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ABSTRACT 

In this dissertation, we present our research work in text mining field, mainly focusing on 

accurately and efficiently performing the task of text preprocessing and text categorization, using 

machine learning techniques and ontology networks. Specifically, an innovative intelligent typo 

correction system, ITDC, is proposed to automatically correct misspellings in text documents 

using general language knowledge and domain specific knowledge extracted by machine learning 

algorithms. It has the capability of correcting a broad range of typos, from simple typos such as 

duplication, omission, transposition, substitution characters, to complex spelling errors, such as 

word boundary errors, unconventional use of acronyms, and multiple versions of abbreviations of 

the same words.  It uses the generated knowledge for identifying unconventional acronyms, 

grouping similar words (correctly spelled and misspelled), and ranking correction candidates.  

An innovative text categorization model, VSM_WN_TM, is also presented.  VSM_WN_TM is a 

special Vector Space Model (VSM) that incorporates word frequencies, ontology networks and 

latent semantic information. Unlike the traditional text representation using only Bag-of-words 

(BOW) features, it also incorporates semantic and syntactic relationship among words such as 

synonymy, co-occurrence and context, with the purpose of providing more inclusive and accurate 

text representation.  

The results from the performed experiments are highly encouraging. The ITDC system is 

evaluated through a case study that involves the automatic processing of automotive fault 

diagnostic text documents. The performance generated from more than 580000 automotive fault 
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diagnostic documents provided by two different automotive manufacturers show that the 

proposed system outperforms state-of-art spell checking systems.  

The proposed VSM_WN_TM model is evaluated on three publicly available datasets and one 

domain-specific dataset. Experiment results show that our approach significantly improves text 

classification by outperforming baseline approaches such as using only latent features and 

traditional VSM approaches. 

Indexed Keywords: text mining, text preprocessing, text categorization, typo correction, machine 

learning, ontology networks, statistical language modeling. 
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 INTRODUCTION CHAPTER 1.

 

1.1.  Motivation 

We have witnessed the blooming of web-based text resource volume in recent decades within 

different domains, such as social networks (Email, Twitter, Micro blogs, customer reviews, etc.), 

automotive industries (vehicle diagnostics, customer queries, etc.) and medical science (physician 

diagnostics, patient medical records, etc.). With the proliferation of text data, text mining 

techniques have drawn significant attention by people in both academic and industrial field for 

quite a long time. Text mining is generally defined as finding interesting patterns and trends of 

data.  Especially in the age of “Big Data” [1], when data management systems are overloaded 

daily by data in free text form, text document processing brings more and more necessity for 

automated, accurate and efficient text mining algorithms. These algorithms could be used to fulfill 

different objectives, such as data preprocessing, text clustering and categorization, information 

retrieval, etc. 

Text mining is characterized as the process of analyzing text to extract information that is 

useful for particular purposes. The key point that makes text mining so special in the field of data 

mining, which is already a well-developed area that is entering a mature phase [2], is that text 

needs to be transferred into numerical representations before conducting further analysis, and in 

most of the text mining applications, text has an unstructured and causally written form that 

causes difficulties for extracting useful information, such as clinical document analysis [3,4], 
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emails, instant messages, automotive diagnostic text mining [5], etc. For example, a lot of 

spelling errors occur in text data and can be problematic for text data mining.  

One of the most crucial tasks in the text mining field is text categorization. This is the task of 

building a classifier that assigns a pre-defined category to each text document in the text 

collection, the source of which highly depends on the problem and the application domain. Due to 

the fact that the document category is usually defined based on various application requirements, 

the typical approach of text categorization is to derive numerical features that represent text. After 

that, supervised machine learning techniques are used to train a classifier based on those extracted 

features and the categories of pre-classified text documents, to later perform categorization tasks 

on previously unseen text documents. As a result, the performance of text categorization task 

depends on the feature generation method used and the machine learning techniques adopted.  

In this dissertation, we present our research work in intelligent text mining that focuses on 

accurately and efficiently performing the task in two main areas. The first area includes 

developing a system that automatically corrects misspellings in text documents so that they are 

much more comprehensible by machines and much more accurate for further processing such as 

text categorization. The second area is to develop a text categorization model that incorporates 

word based text features with semantic relationship learned from ontology networks and latent 

semantic structure information from statistical topic modeling. This hybrid text representation 

model could significantly help improving text categorization accuracy.  
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1.2. Problem description and research focus  

As discussed in section 1.1, unstructured and free-style written text documents are commonly 

found in many text mining applications. These documents often do not follow grammar rules, and 

contain misspelled words, abbreviations and specific terminologies that are not found in standard 

English dictionaries and may be barely comprehensible to people outside the application field. We 

use an example to illustrate the different problem complexity comparing well-structured text 

documents with unstructured text documents.  Fig. 1 illustrates those two document examples.  In 

both documents, non-word misspellings are marked in red. It is obvious that unstructured 

documents are much harder to understand, and the typos are much more difficult to be identified 

and corrected. In terms of accuracy, misspelling correction in such applications is indisputably 

essential for automatic text retrieval, categorization or clustering systems, since typos can be 

misinterpreted in many different ways by automatic text processing systems. In terms of 

efficiency, automated intelligent typo correction is also of significant necessity in text mining 

applications that deals with vast amount of data, which makes manual inspection almost 

impossible.  

 

 
Fig. 1.  Examples of well-structured and unstructured text documents 
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Many automatic spelling correction systems have already been developed to help people with 

their typing tasks, such as texting, web searching, etc. However, the current automatic typo 

correction technologies are still short in accuracy [6,7].   

In text categorization, the document category is defined by users based on the application 

requirements, such as the topic that a news article discusses, the importance of a vehicle 

diagnostic record that describes vehicle repair details [5], and the fact stated in a medical 

diagnostic document that whether or not an injury condition sustains [4], etc.  Consider the 

following automotive diagnostic records in two categories: The first record is defined as category 

A, which is an “important” document because it describes the “root cause” of the vehicle problem: 

“connector corroded”. The second is defined as category B, which is unimportant, because it only 

describes the vehicle inspection process generally.   

Category-A document: “perform abs self roadtest found rear wheel speeds   sensor 

connector corroded into sensor  replace   sensor and connector  road tester  ok clear 

code”  

Category-B document: “road roadtest traction control lamp on  eec roadtest code c1280 

u415 om rcm  contact hot line 103912699 check connection at rcm check mounting bolts 

ok  clear code”  

To solve the above categorization problem, a typical approach of representing a text document 

is the Vector Space Model (VSM) [8], in which each document is represented by a weighted 

vector that provides a mathematical representation which is convenient for computation and 

analysis. However, this approach does not consider the semantic relationship between words, such 

as synonyms, hyponyms (IS-A relationship between words), etc. The classification accuracy is 
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especially deteriorated in document sets where different categories have similar word occurrences 

[4, 9]. As a result, a text categorization model that captures underlying semantic and syntactic 

information besides single word occurrence features is of great necessity.  

The major research focuses in this dissertation include: 

 Automatic typo detection and correction for an unstructured and large-scale text corpus 

by incorporating general language knowledge and domain specific knowledge generated 

by machine learning algorithms.  

 Incorporating ontology network information and machine learning techniques to 

automatic text categorization, by capturing semantic and syntactic relationship between 

words.  
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1.3. Major research contributions 

The major original contributions of this dissertation include research work in intelligent typo 

correction and text categorization. First of all, we developed and implemented an intelligent typo 

detection and correction algorithm, which is a significant step forward towards fully-automatic 

spelling correction for processing large size corpora of unstructured text documents. Secondly, we 

propose a systematic way of building accurate text representations using single word information, 

as well as syntactic and semantic relationship between words to improve the performances of 

various text mining tasks, such as text categorization, text clustering, predictive analysis, 

information extraction, etc. Third, our approaches in these two fields can be combined together 

for other real-world applications that require text preprocessing and text categorization. Last but 

not least, they can be easily transplanted and applied to other text corpus, besides those discussed 

in this dissertation, e.g. text used in social networks such as instant messages and Twitter. 

A summary of the major research achievements is presented here, including: 

 Proposed an automated intelligent typo correction framework for unstructured and large-

scale text collections, using general language knowledge and domain specific knowledge 

extracted by machine learning algorithms for identifying unconventional acronyms, 

grouping similar words (correctly spelled and misspelled), and ranking correction 

candidates.   

 Proposed a hybrid text categorization approach that focuses on building VSM models with 

both ontology networks and statistical language model. We first generate the original 
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BOW representation by using an intuitive global weight scheme, and then build VSM 

models based on the WordNet ontology and statistical topic modeling. 

 Evaluated our methods on publicly available datasets and domain-specific datasets: 

 Freeform technician verbatim problem descriptions (VDR) 

 Reuters-21578  

 Nist Topic Detection and Tracking corpus (TDT2)  

 20 newsgroups       

 Evaluated our system by comparing with state-of-art systems and baseline approaches: 

 Google spell checker 

 Aspell spell checker 

 Text categorization based on VSM only 

 Text categorization based on latent semantic feature only 

 Analysis of text categorization performance, including the influence of number of latent 

topics, hyper weight of document connectivity in topic model, word class used for 

synonym set generation, and ontology weighting between words. 

 Created open source packages for typo correction system, called ITDC, and text 

categorization system, called VSM_WN_TM, which can be adapted to other text mining 

applications. 
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1.4. Structure of dissertation 

The remainder of this dissertation is organized as follows: Chapter 2 discusses the technical 

background and literature survey in the area of typo correction and text categorization. Chapter 3 

introduces the ITDC typo correction system. Chapter 4 presents the VSM_WN_TM text 

categorization model and details of how to build text representation model using an ontology 

network and statistical language model. Chapter 5 discusses the details of our empirical case study, 

the evaluation of our system and the performance analysis. Finally, Chapter 6 gives an concise 

conclusion and discusses future work that can build on the ideas presented here.  
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 BACKGROUND AND RELATED WORK CHAPTER 2.

This chapter describes the background information related to text mining, typo correction and 

ontology networks. Text representation models are also discussed including the vector space 

model and statistical language models. The chapter also gives a literature survey on relevant text 

categorization approaches including machine learning algorithms, statistical language models and 

ontology networks. 
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2.1 Text mining 

Text mining, also known as knowledge discovery from text (KDT), is first mentioned in 

Feldman et al. [10]. It is defined as the applications of text processing and analysis that utilize 

combined techniques from information retrieval, natural language processing (NLP) that extract 

data from text, as well as machine learning and data mining algorithms, with the goal of finding 

useful patterns from text [11]. Decent estimates show that more than 80% of information is 

represented in the form of text [12], and this percentage will likely increase due to the continuous 

availability of online textual information. As a result, there has been significant development of 

text mining techniques in previous two decades.  

A typical text mining tool first extracts a text document from text collection and conduct 

preprocessing steps, such as spell checking, removing special symbols or punctuations, tokenizing 

sentences into stream of words, etc. These procedures aim at providing a clean and 

understandable format of text for both human and machines. Even though there are plenty of 

efforts made to explore syntactic and semantic information from text, at the document level, most 

approaches are based on the concept that a text document is represented by a set of tokenized 

words; That is, a bag-of-words (BOW) [13].  The next step is to convert the cleaned text into 

numeric representations that are more appropriate for further automated processing and analysis 

by machines. The step is called text encoding [14], and state-of-art predominant approaches 

include vector space model [15] and statistical language models [16], which will be discussed in 

detail in section 2.4.  
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The text analysis phase, following with the text encoding, is used to extract interesting patterns 

or trends from text based on different application requirements. For instance, automatically label 

previously unseen documents based on user-defined category (text classification), find groups of 

documents with similar content (text clustering), extract parts of text and assign specific attributes 

(information extraction), etc. Common approaches here include machine learning, data mining 

and statistical analysis.  

In summary, a typical work flow for text mining problems includes the following aspects: 

 Extracting information for human consumption, including text summarization, 

document retrieval, information retrieval, etc. 

 Assessing document similarity, including text categorization, document clustering, 

identifying key-phrases, etc. 

 Extracting structured information, including entity extraction, information 

extraction, learning rules from text, etc. 

 Mining structured text, including document clustering with links, wrapper induction, 

etc.   

The scope of this dissertation, as mentioned in Chapter 1, mainly includes typo correction and 

text categorization based on machine learning, statistical language modeling techniques and 

external knowledge, which will also be discussed in detail in section 2.3 and 2.5. 
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2.2 Typo correction 

As we mentioned earlier in Chapter 1, typo detection and correction is an important text 

process in many text mining applications. The major objective here is to reduce the errors made 

by machines due to the misinterpretation of misspelled text, and to provide a more 

understandable format for both human and machines for text mining tasks.    

In this dissertation, our research focuses on correcting a broad range of typos, including simple 

duplication, omission, transposition, substitution characters, spelling errors, and unusual use of 

shorthand and acronyms. Typos can be divided into two major categories: “non-word errors” and 

“real-word errors”. Conventional spelling checkers typically use dictionaries to detect typos.  

Each term within a text document is compared against the valid words in a dictionary or a 

lexicon. Any term that does not match any word in the dictionary is flagged as an error. This 

kind of typos is called “non-word errors” [17,18], for instances, “abreviate” instead of 

“abbreviate”, “veruified” instead of “verified”, etc. Typing errors that result in a valid word, but 

not the one that the user intended, is called “real-word errors” [19,20], such as “font seat” instead 

of “front seat”, etc. The focus of our research in this paper is mainly on detecting and correcting 

non-word typos.  

In general, two types of applications require typo corrections: the online programs involving 

text as input, and the offline automatic text document processing.  Many online applications, 

such as web search engines and text based user interface programs, provide a list of correctly 

spelled words to user as he/she is typing each word on computers/phones/handheld devices. 
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Many automatic spelling correction systems have already been developed to help people with 

their typing tasks, such as texting, web searching, etc. However, the current automatic typo 

correction technologies are still short in accuracy [21,22].  In many text mining applications, 

such as text documents analysis, retrieval, and categorization, typos need to be detected and 

corrected automatically in order to achieve accurate results efficiently.  Our solution is to 

combine domain specific knowledge with the general language knowledge to achieve accurate 

typo correction.  In this research, we focus on the application of unstructured text mining in 

vehicle diagnostic records.   

Discovering knowledge from unstructured text documents has many important applications 

including automotive fault diagnostics, medical document processing, and social network 

[23,24,25,26].  Large amounts of data have been collected in daily operations in many 

corporations, hospitals and government agencies, many of which are unstructured text data.  The 

sheer volume of data makes manual or even semi-manual categorization or classification 

cumbersome and fallible.  Automatic text categorization technologies have been developed and 

applied to many application problems including finding answers to similar questions or queries, 

classifying news by subject or newsgroup, categorizing web pages, organizing e-mail messages, 

etc. Many challenges exist in automatic text processing technologies, including representing 

semantics and abstract concepts and processing words with semantic ambiguity, such as 

polysemy and synonymy.  Typos add another layer of complexity in automatic text document 

process. 

The particular type of documents we are interested in has the following characteristics.  These 

documents are short, and typically typed hastily in very short time period, e.g. in seconds or 

minutes, by people with varying education background and interests. Examples of such 
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documents are short text messages, email text, medical descriptions of patients’ symptoms, 

vehicle diagnostic documents such as customer’s descriptions of vehicle problems, and 

technicians’ descriptions of repair process, and etc. These documents often do not follow 

grammar rules, and contain misspelled words, abbreviations and domain specific terminologies 

that are not found in standard English dictionaries and barely comprehensible to people outside 

the application field.  

Most of the current state-of-art typo correction systems are “interactive spelling checkers”, 

which return multiple spell correction candidates, and allows user to select the intended 

correction [21]. Early in 1960s, researchers have already started working on text spelling error 

detection and correction. Many studies have been conducted with the purpose of developing 

correction techniques for non-word errors. Over time various approaches and successful systems 

were developed.  Popular methods for finding misspellings and assessing suggestion candidates 

for misspellings include part-of-speech (POS) tagging [27,28], minimum editing distance [28,29], 

nearest neighbor search procedure, similarity key methods such as SoundEX systems and 

Metaphone algorithms [28,30], and modified version of Longest Common Subsequence 

algorithm [19].  Error correction methods, especially real-word error correction, are typically 

based on syntactic and semantic knowledge such as n-gram based techniques [17,32,33], and 

statistical learning from training data sets such as web documents are used as context to help 

correcting typos [33,34,20].  Many methods have been developed to create and rank correction 

candidate lists of detected typos, such as statistical language models [31], machine learning 

techniques [18,27,32,35], complex network approaches [36], and noisy channel models [33,37].   

The spell checkers used for online applications mostly use online text as the resource for typo 

correction, such as news pages from the Web that are clean and well-spelled [33]; web queries 
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input to search engines by Internet users [20]; and Google n-gram dataset [34,39,40].  These 

interactive spelling checkers discussed above require user to manually select a candidate to 

replace the typo, which are good for interactive software systems such as MS Office, but, not 

applicable to automatic document processing, such as document retrieval or classification, in 

which a system having the capability of performing fully automated error detection and 

correction is required.   

A number of automatic typo correction algorithms have being developed so far. A typical 

approach is to select the best candidate generated for each typo based on word context or 

semantic information such as POS tagging [21,41,42].  Two interesting typo correction 

algorithms were proposed by Sebastian and David [41], one based on supervised learning and 

another unsupervised learning. The supervise learning algorithm uses a reverse edit distance 

method to generate a candidate list and then one on the list that has the highest score based on 

word occurrence or word’s bigram stemmer score. The unsupervised algorithm attempts to 

correct spelling errors by first using low-frequency word as candidate typo, with the assumption 

that low-frequency word is usually a typo and a word will be misspelled in exactly the same way 

very few times.  After the candidate typos are selected, the algorithm uses other words in the 

document set as valid lexicon, and select best candidate based on predefined rule set of word 

context. They reported over 90% accuracy generated by the supervised learning system on the 

2200 misspellings words provided from a NASA database, and over 70% accuracy by the 

unsupervised system on 5833 misspellings from Orbiter Structure database. An example of text 

documents in the NASA database is shown in Fig. 1.  However, for processing unstructured text 

documents, several issues need to be addressed.  First, low-frequency words could also be valid 

words, especially those words in document sets that have smaller sizes. For example, in the 
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vehicle diagnostic corpus we processed has more than 10% of the valid words only appear 1 time, 

such as “contaminate”, “erratic”, “unsecured” and so forth. Secondly, a word could be 

misspelled in the same way repeatedly due to the typing pattern of users.  Last but not least, a 

single English dictionary as external source for typo detection and correction is insufficient, 

especially for unstructured domain-specific text with valid words not in typical lexicon. Patrick 

et al. developed an automatic spell correction system that takes advantage of the entire context 

surrounding misspelling [42]. They also explore the use of the part-of-speech for selecting 

candidates. The system they proposed has 97-98% of accuracy on over 600 randomly selected 

medical documents. However, this approach is based on the assumption that POS tagging result 

is reliable. 

Although the systems discussed above all reported high accuracy on typo correction, they were 

developed and evaluated on text documents that were well written in terms of grammar, structure, 

and sentence and word boundary.  For the unstructured and causally written text documents, such 

as the engineering diagnostic records [43] we are dealing with, these methods do not work well. 

We use an example to illustrate the different problem complexity in these two types of 

documents.  Fig. 1 illustrates two document examples: one is a well-structured text, and the other 

is unstructured text.  In both documents, misspellings were marked in red.  The parsing results 

generated by using Stanford POS tagger [38] on the two documents in Fig. 1 are shown in Fig. 2, 

in which incorrect POS tags were followed by true POS tags marked by red.  Obviously, POS 

tagging is not reliable when it is applied to the unstructured document, i.e. the vehicle diagnostic 

records, considering the ambiguity of sentence boundary and poor quality of grammar in the 

document. 
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The above discussion leads to our work in typo correction for processing unstructured 

documents with a focus on typo correction techniques for three types of non-word typos:  word 

boundary errors, self-invented abbreviations, and ambiguous acronyms. We attempt to fill in the 

gap between the interactive and fully-automatic spelling correction techniques for processing 

large size corpora of unstructured text documents. The corrected text documents can then be 

used for further text processing, such as text document categorization and text document retrieval. 

 
Fig. 2. Results of POS tagging on well-structured and unstructured text documents 
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2.3 Ontology networks 

Concerning that although machines can do a lot of things under human directions, they do not 

understand human language. People are always trying to find a way that makes machine process 

languages in a more sophisticated manner, besides the simple BOW representation. The basic 

idea here is that, if every document is marked or enriched by some knowledge that captures 

syntactic or semantic information between words, machines are able to “understand” text better. 

In the field of computer science and text mining, ontology network is generally defined as “a 

formal, explicit specifications of shared conceptualizations of a domain of interest that are shared 

by a group of people” [44]. Therefore, it provides a solution to facilitate text understanding and 

automatic processing of textual resources.   It is explained in detail as follows by Ding and Foo, 

in [45]: 

“ ‘Conceptualization’ refers to an abstract model of phenomena in the world by 

having identified the relevant concepts of those phenomena. ‘Explicit’ means that the 

type of concepts used, and the constraints on their use are explicitly defined. ‘Formal’ 

refers to the fact that the ontology should be machine readable. ‘Shared’ reflects that 

ontology should capture consensual knowledge accepted by the communities.”  

More specifically, the most widely used type of ontologies in text mining applications is called 

“terminological ontologies”, which are mainly specified by subtype-supertype (IS-A) relations 

and describe concepts by using concept labels or synonyms [44]. Examples of well-known 

terminological ontologies include WordNet [49], Semantic Wiki [50], etc. Fig. 3 shows an 

example of WordNet ontology instance that explicitly provides relationship between words such 

as synonym, hyponym, etc. Since our focus in this dissertation is based on terminological 
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ontologies, this will be further discussed in detail in Chapter 4. 

 

In this research we define a concept as a set of synonyms that have similar semantic meanings 

in a specific application domain. In Fig. 3, concepts are highlighted in blue. The undirected 

connections connect word to its semantic meanings, and the directed connection represents IS-A 

relationship between words, which is also called as Hyponym/Hypernym relationship.   

An immediate question for using ontology in text mining applications is that how to construct 

one that can be effectively used for data mining. Ontologies can be learnt from various resources 

such as structured, semi-structured or unstructured text corpus in specific domain, relational 

databases, publicly available taxonomies, etc. As a result, ontology learning techniques are 

divided into two groups: Constructing ontologies from scratch using unsupervised learning 

 
Fig. 3. Example of WordNet ontology instance visualization 
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methods, and extending existent ontologies using supervised learning and classification methods 

[44,52,53]. The first approach usually requires a lot of manual or semi-manual work to build 

word ontology from scratch, and the adaptability of such ontology is usually restrained by 

domain-specific resources [50,54,55]. Therefore, to a large extent, current research work mainly 

focuses on learning ontologies from existing resources such as English lexicons [56]. 

Furthermore, most of the state-of-art approaches use only nouns for ontology building, and a 

large extent of methods aims at constructing IS-A-related concept hierarchies. [44,57,58].  

Currently, a number of ontology learning algorithms has already been well-developed and 

powerful text ontology systems such as WordNet have generated and publicly available for use 

of academic or industry purpose. However, how to appropriately utilize such information 

effectively to facilitate various text data mining applications is still open for exploring. For 

example, in the field of text categorization, a mostly used approach is to use publicly available 

ontology to generate “Concept” level features as additional information to the text representation 

[46,47,48], while several issues still brings in great difficulties and challenges for solving the 

above problem, such as mapping ontology relationship to text feature representations, weighting 

word features based on ontology relationships, etc. [59,60].  

As a result, this dissertation research focuses on how to incorporate information provided by 

ontology into text mining tasks such as text categorization, rather than on how to learn ontology 

from textual resources. We believe that a hybrid approach that combines conventional methods 

with appropriately generated ontology network information can enhance the quality of text 

representation, and thus improve the performances of text mining tasks using such representation.  

This leads to several well-known representation models developed by researchers for textual 

resources in recent decades, which will be discussed in the following section 2.4.  
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2.4 Text representation models 

2.4.1 Vector Space Model (VSM) 

As mentioned above in section 1.2, the conventional approach of representing a text document 

is the Vector Space Model (VSM) [8], where a text document is modeled as elements in a vector 

space. Each element is representing an index term that is most useful identifying the main theme 

of a document. Baeza-Yates and Ribeiro-Neto gave the definition of vector space model as 

follows [61]: 

“For the vector model, the pair (ki, dj) represents the occurrence frequencies that term ki in 

the document dj. A weight wi,j associated with the pair (ki, dj) is positive and non-binary.”  

From the above definition, it is clear that VSM generation usually includes three stages: 

term selection, document indexing and weighting scheme selection.  

In the first stage, text are tokenized into a stream of words, and a bag of content bearing 

terms, also known as indexed terms, are extracted from the document text. This term selection 

step, in the development of VSM, is considered as the most important step that largely impacts 

the system's performance. Generally speaking, it is done the words in the following several 

ways: 

 Stop word removing: Words in a document do not describe the content which are 

called stop words (function words) are removed from document. The stop words can 

be identified with some automatic way. For example, terms which have very high or 

very low frequency can be considered as function words [62].  
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 Stemming: It is the process for reducing inflected words to their stem. For example, 

the words "accelerate", "acceleration", and "accelerating" are stemmed to the root 

word, "accel". As a result, it is considered as reducing dimension of selected words 

and help identifying similar words. The most widely used stemming algorithm is 

Porter Stemming algorithm [63]. The idea is that the suffixes in English mostly 

consist of a combination of smaller and simpler suffixes. In this dissertation, the 

stemming process is not our focus, considering that although stemming algorithm 

could reduce feature dimension, it also lose the information of full terms, and 

additional storage might be required to store both the stemmed and unstemmed 

forms [64]. 

 In the case of the classification problem, research works have been done in feature 

selection by using labeled training documents. This process ensures that the selected 

terms are highly related to the presence of a particular class, using a variety of 

measuring approaches such as Gini Index, Information Gain, Mutual Information, 

etc [65,66]. Again, this is not the focus in this dissertation, because that these 

measures are mostly based on training data, and important features for previously 

unseen documents may possibly be removed from this stage.  

 In a lot of domain-specific applications in which text documents are usually 

unstructured, causally written, with plenty of grammar and spelling mistakes, as 

mentioned in section 1.2, misspelling correction is also a very essential step in 

removing noisy terms that could significantly help feature selection. Our work in 

this field will be presented in detail in Chapter 3. 
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 The second stage is to construct a term-document (TD) matrix using indexed terms. Each 

entry in TD matrix indicates how many times that one term occurs in one document. More 

specifically, a document collection containing a total number of N documents identified by K 

terms is represented as a K * N TD matrix. With the purpose of measuring how well each term 

describes the document contents, each entry of the TD matrix is represented by a “local weight” 

that is typically the occurrence frequency of individual term in one document [67]. Note here, 

each document is represented as a row vector in the TD matrix. An example of TD matrix 

generated from three documents is illustrated in Fig.4. To simplify the problem, all the words 

within these three documents are selected as indexed terms. 

 

Research work has shown that using only local weight is insufficient to evaluate the 

importance of indexed terms [68]. For instance, some terms, due to their rare appearance in a few 

documents, do a better job to discriminate these documents from others. Some terms, on the 

contrast, appear too frequently in the whole collection to distinguish documents in different 

categories. As a result, after the TD matrix is generated, each entry needs to be weighted using a 

“global weight”, which is used to reflect the overall importance of the index term in the whole 

document collection. The idea is that a term occurring rarely should have a high global weight 

and frequently occurring terms should be weighted low. Several well-known global weights are 

introduced in [69]: 

 
Fig. 4. Example of TD matrix generation 
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tfij –occurrence frequency of  term i within document j; 

dfi– document frequency, which is the total number of documents in the document 

collection that contain term i. 

gfi– global frequency at which term i occurs in the entire document collection 

ndocs – total number of documents in the whole document collection. 

Generally speaking, each entry wi,j of TD matrix is assigned with two-part values, 

iijji GWLw ,
, where Lij is the local weight and GWi is the term’s global weight. The most 

commonly used term weighting scheme is tf-idf (term frequency-inverse document frequency) 

[67]. It assigns a high degree of importance to terms occurring rare in a document collection. 

From the above discussion, when we take a deep look at those global weighting schemes, it is 

obvious that they are all focused on the entire document collection. Based on our observation, 

important term words or their synonyms appear frequently in documents in a specific category, 

especially when the user defined category is determined by some specific keywords [4]. 

Therefore, we designed a new global weighting scheme during the generation of VSM models, 

which will be discussed in detail in Chapter 4. 
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The advantage of using VSM model to represent text is that, instead of fully “understanding” 

the content of a document, the VSM simply generates a logical view of the document. For those 

applications with short, poorly-structured text documents or those documents that having 

grammar errors or spelling errors, VSM simplifies the procedure of natural language processing 

and ease the system implementation. These simplifications are proved effective by many 

research results [2,4,11,13,68]. This is the major reason that our work on text categorization is 

also using VSM as our fundamental text representation approach. However, VSM also has 

several limitations [70], such as poor representation of long documents, ignoring the semantic 

relationship between documents with similar context or synonyms, informal weighting schemes, 

etc. As a result, this dissertation presents our great effort in improving the conventional VSM 

model.  

Considering the fact that traditional VSM can be inaccurate under the condition that a given 

word is expressed in many ways (synonymy) or a word has multiple meanings (polysemy) with 

different context, approaches that dig out underlying semantic relationships between words are 

required in many text mining applications. Latent semantic indexing (LSI) is one of the earliest 

techniques that try to solve the above problem. 

2.4.2 Latent Semantic Indexing (LSI) 

LSI algorithm, also called latent semantic analysis (LSA), is first introduced in 1988 for 

natural language processing [71]. It is a variant of the VSM that allows the low-rank 

approximation to the original TD matrix.  

In the LSI each document is mapped into a lower dimensional space by decomposition of the 

TD matrix. The assumption made by LSI is that, some “latent” semantic structure exists 
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according to the overall pattern of term occurrence. The low-rank approximation aims at merging 

the dimensions associated with similar terms, as well as enhancing or eliminating polysemy 

relationships based on right word meaning used in the context. The lower dimensional space is 

build using singular value decomposition (SVD) which is associated with the latent semantic 

structure [72]. The major steps of LSI are presented as following: 

 Given a mn matrix A, it is decomposed into the products of three matrices by using SVD 

method. 

TVUA  , where 
n

TT IVVUU  , In is a size n identity matrix, ),...,,( 21 ndiag  ,

0i  for ri 1 , and 0j  for njr 1 , r is the rank of A, U and V contains left and 

right singular vectors of A, respectively, and diagonal matrix  contains the singular values of A. 

Then we get new matrices Uk ,Vk  by keep only the k largest singular values of , a rank-k 

approximation matrix to A is constructed with the following formula: 

T

kkkk VUAA  . 

The mathematical representation of SVD is shown in Fig. 5. 
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Fig. 5. Mathematical Representation of Singular Value Decomposition 
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The above SVD method attempts to capture underlying semantic structure in the association of 

terms and documents, as well as reducing feature dimensions by defining a much smaller value k 

than the number of indexed terms. It greatly reduces the memory requirement and the computing 

time of measuring the similarity between an unseen document and a known document. However, 

in this dissertation, we do not use this approach to capture the semantic relationship in text, due 

to the following drawbacks of LSI: 

 The core technique of LSI, SVD, is a mathematical method; therefore the resulting 

singular values are not interpretable.  

 SVD is very sensitive to the change of data. Sometimes the low-rank approximation 

has negative values which are meaningless [72]. 

 LSI requires relatively high computational performance and memory in comparison to 

other information retrieval techniques. Without distributed implementation it is not 

applicable to large-scaled document corpus [73]. 

 It still remains to be verified experimentally whether the LSI outperforms the VSM in 

text mining tasks such as text categorization. The concept in the LSI reduced-

dimension space is assumed to be a weighted average of multiple meanings, while 

losing single term information and some real meaning information [68]. Under such 

cases, the LSI might exhibit a less satisfying classifying ability.  

2.4.3 Statistical topic models 

We now move from LSI to the discussion of statistical topic models, which is derived from 

LSI but interpret LSI from statistical point of view to provide a better understanding for text 
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data. This is a major focus of improving conventional VSM model in this dissertation, since it 

provides a solid statistical foundation for finding hidden semantic structure of text documents.  

2.4.3.1 Probabilistic Latent Semantic Analysis (PLSA) 

Probabilistic latent semantic analysis (PLSA) is a well-known statistical topic model for text 

clustering and information retrieval [74]. It represents a document with a mixture distribution 

over “latent topics”, which are characterized by a distribution over the indexed terms. The latent 

topics provide a reduced dimension representation of documents in a given collection. It is a 

statistical variant of LSI developed based on a statistical generative model called Aspect Model 

[74]. The starting point of PLSA is the term-document frequency (TDF) matrix, and it follows 

the bag-of-words assumption, in which each word appears independently, and the occurring 

order of each word is not considered. Fig. 6 shows the graphical model representation of PLSA, 

based on Bayesian Networks [109]. 

  

In the above graphical model, the solid circles D and t represent a document and a term that are 

observed respectively. The PLSA model is a generative model that assumes there is a latent 

“topic” variable z between documents and terms. The two rectangles, marked by K and N, 

represent the number of sample words and documents observed, respectively. )(DP , )|( DzP , 

 

Fig. 6.  Graphical model representation of PLSA 
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)|( ztP  represents the probabilities of observing a document D, a latent topic z occurring in D, 

and word t belonging to z, respectively. 

The typical approach of PLSA modeling, is to estimate the probability functions )|( DzP  and 

)|( ztP  , for all document-topic and term-topic pair (z, D) and (t, z) through machine learning.  

For each pair of document-topic, (z, D), and term-topic, (t, z), we attempt to find the values for 

functions )|( DzP  and )|( ztP  that maximize the following log–likelihood objective function: 

 ))|()|()(log(),(
,

 
tD z

DzPztPDPtDnL , (1) 

where ),( tDn denotes the term frequency of t appears in document D. 

The variables )|( DzP  and )|( ztP  are what we are interested in and want to estimate, since 

)(DP  is not related to the parameter we want to estimate and we assume that it is constant 

among documents in Tr,  we then have: 

))|()|(log(),(maxarg)max(arg
,

 
tD z

DzPztPtDnL     (2) 

We will use the well-known Expectation Maximization (EM) algorithm [75] to solve this 

maximization likelihood estimation problem.  Each iteration of EM algorithm consists of 

expectation step (E-step) and maximization step (M-step). In E-step, based on the current 

estimated )|( DzP  and )|( ztP , the posterior probability of ),|( tDzP  is computed for each 

document-word pair. In M-Step, )|( DzP  and )|( ztP  are updated by maximizing equation (2).   

This is an unsupervised machine learning process, and the detailed steps of EM algorithm will be 

discussed in Chapter 4. 
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2.4.3.2 Latent Dirichlet Allocation (LDA) 

Similar with PLSA, Latent Dirichlet Allocation (LDA) is a generative probabilistic model for 

text collection [78]. In LDA, each document is modeled as a finite mixture over a set of latent 

topics. The basic idea is that documents are represented as random mixtures over latent topics, 

where each topic is characterized by a distribution over words [78]. LDA assumes the following 

generative process for each document D in a corpus Tr: 

1. Choose )(~ PoissonK  for each of the N documents in Tr. 

2. Choose )(~  Dir  

3. For each of the K words in D,  

a. Choose a topic )(~ lMultinomiazn  

b. Choose a word nt  from ),( nn ztp , a multinomial probability conditioned on zn. 

There are several assumptions to be made in this model. First of all, the latent topic 

dimensionality G of the Dirichlet distribution is known and fixed. Secondly, the word 

probabilities are determined by a G * K matrix   where. Finally, K is independent of all the 

other data generating variables (  and z) [78]. The G-dimensional Dirichlet random variable   

has the following probability density function: 
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where  is a size G vector with 0i , and )(x is the Gamma function. Given the 

parameters   and  , the joint distribution of a topic mixture  , a set of K topics z, and a set of 

K words t is given by: 

),()()(),,,(
1

 nnn

N

n
ztpzpptzp


  

Therefore, the LDA model is represented as a probabilistic graphical model in Fig. 7.  It is 

obvious that LDA is a three-level hierarchical Bayesian model.   

  

Although LDA is claimed to overcome some shortcomings of PLSA, such as reducing number 

of parameters being estimated, and treating the topic mixture weights as a hidden random 

variable rather than a large set of individual parameters linked to training set [78], in this 

dissertation, we mainly focuses on extending basic PLSA model rather than applying LDA, 

based on the following several reasons: 

 PLSA approximation is based on maximum likelihood estimation, while LDA is based on 

Bayesian estimation, by using both prior knowledge and available data [77]. When data 

size is large, their performance tends to be very similar [76].  

 

Figure 7.  Graphical model representation of PLSA 
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 Considering the complexity of variational inference of LDA, PLSA is much easier to be 

implemented and extended using semi-supervised manner. We would rather focus on 

how to combine statistical topic model with supervised information from training set as 

well as external ontology resources, than find out which model or estimation method is 

better.  

 With parameters partially fixed after training, PLSA could also be applied to process 

previously unseen document, thus makes text categorization possible. This will be further 

discussed in Chapter 4. 

The following section will mainly discuss research works have been done in the field of text 

categorization, which is one of the major focuses in this dissertation.  
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2.5 Text categorization 

Text categorization, as introduced in section 1.1, is one of the most popular tasks in text mining 

field nowadays, due to the increased availability of documents in digital form and the ensuing 

need to organize and differentiate them for further analysis. Mathematically, as described in [79], 

if Tr is a set of N documents,  NDDDTr ,...,, 21 , and C is a set of predefined categories, 

 McccC ,...,, 21 , the task is to approximate the classifier that maps each Trdi  to a Cc j  , so 

that the estimated target mapping function CTr :̂  coincide the real mapping function 

CTr :  as much as possible.  

Document categories defined by users always vary by different application requirements, such 

as the topic a news article discusses, the importance of a vehicle diagnostic record that describes 

vehicle repair details [80], the fact stated in a medical diagnostic document that whether or not 

an injury condition sustains [4], etc.  One way to solve the text categorization problem is to use 

human experts to manually classify documents. Of course, this approach is costly and time-

consuming. In the research community today, the dominant approach to this problem is based on 

machine learning techniques, which is proved to be effective in analyzing large amount of data 

and has the straight portability to different application domains [81]. 

2.5.1 Text categorization based on machine learning algorithms 
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Machine learning approach for text categorization has gained popularity since early 90’s. In 

this approach, a general inductive process is adopted to develop a classifier that classifies 

previously unseen documents by gleaning the characteristic of available training documents. 

There are already plenty of research works that focus on developing and improving machine 

learning techniques adopted for building classification models, which are generally reviewed in 

[76,81]. A list of major techniques that have been applied in text categorization literature is 

presented as following: 

 Classifiers based on document clustering algorithms such as k-means clustering [82], 

hierarchical clustering [83], self-organizing maps [4,84], etc. 

 Example based classifiers such as k-nearest-neighbor classifiers [92,93] that classify 

unseen data by finding the closest data samples in the training set using similarity 

measures. 

 Probabilistic classifiers such as Naïve Bayes classifiers [85,86] that measures the 

probability of a sample belongs to a certain category. 

 Decision tree classifiers, which is a hierarchical decomposition of the training data 

space. At each node of the tree, the attribute that most effectively splits data samples 

into respective subsets is selected, based on information gain ratio. The splitting is 

recursively conducted until the leaf nodes contain a certain minimum number of 

samples, or some conditions on class purity are met [76]. 

 Classifiers that are derived from regression related algorithms, such as Linear Least 

Squares Fit (LLSF) method [87], logistic regression classifier [88], neural network 

classifier which is based on logistic regression and usually is considered as a nonlinear 

combination of a number of logistic regression classifiers [89,90,91]. 
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 Linear classifiers such as support vector machines (SVM) [94,95], which is a type of 

classifiers that attempt to determine “good” linear separators among categories. It is 

proposed first by Vladimir Vapnik in 1979, but did not receive much attention until 

late 90’s. The basic idea is to find out a separation hyperplane for data samples so that 

the normal distance of any of the data points from the hyperplane is the largest. Fig. 8 

shows an example of 2-dimensional case for SVM classifier learning. The crosses and 

circles represent training examples in different categories, whereas lines represent 

decision surfaces, and the thicker line represents the best separation hyperplane, since 

the distance from it to the nearest data point is maximized. Small squares indicate the 

support vectors, which are training samples lying on the maximum margin surface [81]. 

 

In this dissertation, we consistently use SVM as our text categorization classifier throughout 

different experiments, with the following major reasons: 

 SVM provides much more robust performance as compared to many other machine 

learning techniques such as rule based classifiers and decision trees [97]. 

 

Figure 8.  Graphical model representation of PLSA 
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 SVM is quite robust to high dimensionality. It is ideally suited for text categorization 

because of the sparse high-dimensional nature of text [96]. 

 Term selection is often not needed in SVM classification, as SVMs tend to be fairly 

robust to over-fitting and can scale up to considerable dimensionalities [76]. 

 Whatever machine learning techniques are used to build text classifiers, the 

classification accuracy will be “bottlenecked” if the representation quality of the 

document is poor, i.e., the representation of a document does not reflect close 

relationship with its assigned category. Furthermore, based on [98], research works 

have proved that the sophistication of feature selection in text categorization is more 

important than choosing the best classifier. Therefore, our research focus in this 

dissertation on the text categorization task is rather improving text representation and 

combining with a consistent and promising machine learning approach for evaluation, 

than choosing and improving the classifier itself.   

2.5.2 Text categorization based on statistical topic models 

Statistical topic models, including PLSA, LDA, etc., provide a solid probabilistic foundation 

for document modeling and representation, in terms of digging out latent semantic structures 

from text. In the literature, these models are mainly used for unsupervised text clustering, 

information retrieval and dimension reduction, and research works of utilizing them for text 

categorization is still rare. Most of the work been done on applying topic model to text 

categorization is to purely use estimated latent features for classification, such as 

[99,100,101,102], which is claimed in [103] to be less accurate than using bag-of-word (BOW) 

features, especially when training data size is large. The major limitation of the above work is 
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that, text categorization requires a sophisticated feature selection approach that generates a well-

developed text representation. Using semantic or syntactic structure learned from text is not 

sufficient in fully representing the content of the document, and different application 

requirements for text categorization make it essential to develop a hybrid classifier with enriched 

features from multiple resources such as single words, relationship between words, semantic 

structure, word context, etc.  

2.5.3 Text categorization based on ontology network 

Considering the necessity of improving BOW features for more accurate text categorization, as 

mentioned in Section 1.2, researchers have been working on utilizing external or background 

knowledge to help build text classifier [104,105]. These external knowledge has a great 

advantage in helping extract semantic relationships, match important phrases, strengthen co-

occurrences, etc. As discussed in section 2.3, WordNet is one of the best known sources of 

external knowledge used for text categorization. It is a large lexical database of English first 

developed and maintained by Princeton University [49]. The main relation among words in 

WordNet is synonymy, e.g., as between the words shut and close or car and automobile. Nouns, 

verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each 

expressing a distinct concept, together with short explanations and general definitions. For the 

purposes of text categorization, it is successfully used to unify the vocabulary across the 

documents by modifying the document features with use of the related words. The key rules 

defined in the most well-known and widely used approach in [46] are listed as follows: 

 Add rules: extend each row vector DW


 in TD matrix defined in section 2.4.1 by adding 

new entries for WordNet concepts c appearing in the document set. DW


 is replaced by 
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the concatenation of DW


 and DC


 , where )],()...,(),,([ 21 VD cDcfcDcfcDcfC 


, where 

),( cDcf  denotes the frequency that a concept c appears in document D, and V denotes 

the total number of concepts generated. 

 Replace: Each row vector DW


 in TD matrix is replaced by the concatenation of DW 


 and 

DC


, where DW 


 denotes the new vector after removing all term entries from DW


 that 

appear in WordNet. Terms that do not appear in WordNet are not discarded.  

 Concept only: remove all terms from the vector representation that do not appear in 

WordNet. Only DC


 is used to represent document D.  

 It is obvious that the above rules have plenty room of improvement. Several open issues 

include:  

 Which rule/combination of rules should be selected to apply to the document features? 

 What value should be assigned to the concept features added to TD matrix after global 

weighting scheme for indexed terms is applied? 

 How to determine the scope of synset with multiple meanings, for a word with multiple 

word categories in a document? 

 How to make full use of word relationships other than synonymy (e.g., 

Hypernym/hyponym)? 

These problems discussed above are important indications that text categorization using 

ontology networks is worth further investigation and perfection. Therefore, it is one of the major 

focuses in this dissertation, and will be discussed in detail in Chapter 4, with proposed solutions.  
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 AUTOMATIC TYPO CORRECTION USING CHAPTER 3.

MACHINE LEARNING AND EXTERNAL KNOWLEDGE 

BASES 

In this chapter, we present our research in typo correction for processing unstructured 

documents with a focus on three types of non-word typos:  word boundary errors, self-invented 

abbreviations, and ambiguous acronyms. We present an innovative automatic typo correction 

system, ITDC (Intelligent Typo Detection and Correction), that uses hybrid knowledge, i.e. 

general language lexicon and domain-specific knowledge extracted through machine learning. 

We developed algorithms for misspelling detection and correction candidate generation, 

approximate word matching, topographically similar word grouping, extracting contextual 

knowledge from general and application domains, and candidate ranking based on machine 

learning and statistical analysis.  The corrected text documents can then be used for further text 

processing, such as text document categorization and text document retrieval. 
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3.1 Machine learning algorithms to extracting knowledge for typo 

correction 

Automatic typo detection and correction is a challenging problem, in particular in unstructured 

text documents that contain acronyms, abbreviations and symbols that are specific to application 

domains.  We propose to use a hybrid of knowledge, general language specific typo knowledge, 

and domain specific knowledge.  Two general language knowledge bases, GTKB1 (General 

Typo Knowledge Bases), and GTKB2 are important for typo detection and corrections. GTKB1 

is a valid word lexicon that can be automatically generated from online English dictionaries such 

as WinEdt English_US and/or English_UK [20].  GTKB1 can be used for typo detection and 

generating typo correction candidates.  The most challenging part in typo processing is to correct 

detected typos, which can be either typographical errors or non-word terms that can were used as 

abbreviations or symbols meaningful only to a specific application domain.  To correct 

typographical errors, a general language knowledge base of commonly misspelled words, 

GTKB2, can be automatically generated from internet sources including Wikipedia Common 

Typo List, Oxford English Corpus Misspelling List, and Student's Book of College English 

Misspelling list and [39-41].  The focus of our research is to explore the use of machine learning 

technologies to extract domain specific knowledge that are useful for correcting challenging 

typos, such as word boundary errors, self-invented or domain specific acronyms and 

abbreviations.  Fig. 9 gives a summary of the knowledge useful for typo correction. In this 

section we introduce the machine learning algorithms developed to extract domain specific typo 

http://oxforddictionaries.com/us/words/the-oxford-english-corpus
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knowledge from text corpus collected within a specific domain, including true words for the 

acronyms and abbreviations, topographically similar words/typos groups, and typos due to 

wrong word boundaries.  

 

3.1.1 Extracting knowledge of domain-specific terms and acronyms 

We propose to build an enhanced domain-specific dictionary that can used to identify valid 

terms commonly used in an application domain, and acronyms that are valid and represent words 

meaningful within an application domain. For example, in automotive diagnostic applications, 

NPF is a common acronym known as “No Problem Found”, and CAN known as Controller Area 

Network, which can be ambiguously interpreted. 

 From a given training data set we first generate a list of valid words and their frequencies 

occurring in a training data set, which is denoted as DB1.  We developed a semi-automatic 

process to extract a list of acronyms from a given corpus of training documents collected from a 

specific application domain.  It first extracts all typos with short lengths from the training 

 

Fig. 9.  Extracting knowledge for typo detection and correction 
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documents.  For each of these typos, we search for the valid phrases in the training set that can 

form the typo with its initials. For example, for the typo “NPF”, we searched in the training 

documents and found the phrase “No Problem Found” occurring 5 times, “Noise Possibly From” 

5 times, and “Not Put Fuel” 3 times. The extracted phrases are then ranked according to their 

frequencies of occurrences.  The phrase with the highest frequency of occurrences is assigned to 

the typo as the correction candidate.  If there is a tie, such as the example given above, a domain 

expert manually identifies the best correction candidate. This knowledge base is denoted as DB2: 

))}.(,)),...((,()),(,{( 22112 HH acexacacexacacexacDB   (1) 

Where aci denotes an acronym and ex(aci) denotes the correct phrase aci represents. 

3.1.2 Building a lexicon of similar typos and domain-specific 

abbreviations 

One of the characteristics of unstructured text in a specific application domain, for instance, 

vehicle diagnostic text records, is that they contain many abbreviations and casual word patterns 

that cannot be easily corrected by only using common English dictionaries. For example, “wheel” 

-> “whl”, “check” -> “chk”, “diagnose” -> “diagn”, etc. As a result, it is necessary to build a 

domain-specific lexicon [22] to correct these word errors.  The following is an algorithm we 

developed to build a domain-specific lexicon, which is represented in groups of words and typos 

such that the words and typos in each group share the same stem word.  For example, typos 

“cusomer”, “cutomer”, “custmer”, “customers”, “cusotmer” and “customer” all shares the same 

stem word “custom”.   

The algorithm uses four similarity measures to detect four basic types of typing/spelling errors, 

deletion (Type 1), insertion (Type 2), substitution (Type 3) and transposition (Type 4).  Research 
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showed that more than 80% of typos belong to one of these four error types [38]. Suppose A and 

B are two words, 
nAAAA ...21  is a typo and 

mBBBB ...21  is a valid word, where Ai and Bj, 

,,...2,1;,...2,1 mjni  are letters within the alphabet.  If A is formed by deleting one or more 

letters from B, such as: A = ENINE, and B = ENGINE, then A belongs to Type 1 topographical 

spelling error.  If A is formed by inserting one or more letters into B, such as: A = FOUOND, and 

B = FOUND, then A belongs to Type 2.  If A is formed by substituting one or more letters with 

wrong letters, such as: A = STSTEM, and B = SYSTEM, then A belongs to Type 3. If A is 

formed by transposing two letters in B, such as: A = PERFROM, and B = PERFORM, then A 

belongs to Type 4.  Fig. 10 illustrates the four types of misspelling words. 

 

We designed the following algorithm to calculate the distance between two words, A and B, 

based on the above four types of spelling error.   

 Similarity measure calculated based on type 1 spelling errors: 

1) Let 01 s . Starting from the first letter of A and B, 1x , 1y .  

2) Compare Ax and By, 

2.1) If yx BA  , then 111  ss , and 1 xx , 1 yy . 

2.2) If yx BA  , then go to the next letter of B, 1 yy .  

2.3) If nx   and my  , go to step 2.1, otherwise exit. 

 

Fig. 10.  Four types of topographical spelling errors 
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 Similarity measure calculated based on type 2 spelling errors: 

1) Let 02 s . Starting from the first letter of A and B, 1,1  yx .  

2) Compare Ax and By, 

2.1) If 
yx BA  , then 122  ss , and 1 xx , 1 yy . 

2.2) If 
yx BA  , then go to the next letter of A, 1 xx .  

2.3) If nx   and my  , go to step 2.1, otherwise exit. 

 Similarity measure calculated based on type 3 spelling errors: 

1) Let 03 s . Starting from the first letter of A and B, 1,1  yx .  

2) Compare Ax and By, 

2.1) If 
yx BA  , then 133  ss , and 1 xx , 1 yy . 

2.2) If 
yx BA  , then go to the next letter of both A and B, 1 xx , 1 yy .  

2.3) If nx   and my  , go to step 2.1, otherwise exit. 

 Similarity measure calculated based on type 4 spelling errors: 

1) Let 04 s . Starting from the first letter of A and B, 1,1  yx .  

2) Compare Ax and By, 

2.1) If yx BA  , then 144  ss , and 1 xx , 1 yy . 

2.2) If yx BA  , 11   yx BA  and 1 yx BA , 
yx BA 1

, then 144  ss , and 

1 xx , 1 yy . 

2.3) Else if 
yx BA  , then go to the next letters in both A and B, 1 xx , 1 yy . 

2.4) If nx   and my  , go to step 2.1, otherwise exit. 

 The distance between two terms A and B is then calculated as:  
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)
),max(

(1Dist
BA

s
(A,B)  ,                               (2) 

where  4,3,2,1max  iss i . 

For example, for terms PEEFROM and PERFORM, we have similarity measures s1, s2, s3 and 

s4 equal to 2, 3, 4 and 5, respectively. As a result, 5s , which means the best matching case 

of typo “PEEFROM” is type 4.  The term distance measure function, Dist, is used in the 

following algorithm for grouping similar terms, so the typographically similar terms, which can 

be valid words or typos, are placed in the same term group with the same correction candidate. 

Typo correction algorithm based on grouping similar terms  

Let D be a set of training documents. 

1) Extract a list of distinct terms from D, denoted as T. 

2) Generate groups of term words in T that are topographically similar.  The following steps 

find the topographically similar terms in T and generate groups of similar terms, 

 Kggg ,...,, 21
. 

2.1) Let 1,1  kj .  

2.2) Create a new group gk. Take the term tj from term list T, and add it into group gk.  

2.3) Increment j.  If Tj  , go to step 3. 

2.4) Take the term tj from term list T. 

2.5) If 
ljtlength )( , where l  is a threshold used for filtering out short terms, go to step 

2.3. 

2.6) Calculate i , the average distance between tj and each word tq in each existing term 
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Where η is the number of the currently existing groups, and Qi denotes the number of 

terms in group gi. 

2.7) Find the closest group gC to tj , i.e. iC    for all i, .1  i  

2.8) If  C , where   is the maximum distance allowed between the terms of the 

same term group, add tj+1 into gC, and go to step 3. Otherwise, increment k, add tj to gk 

and go to step 2.3. 

3) Assigning a correct word to each group. 

3.1) Let 1i ,  

3.2) If ki  , output: 

)}_,),...(_,(),_,{( 22113 kk wggwggwggDB   (4) 

And then exit.  

3.3) If there are valid words in gi, find a valid word in gi that has the highest frequency of 

occurrences in training data D, and denote the word as g_wi.  Add (gi, g_wi) to DB3, 

and go to step 3.5. 

3.4) Find a valid word in T that has the closest distance go each term in gi, assign the word 

to g_wi, and add (gi, g_wi) to DB3. 

3.5) Increment i and go to step 3.2. 

Table 1 shows the two word/typo groups generated by the above algorithm from a set vehicle 

fault diagnostic text documents. For instance, topographically similar terms such as 
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“ENGI”,”ENGNIE” are grouped together and labeled as the most frequently occurred valid word 

“ENGINE”. 

 

3.1.3 Extracting contextual knowledge  

Contextual information such as n-gram has been found useful in detecting real-word errors [24, 

25]. An n-gram is defined as a sequence of n adjacent words from a given text.  A 1-gram is 

referred to as a "unigram"; 2-gram is a "bigram"; 3-gram is a "trigram". Google has been using n-

gram word models in a variety of projects, including statistical machine translation, misspelling 

correction, entity detection, information retrieval, etc.  We developed algorithms to extract two 

types of contextual knowledge and use the knowledge to rank the correction candidates for a 

given typo.  The first type is generated based on the Google book n-gram corpus [23], which 

provides the frequencies of words and phrases appearing in American English books published 

from 1500s to 2000s.  The second type of contextual knowledge is represented by the 

Table 1 EXAMPLE OF SIMILAR TERM GROUPS 

Group 

sample 
Elements Label 

1 

ACCELERATION, 

ACCELLERATE, 

ACCELLERATING, 

ACCELLERATION, 

ACCELLING, 

ACCELING, 

ACCELORATION, 

ACCELRATE, 

ACCELRATION 

ACCELERATE 

2 

ENGI, ENGIEN, 

ENGIN, ENGINE, 

ENGINES, ENGING, 

ENGINR, ENGNIE, 

ENGNINE, ENIGINE, 

ENIGNE, ENINE, 

ENGINE 

 

 

http://en.wikipedia.org/wiki/Unigram
http://en.wikipedia.org/wiki/Bigram
http://en.wikipedia.org/wiki/Trigram
http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/N-gram
http://googleresearch.blogspot.com/2006/04/statistical-machine-translation-live.html
http://www.google.com/jobs/britney.html
http://www.google.com/jobs/britney.html
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probabilities of n-grams occurring in the training documents D. 

Algorithm for extracting contextual knowledge from Google book n-gram 

1) Detect and extract all typos from the training document set D through dictionary search, and 

store them in a list, D_typos. 

2) For each typo t in D_typos, 

2.1) For n = 3 to G,  

 Extract three types of n-grams, prefix n-grams, suffix n-grams and centered n-grams 

from training data D: 

1)(  npre Rtngram , such that ,||1 DtRn    where Rn-1 represents n-1 words 

immediately precede t. 

1)(  nsuf Stngram , such that ,|| 1 DSt n    where Sn-1 represents n-1 words 

immediately follow t. 

 mmcen SRtngram ,)(  , such that DStR mm |||| , where Rm represents m words 

immediately precede t, Sm represents m words immediately follow t, where 

nm  12 . Note here, if either Rm or Sm is empty, then ngramcen (t) is empty.    

 Extract *||1nR , 1||* nS  and mm SR ||*||  from Google book n-gram corpus, where * 

represents any valid word.  

2.2) The n-grams generated by step 2.1 are denoted as ngi, Li ,...,2,1 . For each ngi, 

we extract its normalized frequency of occurrences in the Google book n-gram corpus using 

the following formula:  







Y

j yr

iyr
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j

j
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_
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()(                       (5) 
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Where Yj ,...2,1 , Y represents the number of years of the Google book n-gram are used, yrY 

represent the most recent year and yr1 represent the most least recent year in the last Y years. 

)( iyr ngf
j

 represents the normalized frequency of ngi appears in year yrj in the Google book 

n-gram corpus. Here, )( iyr ngf
j

 is added by 1 to avoid 0 values. 
jyrcounttotal _  represents 

the total count of words appear in year yrj, and 
year  is a weight coefficient that can be used 

to give different weights to different years, e.g., one can assign higher weights to n-gram 

frequencies of more recently years by using the exponential function,

)(
1yryr

yryr

year
Y

jY

e





 . 

The output from the above step is presented as knowledge base, DB4:  

))}.(,)),...((,()),(,{( 22114 LL ngHngngHngngHngDB            (6) 

We will use an example to illustrate the contextual knowledge generating process.  Suppose for 

a typo x = “whele” occurred in a training document, and the training data set contained a 3-gram 

phrase “right front whele”.  We searched the Google book n-gram corpus from yr1 = 1980 to yrY = 

2008, and found 100 3-gram phrases, “right front *”, where * represent a valid word.  Examples 

of such 3-grams include “right front panel”, “right front wall”, “right front wheel”, “right front 

where” and “right front window”. Fig. 11 illustrates frequencies of occurrences of these n-grams 

in each year in the Google book n-gram corpus.  It is obvious that the 3-gram phrase “right front 

wheel” occurred far more frequent than other phrases.                    
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The second type of contextual knowledge is represented by the probabilities of n-grams 

occurring in the training documents D.  Thus a knowledge base DB5 is generated to contain 

domain-specific contextual information. Specifically, we extract three types of statistics for each 

valid word x in D:  

 Probability of prefix 2-grams ( )(2 RxP gram
): This is the probability of the occurrences 

of all the 2-grams consisting of x and the preceding token R. For instance, for the word 

“front” in a 2-gram “left front”, R is the word “left”. 

 Probability of suffix 2-grams ( )(2 xSP gram
): This is the probability of the appearance of 

all the 2-grams consisting of x and the subsequent token S. For instance, for the word 

“front” in the 2-gram “front wheel”, S is the word “wheel”. 

 Probability of centered 3-grams ( )(3 RxSP gram
): This is the probability of the 

appearance of all the 3-grams consisting of the preceding token R, the word x, and the 

 

Fig. 11.  Example of n-gram statistics 
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subsequent token S. For instance, for the word “front” in the 3-gram “left front wheel”, R 

is the word “left”, S is the word “wheel”. 

Using Bayes formula, we obtain:  

(*)

)(

*)(

)(
)()|()(2

f

Rf

Rf

Rxf
RPRxPRxP gram 

             (7) 

(*)

)(

)(*

)(
)()|()(2

f

Sf

Sf

xSf
SPSxPxSP gram 

              (8) 

(*)

)(

)(*

)(

)(*

)(

)()|()|()(3

f

Sf

Sf

xSf

xSf

RxSf

SPSxPxSRPRxSP gram





                         (9) 

Where )(**),((*), SfRff  denotes the frequency of all words in D, the frequency of any 2-gram 

in D that starts with R, and the frequency of any 2-gram in D that ends with S, respectively. 

As a result, DB5 is represented as: 

))}(),(),(()(|{ 3225 RxSPxSPRxPxPTxDB gramgramgram 


        (10) 

DB5 is used to generate statistical features for the neural network trained for assessing typo 

correction candidates, which will be discussed in section 2.4.      

3.1.4 Assessing typo correction candidates  

In many cases, the closest correction candidate generated by topographical similarity matching 

may not be the correct one.  The knowledge bases described above were generated based on 

various aspects of characteristics of typos, each one of the candidates generated based on these 

knowledge bases has a possibility to be the right correction.  We developed a Neural Network 
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system, NN_TC_Conf, to measure the confidence about a candidate word for a given typo over a 

broad range of typo-word features.  Fig. 12 illustrates the architecture of the NN_TC_Conf 

system.  The neural network uses the following ten features to characterize the weight of a 

correction candidate. 

   

 Typo length: We chose this feature to take into consideration that the effect of typo length 

may have on its correction candidates. Based on our observation, the longer a typo is, less 

correction candidates it might have, but the possibility of a candidate being the correct word 

increases. 

 Levenshtein distance: The second feature we considered is the Levenshtein distance [21] 

between the correction candidate and the typo, which is defined as follows. Let 

 

Fig. 12.  NN_TC_Conf: a neural network for measuring the confidence about a correction candidate of a typo 
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nAAAA ...21  be a typo and 
mBBBB ...21 be a valid word, where Ai and Bj, 

,,...2,1;,...2,1 mjni  are letters within the alphabet, and A0 and B0 denote nil. The 

Levenshtein distance between A and B,  ),(_),(_ mn BADLBADistL  , where L_D(Ai, Bj) 

is a recursive function defined as follows: for each i, j,  
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Where L_D(Ai, Bj) denotes the number of single-character edits (insertion, deletion, substitution) 

required to transfer sequence A1A2…Ai to sequence B1B2…Bj. For example, for the typo word A = 

“engne”, if the candidate B = “engine”, the distance between A and B, 

1),(_),(_ 65  BADLBADistL , as shown in Table 2, because only one insertion edit of 

letter “i” is needed from A to B. Similarly, if the candidate B = “engineer”, 

3),(_),(_ 85  BADLBADistL . As a result, “engine” is more likely to be the correct word 

for typo “engne.” The smaller this distance is, the more likely the candidate is the correct word.     

     

Table 2 EXAMPLE OF LEVENSHTEIN DISTANCE 

  j=0 j=1 j=2 j=3 j=4 j=5 j=6 

   e n g i n e 

i=0  0 1 2 3 4 5 6 

i=1 e 1 0 1 2 3 4 5 

i=2 n 2 1 0 1 2 3 4 

i=3 g 3 2 1 0 1 2 3 

i=4 n 4 3 2 1 1 1 2 

i=5 e 5 4 3 2 2 2 1 
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 Topographic similarity based distance: This is the distance between a correction 

candidate, A, and the typo, B, calculated using the distance function Dist(A, B) introduced in 

(2) in section 2.2.  

 Error position: This feature, denoted as EP, gives the position of the first error in the typo 

with respect to the correction candidate. Based on [7], this feature is important because 

studies have shown that errors were more frequent in certain positions. For a typo A and its 

correction candidate B, 
A

e
EP  , where e is the index of the first letter that satisfy ee BA  .   

 Frequency of a typo: This is the frequency of the typo occurring within the training 

document set, which can be extracted from DB1.  

 Frequency of a correction candidate: This is the frequency of the correction candidate 

occurred within the training document set, which can be extracted from DB1.  This feature is 

useful when a typo is actually an abbreviation or a term frequently used in the application 

domain.  In this case, the typo’s occurrence in the training documents may be high, but the 

suggested correct candidate may not occur very often. 

 Keyboard distance: The value of this feature, denoted as K_D, is calculated based on the 

distance between keys on a keyboard using the QWERTY keyboard mapping [26], as shown 

in Fig. 13.  

 

 

Fig. 13.  QWERTY keyboard distance matrix 
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For a typo A and a correction candidate B, the K_D is calculated as follows: 

1) Calculate the four similarity measures, s1, s2, s3 and s4 between A and B as discussed in 

Section 2.2. 

2) If 4,3,2,1  iss i , then A is a deletion (Type 1) error. 

2.1) Detect  zzz BBB ...21
 within candidate B such that after deleting these letters from B 

we can obtain A. 

2.2) Obtain the coordinates of 
11 ,,,   zzzz BBBB  based on Fig. 7.  For example, if 

""aBz  , its coordinates are )1,2(
zBco . 

2.3) Calculate the K_D value between A and B:  

        
11

,,_



 zzzz BBBB cocococoDK              (11) 

3) If 4,3,1,2  iss i , then A is an insertion (Type 2) error. 

3.1) Detect  zzz AAA ...21  in A such that after deleting these letters from A we can obtain 

B. 

3.2) Obtain the coordinates of 11 ,,,   zzzz AAAA  based on Fig. 7.  

3.3) Calculate the K_D value between A and B:  

11
,,_




 zzzz AAAA cocococoDK           (12) 

4) If 4,2,1,3  iss i , then A is a substitution (Type 3) error. 

4.1) Detect  zzz BBB ...21  in B such that B will equal to A after substituting these letters in 

B by  zzz AAA ...21  from A.   

4.2) Get the coordinates of all letters in  zzz AAA ...21  and  zzz BBB ...21  based on Fig. 

7.  
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4.3) Calculate the K_D value between A and B:  







z

zi

BA ii
cocoDK

1

,_                                     (13) 

5) If 3,2,1,4  iss i , then A is a transposition (Type 4) error. 

5.1)  Detect the transpose 21  zz AA  in A,  

5.2) Get the coordinates of 21  zz AA  based on Fig. 7.  

5.3) Calculate the K_D value between A and B using the following formula:  

21
,_




zz AA cocoDK                                       (14) 

The K_D feature is useful when two candidates have the same distance to the misspelled 

word, but one is more likely to be a good correction if the error character distance on the 

keyboard is smaller than the other candidate. For instance, for the misspelled word “ans”, 

“and” is more likely to be a good correction than “ant” because “d” is adjacent to “s” on the 

QWERTY keyboard. 

 Probability of prefix 2-grams: This is the probability of the appearance of the 2-gram made 

up of the correction candidate C and the preceding token R of the typo, which can be found 

in DB5. 

 Probability of suffix 2-grams: This is the probability of the appearance of the 2-gram made 

up of the correction candidate C and the subsequent token S of the typo, which can be found 

in DB5. 

 Probability of centered 3-grams: This is the probability of the appearance of 3-gram made 

up of the preceding token R of the typo, the correction candidate C, and the subsequent 

token S of the typo, which can be found in DB5. 
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The NN_TC_Conf is trained with a set of misspelled words and their correction candidates.  

The misspelled words were detected in the training documents, and each candidate of each 

misspelled word is labeled with a confidence value.  Specifically, the training data consist of 

tuples in the form of (x, C(x), conf(C(x))), a typo x, its correction candidate C(x), and conf(C(x)), 

the confidence about the candidate C(x) being the correct word for typo x.  For each pair of (x, 

C(x)), we generate the above 10 features as the input vector to the neural network, and use 

conf(C(x)) as the target confidence value of C(x) being the correct word to replace typo x.   After 

training, for any pair of typo x’ and a correction candidate C(x’), the neural network 

NN_TC_Conf is used to generate a real value ]1,0[))'(( xCconf  based on the ten features 

extracted from (x’, C(x’)), where ))'(( xCconf  represents the confidence about C(x’) being the 

correct word  to replace typo x’.                                    
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3.2 Intelligent Typo Detection and Correction (ITDC) 

Fig. 14 gives an overview of the proposed automatic typo correction system, Intelligent Typo 

Detection and Correction (ITDC).  The ITDC system contains four major computational 

components, typo detection and correction candidate generation, word boundary error correction, 

abbreviation processing, and correction candidate confidence generation and candidate selection.  

For a given text document, the ITDC system first detects typos and generates a candidate list 

using the general and domain specific knowledge about typos described in Section 2.  It then 

detects and corrects two types of spelling errors: word boundary errors and uncommonly used 

abbreviations. Correction candidates for remaining non-word errors are then generated and 

weighted, and the best candidate is selected as the output from the ITDC system.  

 

 

Fig. 14.  Overview of ITDC (Intelligent Typo Detection and Correction) system 
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3.2.1 Typo detection and correction candidate generation 

When a document is send to ITDC system for typo detection and correction, each term within 

the document is checked for its validity using the general knowledge base, GTKB1, the lexicon.  

If a word is not in GTKB1, then it is considered a typo.  The ITDC system then generates a list of 

correction candidates based on GTKB2, the general language typo list, DB2, the list of acronyms 

commonly used in the application domain, and DB3, the list of similar word groups and their 

correction candidates.  The algorithm is described as follows. 

Algorithm for typo detection and correction candidate generation 

1) For each word x on the term list of the input document, check whether 1GTKBx . If it is, 

then exit, since x is not a typo. 

2) If x is a commonly misspelled word found in GTKB2 , then use its correction candidate, 

C(x), provided by GTKB2 as the correction candidate for x, add (x, C(x)) to T&C_L1, and 

exit. 

3) If there is a 2))(,( DBacexac   such that x = ac, then C(x) = ex(ac), add (x, C(x)) to 

T&C_L1, and exit. 

4) If there is a 3)_,( DBwgg   such that gx , add (x, g_w) to T&C_L1, and exit.  

5) Search in GTKB1 to find the N valid words that best match with x using the Levenshtein 

distance function, which are denoted as NixCi ,...2,1),(  , add )})(),...(),({,( 21 xCxCxCx N
 to 

T&C_L1, and exit. 

The Output from the above algorithm is T&C_L1, which contains all the typos found in an input 

document along with up to N correction candidates for each typo.  Examples of entries in the 

list T&C_L1 are shown in Table 3. 
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3.2.2 Word boundary error detection and correction 

Word boundary errors are defined as words either missing white space characters between 

multiple words (run-on error), or a valid word split by a white space (split error) [16]. It is very 

important to process word boundary errors separately, since they are very different from the other 

typos.  For instance, for the split error “or dered”, the correction candidate list could only be 

generated on typo “dered”, because “or” is a valid word. The following describes the two 

algorithms we developed to solve word boundary errors, one for split error correction, and another 

for run-on error correction. 

Split Error Correction algorithm 

1) For each typo x in T&C_L1, find its adjacent words in the input document X, w1 and w2. 

2) Check the dictionary for xwwx 1 , and 
2wxxw  . 

Table 3 EXAMPLE OF ENTRIES IN T&C_L1 

Misspelling Correction candidate List 

abandonned 
abandoned (Generated from GTKB2, in Step 2 

above) 

KOEC 
Key On Engine Cranking (Generated from DB2, 

in Step 3 above) 

engien Engine (Generated from DB3, in Step 4 above) 

ststem 
system, systems, state, states, stem (Generated 

from GTKB1, in Step 5 above) 

noisehard 
noseband (Generated from GTKB1, in Step 5 

above, not a good candidate) 

diagn 

diag, drag, drain, drags, dragon (Generated from 

GTKB1, in Step 5 above, not a good candidate 

list) 
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If wx is a valid word, calculate the probability of appearances of w1, x and wx, denoted as 

p(w1), p(x) and p(wx), where 
(*)

)(
)( 1

1
f

wf
wp  , f(w1) denotes the frequency of word w1 

appearing in the knowledge base DB1, and f(*) denotes frequencies of all words in DB1. p(x) 

and p(wx) are calculated using the same way. 

3) If w1 is a valid word and   )()( xpwxp  , update T&C_L1 by setting wx as the only 

correction candidate of two terms “w1  x” and exit.   

4) If w1 is also typo and  )()( ,  )()( 1wpwxpxpwxp  , update T&C_L1 by setting wx as 

the only correction candidate for the two terms “w1  x”  and exit.   

5) Step 6: Repeat Step 3 to process xw. 

We use one example to illustrate the rationale behind Step 4 and 5.  Let w1= “or”, x = “dered”.  

We have wx = “ordered”.  If p(“ordered”) > p(“dered”), which implies that only if the combined 

word wx appears more often than the typo x in the training documents, then we use wx as 

correction for “w1 x”. If both w1 and x are invalid, Step 5 makes sure that wx has to appear more 

often than both w1 and x.  Because if “wx” never appeared in D, but “x” appeared many times, 

then x might have its own correction candidate instead of “wx”.) 

Run-on Error Correction algorithm   

To detect and correct run-on typos, the system checks each typo, x, on the list T&C_L1 to see if 

it can be split into two valid words w1 and w2, while 0)(,0)( 21  wpwp . If so, let (w1 w2) be the 

only correction candidate for typo x, and update T&C_L1 accordingly. If x can be separated into 

multiple pairs of valid words, for instance, both 
21 wwx   and 

43 wwx  , we use Bayes formula to 

calculate their occurrence probability in training data D: 
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              (15) 

Where f(*w2) denotes the frequency of any two word sequence that has w2 as the second word. 

The pair of words with higher appearance probability is selected as the candidate to replace typo x. 

The output of these two algorithms is an updated typo list of T&C_L1, denoted as T&C_L2, in 

which the word boundary typos are corrected. Table 4 shows the results after applying the two 

word boundary algorithms to the T&C_L1 shown in Table 3. 

 

3.2.3 Abbreviation processing 

Abbreviations are defined as the segment of a valid word starting with the first character of the 

valid word [4]. For instance, “diagn” is the abbreviation of “diagnose”.  For these abbreviations, 

simple similarity comparison methods may not find the correct candidates. For example, a 

Table 4 EXAMPLE OF ENTRIES IN T&C_L2 

Misspelling Correction candidate List 

abandonned abandoned  

KOEC Key On Engine Cranking  

engien Engine  

ststem system, systems, state, states, stem  

noisehard 
noise hard (updated after word boundary error 

correction) 

diagn diag, drag, drain, drags, dragon 
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candidate list for “diagn” generated based on word distances may contain “diag, drag, drain, drags, 

dragon”, but not correct candidate. 

In many note taking or records keeping applications such as vehicle diagnostic records, people 

often type in the first several characters of a word as its abbreviation. For example, “conn” 

represents “connection”, “comm” represents “communication”, and etc. In order to detect those 

uncommon abbreviations, we compare each typo, x, in D_typos with every valid word, w, in DB1.  

If x matches the beginning |x| letters in w, add w to x’s candidate list, where |x| denotes the number 

of letters in x. 

The output of this stage is a further updated typo list T&C_L3 where the abbreviations are 

processed.  Table 5 shows the result of this process on the words shown in Table 4.  

 

3.2.4 Correction candidate weight generation, ranking and selection 

In an automatic typo correction system, when more than one correction candidates are generated, 

a crucial task is to determine which word within the correction candidate list should be selected to 

Table 5 EXAMPLE OF ENTRIES IN T&C_L3 

Misspelling Correction candidate List 

abandonned abandoned  

KOEC Key On Engine Cranking  

engien Engine  

ststem system, systems, state, states, stem  

noisehard noise hard  

diagn 
diagnose, diag, drag, drain, drags, dragon 

(updated after abbreviation processing) 
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replace the misspelled word.  Our solution to this problem is to use contextual knowledge to re-

rank the candidates.   The following algorithm is developed to rank the candidates of typo x based 

on the n-gram statistics knowledge contained in DB4 and the neural network NN_TC_Conf.  

Algorithm for ranking typo candidates based on contextual knowledge 

For n = 3 ~ G, where G denotes the maximum length of n-gram we used in generating DB4: 

1) For a typo x detected in the testing document X, extract the prefix n-grams, suffix n-grams 

and centered n-grams of x from X, which are denoted as 
1)( 
 npre Rxngram , 

1)( 
 nsuf Sxngram , and  mmcen SRxngram  ,)( . This is similar to the process of 

generating n-grams for typos in training documents discussed in section 2.3. 

2) For each candidate word C(x) generated for x, let 0))(( xCHn
, where Hn(C(x)) represents 

the normalized frequency of C(x) appears in the Google book n-gram corpus.  

2.1) If )(||'

1 xCRn
 equals to any ngi in DB4, where Li ,...2,1 , )())(( in ngHxCH  . 

2.2) If '

1||)( nSxC  equals to any ngi in DB4, where Li ,...2,1 , 

)())(())(( inn ngHxCHxCH  . 

2.3) If '' ||)(|| mm SxCR  equals to any ngi in DB4, where Li ,...2,1 ,  

)())(())(( inn ngHxCHxCH  .  

The output from this process is a weighted frequency Fx(C(x)) for each C(x) generated for typo 

x, where  



G

n

nx xCHxCF
3

))(())(( . Take the same example typo “whele” as we discussed in 

section 2.3, two candidates “where” and “wheel” generated for “whele” are found in phrases of 

DB4. Suppose 3G , we have Fwhele(where)=1.63E-09, and Fwhele(wheel)=2.68E-07, which 

indicates that the “wheel” is better than “where” as the correction candidate for typo “whele.”  
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Let },...2,1),({ NixCi  be N correction candidates for each typo x in T&C_L3. 

 For each Ci(x) generated for x, within in the time period yr1 to yrY, calculate weighted 

frequency Fx(C(x)) in google n-gram corpus.  

 For each pair of (x, Ci(x)), extract the 10 features discussed in section 2.4 and apply them 

to NN_TC_Conf, which outputs a confidence value conf(Ci(x)). 

 Calculate the weight V(Ci(x)) for each Ci(x), where ))((*))(())(( xCFxCconfxCV ixii  . 

 Re-rank these N correction candidates Ci(x) in descending order based on V(Ci(x)). 

 For all Cj(x) having the same value of V(Cj(x)), calculate Dist((x, Ci(x))) as discussed 

above in (2) of section 2.2, and re-rank these correction candidates Cj(x) for typo x based 

on this similarity distance.  

 Select top N’ correction candidates from re-ranked candidate list, as }',...2,1),({ NixCi  . 

 After correction candidate weight generation, ranking and selection, for each misspelled 

word x, the auto correction is quite straightforward: Check whether the first candidate 

)(1 xC  in the re-ranked candidate list has 5.0))(( 1  xCconf . If so, replace the 

misspelled word x in text using )(1 xC . Otherwise, x is flagged but not corrected, and 

top N’ correction candidates are stored for manual correction afterwards.  

The flowchart of candidate ranking and selection algorithm for each typo x in the testing 

document X is summarized in Fig. 15. 
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Fig. 15.  Candidate ranking and selection 
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3.3 Empirical study 

We conducted an empirical study in the application domain of automotive fault diagnostics 

text data mining, where the text documents are warranty claims and repairing descriptions 

recorded in verbatim. These text records contain rich information about the various cases of 

vehicle malfunctions, root causes, and repair processes, yet are difficult to manually extract 

knowledge or formulate reliable rules to associate an effective repair procedure with a given 

problem description. Moreover, the records have poor grammar structure, and contain many 

typos, self-invented abbreviations and domain specific terminologies, which are big challenges 

to data mining systems.  We implemented the proposed ITDC system and applied it to the text 

documents in this application domain.  The following subsections describe the constructed 

knowledge bases and experiment results. 

3.3.1 Building general knowledge bases 

In this study, we constructed the valid lexicon, GTKB1, from the WinEdt English_US and 

English_UK dictionary developed by Patrick Daly [20]. WinEdt is a powerful and versatile text 

editor for Windows, with a strong predisposition towards the creation of LaTeX documents. 

GTKB1 contains more than 150,000 valid English words, and is used to recognize non-word 

errors.  A list of common typos collected by Wikipedia Typo Team was used as our general 

knowledge base GTKB2.  GTKB2 contains 4238 misspellings frequently appearing in online 

documents throughout Wikipedia. 
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3.3.2 Building domain specific knowledge bases 

In this empirical study, we used a set of 200,000 customers' claim reports on various vehicle 

problems provided by an automotive company as the training document set D to generate domain 

specific knowledge bases DB1, DB2 and DB3. Initially 10233 distinct index term words were 

extracted from D, and stored in DB1 along with their term frequencies. By dictionary searching, 

we found 1763 distinct typos with length less than l_ac  =  5, and, among them, 144 acronyms  

were finally identified and extracted. Examples of nontrivial acronyms in the DB2 knowledge 

base are: CEL - Check Engine Light, CKT - Circuit, DLC - Data Link Connector, KOEC is used 

frequently in the context of DTC (Diagnostic Trouble Code) extraction referring to “Key On 

Engine Cranking”, etc. We also applied word grouping algorithm presented in section 2.2 to 

obtain 3972 word groups, which are used as DB3. 

In the experiments, we used Google Book corpus: American English, which contains words that 

occurred in books published during 1980 ~ 2008 to generate the contextual knowledge base DB4, 

and, due to the space limitation of storing the dataset, only the 3-gram phrases of each typo were 

extracted.  The training data D was used to generate domain specific contextual knowledge base 

DB5.  

3.3.3 Typo detection and correction 

Two sets of test documents, T1 and T2, provided by two different automotive manufacturers 

were used to evaluate the ITDC system. The first testing set T1 contains 603 freeform technician 

verbatim problem descriptions. The second testing set T2 contains 580,000 vehicle fault 

diagnostic records. We set the thresholds for word length and average word grouping distance 

http://googlebooks.byu.edu/
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discussed in section 2.2 as follows: 2l , where only words with length larger than 2 will be 

processed, and in approximate string similarity matching, 3.0 , which is the average 

distance threshold for word comparing.  

ITDC used GTKB1 to detect typos in T1 and T2.  There were 392 typos detected in T1 and 

29113 typos detected in T2. From those typos, the word boundary processing algorithms detected 

and corrected 74 split errors and 59 run-on errors in T1, and 1292 split errors and 5273 run-on 

errors in T2. The false alarm in T1 and T2 was 0% and 0.4%, respectively.  Note here, most of the 

wrong corrections in T2 were those typos being detected incorrectly as run-on errors.  For 

examples, “holtline”, which should have been detected and corrected as “hotline,” was detected 

as a run-on error, so it was split into “holt line”;  “performace”, which should have been 

corrected to “performance,” was detected incorrectly as a run-on error, and so it was split into 

“perform ace.”  

The abbreviation process corrected 14 non-word errors in T1, and 242 non-word errors in T2. 

Examples of detected word boundary errors and abbreviations are shown in Table 6 and Table 7.   

These terms are domain specific, so the domain specific knowledge played an important role in 

correcting these typos.  Particularly, these abbreviations are neither commonly used in news 

articles nor in general web documents. 
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Table 6 EXAMPLE OF WORD BOUNDARY ERRORS 

Split error Correction 

thro ttle throttle 

repla ced replaced 

shie ld shield 

hea vily  heavily 

exc essive  excessive 

Run-on error Correction 

sensorand sensor and 

connectionat connection at 

roadtest road test 

differentialpossible differential possible 

drivebelt drive belt 
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The knowledge bases GTKB2 (general misspellings), DB2 (Domain-specific acronyms) and 

DB3 (Domain-specific word groups) were used to correct 29 non-word errors in T1, and 1127 

non-word errors in T2. Some examples are listed in Table 8 - 10. 

Table 7 EXAMPLE OF UNCOMMON ABBREVIATIONS 

Abbreviations Correction 

conn connection 

diagn diagnose 

cont continue 

comm communication 

veh vehicle 

diff different 

eng engine 

cust customer 

sig signal 

 

 



72 

 

 

 

Table 8 EXAMPLE OF TYPOS RECOGNIZED BY GTKB2 

Error CORRECTION 

recieved received 

continous continuous 

intergration integration 

ocasionally occasionally 

bewteen between 

procede proceed 

fromed formed 

neccesary necessary 

taht that 

thsi this 

reponse response 

 

 
Table 9 EXAMPLE OF TYPOS RECOGNIZED BY DB2 

Error CORRECTION 

ECU Engine Control Unit 

EVAP Evaporative Emission 

IPC Instrument Panel Cluster 

KOEC Key On Engine Cranking 

TP Torque Converter Clutch 

VSS Vehicle Speed Sensor 

TCC Torque Converter Clutch 
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The training data for the neural network, NN_TC_Conf are processed as follows.  First we 

collected a set of 2230 freeform technician verbatim documents from the training data set D, 

which contained 1547 typos. We used Levenshtein distance algorithm to generate up to five 

candidates for each misspelled word by finding the closest valid words in DB1 to the typo.  These 

typos and their respective candidates are manually labeled as high or low confidence for being 

the correct candidates.  This process generated 783 likely candidates and 6166 unlikely 

candidates.  

As discussed in section 3.4, for each typo detected, we set 3G , where G denotes the 

maximum length of n-gram we look into, and generated 20 correction candidates first, i.e. 

20N . After the candidate weight generation and ranking, we selected top 5 correction 

candidates, where 5N . Note G, N and N’ were used in section 3.4. 

Table 10  TYPOS RECOGNIZED BY DB3 

Error CORRECTION 

erractic erratic 

trac track 

whl wheel 

programed programmed 

manuvers maneuver 

chekc check 

fse fuse 

exhuast exhaust 

sytem system 

tryed tried 
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For the purpose of comparison, we applied the two state-of-art spell checkers: Google Spell 

check and Aspell check, to the same two testing document sets, T1 and T2.  We use the following 

three Suggestion Intelligence First (SIF) measures [6,7] to evaluate the performances of the  typo 

correction systems: 

 typosofnumber   Total

liston  first    found  ssuggestioncorrect    Total
SIF   

 typosofnumber  Total

list of 3 in top  found  ssuggestioncorrect   Total
SIF3   

 typosofnumber  Total

list of 5 in top  found  ssuggestioncorrect   Total
SIF5   

The performance results of the three systems are shown in Table 11 and Table 12. The 

proposed ITDC system made 3.83% false auto correction on T1, and 3.54% false auto correction 

on T2.  

 

Table 11 Performance Comparison with State-of-art Spell Checkers on T1 

 SIF5 SIF3 SIF 

Google Spell 50.77% 48.72% 45.41% 

Aspell 27.81% 26.02% 25.51% 

ITDC without 

candidate ranking 

process 

54.85% 52.81% 50.77% 

ITDC after candidate 

ranking process 
65.56% 64.28% 62.24% 
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Table 13 shows a few examples of typo corrections made by the ITDC system, the Google and 

Aspell systems. It is obvious that ITDC system outperforms these two systems by abbreviation 

processing, word boundary errors and correction candidate re-ranking based on neural learning 

of the confidence of candidate correctness and n-gram statistical analysis. 

 

The accuracy of all three spell checker systems evaluated above may not be considered very 

high.  This is due to the fact that the testing set contains many non-word typos or domain-

Table 12 Performance comparison with state-of-art spell checkers on T2 

 SIF5 SIF3 SIF 

Google Spell 57.96% 55.05% 51.29% 

Aspell 44.25% 42.20% 39.51% 

ITDC without 

candidate ranking 

process 

63.87% 61.61% 60.47% 

ITDC after candidate 

ranking process 
68.43% 67.34% 65.10% 

 

 

Table 13 Correction candidate List comparison 

Typo  Correction Candidates 

nece 

Google neck Becca Mecca mecca enc 

Aspell neck     

ITDC necessary     

whele 

Google whale wheel while whole Wheeler 

Aspell where wheel whale whelp while 

ITDC  wheel while where whole whelp 

speend 

Google spend speed spent spawned spurned 

Aspell spend speed    

ITDC speed spread spend spent steed 

servi 

Google servo serve server serf servos 

Aspell serve     

ITDC service serve servo swerve  
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specific abbreviations that cannot be recognized easily, such as “bjb”, “btwn”, “ops”, “ssms”, etc. 

These errors were detected and marked as typos by the ITDC system, but left without correction.  

In order to prove the assumption that typo correction could provide a better quality and more 

comprehensible text for both human and machines and help with further text processing tasks, 

we conducted text categorization on the same text collections, T1 and T2, as those used in the 

above typo correction experiments, in which each document has a category label. For both of the 

dataset, we use conventional VSM model discussed in section 2.4.1 as text representation 

approach, with the same local and global weighting scheme, tf-idf approach [67]. From each 

dataset, we choose 2/3 documents from each class as training set, and the remaining 1/3 

documents as testing set, and conduct 3-fold cross validation to get the average accuracy of the 

system. More details about text categorization could also be found in the following Chapter 4. 

The accuracy of the text categorization is measured using the following evaluation metric: 

  
documents  testingofnumber   Total

classifiedcorrectly  documents  testingofnumber   Total
Accuracy   

The experiment results are shown in the following Fig. 16 and Fig. 17, from which it is 

obvious that typo correction improves text categorization accuracy by 2% and 5%, and reduce 

term feature space by 7.7% and 14%, respectively. We can observe that this improvement is 

more significant especially in larger dataset where typos are more frequently occurs, e.g., text 

collection T2, since it greatly reduces the noisy terms and merges topographically similar terms.  

In terms of efficiency of ITDC, all the knowledge bases generated above are automated 

programs that extract and store general language knowledge and domain specific knowledge 

from digital resources effectively. The only manual work involved are to determine which 
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resources to use and preparing the data, as well as labeling training data for NN_TC_Conf. These 

steps usually take only 3-4 hours before typo detection and correction.  

 

 

  

 

Fig. 16.  Example of text categorization accuracy w/o typo correction 
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Fig. 17.  Example of text categorization feature size w/o typo correction 
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  TEXT CATEGORIZATION BASED ON CHAPTER 4.

MACHINE LEARNING, STATISTICAL MODELING AND 

ONTOLOGY NETWORK 

As mentioned in section 2.5.1, the traditional VSM model does have its strength: it is efficient 

and provides a compact way of text representation, instead of fully understanding the content 

using natural language processing techniques, which is usually time and space consuming. 

However, since only single word information is considered, text categorization accuracy may be 

affected if single words do not fully interpret the document content, meaning information such as 

word co-occurrence, word context within documents and semantic ambiguity of words including 

synonymy and polysemy, are missing. Therefore, a text representation model that has 

sophisticated structure and as inclusive as possible in terms of text information is of great 

necessity. In this chapter, we present our research work in text categorization by introducing 

VSM-based text representation models using machine learning, statistical modeling and ontology 

networks. We use an innovative hybrid text mining framework, which contains a global weighting 

scheme, a VSM model built from WordNet ontology network, and a VSM model augmented with 

statistical topic modeling. Fig. 18 illustrates the proposed framework. Our system takes in the 

training document collection and generates a list of indexed terms. After that, each indexed terms 

are weighted, and the document corpus is modeled by traditional VSM as a weighted TD matrix. 

PLSA model is applied to generate a “latent topic” level (LTD) matrix, and WordNet ontology is 

feed into the system to generate a new term-document matrix, and a “concept” level (CD) matrix. 

These matrixes are then combined together for final document representation, and used for SVM 

classifier training. More details will be further discussed in the following sections. 
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Figure 18.  Proposed text categorization model framework 
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4.1 Text categorization based on VSM and PLSA topic modeling 

This section discusses our work in building a VSM model using an entropy-based global 

weighting scheme, using PLSA topic modeling to extract latent topics and build a VSM model 

that reflect word relationships, as well as using semi-supervised PLSA topic modeling to build a 

VSM model that reflect document relationships, based on pre-defined document “connectivity” 

information.  

4.1.1 A VSM Model with a new global weighting scheme  

As discussed in Section 2.4.1, text document is usually represented by VSM for the ease of 

computation and analysis. A vector space model should be built based on carefully selected 

terms and weighting schemes. More specifically, for a given set of training documents Tr, 

  CN TTTDDDTr  ...,...,, 2121 , where lD  is the 
thl  training document, C is the number of 

document categories, and cT  is the set of documents that belong to category c, Cc ,...,2,1 , our 

vector space model is built through the following machine learning process:   

First of all, we generate an indexed term list from Tr, denoted as T_L, },...,,{_ 21 KtttLT  , 

where it is the 
thi  indexed term, through a number of preprocessing tasks, including word 

tokenization, symbol and punctuation removing, automatic typo correction as discussed in 

Chapter 3, stopping word removal and low-frequency term removal, etc. While generating the 

list of indexed term words, we need to keep only content bearing words, implying that the 

function words having both low and high frequency have to be removed [68]. As a result, we 
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removed the high frequency stop words at the first stage, and then set up a term frequency 

threshold  as a filter for low frequency words. 

Secondly, for a document TrDl  , its vector representation is defines as following: 

.,...,2,1,*

],,...,,[

,

,,, 21

KiGWtfw

wwwW

iilDt

DtDtDtD

li

lKlll




 

Where iltf  is the occurrence frequency of term it  within lD , iGW  is a global weight for term 

it , and K is the number of term features. 

VSM models based on appropriate term weighting schemes is particularly essential for 

information retrieval and text categorization [67]. An appropriate global weighting scheme 

should be applied to each indexed term with the purpose of reducing or enhancing the effect they 

have on particular documents. As mentioned in section 2.4.1, although there are plenty of global 

weight approaches available, most of them are designed for the entire dataset, i.e., in idf global 

weighting, 1log 2 









idf

ndocs
idf , dfi denotes the total number of documents in the document 

collection that contain term it , and ndocs represents total number of documents in the whole 

document collection Tr. However, based on our observation, important term words or their 

synonyms often appear frequently in documents within a specific category, especially when the 

user defined categories are highly relevant to some specific keywords [24].  As a result, we 

developed the following category-entropy global weighting scheme, denoted as CE_W: 

 For each term it  in the term list T_L, calculate the proportion of the documents in Tr that 

contain it  within C different categories.  

Cj
cN

cN
p

j

ij

ij ,...2,1,
_

_
 , 
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where 
ijcN _  is the number of documents within the 

thj  categories that contains it , and 

jcN _  is the total number of documents in the 
thj  category. 

 Normalize 
ijp , so that 





C

j

ij

ij

ij

p

p

1

 . 

 Calculate the entropy with respect to it : 



C

j

ijijiE
1

log . 

The entropy measure is a good indicator of how term it  is distributed over different 

document categories.  The higher the entropy, the less important item it  is, since it is 

more evenly distributed among different document categories. 

 Calculate the global weight CE_Wi for it : 
C

E
WCE i

i
log

1_  , where C is the total number 

of categories.  This global weight function gives more weights to terms that have small 

entropy values. 

We will show in Chapter 5 that the category-entropy based global weight function performs 

much better than the most widely used inverse document frequency (idf) method. 

At the end of VSM generation step, the output is a TD matrix 0M , ],...,,[
210

T

D

T

D

T

D N
WWWM  . 

For a previously unseen document uD , we generate its vector representation 
uDW in the same 

manner, ],,...,,[ ,,, 21 uKuuu DtDtDtD wwwW   for the testing purpose. 

4.1.2 A VSM augmented with PLSA topic modeling 
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In this section, we mainly discuss the details of how to use PLSA topic modeling introduced in 

section 2.4.3 to extract latent semantic topics from text, which are used to generate an augmented 

VSM model for text representation and help improving the accuracy of text categorization tasks. 

4.1.2.1 Learning PLSA model from training documents 

As already presented in section 2.4.3, PLSA model is a well-known statistical language model 

mostly used for unsupervised text clustering and information retrieval. The starting point of 

PLSA is the term-document frequency (TDF) matrix before applying global weight scheme, and 

it follows the bag-of-words assumption, in which each word appears independently, and the 

occurring order of each word is not considered. As shown in Fig. 6, )(DP , )|( DzP , )|( ztP  

represents the probabilities of observing a document D, a latent topic z occurring in D, and word t 

belonging to z, respectively. The generative process of each document-word pair in the text 

corpus, Tr, is shown as following: 

1. Select a document D from Tr based on )(DP . 

2. Pick a topic z according to )|( DzP . 

3. Given z, generate a word t based on )|( ztP . 

The hidden variable set during this process, denoted as  ,  )|(),|( ztPDzP , is what we 

are interested in and want to estimate, for each word-topic pair and topic-document pair. 

Again, we know that the joint probability of each document-word pair could be derived as 

following, based on Bayes’ Theorem [40]: 

 ))|()|(()()|()(),( 
z

DzPztPDPDtPDPtDP , 
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Here, )|( DtP  is derived based on Bayes’ rule, with the following two assumptions [74]: First, 

observation of document-word pairs ),( tD  are assumed to be generated independently, which is 

corresponding to the “bag-of-words” approach. Secondly, given latent topic z, t is also generated 

independently of D. Therefore, we have:  

   










z

z

zzz

DzPztP
DP

DPztPDzP

DP

zPztPzDP

DP

zPztDP

DP

ztDP

DP

tDP
DtP

))|()|((
)(

))()|()|((
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))()|()|((

)(

))()|,((

)(
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)(

),(
)|(

 

The likelihood function of the entire document collection, Tr, could also be derived as: 


D t

tDn

L tDPP ),(),( , based on the observation of all document-word pairs, where ),( tDn

denotes the frequency of word t appears in document D. Our objective is thus estimating the 

hidden variables by maximizing this likelihood function. Because it is difficult to maximizing the 

above exponential likelihood function, it is more convenient to work with its logarithm, called 

the log-likelihood. The objective of this estimation is thus to maximize the log–likelihood 

function of  , as shown in formula (1): 

 ))|()|()(log(),()(
,

 
tD z

DzPztPDPtDnL  , (1) 

Since )(DP  is not related to the parameter we want to estimate and we assume that it is 

constant among documents in Tr, and also we assume that for each document, )(DP  is a constant 

value. As a result, we then have: 

))|()|(log(),(maxarg))(max(arg
,

 
tD z

DzPztPtDnL      (2) 
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As mentioned in section 2.4.3, (2) can be solved using Expectation Maximization (EM) 

algorithm [75]. We now take a deep look at the derivation of why and how EM algorithm can be 

applied for estimating  .  

Derivation of EM algorithm 

From (2), we can see that it is still difficult to find the solution for   with the “ log ” format. 

As a result, we introduce a distribution over topic z into (2), denoted as )(zA , where 0)( zA  

and 1)( 
z

zA . We then have: 

)
)(

)|()|(
)(log(),(maxarg)2(

,

 
tD z zA

DzPztP
zAtDn ,    (3) 

Based on the law of unconscious statistician [106],   let 
)(

)|()|(
)(

zA

DzPztP
zg  , we have 


z

zAzgzgE )()())(( . Therefore,  

)
)(

)|()|(
(log),(maxarg)3(

,


tD zA

DzPztP
EtDn     (4) 

From (4), it is still difficult to find the solution for   with “ ))((log zgE ” format. However, 

because )
)(

)|()|(
(log

zA

DzPztP
E  is a concave function, based on Jensen’s inequality [110], we 

could find a lower bound function for (4):  

 









ztD

tD

zA

DzPztP
zAtDn

zA

DzPztP
EtDn

)(

)|()|(
log)(),(maxarg

)
)(

)|()|(
(log),(maxarg)4(

,

,
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Note here, when 
)(

)|()|(

zA

DzPztP
, where   is a constant,  we have: 


z

r

tD zA

DzPztP
zAtDn

)(

)|()|(
log)(),(maxarg)4(

,

       (5) 

Because 1)( 
z

zA , 
z

DzPztP )|()|( . Also, based on Bayes’ rule and the independency 

of ),( tD , we have:  

))|()|((

)|()|(

))|()|(()(

)()|()|(

))|()|(()(

)()|()|(

))|()|(()(

)()|,(

),(

),,(
),|(
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zz

DzPztP

ztPDzP

DzPztPDP

DPztPDzP

DzPztPDP

zPztPzDP

DzPztPDP

zPztDP

tDP

tDzP
tDzP

 

Thus, );,|(
)|()|(

)|()|(
)( r

z

tDzP
DzPztP

DzPztP
zA 


, which shows that to find the maximum 

solution for (4), at every iteration r, )(zA should be the posterior probability of z, with observed 

document-word pair (D, t). Therefore, EM algorithm could be used as following:  

Computational steps of EM algorithm 

 Each iteration of EM algorithm consists of expectation step (E-step) and maximization step (M-

step). In E-step, based on the current estimated )|( DzP  and )|( ztP , the posterior probability of 

),|( tDzP  is computed for each document-word pair at each iteration. In M-Step, )|( DzP  and 

)|( ztP  are updated by maximizing (4), which will be used in the E-step of next iteration until 

convergence. Detailed steps of EM algorithm are discussed below: 
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Initialization: Define the maximum number of iterations R, and the number of latent topics G to 

be generated. For each document-topic and topic-word pair, assign random values to )|(0 DzP  

and )|(0 ztP between 0 and 1, with the constraints 1)|(0 
z

DzP , and 1)|(0 
t

ztP . 

E-step: At iteration r, for each observed topic, word and document, 
pz , bt , and aD , compute: 

 




z

arbr

aprpbr

bapr
DzPztP

DzPztP
tDzP

)|()|(

)|()|(
),|(

11

11
      (6) 

where )|(1 apr DzP 
 and )|(1 pbr ztP 

 are derived from iteration r-1. 

M-step: At iteration r, for each document-topic and topic-word pair, compute  )|( apr DzP  and 

)|( pbr ztP  based on the following updating formulas: 






tD

pr

D

bprb

pbr
tDzPtDn

tDzPtDn

ztP

,

),|(),(

),|(),(

)|(        (7) 






t

a

t

apra

apr
tDn

tDzPtDn

DzP
),(

),|(),(

)|(      (8) 

More detailed derivation of (7) and (8) can be referred to [106,107,110].  

The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood function 

)(rL  in (1) met the criterion that    )()( 1rr LL , where   is set as the convergence goal of 

the model. 
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The output from this stage after EM learning that is used for building VSM model is a latent 

topic-document (LTD) matrix tdM , in which each document has a vector representation 
lDH that 

is mapped from indexed term space to latent topic space, ],...,,[ ,,2,1 llll DGDDD PPPH  , and 

)|(, liRDi DzPP
l
 , Gi ,...2,1 , where R denotes the maximum number of iterations EM went 

through, and G denotes the number of topics generated. As a result, we have: 

],...,,[
21

T

D

T

D

T

Dtd N
HHHM  . 

4.1.2.2 Generate topic-document vector for previously unseen document 

Although PLSA is originally designed for unsupervised learning, it can be extended to 

previously unseen (testing) documents. For a testing document uD , we run through the same EM 

algorithm to generate the conditional probability of each latent topic z given Du. However, during 

parameter estimation, all other parameters are kept fixed except )|( uDzP  . In initialization step, 

only )|(0 uDzP  is assigned with random values between 0 and 1, with the constraints 

1)|(0 
z

uDzP . In E-step, based on )|(1 ur DzP  , the posterior probability of ),|( tDzP u  is 

computed. In M-Step, only )|( DzPr  is calculated by equation (8). Therefore, a vector 

representation 
uDH  is generated for uD , with the same dimension as 

lDH .  

4.1.3 A VSM augmented with semi-supervised PLSA topic modeling  

The PLSA algorithm introduced in the above section 4.1.2 generates latent topics by exploring 

the co-occurrence relationship of words in the document collection under a probabilistic 

framework, in order to discover the underlying semantic structure. However, it is originally 
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designed for unsupervised learning, since it assume that none prior knowledge of the text is 

available. Therefore, documents in the same category might have different latent topic distribution 

due to different word occurrence. In the application of text categorization, usually we will have 

some information about the inter-connectivity between documents, such as category label, citation 

links and references, web page links and so forth [108,111]. As a result, a mixed probability 

model that couples the conditional probabilities for both words and inter-connectivity between 

documents could be extremely useful, in terms of providing more meaningful features and better 

understanding from text. The most well-known model that incorporates such information is 

proposed by Hoffman [108], which presents a joint probabilistic model of document content and 

connectivity. However, there are several issues needs to be solved. First of all, in the task of text 

categorization, usually only training documents have inter-connectivity available, that model is 

not able to model previously unseen documents. Secondly, the inter-connectivity variable, 

denoted as )|( zcP , increases the dimension of parameters need to be estimated, so that the 

efficiency of the system is decreased. Last but not least, the connection between documents 

should also be weighted, instead of simply using binary values (1 as connected, and 0 as not 

connected). 

In this dissertation, we propose a semi-supervised PLSA algorithm that addresses the above 

issues, while incorporating the relationship between documents derived from both category labels 

and ontology networks. Details will be discussed both in this section and section 4.2.2.  

4.1.3.1 Learning semi-supervised PLSA model from training documents 

For a given latent topic, the probability of document connectivity is interpreted as the 

document’s authority on that topic [108]. By introducing a joint probability model for document 
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content and connectivity, as well as a hyper-weight  that balance the affection, the semi-

supervised PLSA model is presented in Figure 19. Similarly as PLSA algorithm, the generative 

process of each observed document-word pair and connected document-document pair in the text 

corpus, Tr, is shown as following: 

 

1. Select a document D from Tr based on )(DP . 

2. Pick a topic z according to )|( DzP . 

3. Given z, generate a word t based on )|( ztP . 

4. Given z, generate a document D’, based on )|'( zDP . This represents the probability of 

observing D’ that is connected with D, given latent topic z. 

The variables )|( DzP , )|( ztP  and )|'( zDP  are what we want to estimate. As a result, we 

come up with the following joint log-likelihood function: 

,)1(

),)|()|'()(log()',(

))|()|()(log(),(

',

,

ct

DD z

c

tD z

t

LLL

DzPzDPDPDDlL

DzPztPDPtDnL

 





 

 

             (9)  

 

Figure 19.  Graphical model representation of semi-supervised PLSA 
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Where )',( DDl  indicates whether document D and D’ are connected ( 1)',( DDl ) or not 

( 0)',( DDl ). For now, to simplify our problem, )',( DDl  is a binary value, and whether D is 

connected to D’ or not is based on whether they both fall into the same category. )',( DDl  will 

be further updated by the word connection between documents in section 4.2.2.  

Based on (9), we want to find )|( DzP , )|( ztP  and )|'( zDP  that maximize the log-

likelihood function L. we then have: 

)))|()|'(log()',()1(

))|()|(log(),(max(arg))1(max(arg)max(arg

',

,

 

 





DD z

tD z
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     (10) 

Similarly, we introduce )(zAt  and )(zAc  as two probability distributions of z, so that 
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                        (11) 

Based on the law of unconscious statistician, the above equation (11) yields to: 
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)|()|'(
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                              (12) 

Using Jensen’s Inequality, we find a lower bound function for the above equation (12), and when  

C
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, we have: 
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                                   (13) 

 Since we know that  
z

t zA 1)( ,  
z

c zA 1)( , we have: 
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Hence, )(zAt  and )(zAc  are posterior probabilities of z when we maximize (13), given the 

observation of each document-word pair and connected document-document pair, respectively. 

However, from the above equation (14) and (15), we could see the probability of )|z( DP and 

)|'( zDP  needs to be estimated separately for each document-topic pair, similar as the approach 

in [108]. It will be much easier if we could make some transformation so that we could estimate 

the same parameter instead. Based on the Bayes’ Theorem, we have:  
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This problem is then transferred into estimating )|( zDP , )|( ztP  and )(zP , which significantly 

reduces the size of parameters. Suppose the size of Tr is N and the number of topics generated is 

G, we now only need to estimate G additional parameters from )(zP  instead of GN   parameters 

from )|( DzP .  

Similar to the PLSA, for semi-supervised PLSA, the maximization likelihood estimation in (9) 

can thus be solved using EM algorithm. During EM algorithm learning, in E-step, based on the 

current estimated )|( zDP , )|( ztP  and )(zP , the posterior probability of ),|( tDzP  and 

)',|( DDzP  is computed for each document-word pair and connected document-document pair at 

each iteration. In M-Step, )|( zDP , )|( ztP  and )(zP  are updated by maximizing (13), which 

will be used in the E-step of next iteration until convergence. Considering that 

 
zz

zPzDP
DP

DzP 1)()|(
)(

1
)|( , 

z

zPzDPDP )()|()( , the final conditional 

probability )|( DzP  for each document-topic pair can be calculated using:  




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP , which means that  )(DP  could be considered as a 

normalization constant for )|( DzP . 

Computational steps of EM algorithm for semi-supervised PLSA 

Initialization: Define the maximum number of iterations R, and number of topics G to be 

generated. For each document-topic and topic-word pair, assign random values to )|(0 zDP  and 
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)|(0 ztP between 0 and 1, with the constraints 1)|(0 
D

zDP , and 1)|(0 
t

ztP . For each topic, 

initialize 
G

zP
1

)(0  , which evenly distribute the probability of each topic at the beginning. 

E-step: At iteration r, for each observed topic, word and document, 
pz , bt , aD , and mD  that is 

connected to aD , compute: 

 




z
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zPzDPztP
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where )|(1 par zDP 
 , )|(1 pmr zDP 

, )|(1 pbr ztP 
 and )(1 pr zP 

 are derived from iteration r-1.  

M-step: At iteration r, for each document-topic and topic-word pair, we want to calculate

)|( par zDP , )|( pbr ztP  and )( pr zP  in order to maximize (13).  As a result, at iteration r, 
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(18) 

Let )18( , since we know that 1)|( 
t

r ztP , 1)|( 
D

r zDP  and 1)( 
z

r zP , the above 

optimization problem could be solved using Lagrange multipliers [107], such that: 
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0)1)(()1)|(()1)|((   
z

r

z D

rz

t

r

z

z zPzDPztP                      (19) 

Take derivative for (19) with respect to )|( pbr ztP ,  )|( par zDP  and )( pr zP  leads to the 

following stationary equations: 

),|(),()|()( bpr

D

bpbrz
tDzPtDnztPp                                                         (20) 

 
'

)',|()',()1(2),|(),()|()(

D

apraapr

t

aparz
DDzPDDltDzPtDnzDPp   (21) 


',

)',|()',()1()(
DD

prpr DDzPDDlzP                                                              (22) 

Note here, )|( zDP ar  and )|'( zDPr  are actually representing the same parameter, considering 

they are connected with each other and exchangeable. Therefore, in (21) they are merged 

together, so that )1(   is multiplied by 2. 

By summing up (20) by t, summing up (21) by D, and summing up (22) by z, we are able to 

solve the Lagrange multipliers 
z

z , 
D

D  and  , and finally we get the updating equations 

for )|( pBr ztP ,  )|( par zDP  and )( pr zP : 
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The above E-step and M-step keep iterating until the maximum iteration R, or the log-likelihood 

function rL  in (9) met the criterion that  1rr LL , where   is set as the convergence goal of 

the model. The final conditional probability )|( lDzP  for each topic given TrDl   can be 

calculated using:  




z

l

l

l

l
zPzDP

zPzDP

DP

zPzDP
DzP

)()|(

)()|(

)(

)()|(
)|( .  

Same as PLSA algorithm, the output from semi-supervised PLSA after EM learning is a semi-

supervised topic-document (SSTD) matrix sstdM , in which each document has a vector 

representation 
lDH that is mapped from indexed term space to latent topic space, 

],...,,[ ,,2,1 llll DGDDD PPPH  , and )|(, liRDi DzPP
l
 , Gi ,...2,1 , where R denotes the maximum 

number of iterations EM went through, and G denotes the number of topics generated. As a 

result, we have: 

],...,,[
21

T

D

T

D

T

Dsstd N
HHHM  . 

4.1.3.2 Generate semi-supervised topic-document vector for previously 

unseen document 

In order to extend semi-supervised PLSA to previously unseen (testing) documents, similar to 

PLSA, for a testing document uD , we run through the EM algorithm to generate the conditional 

probability for Du given latent topic z. During parameter estimation, all other parameters are kept 
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fixed, except )|( zDP u . However, for a unseen document uD , )|( zDP u  cannot be initialized 

directly. The following steps explain how EM algorithm is applied to uD : 

 In the initialization step, since 
)(

)|(

)(

)()|(
)|(

zP

DzP

zP

DPDzP
zDP uuu

u  , we assign 

random value to )|(0 uDzP  between 0 and 1, with the constraint 1)|(0 
z

uDzP . Then 

)|(0 zDP u  is calculated using )(zP  that has already been estimated during training, based 

on the following formula: 




z

u

u

u

zP
DzP

zP
DzP

zDP
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1
)|(

)(

1
)|(

)|(

0

0

0 . 

 In E-step, at iteration r, based on )|(1 zDP ur , the posterior probabilities, ),|( tDzP ur  and 

)',|( DDzP ur  are computed, where TrD' , and 'D  is connected to uD .  

 In M-Step, only )|( zDP ur  is calculated by equation (24).  

 The final conditional probability )|( uDzP  for each topic given uD  can be calculated 

using:  




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP

u

u

u

u

u .  

Therefore, a vector representation 
uDH  is generated for uD , with the same dimension as 

lDH .  

It is obvious that there is a problem about how to find out what 'D  in Tr is connected to the 

testing document, and how. This is done by using word semantic information extracted from 

ontology network, which will be discussed in detail in section 4.2.2. As a result, the system 

framework of using semi-supervised PLSA is shown in Fig. 20, where the VSM augmented with 
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PLSA topic modeling also takes the CD matrix generated from VSM augmented with WordNet 

ontology. 

 

The above discussion in section 4.1 mainly focuses on how to generate latent semantic features 

from text documents, which are incorporated into conventional VSM model. The connectivity 

between documents, together with the relationship between words, allows us to generate a mixed 

joint probabilistic model for a text collection that provides a solid foundation for an accurate and 

meaningful text representation.  

 

Figure 20.  Proposed text categorization model framework 
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4.2 A VSM augmented with WordNet ontology 

Word ontology networks, as discussed in section 2.3, provide semantic word relationships that 

could be utilized to facilitate text mining applications. This section presents the detail of building 

text categorization model using WordNet ontology network, in terms of generating an augmented 

TD matrix and a “concept” level CD matrix. 

4.2.1 An augmented TD matrix generated using WordNet  

In our proposed text categorization model, WordNet is used in two ways, derived from and 

modified based on basic approaches introduced in [46]: “Add” and “Replace” rules, considering 

the “Concept only” rule lost single term information, and did not achieve as good performance as 

other two rules in text clustering tasks, as reported in [46]. This answers the question in section 

2.5.3 about which rules should be selected to apply to VSM features. 

For each indexed term it  generated by VSM model, we first use POS tagging such as Stanford 

POS tagger [112] to identify its lexical category. After that, it  is feed into WordNet ontology to 

find its list of synonyms, 
jS . Note here, word sense disambiguation (WSD) can be applied to 

obtain more accurate synonym generation, however it is beyond our research scope, and it is not 

our intention to find a most appropriate WSD model. As a result, we find the synset 
jS  based on 

the first meaning of it , to simplify our problem.    
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In some applications, POS tagging may not be very reliable, e.g., text documents are noisy and 

lack of grammar structure and sentence boundary [5]. In those cases, we generate the synset for it  

only considering one word class from “Noun”, “Verb” or “Adjective”, and choose the best one 

based on system performance evaluation. Through our experiment we found out that “Noun” 

synsets always have the best accuracy, which will be presented in Chapter 5. 

The above discussion answers the question raised in section 2.5.3 about determining the scope 

of synset for a word with multiple word categories.   

Although in WordNet, the major relationship is synonymy, we also find out that most synsets 

are connected to other synsets via a number of semantic relations. These relations vary based on 

the type of word. For “Noun” synsets, the relations mainly include hypernym/hyponym (word A 

is a kind of word B or vice versa, e.g., dog vs. canine), and meronym/holonym (word A is a part 

of word B or vice versa, e.g., window vs. building), which are our major focus in this dissertation. 

For “Verb” or “Adjective” synsets, we only consider the synonymy relation. This solves the issue 

of making full use of word relationships other than synonymy, as mentioned in section 2.5.3. 

The ultimate goal of finding the related synsets for a given term, including synonymy, 

hypernym/hyponym and meronym/holonym, is to find out all terms within these synsets, and use 

this term relationship information to augment VSM model. The following Fig. 21 illustrates an 

example of generating the list of related words, L_syn, in WordNet for an indexed term it , 

especially when it  is a noun. Here, yxt ,  denotes the y
th

 term included in the x
th

 synset. Starting 

from 
jS , denoted as root level 0,  we find out its hypernym/hyponym and meronym/holonym 

synsets, extract all unique terms included in these synsets, and add them into L_syn. The next 

level starts from synsets 
aS , 

bS , 
cS  and 

dS , and their hypernym/hyponym and 
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meronym/holonym synsets are extracted respectively. This procedure continues to explore 

through the entire “graph” of 
jS  until there are no synsets related to the current synset. All unique 

terms included in the list of related synsets generated for 
jS  are then added into L_syn.  

 

In order to build a hierarchical semantic relationship between synsets, we assign a weight for 

each edge in the graph generated for 
jS . The basic idea here is that, terms found in different level 

of synsets, should be assigned with different semantic weight, the deeper the synset level is, the 

lower weight we are expecting. One example is shown in Fig. 22. Two coefficients, ]1,0(  

and ]5.0,0( , are defined to represent the weight of the edge for hypernym/hyponym and 

meronym/holonym relationships, respectively. Here, considering that meronym/holonym 

relationship is less significant than hypernym/hyponym in terms of semantic similarity, e.g., 

document talks about “window” might not have any relationship with document talks about 

“building”, we use 
2

1
  throughout our experiments.  

 

Figure 21.  Example of generating related words in WordNet 
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After assigning weight to each edge, we then assign a weight for each synset that is related to  

jS , in order to reflect the weight decrease along the path from 
jS  to its related synsets. Starting 

from the root synset 
jS , its weight, denoted as 

jS , equals to 1. After that, the weight 
xS  for any 

synset 
xS  that is related to 

jS , is calculated by multiplying the weights of all the edges along the 

shortest path from 
xS  to 

jS . If multiple paths are found, then the maximum value is selected for 

xS .  For example, in Fig. 22, 
2

fS  for synset 
fS , 

eS  for synset 
eS . 

 

4.2.1.1 Generate concept-document (CD) matrix (“add” rule) 

 

Figure 22.  Example of weighting edges in the tree structure generated for synset 
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Under this rule, a CD matrix cM  is generated using WordNet by introducing the “concept” 

level features, which represents the V related groups of terms generated from the term list T_L of 

document collection Tr, denoted as VisynL i ,...2,1,_  . Mathematically, for a document 

TrDl  , its “concept” vector representation 
lDQ  is defined as following: 

],,...,,[ ,,2,1 llll DVDDD qqqQ  ViStsynLtwq xrir

t

SDtDi

r

xlrl
,...,2,1,,_,)( ,,  ,          (26) 

where V represents the total number of synsets generated from the term list T_L, 
lDiq ,
denotes 

the weight of “concept” isynL _ , which is calculated by first multiplying weighted term 

frequency value 
lr Dtw ,
 (e.g., tf-idf) for each term rt  in isynL _  with the weight of synset 

xS  that 

includes rt , and then summing them together. For example, in the following Fig. 23, assume the 

concept 1_ synL  generated from term “car” contains the following terms: “car”, “motorcar”, 

“motorbus”, “bus”, “minibus”, “window” and “quarterlight”, therefore, for a document TrDl  , 

lll

lllll

DDhtquarterligDwindow

DmotorbusDbusDmotorcarDcarD

www

wwwwq

.,minibus

2

,,

,,,,,1 )(








. 
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This procedure makes the full use of synonymy, hypernym/hyponym and meronym/holonym 

to assign an appropriate weight for each “concept” features used for augmented VSM model. It 

answers the question mentioned in section 2.5.3 about what value should be assigned to the 

concept features added to TD matrix. Thus, for the output of this stage, we have: 

],...,,[
21

T

D

T

D

T

Dc N
QQQM  . 

Similarly, for a previously unseen document uD , we generate the “concept” vector representation 

uDQ , ],,...,,[ ,,2,1 uuuu DVDDD qqqQ   for the testing purpose. 

4.2.1.2 Generate augmened TD matrix (modified “repl” rule) 

 

Figure 23.  Example of concept generation in “add” rule 
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Under this rule, the term-document matrix 0M  in section 4.1.1 is replaced by a new term-

document matrix generated using WordNet, in a way that for a term it  having synset iS  , its 

weight in document lD  is updated using the following equation:  

)_,max( ,

'

, LTtStww rirDtDt lrli
 . 

The above equation ensures that semantically similar terms share the same weighting value, so 

that they are considered as equally important. For example, if term xt  = “entire” appears in 

document A and 
yt  = “total” appears in document B, and suppose },{ yxyx ttSS  , then we will 

have 
'

,

'

,

'

,

'

, ByBxAyAx wwww  . The output from this stage is a TD matrix 1M  that has the same 

dimension as 0M , where ],...,,[
211

T

D

T

D

T

D N
WWWM   , and 

iDW   denotes the vector representation 

for document Di in Tr, ],...,,[ '

,

'

,

'

, 21 lKlll DtDtDtD wwwW  .  

4.2.2 Generate document-document connection for semi-supervised 

PLSA using WordNet  

We mentioned in section 4.1.1.2 that when applying semi-supervised PLSA to previously 

unseen document uD , there is a problem about how to find out what documents in Tr are 

connected to the testing document, and how. This leads to the problem of determining ),( DDl u  

as shown in the log-likelihood function in (9), which indicates whether uD  and D are connected 

or not. From the perspective of joint probability of all observed documents pairs that are 

connected with each other, we propose the following approach of generating ),( DDl u  for the pair 

of uD  and each TrD . 
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Suppose we have V related “concepts” generated from the term list T_L of document collection 

Tr, denoted as VisynL i ,...2,1,_  :  

 Extract weighted frequency based vector representation for uD  and D, denoted as 
uDW

and DW , as discussed in section 4.1.1, where 0MWD  .  

 Generate a sub-list if T_L, denoted as T_L_sub that has O terms, where for each term

OosubLTto ,...2,1,__  , to does not belong to any of the V “concepts”.    

 Generate “concept” vector representation for uD  and D, denoted as 
uDQ and DQ , 

respectively, based on equation (26), where cD MQ  . 

 The connection value ),( DDl u  between uD  and D is thus calculated as following: 





O

k

DD

V

j

DDu kWkWjQjQDDl
uu

11

))(),(min())(),(min(),( , where )( jQD  denotes the j
th

 

concept in vector DQ ,  and )(kWD  denotes the k
th

 weighted term frequency in T_L_sub. 

The basic idea here is that, ),( DDl u  is the “weighted frequency” that we observe both 

uD  and D have concept occurrence or “non-concept” term occurrence, which represents 

the connection value between uD  and D. 

After generating ),( DDl u  for the pair of uD  and D, it is obvious that )',( DDl  generated for 

training document collection Tr should also be updated. Instead of using binary values 

( 1)',( DDl  or 0)',( DDl ), for all pair of  D and D’, where both TrDD , , if 1)',( DDl , 

)',( DDl  is updated using the same approach discussed above.  With the procedures discussed 

above, we are able to apply semi-supervised PLSA model for both training set Tr and unseen 



107 

 

document uD , by generating the semi-supervised topic-document (SSTD) matrix sstdM , and a 

vector representation 
uDH , respectively.  
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4.3  A step-by-step example of proposed text representation 

model generation procedure  

To provide a more comprehensive illustration of how the above section 4.1 and 4.2 works, we 

hereby designed a “toy” dataset that is derived from [113] and walk through the whole procedure 

of VSM model generation using PLSA, semi-supervised PLSA and WordNet ontology. This 

dataset is named as Human Computer Interface and Graph Theory (HCI_GT). 

The HCI_GT contains 9 documents as training data separated into two categories, and one 

“unseen” document Du for testing, defined as following, where bolded words denote indexed 

terms: 

Category A: Human Computer Interface (HCI)   Category B: Graph Theory(GT) 

A1: Human machine Interface for ABC computer applications 

A2: A survey of user opinion of computer system response time 

A3: The EPS user interface management system 

A4: System and human system engineering testing of EPS 

A5: Relation of user perceived response time to error management 

B1: System of random, binary, ordered tree 

B2: The intersection graph of paths in tree 

B3: Graph minors IV: Widths of tree and well-quasi-ordering 

B4: Graph minors: A study   

Du: A survey of decision tree system 
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4.3.1 Build VSM model with CE_W global weighting scheme  

Hence, in this training set Tr, 9N , 13K . As discussed in section 4.1.1, the vector 

representation generated for each document in Tr and for testing document Du, based on term 

frequency (tf) with idf global weighting and tf with CE_W global weighting, are shown in the 

following Table 14 - 15. 

 

 

Table 14 Tf-idf representation for HCI_GF 
 

 
human interface computer user system response time EPS survey trees graph minors study 

A1 0.577 0.577 0.577 0 0 0 0 0 0 0 0 0 0 

A2 0 0 0.410 0.299 0.221 0.410 0.410 0 0.598 0 0 0 0 

A3 0 0.595 0 0.435 0.321 0 0 0.595 0 0 0 0 0 

A4 0.594 0 0 0 0.542 0 0 0.594 0 0 0 0 0 

A5 0 0 0 0.459 0 0.628 0.628 0 0 0 0 0 0 

B1 0 0 0 0 0.594 0 0 0 0 0.805 0 0 0 

B2 0 0 0 0 0 0 0 0 0 0.707 0.707 0 0 

B3 0 0 0 0 0 0 0 0 0 0.508 0.508 0.696 0 

B4 0 0 0 0 0 0 0 0 0 0 0.381 0.522 0.763 

 
             

Du 0 0 0 0 0.313 0 0 0 0.849 0.425 0 0 0 

 

Table 15 Tf-CE_W representation for HCI_GF 
 

 
human interface computer user system response time EPS survey trees graph minors study 

A1 1 1 1 0 0 0 0 0 0 0 0 0 0 

A2 0 0 1 1 0.126 1 1 0 1 0 0 0 0 

A3 0 1 0 1 0.126 0 0 1 0 0 0 0 0 

A4 1 0 0 0 0.213 0 0 1 0 0 0 0 0 

A5 0 0 0 1 0 1 1 0 0 0 0 0 0 

B1 0 0 0 0 0.126 0 0 0 0 1 0 0 0 

B2 0 0 0 0 0 0 0 0 0 1 1 0 0 

B3 0 0 0 0 0 0 0 0 0 1 1 1 0 

B4 0 0 0 0 0 0 0 0 0 0 1 1 1 

 
             

Du 0 0 0 0 0.126 0 0 0 1 1 0 0 0 
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Comparing with idf global weighting, when applying CE_W, the word “system” is assigned 

with a lower weight because that it occurs in both category A and B and therefore not as important 

as others in terms of differentiating documents in A and B categories. All other terms are assigned 

with global weight equals to 1.  

4.3.2 Build VSM model with PLSA topic modeling 

Following the EM algorithm for PLSA discussed in section 4.1.1.1, we first define the number 

of maximum iteration R = 500, and   = 1E-5. We found out that in our empirical case studies, 

generally speaking, the number of latent topics should be defined as around K , where K is the 

number of indexed terms. We will further discuss the effect of selecting different number of 

topics in section 5.3. Here, because that the HCI_GT has 9 indexed terms, it is reasonable to 

define G = 3. The three latent topics are denoted as z1, z2 and z3, respectively.  

The steps of building LTD matrix for training documents in Tr are described as following: 

 At the initialization step, for each document-topic and topic-word pair, assign random 

values to )|(0 DzP  and )|(0 ztP between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

DzP , 

and 
3210 ,,,1)|( zzzzztP

t

 . As a result, we have the following two matrixes, zDPM _  

and tzPM _ , as shown in the following Fig. 24: 
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 At E-step (expectation step), at iteration r, ),|(),,|(),,|( 321 tDzPtDzPtDzP rrr  are 

calculated for each term-document pair using equation (6), which use the )|(1 DzPr  and 

)|(1 ztPr  initialized before. Fig. 25 shows this E-step process in iteration 1.  

 

Figure 24.  Example of EM algorithm Initialization 
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 At M-step (maximization step), at iteration r, for each document-topic and topic-word pair, 

compute  )|( DzPr  and )|( ztPr  based on the updating formulas in (7) and (8). 

Apparently, this step uses the calculated conditional posterior probability ),|( tDzPr  to 

update the probability )|(1 DzPr  and )|(1 ztPr  into )|( DzPr  and )|( ztPr , Fig. 26 

shows this M-step process in iteration 1, in zDPM _  and tzPM _ . 

 

Figure 25.  Example of EM algorithm E-Step  
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 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood 

function )(rL  in (1) met the criterion that    )()( 1rr LL , at iteration r. Here, we 

denote the final estimation for each topic-word pair after the above training process as 

)|( ztPTr . 

The final results of zDPM _  and tzPM _  after convergence, with size 39  and 313  

respectively, is shown in Fig. 27.  

 

Figure 26.  Example of EM algorithm M-Step  
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In zDPM _ , latent topic z1 and z2 can be considered as “sub-categories” in category A, and most 

of category B documents only have occurrence of latent topic z3, except document B1, which 

contains both term “system” and “tree”, therefore both z2 and z3 have 0.5 probability of occurrence. 

In tzPM _ , it is obvious that latent topic z3 contains all terms that only occurs in category B, and 

term “computer”, “user” and “system” all have probability on latent topic z1 and z2.  

For testing document Du, we run through the EM algorithm to generate the conditional 

probability of each latent topic z for Du using the following procedure with the same parameter 

setting for R, G and  : 

 

Figure 27.  Example of EM algorithm result after convergence  
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 At the initialization step, for each topic z for the given uD , assign random values to 

)|(0 uDzP  between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

uDzP . 

 At E-step, at iteration r, ),|(),,|(),,|( 321 tDzPtDzPtDzP ururur  are calculated using 

equation (6) and )|( ztPTr  from the training process.. 

 At M-step, at iteration r, compute  )|( ur DzP  based on the updating formula in (8).  

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood 

function )(rL  in (1) met the criterion that    )()( 1rr LL , at iteration r. Here, we 

denote the final estimation for each topic-Du pair as )|( uF DzP . 

Therefore, for testing document Du, the final topic-document representation is an 31  vector 

uDV , where  )|(),|(),|( 321 uFuFuFD DzPDzPDzPV
u
 , as shown in Fig. 28.   

 

4.3.3 Build VSM model with WordNet ontology 

 

Figure 28.  EM algorithm result for testing document Du  
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In this example dataset, HCI_GT, two terms could be found in WordNet as synonym: “survey” 

and “study”. These two terms occurs in document A2, B4 and testing document Du. No other 

hypernym/hyponym and meronym/holonym relationship is found in HCI_GT.  

As discussed in section 4.2.1.1, based on “add” rule, the CD matrix cM  generated for training 

documents in Tr and the “concept” vector representation 
uDQ  generated for testing document Du, 

using CE_W global weighting, therefore only have one “concept” that contains “survey” and 

“study”, as shown in Table 16, where  
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QQQM , 
lll DDD wwq ,study,survey,1  , 

and 
uuuu DDDD wwqQ ,study,survey,1  . 

 

As discussed in section 4.2.1.2, based on “replace” rule, the vector representation generated for 

HCI_GT based on CE_W global weighting is updated using the following equation:  

Table 16 CD matrix generation for Tr and Du 
 

Document Concept (survey, study) 

A1 0 

A2 1 

A3 0 

A4 0 

A5 0 

B1 0 

B2 0 

B3 0 

B4 1 

  

Du 1 
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 DDDtudyD wwww ,study,survey

'

,s

'

,survey ,max .  The augmented TD vector for each document in 

HCI_GT is shown in the following Table 17, where both “survey” and “study” has weight equals 

to 1 in document A2, B4 and Du: 

 

4.3.4 Build VSM model with semi-supervised PLSA  

Following the EM algorithm for semi-supervised PLSA discussed in section 4.1.1.2, we first 

define the number of maximum iteration R = 500, number of latent topics G = 3, and   = 1E-5.  

For the simplicity of problem, we define   = 0.9.  The three latent topics are denoted as z1, z2 and 

z3, respectively. We also need to generate the connection matrix connM  between each document-

document pair (D, D’) in HCI_GT, where each entry denotes connection value ),( 'DDl  between 

D  and D’, as discussed in section 4.2.2. The result is shown in Table 18: 

Table 17 Tf-CE_W representation for Tr and Du after using WordNet “replace” rule 
 

 
human interface computer user system response time EPS survey trees graph minors study 

A1 1 1 1 0 0 0 0 0 0 0 0 0 0 

A2 0 0 1 1 0.126 1 1 0 1 0 0 0 1 

A3 0 1 0 1 0.126 0 0 1 0 0 0 0 0 

A4 1 0 0 0 0.213 0 0 1 0 0 0 0 0 

A5 0 0 0 1 0 1 1 0 0 0 0 0 0 

B1 0 0 0 0 0.126 0 0 0 0 1 0 0 0 

B2 0 0 0 0 0 0 0 0 0 1 1 0 0 

B3 0 0 0 0 0 0 0 0 0 1 1 1 0 

B4 0 0 0 0 0 0 0 0 1 0 1 1 1 

 
             

Du 0 0 0 0 0.126 0 0 0 1 1 0 0 1 
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The steps of building SSTD matrix for training documents in Tr are described as following: 

 At the initialization step, for each document-topic and topic-word pair, assign random 

values to )|(0 zDP  and )|(0 ztP between 0 and 1, with the constraints 1)|(0 
D

zDP , 

and 1)|(0 
t

ztP . For each topic, initialize 
3

1
)(0 zP , 321 ,, zzzz  . As a result, we have 

the following two matrixes, DzPM _  and tzPM _ , as shown in the following Fig. 29. 

 At E-step, at iteration r, ),|(),,|(),,|( 321 tDzPtDzPtDzP rrr  are calculated for each term-

document pair using equation (16). Also, )',|(),',|(),',|( 321 DDzPDDzPDDzP rrr  are 

calculated for each document-document pair in Tr using equation (17), where 

0)',(,',  DDlTrDD . The process of E-step in iteration 1 is shown in Fig. 30.  

 At M-step, at iteration r, for each document-topic and topic-word pair, compute  )|( zDPr  

and )|( ztPr  based on the updating formulas in (23) and (24), and compute )(zPr based 

on the updating formula in (25). Apparently, this step uses the calculated conditional 

Table 18 Connection matrix for HCI_GF 
 

 
A1 A2 A3 A4 A5 B1 B2 B3 B4 

A1         
 

A2 1 
       

 

A3 1 1.126 
      

 

A4 1 0.126 1.126 
     

 

A5 1 3 1 0 
    

 

B1 0 0 0 0 0 
   

 

B2 0 0 0 0 0 1.126 
  

 

B3 0 0 0 0 0 1 2 
 

 

B4 0 0 0 0 0 0 1 2  

          

Du 0 1.126 0.126 0.126 0 1.126 1 1 1 
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posterior probability ),|( tDzPr  and )',|( DDzPr  to update the probability )|(1 zDPr ,

)|(1 ztPr  and )(1 zPr  into )|( zDPr , )|( ztPr  and )(zPr . The process of M-step in 

iteration 1 is shown in Fig. 31. 

 

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood 

function )(rL  in (1) met the criterion that    )()( 1rr LL , at iteration r. Here, we 

denote the final estimation for each topic-document pair, each topic-word pair and each 

latent topic after the above training process as )|( zDPTr , )|( ztPTr  and 

321 ,,),( zzzzzPTr  .  

 We then generate matrix zDPM _ , where each entry represents the final conditional 

probability )|( DzPTr , and 




z

TrTr

TrTrTrTr
Tr

zPzDP

zPzDP

DP

zPzDP
DzP

)()|(

)()|(

)(

)()|(
)|( . 

 The final results of zDPM _  and tzPM _  after convergence, with size 39  and 313  

respectively, is shown in Fig. 32.  

 

Figure 29.  Example of EM algorithm Initialization for semi-supervised PLSA 
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Figure 30.  Example of EM algorithm E-Step for semi-supervised PLSA 
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Figure 31.  Example of EM algorithm M-Step for semi-supervised PLSA 
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In zDPM _ , comparing with Fig. 27 for PLSA, we observed an increase on the probability of 

latent topic z1 given document A1 and A3. This is because that A1 is connected to A2 by term 

“computer”, and A3 is connected to A2 by term “user”. These two terms all have probability of 

occurrence on z1, which contributes to the increase of )|( 11 AzP  and )|( 31 AzP . Also, the 

probability of latent topic z3 given document B1 increased, because that B1 only connects to B2 and 

B3 by term “tree”, which only occurs in latent topic z3.  

For testing document Du, we run through the EM algorithm to generate the conditional 

probability of each latent topic z for Du using the following procedure with the same parameter 

setting for R, G and  :  

 

Figure 32.  Example of EM algorithm result for semi-supervised PLSA after convergence  
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 At the initialization step, for each topic given uD , assign random values to )|(0 uDzP  

between 0 and 1, with the constraints 



3

1

1)|(0

z

zz

uDzP . Then )|(0 zDP u  is calculated 

using the following formula: 




z Tr

u

Tr

u

u

zP
DzP

zP
DzP

zDP

)(

1
)|(

)(

1
)|(

)|(

0

0

0 , 321 ,, zzzz  .

,
)(

1
)|()|()( 00

zP
DzPzDPDP

Tr

uuu   

 At E-step, at iteration r, ),|(),,|( 21 tDzPtDzP urur  and ),|( 3 tDzP ur  are calculated for 

each term given uD  using equation (16), which use )|( ztPTr  and )(zPTr  generated from 

the training process. Also, ),|(),,|( '

2

'

1 uuruur DDzPDDzP  and ),|( '

3 uur DDzP  are 

calculated for each pair of ),( '

uu DD  using equation (17), where 0),(, ''  uuu DDlTrD , 

which use )|( ' zDP uTr
 and )(zPTr  generated from the training process.  

 At M-step, at iteration r, compute  )|( zDP ur  based on the updating formulas in (24).  

 The above E-step and M-step repeat until the maximum iteration R, or the log-likelihood 

function )(rL  in (1) met the criterion that    )()( 1rr LL , at iteration r. Here, we 

denote the final estimation for Du given latent topic z as )|( zDP uF . 

 The final conditional probability )|( uF DzP  for each topic given uD  can be calculated 

using:  




z

)()|(

)()|(

)(

)()|(
)|(

zPzDP

zPzDP

DP

zPzDP
DzP

TruF

TruF

u

TruF

uF .  

Therefore, for testing document Du, the final topic-document representation is an 31  vector 

uDV , where  )|(),|(),|( 321 uFuFuFD DzPDzPDzPV
u
 , as shown in Fig. 33.  
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Comparing with Fig. 28 for PLSA, the probability of latent topic z3  increases, while the 

probability of latent topic z2  decreases, given testing document Du. This is due to the fact that, 

when we take a look at )|( zDPTr  generated for training documents in Fig. 34 as well as the 

connection matrix in Table 18, Du is connected to B2, B3 and B4 that have a high probability on z3, 

and is connected to A2 that has a high probability on z1, with high connection values. Also, 

although Du is connected to A3 and A4 that have high probability on z2, the term “system” has a 

low weight in TD matrix, which contributes to the low value of  ),( 3ADl u  and ),( 4ADl u . These 

above factors all contributes to the final estimation of )|( uF DzP , where )|( 2 uF DzP  is much 

lower than )|( 1 uF DzP  and )|( 3 uF DzP . 

 

Figure 33.  Semi-supervised PLSA EM algorithm result for testing document Du  
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We can see that instead of only considering word co-occurrence information in PLSA, the semi-

supervised PLSA approach also incorporates document connectivity information extracted from 

both semantic information provided by WordNet and document category labels, thus provides 

more reasonable topic-document features than PLSA. An overview of PLSA and semi-supervised 

PLSA comparison is presented in the following Fig. 35. 

 

Figure 34.  PTr(D|z) generated for semi-supervised PLSA 
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Figure 35.  Comparison between PLSA and semi-supervised PLSA 
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4.3.5 System evaluation based on document distance measure 

In order to evaluate each procedure during VSM generation, we calculate the Euclidean distance 

of the vector representation between testing document Du and each of the 9 training documents in 

Tr, as shown in the following Table 19 and 20. 

 

From Table 19, the effect of global weighting scheme is obviously significant. With only tf 

representation,  it cannot differentiate A2, A3 and A4, as well as A1, A5 and B4. With tf-idf 

representation, A2, A3 and A4 are differentiated, with A2 identified as the closest document to Du, 

because that two terms, “survey” and “system” occurs in both A2 and Du, which is not a very good 

assignment. With tf-CE_W representation, the closest document to Du is changed to B1, because of 

Table 19 Euclidean distance between Du and training documents based on different text representation - I 
 

Document Content 
Euclidean distance to Du 

tf tf - idf tf - CE_W 

A1 
Human machine Interface for  

ABC computer applications 
2.449 1.414 2.240 

A2 
A survey of user opinion of  

computer system response time 
2.236 0.919 2.236 

A3 
The EPS user interface  

management system 
2.236 1.341 2.236 

A4 
System and human system  

engineering testing of EPS 
2.236 1.288 2.002 

A5 
Relation of user perceived response  

time to error management 
2.449 1.414 2.240 

B1 
System of random,  

binary, ordered tree 
1.000 0.972 1.000 

B2 
The intersection graph  

of paths in tree 
1.732 1.183 1.420 

B3 
Graph minors IV: Widths of tree  

and well-quasi-ordering 
2.000 1.252 1.737 

B4 Graph minors: A study 2.449 1.414 2.240 

     

Du A survey of decision tree system    
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the low weight assigned to “system”, which is more reasonable. However, A2 and  A3, as well as A1, 

A5 and B4  still  cannot be differentiated. 

   

From Table 20, we can see the significant effect of PLSA and WordNet ontology. With tf-idf 

representation, plus the three latent topic features generated from PLSA, similar to the effect of 

applying CE_W, the closest document to Du is changed to B1, because of their similar topic 

probability distribution (both have probability on z2 and z3). Also A2 and  A3, as well as A1, A5 and B4 

are differentiated from each other, based on the probability of occurring terms in these documents on the 

three latent topics. 

Table 20 Euclidean distance between Du and training documents based on different text representation - II 
 

Document Content 

Euclidean distance to Du 

tf-idf 
tf-idf  

+PLSA 

tf-CE_W 

+PLSA 

+WordNet 

tf-CE_W 

+semi-

supervised 

PLSA 

+WordNet 

A1 
Human machine Interface for  

ABC computer applications 
1.414 1.671 2.794 2.734 

A2 
A survey of user opinion of  

computer system response time 
0.919 1.166 2.349 2.346 

A3 
The EPS user interface  

management system 
1.341 1.610 2.791 2.735 

A4 
System and human system  

engineering testing of EPS 
1.288 1.566 2.608 2.667 

A5 
Relation of user perceived response  

time to error management 
1.414 1.586 2.744 2.745 

B1 
System of random,  

binary, ordered tree 
0.972 1.096 1.805 1.814 

B2 
The intersection graph  

of paths in tree 
1.183 1.457 2.177 2.135 

B3 
Graph minors IV: Widths of tree  

and well-quasi-ordering 
1.252 1.514 2.396 2.358 

B4 Graph minors: A study 1.414 1.650 1.934 1.886 

      

Du A survey of decision tree system     

 



129 

 

By adding CD matrix and modifying TD matrix using WordNet, apparently, A2 and B4 are ranked closer 

to Du, due to the semantic similarity between “survey” and “study”. After this stage, we have a strong 

confidence that Du has a higher probability of belonging to category B. 

From the final column of Table 20, we can see that the semi-supervised PLSA has the similar 

effect as PLSA, showing that this approach is as robust as PLSA. Moreover, A1 and A3 are ranked 

closer to Du than A5, because that connectivity among A category documents increase their probability on 

latent topic z1.  Distance from Du to A4 increases because of the probability decrease on )|( 2 uF DzP , 

and distances from Du to B2 , B3 and B4 decreases because of the probability increase on )|( 3 uF DzP . 

Therefore, we may conclude that semi-supervised PLSA provides a more reasonable text 

representation by generating semi-supervised topic-document features based on semantic 

relationship between words and connectivity between documents.  
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4.4 Generate hybird VSM model for classification 

Considering the task of text categorization, the procedures discussed in section 4.1 and 4.2 are 

combined together to generate a hybrid VSM text representation.  For training set Tr, the process 

of VSM matrix generation and combination in our final system, using WordNet ontology and 

semi-supervised PLSA, is shown in the following Fig. 36. Starting from TD frequency matrix, our 

system generates TD matrix 
0M with global weighting scheme. TD matrix 

0M  is then used to 

generate concept-document matrix 
cM  using WordNet ontology, and 

0M  is also replaced by 1M  

based on word relationships extracted from WordNet ontology. The topic-document matrix 
LtdM  

or 
sstdM  using PLSA / semi-supervised PLSA modeling is then generated based on 0M  and 

cM . 

Note here, the feature size of the final matrix is the sum of original indexed terms, number of 

concepts generated from Tr and number of latent topics we defined. These features could be 

further selected using feature selection techniques such as Gini Index, Information Gain, Mutual 

Information, etc [65,66]. However, to make the text representation features as inclusive as 

possible, we still keep all of them. The hybrid text representation model is then used to learn and 

evaluate classifiers, e.g., SVM, Neural Networks, Naïve Bayes classifier, etc.  
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Figure 36.  VSM matrix generation and combination 



132 

 

 EMPIRICAL CASE STUDY AND CHAPTER 5.

EXPERIMENTAL RESULTS EVALUATION ON TEXT 

CATEGORIZATION 

In this section, we present experiments we conducted using our proposed text categorization 

framework in Fig. 18 and Fig. 20, and classification results analysis on several publicly available 

or domain-specific datasets. This is an extension of experiments on HCI_GT discussed in section 

4.3, in terms of investigating how the proposed text representation could help improving text 

categorization accuracy. The experiments are designed as comparisons of the proposed text 

representation with conventional text representation methods. We present the experiment results 

of tuning parameters for PLSA, semi-supervised PLSA and WordNet ontology, and provide a 

detailed performance analysis of our proposed text representation approach. 
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5.1 Datasets 

In this empirical study, we first use three publicly available and widely used datasets to 

evaluate our proposed system. These datasets include Reuters-21578 [115], Nist Topic Detection 

and Tracking corpus (TDT2) [114], and 20 newsgroups [116]. Reuters-21578 corpus contains 

21578 documents in 135 categories. After removing documents with multiple category labels, it 

left 8,293 documents in 65 categories. In TDT2, those documents appearing in two or more 

categories were removed, and only the largest 30 categories were kept, thus leaving 9,394 

documents in total. 20 newsgroups dataset is a collection of 18,846 newsgroup documents, 

partitioned (nearly) evenly across 20 different newsgroups.  

To evaluate the system performance on domain-specific datasets that has customized category 

definition such as [24,80], we also used a dataset named VDR, that contains 600 vehicle 

diagnostic records, in which documents that contain descriptions that reveal systematic 

engineering or manufacturing failures are defined as of interests (Category-A), and all other 

documents belong to Category-B. The major challenge in this problem is that the documents of 

interests are not explicitly defined by either topics or general descriptions, as shown in the 

following examples: 

Category-A document: “perform abs self roadtest found rear wheel speeds   sensor 

connector corroded into sensor  replace   sensor and connector  road tester  ok clear code”  
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Category-B document: “road roadtest traction control lamp on  eec roadtest code c1280 

u415 om rcm  contact hot line 103912699 check connection at rcm check mounting bolts 

ok  clear code” 

In all of these datasets discussed above, preprocessing tasks mentioned in section 4.1.1 are 

conducted and stop words are removed. Note here, all words having occurrence frequency lower 

than 5  are removed, except VDR dataset. TD matrix weighted by CE_W is then generated 

for each dataset. TD matrix based on tf only is also generated for PLSA model learning, and TD 

matrix weighted by idf is generated for evaluation purpose.  
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5.2 Experiment setup 

Considering that the focus of this work is not improving or comparing machine learning 

algorithms, we use SVM as our classification model throughout different experiments. SVM 

training is carried out with LIBSVM package, which is developed by Chih-Chung Chang and 

Chih-Jen Lin from National Taiwan University [117]. For each dataset, we did 3-fold cross 

validation, and in each fold, we choose 2/3 documents from each class as training set, and the 

remaining 1/3 documents as testing set. We apply the Gaussian Radial Basis kernel function 

(RBF) and tune the parameter gamma to 0.001, 0.001, 0.1 and 0.1, for Reuters, TDT2, 

20newsgroups and VDR, respectively, based on the average testing accuracy of the 3 folds. 

All experiments are performed on a desktop with Intel(R) Core i7 processor operating at 

3.40GHz and 16 GB of memory, with 64-bit Windows 7 system, JDK7.0 + Netbeans 7.3.1, and 

Matlab 2009a. 
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5.3 Build VSM model with PLSA 

Similar to the example discussed in section 4.3.2, in PLSA learning, for all datasets, we define 

the number of maximum iteration R = 500 for training set, and R = 200 for testing set. The 

convergence goal is defined as   = 1E-5. An example of log-likelihood function maximization 

on Reuters dataset is shown in Figure 37. It is obvious that the log-likelihood function converges 

very fast and become very stable after 300 iterations. 

 

We performed experiments on text categorization by investigating what topic number is the 

most appropriate for different datasets, using topic-document features generated by PLSA as text 

representation. The results are illustrated as following in Table 21 and Fig. 38.  From the results, 

we observe that for Reuters, TDT2, 20news and VDR dataset, 60 topics, 140 topics, 140 topics 

and 30 topics yields the best categorization accuracy, respectively. As a result, generally we 

 

Figure 37.  Example of log-likelihood maximization for PLSA 
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should define larger number of topics during PLSA modeling on dataset with larger number of 

terms, but the relationship between term size and number of topics is not simply monotonic and 

linear. In order to obtain promising categorization performance, selecting an appropriate number 

of topics that could best differentiate documents in different classes is very important. In practice, 

we may conclude that it is reasonable to set the number of topics around K , where K is the 

number of indexed terms.  For the convenience of evaluation and analysis, in the later 

experiments, we keep on using 60 topics for Reuters, 140 topics for TDT2 and 20news dataset, 

and 30 topics for VDR dataset.           

 

Table 21 Text categorization performance based on different number of topics generated by PLSA 
 

LTD 

matrix 

generated 

by PLSA 

# of 

Topic = 

20 

# of 

Topic = 

30 

# of 

Topic = 

40 

# of 

Topic = 

60 

# of 

Topic = 

80 

# of 

Topic = 

100 

# of 

Topic = 

120 

# of 

Topic = 

140 

# of 

Topic = 

160 

# of 

Topic = 

180 

Reuters 

(8558 

terms) 

81.27% 80.91% 81.42% 84.60% 83.09% 83.33% 82.87% 81.43% 81.55% 80.12% 

TDT2 

(19448 

terms) 

79.34% 84.39% 85.01% 87.01% 88.62% 89.28% 88.38% 90.24% 88.23% 89.97% 

20news 

(24347 

terms) 

63.28% 63.67% 67.12% 74.24% 78.51% 78.07% 77.33% 79.46% 76.90% 72.13% 

VDR 

(1062 

terms) 

76.79% 82.32% 81.21% 80.11% 77.34% 74.03% 72.87% 70.25% 71.22% 69.55% 
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Figure 38.  Text categorization performance based on different number of topics generated by PLSA 
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5.4 Build VSM model with WordNet ontology 

Similar to the example in section 4.3.3, WordNet ontology network is utilized in our text 

categorization model using “add” rule to generate CD matrix, and “replace” rule to replace 

weighted TD matrix. In our experiments, we first looked into the effect of text categorization 

using terms within different word class, as discussed in section 4.2.1. The results are shown in 

Table 22. It is obvious that the best word class is “Noun”, which generates 377, 1161, 621 and 21 

“concept” features for Reuters, TDT2, 20newsgroups and VDR, respectively, and having a 

promising text categorization accuracy. Although mixed word class also has the similar accuracy 

as “Noun”, it generates much higher dimensionality of feature space. Therefore, for the rest of 

our experiments, while performing WordNet synonym searching, we consistently only consider 

“Noun” synset for each indexed term in T_L generated from training set Tr.  

Secondly, in order to investigate the effect of hypernym/hyponym and meronym/holonym 

relationships in generating “concept” features, we define the weights of the edges for 

hypernym/hyponym and meronym/holonym relationships,   and  , as  1,75.0,5.0,25.0,0 , 

and 
2


  . The results of text categorization accuracy using different weight values for 

hypernym/hyponym and meronym/holonym relationships are shown in Table 23. From the 

results, for Reuters and 20news datasets, 25.0  yields the best performance, while TDT2 and 

VDR datasets have highest accuracy when 5.0 . Therefore, we may conclude that 

hypernym/hyponym and meronym/holonym relationships do help with text categorization, but 
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should not be assigned with a too high weight (e.g., less than 0.5), since synonymy is the most 

important semantic relationship in generating “concept” based features.  

 

Table 22 Text categorization performance using WordNet based on different word class 
 

TD matrix with tf-CE_W + CD matrix ( 25.0 ) 

Categorization accuracy Noun Verb Adjective Mixed 

Reuters 92.74% 92.34% 89.01% 92.26% 

TDT2 97.07% 96.22% 96.15% 96.64% 

20news 87.68% 86.48% 86.58% 86.73% 

VDR 84.53% 82.32% 82.32% 83.97% 

# of concepts generated Noun Verb Adjective Mixed 

Reuters 377 229 138 677 

TDT2 1161 666 645 2201 

20news 621 537 172 1165 

VDR 21 28 11 58 
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Table 23 Text categorization performance using WordNet based on different hypernym/hyponym and 

meronym/holonym weighting 
 

TD matrix with tf-CE_W + CD matrix  

Categorization accuracy 0  25.0  5.0  75.0  1  

Reuters 92.06% 92.74% 91.43% 91.31% 90.91% 

TDT2 97.07% 97.07% 98.02% 97.95% 97.95% 

20news 86.61% 87.68% 86.56% 85.78% 85.53% 

VDR 84.53% 84.53% 85.63% 83.43% 83.43% 
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5.5 Build VSM model with semi-supervised PLSA 

Similar to section 5.3, in semi-supervised PLSA learning, for all datasets, we also define the 

number of maximum iteration R = 500 for training set, and R = 200 for testing set. Number of 

latent topics is defined as 60G  for Reuters and TDT2, 140G for 20news dataset, and 

30G for VDR dataset, which is selected based on results from PLSA learning in section 5.3. 

Also, the convergence goal is defined as   = 1E-5. To investigate the effect of hyper-weight 

that balance the affection of document content and connectivity, we define  1.0,...8.0,9.0 , 

and the categorization accuracy using latent-topic features generated by semi-supervised PLSA is 

evaluated by iterating through different values of  .  

The accuracy and F-1 measure over different   on all of our experiment datasets are shown in 

the following Table 24, Table 25, Fig. 39 and Fig. 40. From the result, we could see that, for 

Reuters, TDT2 and VDR, 6.0  yields the best text categorization performance. For 20News 

dataset, 8.0  yields the best performance, and performance decrease significantly after 6.0 , 

which indicates that in 20News dataset, co-occurrence relationship between words is much more 

important than document connectivity relationship. As a result, we may conclude that we should 

not assign too much weight on document connectivity. E.g., 8.06.0   is a reasonable range 

for parameter tuning. 
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  Table 24 Text categorization accuracy using semi-supervised PLSA based on different hyper-weight values 
 

Semi-supervised PLSA  

Categorization accuracy Reuters TDT2 20news VDR 

9.0  85.55% 89.36% 78.99% 83.42% 

8.0  82.38% 88.45% 79.90% 81.21% 

7.0  85.59% 79.23% 78.94% 84.53% 

6.0  86.15% 91.59% 75.54% 86.74% 

5.0  85.91% 90.71% 75.05% 81.76% 

4.0  85.56% 88.69% 75.27% 80.66% 

3.0  85.87% 84.67% 70.41% 77.35% 

2.0  85.11% 88.31% 62.14% 83.42% 

1.0  79.17% 88.42% 60.15% 82.32% 
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Table 25 Text categorization accuracy using semi-supervised PLSA based on different hyper-weight values 

Semi-supervised PLSA 

Average F-1 measure Reuters TDT2 20news VDR 

9.0  0.8077 0.8392 0.7693 0.7842 

8.0  0.7621 0.8485 0.7900 0.7694 

7.0  0.8261 0.7998 0.7817 0.8235 

6.0  0.8272 0.8820 0.7530 0.8717 

5.0  0.8265 0.8542 0.7629 0.8342 

4.0  0.8256 0.8675 0.7774 0.8222 

3.0  0.8266 0.8259 0.7037 0.7748 

2.0  0.8230 0.8468 0.6336 0.7769 

1.0  0.7987 0.8568 0.6222 0.7434 
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Figure 39.  Text categorization performance based on different number of topics generated by PLSA 

 

Figure 40.  Text categorization performance based on different number of topics generated by PLSA 
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5.6 Text categorization performance summary & analysis 

The classification results are presented in the following Table 26 and 27.  We evaluate several 

systems as our baseline, including TD matrix weighted by idf, and using only PLSA generated 

LTD matrix. From the result, it is obvious that global weighting scheme CE_W outperform the idf 

weighting, and the CD matrix generated by WordNet improves categorization accuracy by 

combining with the weighted TD matrix. The proposed system with CE_W weighted and 

WordNet updated TD matrix, plus CD matrix generated by WordNet and LTD matrix generated 

by PLSA, significantly outperforms baseline systems, indicating that adding both word 

relationships and latent semantic information could improve text representation, and the final 

system with semi-supervised PLSA performs even better. From the result it is interesting to see 

that, for dataset with specific user-defined groups and having no explicitly defined classification 

rule as discussed in section 1.2, such as VDR, the latent semantic topic based text representation 

could already do a better job than tf-idf approach. This indicates that for those applications, 

semantic structure is much more important than word occurrence information. Note here, the 

performance of our system is also comparable to or outperforms state-of-art approaches, such as 

those proposed in [121,122,123,124], where the best accuracy on 20News, Reuters and TDT2 

dataset are 88.89%, 92.5% and 93.85%, respectively. 

Considering the efficiency of our text categorization system, VSM_WN_TM, the additional 

processing time comparing with traditional VSM approach includes the following aspects: 
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 Additional features added to the original TD matrix. Considering the original term 

features are generally 20-40 times larger than added features including concept and 

latent topics, the additional processing time for classifier training is around 1%. 

 Updating TD matrix using WordNet. This step only increase around 0.5% of processing 

time. 

 PLSA model learning for training set and testing document. The processing time of 

learning process varies on different size of datasets, and the longest training time, 

which is for 20news dataset, takes around 1 hour. However, this could be further 

reduced significantly by term feature selection and parameter tuning.    
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Table 26 Text categorization accuracy comparison 

 

 Reuters TDT2 20news VDR 

TD matrix weighted by idf 

(Baseline) 

91.03% 89.37% 85.85% 80.95% 

TD matrix weighted by CE_W 92.10% 96.01% 87.25% 85.08% 

TD matrix weighted by idf  + 

CD matrix 

91.46% 95.09% 87.10% 83.07% 

TD matrix weighted by CE_W  

+ CD matrix (VSM_WN) 

92.74% 98.02% 87.68% 85.63% 

LTD matrix by PLSA 84.60% 90.24% 79.46% 82.32% 

SSTD matrix by semi-

supervised PLSA (VSM_TM) 

86.15% 91.59% 79.90% 86.74% 

WordNet-augmented TD matrix 

weighted by CE_W  + CD 

matrix + LTD matrix 

93.06% 98.78% 88.84% 87.84% 

WordNet-augmented TD matrix 

weighted by CE_W  + CD 

matrix +semi-supervised PLSA 

(VSM_WN_TM) 

94.13% 99.11% 89.15% 89.42% 
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Table 27 Text categorization average F-1 measure comparison 

 

 Reuters TDT2 20news VDR 

TD matrix weighted by idf 

(Baseline) 

0.8962 0.8719 0.8587 0.7792 

TD matrix weighted by CE_W 0.9093 0.9525 0.8737 0.8349 

TD matrix weighted by CE_W  

+ CD matrix (VSM_WN) 

0.9144 0.9796 0.8778 0.8503 

LTD matrix by PLSA 0.8151 0.8696 0.7881 0.7654 

SSTD matrix by semi-

supervised PLSA (VSM_TM) 

0.8272 0.8820 0.7900 0.8717 

Updated TDW matrix 

weighted by CE_W  + CD 

matrix + LTD matrix 

0.9278 0.9902 0.8865 0.8719 

Updated TD matrix with tf-

CE_W + CD matrix +semi-

supervised PLSA 

(VSM_WN_TM) 

0.9321 0.9915 0.8892 0.8887 

 



150 

 

 CONCLUSION AND FUTURE WORK CHAPTER 6.

The major content presented in this dissertation is our research work in the field of typo 

correction and text categorization, using machine learning, statistical modeling and ontology 

networks. Specifically, we first propose solutions to automatic typo correction in text documents, 

in terms of correcting a broad range of typos, from simple typing errors to word boundary errors, 

unconventional use of acronyms, and multiple versions of abbreviations of the same words.  We 

extract general language knowledge and domain specific knowledge by machine learning 

algorithms for identifying unconventional acronyms, grouping similar words (correctly spelled 

and misspelled), and ranking correction candidates.  Secondly, we present our research work in 

generating Vector Space Model (VSM) with ontology networks, as well as latent semantic 

information generated from statistical topic modeling. Unlike the traditional text representation 

using only Bag-of-words (BOW) features without considering relationship among words, we 

utilize semantic and syntactic relationship among words such as synonymy, co-occurrence and 

context so that the text is represented more accurately.  

The results from the performed experiments are highly encouraging. We evaluated our ITDC 

system through a case study that involves the automatic processing of automotive fault diagnostic 

text documents. The performance generated from more than 580000 automotive fault diagnostic 

documents provided by two different automotive manufacturers show that the proposed system 

outperforms state-of-art spell checking systems. Furthermore, the typo correction process 

significantly helps improving text categorization performance, by providing more clean and 

comprehensible text to machines. Moreover, the proposed text representation model is evaluated 
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on three publicly available datasets and a domain-specific dataset. Experiment results show that 

our approach significantly improves text categorization performance by outperforming baseline 

approaches such as using only latent features and traditional VSM approaches. 

Note here, in the field of typo correction, ITDC system is a big step forward towards fully-

automatic spelling correction techniques for processing large size corpora of unstructured text 

documents. We proposed a general framework for utilize external knowledge from both general 

and specific domain text resources, using machine learning techniques and statistical analysis. 

Secondly, we propose a systematic way of building accurate text representation for various text 

mining applications such as text categorization, text clustering, predictive analysis, information 

extraction, etc., by capturing not only single word information, but also syntactic and semantic 

relationship among words. The above ITDC system and VSM_WN_TM model can be combined 

together for any real-world applications that require text preprocessing and text categorization, 

and can be easily transplanted and applied to other text corpus, besides those discussed in this 

dissertation, e.g. text used in social networks such as instant messages and Twitter. 

The approaches we proposed for typo correction and text categorization are not perfect without 

any weaknesses. For the ITDC system, the typo detection, correction and ranking is fully based on 

pre-built external knowledge and well-prepared training data. Typos in previously unseen 

documents that are out of the system knowledge scope might not be corrected very well. Also, 

without sufficient domain-specific knowledge, a lot of non-word typos or domain-specific 

abbreviations still cannot be easily recognized, so that our ITDC system has to be conservative in 

correcting typos. This brings a question of how to update the knowledge bases and improve 

trained system by learning new knowledge incrementally without retraining the whole system, 

either periodically or in real-time. Also, another interesting direction is to use unsupervised or 
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semi-supervised way in learning new knowledge, especially on specific domains having very 

large dataset available. It still requires vast amount of work towards the solution of fully 

automatic and accurate typo correction. 

For the VSM_WN_TM model, the proposed text representation approach requires fine-tuned 

parameters such as number of latent topics, number of maximum iterations, weight assigned to 

hypernym/hyponym and meronym/holonym relationships, hyper-weight that balance the 

affection of document content and connectivity, etc. Although they all have optimized range of 

values based on our experiments, adjustment may still be necessary across different applications 

in terms of dataset characteristics and user requirements, in order to get the best performance. As 

a result, efficient and fully automatic approaches could be developed to determine the best set of 

parameters for specific application. Secondly, information from either ontology networks or 

statistical topic modeling might also generate additional “noise” features that affect the text 

categorization accuracy. Instead of concatenate these features together with BOW features, other 

approaches such as a hierarchical machine learning framework or a combination of multiple 

classifiers discussed in [119] could be a future direction to perfect our approach. Last but not 

least, in terms of efficiency, with very large dataset, the system might be slow in finding 

connections between documents. The next step of work will be redesign our algorithm for 

parallel computing based on MapReduce platform such as Hadoop [118], so that our approach 

could be extended to “big text”.       
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