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1 Matérn Covariance Function

In this section, we define the Matérn covariance function used in the paper and provide relevant

formulas for derivatives.

Definition The Matérn covariance function is defined as

Cν(d; α) =
1

Γ(ν)2ν−1

(√
2νd
α

)ν

Kν

(√
2ν

d
α

)
, (i)

where Kν(x) is the modified Bessel function of the second kind, which can be expressed as

Kν(x) =
∫ ∞

0
exp[−x cosh(t)] cosh(νt)dt, (ii)

and cosh(t) is the hyperbolic cosine function: i.e. cosh(t) = (et + e−t)/2.

Note that Cν(0, α) = 1 and C0.5(d; α) =
√

2
π

√
d
α K0.5

(
d
α

)
= exp

(
− d

α

)
, This is equivalent to the

exponential decay covariance function.

Proposition 1.1 The first order derivative of Kν(x) satisfies with the following equations:

dKν(x)
dx

= −1
2
[Kν+1(x) + Kν−1(x)] for ν ≥ 1, (iii)

and dK0(x)
dx

= −K1(x).
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Proof : By definition, the first derivative of the Kν(x) is

dKν(x)
dx

=
∫ ∞

0

d exp[−x cosh(t)]
dx

cosh(νt)dt

= −
∫ ∞

0
cosh(t) exp(−x cosh(t)) cosh(νt)dt

Note that cosh[(ν± 1)t] = cosh(t) cosh(νt)± sinh(t) sinh(νt) and

cosh(t) cosh(νt) = 1
2 {cosh[(ν + 1)t] + cosh[(ν− 1)t]}. Thus,

Kν(x) =
∫ ∞

0
exp[−x cosh(t)] cosh(νt)dt

=
1
ν

∫ ∞

0
exp[−x cosh(t)]d sinh(νt)

=
1
ν

[
exp[−x cosh(t)] sinh(νt)

∣∣∞
0 −

∫ ∞

0
sinh(νt)d exp[−x cosh(t)]

]
=

x
ν

∫ ∞

0
sinh(t) sinh(νt) exp[−x cosh(t)]dt

=
x

2ν
[Kν+1(x)− Kν−1(x)] .

Furthermore,

Kν−1(x) = Kν+1(x)− 2ν

x
Kν(x) and

dKν(x)
dx

=
ν

x
Kv(x)− Kν+1(x).

This completes the proof.

Proposition 1.2 The first order derivative of the Matérn covariance function with respect to α has the

following representation:

dCν(d; α)

dα
=

2ν

α

[
Cν+1

(√
ν

ν + 1
d; α

)
− Cν(d; α)

]
. (iv)

Proof :

dCν(d; α)

dα
=

d
[

1
Γ(ν)2ν−1

(√
2νd
α

)ν
Kν

(√
2ν d

α

)}
dα

=
(
√

2νd)ν

Γ(ν)2ν−1

d
[
α−νKν(

√
2νdα−1)

]
dα

=
(
√

2νd)ν

Γ(ν)2ν−1

[
−να−ν−1Kν(

√
2νdα−1) + α−ν(−

√
2νdα−2)K′ν(

√
2νdα−1)

]
= − (

√
2νd)ν

Γ(ν)2ν−1

[
να−ν−1Kν(

√
2νdα−1) + α−ν−2(

√
2νd)

dKν(
√

2νdα−1)

dα

]
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By equation (iii), we have

dKν(
√

2νdα−1)

dα
=

[
να√
2νd

Kν(
√

2νdα−1)− Kν+1(
√

2νdα−1)

]
.

It follows that

dCν(d; α)

dα
= − (

√
2νd)ν

Γ(ν)2ν−1

[
2να−ν−1Kν(

√
2νdα−1)− α−ν−2(

√
2νd)Kν+1(

√
2νdα−1)

]
=

(
√

2νd)ν+1

Γ(ν)2ν−1αν+2 Kν+1(
√

2νdα−1)− ν
(
√

2νd)ν

Γ(ν)2ν−2αν+1 Kν(
√

2νdα−1)

=
(
√

2νd)ν+1

Γ(ν)2ν−1αν+2 Kν+1(
√

2νdα−1)− 2ν

α
Cν(d; α)

=
2ν

α

(
√

2νd)ν+1

Γ(ν + 1)2ναν+1 Kν+1(
√

2νdα−1)− 2ν

α
Cν(d; α)

=
2ν

α

(√
2(ν + 1)

√
ν

ν+1 d
)ν+1

Γ(ν + 1)2ναν+1 Kν+1(
√

2(ν + 1)
√

ν

ν + 1
dα−1)− 2ν

α
Cν(d; α)

=
2ν

α

[
Cν+1

(√
ν

ν + 1
d; α

)
− Cν(d; α)

]
.

This completes the proof.

This proposition provides a computational efficient approach to the first derivative of Cv(d; α)

with respect to α in the score function.

2 Multivariate Probit Model

This section derives the composite estimating score function for multivariate probit model. Sup-

pose we consider S spatial clusters and for s = 1, . . . , S. Let ιs ∈ Rd denote the spatial locations

in a d−dimensional Euclidean space. We have ns subjects nested in each cluster. Let ysi denote

the binary outcome of the ith subject nested in cluster s, for i = 1, . . . , ns. We assume that

ysi = I[zsi > 0], Z = (zT
1, . . . , zT

S)
T ∼ N(Xβ, Σ), (v)

3



where zs = (zs1, . . . , zsns)
T and µ = (µT

1, . . . , µT
S)

T with µs = (µs1, . . . , µsns)
T. We assume that

µsi = Φ(xT
siβ),

Σss = var[zs] = (1− ρ)Ins + ρ1ns1
T
ns ,

Σst = cov[zs, zT
t ] = ρCν(dst; α)[1ns1

T
nt
], (vi)

where β is a p× 1 vector and xsi is a p× 1 vector, dst = ‖ιs − ιt‖ and ‖ · ‖ denotes an Euclidean

distance. Functions Φ(x) =
∫ x
−∞ φ(t)dt and φ(t) = 1√

2π
exp(−t2/2) represent the standard nor-

mal distribution function and the standard normal density function respectively. Futhermore, if

(s, i) = (t, j), then σsi,si := var(ysi) = µsi − µ2
si = Φ(xT

siβ)[1−Φ(xT
siβ)]. If (s, i) 6= (t, j), then

σsi,tj := cov(ysi, ytj) = πsi,tj − µsiµtj

= Φ2(xT
siβ, xT

tjβ, ρsi,tj)−Φ(xT
siβ)Φ(xT

tjβ), (vii)

where πsi,tj = Φ2(xT
siβ, xT

tjβ, ρsi,tj) and ρsi,tj = ρCν(dst; α).

The function Φ2(x, y; ρ) =
∫ x
−∞

∫ y
−∞ φ2(t, s; ρ)dtds represents the standard bivariate normal

distribution function, and the density function is

φ2(x, y; ρ) =
1

2π

1√
1− ρ2

exp
{
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

}
.

denotes the standard bivariate normal density function.

Proposition 2.1 The first order derivative of the standard bivariate normal distribution function with

respect to the correlation parameter ρ is equal to the standard bivariate density function. i.e.

dΦ2(x, y, ρ)

dρ
= φ(x, y, ρ). (viii)

Proof : First,

dφ2(x, y, ρ)

dρ
= φ2(x, y, ρ)

ρ

1− ρ2 + φ2(x, y, ρ)
(y− ρx)(x− ρy)

(1− ρ2)2 .

Then,

dΦ2(x, y, ρ)

dρ
= Φ2(x, y, ρ)

ρ

1− ρ2

+
1

(1− ρ2)2

∫ x

−∞

∫ y

−∞
φ2(u, v; ρ)(u− ρv)(v− ρu)dvdu. (ix)
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Also, by some routine linear algebra, we can show that∫ x

−∞

∫ y

−∞
u2φ2(u, v; ρ)dudv

=
[
Φ2(x, y; ρ) + ρ(1− ρ2)φ2(x, y; ρ)

]
−
[

xφ(x)Φ

(
y− ρx√

1− ρ2

)
+ ρ2yφ(y)Φ

(
x− ρy√

1− ρ2

)]
,

∫ x

−∞

∫ y

−∞
v2φ2(u, v; ρ)dudv

=
[
Φ2(x, y; ρ) + ρ(1− ρ2)φ2(x, y; ρ)

]
−
[

yφ(y)Φ

(
x− ρy√

1− ρ2

)
+ ρ2xφ(x)Φ

(
y− ρx√

1− ρ2

)]
,

and ∫ x

−∞

∫ y

−∞
uvφ2(u, v; ρ)dudv

= (1− ρ2)φ2(x, y; ρ)

+ρ

[
Φ2(x, y; ρ)− xφ(x)Φ

(
y− ρx√

1− ρ2

)
− yφ(y)Φ

(
x− ρy√

1− ρ2

)]
.

This further implies that∫ x

−∞

∫ y

−∞
φ2(u, v; ρ)(u− ρv)(v− ρu)dudv

= (1− ρ2)2φ2(x, y; ρ)− ρ(1− ρ2)Φ2(x, y; ρ). (x)

Combining (ix) and (x) completes the proof.

Also by some routine algebra, we obtain

dΦ2(x, y; ρ)

dx
= Φ

(
y− ρx√

1− ρ2

)
φ(x),

dΦ2(x, y; ρ)

dy
= Φ

(
x− ρy√

1− ρ2

)
φ(y). (xi)

From equations (viii) and (xi), the general score function is given by

Usi,tj(θ) = ∆T
si,tjV

−1
si,tjRsi,tj,

where θ = (βT, α, ρ)T. For (s, i) 6= (t, j),

∆si,tj(θ) =
d

dθ


µsi

µtj

σsi,tj

 =


dµsi
dβT

dµsi
dα

dµsi
dρ

dµtj

dβT

dµtj
dα

dµtj
dρ

dσsi,tj

dβT

dσsi,tj
dα

dσsi,tj
dρ
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Specifically,

dµsi

dβT = φ(xT
siβ)x

T
si

dµtj

dβT = φ(xT
tjβ)x

T
tj

dσsi,tj

dβT =
dΦ2(xT

siβ, xT
tjβ; ρsi,tj)

dβT −
dΦ(xT

siβ)Φ(xT
tjβ)

dβT

dµsi

dα
= 0

dµtj

dα
= 0

dσsi,tj

dα
=

2ρ

α

[
(ν + 1)Cν+1

(√
ν

ν + 1
dst; α

)
− νCν(dst; α)

]
φ2(xT

siβ, xT
tjβ, ρsi,tj)

dµsi

dρ
= 0

dµtj

dρ
= 0

dσsi,tj

dρ
= Cν(dst; α)φ2(xT

siβ, xT
tjβ, ρsi,tj)

where

dΦ2(xT
siβ, xT

tjβ, ρ)

dβT = xT
si∇1Φ2(xT

siβ, xT
tjβ, ρsi,tj) + xT

tj∇2Φ2(xT
siβ, xT

tjβ, ρsi,tj)

= xT
siφ(x

T
siβ)Φ

xT
tjβ− ρsi,tjxT

siβ√
1− ρ2

si,tj

+ xT
tjφ(x

T
tjβ)Φ

xT
siβ− ρsi,tjxT

tjβ√
1− ρ2

si,tj

 ,

where ∇rΦ2(x1, x2, ρ) is the first order derivative of Φ2 with respect to argument xr, r = 1, 2.

Also,

dΦ(xT
siβ)Φ(xT

tjβ)

dβT = xT
siφ(x

T
siβ)Φ(xT

tjβ) + xT
tjφ(x

T
tjβ)Φ(xT

siβ).

Note that

Rsi,tj =


ysi − µsi

ytj − µtj

(ysi − µsi)(ytj − µtj)− σsi,tj

 .
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And

Vsi,tj = Var(Rsi,tj) =


µsi(1− µsi) σsi,tj σsi,tj(1− 2µsi)

σsi,tj µtj(1− µtj) σsi,tj(1− 2µtj)

σsi,tj(1− 2µsi) σsi,tj(1− 2µtj) [Vsi,tj]3,3

 ,

where

[Vsi,tj]3,3 = πsi,tj(1− πsi,tj) + πsi,tj[6µsiµtj − 2µsi − 2µtj] + 2µsiµtj(µsi + µtj − 4µsiµtj).

3 Large Sample Properties

3.1 Definition of the Distance Metric $

Consider the paired random process of the following form:

y(k) ≡
(
ysi, ytj

)T , k = (s, i, t, j) ∈ Dn. (xii)

The distance between y(k1) and y(k2), k1, k2 ∈ Dn, depends on configurations of four points in

the spatial-clustered domain R2 ×Z. The coordinates of one point is denoted by (s, i), where

s is the vector of spatial coordinates, and i is the index of subject within a cluster. The distance

between two points p1 = (s, i) and p2 = (t, j) in R2×Z is defined as ξ(p1, p2) = ||s− t||+ I(i 6=

j)d0, where || • || is the Euclidean distance in R2. Defined in this way, the distance between any

two different observations consists of two parts. The first part is the spatial distance between two

clusters they reside in, and the second part is d0 if they have different indices within clusters.

This ensures that different observations are at least d0 distance away. Moreover the distance

between two points k1 = (p1, p2) and k2 = (p′1, p′2) in Dn ⊂ R2 ×Z×R2 ×Z is defined as

$(k1, k2) = min{ξ(p1, p2), ξ(p1, p′2), ξ(p′1, p2), ξ(p′1, p′2)}, (xiii)

that is, the minimum distance of two points in sets (p1, p2) and (p′1, p′2). The distance between

any subsets D1, D2 ⊂ Dn is defined as

$(D1, D2) = min{$(k1, k2) : k1 ∈ D1, k2 ∈ D2}. (xiv)
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Mixing Conditions for the paired process {y(k), k ∈ Dn}

To regulate the dependence structure of y(k) defined in equation (xii), we impose some α-mixing

conditions on y(k). Let D1 and D2 be two subsets of Dn, and let σ(D1) = σ {y(k); k ∈ D1} be the

σ-algebra generated by random variables {y(k), k ∈ D1}. Define

α(D1, D2) = sup {|P(A ∩ B)− P(A)P(B)|; A ∈ σ(D1), B ∈ σ(D2)} .

Then this α-mixing coefficient for the random field {y(k), k ∈ Dn} is defined as:

α(k, l, m) = sup {α(D1, D2), |D1| < k, |D2| < l, $(D1, D2) ≥ m} ,

with k, l, m ∈ N and $(D1, D2) the distance between sets D1 and D2 defined in (xiv). We need

the following conditions similar to those stated in Assumption 3 by Jenish and Prucha (2009).

Mixing Conditions The process {y(k), k ∈ Dn} satisfies the following mixing conditions in an

a-dimensional space:

(a) ∑∞
m=1 ma−1α(1, 1, m)δ/(2+δ) < ∞, for some δ > 0,

(b) ∑∞
m=1 ma−1α(k, l, m) < ∞ for k + l ≤ 4,

(c) α(1, ∞, m) = O(m−a−ε) for some ε > 0.

It suffices to require a polynomial decay of the α-mixing coefficient, which can be shown to hold

for the Matérn class.

3.2 Detailed Derivation

In the spatial-clustered setting considered here, the increase of the sample size can be achieved

by either increasing the number of subjects within each cluster, or by increasing the number of

spatial clusters. For the latter case, two scenarios are possible: (i) more sample locations are

added within a fixed spatial domain, known as the in-fill asymptotics (Zhang, 2004); and (ii)
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more locations are included by expanding the spatial domain, corresponding to the increasing-

domain asymptotics (Mardia and Marshall, 1984). Sampling more people within clusters can

be regarded as a special case under the in-fill asymptotic scenario, where more observations are

collected at the same locations. Since these extra data are likely to be highly correlated, for some

parameters, consistent estimates may not exist under the in-fill asymptotics (Zhang, 2004). In

this paper, we establish large-sample properties under the increasing domain context.

Under appropriate conditions of correlation decay rates for the process y(k), usually pos-

tulated by certain mixing conditions (Guyon, 1995), we expect to have ”pseudo-independent”

pairs when they are beyond a certain distance. In such cases, we can derive laws of large

numbers (LLN) and central limit theorems for ΨB,n(θ, d) and ΨW,n(θ) respectively, and then

for Γn(θ, d) =
(

ΨT
B,n(θ, d), ΨT

W,n(θ
)T

. For notation simplicity, we omit d in the expression, i.e.

denoted Γn(θ) = Γn(θ, d) and ΨB,n(θ) = ΨB,n(θ, d), and so on. Furthermore, by using the stan-

dard GMM arguments (Hansen, 1982), we can show the consistency and asymptotic normality

of the JCEF estimator θ̂n defined in equation (5) in the paper.

Jenish and Prucha (2009) developed a set of limit theorems for random processes under rather

general conditions of nonstationarity, unevenly spaced locations, and general forms of sample

regions. We exploit those results to sketch large-sample properties for our JCEF estimator as

follows.

Consistency Consider a generic case of composite estimating function

ΨA,n(θ) =
1

|DA,n| ∑
k∈DA,n

Uk(y(k);θ), A ∈ {B, W}.

We assume the following assumptions for the component score functions.

Assumption 1 The (possibly unevenly spaced) lattice D ⊂ R2×Z+×R2×Z+ is infinitely count-

able. All elements in D are located at distances of at least d0 > 0 from each other. That is,

$(k1, k2) ≥ d0, for all k1, k2 ∈ D, where $(k1, k2) is a distance metric for any two points k1, k2 ∈ D

defined in (xiii).
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Assumption 2 {DA,n : n ∈ N} is a sequence of arbitrary finite subsets of D, satisfying |DA,n| →

∞ as n→ ∞, for A ∈ {B, W}.

Assumption 3 (Uniform L2+δ integrability) Let Qk = supθ∈Θ ||Uk(y(k);θ)||. For some δ > 0,

lime→∞ EQ2+δ
k 1(|Qk| > e) = 0, for all k ∈ Dn, where Dn ≡ DB,n ∪ DW,n.

Assumption 4 E supθ∈Θ ||∇θUk(y(k);θ)|| < ∞, for all k ∈ Dn.

Assumption 1 ensures that the increase of sample size is achieved by an expanding domain,

thus it rules out the in-fill asymptotics. Assumption 2 guarantees that sequences of subsets DB,n

and DW,n on which the process is generated, increases in cardinality. Assumptions 3 and 4 are

regularity conditions for the composite score functions. The uniform integrability condition in

Assumption 3 is a standard moment assumption required by the CLTs for one-dimensional pro-

cesses. A sufficient condition for the uniform L2+δ integrability of Uk is its uniform Lγ bound-

edness for some γ > 2 + δ. A weaker assumption of L1 integrability is sufficient for an LLN

on Uk. Assumption 4 is a Lipschitz-type condition, implying that the composite score functions

are L0 stochastically equicontinuous, so that a uniform law of the large numbers (ULLN) can be

established.

Lemma 3.1 When the sample size increases with the increasing spatial domain, under assumptions 1 - 4

above, and the appropriate mixing conditions (a)-(b) for the process {y(k), k ∈ Dn} given in Section 3.1,

we have supθ∈Θ ||ΨA,n(θ)− EΨA,n(θ)||
p→ 0, as n→ ∞.

As shown in Jenish and Prucha (2009), a polynomial decay of the mixing coefficient for the

process is required, which is satisfied by the Matérn spatial covariance considered in this paper,

since the decay order of the Matérn spatial correlation is governed by the term of exp(−d/α)

(Dempsey and Benson, 1960).

Lemma 3.1 holds for ΨB,n(θ, d) and ΨW,n(θ) respectively, so we can show easily that for any

given positive-definite weight matrix W in equation (5) in the paper,

sup
θ∈Θ

|Qn(θ)− EQn(θ)|
p→ 0, as n→ ∞.
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Consequently, we establish the consistency of the JCEF estimator in Theorem 1.

Theorem 3.2 Under the same regularity conditions stated in Lemma 3.1, if the true parameter value θ0

is the unique minimizer of EQn(θ), and θ̂n minimizes Qn(θ), then θ̂n
p→ θ0, as n→ ∞.

Asymptotic Normality To derive the asymptotic distribution of the JCEF estimator, the

following additional regularity conditions are needed.

Assumption 5 Let W ∗
n (θ) = Var {Γn(θ)}. Assume limn→∞ nW ∗

n (θ) = Λ(θ), where Λ(θ) is a

positive-definite matrix.

Assumption 6 supθ∈Θ ||∇θΓn(θ)− E∇θΓn(θ)||
p→ 0. Write limn→∞ E∇θΓn(θ) = I(θ), where

I(θ) is a positive-definite information matrix.

Assumption 5 assumes the variance of Γn(θ) is of order O(n−1), a standard assumption for

covariance subsampling estimation. Assumption 6 is the condition for ULLN required by the

Hessian matrix ∇θΓn(θ), which regulates the asymptotic variance of the estimator and can be

obtained with the same regularity conditions in Lemma 3.1.

Lemma 3.3 Under increasing domain framework, given Assumptions 1-6 above, we have
√

n Γn(θ)
L→

N(0, Λ(θ)), as n→ ∞.

A sketch of the proof for Lemma 3.3 is given in the Appendix of Bai et al. (2012). Then using

the standard GMM arguments (Hansen, 1982), we establish the following theorem:

Theorem 3.4 Under the increasing domain framework, given Assumptions 1-6 above and the mixing

conditions (a)-(b) in Section 3.1 for the process {y(k), k ∈ Dn}, we have

√
n(θ̂n − θ0)

L→ N(0, Ω(θ0)Λ(θ0)ΩT(θ0)), as n→ ∞,

where Ω(θ0) = −{IT(θ0)Λ−1(θ0)I(θ0)}−1IT(θ0)Λ−1(θ0).
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4 R Package GeoCopula

A user-friendly R package GeoCopula is available under the Paper Information link at the Bio-

metrics webpage http://www.biometrics.tibs.org. This R package supplies both MAC

OS X and DOS Window OS versions, and can be directly downloaded from

http://web1.sph.emory.edu/users/jkang30/software/GeoCopula.html

It provides an efficient composite likelihood estimation and inference in the analysis of spatial-

clustered continuous and binary data using GeoCopula regression models, where point estima-

tion and inference are implemented in two separate functions for the sake of computing time. In

the point estimation function the weight matrix W ∗ is specified by either a sample covariance

matrix or an estimate from the subsampling method. In the inference function both parametric

bootstrap and subsampling methods are available to obtain standard error estimate and 95%

confident interval.

To run functions in the GeoCopula package, one must first upload R package mvtnorm.

Below is an example of running the GeoCopula package:

##load R package mvtnorm before load GeoCopula##

my.seed = 2015

model = "binary"

para = list(beta=c(1,1,-1),alpha=2.0,rho=0.8,nu=1.5)

numOfClusters= 100

numOfSubjects = rep(4,length=numOfClusters)

spatialGrids=expand.grid(1:20,1:20)

sigmaX=3

### Simulate Data

dat = geoCopula.simulate.data(numOfClusters=numOfClusters, numOfSubjects = numOfSubjects,

spatialGrids = spatialGrids,model=model,para=para,seed=my.seed,sigmaX=sigmaX)
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trucdist=4.0

between.indices = geoCopula.compute.between.cluster.indices(dat$dist,dat$clusterPairIndices,

dat$numOfClusters,dat$clusterSubjIndices,trucdist)

within.indices =

geoCopula.compute.within.cluster.indices(dat$numOfClusters,dat$clusterSubjIndices)

### Sample Subregions

sub.region.size = 4

numOfSubRegions = 20

subregion.indices=geoCopula.sample.subregion(dat$locations,sub.region.size=sub.region.size,

numOfSubRegions=numOfSubRegions,my.seed=my.seed)

subregion=geoCopula.subregion.index.pair(subregion.indices,dat$subjClusterIndices,

within.indices,between.indices)

### Compute initial parameter estimates

nu = 1.5

para0 = geoCopula.initial.parameter(dat=dat,model=model,nu=nu,

between.indices=between.indices,within.indices=within.indices)

### Estimate parameter using GeoCopula given pre-specified nu

approach = "simple"

weighted = TRUE

method="Nelder-Mead"

reltol=1e-1

trace=TRUE

maxit=5000

para.est = geoCopula.parameter.estimate(dat=dat,model=model,para0=para0,

between.indices=between.indices,within.indices=within.indices,
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method=method,reltol=reltol,trace=trace,

maxit=maxit,weighted=weighted,approach=approach,subregion=subregion)

### Profile QIF estimate

nulist = seq(0.5,3.0,by=0.5)

res = geoCopula.parameter.estimate.nu(dat=dat,model=model,nulist=nulist,

between.indices=between.indices,within.indices=within.indices,

method=method,reltol=reltol,trace=trace,maxit=maxit,

weighted=weighted,approach=approach,subregion=subregion)

plot(nulist,res$nuQfun,type="b",xlab=expression(nu),ylab="Q")

print(res$para.est)

## Make inference on the model parameters

se.approach="sub.sample"

numOfBootstrap=200

se.numOfSubRegions=100

se.sub.region.size=4

inference=geoCopula.inference(dat=dat, model=model, para.est=para.est,

se.approach=se.approach, se.numOfSubRegions=se.numOfSubRegions,

se.sub.region.size=se.sub.region.size, numOfBootstrap=numOfBootstrap,

between.indices=between.indices,within.indices=within.indices,

method=method,reltol =reltol, trace=trace,maxit=maxit,

weighted=weighted,my.seed=my.seed,

approach="simple",subregion=NULL)

print(geoCopula.summary.inference(inference))
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