text representation features as inclusive as

possible, we still keep all of them. The hybrid text representation model is then used to learn and

evaluate classifiers, e.g., SVM, Neural Networks, Naïve Bayes classifier, etc.

131

Figure 36. VSM matrix generation and combination

132

 EMPIRICAL CASE STUDY AND CHAPTER 5.

EXPERIMENTAL RESULTS EVALUATION ON TEXT

CATEGORIZATION

In this section, we present experiments we conducted using our proposed text categorization

framework in Fig. 18 and Fig. 20, and classification results analysis on several publicly available

or domain-specific datasets. This is an extension of experiments on HCI_GT discussed in section

4.3, in terms of investigating how the proposed text representation could help improving text

categorization accuracy. The experiments are designed as comparisons of the proposed text

representation with conventional text representation methods. We present the experiment results

of tuning parameters for PLSA, semi-supervised PLSA and WordNet ontology, and provide a

detailed performance analysis of our proposed text representation approach.

133

5.1 Datasets

In this empirical study, we first use three publicly available and widely used datasets to

evaluate our proposed system. These datasets include Reuters-21578 [115], Nist Topic Detection

and Tracking corpus (TDT2) [114], and 20 newsgroups [116]. Reuters-21578 corpus contains

21578 documents in 135 categories. After removing documents with multiple category labels, it

left 8,293 documents in 65 categories. In TDT2, those documents appearing in two or more

categories were removed, and only the largest 30 categories were kept, thus leaving 9,394

documents in total. 20 newsgroups dataset is a collection of 18,846 newsgroup documents,

partitioned (nearly) evenly across 20 different newsgroups.

To evaluate the system performance on domain-specific datasets that has customized category

definition such as [24,80], we also used a dataset named VDR, that contains 600 vehicle

diagnostic records, in which documents that contain descriptions that reveal systematic

engineering or manufacturing failures are defined as of interests (Category-A), and all other

documents belong to Category-B. The major challenge in this problem is that the documents of

interests are not explicitly defined by either topics or general descriptions, as shown in the

following examples:

Category-A document: “perform abs self roadtest found rear wheel speeds sensor

connector corroded into sensor replace sensor and connector road tester ok clear code”

134

Category-B document: “road roadtest traction control lamp on eec roadtest code c1280

u415 om rcm contact hot line 103912699 check connection at rcm check mounting bolts

ok clear code”

In all of these datasets discussed above, preprocessing tasks mentioned in section 4.1.1 are

conducted and stop words are removed. Note here, all words having occurrence frequency lower

than 5 are removed, except VDR dataset. TD matrix weighted by CE_W is then generated

for each dataset. TD matrix based on tf only is also generated for PLSA model learning, and TD

matrix weighted by idf is generated for evaluation purpose.

135

5.2 Experiment setup

Considering that the focus of this work is not improving or comparing machine learning

algorithms, we use SVM as our classification model throughout different experiments. SVM

training is carried out with LIBSVM package, which is developed by Chih-Chung Chang and

Chih-Jen Lin from National Taiwan University [117]. For each dataset, we did 3-fold cross

validation, and in each fold, we choose 2/3 documents from each class as training set, and the

remaining 1/3 documents as testing set. We apply the Gaussian Radial Basis kernel function

(RBF) and tune the parameter gamma to 0.001, 0.001, 0.1 and 0.1, for Reuters, TDT2,

20newsgroups and VDR, respectively, based on the average testing accuracy of the 3 folds.

All experiments are performed on a desktop with Intel(R) Core i7 processor operating at

3.40GHz and 16 GB of memory, with 64-bit Windows 7 system, JDK7.0 + Netbeans 7.3.1, and

Matlab 2009a.

136

5.3 Build VSM model with PLSA

Similar to the example discussed in section 4.3.2, in PLSA learning, for all datasets, we define

the number of maximum iteration R = 500 for training set, and R = 200 for testing set. The

convergence goal is defined as  = 1E-5. An example of log-likelihood function maximization

on Reuters dataset is shown in Figure 37. It is obvious that the log-likelihood function converges

very fast and become very stable after 300 iterations.

We performed experiments on text categorization by investigating what topic number is the

most appropriate for different datasets, using topic-document features generated by PLSA as text

representation. The results are illustrated as following in Table 21 and Fig. 38. From the results,

we observe that for Reuters, TDT2, 20news and VDR dataset, 60 topics, 140 topics, 140 topics

and 30 topics yields the best categorization accuracy, respectively. As a result, generally we

Figure 37. Example of log-likelihood maximization for PLSA

137

should define larger number of topics during PLSA modeling on dataset with larger number of

terms, but the relationship between term size and number of topics is not simply monotonic and

linear. In order to obtain promising categorization performance, selecting an appropriate number

of topics that could best differentiate documents in different classes is very important. In practice,

we may conclude that it is reasonable to set the number of topics around K , where K is the

number of indexed terms. For the convenience of evaluation and analysis, in the later

experiments, we keep on using 60 topics for Reuters, 140 topics for TDT2 and 20news dataset,

and 30 topics for VDR dataset.

Table 21 Text categorization performance based on different number of topics generated by PLSA

LTD

matrix

generated

by PLSA

of

Topic =

20

of

Topic =

30

of

Topic =

40

of

Topic =

60

of

Topic =

80

of

Topic =

100

of

Topic =

120

of

Topic =

140

of

Topic =

160

of

Topic =

180

Reuters

(8558

terms)

81.27% 80.91% 81.42% 84.60% 83.09% 83.33% 82.87% 81.43% 81.55% 80.12%

TDT2

(19448

terms)

79.34% 84.39% 85.01% 87.01% 88.62% 89.28% 88.38% 90.24% 88.23% 89.97%

20news

(24347

terms)

63.28% 63.67% 67.12% 74.24% 78.51% 78.07% 77.33% 79.46% 76.90% 72.13%

VDR

(1062

terms)

76.79% 82.32% 81.21% 80.11% 77.34% 74.03% 72.87% 70.25% 71.22% 69.55%

138

Figure 38. Text categorization performance based on different number of topics generated by PLSA

139

5.4 Build VSM model with WordNet ontology

Similar to the example in section 4.3.3, WordNet ontology network is utilized in our text

categorization model using “add” rule to generate CD matrix, and “replace” rule to replace

weighted TD matrix. In our experiments, we first looked into the effect of text categorization

using terms within different word class, as discussed in section 4.2.1. The results are shown in

Table 22. It is obvious that the best word class is “Noun”, which generates 377, 1161, 621 and 21

“concept” features for Reuters, TDT2, 20newsgroups and VDR, respectively, and having a

promising text categorization accuracy. Although mixed word class also has the similar accuracy

as “Noun”, it generates much higher dimensionality of feature space. Therefore, for the rest of

our experiments, while performing WordNet synonym searching, we consistently only consider

“Noun” synset for each indexed term in T_L generated from training set Tr.

Secondly, in order to investigate the effect of hypernym/hyponym and meronym/holonym

relationships in generating “concept” features, we define the weights of the edges for

hypernym/hyponym and meronym/holonym relationships,  and  , as  1,75.0,5.0,25.0,0 ,

and
2


  . The results of text categorization accuracy using different weight values for

hypernym/hyponym and meronym/holonym relationships are shown in Table 23. From the

results, for Reuters and 20news datasets, 25.0 yields the best performance, while TDT2 and

VDR datasets have highest accuracy when 5.0 . Therefore, we may conclude that

hypernym/hyponym and meronym/holonym relationships do help with text categorization, but

140

should not be assigned with a too high weight (e.g., less than 0.5), since synonymy is the most

important semantic relationship in generating “concept” based features.

Table 22 Text categorization performance using WordNet based on different word class

TD matrix with tf-CE_W + CD matrix (25.0)

Categorization accuracy Noun Verb Adjective Mixed

Reuters 92.74% 92.34% 89.01% 92.26%

TDT2 97.07% 96.22% 96.15% 96.64%

20news 87.68% 86.48% 86.58% 86.73%

VDR 84.53% 82.32% 82.32% 83.97%

of concepts generated Noun Verb Adjective Mixed

Reuters 377 229 138 677

TDT2 1161 666 645 2201

20news 621 537 172 1165

VDR 21 28 11 58

141

Table 23 Text categorization performance using WordNet based on different hypernym/hyponym and

meronym/holonym weighting

TD matrix with tf-CE_W + CD matrix

Categorization accuracy 0 25.0 5.0 75.0 1

Reuters 92.06% 92.74% 91.43% 91.31% 90.91%

TDT2 97.07% 97.07% 98.02% 97.95% 97.95%

20news 86.61% 87.68% 86.56% 85.78% 85.53%

VDR 84.53% 84.53% 85.63% 83.43% 83.43%

142

5.5 Build VSM model with semi-supervised PLSA

Similar to section 5.3, in semi-supervised PLSA learning, for all datasets, we also define the

number of maximum iteration R = 500 for training set, and R = 200 for testing set. Number of

latent topics is defined as 60G for Reuters and TDT2, 140G for 20news dataset, and

30G for VDR dataset, which is selected based on results from PLSA learning in section 5.3.

Also, the convergence goal is defined as  = 1E-5. To investigate the effect of hyper-weight 

that balance the affection of document content and connectivity, we define  1.0,...8.0,9.0 ,

and the categorization accuracy using latent-topic features generated by semi-supervised PLSA is

evaluated by iterating through different values of  .

The accuracy and F-1 measure over different  on all of our experiment datasets are shown in

the following Table 24, Table 25, Fig. 39 and Fig. 40. From the result, we could see that, for

Reuters, TDT2 and VDR, 6.0 yields the best text categorization performance. For 20News

dataset, 8.0 yields the best performance, and performance decrease significantly after 6.0 ,

which indicates that in 20News dataset, co-occurrence relationship between words is much more

important than document connectivity relationship. As a result, we may conclude that we should

not assign too much weight on document connectivity. E.g., 8.06.0  is a reasonable range

for parameter tuning.

143

 Table 24 Text categorization accuracy using semi-supervised PLSA based on different hyper-weight values

Semi-supervised PLSA

Categorization accuracy Reuters TDT2 20news VDR

9.0 85.55% 89.36% 78.99% 83.42%

8.0 82.38% 88.45% 79.90% 81.21%

7.0 85.59% 79.23% 78.94% 84.53%

6.0 86.15% 91.59% 75.54% 86.74%

5.0 85.91% 90.71% 75.05% 81.76%

4.0 85.56% 88.69% 75.27% 80.66%

3.0 85.87% 84.67% 70.41% 77.35%

2.0 85.11% 88.31% 62.14% 83.42%

1.0 79.17% 88.42% 60.15% 82.32%

144

Table 25 Text categorization accuracy using semi-supervised PLSA based on different hyper-weight values

Semi-supervised PLSA

Average F-1 measure Reuters TDT2 20news VDR

9.0 0.8077 0.8392 0.7693 0.7842

8.0 0.7621 0.8485 0.7900 0.7694

7.0 0.8261 0.7998 0.7817 0.8235

6.0 0.8272 0.8820 0.7530 0.8717

5.0 0.8265 0.8542 0.7629 0.8342

4.0 0.8256 0.8675 0.7774 0.8222

3.0 0.8266 0.8259 0.7037 0.7748

2.0 0.8230 0.8468 0.6336 0.7769

1.0 0.7987 0.8568 0.6222 0.7434

145

Figure 39. Text categorization performance based on different number of topics generated by PLSA

Figure 40. Text categorization performance based on different number of topics generated by PLSA

146

5.6 Text categorization performance summary & analysis

The classification results are presented in the following Table 26 and 27. We evaluate several

systems as our baseline, including TD matrix weighted by idf, and using only PLSA generated

LTD matrix. From the result, it is obvious that global weighting scheme CE_W outperform the idf

weighting, and the CD matrix generated by WordNet improves categorization accuracy by

combining with the weighted TD matrix. The proposed system with CE_W weighted and

WordNet updated TD matrix, plus CD matrix generated by WordNet and LTD matrix generated

by PLSA, significantly outperforms baseline systems, indicating that adding both word

relationships and latent semantic information could improve text representation, and the final

system with semi-supervised PLSA performs even better. From the result it is interesting to see

that, for dataset with specific user-defined groups and having no explicitly defined classification

rule as discussed in section 1.2, such as VDR, the latent semantic topic based text representation

could already do a better job than tf-idf approach. This indicates that for those applications,

semantic structure is much more important than word occurrence information. Note here, the

performance of our system is also comparable to or outperforms state-of-art approaches, such as

those proposed in [121,122,123,124], where the best accuracy on 20News, Reuters and TDT2

dataset are 88.89%, 92.5% and 93.85%, respectively.

Considering the efficiency of our text categorization system, VSM_WN_TM, the additional

processing time comparing with traditional VSM approach includes the following aspects:

147

 Additional features added to the original TD matrix. Considering the original term

features are generally 20-40 times larger than added features including concept and

latent topics, the additional processing time for classifier training is around 1%.

 Updating TD matrix using WordNet. This step only increase around 0.5% of processing

time.

 PLSA model learning for training set and testing document. The processing time of

learning process varies on different size of datasets, and the longest training time,

which is for 20news dataset, takes around 1 hour. However, this could be further

reduced significantly by term feature selection and parameter tuning.

148

Table 26 Text categorization accuracy comparison

 Reuters TDT2 20news VDR

TD matrix weighted by idf

(Baseline)

91.03% 89.37% 85.85% 80.95%

TD matrix weighted by CE_W 92.10% 96.01% 87.25% 85.08%

TD matrix weighted by idf +

CD matrix

91.46% 95.09% 87.10% 83.07%

TD matrix weighted by CE_W

+ CD matrix (VSM_WN)

92.74% 98.02% 87.68% 85.63%

LTD matrix by PLSA 84.60% 90.24% 79.46% 82.32%

SSTD matrix by semi-

supervised PLSA (VSM_TM)

86.15% 91.59% 79.90% 86.74%

WordNet-augmented TD matrix

weighted by CE_W + CD

matrix + LTD matrix

93.06% 98.78% 88.84% 87.84%

WordNet-augmented TD matrix

weighted by CE_W + CD

matrix +semi-supervised PLSA

(VSM_WN_TM)

94.13% 99.11% 89.15% 89.42%

149

Table 27 Text categorization average F-1 measure comparison

 Reuters TDT2 20news VDR

TD matrix weighted by idf

(Baseline)

0.8962 0.8719 0.8587 0.7792

TD matrix weighted by CE_W 0.9093 0.9525 0.8737 0.8349

TD matrix weighted by CE_W

+ CD matrix (VSM_WN)

0.9144 0.9796 0.8778 0.8503

LTD matrix by PLSA 0.8151 0.8696 0.7881 0.7654

SSTD matrix by semi-

supervised PLSA (VSM_TM)

0.8272 0.8820 0.7900 0.8717

Updated TDW matrix

weighted by CE_W + CD

matrix + LTD matrix

0.9278 0.9902 0.8865 0.8719

Updated TD matrix with tf-

CE_W + CD matrix +semi-

supervised PLSA

(VSM_WN_TM)

0.9321 0.9915 0.8892 0.8887

150

 CONCLUSION AND FUTURE WORK CHAPTER 6.

The major content presented in this dissertation is our research work in the field of typo

correction and text categorization, using machine learning, statistical modeling and ontology

networks. Specifically, we first propose solutions to automatic typo correction in text documents,

in terms of correcting a broad range of typos, from simple typing errors to word boundary errors,

unconventional use of acronyms, and multiple versions of abbreviations of the same words. We

extract general language knowledge and domain specific knowledge by machine learning

algorithms for identifying unconventional acronyms, grouping similar words (correctly spelled

and misspelled), and ranking correction candidates. Secondly, we present our research work in

generating Vector Space Model (VSM) with ontology networks, as well as latent semantic

information generated from statistical topic modeling. Unlike the traditional text representation

using only Bag-of-words (BOW) features without considering relationship among words, we

utilize semantic and syntactic relationship among words such as synonymy, co-occurrence and

context so that the text is represented more accurately.

The results from the performed experiments are highly encouraging. We evaluated our ITDC

system through a case study that involves the automatic processing of automotive fault diagnostic

text documents. The performance generated from more than 580000 automotive fault diagnostic

documents provided by two different automotive manufacturers show that the proposed system

outperforms state-of-art spell checking systems. Furthermore, the typo correction process

significantly helps improving text categorization performance, by providing more clean and

comprehensible text to machines. Moreover, the proposed text representation model is evaluated

151

on three publicly available datasets and a domain-specific dataset. Experiment results show that

our approach significantly improves text categorization performance by outperforming baseline

approaches such as using only latent features and traditional VSM approaches.

Note here, in the field of typo correction, ITDC system is a big step forward towards fully-

automatic spelling correction techniques for processing large size corpora of unstructured text

documents. We proposed a general framework for utilize external knowledge from both general

and specific domain text resources, using machine learning techniques and statistical analysis.

Secondly, we propose a systematic way of building accurate text representation for various text

mining applications such as text categorization, text clustering, predictive analysis, information

extraction, etc., by capturing not only single word information, but also syntactic and semantic

relationship among words. The above ITDC system and VSM_WN_TM model can be combined

together for any real-world applications that require text preprocessing and text categorization,

and can be easily transplanted and applied to other text corpus, besides those discussed in this

dissertation, e.g. text used in social networks such as instant messages and Twitter.

The approaches we proposed for typo correction and text categorization are not perfect without

any weaknesses. For the ITDC system, the typo detection, correction and ranking is fully based on

pre-built external knowledge and well-prepared training data. Typos in previously unseen

documents that are out of the system knowledge scope might not be corrected very well. Also,

without sufficient domain-specific knowledge, a lot of non-word typos or domain-specific

abbreviations still cannot be easily recognized, so that our ITDC system has to be conservative in

correcting typos. This brings a question of how to update the knowledge bases and improve

trained system by learning new knowledge incrementally without retraining the whole system,

either periodically or in real-time. Also, another interesting direction is to use unsupervised or

152

semi-supervised way in learning new knowledge, especially on specific domains having very

large dataset available. It still requires vast amount of work towards the solution of fully

automatic and accurate typo correction.

For the VSM_WN_TM model, the proposed text representation approach requires fine-tuned

parameters such as number of latent topics, number of maximum iterations, weight assigned to

hypernym/hyponym and meronym/holonym relationships, hyper-weight that balance the

affection of document content and connectivity, etc. Although they all have optimized range of

values based on our experiments, adjustment may still be necessary across different applications

in terms of dataset characteristics and user requirements, in order to get the best performance. As

a result, efficient and fully automatic approaches could be developed to determine the best set of

parameters for specific application. Secondly, information from either ontology networks or

statistical topic modeling might also generate additional “noise” features that affect the text

categorization accuracy. Instead of concatenate these features together with BOW features, other

approaches such as a hierarchical machine learning framework or a combination of multiple

classifiers discussed in [119] could be a future direction to perfect our approach. Last but not

least, in terms of efficiency, with very large dataset, the system might be slow in finding

connections between documents. The next step of work will be redesign our algorithm for

parallel computing based on MapReduce platform such as Hadoop [118], so that our approach

could be extended to “big text”.

153

REFERENCES

[1] "MIKE2.0, Big Data Definition", web document. URL:

http://mike2.openmethodology.org/wiki/Big_Data_Definition

[2] Sholom M. Weiss (Author), Nitin Indurkhya (Author), Tong Zhang (Author), Fred

Damerau, Text Mining: Predictive Methods for Analyzing Unstructured Information,

Publication Date: November 9, 2004 | ISBN-10: 0387954333, Edition 2005

[3] Qiang Zeng, Xiaoyan Zhang, Weide Zhang, Zuofeng Li and Lei Liu, Extracting Clinical

Information from Free-text of Pathology and Operation Notes via Chinese Natural

Language Processing, 2010 IEEE International Conference on Bioinformatics and

Biomedicine Workshops, pp 593-597, Hong Kong, 2010.

[4] Yinghao Huang, Naeem Seliya, Yi Lu Murphey and Roy B. Friedenthal, Classifying

Independent Medical Examination Reports using SOM networks, Proceeding of the 6th

International conference on Data Mining, Las Vegas, Nevada, USA, 2010, p58-64

[5] Yinghao Huang, Yi Lu Murphey and Yao Ge, Automotive diagnosis typo correction using

domain knowledge and machine learning, IEEE Symposium Series on Computational

Intelligence 2013.

[6] Karen Kukich, Technique for automatically correcting words in text, ACM Computing

Surveys (CSUR), v.24 n.4, p.377-439, Dec. 1992

[7] Christopher Mims, How To Fix Awful Smart-Phone Autocorrection, Web document, URL:

http://www.technologyreview.com/view/424157/how-to-fix-awful-smart-phone-autocorrection/

[8] Dik L. Lee, H.C., Kent Seamons, Document Ranking and the Vector-Space Model, IEEE

Software, 1997. 14(2): p. 65-75.

[9] Wongkot Sriurai, IMPROVING TEXT CATEGORIZATION BY USING A TOPIC

MODEL, Advanced Computing: An International Journal (ACIJ), Vol.2, No.6, November

2011

[10] R. Feldman and I. Dagan. Kdt - knowledge discovery in texts. In Proc. of the First Int.

Conf. on Knowledge Discovery (KDD), pages 112–117, 1995.

[11] U. Nahm and R. Mooney. Text mining with information extraction. In Proceedings of the

AAAI 2002 Spring Symposium on Mining Answers from Texts and Knowledge Bases,

2002.

[12] Vishal Gupta, G.Sl Lehal, “A Survey of Text Mining Techniques and Applications”,

Journal of Emerging Technologies in Web Intelligence, VOL. 1, NO. 1, 60-76, AUGUST

2009

http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Sholom%20M.%20Weiss&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Nitin%20Indurkhya&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&field-author=Tong%20Zhang&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&field-author=Fred%20Damerau&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&field-author=Fred%20Damerau&search-alias=books&sort=relevancerank
http://dl.acm.org/citation.cfm?id=146380&CFID=184486956&CFTOKEN=98828927
http://dl.acm.org/citation.cfm?id=146380&CFID=184486956&CFTOKEN=98828927
http://www.technologyreview.com/contributor/christopher-mims/
http://www.technologyreview.com/view/424157/how-to-fix-awful-smart-phone-autocorrection/

154

[13] Dik L. Lee, H.C., Kent Seamons, Document Ranking and the Vector-Space Model, IEEE

Software, 1997. 14(2): p. 65-75.

[14] Hotho Andreas, Nürnberger Andreas, Paaß Gerhard: A Brief Survey of Text Mining. LDV

Forum - GLDV Journal for Computational Linguistics and Language

Technology 2005,20(1):19–62.

[15] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975.

[16] S. E. Robertson. The probability ranking principle. Journal of Documentation, 33:294–304,

1977.

[17] Mohammad Ali Elmi and Martha Evens, Spelling Correction Using Context, Proc. 36 th

ACL, 17 th COLING, Aug. 10-14 1998, Montreal, Quebec, Canada

[18] Behrang QasemiZadeh, Ali Ilkhani, Adaptive Language Independent Spell Checking using

Intelligent Traverse on a Tree, CIS 2006, IEEE

[19] Aminul Islam and Diana Inkpen. 2009. Real-word spelling correction using Google Web

IT 3-grams. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing, pages 1241–1249, Morristown, USA. Association for

Computational Linguistics.

[20] Andrew Carlson and Ian Fette, Memory-Based Context-Sensitive Spelling Correction at

Web Scale, Sixth International Conference on Machine Learning and Applications, 2007

[21] Karen Kukich, Technique for automatically correcting words in text, ACM Computing

Surveys (CSUR), v.24 n.4, p.377-439, Dec. 1992

[22] Christopher Mims, How To Fix Awful Smart-Phone Autocorrection, Web document, URL:

http://www.technologyreview.com/view/424157/how-to-fix-awful-smart-phone-

autocorrection/

[23] Qiang Zeng, Xiaoyan Zhang, Weide Zhang, Zuofeng Li and Lei Liu, Extracting Clinical

Information from Free-text of Pathology and Operation Notes via Chinese Natural

Language Processing, 2010 IEEE International Conference on Bioinformatics and

Biomedicine Workshops, pp 593-597, Hong Kong, 2010.

[24] Yinghao Huang, Naeem Seliya, Yi Lu Murphey and Roy B. Friedenthal, Classifying

Independent Medical Examination Reports using SOM networks, Proceeding of the 6th

International conference on Data Mining, Las Vegas, Nevada, USA, 2010, p58-64

[25] Yinghao Huang, Yi Lu Murphey and Yao Ge, Automotive diagnosis typo correction using

domain knowledge and machine learning, IEEE Symposium Series on Computational

Intelligence 2013.

[26] C. C. Aggarwal and H. Wang. Text mining in social networks. Social Network Data

Analytics, pages 353–378, 2011.

[27] Johannes Schaback and Fang Li, Multi-Level Feature Extraction for Spelling Correction,

IJCAI - Workshop on Analytics for Noisy Unstructured Text Data, pages 79–86,

Hyderabad, India.

http://dl.acm.org/citation.cfm?id=146380&CFID=184486956&CFTOKEN=98828927
http://dl.acm.org/citation.cfm?id=146380&CFID=184486956&CFTOKEN=98828927
http://www.technologyreview.com/contributor/christopher-mims/
http://www.technologyreview.com/view/424157/how-to-fix-awful-smart-phone-autocorrection/
http://www.technologyreview.com/view/424157/how-to-fix-awful-smart-phone-autocorrection/

155

[28] Phuong H. Nguyen, Thuan D. Ngo, Dung A. Phan, Thu P. T. Dinh, Thang Q. Huynh,

Vietnamese spelling detection and correction using Bi-gram, Minimum Edit Distance,

SoundEx algorithms with some additional heuristics, 2008 IEEE

[29] Bruno Martins, Mário J. Silva, 'Spelling correction for search engine queries', EsTAL, pp.

372-383, 2004.

[30] Arif Billah Al-Mahmud Abdullah, Ashfaq Rahman, , 'A Generic spell checker engine for

south asian languages', accepted for publication and presentation at the IASTED 2003

refereed conference on 'Software Engineering and Applications' ~SEA 2003, Marina del

Rey, CA, USA'. Paper No 397-045, November 3-5 2003.

[31] Li Zhuang, TaBao, Xiaoyan Zhu, Chunheng Wang, Satoshi Naoi, 'A Chinese OCR spelling

check approach based on statistical language models', International Conference on

Systems, Man and Cybernetics, Hague, Netherlands, pp. 4727-4732, IEEE, Oct. 2004.

[32] Victoria J. Hodge and Jim Austin, A Comparison of Standard Spell Checking Algorithms

and a Novel Binary Neural Approach, IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 15, NO. 5, 2003

[33] Casey Whitelaw and Ben Hutchinson and Grace Y Chung and Gerard Ellis, Using the Web

for Language Independent Spellchecking and Autocorrection, Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing, pages 890–899,

Singapore, 6-7 August 2009. c 2009 ACL and AFNLP

[34] Stephanie Jacquemont, Francois Jacquenet and Marc Sebban, Correct your text with

Google, 2007 IEEE/WIC/ACM International Conference on Web Intelligence

[35] Victoria J. Hodge and Jim Austin, A Comparison of Standard Spell Checking Algorithms

and a Novel Binary Neural Approach, IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, vol. 15, No. 5, September 2003.

[36] Monojit Choudhury1, Markose Thomas2, Animesh Mukherjee1, Anupam Basu1, and

Niloy Ganguly, How Difficult is it to Develop a Perfect Spell-checker? A Cross-linguistic

Analysis through Complex Network Approach, TextGraphs-2: Graph-Based Algorithms

for Natural Language Processing, pages 81–88, Rochester, April 2007

[37] E. Brill and R. C. Moore, An Improved Error Model for Noisy Channel Spelling

Correction, Proceedings of ACL 2000, Association for Computational Linguistics, Jan

2000.

[38] Kristina Toutanova and Christopher D. Manning, Enriching the Knowledge Sources Used

in a Maximum Entropy Part-of-Speech Tagger. Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large

Corpora (EMNLP/VLC-2000), pp. 63-70, 2000.

[39] Aminul Islam and Diana Inkpen. 2009. Real-word spelling correction using google web it

3-grams. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 3, EMNLP ’09, pages 1241–1249, Morristown, NJ, USA.

Association for Computational Linguistics.

http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf

156

[40] Islam, A. and Inkpen, D. (2009b). Real-Word Spelling Correction using Google Web 1T n-

gram dataset. In Proceedings of the 18th ACM Conference on Information and Knowledge

Management (CIKM 2009), pages 1689-1692, Hong Kong.

[41] Sebastian van Delden, David Bracewell and Fernando Gomez, Supervised and

Unsupervised Automatic Spelling Correction Algorithms, Proceedings of the 2004 IEEE

International Conference on Information Reuse and Integration, pp530-535, 2004.

[42] Patrick Ruch, Robert Baud and Antoine Geissbiihler, Toward filling the gap between

interactive and fully-automatic spelling correction using the linguistic context, 2001 IEEE

International Conference on Systems, Man, and Cybernetics, pp199 – 204, vol.1.

[43] Liping Huang, Yi Lu Murphey: Text Mining with Application to Engineering

Diagnostics. IEA/AIE 2006: 1309-1317

[44] Chris Biemann, Ontology learning from text – a survey of methods. LDV-Forum,

20(2):75–93, 2005.

[45] Ding, Y. and S. Foo, Ontology research and development: Part 1 – A review of ontology

generation. Journal of Information Science 28(2), 123–136.

[46] A. Hotho, S. Staab, and G. Stumme. Ontologies improve text document clustering. In

Proceedings of the International Conference on Data Mining — ICDM-2003. IEEE Press,

2003

[47] B. Shi, et al., Classification of Semantic Documents Based on WordNet, International

Conference on E-Learning, E-Business, Enterprise Information Systems, and E-

Government, vol. 0, pp. 173-176, 2009.

[48] Litvak, M., Last, M., & Kisilevich, S. (2007). Classification of Web documents using

concept extraction from ontologies. Lecture Notes in Computer Science, 4476, pp. 287-

292.

[49] WordNet: An Electronic Lexical Database. The MIT Press (1998)

[50] Janik, M., Kochut, K.J.: Wikipedia in Action: Ontological Knowledge in Text

Categorization. 2nd International Conference on Semantic Computing (ICSC), Santa Clara,

CA, USA (2008)

[51] Buitelaar, P., Cimiano, P., Magnini, B., Ontology learning from text: An overview.

Ontology learning from text: Methods, evaluation and applications. Frontiers in Artificial

Intelligence and Applications Series 123 (2005).

[52] Cimiano, P. and S. Staab (2004). Learning by googling. SIGKDD Explorations 6(2), 24–

34.

[53] Cimiano, P. and S. Staab (2005). Learning concept hierarchies from text with a guided

agglomerative clustering algorithm. In Proceedings of the ICML 2005 Workshop on

Learning and Extending Lexical Ontologies with Machine Learning Methods (OntoML

05), Bonn, Germany

[54] Burger, S. and Stieger, B., Ontology-based classification of unstructured information, Fifth

International Conference on Digital Information Management (ICDIM), pp. 254-259, July

2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7658
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Murphey:Yi_Lu.html

157

[55] Jun Fang, Lei Guo and Yue Niu, Documents classification by using ontology reasoning

and similarity measure, 2010 Seventh International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), vol. 4, pp. 1535-1539, Aug. 2010.

[56] A SET OF DICTIONARIES FOR AMERICAN AND BRITISH ENGLISH, Patrick W

Daly, Max-Planck Institut fuer Aeronomie, URL:

http://mirror.utexas.edu/ctan/systems/win32/winedt/dict/english.txt

[57] Pa şca, M. (2005). Finding instance names and alternative glosses on the Web: WordNet

reloaded. In Proceedings of Computational Linguistics and Intelligent Text Processing: 6th

International Conference (CICLing 2005), LNCS 3406, Mexico City, Mexico, 2005, pp.

280–292

[58] Widdows, D. (2003). Unsupervised methods for developing taxonomies by combining

syntactic and statistical information. In HLT-NAACL 2003: Main Proceedings, pp. 276–

283.

[59] Jun Fang, Lei Guo and Yue Niu, Documents classification by using ontology reasoning

and similarity measure, 2010 Seventh International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), vol. 4, pp. 1535-1539, Aug. 2010.

[60] M.-H. Song, S.-Y. Lim, D.-J. Kang, and S.-J. Lee. Automatic classication of web pages

based on the concept of domain ontology. Asia-Pacificc Software Engineering Conference,

pages 645-651, 2005.

[61] Baeza-Yates, R., Ribeiro-Neto, B, Modern Information Retrieval, 1999: Addison-Wesley.

[62] Salton, Gerard. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[63] Karen Sparck Jones and Peter Willet, 1997, Readings in Information Retrieval, San

Francisco: Morgan Kaufmann, ISBN 1-55860-454-4.

[64] Frakes, W. 1992. Stemming algorithms. In FYakes, W., and Baeza-Yates, R., eds.,

Information Retrieval: Data Structures and Algorithms. New Jersey: Prentice Hall. 131-

160.

[65] Y. Yang, J. O. Pederson. A comparative study on feature selection in text categorization,

ACM SIGIR Conference, 1995.

[66] Y. Yang. Noise Reduction in a Statistical Approach to Text Categorization, ACM SIGIR

Conference, 1995.

[67] Salton, G., Buckley, C., Term weighting approaches in automatic text retrieval,

Information Processing and Management, 24(5): 513-523, 1998.

[68] Liping Huang, Yi Lu Murphey: Text Mining with Application to Engineering Diagnostics.

IEA/AIE 2006: 1309-1317

[69] Dumais, S.T., Enhancing performance in latent semantic indexing (LSI) retrieval, in

Technical Report Technical Memorandum. 1990. Bellcore.

[70] Raghavan, V. V. and Wong, S. K. M. A critical analysis of vector space model for

information retrieval. Journal of the American Society for Information Science, Vol.37 (5),

p. 279-87, 1986

158

[71] Deerwester, S., Dumais, S. T., Furnas, G. W., Thomas, K. L., & Harshman, R. (1990).

Indexing by latent semantic analysis. Journal of the American Society for Information

Science, 63, 391 C̈407.

[72] Landauer, Thomas K., and Dumais, Susan T., Latent Semantic Analysis, Scholarpedia,

3(11):4356, 2008

[73] Bradford, R., An Empirical Study of Required Dimensionality for Large-scale Latent

Semantic Indexing Applications, Proceedings of the 17th ACM Conference on Information

and Knowledge Management, Napa Valley, California, USA, 2008, pp. 153–162.

[74] Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22
nd

 ACM

SIGIR, pp. 50–57 (1999)

[75] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum Likelihood from Incomplete

Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B 39 (1): 1–

38. JSTOR 2984875. MR 0501537

[76] Charu C. Aggarwal and ChengXiang Zhai. A survey of text classification algorithms. In

Mining Text Data, pages 163-222. Springer, 2012.

[77] B. N. Pandey, N. Dwividi, and B. Pulastya, “Comparison between bayesian and maximum

likelihood estimation of the scale parameter in Weibull distribution with known shape

under linex loss function,” Journal of Scientific Research, vol. 55, pp. 163–172, 2011.

[78] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.,

3:993–1022, 2003.

[79] B S Harish, D S Guru, S Manjunath, Representation and Classification of Text Documents:

A Brief Review. IJCA Special Issue on Recent Trends in Image Processing and Pattern

Recognition, RTIPPR, 2010.

[80] Yinghao Huang, Yi Lu Murphey and Yao Ge, Machine Learning of Engineering

Diagnostic Knowledge from Unstructured Verbatim Text Descriptions, , IEEE Symposium

Series on Computational Intelligence, Singapore, April 15-19, 2013.

[81] Sebastiani, F. 2002. Machine learning in automated text categorization. ACM Computing

Surveys. Vol 34, pp. 1 .47.

[82] Hartigan, J.A., Wong, M.A.: A K-Means Clustering Algorithm. Applied Statistics 28,

(1979) 100-108

[83] Jardine, N., Sibson, R.: The construction of hierarchic and non-hierarchic classifications.

The Computer Journal 11 (1968)

[84] Dino Isa,, V. P Kallimani Lam Hong lee, “Using Self Organizing Map for Clustering of

Text Documents”, ”, Elsever, Expert System with Applications-2008.

[85] Jingnian Chen a,b,, Houkuan Huang a, Shengfeng Tian a, Youli Qua Feature selection for

text classification with Naïve Bayes” Expert Systems with Applications 36, pp. 5432–

5435, 2009.

[86] Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng, “Some

Effective Techniques for Naive Bayes Text Classification”, IEEE Transactions On

Knowledge And Data Engineering, Vol. 18, No. 11, , Pp- 1457- 1466 ,November 2006.

http://en.wikipedia.org/wiki/Arthur_P._Dempster
http://en.wikipedia.org/wiki/Nan_Laird
http://en.wikipedia.org/wiki/Donald_Rubin
http://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B
http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/2984875
http://en.wikipedia.org/wiki/Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=0501537

159

[87] Y. Yang, C.G. Chute. An example-based mapping method for text categorization and

retrieval. ACM Transactions on Information Systems, 12(3), 1994.

[88] A. Y. Ng, M. I. Jordan. On discriminative vs. generative classifiers: a comparison of

logistic regression and naive Bayes. NIPS. pp. 841- 848, 2001.

[89] Bo Yu, Zong-ben Xu, Cheng-hua Li ,“Latent semantic analysis for text categorization

using neural network”, Knowledge-Based Systems 21- pp. 900–904, 2008.

[90] Trappey, A. J. C., Hsu, F.-C., Trappey, C. V., & Lin, C.-I.,“Development of a patent

document classification and search platform using a back-propagation network”, Expert

Systems with Applications, pp. 755–765, 2006.

[91] Cheng Hua Li , Soon Choel Park, “An efficient document classification model using an

improved back propagation neural network and singular value decomposition” Expert

Systems with Applications 36 ,pp- 3208–3215, 2009.

[92] Bang, S. L., Yang, J. D., & Yang, H. J. , “Hierarchical document categorization with k-NN

and concept-based thesauri. Information Processing and Management”, pp. 397–406, 2006.

[93] Bao Y. and Ishii N., “Combining Multiple kNN Classifiers for Text Categorization by

Reducts”, LNCS 2534, , pp. 340- 347, 2002.

[94] Zi-Qiang Wang, Xia Sun, De-Xian Zhang, Xin Li “An Optimal SVM-Based Text

Classification Algorithm” Fifth International Conference on Machine Learning and

Cybernetics, Dalian,pp. 13-16 , 2006.

[95] Tai-Yue Wang and Huei-Min Chiang “One-Against-One Fuzzy Support Vector Machine

Classifier: An Approach to Text Categorization”, Expert Systems with Applications, doi:

10.1016/j.eswa.2009.

[96] T. Joachims. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text

Categorization. ICML Conference, 1997.

[97] H. Drucker, D. Wu, V. Vapnik. Support Vector Machines for Spam Categorization. IEEE

Transactions on Neural Networks, 10(5), pp. 1048–1054, 1999.

[98] D. Mladenic, J. Brank, M. Grobelnik, N. Milic-Frayling. Feature selection using linear

classifier weights: interaction with classification models. ACM SIGIR Conference, 2004.

[99] Wongkot Sriurai, IMPROVING TEXT CATEGORIZATION BY USING A TOPIC

MODEL, Advanced Computing: An International Journal (ACIJ), Vol.2, No.6, November

2011

[100] Shibin Zhou,Kan Li,Yushu Liu, Text Categorization Based on Topic Model, International

Journal of Computational Intelligence Systems, Vol.2, No. 4 (December, 2009), 398-409

[101] Bıro, I. & Szabo, J. (2010) “Large scale link based latent Dirichlet allocation for web

document classification”

[102] Bıro, I. & Szabo, J. (2009) “Latent Dirichlet Allocation for Automatic Document

Categorization”. In Proceedings of the 19th European Conference on Machine Learning

and 12th Principles of Knowledge Discovery in Databases.

160

[103] Yue Lu, Qiaozhu Mei and ChengXiang Zhai, Investigating task performance of

probabilistic topicmodels: an empirical study of PLSA and LDA, Inf Retrieval (2011)

14:178–203

[104] Bloehdorn, S., Hotho, A.: Text Classification by Boosting Weak Learners based on Terms

and Concepts. 4th IEEE International Conference on Data Mining (ICDM'04)(2004)

[105] Zelikovitz, S., Hirsh, H.: Improving Short Text Classification Using Unlabeled

Background Knowledge. Seventeenth International Conference on Machine Learning

(ICML), Stanford, CA (2000)

[106] Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San

Diego, CA: Academic Press, p. 1101-2000.

[107] Vapnyarskii, I.B. (2001), "Lagrange multipliers", in Hazewinkel, Michiel, Encyclopedia of

Mathematics, Springer, ISBN 978-1-55608-010-4

[108] D. Cohn and T. Hofmann (2001). The missing link - a probabilistic model of document

content and hypertext connectivity. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,

Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, MA.

[109] Borgelt, Christian; Kruse, Rudolf, Graphical Models: Methods for Data Analysis and

Mining. Chichester, UK: Wiley. ISBN 0-470-84337-3, March 2002.

[110] David Chandler (1987). Introduction to Modern Statistical Mechanics. Oxford. ISBN 0-19-

504277-8.

[111] Pei Yang, Wei Gao, Qi Tan, Kam-Fai Wong, A link-bridged topic model for cross-domain

document classification, Information Processing and Management 49 (2013) 1181–1193,

2013 Elsevier.

[112] Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large

Corpora (EMNLP/VLC-2000), pp. 63-70.

[113] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).

Indexing By Latent Semantic Analysis. Journal of the American Society For Information

Science , 41 , 391-407

[114] Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using Locality Preserving

Indexing", IEEE TKDE 2005.

[115] Reuters-21578, Distribution 1.0. Web document. URL:

http://www.daviddlewis.com/resources/testcollections/reuters21578/

[116] Ken Lang, Newsweeder: learning to filter netnews. Proceedings of the Twelfth

International Conference on Machine Learning, pp. 331-339, 1995.

[117] C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

[118] Chuck Lam, Hadoop in action, Manning Publications, 1 edition. ISBN-10: 1935182196,

December 22, 2010.

http://www.amazon.com/exec/obidos/ASIN/0122947576/ref=nosim/weisstein-20
http://www.encyclopediaofmath.org/index.php?title=Lagrange_multipliers
http://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
http://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
http://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4
http://fuzzy.cs.uni-magdeburg.de/books/gm/
http://fuzzy.cs.uni-magdeburg.de/books/gm/
http://en.wikipedia.org/wiki/Chichester
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-470-84337-3
http://en.wikipedia.org/wiki/David_Chandler_(chemist)
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-504277-8
http://en.wikipedia.org/wiki/Special:BookSources/0-19-504277-8
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://www.daviddlewis.com/resources/testcollections/reuters21578/

161

[119] Bell, D. A. ; Guan, J. W. ; Bi, Y. ; , "On combining classifier mass functions for text

categorization, " Knowledge and Data Engineering, IEEE Transactions on , vol. 17, no. 10,

pp. 1307- 1319, Oct. 2005, doi: 10. 1109/TKDE. 2005. 167

[120] Dasari, D. B. Rao, V. G. Text categorization and machine learning methods: current state

of the art. Global Journal of Computer Science and Tecnology Software & Data

Engineering, 12(11):37–46, 2012.

[121] Li T, Zhu S, Ogihara M, Using discriminant analysis for multi-class classification: an

experimental investigation. Knowl Inf Syst 10(4):453–472, 2006

[122] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter, "Distribu¬tional Word Clusters vs

Words for Text Categorization, " J. Machine Learning Research, vol. 3, 2003

[123] Vidhya. K.A G.Aghila, “A Survey of Naïve Bayes Machine Learning approach in Text

Document Classification”, (IJCSIS) International Journal of Computer Science and

Information Security, Vol. 7, 2010.

[124] Methods Ali Danesh Behzad Moshiri “Improve text classification accuracy based on

classifier fusion methods”. 10th International Conference on Information Fusion, 2007.

