
=

rkfsbopfqv=lc=jf`efd^k=

=

 

Working Paper 
=
=

 
LP-Based Artificial Dependency for Probabilistic Etail Order 

Fulfillment 
 

Stefanus Jasin 
Stephen M. Ross School of Business  

University of Michigan 
 

Amitabh Sinha 
Stephen M. Ross School of Business  

University of Michigan 
 
 

 
 

 
 

Ross School of Business Working Paper 
Working Paper No. 1250 

October 2014 
 
 
 
 
 
 

This work cannot be used without the author's permission.  
This paper can be downloaded without charge from the  

Social Sciences Research Network Electronic Paper Collection: 
ÜííéWLLëëêåKÅçãL~Äëíê~ÅíZORMTPSP=



LP-Based Artificial Dependency for Probabilistic Etail Order

Fulfillment

Stefanus Jasin, Amitabh Sinha

Stephen M. Ross School of Business, University of Michigan, Ann Arbor, MI 48109, USA.

sjasin@umich.edu, amitabh@umich.edu

October 5, 2014

Abstract

We consider an online multi-item retailer with multiple fulfillment facilities and finite inventory,

with the objective of minimizing the expected shipping cost of fulfilling customer orders over a

finite horizon. We approximate the stochastic dynamic programming formulation of the problem

with an equivalent deterministic linear program, which we use to develop a probabilistic fulfillment

heuristic that is provably optimal in the asymptotic sense. This first heuristic, however, relies on

solving an LP that is exponential in the size of the input. Therefore, we subsequently provide

another heuristic which solves an LP that is polynomial in the size of the input, and prove an upper

bound on its asymptotic competitive ratio. This heuristic works by modifying the LP solution with

artificial dependencies, with the resulting fractional variables used to probabilistically fulfill orders.

A hardness result shows that asymptotically optimal policies that are computationally efficient

cannot exist. Finally, we conduct numerical experiments that show that our heuristic’s performance

is very close to optimal for a range of parameters.

1 Introduction

E-commerce retail sales in the US in the twelve months ending in September 2013 exceeded $250 billion

(U.S. Department of Commerce 2013). Although this constitutes only around 6% of total retail sales

in the US, the growth rates of e-commerce retail versus traditional retail (15% versus 4%) leave little

doubt about how voluminuous this sector will be over the next few years—a fact that should be of little

surprise to anyone engaged in retail purchases or sales. When one considers the distribution logistics

of the e-commerce retail (henceforth called etail) industry, there is one significant (albeit obvious)

difference from traditional brick-and-mortar retailers: The etailer can choose where to fulfil the orders

from. This has several benefits. First, it enables the etailer to minimize total shipping costs. Some

etailers offer membership schemes whereby, in exchange for an annual fee, customers never have to

pay shipping cost (e.g. Amazon.com’s Prime program), thus incenting the etailer to minimize shipping

costs. Others follow standardized shipping costs that are displayed to customers, but that still leave an

opportunity for the etailer to minimize its actually incurred costs. In addition to minimizing shipping
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costs, the ability to decide where to serve the orders from allows an etailer to balance inventory, avoid

congestion, and further optimize its stocking and supply decisions.

Despite the importance of the optimization of fulfillment decisions by etailers, in terms of actual

practice and academic literature, very little progress has been made in this area. Xu et al. (2009)

report that many retailers simply follow a “myopic” policy, where orders received only over the past

few hours are considered and served in a cost-minimizing fashion, with no consideration on the impact

to future costs. As we discuss in Section 1.2, academic research on this question also leaves several

open questions as well as significant opportunity to find savings by making the fulfillment policies more

efficient. This is in stark contrast to the distribution logistics of brick-and-mortar retailers, where

several decades of research have given us a strong understanding on inventory policies, network design,

transshipment policies, etc.

In order to better illustrate the opportunity to lower costs by making decisions in a forward-looking

rather than myopic fashion, it helps to consider a simple example. Consider a firm that has a network

of two distribution centers (henceforth abbreviated as DC) to serve various regions in the US: one in

Georgia and one in California. We focus on two products, labeled A and B, and any given customer may

demand one of the four combinations: {}, {A}, {B}, {A,B}. There is a positive probability for each of

the four combinations. Also, suppose that each product has weight 1 pound. A customer from Miami,

Florida, has just placed an order on the company’s website for the combination {B}. The inventory

position in the Georgia and California DCs are given by (SGA, SGB) and (SCA, SCB) respectively, where

both vectors are currently strictly positive in both components. Should the customer’s order be fulfilled

by the Georgia DC? As one would expect, the fulfilment decision will be found to depend on shipping

costs as well as the demand distribution of these products over the remaining time horizon. Suppose

that the firm uses UPS’ 3 day select service to ship products. From the UPS Standard Rate and Service

Guide (UPS 2012), we find that the costs of shipping are as shown in Table 1.

Weight (lbs.) From Georgia From California

1 $10.95 $15.50
2 $11.60 $18.05

Table 1: UPS shipping rates to Miami, using 3 day select service, 2012.

Consider the case when SGB = 1, that is, only 1 unit of inventory of B is available in Georgia,

and a large number of customer orders are expected to arrive before replenishment. In contrast, the

inventory of A is high enough that there is no possibility of a stockout before replenishment. If the

order of {B} is fulfilled from Georgia, the firm incurs a shipping cost of $10.95. Suppose the firm had,

instead, redirected the customer order to the California DC. Then, the shipping cost for this order

would have been $15.50. This would make sense only if the firm was saving the remaining unit of B

for an order consisting of the combination {A,B}. By how much would the firm’s shipping costs have

changed if it had done this? The cost for the Miami customer goes up by $15.50 − $10.95 = $4.55.

However, when the order for {A,B} arrived, the firm would have been able to serve it from Georgia

instead of California, saving $18.05− $11.60 = $6.45 on that order, resulting in a net saving of $1.90.

All other orders would have been unaffected. Given our assumption of a large number of customers
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remaining before the next replenishment and strictly positive probability of a customer order consisting

of the combination {A,B}, this saving is virtually guaranteed. Although the example above features

two products, it is in fact the case that even with a single product, a myopic policy (which assigns each

arriving order to the least-cost facility that can serve it) is not optimal.

The example above brings us to our research question: How can firms implement policies that direct

online orders to appropriate fulfillment centers in a way that uses information about future demand

distribution and inventory positions in order to minimize expected total fulfillment cost over the entire

horizon? Although the problem is fairly straightforward to identify and define (a formal definition

appears in Section 2), it is not easily amenable to standard techniques. The main hurdle in applying

standard inventory theory algorithms or policies is the strongly combinatorial nature of the problem:

some orders contain more than one item, and the shipping costs scale in a way that splitting such

orders (i.e. treating each multi-item order as multiple single-item orders) is very costly. In fact, even

the problem of figuring out the allocation of items to fulfillment centers for a single multi-item order

is NP-hard, as will be discussed in Section 7. Our approach, of using a linear program (LP) with

asymptotic scaling, allows us to sidestep this difficulty while providing heuristics with provably good

performance guarantees.

1.1 This paper and our contributions

Our approach is based on the idea of using the LP relaxation of the asymptotically scaled version of

the problem as a lower bound. A brief description of what this means is as follows. First, we consider

the problem over a fixed finite horizon T , which we will eventually scale to infinity. (We will discuss

the appropriateness of this setting later.) Within this finite horizon, at time zero, we construct a

deterministic linear program (DLP) by replacing the stochastic demand for each bundle of items with

their expected value. We solve this DLP and treat the fractional solution as a probability distribution

that determines how actual orders are assigned to warehouses when they begin arriving. Note that

this approach fixes the assignment of orders to warehouses up front, and does not change them once

the actual demand starts arriving. Of course, the actual demand sequence will not match the expected

demand. So, our actual costs will be higher than the cost computed by our heuristic. In addition, our

heuristic considers the fractional relaxation, causing a second source of gap between our actual costs

and our lower bound. However, we are able to prove that, as the time horizon goes to infinity (with

demand and inventory levels also scaling up at the same rate), the gap between the actual cost and

our expected cost is bounded by an additive term that scales with the square-root of the time horizon.

One drawback of the above approach is that the lower bound is computed via an LP with exponential

size. Consequently, solving such an LP may be difficult for some real instances. Therefore, we also

construct an approximate LP that is polynomial in the size of the input. We first show that simply

interpreting the fractional solution of the LP as probabilities to guide the fulfillment decision results in

a heuristic with a bounded competitive ratio. But a careful examination of this heuristic suggests that

independent probabilistic fulfillment can be inefficient, and there may be a way to further improve the

competitive ratio. This brings us to the main contribution of this paper: We develop a heuristic that
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uses the LP solution to construct a probabilistic fulfillment control that artificially injects dependencies

into the fulfillment decisions, and prove a better upper bound on the asymptotic competitive ratio of

this heuristic.

We supplement our work with numerical experiments, where we find that the competitive ratio of

our algorithm is very close to 1 for a wide range of parameter values, with the heuristic running very

fast particularly when compared with the DLP. Additionally, we discuss the hardness of this problem

from two perspectives: we establish a lower bound on the competitive ratio for any heuristic for this

problem via a reduction of the set cover problem, and we also show that the integrality gap of our LP

formulation precludes the existence of a rounding scheme that is provably optimal.

The rest of this paper is organized as follows. We provide a brief survey of the literature below. In

Section 2, we define our model and the notations used. Our DLP formulation, which we show to be

asymptotically optimal if used as a probabilistic control, is developed in Section 3. We then develop

an approximate LP that is polynomial in the size of the input in Section 4. We derive the competitive

ratio of a heuristic that naively uses the LP solution as independent fulfillment probabilities. We then

develop our dependent probabilistic fulfillment scheme in Section 5, and derive its competitive ratio.

In Section 6, we show the effectiveness of our heuristics using numerical experiments. We discuss lower

bounds on the competitive ratio for this problem in Section 7, before concluding with a brief discussion

on future research in Section 8.

1.2 Literature Review

The first paper to explicitly model and propose a solution strategy for etail order fulfillment was Xu

et al. (2009). They propose a heuristic which periodically re-evaluate all orders that have been assigned

to warehouses but not yet picked and then re-assign orders with the goal of minimizing the total number

of shipments. They numerically demonstrate that this approach reduces the number of orders that were

initially split by about 50%. Our paper adds two additional layers of complexity to their model: We

consider total shipping cost rather than number of shipments and we also incorporate demand forecasts

into our model, both of which make the problem significantly harder.

More recently, Acimovic et al. (2012) considered the problem of minimizing total shipping costs

for single-item orders by proposing a heuristic that assigns orders to warehouses based on dual values

of an LP that incorporates the expected cost of fulfilling future orders. They report that, based on

their data set, the total opportunity for saving on outbound transportation costs is of the order of 2%,

and their heuristic saves approximately one-fourth of it. Two other papers that consider the benefit

of assigning orders non-myopically are Mahar and Wright (2009) and Cattani and Souza (2002). Both

consider firms that are dual-channel, i.e., they sell online as well as via brick-and-mortar stores. They

show that rationing inventory for the online channel can be beneficial under certain circumstances, but

they do not consider the multiproduct fulfillment decision that is the thrust of this paper.

Other than the papers cited above, there appear to be no studies of the etail order fulfillment

problem that we are aware of. The larger area of studying various aspects of supply chains in an era of

electronic communication has, of course, seen substantial research. We refer the reader to Agatz et al.
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(2008) and Simchi-Levi et al. (2004) for some recent reviews.

In terms of methodology, our approach is perhaps closest to that in the revenue management (RM)

literature. Similar to ours, in a typical RM setting, we are dealing with large-scale stochastic problems

which cannot be exactly solved using the standard dynamic program (DP) formulation. This has

motivated many researchers to develop heuristics which are easy to implement and yet at the same

have a respectable performance. Among these is a class of heuristics constructed using the solution of

the LP formulation of RM problem. See, for example, Liu and van Ryzin (2008), Reiman and Wang

(2008), Ciocan and Farias (2012), and Jasin and Kumar (2012, 2013). Similar to these papers, we

start with a deterministic formulation of the etail order fulfillment problem and then use its solution

to construct a heuristic with a competitive performance guarantee.

On the surface, our model may appear to be similar to a minimum cost network flow problem.

Indeed, if the shipping costs were directly proportional to the number of items (i.e., no economies of

scale in shipping two or more items in a single package), the deterministic continuous relaxation of

our problem is a simple multi-commodity network flow problem, which can be directly solved using

standard network optimization techniques (Ahuja et al. 1993, Ch. 9–11,17), as well as standard linear

or integer programming techniques (Simchi-Levi et al. 2004, Ch. 15,17). However, the fixed cost per

shipment, discrete nature of the problem, and multi-period feature all add additional complications that

prevent the direct applicability of these techniques in a way that is provably fast and with guarantees

on the performance.

2 Model Description

2.1 Basic Setting

Let SI , SK , SJ , and SQ denote the set of items, facilities, regions, and order types, indexed by i, k, j

and q respectively. Regions are customer locations from which orders arrive and order types are

characterized by the unique composition of items contained in the order. For example, an order type

q = 1 may correspond to a request for item i = 1 and 2 and an order type q = 2 may correspond to a

request for item 1 and 3. In general, an order may contain more than one request for the same item.

This suggests that a proper definition of order type must also account for the number of requests per

item contained in the order. However, since such multi-request orders are quite rare in practice (Xu

et al. 2009), in this paper, we only allow at most one request per item. Mathematically, we can treat

multi-request orders as separate orders without significantly affecting expected total cost. We write

q 3 i (or i ∈ q) if order type q contains item i (similarly, item i is requested in order type q).

The selling horizon is divided into T periods and at most one order arrives during each period.

This is without loss of generality since we can always slice the selling horizon fine enough to ensure

that at most one customer arrives during each period. In addition, as in Xu et al. (2009) and Aci-

movic et al. (2012), we also assume that no inventory replenishment occurs during the selling horizon.

This assumption is motivated by the fact that the number of orders arriving between two subsequent

replenishment times is usually large, which provides ample opportunities for the etailer to implement
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clever fulfillment heuristics in order to minimize expected total shipping cost. For example, according

to Amazon.com’s Press Releases (www.amazon.com), the etail giant sold 26.5 million items worldwide

on the peak day of Nov. 26 during the holiday season 2012. This record-breaking number is equivalent

to selling 306 items per second. That said, we do allow for a way to account the cost of stock-outs

by routing excess requests to a designated artificial facility with appropriate costs (see discussion be-

low). (The joint optimization of inventory replenishment and order fulfillment is an important research

problem. We leave this for future research pursuit.) Additionally, we assume that each order must

be fulfilled immediately, and the etailer cannot deliberately hold back an order for later shipping. In

practice, etailers are moving towards faster and faster delivery of items, justifying this assumption.

Let λqj denote the arrival probability of order type q from region j during any period t and let λ0

denote the probability of no arrival. By definition, we must have λ0 +
∑

j

∑
q λ

q
j = 1. (We implicitly

assume that demands are time-homogeneous. This is only for expositional simplicity since our results

can also be easily extended to the case of non-homogeneous demands.) The initial inventory of item

i at facility k is given by Ski > 0. Per our discussion above, without loss of generality, we will assign

facility 1 as the back-up facility by setting S1i = +∞ for all i. Facility 1 is therefore a fictitious facility,

with transportation costs set by us, to model what the firm does if the item is not shipped from any of

its “real” facilities. Generally, a shipment from facility 1 would indicate that the item is stocked-out

at all real facilities. But, in principle, the firm is allowed to assign some items/orders to facility 1 even

if inventory is available (e.g., if the costs and demand forecasts make it cost-efficient to do so). The

cost of shipping from facility 1 models the real cost of whatever the firm does if it is unable to ship

from its real facilities, which could include drop-shipping from suppliers, delaying the order until the

next replenishment, or simply reneging on the order and paying a penalty for it. Facility 1 therefore

guarantees that we always have feasible solutions to our problems. For most of the sequel we will not

need to refer to facility 1’s special role, other than in the numerical study where we will deliberately

impose a higher cost on shipments from facility 1 in recognition of its special role.

Let Xqt
kij ∈ {0, 1} be a random variable denoting the etailer’s decision whether to ship item i in

order type q coming from region j during period t from facility k. It is important to note that we allow

different items in the same order to be fulfilled from different facilities. Indeed, this combinatorial

aspect of the problem is one of the key features of etail order fufillment. Since all items must be

fulfilled, in terms of the decision variable, the following must always be satisfied:∑
k

Xqt
kij = 1 ∀i ∈ q.

Let Dqt
j ∈ {0, 1} be a random variable denoting the realized demand for order type q from region j

during period t, i.e. Dqt
j = 1 if an order type q arrives from region j during period t and 0 otherwise.

For any sequence of realized demands {Dqt
j }, the following set of inventory constraints must be satisfied

almost surely (or with probability one):∑
t

∑
j

∑
q3i

Dqt
j X

qt
kij ≤ Ski ∀ k, i.
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To mimic the typical cost structures often found in practice, such as the UPS rates discussed in the

introduction, we model the outbound shipping cost using two components: variable cost and fixed cost.

The variable cost of shipping item i from facility k to region j is denoted by ckij and the fixed cost of

shipping from facility k to region j at all is denoted by bkj . Thus, we are allowing different items to

have different variable shipping costs (for instance, if they differ in size or weight). Using this notation,

the total shipping cost for an order type q arriving from region j during period t can be written as:

∑
k

∑
i∈q

ckij X
qt
kij + bkj max

i∈q
{Xqt

kij}

 .
The optimal control formulation of Etail Order Fulfillment (EOF) is given by

J∗ := min
∑
t

∑
j

∑
q

∑
k

E

Dqt
j

∑
i∈q

ckij X
qt
kij + bkj max

i∈q
{Xqt

kij}


s.t.

∑
t

∑
j

∑
q3i

Dqt
j X

qt
kij ≤ Ski ∀k, i (1)

∑
k

Xqt
kij = 1 ∀q, i, j, t (2)

Xqt
kij ∈ {0, 1} ∀i, j, k, q, t (3)

where the minimization is taken over the set of non-anticipating policies (i.e. the shipping decision

during period t depends only on the accumulated information up to the beginning of period t).

2.2 Asymptotic Scaling and Performance Measure

Motivated by the large number of daily orders in etail industry, especially during high seasons, in this

paper, we will consider a sequence of increasing problems where both the number of selling periods and

the amount of initial inventories are scaled by a factor of θ > 0. To be precise, in the θth problem, the

number of selling periods is given by T (θ) = θT and the number of initial inventories by {Ski(θ) = θSki}.
Since multiplying the number of selling periods by θ is equivalent to multiplying the number of average

demands by θ, in the so-called asymptotic setting, we essentially increase both total demands and

total inventories while preserving their relative proportion. (Under a proper scaling of T and {Ski},
the factor θ can be interpreted as the size of the problem. For example, θ = 100 may correspond

to a problem instance with total demands, and total inventories, about 100 whereas θ = 1000 may

corresponds to a larger instance with total demands, and total inventories, about 1000.) The use of

scaling factor in performance analysis is not new and has been a standard methodology in the study

of queueing systems (Halfin and Whitt 1981, Harrison 1998, Maglaras 2000, Ata and Kumar 2005),

revenue management and dynamic pricing (Gallego and van Ryzin 1994, 1997, Cooper 2002, Levi and

Radovanović 2010, Jasin and Kumar 2012, 2013), and inventory control (Huh et al. 2009a,b, Plambeck

and Ward 2006, Plambeck 2008). It is particularly useful to study the performance of a heuristic in the
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setting of large demands and large inventories. Let Cπ(θ) denote the total realized cost under heuristic

π and let J∗(θ) denote the expected total cost under optimal control, both for a problem with scaling

factor θ. We are interested in the following limit, which will be used as our performance measure:

lim
θ→∞

E[Cπ(θ)]

J∗(θ)
.

By definition of J∗(θ), the above ratio is always greater than or equal to 1. It captures the first-

order magnitude of expected total cost under heuristic π. Although, in reality, demands and inventories

are always finite, the limiting ratio as θ → ∞ still serves as a good proxy for the performance of a

given heuristic in the setting of large demands and large inventories. Indeed, numerical results in

Section 6 show that our proposed heuristic has a strong performance even when θ is relatively small.

The following conventions will be used throughout the rest of this paper. A heuristic π is said to

be asymptotically optimal if limθ→∞ E[Cπ(θ)]/J∗(θ) = 1. In addition, it is said to be asymptotically

α-competitive if limθ→∞ E[Cπ(θ)]/J∗(θ) ≤ α; we sometimes refer to α as the competitive ratio of the

heuristic π.

3 The Exact LP

In theory, the optimal control for EOF can be exactly solved using dynamic program (DP). Unfortu-

nately, the well-known curse of dimensionality quickly kicks in even for problems with moderate size.

Thus, despite being optimal, the DP approach is computationally intractable and simply practically

infeasible. This motivates us to find an approximate solution which can be used to construct a near-

optimal heuristic. In this section, we will consider a deterministic formulation of EOF, which we call

the exact LP. (We call it “exact” because, as we will see shortly, it leads to an asymptotically optimal

heuristic for EOF.) Let σqj : SI 7→ SK denote the fulfillment assignment vector for order type q coming

from region j, i.e., σqj (i) = k means we are shipping item i ∈ q to region j from facility k. Also, let

Gqtj (σqj ) = P (Xqt
j = σqj |D

qt
j = 1) denote the probability of fulfilling order type q from region j during

period t with σqj . (The expression Xqt
j = σqj is shorthand for Xqt

kij = 1{σqj (i) = k} for all i ∈ q.) Given

a demand realization Dqt
j = 1, we can write:

E
[
Xqt
kij

]
=

∑
{σq

j :σ
q
j (i)=k}

Gqtj (σqj ) and

E

[
max
i∈q
{Xqt

kij}
]

=
∑

{σq
j : ∃i∈q, σ

q
j (i)=k}

Gqtj (σqj ).

Thus, taking expectation over the constraints in J∗ yields a lower bound:
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J∗ ≥ JLP := min
u

∑
t,j,q,k

λqj

∑
i∈q

∑
{σ:σ(i)=k}

ckij u
qt
σj +

∑
{σ: ∃i∈q, σ(i)=k}

bkj u
qt
σj


s.t.

∑
t

∑
j

∑
q3i

λqj

 ∑
{σ:σ(i)=k}

uqtσj

 ≤ Ski ∀k, i (4)

∑
k

∑
{σ:σ(i)=k}

uqtσj = 1 ∀q, t, j (5)

0 ≤ uqtσj ≤ 1 ∀q, t, j, σ (6)

where for brevity we simply write σ instead of σqj . (We will continue using this convention throughout

the remainder of the paper provided there is no confusion on the meaning of σ.) Per our notations above,

any policy essentially corresponds to a set of distributions {Gqtj } over the set of fulfillment assignment

{σqj}. Thus, we can immediately see that for any non-anticipating policy, constraints (1)-(3) imply

(4)-(6) in expectation. Thus, proving JLP is a lower bound of J∗.

Observe that (5) and (6) can be simplified to
∑

σ u
qt
σj = 1 and uqtσj ≥ 0. This is so because, for each

triplet (q, i, j) where i ∈ q, the set of fulfillment vectors {σqj} can be decomposed into ∪k{σqj : σqj (i) = k}.
If we now define cqσj :=

∑
i∈q cσ(i)ij +

∑
{k: ∃i∈q, σ(i)=k} bkj (it can be interpreted as the cost of applying

assignment σ to order type q from region j), we can rewrite JLP in a more compact form as follows:

JLP := min
∑
t

∑
j

∑
q

λqj

[∑
σ

cqσj u
qt
σj

]

s.t.
∑
t

∑
j

∑
q3i

λqj

 ∑
{σ:σ(i)=k}

uqtσj

 ≤ Ski ∀k, i (7)

∑
σ

uqtσj = 1 ∀q, t, j (8)

uqtσj ≥ 0 ∀q, t, j, σ (9)

The linear program JLP has a natural interpretation. If demands are deterministic and arrive with

rate {λqj}, then the variable uqtσj can be interpreted as the probability of fulfilling demand type q from

region j during period t according to assignment σ. Let U qσj denote the number of times order type

q from region j are fulfilled using assignment σ during the selling horizon. We can formulate the

time-aggregate version of JLP as:

J̃LP := min
∑
j

∑
q

∑
σ

cqσj U
q
σj

s.t.
∑
j

∑
q3i

∑
{σ:σ(i)=k}

U qσj ≤ Ski ∀k, i (10)

∑
σ

U qσj = Tλqj ∀q, j (11)
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U qσj ≥ 0 ∀j, q, σ (12)

Let {uqtσj} and {Uq
σj} denote an optimal solution of JLP and J̃LP , respectively. (These solutions

may not be unique.) It is not difficult to see that JLP = J̃LP . First, since U qσj =
∑

t λ
q
ju

qt
σj is a feasible

solution to J̃LP , we have J̃LP ≤ JLP . To show the converse, simply note that uqtσj = Uq
σj/(Tλ

q
j) is a

feasible solution to JLP . Indeed, it is also optimal. This proves our claim. (In the scaled problem, we

have J̃LP (θ) = θJ̃LP and Uq
σj(θ) = θUq

σj . So, this claim still holds.) All that we have done so far is

showing that the large JLP can be written in its most compact form as J̃LP . We are now ready to

introduce our first heuristic and derive its performance guarantee. The heuristic is very straightforward.

At the beginning of the selling horizon, we first solve the linear program J̃LP and then use its (possibly

fractional) optimal solution as probabilities to assign items to facilities. Formally, the heuristic is stated

below, followed by a theorem stating its performance guarantee. The proof is provided in the appendix.

Probabilistic Fulfillment Control (PFC)

Input: uqtσj = Uq
σj/(Tλ

q
j), where {Uq

σj} is an optimal solution of J̃LP

During period t, for an order type q from region j, do:

1. Sample σ with probability uqtσj
2. For each i ∈ q, do:

- If Sσ(i)i ≥ 1, fulfill item i from facility σ(i)

- Otherwise, fulfill item i from facility 1.

Theorem 1 There exists a positive constant M independent of θ > 0 such that for all θ > 0 we have

E[CPFC(θ)]− J∗(θ) ≤ E[CPFC(θ)]− JLP (θ) ≤ M [ 1 +
√
θ ].

Theorem 1 tells us that PFC is asymptotically optimal. (Although the constant M is independent of

θ > 0, its magnitude is possibly exponential in the problem size.) In fact, the relative difference between

the expected total cost under PFC and that under the optimal control is of order
√
θ/θ = θ−1/2, which is

negligible for large θ. (To illustrate, if θ = 100, then the expected total loss of PFC is about 10%.) The

good news is that PFC only requires solving a linear program instead of a dynamic program. Moreover,

this linear program only needs to be solved once at the beginning of the selling horizon. (Although

re-solving can potentially reduce the bound in Theorem 1, we do not analyze it here. See Jasin and

Kumar (2012) for a discussion on related literature.) The bad news is that the size of J̃LP can still

be prohibitively large, making it infeasible for practical implementation. This is so because, for each

pair (q, j), we have one decision variable for each fulfillment vector σqj , whose number is exponential

in the size of the input. So, we have a control which is asymptotically optimal but can be difficult to

implement. This raises an important question whether it is possible to construct a heuristic which is
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not exponential in the size of the input and, if yes, what performance guarantee can be obtained for

such a heuristic.

4 An Approximate LP

In this section, we consider a relaxation of the exact LP which disentangles the dependency among

items contained in the same order. This makes the LP smaller (polynomial in the size of the input). We

then use its solution to construct a simple fulfillment heuristic, and bound its competitive ratio by the

expected order size. More importantly, the structure of the LP and our heuristic enables us to develop

a new heuristic in Section 5 with a tighter competitive ratio, which is our main result. Here, we will

bound the term E[maxi∈q X
qt
kij ] in J∗ with maxi∈q E[Xqt

kij ] and consider the following LP formulation:

JMLP = min
∑
t

∑
j

∑
q

∑
k

λqj

∑
i∈q

ckij u
qt
kij + bkj y

qt
kj


s.t.

∑
t

∑
j

∑
q3i

λqj u
qt
kij ≤ Ski ∀k, i (13)

∑
k

uqtkij = 1 ∀q, t, j, i ∈ q (14)

yqtkj ≥ u
qt
kij ∀q, t, k, j, i ∈ q (15)

uqtkij ≥ 0 ∀q, t, k, i, j (16)

(The variable yqtkj essentially equals maxi∈q u
qt
kij .) Here, we use a somewhat more traditional ap-

proach with a pair of variables (u, y) for each order, where yqtkj = 1 indicates that some, possibly all,

items in order q are being fulfilled by facility k. This forces us to incur the fixed cost component of

shipping from facility k to region j. The variable cost component depends on the specific items being

shipped and is accounted for using the u variables in the first term in the objective function. Since

we are considering a linear relaxation of the original problem, by Jensen’s inequality, it follows that

J∗ ≥ JMLP (because E[maxi∈qX
qt
kij ] ≥ maxi∈q E[Xqt

kij ]). So, JMLP provides another lower bound for J∗ in

addition to JLP .

Let U qkij denote the number of times item i in order type q from region j are fulfilled from facility

k during the selling horizon and let Y q
kj denote the number of times order type q from region j are

fulfilled from facility k at all during the selling horizon. The time-aggregate formulation of JMLP is

J̃MLP = min
∑
j

∑
q

∑
k

∑
i∈q

ckij U
q
kij + bkj Y

q
kj


s.t.

∑
j

∑
q3i

U qkij ≤ Ski ∀k, i (17)

11



∑
k

U qkij = Tλqj ∀q, j, i ∈ q (18)

Y q
kj ≥ U

q
kij ∀q, k, j, i ∈ q (19)

U qkij ≥ 0 ∀q, k, i, j (20)

Let {uqtkij ,y
qt
kj} and {Uq

kij ,Y
q
kj} denote an optimal solution of JMLP and J̃MLP , respectively. As in

Section 3, it can be argued that JMLP = J̃MLP . In fact, an optimal solution of JMLP can be recovered via

uqtkij = Uq
kij/(Tλ

q
j) and yqtkj = Yq

kj/(Tλ
q
j). Let |q| denote the number of items contained in order type q,

i.e., |q| =
∑

i∈I 1{i ∈ q}. Observe that, for each pair (q, j), J̃MLP only has |SK |.|q|+|SK | variables whereas

J̃LP has |SK ||q| variables. So, we have just reduced the size of the LP formulation from exponential to

linear in the size of the input, which is good. But, is the new LP a good approximation of the original

one? In particular, can we construct a heuristic using the solution of J̃MLP which still maintains the

asymptotic optimality of PFC? To answer this, we first propose a new fulfillment heuristic, which we

call the Modified PFC (MPFC).

Modified Probabilistic Fulfillment Control (MPFC)

Input: uqtkij = Uq
kij/(Tλ

q
j), where {Uq

kij} is an optimal solution of J̃MLP
During period t, for an order type q from region j, and for each i ∈ q, do:

- Fulfill item i from facility k with probability uqtkij
- If the sampled facility is out of stock, fulfill item i from facility 1.

For each triplet (q, k, j), define F (q, k, j) as follows:

F (q, k, j) =
bkj Yq

kj∑
q′,k′,j′ bk′j′ Yq′

k′j′

=
λqj bkj yq1kj∑

q′,k′,j′ λ
q′

j′ bk′j′ yq
′1
k′j′

.

By definition, we always have
∑

q,k,j F (q, k, j) = 1. So, F (., ., .) can be interpreted as a probability

distribution on the set {(q, k, j)}. Below, we state the performance of MPFC.

Theorem 2 Let Q be a random variable denoting the order type. Then,

lim
θ→∞

E[CMPFC(θ)]

J∗(θ)
≤ lim

θ→∞

E[CMPFC(θ)]

JMLP (θ)
≤
∑
q,k,j

|q|F (q, k, j) := EF [|Q|].

Theorem 2 tells us that the performance of MPFC depends on the typical size of |q| under F . If

|q| is typically small, then MPFC is near-optimal. If, on the other hand, |q| is typically large, then

MPFC may not provide a very satisfactory performance. Since the distribution F depends explicitly
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on the optimal solution of J̃MLP it may not be possible in general to know the performance of MPFC

before solving the LP. It is, however, possible to get a more intuitive bound for the special case where

the etailer is primarily interested in minimizing total shipments instead of total shipping costs. (Xu

et al. 2009) argue that the former is sometimes a good proxy for the later. For all q, define Pq to be

the probability that an arriving order is of type q, i.e. Pq := P (Q = q) = (1 − λ0)−1
∑

j λ
q
j . We state

a lemma.

Lemma 1 Suppose that we set all variable costs equal to 0. In addition, we also set bkj = M > 1 for

k = 1 and bkj = 1 otherwise. If Uq
1ij = 0 for all q, i, j, then

Pq
E[|Q|]

≤
∑
k,j

F (q, k, j) ≤ min{|SK |, |q|}Pq.

The condition Uq
1ij = 0 for all q, i, j simply says that all orders can be completely satisfied by

the available inventories in non-virtual facilities. So, we do not have to incur stock-out costs, at

least deterministically. Since the number of facilities |SK | is fixed, Lemma 1 tells us that the sum∑
k,j F (q, k, j) is roughly proportional to Pq for all q, especially so for large |q|. Put together Lemma 1

with Theorem 2, for the setting described in Lemma 1, we immediately have

lim
θ→∞

E[CMPFC(θ)]

J∗(θ)
≤ min

{
|SK |E[|Q|], E[|Q|2]

}
.

Admittedly, this is a rather weak bound. However, it is still useful to give a sense on the potential

performance of MPFC before solving J̃MLP . In particular, since E[|Q|2] = E[|Q|]2+var(|Q|), one expects

that MPFC should perform reasonably well if both E[|Q|] and var(|Q|) are small. In simpler language,

this means that if (1) the average order size is small and (2) most customers only purchase a few

items at a time, then MPFC is a good candidate for practical implementation. But, is this the case?

Fortunately, the answer is yes. Xu et al. (2009) report that based on their analysis of data from a

major online retailer, approximately 65% of orders during the non-peak season consist of single items.

During the peak season, this drops somewhat to approximately 56%. Still, most multi-item orders

(close to 100%) are fulfilled with two or three shipments. In addition to the work of Xu et al. (2009),

a recent press release by eDataSource.com also reveals that shoppers at Amazon.com only purchase

on average 1.5 items per order while shoppers at Walmart.com only purchase on average 2.3 items per

order (accessed online at www.edatasource.com on Nov 28, 2013.). This provides more evidence for the

fact that most customers only purchase very few items at a time. The numbers seem to suggest that

MPFC may be appropriate after all. Indeed, our numerical results in Section 6 show a reasonably strong

performance of MPFC. And yet, it is sometimes desirable to have a stronger performance guarantee

than that provided by Theorem 2. For example, if all orders contain exactly 2 items, then simply

having an asymptotically 2-competitive performance guarantee is hardly satisfactory. This gives rise to

an important question whether we can improve the performance of MPFC by constructing a different
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heuristic which still uses the solution of J̃MLP , albeit in a more sophisticated manner. In particular, we

ask: Can we obtain a heuristic whose asymptotic competitive ratio is strictly less than EF [|Q|]? It

turns out that this is possible. In fact, the new improved heuristic recovers the asymptotic optimality of

PFC (i.e., it is 1-competitive) if all orders contain at most 2 items and is asymptotically 3-competitive

if all orders contain at most 10 items (in constrast, MPFC is only 10-competitive). We discuss this

next.

5 Improving the Bound

The key to the strong performance of PFC lies in the explicit inclusion of dependency factor (via the

assignment term σ) in the exact LP formulation. MPFC, on the other hand, attempts to completely

decouple this dependency by assuming that the fulfillment decision for each item can be made indepen-

dently of the others. As the bound in Theorem 2 suggests, this may not yield a satisfactory performance.

Obviously, dependency is an important factor and should not be ignored. And yet, implementation

challenge arises precisely because an explicit inclusion of dependency, even if only partially (e.g., via

partial decomposition instead of complete decomposition into independent items), would require us to

introduce another assignment term, which can still be exponential in the size of the input. Motivated

by this practical concern, instead of creating a new large LP, we will propose a new heuristic which

still uses the solution of JMLP and, given this solution, automatically constructs an artificial dependency

among the items contained in the same order. We first illustrate the idea using a simple example and

then we discuss its extension to the general setting.

5.1 A Simple Example

Suppose that we only have one selling period (i.e., T = 1), two items, two facilities, one region, and

one order type containing both items. All variable costs are equal to 0 and all fixed costs are equal to

1. The approximate LP formulation for our problem is given by:

JMLP = min λ
∑
k

yk

s.t. λuki ≤ Ski i = 1, 2; k = 1, 2 (21)∑
k

uki = 1 i = 1, 2 (22)

yk ≥ uki i = 1, 2; k = 1, 2 (23)

uki ≥ 0 i = 1, 2; k = 1, 2 (24)

where, for simplicity, we suppress notational dependency on q, t, and j. For illustration purpose,

suppose that an optimal solution to the above LP is given by u11 = 1
4 , u21 = 3

4 , and u12 = u22 = 1
2 .

Let Xki ∼ Bernoulli(uki). If we ignore the capacity constraint for the moment, implementing MPFC
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yields the per-request total expected cost equal to

E

[
max
i
{X1i}

]
+ E

[
max
i
{X2i}

]
= E

[
1−

∏
i

(1−X1i)

]
+ E

[
1−

∏
i

(1−X2i)

]
= 1−

∏
i

(1− u1i) + 1−
∏
i

(1− u2i)

=
3

2
.

In contrast, y1+y2 = maxi{u1i}+maxi{u2i} = 1
2 + 3

4 = 5
4 . So, the competitive ratio of MPFC with

respect to JMLP is 3/2
5/4 = 6

5 . We now show how to reduce this competitive ratio to 1 by constructing an

artificial dependency among {Xki}. For each item i, we first construct a line partition on a unit interval

and designate each partition to a unique facility. The length of the union of partitions designated to

facility k for each item i must equal to uki for all k and i. After all partitions have been constructed,

we perform a uniform sampling on [0, 1). The outcome of this sampling completely determines the

shipping decision for each item in the order. For example, consider the following partitions for our

problem above: For item 1, we designate interval [0, 14) to facility 1 and interval [14 , 1) to facility 2

whereas, for item 2, we designate interval [0, 12) to facility 1 and interval [12 , 1) to facility 2. Suppose

that we sample χ ∼ Uniform[0, 1] and get χ = 1
3 . Since 1

3 ∈ [14 , 1) and 1
3 ∈ [0, 12), we ship item 1 from

facility 2 and item 2 from facility 1. Using these partitions, we can re-calculate the total expected cost

to be:

E

[
max
i
{X1i}

]
+ E

[
max
i
{X2i}

]
= P

(
χ ∈

[
0,

1

4

)
∪
[

0,
1

2

))
+ P

(
χ ∈

[
1

4
, 1

)
∪
[

1

2
, 1

))

=
1

2
+

3

4
=

5

4
.

Since y1+y2 = 5
4 , surprisingly, we have just reduced the competitive ratio of MPFC from 6

5 to 1! In

fact it can be shown that for an optimal LP solution for this example with all Ski = 1, the competitive

ratio of MPFC is actually 3/2, which also gets reduced to 1 with the injection of artificial dependencies.

The example highights the power of injecting artificial dependency into fulfillment decisions. It is

important to note here that there are many partitions that can be used to still guarantee the 1-

competitive ratio in the above example. For example, we can use the following: For item 1, we still

designate [0, 14) to facility 1 and [14 , 1) to facility 2 whereas, for item 2, we now designate [0, 14) ∪ [34 , 1)

to facility 1 and [14 ,
3
4) to facility 2. It is not difficult to check that E [maxi{X1i}] + E [maxi{X2i}] still

equals to 5
4 . Thus, the new partitions still yield the same 1-competitive ratio as the old one. It is also

important to note that in either partition, the old or the new, we always have E[maxi{Xki}] = maxi uki.

This observation will play an important role in our analysis later. In particular, in the general setting,

we want to construct a dependency such that the expectation E[maxi∈q{Xq1
kij}] is as close as possible

to maxi∈q uq1kij for all q, k, and j.
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5.2 General Setting

Let uqtkij = Uq
kij/(Tλ

q
j) and yqtkj = Yq

kj/(Tλ
q
j), where {Uq

kij ,Y
q
kj} are the optimal solution of J̃MLP .

The combined task of constructing line partitions and using a uniform random number to generate

fulfillment decisions is essentially equivalent to constructing a joint probability distribution gqj on the

assignment vector {σ} satisfying E[Xq1
kij ] = uq1kij , or equivalently

∑
{σ:σ(i)=k} g

q
j (σ) = uq1kij for all i ∈ q,

and to fulfill order type q coming from region j according to assignment σ with probability gqj (σ).

Ideally, the distribution gqj must be constructed in a way that minimizes total expected shipping

costs (i.e., the objective function of J∗). Although an optimal gqj can be exactly computed using an

optimization approach (see Section 7), the resulting optimization can be large if |q| is large and it may

not be practically convenient to solve gqj for each pair (q, j) if the number of possible order types is

large. Thus, in order to maintain simplicity, we resort to an optimization-free approach in constructing

an approximate gqj . We call the resulting heuristic Improved PFC (IPFC). We will discuss how to

construct gqj shortly. For now, we first discuss its performance. Define B(n) as follows: B(n) = n+2
4 if

n is even and B(n) = (n+1)2

4n if n is odd. We state our result below.

Theorem 3 There exist joint distributions {gqj} such that

lim
θ→∞

E[CIPFC(θ)]

J∗(θ)
≤
∑
q,k,j

B(|q|)F (q, k, j) = EF [B(|Q|)],

where F is as defined in Theorem 2.

Table 2 provides the values of B(n) for selected values of n. Two comments are in order. First,

if |q| ≤ 2 for all q, which means that all orders contain at most two items, then IPFC is asymptot-

ically optimal. So, IPFC recovers the asymptotic optimality of PFC, in some cases. Second, since

limn→∞
B(n)
n = 1

4 , the expected total cost under IPFC can be up to four times smaller than that of

MPFC. This tells us that IPFC yields a significant improvement over MPFC.

n 1 2 3 4 5 6 10 20 50 100

B(n) 1 1 1.33 1.5 1.8 2 3 5.5 13 25.5

Table 2: The values of B(n).

Constructing Line Partitions. We now show how to construct the joint distribution gqj which sat-

isfies E
[
maxi∈q {Xq1

kij}
]
≤ B(|q|)

(
maxi∈q uq1kij

)
for all pairs (q, j), from which the result of Theorem 3

immediately follows. For the rest of discussion, we will fix (q, j) and suppress notational dependencies

on q and j for easier readability. We first describe the big picture. For each item i ∈ q, we partition the

unit interval Ii = [0, 1] into small segments {Ivi } with
∑

v |Ivi | = 1. We define a mapping hi : {v} 7→ SK ,

so that each segment is mapped/designated to a certain facility. Although two different segments may

be mapped to the same facility, we will ensure that the mapping preserves the JMLP solution u. That
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is,
∑
{v:hi(v)=k} |I

v
i | = uki. For each χ ∈ [0, 1], let vi(χ) denote the index of segment Ivi that contains

χ. So, by definition, χ ∈ Ivi if and only if v = vi(χ). As illustrated in Section 5.1, our idea of creating

dependency among items {i ∈ q} is via uniform sampling on a unit interval. Suppose that we sample

χ ∈ [0, 1] and ship item i from facility hi(vi(χ)) if it is available, and from facility 1 otherwise. (Since∑
{v:hi(v)=k} |I

v
i | = uki, if there is no stock-out, any such scenario will always yield E[Xki] = uki. So,

the marginal distribution of xki is preserved.) If we can construct {Ivi } and {hi(.)} in a way that

reduces the number of distinct facilities used by lining up segments of the interval that assign the item

to the same facility, then we can avoid having to pay the fixed cost of shipment |q| times, and obtain a

better competitive ratio. In what follows, we first describe how to construct the partitions {Ivi } for all

i ∈ q. Subsequently, we will discuss an example and prove that E
[
maxi∈q {Xq

ki}
]
≤ B(|q|)

(
maxi∈q uqki

)
.

The construction of the line partition {Ivi } proceeds in several steps.

STEP 1. Let |q| = n. For each k, write {uki} = uk as a column vector where its ith element is given

by uki. Our first step is to decompose uk as the sum
∑n

m=1 ũ
m
k where ũmk either has exactly m non-zero

elements and they are all the same, or is a zero vector. Formally, we generate the ũ vectors using the

following algorithm:

Decompose. Input: uk. Initialize: v = uk. For m = n : 1 (counting backwards from n to 1), do: Let

r denote the number of non-zero elements of v. If r < m, set ũmki = 0 for all i ∈ q. If, on the other

hand, r = m, set ũmki = 0 if vi = 0 and ũmki = the smallest non-zero elements of v otherwise for all i ∈ q.
Recompute v = v − ũmk . Set m = m− 1 and redo all the steps.

STEP 2. Let Mm
k = maxi∈q ũ

m
ki. Since

∑
k uki = 1 for all i ∈ q, we have

n =
∑
i∈q

∑
k

uki =
∑
k

∑
i∈q

uki =
∑
k

∑
m

∑
i∈q

ũmki =
∑
k

∑
m

mMm
k .

(By construction, either ũmki = 0 or Mm
k . So, either ũmk is a zero vector or it has exactly m non-zero

components.) This implies

∑
k

Mn
k +

n− 1

n

∑
k

Mn−1
k + ... +

2

n

∑
k

M2
k +

1

n

∑
k

M1
k = 1.

Define L0 = 0 and Lk = Lk−1 +Mn
k + n−1

n Mn−1
k + ... + 2

nM
2
k + 1

nM
1
k for k = 1, ...,K. (Note

that LK = 1.) Also, define the sequence {Hkm} as follows: Hk0 = Lk−1 and Hkm = Hk,m−1 + m
n M

m
k

for m = 1, 2, ..., n. (By construction, we have Hkn = Lk.) Let Ĩkm = [Hk,m−1, Hk,m). The intervals

{Ĩkm} form a partition for the unit interval [0, 1) (see Figure 1).

STEP 3. We are now ready to construct our line partition. For each i ∈ q, the partition {Ivi } is

constructed as follows. Let Ikmi = Ĩkm. If ũmki > 0, map interval Ikmi to facility k. That is, set

hi(k,m) = k. If ũmki = 0, mark interval Ikmi as “unassigned.” Let IAi be the union of all unassigned
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Figure 1: Constructed Line Partition

intervals. Arbitrarily partition IAi into small sub-intervals {IAkmi } such that
⋃
k,m IAkmi = IAi and

|Ikmi |+ |IAkmi | = ũmki for all k and m. (This is always possible.) Finally, map IAkmi to facility k. This

completes the construction of {Ivi }.

An Example. To illustrate the above construction, we will now consider a simple 4-item and 3-

facility example. Suppose that the optimal solution uki is given by the following matrix, where each

row represents an item and each column represents a facility:

u =



0.6 0.3 0.1

0.0 1.0 0.0

0.4 0.5 0.1

0.0 0.3 0.7


.

For our first step, the decomposition for u1, u2, and u3 yield

u1 = ũ41 + ũ31 + ũ21 + ũ11 =


0

0

0

0

+


0

0

0

0

+


0.4

0

0.4

0

+


0.2

0

0

0

 ,

u2 = ũ42 + ũ32 + ũ22 + ũ12 =


0.3

0.3

0.3

0.3

+


0

0

0

0

+


0

0.2

0.2

0

+


0

0.5

0

0

 ,

u3 = ũ43 + ũ33 + ũ23 + ũ13 =


0

0

0

0

+


0.1

0

0.1

0.1

+


0

0

0

0

+


0

0

0

0.6

 .
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The resulting {Mm
k }, {Lk}, {Hkm}, and {Ĩkm} in the second step are given below (the columns are

indexed by k and the rows by m):

M =



0.2 0.5 0.6

0.4 0.2 0

0 0 0.1

0 0.3 0


, L = [0.25 0.775 1] , H =



0.05 0.375 0.925

0.25 0.475 0.925

0.25 0.475 1

0.25 0.775 1


,

and Ĩ =



[0, 0.05) [0.25, 0.375) [0.775, 0.925)

[0.05, 0.25) [0.375, 0.475) ∅

∅ ∅ [0.925, 1)

∅ [0.475, 0.775) ∅


.

The final partitions for our example are shown in Figure 2. It is easy to verify that, for each item

i, the total length of partitions designated to each facility k equals uki. The point to note here is that

the partitions have been constructed in a way to increase overlaps, so that if a particular facility is

chosen for an item, it is more likely than in the case of independent probabilistic fulfillment that the

same facility is chosen for other items as well. This dependent probalistic fulfillment thus reduces the

total number of shipments. For instance, the partition [0.475, 0.775] is designated to facility 2 for

every item. Similarly, although only two items are fractionally served by facility 1 (these are items 1

and 3), the partition designated for facility 1 in I3 is a subset of that for facility 1 in I1. The effect

of this manifests itself when we use the partitions to assign the items to facilities. Recall the IPFC

assignment rule: We sample χ uniformly from the interval [0, 1], and assign each item i to the facility

mapped to by the number χ in Ii. So, in our example, if we obtain χ = 0.95, then item 2 is assigned to

facility 2 and all other items are assigned to facility 3. By averaging the number of facilities used as χ

goes from 0 to 1, it is easy to verify that for this example, the expected number of facilities used is 2.3.

In contrast, if we just used the u solution and assigned items to facilities independently, the expected

number of facilities is 2.517.

The Proof. We now provide the proof of Theorem 3. The key is to show that E
[
maxi∈q {Xqt

kij}
]
≤

B(|q|)
(

maxi∈q uqtkij

)
for all q, k, j. Fix (q, j) and let |q| = n (whenever possible, we will suppress

notational dependency on (t, q, j)). By our construction, for each k, we have

E

[
max
i∈q
{Xki}

]
≤

n∑
m=1

[ m
n
Mm
k + m

(
1− m

n

)
Mm
k

]
,
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0 .05 .25 .375 .475 .775 .8 .9 .925 1

1 1 1 1 2 1 1 3 3
I1 =

0 .05 .25 .375 .475 .775 .8 .9 .925 1

2 2 2 2 2 2 2 2 2
I2 =

0 .05 .25 .375 .475 .775 .8 .9 .925 1

1 1 1 2 2 1 2 3 3
I3 =

0 .05 .25 .375 .475 .775 .8 .9 .925 1

3 3 3 3 2 3 3 3 3
I4 =

Figure 2: Intervals for 4-item 3-facility example.

where the expectation is taken with respect to the induced joint distribution. The first term in the

summation follows because Ikmi = Ikmi′ for all i, i′ ∈ q with ũmki = ũmki′ = Mm
k > 0, and |Ikmi | = m

nM
m
k .

The last term follows because, under the worst case scenario, the intervals IAkmi and IAkmi′ may not

intersect at all. Since there can be at most m such intervals (by definition, ũmk contains at most m

non-zero elements), we have a multiplicative factor m. We divide our analysis into two cases. If n is

even, then max1≤m≤n
[
m
n +m

(
1− m

n

)]
= n+2

4 . If n is odd, max1≤m≤n
[
m
n +m

(
1− m

n

)]
= (n+1)2

4n .

So, by definition of B(.), E [maxi∈q {Xki}] ≤ B(n)
∑

mM
m
k = B(|q|)

∑
mM

m
k . But, maxi∈q uki =

maxi∈q
∑

m ũ
m
ki =

∑
m maxi∈q ũ

m
ki =

∑
mM

m
k , where the second equality follows because, by construc-

tion, Mm
k > 0 and ũmki = 0 imply ũm

′
ki = 0 for all m′ < m. We conclude that E [maxi∈q {Xki}] ≤

B(|q|) (maxi∈q uki). The theorem now follows by the same argument as in the proof of Theorem 2.

6 Numerical Experiments

We now demonstrate the efficacy of our algorithms via numerical simulations. The numerical simula-

tions were constructed so as to model a real business environment as closely as possible (within the

abstraction considered in this paper). Broadly speaking, our results demonstrate that the IPFC algo-

rithm performs exceedingly well, obtaining an observed competitive ratio that is very close to 1 under

a wide variety of settings. It always performs better than a simple myopic strategy, often much better.

Additionally, even within our limited computing resources (relative to the resources that may be at

the disposal of a large corporation), we are able to solve problems of a fairly large scale in very small

amounts of time. These details are explained below. Complete details of the simulation are provided

in the appendix, so as to not distract too much from the flow of the paper.
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6.1 Setup of numerical experiments

We model a firm located in the continental United States (that is, the US minus Alaska and Hawaii),

with customer demand arriving from any of the 99 largest cities (we actually took the 100 largest

cities, but excluded Honolulu)(U.S. Census Bureau 2014). Possible locations of the fulfillment centers

are those that have been determined to be optimal by another study?. We assume each item is exactly

1 pound in weight. We model shipping costs by obtaining UPS rates for 891 combinations of facilities,

customer locations, and package weights, and using linear regression to estimate the shape of the cost

function. The resulting shipping cost function, for shipping an order q from facility k to customer j is

the following, where dkj denotes the distance in miles from k to j:

cost(q, k, j) = 8.759 + 0.423|q|+ 0.000541|q|dkj

This estimation has an R2 of 94.5%, and all three coefficients are significant with p-values of the

order of 10−15. The coefficient for dkj in the absence of |q| was insignificant and hence dropped. To

translate this in to the terminology of the rest of the paper, we find that bkj = 8.759 and ckij =

0.423 + 0.000541dkj . Note that the distances dkj are often in the hundreds or even thousands of miles,

so it does have a non-negligible effect on shipping costs. We use thse shipping costs for this numerical

study, except for a few experiments where we simply minimize the number of packages (bkj = 1 and

ckij = 0).

The number of items |I| we model ranges from 10 to 500. Given a set I of items, we construct the

set Q randomly; the precise process is described in the appendix. Typically, an order q ∈ Q will have

between 1 and 10 items, while the size of the set Q ranges from 10 to 50. We then generate demand

rates λqj , such that λj is proportional to the actual metropolitan population of city j (so, for example,

demand from New York will be approximately 10 times as high as demand from Las Vegas, because

their metropolitan area populations are roughly 20 million and 2 million respectively). We compute

E[B(|q|)] based on this construction and compare our results against it.

As described in Section 2, there is an additional fictitious facility, labeled facility 1, with infinite

inventory of all products, to model what the firm may do in case of stockout. The shipping cost

parameters for this facility are b1j = 2× 8.759 and c1ij = 2× (0.423 + 0.000541 maxk,j dkj). In general,

not all facilities stock all products. As described further in the appendix, we define a parameter pstock,

and each facility k 6= 1 stocks item i with probability pstock, independently for all k, i. For each facility

k that stocks item i, we then set its initial inventory to equal the expected demand from all cities whose

nearest facility that stocks item i is facility k. We test for sensitivity with respect to both the pstock

parameter and the initial inventory level later in this section.

Our numerical experiments test the performance of both our algorithms IPFC and MPFC. In

addition, we test a Myopic algorithm, which simply sends each item in an order from the nearest facility

that stocks it. We attempted to implement a perfect hindsight algorithm, but that requires solving an

integer program, which took too long even on problem sizes approximately one-thousandth the size of

the typical simulations we report below.
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Our experiments were implemented on our institution’s scientific computing platform, using 2.27

GHz Intel Xeon E7-4860 processors with 200 GB of RAM. The typical run time of a single simulation

trial (generating demands, solving LP, and simulating IPFC, MPFC, and Myopic) takes less than one

minute, with even the largest instances taking no more than 5 minutes. This allowed us to run over

10,000 simulation trials over various ranges of the input parameters, some of which are reported below.

6.2 Base case simulation

We begin with a detailed look at a single set of simulation trials with no parameters varying. We

consider the following case: |I| = 20 items, |J | = 10 customer locations, |K| = 5 facilities, and

|Q| = 26 order types. Using T = 100 and θ = 100, the total time horizon in our simulation is given by

θT = 10, 000. Given our formulation, it does not matter what the precise values of θ and T are; only

the product θT matters for the purpose of numerical simulation. Therefore, for the simulation results

below, we generally report θT . Complete details of our numerical experiment set-up are provided in

Appendix B.

We report the results of two sets of experiments below. In the first, we fix the demand rates

λ, so the only source of variation is the actual sequence of demand arrivals. This allows us to get a

sense of the variation caused by only the stochasticity in demand arrivals. In the second set, we also

vary the demand rates λ, while keeping all problem parameters (|I|, |J |, |K|, |Q| as well as inventory

control parameters described in Appendix B) fixed. For each set, we report results over 30 simulation

trials.

Fixed λ, varying demand Varying λ and demand

Myopic MPFC IPFC E[B(|q|)] Impr. Myopic MPFC IPFC E[B(|q|)] Impr.
Mean 1.056 1.083 1.028 1.230 0.028 1.082 1.156 1.042 1.313 1.040
Stdev 0.016 0.016 0.014 0 0.005 0.027 0.078 0.018 0.144 0.022
LCL 1.050 1.077 1.023 1.230 0.026 1.072 1.127 1.035 1.259 0.031
UCL 1.062 1.088 1.033 1.230 0.030 1.092 1.185 1.049 1.367 0.048

Table 3: Base case simulation data. First four colums in each sub-table are competitive ratios with
respect to LP lower bound. Impr. (Improvement) is defined as competitive ratio of Myopic minus
competitive ratio of IPFC. LCL and UCL are lower and upper confidence limits respectively, at the
95% level.

There are several points worth noting. First, note that the competitive ratio of IPFC is less than

5%: and this is against the LP lower bound, not against the optimal solution. This suggests that IPFC’s

performance is indeed very good in our numerical results. Next, observe that IPFC dominates Myopic

in both situations. In fact, we find strong statistical evidence (based on the confidence intervals) that

IPFC is able to recover approximately half the optimality gap of Myopic. Also note that E[B(|q|)] is

a very loose upper bound, so even though our theoretical guarantee of E[B(|q|)] may not appear very

encouraging, IPFC’s actual performance may be much better.

MPFC is dominated by IPFC here (to be expected) and also by Myopic (perhaps unexpected). The

relationship between MPFC and Myopic is not universal: when the objective function is to minimize the
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Figure 3: Performance with respect to number of items |I|. Left panel: minimize shipping cost in
dollars. Right panel: minimize number of packages.

number of packages instead of the shipping cost, in most cases MPFC dominates Myopic. Nevertheless,

given that MPFC is always worse than IPFC, for most of the rest of this section we focus on the

comparison between IPFC and Myopic.

Also notice the difference between the tables on the left and the right. As is to be expected, when

λ varies in addition to the demand varying, the overall competitive ratios are worse. However, IPFC

still recovers approximately half the optimality gap of Myopic.

Remark on scaling simulation size. The numerical study in this section includes tests where

the number of items |I| grows to as much as 500. For the other quantities, the maximum numbers

in our simulations are 95 customer regions, 9 facilities, and 100 order sizes (although we did not do a

simulation where all these parameters were at their maximum values). In our computing environment,

the main constraint appears to be that if |I|.|J |.|K|.|Q| exceeds around 250,000, we run out of memory.

This is not an insurmountable constraint: simply using file storage for memory would allow us to

increase further the size of problems we can solve.

A real firm is likely to have access to significantly greater computing resources, particularly with

the growth of on-demand elastic cloud computing technology. Additionally, our simulations generally

ran within 1 minute: a real firm is likely to be willing to spend several hours or more if the algorithms

generate an inventory policy that is expected to run for several days or weeks. With just those two

extensions, we conjecture that scaling up the algorithms to thousands of items and packages will be

fairly straightforward.

Additionally, the main algorithmic bottleneck in our work is the linear program. We use a naive

LP solver in Matlab. It is possible that with techniques such as decomposition and exploitation of the

sparsity of the linear programs, the size of the LP that can be solved can be much larger. Therefore,

we believe that our numerical results provide strong support for the scalability of our algorithms to

real-world sizes.
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Figure 4: Performance with respect to number of customer locations |J | (left panel) and length of time
horizon θT (right panel).

6.3 Scaling with number of items

The left panel of Figure 3 shows the four output metrics (competitive ratios of IPFC, MPFC, and

Myopic, and E[B(|q|)]) as the number of items |I| increases. First, observe that IPFC is always better

than Myopic, and much lower than E[B(|q|)]. For small number of items, the competitive ratios of

IPFC and Myopic are 1.038 and 1.101 respectively; with 50 items these ratios are 1.050 and 1.074.

This suggests that Myopic can incur 6% to 10% extra costs compared to the LP lower bound, while

IPFC is able to recover 30% to 70% of this extra cost. This is encouraging; although some of our other

results will show an even stronger performance of IPFC.

It is also worth noting that the upper bound provided by E[B(|q|)] is between 1.30 and 1.35,

substantially worse than the observed performance of IPFC. In fact, for all of our numerical simulations,

the actual performance of IPFC was much better than the upper bound E[B(|q|)]. Given this, in the

following sections we won’t even report E[B(|q|)], to allow for a clearer comparison of IPFC and Myopic.

We also note in passing that as expected, MPFC performs worse than IPFC. This is also generally true

in all our experiments, and we will ignore MPFC also from here on.

The right panel of Figure 3 shows the competitive ratios of IPFC and Myopic, and the upper

bound E[B(|q|)] for the case of minimizing the number of shipments. In these experiments, the setting

is exactly as defined above except that instead of minimizing total shipping cost we simply minimize

number of shipments. Given that shipping distances do not matter, we can simply aggregate all

customers to a single location (so |J | = 1), and this allows us to scale the number of items |I| to 500.

In this case, we find that the performance of IPFC is even stronger. The competitive ratio of IPFC

with respect to the LP lower bound is approximately 1.02, while for Myopic it is approximately 1.10.

That is, a Myopic algorithm will incur approximately 5 times excess cost compared to IPFC!

6.4 Sensitivity to number of locations and time horizon

The left panel of Figure 4 shows the competitive ratios as the number of possible customer locations

changes. We observe that the competitive ratio stays somewhat stationary for both Myopic and IPFC,
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Figure 5: Performance with respect to number of fulfillment centers |K|, with shipping costs (left panel)
and number of packages (right panel) as objective.

particularly after 35 cities or so. This is not entirely surprising given the structure of the shipping

cost. Furthermore, if one were to use actual UPS rates, we would observe this stationarity with an

even smaller number of customer locations because UPS charges according to a zone system: from a

given origin, the rest of the country is divided into at most 9 zones, and all destinations within a single

zone incur the same shipping cost.

The right panel shows the competitive ratios as the time horizon θT increases, from 100 to 100,000.

The main observation is that although the competitive ratios decrease sharply with θT initially, they

stabilize once θT is 10,000 or more. This is to be expected. At the lower extreme of θT = 100, with

|I| = 20, |J | = 10 and |K| = 5, the time horizon is so small that there is a lot of statistical variation

in the observed demands compared to the expected demands; our theoretical guarantee holds only

as θ → ∞, and it stands to reason that for smaller θ the observed competitive ratio may be poor.

Additionally, with small θT the integrality gap of the LP is much higher. Larger values of θT allow

for enough time for observed demands to approach (statistically) their expected values, in which case

the observed competitive ratios are truer measures of the actual performances of the algorithms. Note

that given the time-homogenous nature of the problem, changing θT does not change the size of the

LP: so the time to implement MPFC and IPFC do not change. What does change is the length of time

our simulation runs, but even that is insignificant. We continue with θT = 10, 000 for the rest of this

section.

6.5 Sensitivity to number of facilities

Figure 5 shows the competitive ratios as the number of facilities changes. As is to be expected,

with more facilities the competitive ratio is worse. However, even at the high end of 9 facilities, the

competitive ratios when minimizing shipping costs of IPFC and Myopic are 1.05 and 1.10 respectively;

when minimizing the number of packages these are 1.07 and 1.15. Again, it appears that IPFC is able

to recover at least half of the excess cost compared to the LP lower bound, in a way that scales well

with the number of facilities.
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Figure 6: Performance with respect to initial inventory placement. Left panel: with |K| = 5 facilities,
the probability for each item being in a given facility pstock changes, with CSL=0.5. Right panel: Initial
inventory service level changes, for each item at each facility, with pstock = 0.6.

6.6 Sensitivity to initial inventory placement

Recall that our initial inventory placement uses two parameters, pstock and CSL. For each item i and

facility k 6= 1, the parameter pstock is the probability that facility k even stocks item i, decided in an

i.i.d. fashion for all item-facility pairs. Given this assignment, we then define the “service area” for

each facility-item pair as the set of all customer regions for whom this facility is the nearest that stocks

item i (details in appendix). Then, we set the initial inventory level Ski as the quantity such that the

probability that demand for item i from the service area exceeds Ski is CSL.

Naturally, as pstock → 1 and CSL → 1, both Myopic and IPFC (and in fact any reasonable

algorithm) will trivially perform optimally, because there is large amount of initial inventory of every

item at every facility. However, in practice, neither of these conditions hold. Each facility may stock

only a subset of the items, because of considerations such as handling equipment, capacity, supplier

locations, physical characteristics of items, etc.; more such constraints would make for a lower value of

pstock. For CSL, the obvious trade-off is that a higher CSL results in higher inventory holding costs.

So, a firm would want to carefully balance both the assignment of items to facilities and the initial

inventory levels so as to keep overall costs low and service levels high.

As is to be expected, lower levels of pstock and lower levels of CSL result in higher competitive

ratios. Once again, in all cases observed, IPFC completely dominates Myopic, with some convergence

seen only when pstock = 1. Although we show results above only for CSL = 0.5 when we vary pstock and

pstock = 0.6 when we vary CSL, our experiments confirm these findings for a wide range of parameters.

This strongly suggests that if a firm is facing real-world constraints that prevent it from keeping high

levels of inventory of every item everywhere, the value of an algorithm like ours can be fairly substantial.

6.7 Extreme case: all packages of maximum size

One possible extreme case for our algorithm is when all customer demands are for packages of the same

size q0. That is, for a fixed q0, the set of possible packages Q is the set of all
(|I|
q0

)
subsets of I that
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Figure 7: Performance with respect to package size q0 when Q consists of all packages of size q0. Left
panel: Performance as q0 changes. Right panel: q0 fixed at 4, θT changes.

have exactly q0 distinct items in them. In this case, we have E[B(|q|)] = B(q0).

Figure 7 shows the performance of IPFC as the package size increases (with |I| = 10 and θT =

10, 000). We find that as q0 (and therefore E[B(q0)] increases, the competitive ratio of IPFC (and

Myopic) decreases. This suggests that our bound of E[B(|q|)] is a weak bound, particularly if |q| is large.

Also note that although the competitive ratio of IPFC appears to exceed the E[B(q0)] bound for q0 ≤ 4

in the figure on the left, we believe this is because the theoretical bound holds only asymptotically. To

buttress this argument, we show in the right panel of Figure 7 that as the time horizon (θT ) increases,

the performance of IPFC indeed drops below the E[B(q0)] bound.

7 Limits on Competitive Ratio

While the numerical studies are extremely encouraging in terms of the observed competitive ratio, the

question remains open whether the provable bound on the competitive ratio can be improved. In this

section, we attempt to answer that question partially. We prove by a simple reduction from the Set

Cover problem that not only is it impossible to construct an algorithm to solve the problem optimally

in polynomial time, but that the competitive ratio of any algorithm has to be at least Ω(ln |Q|). We

also show via example that it is impossible to construct an optimal joint distribution as in the IPFC

approach.

Set Cover reduction. The Set Cover problem, at its simplest, comprises a universe U of elements,

and a collection S of subsets of U . The objective is to select a sub-collection C ⊆ S such that ∪C = U

and |C| is minimized. The Set Cover problem is known to be not only NP-Hard, but also hard to

approximate to a competitive ratio better than O(log |U |) in polynomial time (Feige 1998).

Consider the problem of fulfilling just a single order (with many items but each item demanded

at most once), with the objective of minimizing the number of facilities used (equivalently, c = 0 and

b = 1 in the cost function). We will reduce the Set Cover problem to this, as follows. Given an instance
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(U,S) of the Set Cover problem, map each element of U to an item i, and each set S in S to a unique

facility k(S). At facility k(S), set the inventory as follows: Sk(S)i = 1 if and only if i ∈ S, otherwise

Sk(S)i = 0. Now, consider the EOF problem, given these inventory levels and one single order defined

by U . The optimal solution to EOF will minimize the number of facilities used, because that is all that

counts in the objective function, and hence will also find the optimal set cover. So, the lnn threshold

of approximation of Set Cover extends to approximating EOF even when we have just one single order.

To extend the hardness result to our problem, it helps to consider a multi-period, capacitated,

version of the set cover problem (abbreviated MCSC here). In MCSC, each set S ∈ S has a (non-

negative integral) capacity cap(S), and in each time period a new q ⊆ U arrives. Each q represents an

order, and must be fulfilled by choosing a cover from S. The objective would be to minimize the total

number of sets used, ensuring that no set is used more times than cap(S). It can be shown that by

simply scaling up the instance of the standard set cover problem that gives a lnn lower bound, one can

construct an instance of MCSC where it would be NP-hard to obtain a solution that has competitive

ratio better than Ω(maxq ln |q|). Using the correspondence between MCSC and our problem above,

this implies an Ω(ln |Q|) lower bound on the competitive ratio of EOF. As far as we are aware, there is

no literature on any problem similar to MCSC. There is literature on a problem known as “capacitated

set cover” (Chuzhoy and Naor 2006), but that is a different problem: there is still only a single universe

that needs to be covered, and the capacity constraints only limit how many items each set can be used

to cover.

This still leaves open a gap between our competitive ratio of E[B(|Q|) and the inapproximability

threshold of Ω(ln |Q|). The standard techniques used to approximate the Set Cover problem do not

directly extend to our problem; the main difficulty lies in the capacity constraints. Reducing this gap

remains an open question.

Non-existence of asymptotically optimal distribution for IPFC. Is it theoretically possible to

construct joint distributions {gqj} such that IPFC is still asymptotically optimal even if |q| > 2 for some

q? Unfortunately, the answer is no. In principle, the optimal joint distributions {gqj} can be computed

by solving a sequence of independent LPs, one for each pair (q, j), as follows:

V q
j = min

∑
k

bkj

1−
∑

σ:σ(i)6=k ∀i

gqj (σ)


s.t.

∑
σ:σ(i)=k

gqj (σ) = uq1kij and gqj (σ) ≥ 0.

(The term inside the bracket [.] is equal to the expectation E
[
maxi∈q {Xqt

kij}
]

under gqj .) It can be

argued that if |q| ≤ 2, then V q
j =

∑
k bkj (maxi∈q u

q1
kij) for all pairs (q, j). In fact, one can use the joint

distributions hinted in Theorem 3 as a feasible solution to V q
j . Since the same summations also show

up in JMLP (because yqtkj = maxi∈q uqtkij), this suggests the asymptotic optimality of the optimal joint

distributions.
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This observation, however, does not hold if |q| = 3 for some q. We give a counter-example. Consider

an instance of EOF where there is only one order type q1 with exactly 3 items (i1, i2, i3), 3 facilities

(k1, k2, k3), and 1 region (j1). (For brevity, we will suppress notational dependency on q1 and j1.) For

simplicity, we assume that Ski = ∞ for all (k, i), bk = $1 for all k, ck1i3 = ck2i2 = ck3i1 = $10, and

cki = 0 otherwise. An optimal solution to JMLP is given by

utk1i3 = utk2i2 = utk3i1 = 0 and utkj =
1

2
otherwise.

Substituting these into the above LP, we get V q
j = 2. Since

∑
k bk(maxi u

t
ki) = 1

2 + 1
2 + 1

2 = 3
2 ,

this tells us that the optimal joint distribution is asymptotically 4
3 -competitive. (As can be seen from

Table 2, our constructed heuristic also achieves this exact performance for the case |q| ≤ 3.) We want

to stress, the above LP requires one decision variable for each permutation σ. In addition, we also

have to solve this LP for each pair (q, j), which may not be the most efficient pursuit especially if |q| is
typically large. In contrast to this, our construction of {gqj} does not require any optimization at all.

So, it is relatively easy to implement.

8 Conclusion

The significant growth in online retail, and the availability of very precise data about consumer pref-

erences, has resulted in the emergence of several new practices in the delivery of goods to consumers.

Despite this, academic research in this area is relatively sparse. Our work addresses one piece of this

larger research landscape: optimizing the fulfillment of multi-item orders in the presence of inventory

constraints.

Several promising directions of research remain. With respect to the problem addressed in this

paper, finding a heuristic with a better competitive ratio is an open question, although our hardness

result indicates that an optimal algorithm that is computationally tractable, under the general frame-

work of our paper, cannot exist. It also remains open whether in fact a stronger lower bound exists

for the competitive ratio for this problem. The most direct natural extension involves delivery time

windows: when each order also specifies a deadline for delivery. Acimovic et al. (2012) address a version

of this problem with single-item orders, and we conjecture that our approach can also be extended to

handle time windows by adding one more set of variables in the problem. Other promising directions

of future research are the incorporation of inventory management policies into the fulfillment problem

and the incorporation of non-stationary demand rates that must be learned over time. We expect to

see substantial research in this overall area in the near future.

9 Acknowledgments

The numerical study in Section 6 was conducted with the assistance of Manqi Li and Jianyu Liu,

undergraduate students at the University of Michigan—Shanghai Jiao Tong University Joint Institute.

29



The authors thank them for their help.

The paper has also benefited significantly from the input of anonymous referees and an editorial

review team. We sincerely thank them for their feedback and suggestions.

APPENDIX A: Proofs

Proof of Theorem 1. Let uqtσj = uq1σj = Uq
σj/(Tλ

q
j). We consider a variant of PFC (VPFC) which

works as follows: during period t, fulfill order type q from region j according to σ with probability uq1σj
regardless of availability. So, in contrast to PFC, at the end of selling horizon, VPFC incurs a large

penalty for each violation of inventory constraints. Let Xq
σj(θ) denote the number of times order type

q from region j are fulfilled according to σ throughout the selling horizon. Total cost under VPFC is

given by

CV PFC(θ) =
∑
j

∑
q

∑
σ

cqσj X
q
σj(θ) + cp

∑
k

∑
i

∑
j

∑
q∈i

∑
σ:σ(i)=k

Xq
σj(θ)− Ski(θ)

+

,

where cp =
∑

j

∑
q

∑
σ c

q
σj . Obviously, CPFC(θ) ≤ CV PFC(θ). So, we can bound E[CPFC(θ)] −

JLP (θ) with E[CV PFC(θ)]− JLP (θ). Since E[Xq
σj(θ)] = Uq

σj(θ) and there exists a positive constant M

independent of θ > 0, k, and i such that

E

∑
j

∑
q∈i

∑
σ:σ(i)=k

Xq
σj(θ)− Ski(θ)

+ ≤ E

∑
j

∑
q∈i

∑
σ:σ(i)=k

(Xq
σj(θ)−Uq

σj(θ))

+
+ E

∑
j

∑
q∈i

∑
σ:σ(i)=k

Uq
σj(θ)− Ski(θ)

+
≤

∑
j

∑
q∈i

∑
σ:σ(i)=k

E
[
(Xq

σj(θ)−Uq
σj(θ))

+
]

≤
∑
j

∑
q∈i

∑
σ:σ(i)=k

√
VAR(Xq

σj(θ)) ≤ M
√
θ,

(the second inequality follows because
∑

j

∑
q∈i
∑

σ:σ(i)=k Uq
σj(θ) ≤ Ski(θ) and the last inequality

follows because, by Binomial formula, VAR(Xq
σj(θ)) ≤ Tθ) we conclude that E[CPFC(θ)] − JLP (θ) ≤

M
√
θ. This completes the proof. �

Proof of Theorem 2. Similar to the proof of Theorem 1, we consider a variant of MPFC which

works as follows: During period t, we fulfill item i ∈ q from region j from facility k with probability

uqtkij = Uq
kij/(Tλ

q
j) regardless of availability. We denote this heuristic by VPFC, where the “V” stands

for Violated. Since VPFC ignores the inventory constraints, at the end of selling horizon, VPFC incurs

a large penalty cp for each violation of inventory constraints. Let Dqt
j be a binary random variable,

Dqt
j = 1 if an order type q arrives from region j during period t and 0 otherwise. Total cost under
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VPFC is given by

CV PFC(θ) =
∑
t,j,q,k

Dqt
j

∑
i∈q

ckij X
qt
kij(θ) + bkj max

i∈q
Xqt
kij(θ)


+ cp

∑
k

∑
i

∑
j

∑
q∈i

Dqt
j X

qt
kij(θ)− Ski(θ)

+

,

where cp =
∑

j

∑
q

∑
k

[∑
i∈q ckij + bkj

]
is the stock-out penalty. Obviously, CMPFC(θ) ≤ CV PFC(θ).

This allows us to bound E[CMPFC(θ)]/J∗(θ) with E[CV PFC(θ)]/J∗(θ). Since J∗(θ) ≥ JMLP (θ), we

can further bound E[CV PFC(θ)]/J∗(θ) with E[CV PFC(θ)]/JMLP (θ). By the same argument as in

the proof of Theorem 1, the penalty cost in CV PFC(θ) (the term with [.]+) is of order O(
√
θ).

Since JMLP (θ) = θ JMLP , the O(
√
θ) term vanishes asymptotically as θ → ∞. So, we can focus on∑

t,j,q,kD
qt
j

[∑
i∈q ckij X

qt
kij(θ) + bkj maxi∈q X

qt
kij(θ)

]
. Observe that

E

[
max
i∈q

Xqt
kij(θ)

]
= E

1−
∏
i∈q

(1−Xqt
kij(θ))

 = 1−
∏
i∈q

E
[
1−Xqt

kij(θ)
]
.

Since E[Xqt
kij(θ)] = uqtkij , by Bernoulli’s inequality, E

[
maxi∈q X

qt
kij(θ)

]
≤
∑

i∈q uqtkij ≤ |q|maxi∈q uqtkij .

So, we can bound:

E

Dqt
j

∑
i∈q

ckij X
qt
kij(θ) + bkj max

i∈q
Xqt
kij(θ)

 ≤ λqj

∑
i∈q

ckiju
qt
kij + bkj |q|max

i∈q
uqtkij

 .

Using the fact that uqtkij = uq1kij for all t ≥ 1 and the inequality
∑

i(ai+bici)∑
i(ai+bi)

≤
∑

i bici∑
i bi

for all ai > 0,

bi > 0, and ci ≥ 1, we have:

lim
θ→∞

E[CV PFC(θ)]

JMLP (θ)
≤

∑
q,j,k λ

q
j

(∑
i∈q ckiju

qt
kij + bkj |q|maxi∈q uqtkij

)
∑

q,j,k λ
q
j

(∑
i∈q ckiju

qt
kij + bkj maxi∈q uqtkij

)
≤

∑
q,j,k λ

q
jbkj |q|maxi∈q uqtkij∑

q,j,k λ
q
jbkj maxi∈q uqtkij

=
∑
q,k,j

|q|F (q, k, j).

This completes the proof. �

Proof of Lemma 1. Arguing as in Section 5, we can write:

lim
θ→∞

E[CMPFC(θ)]

J∗(θ)
≤

∑
j,q,k λ

q
j yq1kj |q|∑

j,q,k λ
q
j yq1kj

.
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Since {yq1kj} is an optimal solution to JMLP , it must satisfy yq1kj = maxi∈q uq1kij . We will now provide

a lower and an upper bound for the sum
∑

k maxi∈q uq1kij . The lower bound is straightforward:

∑
k

max
i∈q

uq1kij ≥
∑
k

∑
i∈q uq1kij
|q|

=
1

|q|
∑
i∈q

∑
k

uq1kij = 1,

where the last equality follows because
∑

k uq1kij = 1. We now give an upper bound. Obviously, since

uq1kij ≤ 1, we must have
∑

k maxi∈q uq1kij ≤ |SK |. But, also,∑
k

max
i∈q

uq1kij ≤
∑
k

∑
i∈q

uq1kij =
∑
i∈q

∑
k

uq1kij = |q|.

We conclude that
∑

k maxi∈q uq1kij ≤ min{|SK |, |q|}. Now, let F (q, k, j) = λqj yq1kj/
∑

j′,q′,k′ λ
q′

j′ yq
′1
k′j′ .

Applying the above lower and upper bounds to F (q, k, j) immediately yields the result. This completes

the proof. �

APPENDIX B: Numerical study description

In this appendix, we provide a detailed description of our numerical study in Section 6. Our

numerical study was performed entirely using publicly-available data, and we provide enough detail

here to allow readers to completely replicate our study. We first describe our numerical study domain

(locations and distances), followed by the initial inventory placement, followed by the actual simulation

details.

Geographical domain. Our study is placed in the continental United States. For customer

locations, we start with the 100 largest metropolitan statistical areas (MSAs) as estimated by the US

Census Bureau(U.S. Census Bureau 2014) in the US, then remove Honolulu. We take into account

the population of the MSAs in generating demand, so a more populous city generates proportionately

more demand. Then, given the number of customer locations |J | we are interested in, we simply select

uniformly at random from this set of 99 cities.

For the list of potential facility locations, we use (Chicago Consulting 2013), who report the locations

of the best n facilities for minimizing shipping cost in the US, for |J | = 1, 2, . . . , 10. We remove the

Puerto Rico locations from this list, and select networks with |J | = 2, 5, and 9. Thus, although we do

not optimize the location of the facility ourselves (optimal location of fulfillment centers for ecommerce

is a different research question), our chosen fulfillment center locations arguably are somewhat close to

optimal.

We use UPS ground shipping rates to estimate our shipping cost function. With 99 destination

cities and 9 potential facility locations, there are 891 possible origin-destination pairs. For each such

pair, we get the shipping rate from UPS for a package of weight 1, 2, or 3 pounds, choosing package

weight uniformly at random. We then first estimated the following linear shipping cost model, where

dkj is the distance in miles from facility i to customer region j and |q| ∈ {1, 2, 3} is the number of items

in the package, assuming each item weighs exactly one pound:
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cost(q, k, j) = β0 + β1|q|+ β2dkj + β3|q|dkj

The estimate of coefficient β2 was insignificant in the above estimation, so we removed it and

re-estimated the parameters. This resulted in the following final estimate, with an R2 of 94.5% and

p-values of the order of 10−15:

cost(q, k, j) = 8.759 + 0.423|q|+ 0.000541|q|dkj

In our entire numerical study, we either used this shipping cost function or minimized the number

of packages. However, our methodology is such that any shipping cost function should be easily usable.

Note also that we use a fictitious facility indexed j = 1 with infinite supply to model the costs

incurred due to stockouts. To make the problem reasonable, facility 1 should have higher costs than

regular facilities. We implement this using a penalty factor of 2. That is, we set b1j = 2 × 8.759 and

c1ij = 2× (0.423 + 0.00541 maxk,j dkj).

Demand Forecasts and Initial inventory. First, we describe how we construct the demand

rates λ in our simulation, given a set of items I = {1, 2, . . . , |I|}. The main problem this paper solves

is that of fulfillment when customers order baskets of more than one item. So, we need to generate

demand rates for baskets of items. However, for both real-world reasons and analytical tractability

reasons, we cannot consider all possible baskets in 2I . So, we consider a smaller set of baskets, defined

by two parameters: nmax denotes the maximum order/basket size, and n0 denotes the number of

baskets with positive demand for each size less than or equal to nmax. For the most part, we use

nmax = n0 = 5, although we test various other values of both parameters.

Given nmax, we first generate the total probability of all orders of sizes 0, 1, 2, . . . , nmax. We denote

these p(n), and p(n) is chosen uniformly at random so that p(n) ∈ [0, 1] ∀n and
∑nmax

0 p(n) = 1. Note

that knowing p(n) we can directly compute E[B(|q|)] as (
∑nmax

n=1 p(n).B(n))/(1 − p(0)); it is easy to

verify that with nmax = 5 we have E[B(|q|)] = 1.32 which is what we observe in the left panel of

Figure 3.

Let λq denote the total demand rate for order q from all regions; that is, λq =
∑

j∈J λ
q
j . Given

p(n), we first generate λq as follows. For each n ∈ {1, 2, . . . , nmax}, we select uniformly at random

min{n0,
(|I|
n

)
} subsets of In to have positive demand rates. Let Q(n) denote this subset. We then

choose λq to be uniformly at random in [0, p(n)] such that
∑

q∈Q(n) λ
q = p(n). Lastly, we generate λqj

by simply scaling λq to the population of each city j ∈ J . That is, λqj = λq.pop(j)/
∑

j∈J pop(j), where

pop(j) is the population of the metropolitan statistical area j.

We now describe the initial inventory placement. In practice, it is often the case that any given

single facility stocks only a subset of all the items sold by the retailer; this may be because of supplier

considerations, material handling requirements, equipment, capacity constraints, etc. To model this,

we use a parameter pstock ∈ [0, 1], such that for any given facility k and item i, the probability that k

stocks i is pstock. That is, P (Ski > 0) = pstock, i.i.d. for all k, i. In our numerical studies we do test the
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sensitivity with respect to pstock, including the case pstock = 1 where every facility stocks every item.

For most of our experiments, we use pstock = 0.75.

Now consider a facility k and item i for which we have determined that Ski > 0. How should we

set the initial inventory level Ski? It is reasonable to believe that the firm would compute the expected

demand from all customers for whom this facility is the nearest that stocks item i, and keep inventory

equal to that level plus some safety stock, in a newsvendor fashion. That is exactly what we do.

Formally, for a given facility k and item i, we first find the set of customers J(k, i) for whom it should

stock inventory: J(k, i) = {j ∈ J : dkj = mink′∈K:Sk′i>0 dk′j}. Define λ(k, i) =
∑

j∈J(k,i),q3i λ
q
j ; this is

the total incoming demand to facility k for item i from all orders that contain i. We then compute the

expected value and standard deviation of the demand for item i from J(k, i), given the time horizon

θT , as follows: µ(k, i) = θTλ(k, i) and σ(k, i) =
√
θTλ(k, i)(1− λ(k, i). Next, given another global

parameter CSL (for cycle service level), we simply use the newsvendor fractile at that level to determine

the starting inventory: Ski = µ(k, i) + zCSLσ(k, i), where zCSL is the inverse of the standard normal

distribution at probability CSL. Our default value for CSL in the numerical experiments is 0.5, but

we test values ranging from 0.3 to 0.99 and report the results in Figure 6.

Simulation procedure. Given the setup above, our simulation process is fairly simple. Once the

parameters |I|, |J |, |K|, nmax, n0, pstock, CSL, and θT are defined, we generate the sets I, J,K, and Q,

and the matrices λ, c, b, and S. We then compute the values {uqtkij} that define the MPFC algorithm,

as well as the values {gqj} which defines the IPFC algorithm. We also implement a myopic algorithm,

which works as follows: given an order q at time t from customer region j, it simply fulfills every item

in q from the facility nearest to j that has positive inventory of that item.

We then generate a single demand sequence based on λ and θT . All three algorithms are applied to

the same demand sequence. Therefore, the variation in the demand affects all three algorithms equally,

and this allows for a better comparison of the algorithms. This constitutes one simulation trial.

For each setting of the parameters, we run 30 simulation trials. This allows us to obtain statistical

significance in our results, as detailed in Section 6.2. In total, we ran over 11,000 simulation trials with

several different combinations of parameters. A selection of these that are particularly insightful are

reported in Section 6.

In our computing environment, the total run time of these 11,000 trials in series was about 20 days,

so that for a single simulation trial the total time taken is about 2 to 3 minutes. As mentioned in

Section 6.2, this is highly encouraging in terms of the ability to scale to levels appropriate for large

firms.
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