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Summary. Substantial progress has been made in identifying single genetic variants predisposing to common complex dis-
eases. Nonetheless, the genetic etiology of human diseases remains largely unknown. Human complex diseases are likely
influenced by the joint effect of a large number of genetic variants instead of a single variant. The joint analysis of multiple
genetic variants considering linkage disequilibrium (LD) and potential interactions can further enhance the discovery process,
leading to the identification of new disease-susceptibility genetic variants. Motivated by development in spatial statistics, we
propose a new statistical model based on the random field theory, referred to as a genetic random field model (GenRF),
for joint association analysis with the consideration of possible gene–gene interactions and LD. Using a pseudo-likelihood
approach, a GenRF test for the joint association of multiple genetic variants is developed, which has the following advantages:
(1) accommodating complex interactions for improved performance; (2) natural dimension reduction; (3) boosting power in the
presence of LD; and (4) computationally efficient. Simulation studies are conducted under various scenarios. The development
has been focused on quantitative traits and robustness of the GenRF test to other traits, for example, binary traits, is also
discussed. Compared with a commonly adopted kernel machine approach, SKAT, as well as other more standard methods,
GenRF shows overall comparable performance and better performance in the presence of complex interactions. The method
is further illustrated by an application to the Dallas Heart Study.
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1. Introduction
With the advance of high-throughput technologies, high-
dimensional genetic data have been widely used in association
studies for the identification of genetic variants contributing
to common complex diseases. While a large number of ge-
netic variants have been revealed today to be individually
associated with complex diseases, they only explain a small
proportion of heritability (Manolio et al., 2009). Complex dis-
eases are likely influenced by the joint effect of genetic variants
through complex biology pathways, given the fact that genes
are the functional sets. However, the multiple testing problem
occurs when one considers a set of single locus analyses, which
dramatically diminishes power. Therefore, the joint analysis
of a functional set of genetic variants simultaneously can fur-
ther enhance the discovery process, leading to the identifi-
cation of new genetic variants associated with complex dis-
eases (Chatterjee et al., 2006). While the conventional linear
or logistic regression models can easily be used for joint as-
sociation analyses, they are subject to several issues, such as
multiple-collinearity, when dealing with a large ensemble of
dense genetic markers. The exponentially increased number
of parameters also makes them impractical to model two-way
or high-order interactions among a large number of genetic
variants (Ritchie et al., 2001).

Several new statistical methods have been recently de-
veloped for joint association analysis, including the kernel
machine-based method (well known as SKAT)(Wu et al.,

2010, 2011) and the similarity regression (SIMreg) (Tzeng et
al., 2009). Both methods significantly reduce the number of
regression parameters, making it feasible and computationally
efficient to handle high-dimensional variants. In addition, they
account for linkage disequilibrium (LD) and potential inter-
actions, which further improve performance. Both SKAT and
SIMreg can be thought of as being developed from the general
idea that, if genetic association exists, then genetic similarity
leads to trait similarity, which is also the intuition behind our
method.

In this article, we propose a random field framework for
modeling and testing for the joint association of multiple ge-
netic variants. We view outcomes as stochastic realizations
of a random field on a genetic space and propose to use a
random field model, referred to as a genetic random field
model (GenRF), to model the joint association. This approach
is motivated by development in spatial statistics where out-
comes are viewed as stochastic realizations of a random field
on a Euclidean space (Cressie, 1993). This perspective leads
to a very distinctive model from the aforementioned meth-
ods; specifically, GenRF regresses the response of one sub-
ject on responses of all other subjects. GenRF can be under-
stood from the intuition that genetic similarity leads to trait
similarity if variants are associated with the trait. Under the
GenRF model, testing for the joint association reduces to a
test involving a scalar parameter. Using the pseudo-likelihood
method, a test for the joint association is developed, which
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enjoys many appealing features as SKAT and can achieve
comparable or better performance than existing methods, as
demonstrated by simulation studies in Section 3 and a real
data application in Section 4. Much of the development is
focused on quantitative traits and robustness of the test to
other traits, for example, binary traits, is also discussed.

There is a long history of applying spatial statistical meth-
ods to the analysis of genetic data (e.g., Molitor, Marjoram,
and Thomas, 2003a, 2003b; Thomas, et al., 2003; De Iorio and
Verzilli, 2007). For example, De Iorio and Verzilli (2007) used
a spatial probit model to account for the local spatial correla-
tion between variants physically close for fine-scale mapping
of disease genes. Molitor et al. (2003b) used spatial clustering
techniques for fine-scale gene mapping. Probably, the most
closely related work to ours is Molitor et al. (2003a), which
used a spatial auto-regressive model for analysis of haplotypes
effects and gene mapping. It differs from our work in two ways.
First, it is haplotype-based whereas ours is genotype-based.
Second, it is developed from the Bayesian framework where
the trait is related to haplotypes through a linear model and
the spatial model is used to model the prior distribution of
haplotype effects, whereas our method directly models traits
using a spatial model via a frequentist approach. In this ar-
ticle, we focus on multi-marker association testing and the
direct spatial modeling of traits using a frequentist approach
leads to a test that is analytically tractable and easy to im-
plement.

2. Method

2.1. Genetic Random Field Model

Consider a study where n subjects are sequenced in a region
of interest. For subject i, i = 1, . . . , n, let Gi denote the geno-
type for the p variants within the region, Yi the trait or phe-
notype, and Xi the other covariates including, for example,
demographic and environmental factors. We are interested in
studying the joint association between variants Gi and trait
Yi, possibly adjusted for the effect of Xi.

As SKAT and SIMreg, our method is also motivated by the
general idea that, if the genetic variants are jointly associated
with a trait, then the genetic similarity across subjects will
contribute to the trait similarity. To put it in another way,
if variants are jointly associated with the trait, then the re-
sponse of a subject would be close to the response of other
subjects who share similar genetic and possibly other vari-
ables. Based on this key idea, we propose to directly model the
response of each subject as a function of all other responses
and the contribution of other responses to Yi is weighted by
their genetic similarity.

For simplicity, we temporarily assume Yi’s are centered
(have mean zero) and there are no other adjustment covari-
ates. Specifically, based on the idea discussed above, we model
the conditional distribution of Yi given all other responses as

Yi|Y−i ∼ γ
∑
j �=i

s(Gi, Gj)Yj + εi, (1)

where Y−i denotes responses for all other subjects except Yi;
s(Gi, Gj) is known weights, weighting the contribution of Yj

on approximating (or predicting) Yi via their genetic similar-

ity; γ is a non-negative coefficient measuring the magnitude
of the overall contribution, further discussed below; and εi’s
are random errors. A proper weight function s(Gi, Gj) gives
higher value when the two subjects are more similar in terms
of genetic variants and, as discussed below, can be viewed as
a measure for proximity of two subjects in a genetic space.
The random errors εi’s are assumed to be independent and
identically distributed with normal (0, ζ2); extension to dis-
tributions other than normal is discussed in Section 2.2.

A main distinction between model (1) and the usual re-
gression is that (1) models the conditional distribution of Yi

given traits of other subjects, whereas in the usual regression
one models the conditional distribution of a subject’s traits
given his/her genetic variants. Intuitively, model (1) states
that the trait of a subject can be approximated by traits of
other subjects who are similar in genetic variants, if variants
are associated with the trait. The coefficient γ indicates the
magnitude of the trait similarity as a result of genetic simi-
larity. Thus, γ can also be interpreted as a measure for the
magnitude of the joint association of Gi with Yi. Specifically,
if Gi is not associated with Yi, then regardless of how similar
subject i is to other subjects in terms of their genetic variants,
the trait Yi is independent of all other Yj’s for j �= i; that is,
γ = 0. On the contrary, if Gi is strongly associated with Yi,
then one may expect Yi can largely be predicted by traits of
subjects having the same or similar genetic variants and a
large γ indicates a strong joint association. Therefore, we can
test the joint association of genetic variants with the trait by
testing a null hypothesis involving a single parameter, that is,
H0 : γ = 0.

Models like (1), where responses are regressed on responses
themselves, are referred as auto-regressive models and are
commonly used in spatial statistics. In this article, we view the
trait as a random field on a genetic space, and from this per-
spective, model (1) is formally a conditional auto-regressive
(CAR) model (Cressie, 1993). A random field is a generaliza-
tion of the notation of a stochastic process (Adler and Tay-
lor, 2007). Informally, a stochastic process is a set of random
variables indexed by integers or real numbers. A random field
can be defined in more general spaces with the index set be-
ing an Euclidean space of dimension greater than one or other
spaces. For example, in spatial statistics, crop yields of regions
can be viewed as a random field defined in a two-dimensional
space. Regions that are closer in location have more similar
crop yields if spatial correlation exists. For our problem, we
may view observed traits as realizations of a random field de-
fined in a p-dimensional space of the p genetic variants; that
is, corresponding to each “location” in the p-dimensional ge-
netic space, there is a random response variable associated
with it. Similarly, responses from locations that are “closer”
in the genetic space are expected to be more similar if the
genetic association exists. In this sense, our model is a gen-
eralization of the auto-regressive model in spatial statistics.
Models like (1) were firstly studied in the seminar work of
Besag (1974) for random fields and we will term our model
(1) as a genetic random field (GenRF) model. As a matter of
fact, the GenRF model is closely related to the CAR model
in spatial statistics; that is s(Gi, Gj) analogously defines the
proximity of neighbor Gj to Gi and γ is the counterpart of
a spatial dependence parameter. However, we note that the
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usual tests of spatial dependence, for example, the Cliff–Ord-
test (Cliff and Ord, 1972) and the Lagrange multiplier test
(Burridge, 1980), do not apply in our setting to test for the
joint association of variants. The reason is that the matrix
S, defined below, in our GenRF model does not satisfy the
regularity condition usually assumed in spatial statistics for
deriving the asymptotic distribution, as each subject has in-
finite neighbors in the genetic space.

We have yet to define a measure for “closeness” in the ge-
netic space. Suppose each component of Gi records the num-
ber of minor alleles in a single locus and takes on values
{0, 1, 2}, respectively, corresponding to {AA, Aa, aa}. Then a
sensible measure for closeness or similarity is the so called
identity-by-state (IBS) (Wu et al., 2010), defined as

s(Gi, Gj) =
p∑

k=1

{2 − |Gik − Gjk|}.

That is, the IBS measures the number of alleles in the region
of interest shared by two individuals; for example, for p = 1,
s(AA, AA) = 2, s(Aa, aa) = 1, s(AA, aa) = 0. Other measures
for closeness in the genetic space rather than IBS are also pos-
sible, for example, the other kernel functions discussed in Wu
et al. (2010), providing flexibility in our GenRF model. Simi-
lar to SKAT, our GenRF model can also incorporate weights
to increase the importance of rare variants. Specifically, one
can define s(Gi, Gj) = ∑p

k=1
wk{2 − |Gik − Gjk|}, where wk is

a prespecified weight for variant k; see Wu et al. (2011) for
more discussions on wk.

So far we have focused on the situation where no covari-
ate adjustment is required. If adjustment for other factors is
needed a natural extension of model (1) is given by

Yi|Y−i, Xi ∼ βTXi + γ
∑
j �=i

s(Gi, Gj)(Yj − βTXj) + εi. (2)

An intercept term is included in Xi and, as a result, in (2)
Yi’s are not required to be centered. Under this model, testing
for the joint association of Gi with Yi after adjusting for other
factors is also equivalent to testing H0 : γ = 0. We will mainly
focus on this more general form of the GenRF model in the
development of a testing procedure. For simplicity, the matrix
form of the GenRF model is given by

Y |Y−, X = Xβ + γS(Y − Xβ) + ε, (3)

where Y is (Y1, . . . , Yn)
T; Y− is (Y−1, . . . , Y−n)

T; X is an n × q

matrix defined as (XT
1 , . . . , XT

n )T; ε ∼ normal (0, ζ2In×n); and
S is an n × n symmetric matrix with zeros on the diagonal
and the (i, j)-th element s(Gi, Gj) for i �= j.

According to the factorization theorem of Besag (1974), our
GenRF model in (2) uniquely determines the following joint
distribution of Y , that is,

Y |X ∼ Xβ + v, v ∼ N(0, ζ2(I − γS)−1), (4)

where v is an n-dimensional random column vector. Note, the
coefficient γ used for describing the conditional expectation

of Yi given others in model (1) actually describes the corre-
lations among Yi’s. It is clear that, under the null hypothesis
that there is no association between Gi and Yi, that is, γ = 0,
Yi’s are uncorrelated, but if γ > 0, GenRF states that Yi’s are
positively correlated as a result of having similar genetic vari-
ants associated with the trait.

2.2. Genetic Random Field Test

In this subsection, we focus on developing a test for the null
hypothesis H0 : γ = 0 based on model (2). Model (2) states
that, given responses from all other subjects and covariates
Xi, the conditional distribution of Yi is normal with mean
βTXi + γ

∑
j �=i

s(Gi, Gj)(Yj − βTXT
j ) and variance ζ2. We con-

struct the pseudo-likelihood according to Besag (1975) as

Lpd =
n∏

i=1

{
1√
2πζ2

exp
[

− 1

2ζ2

{
Yi − βTXi

− γ
∑
j �=i

s(Gi, Gj)(Yj − βTXj)
}2

]}
,

which is a product of the conditional densities of Yi across i.
Also according to Besag (1975), assuming β is known, one may
estimate γ by the maximum pseudo-likelihood method. The
estimator for γ can be obtained by minimizing

∑n

i=1

{
Yi −

βTXi − γ
∑

j �=i
s(Gi, Gj)(Yj − βTXj

}2
, which in matrix nota-

tion is equal to

{(I − γS)(Y − Xβ)}T(I − γS)(Y − Xβ).

The minimization leads to an estimator for γ given by

⇒ γ̃ = (Y − Xβ)TS(Y − Xβ)

(Y − Xβ)TS2(Y − Xβ)
. (5)

Intuitively, one expects that a large value of γ̃ would give us
evidence to reject the null hypothesis that γ = 0. In practice,
β in unknown. We propose to replace β by its least square esti-

mator β̂ under the null hypothesis, that is, β̂ = (XTX)−1XTY ,

which is unbiased for β. Substitute β̂ into the expression for
γ̃ and straightforward algebra leads to the final test statistic:

γ̂ = YTBSBY

YTBS2BY
, (6)

where B = I − X(XTX)−1XT. Again a large value of γ̂ sup-
ports the rejection of the null hypothesis.

We next show how the p-value for testing γ = 0 can be
obtained based on the test statistic γ̂; that is, we would like
to calculate the probability of γ̂ greater than the observed
value of the statistic under the null hypothesis. Suppose η

is the observed value of the test statistic γ̂. Since BS2B is
positive-definite, we have

PH0

(
YTBSBY

YTBS2BY
> η

)
= PH0

(
(BY)T(S − ηS2)BY > 0

)
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As it is assumed that εi ∼ N(0, ζ2), i.i.d. across i, it follows
that BY ∼ N(0, ζ2B2) under the null hypothesis. On the other
hand, the statistic γ̂ in (6) is ancillary to ζ2 because ζ2 in the
numerator and denominator cancels out. Therefore, the above
equation becomes

PH0

(
(BY)T(S − ηS2)BY > 0

)
= P

(
ZT(S − ηS2)Z > 0

)
,

where Z is an n × 1 random vector following N(0, B2). Apply-
ing standard results on the distribution of quadratic form in
normal random variables, we have

ZT(S − ηS2)Z ∼
n∑
i

λi�i,

where �i’s are i.i.d random variables with χ2
1 distribution, and

{λi} are the eigenvalues of B(S − ηS2)B. The final p-value can
be obtained by Davies’ exact method (1980) for the weighted
summation of independent Chi-square variables.

The proposed test has several appealing properties. First,
due to the analytical form of the test statistic, the computa-
tional burden is well controlled. Second, as γ̂ in (6) is ancillary
to ζ2, unlike SKAT, there is no need to plug in a consistent es-
timator for ζ2. Third, the proposed method improves power by
exploiting LD and allowing for possible complex interactions
among variants. LD can cause correlations between variants,
especially when we consider nearby loci. Considering similar-
ity in variants can naturally reduce the degree of freedom. In
the extreme case where components of Gi are “perfectly corre-
lated,” the similarity argument will consider the whole set as
a single variable. In addition, genetic variants involved in the
disease pathway are more likely to interact with each other
than contribute to risk individually, known as the epistatic
variants effect. Specifying two-way interactions in a set of
loci is a challenging high-dimensional problem and the sit-
uation gets even worse in modeling higher order interactions.
Since GenRF does not directly model the relationship of Gi

with Yi, the difficulty of modeling complex interactions are
circumvented and the interaction effect is naturally incorpo-
rated through measuring genetic similarity. Finally, as SKAT,
the GenRF test can boost power of testing rare variants by
increasing their weights by specifying wk appropriately for
variant k.

2.3. Robustness to Other Distributions

The derivation of the GenRF test given above is built on
the normal distribution assumption. Asymptotically, the pro-
posed test is robust to distributions other than normal
with slight modification. Consider PH0((BY)T(S − ηS2)BY >

0), where it is now assumed Y follows an arbitrary distri-
bution with mean zero and possibly heteroscadastic vari-
ances. The random quantity (BY)T(S − ηS2)BY is a quadratic
form in BY (with mean 0) with matrix A = S − ηS2. Rotar
(1974) proved that under sufficiently weak conditions on
matrix A and for large n, PH0((BY)T(S − ηS2)BY > 0) is

close to PH0(Z̃
T
(S − ηS2)Z̃ > 0), where Z̃ follows N(0, �)

with � being the covariance matrix of BY . In addition,

Gotze and Tikhomirov (1999) gave an upper bound on

supx

∣∣PH0((BY)TABY < x) − PH0(Z̃
T
AZ̃ < x)

∣∣. These proper-
ties lead to the robustness of the GenRF test, with minor
modification, as long as BY has expectation zero under the
null hypothesis, which is true since the least squares estimator
X(XTX)−1XTY is unbiased for the mean of Y regardless of the
distribution of Y . For example, for binary traits, � = BWB,
where W = diag(μ1(1 − μ1), . . . , μn(1 − μn)) and μi = βTXi.
Then

Z̃
T
(S − ηS2)Z̃ ∼

n∑
i

λ̃i�i,

where �i’s are i.i.d random variables with χ2
1 distribution, and

{λ̃i} are the eigenvalues of W1/2B(S − ηS2)BW1/2. The final p-
value can be also obtained by Davies’ exact method (1980).
We comment that, as the score test in SKAT is of similar
quadratic form, one would expect that SKAT may share this
property as well.

Therefore, one can directly use the test statistic in (6)
for binary traits or traits that have distributions other than
normal and the test, with a minor modification on the null
distribution considering heteroscedastic variances, would be
asymptotically valid. Note, this test corresponds to a model
where the trait mean is related to a linear predictor through
an identity link and may seem unnatural for binary traits.
However, we argue that the model is mostly viewed as a mean
leading to a sensible test. We also note that the commonly
used trend test for testing genetic associations in an additive
genetic model can be developed from a linear model for the
mean of a binary trait (Laird and Lange, 2011), and a lin-
ear model is used for testing genetic associations for a binary
trait in Ballard, Cho, and Zhao, (2010) as well. We note that a
possible practical issue for binary traits may arise in practice,
that is, the estimated means {μ̂i} may be outside of [0,1] and

consequently Ŵ
1/2

is not well defined. In this case, a remedy is
to truncate the predictions {μ̂i} at 0 or 1. The practical issue
may arise when covariates have a wide support and a very
strong effect and is less of a concern otherwise, for example,
when covariates are categorical. Certainly, studying other link
functions, for example, the logit link, to avoid this practical
problem is important in the future. The validity of the test,
corresponding to an identity link, is further studied by simula-
tions shown in Sections 1 and 2 of the supplemental materials.

3. Simulation Studies

We report results of several simulations, each based on 1000
Monte Carlo (MC) replicates, to evaluate the performance of
the GenRF test, relative to existing methods including SKAT.
Four sets of simulations are conducted to evaluate: (1) type-
1 error rates under different minor allele frequencies (MAF)
and sample sizes, (2) power for common variant analysis un-
der different LD, interaction effect, and proportions of causal
SNPs, (3) power under scenarios where the causal SNPs in-
clude rare variants, and (4) robustness of the GenRF test to
different distributions of the response variable.

In the first set of simulations, we evaluated type-I error
rates using sample size n = 50, 100, 200, and 500 . Genotypes
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for p = 20 loci without LD were simulated, with MAF for
each locus 0.005, 0.01, 0.1, or 0.2. Responses were generated
according to

Yi = εi, where εi ∼ N(0, 1),

so that no genetic variant is associated with the trait.
In the second set of simulations, we evaluated power under

scenarios varying in LD, interaction effects, or the propor-
tions of causal SNPs, setting p = 20 and n = 500. To simu-
late LD, the 20 loci were evenly divided into two regions. For
each region, the haplotype allele was simulated one by one
with MAF 0.2 and correlation coefficient (ρ) between adja-
cent pair of alleles equal to 0, 0.2, 0.4, and 0.8, respectively,
for each scenario. Genotypes were then generated by summing
up two haplotype vectors. This way, all the loci are positively
correlated with others in the same region. Responses were
generated according to

Yi = 0.2Gi,5 + 0.2Gi,15 + εi, where εi ∼ N(0, 1).

That is, variants 5 and 15, belonging to different LD regions,
are associated with the trait.

To generate data with complex interactions, we set MAF
0.2, and the LD parameter ρ = 0.4. Data were generated such
that two-way interactions exist between K (K = 1, 2, 3, or 4)
pairs of alleles, with alleles in each pair belonging to the two
different LD regions as described above. Responses were then
generated according to the following model,

Yi = 0.2

K∑
k=1

Gi,4+kGi,14+k + εi, where εi ∼ N(0, 1). (7)

We see that these models contain only interactions but no
main effect of each locus.

To examine the effect of causal proportion, we set MAF
0.2 and ρ = 0.4. For each MC data set, K causal SNPs were
randomly selected with K = 1, 2, 3, or 4, each corresponding
to 5%, 10%, 15%, and 20% causal SNPs. Responses were then
generated according to

Yi = 0.15

K∑
k=1

Gi,Bk
+ εi, where εi ∼ N(0, 1), (8)

where (GB1 , . . . , GBK
) are the selected causal SNPs.

Simulation set 2 has focused on common variants. The third
set of simulations considered scenarios involving rare variants
and the scenarios vary in proportions of causal variants. We
set p = 20, n = 500, and ρ = 0. The 20 SNPs were divided
into two regions, one with 16 rare variants (MAF 0.008) and
one with 4 common variants (MAF 0.1). Note, the proportion
of rare variants is chosen according to the Dallas Heart Study
. Two scenarios were considered where traits were associated
with: (1) rare variants only or (2) both common and rare
variants. For each scenario, K rare SNPs were causal with
K = 1, 2, 4, 6, 8, 10, 12, or 14, that is, K × 6.25% SNPs
in the rare region are causal. In the scenario that both rare
and common variants are causal, we set one of the common

SNP as causal additionally. The effect size β was set to be a
decreasing function of MAF with β = 0.2 × | log10 MAF| as in
Wu et al. (2011). Responses were generated according to the
following model,

Yi = β1

K∑
k=1

Gi,k + β2Gi,20 + εi, where εi ∼ N(0, 1),

where β1 = 0.2 × | log10 0.008|, β2 = 0 for scenario 1 and β1 =
0.2 × | log10 0.008|, β2 = 0.2 × | log10 0.1| for scenario 2.

We considered one additional scenario where the 500 sub-
jects’ genotypes were simulated based on data from the Dal-
las Heart Study. For each MC data set, we randomly selected
one gene, then we randomly choose 10%, 20%, . . . , 80% causal
variants from those rare variants with true MAF less than 1%.
Traits were simulated by

Yi =
K∑

k=1

βBk
Gi,Bk

+ εi, where εi ∼ N(0, 1),

where (GB1 , . . . , GBK
) are the selected causal variants and

βBk
= 0.2 × | log10 MAFBk

|.
In the fourth set of simulations, we further evaluated the

robustness of the GenRF test to distributions other than nor-
mal, specifically, exponential, binary and mixture normal dis-
tributions. Details on the simulation setup is described in the
supplemental materials.

In terms of type-I error rates, we only evaluated the pro-
posed GenRF test and SKAT. In both GenRF and SKAT,
we adopted the IBS kernel and considered both weighted and
unweighted (i.e., wk = 1) versions; in the weighted version,
Beta (1, 25) weight as in Wu et al. was used (2011). In addi-
tion to SKAT, we compared GenRF test to other more stan-
dard methods. For common variant scenarios, we included
the principle component regression test (PCR) (Guaderman
et al., 2007); the MinSNP test (Ballard et al., 2010), and the
F -test in linear regression model including only main effects.
For scenarios involving rare variants, the variable-threshold
(VT) test (Price et al., 2010) was included.

Table 1 shows results for the first set of simulations with
different MAF and sample sizes. The GenRF test achieves the
type I error rate close to the nominal level. However, SKAT
is conservative in some scenarios due to the estimation of
nuisance parameters, especially when the sample size is small.
Since the GenRF test is an exact test without asymptotic
approximation under normal assumption, the type I error rate
is better controlled.

Table 2 shows the power of various methods under common
variant scenarios. The first part shows the effect of LD on
power. When LD does not exist or is low, for example, ρ < 0.4,
the three linear regression-based tests, PCR, MinSNP, and
F -test, are more powerful as expected because the data were
generated exactly from a linear model. Among them, the PCR
and MinSNP can exploit LD and have increasing power when
LD is higher. When LD is moderate or high, both the GenRF
test and SKAT have higher or even substantially higher power
than the other tests by borrowing information from other loci.
The power of the GenRF test is comparable to that of SKAT.
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Table 1
Type I error rate simulation results under different levels of MAF and sample size (1000 replicates)

Different levels of MAF and sample size (n)

0.005 0.01
MAF

Methods n 50 100 200 500 50 100 200 500

GenRF 0.043 0.049 0.050 0.045 0.040 0.043 0.061 0.048
GenRF.w 0.048 0.056 0.051 0.045 0.043 0.046 0.060 0.046

SKAT 0.035 0.051 0.057 0.057 0.034 0.046 0.050 0.039
SKAT.w 0.034 0.050 0.053 0.059 0.029 0.042 0.046 0.035

0.1 0.2
MAF

n 50 100 200 500 50 100 200 500

GenRF 0.051 0.049 0.055 0.044 0.050 0.058 0.055 0.049
GenRF.w 0.052 0.052 0.053 0.048 0.047 0.051 0.052 0.046

SKAT 0.022 0.039 0.041 0.041 0.016 0.030 0.041 0.043
SKAT.w 0.041 0.035 0.043 0.054 0.045 0.043 0.046 0.041

Each cell contains the type I error rate, that is, rejection rate when data are generated under the null model. GenRF, the unweighted
genetic random field test; SKAT: the unweighted sequential kernel association test of Wu et al. (2011); GenRF.w, GenRF with Beta
(1,25) weight as in Wu et al. (2011); SKAT.w, SKAT with Beta (1,25) weight.

The second part shows results when there are complex in-
teractions between variants but no main effects. Note the
LD structure is the same as that in part 1 with ρ = 0.4 in
which the five methods have comparable power. Therefore,
the power difference is mainly due to the complex interac-
tions. In these scenarios, the linear regression-based methods
has low power in detecting the joint association. Both GenRF
test and SKAT attain much larger power. Moreover, the pro-
posed GenRF test has larger power than SKAT in detecting
the joint association effect when complex interactions exist.

The third part shows results when the causal proportion
varies. Similarly, the LD parameter ρ is set to be 0.4 to elim-
inate the impact of factors other than the causal proportion.
Because MinSNP is based on single SNP analysis, the test is
less powerful especially when causal proportion is high, that
is 15% or 20%. GenRF and SKAT show comparable power
in general, but GenRF performs better as causal proportion
gets higher.

Table 3 shows results for scenarios involving rare variants.
When the trait is only associated with rare variants, the
weighted GenRF and SKAT have significantly larger power
as we expected because the weights favor the rare variants.
The weighted GenRF has lower power than SKAT when the
causal proportion is low, for example, ≤25%, but has larger
power then the proportion is greater than 25%. Both weighted
GenRF and SKAT have comparable or larger power relative
to the VT test and F -test. The scenario based on the Dallas
Heart Study shows similar results, that is GenRF performs
better under higher causal proportion (≥20%).

When causal variants include both common and rare vari-
ants and the effect size is a decreasing function of MAF, the
unweighted GenRF and SKAT have comparably larger power
than the weighted tests when the rare causal proportion is low
(≤37.5%). This is not surprising as the effect of the common
variant is relatively large but down-weighted in the weighted
GenRF and SKAT. As the rare causal proportion increases

Table 2
Power simulation results for common variant analysis under different levels of linkage disequilibrium (LD), interaction

effects, and causal proportion (1000 replicates)

Different level of LD Number of two-way interactions Different causal proportion

Method 0 0.2 0.4 0.8 1 2 3 4 5% 10% 15% 20%

GenRF 0.462 0.472 0.566 0.816 0.119 0.364 0.652 0.862 0.124 0.321 0.539 0.776
SKAT 0.491 0.487 0.545 0.764 0.100 0.299 0.546 0.746 0.150 0.324 0.506 0.727

PCR 0.495 0.467 0.518 0.676 0.119 0.268 0.470 0.657 0.159 0.308 0.473 0.679
MinSNP 0.570 0.507 0.543 0.656 0.098 0.252 0.408 0.576 0.180 0.342 0.463 0.624
F -test 0.545 0.514 0.524 0.538 0.112 0.231 0.394 0.562 0.145 0.278 0.471 0.665

GenRF, the unweighted genetic random field test; SKAT, the unweighted sequential kernel association test of Wu et al. (2011); PCR, the
princeple component regression test of Guaderman et al. (2007); MinSNP, the MinSNP test considered by Ballard et al. (2010); F -test,
the F -test in linear regression.
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Table 3
Power simulation results under scenarios involving rare variants with different proportion of causal variants (1000 replicates)

Different proportion of causal variants
Rare causal variants

Method 6.25% 12.5% 25% 37.5% 50% 62.5% 75% 87.5%

GenRF 0.045 0.073 0.139 0.209 0.305 0.466 0.593 0.739
SKAT 0.048 0.052 0.066 0.073 0.086 0.100 0.111 0.126

GenRF.w 0.062 0.087 0.212 0.429 0.660 0.848 0.950 0.980
SKAT.w 0.083 0.125 0.252 0.368 0.515 0.654 0.736 0.814

VT 0.065 0.082 0.128 0.209 0.314 0.487 0.680 0.852
F -test 0.080 0.113 0.190 0.302 0.449 0.556 0.670 0.765

Common and rare causal variants

6.25% 12.5% 25% 37.5% 50% 62.5% 75% 87.5%

GenRF 0.191 0.259 0.380 0.501 0.625 0.761 0.861 0.927
SKAT 0.274 0.281 0.287 0.313 0.331 0.359 0.387 0.416

GenRF.w 0.061 0.097 0.232 0.434 0.646 0.853 0.939 0.981
SKAT.w 0.078 0.155 0.277 0.386 0.523 0.631 0.732 0.818

VT 0.217 0.306 0.418 0.504 0.603 0.720 0.845 0.930
F -test 0.163 0.270 0.354 0.477 0.618 0.701 0.779 0.843

DHS

10% 20% 30% 40% 50% 60% 70% 80%

GenRF 0.080 0.140 0.169 0.247 0.329 0.414 0.507 0.600
SKAT 0.071 0.089 0.114 0.117 0.153 0.191 0.205 0.271

GenRF.w 0.100 0.204 0.321 0.434 0.588 0.696 0.796 0.875
SKAT.w 0.118 0.196 0.294 0.330 0.433 0.544 0.600 0.688

VT 0.095 0.159 0.254 0.359 0.498 0.612 0.721 0.827
F -test 0.147 0.239 0.355 0.423 0.528 0.653 0.721 0.795

Rare causal variants: causal variants are rare only; common and rare causal variants: causal variants are both rare and common; DHS:
scenario based on the Dallas Heart Study. GenRF.w, the genetic random field test with Beta (1, 25) weight as in Wu et al. (2011);
SKAT.w, the sequential kernel association test with Beta (1, 25) weight; VT, the variable-threshold test of Price et al. (2010); other
entries as in Table 2.

and the number of common variants is fixed at one, the re-
sults change dramatically. When the rare causal proportion
is higher than 37.5%, the weighted GenRF and SKAT show
higher power than the unweighted counterpart. Overall, for
scenarios considered here, the GenRF test has very good per-
formance relative to others.

Supplementary Tables 1 and 2 show the robustness of the
GenRF test to distributions other than normal. In implement-
ing GenRF and SKAT, the identity link is used in modeling
the responses. The GenRF test achieves the type I error rate
close to the nominal level even when the distribution of the re-
sponse is not normal; the same holds for SKAT. Particularly,
for binary traits, we evaluated the robustness of the GenRF
test to heteroscedastic variances in Section 2 of the Supple-
mentary Material. Valid type I error rates and reasonably
good power are achieved. In addition, the remedy by trunca-
tion when predictions fall outside of the range of [0,1] works
well in practice, even under extreme and possibly unrealistic
scenarios.

4. Application
We applied our method to the Dallas Heart Study (Browning
et al., 2004), a population-based, multi-ethnic study on 3551
subjects whose lipids and glucose metabolism were measured.
In this study, 348 sequence variations in the coding regions
of the four genes, ANGPTL3, ANGPTL4, ANGPTL5, and
ANGPTL6 were discovered. Most of these variants (86%) are
rare with MAF less than 1%. More information regarding the
number of rare variants is shown in the Supplementary Ma-
terial. Individuals who have diabetes mellitus, alcohol depen-
dency, or have taken lipids lowering drugs were excluded as
these factors may confound the interpretation of associations.
Our final analysis was based on data on 2812 subjects after
quality control steps.

We assessed the association between ANGPTL gene fami-
lies and two traits, specifically high-density lipoprotein (HDL)
and triglyceride, using the proposed GenRF test and SKAT,
both with and without weighting. As in the simulation stud-
ies, the IBS kernel and the Beta (1, 25) weight were applied.
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Table 4
Application to Dallas Heart Study for non-synonymous variants

p-Value

Method ANGPTL3 ANGPTL4 ANGPTL5 ANGPTL6

HDL
GenRF 0.487 0.181 0.009∗ 0.417
SKAT 0.981 0.423 0.035∗ 0.504

PCR 0.980 0.775 0.197 0.434
MinSNP 0.178 0.329 0.033∗ 0.729
F -test 0.331 0.148 0.051 0.786

GenRF.w 0.345 0.218 0.036∗ 0.496
SKAT.w 0.965 0.040∗ 0.050∗ 0.535
VT 0.393 0.111 0.051 0.488

Triglyceride
GenRF 0.025∗ 0.221 0.428 0.857
SKAT 0.050∗ 0.312 0.936 0.755

PCR 0.129 0.780 0.787 0.762
MinSNP 0.562 0.219 0.921 0.713
F -test 0.587 0.380 0.904 0.530

GenRF.w 0.100 0.019∗ 0.180 0.466
SKAT.w 0.075 0.006∗ 0.906 0.756
VT 0.993 0.905 0.968 0.050∗

GenRF, the unweighted genetic random field test; SKAT, the unweighted sequential kernel association test of Wu et al. (2011); PCR,
the princeple component regression test of Guaderman et al. (2007); MinSNP, the MinSNP test considered by Ballard et al. (2010);
F -test, the F -test in linear regression; GenRF.w, the genetic random field test with Beta (1, 25) weight of Wu et al. (2011); SKAT.w,
the sequential kernel association test with Beta (1, 25) weight; VT, the variable-threshold test of Price et al. (2010).
∗p-Value is less than or equal to α = 0.05.

Analyses were also carried out using the more traditional
methods including PCR, MinSNP, VT, and F -test. Our anal-
ysis were done for the non-synonymous variants, adjusted for
gender and ethnicity.

The association between ANGPTL4 gene and the level of
HDL and triglyceride was previously discovered by Romeo
et al. (2007). In our analysis, both weighted GenRF and
SKAT gave evidence for the ANGPTL4 and triglyceride as-
sociation (p values: 0.019 and 0.006). Among all the methods
considered, only weighted SKAT showed marginal evidence
for the association between ANGPTL4 and HDL (p-value:
0.040). One possible explanation is that the causal propor-
tion of ANGPTL4 is low and SKAT performs better in this
case as shown in simulation studies. Note that the weighted
GenRF and SKAT uncovered these associations while the un-
weighted tests did not, possibly indicating the causal variants
in ANGPTL4 might be rare (MAF <5%), or the effect size is
negatively correlated with allele frequency. As for ANGPTL5,
our analysis using GenRF provided evidence to support the
association with HDL (p-value: 0.009 and 0.036 for weighted
and unweighted analyses) while SKAT provided marginal ev-
idence (p-value: 0.035 and 0.050). Note the unweighted tests
gave larger p values. Since all variants in ANGPTL5 are rare
(MAF < 5%), the result suggests that the causal variants
might be the rare variants with relatively higher allele fre-
quency. This finding was supported by standard approaches
like MinSNP (p-value: 0.033), F -test (p-value: 0.051), and
VT test (p-value: 0.051). More results are shown in Table 4.
Overall, for this study, GenRF performs comparably to SKAT

and seems to perform better than the other more standard
methods.

5. Discussion

We have proposed a novel framework for modeling and testing
for the joint association of genetic variants with a trait from
the perspective of viewing traits as a random field on a genetic
space. The development has been focused on quantitative
traits with a normal distribution. Based on the GenRF model,
a test for genetic associations was developed and this test en-
joys many appealing features. The GenRF test is based on
testing a null hypothesis involving a single parameter, allow-
ing it to exploit LD to improve power. When LD is moderate
or high, our simulations showed that the GenRF test achieves
much higher power than the more traditional regression-based
methods. The GenRF model is flexible to allow for complex
interaction effects and, as demonstrated by simulations, the
GenRF test is even much more powerful than SKAT in the
presence of complex interaction effects. Moreover, as SKAT,
prespecified variant-specific weights can be incorporated to
boost power for rare variants. Unlike SKAT, the GenRF test
is an exact test under the normal assumption and thus not
overly conservative in finite samples. Finally, the test is com-
putationally easy to implement since an analytical form is
available. In summary, the GenRF test is an appealing alter-
native to SKAT and other existing methods for testing the
joint association of variants with a trait. It can achieve over-
all comparable performance and sometimes even much better
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performance relative to SKAT as well as other methods.
Although we focus on quantitative traits, we note that the

GenRF test is robust to distributions other than normal as
discussed previously and demonstrated by simulation studies.
Specifically for binary traits, although the GenRF model with
an identity link function may seem a bit unnatural, the re-
sulting test with a minor modification is still valid and can
achieve good power. However, due to the conceptual difficulty
associated with modeling binary traits using a linear model
and the possible practical issue that can arise, it would be
interesting to study, within the framework of random field
model, other link functions for binary traits as well as other
distributions in the future.

6. Supplementary Materials

Web Appendices referenced in Sections 2 and 3, and the R
code implementing the method are available with this paper
at the Biometrics website on Wiley Online Library.
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