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A

I have now officially joined the ranks of the over-educated. How could this have
happened? Where did things go wrong? Who is to blame? Undoubtedly, some of the
blame must lie with me, but I did not act alone. ere were those who goaded me on
at each step of the way, and they each deserve their fair share of the blame.

I grew up in Snellville, Georgia, a small town on the outskirts of Atlanta; I spent
the ërst 13 years of my education in Catholic school. I was 16 before I had a friend who
wasn’t Catholic. I was about the same age when I ërst had a friend who wasn’t polit-
ically conservative. During elementary school, I was prohibited from checking some
books out of the library because they were considered too advanced. I was frequently
banished to the hallway after disagreeing with my religion teachers about women in
the priesthood or the morality of homosexuality. is was not an environment that
was especially welcoming or encouraging of independent critical thought. Conditions
were prime for me to develop into an academically successful but altogether boring
and intellectually spineless person. To the extent that that didn’t happen, it is due to
the fact that, when I was young, my father’s illness forced him into early retirement.
is meant that he ended up taking over all of the traditionally maternal duties; in
particular, it meant that he would drop me off at school in the morning and pick me
up in the evening. During the car rides home, Dad would ask me what I had learned
that day in school. When I told him, he would do what no teacher ever had: he would
present me with alternate viewpoints, competing explanations, objections; he would
ask me to decide which viewpoint I thought was correct, to defend the stance I had
taken against objections, to say why the alternatives were wrong. Like many fathers
and sons, Dad and I didn’t have much to bond over; we didn’t have much in common
or much that we agreed on; but in those car rides, we found some commonality in
disagreement, in a shared appreciation of argumentation. ose car rides, more than
anything that followed, are to blame for what I have become.

Prior to college, good teachers were rare, but that made the exceptions all the more
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important. In their own ways, Ms. Jenner, Mrs. Frapwell, and Mrs. Koon each pro-
vided some desperately needed encouragement and direction. Dr. Cynthia Schafer
remains one of the best teachers that I’ve ever had. As an undergraduate, my decision
to major and pursue graduate study in philosophy was largely inìuenced by the in-
struction of John Devlin, Greg Fitch, Patricia Kitcher, Bernard Kobes, Carol Rovane,
and Achille Varzi, among others. About nine years ago now, I was enrolled in David
Albert’s philosophy of science course as an undergraduate. With characteristic verve,
Professor Albert left me puzzled about some matters that would previously have struck
me as mundane. ose were the matters of causation and chance. I have yet to emerge
from that state of aporia, and the topic of this dissertation is fairly well explained by
my time in Professor Albert’s lectures. ese teachers and professors have each earned,
in their own ways, some share of the blame for the writing of this dissertation.

Were it not for the almost daily philosophical conversations I’ve had with my
fellow graduate students over the past six years, I would know far, far less about the
ëeld of philosophy than I do today. I must blame every graduate student at Michigan
for the invaluable lessons they have given me over the years, but some have done
enough damage to warrant being singled out. Daniel Drucker has had a consistently
bad inìuence; during the year that we lived together, Daniel lured me into hour-long
philosophical debates on an almost nightly basis. I must also blame Chloe Armstrong,
Aaron Bronfman, Billy Dunaway, Lina Jansson, Zoë Johnson-King, Dustin Locke,
Neil Mehta, Brian Parkhurst, Cat Saint Croix, Chip Sebens, Jon Shaheen, Daniel
Singer, Rohan Sud, and Robin Zheng for many instructive conversations.

I have learned an enormous amount from all of the faculty here at Michigan,
but special blame is due to David Baker—who read and gave helpful comments on
my prospectus, chapter drafts, and my writing sample for the job market—Maria
Lasonen-Aarnio—who read and inìuenced drafts of my work on epistemology—
David Manley—who is always eager to talk philosophy, and whose work in meta-
physics has shaped my own thinking in myriad ways—Sarah Moss—from whom,
along with Eric Swanson, I have learned just about everything I know about the phi-
losophy of language, who was always willing to read drafts of material, and whose
comments have frequently set the agenda for future revisions—and Laura Ruetsche—
who is most to blame for any semblance of understanding of statistical mechanics and
quantum mechanics I possess.

An inordinate amount of blame accrues to those on my committee, who not only
incited me to write the dissertation by signing off on the prospectus, but also provoked
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revisions and improvements with their comments. Beyond their devious machina-
tions to educate me beyond any reasonable level, and to keep me in the philosophical
profession for a little while longer, at least, Jim, Gordon, Allan, and Brian have each,
with the inìuence of their own groundbreaking, agenda-setting work, indoctrinated
me with an undue sense of optimism about the possibility of philosophical progress,
and a zeal to do philosophical questions the justice they deserve.

Besides those already mentioned, I must blame Katie Elliot, Clark Glymour,
Daniel Hausman, Christopher Hitchcock, David Kaplan, Eric Lormand, Calvin Nor-
more, Peter Railton, Patrick Shirreff, Sheldon Smith, and audiences at the University
of Michigan, UCLA, Illinois Wesleyan University, Leeds University, Koç University,
and Lingnan University for helpful feedback on this material.

·

I arrived in Ann Arbor six years ago, and I have spent an undue amount of the
time since hating it. As often happens with the things I hate, I have begun to miss
it terribly now that I am leaving it behind. ese have been at once the most des-
perate, anxiety-ridden, lonely, inspiring, exciting, warm, and meaningful years of my
life, and I ënd myself unexpectedly saddened to leave them behind—to leave be-
hind the city that I never wanted to be, but ended up being all the same, my home.
A handful of amazing people—Armstrong, Bryson, Dunaway, Drucker, Edmonds,
Kornberg, Jansson, Johnson-King, Parkhurst, Saint Croix, Singer, Sud, Wassel, and
Webster, to name a few—have made the years here more inspiring, exciting, warm,
and meaningful than they would otherwise have been. I cannot blame them enough
for being the incredible people that they are; I would not have made it through grad-
uate school without their companionship. Rohan: you got me through a tough time
in my life—thank you so much. Zoëtrope: thanks for the controlled chaos, the jokes,
droodles, and riddles. Here’s one more for you—good luck: orc sdre m ;sfmh’o so ;rus-
moo so .nomkhfh suh orc. Sabeen: it’s been just about ten years since that morning
in Bucharest when Dr. Pickus told me that I should talk to you, and it remains the
best advice I’ve ever received. Most everything good in my life has come as a result of
meeting you. I marshmallow you. Mom: you are the sole reason that I’m anywhere
even close to emotionally well-adjusted; some of the best times of my life thus far were
the silly, private jokes we shared; I love you.
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P

Many contemporary philosophers are drawn to a doctrine of causal fundamen-
talism. is doctrine has its epistemic and its metaphysical tenets. e epistemic
tenet is that causation is to be investigated entirely, or primarily, by looking to the
ground-ìoor level of reality. For some—mostly philosophers of science—this means
looking to the theories of fundamental physics. Whatever causation is, it is the kind
of thing which will be revealed through careful study of the fundamental physical
state of the world and the fundamental physical laws of nature. For others—mostly
metaphysicians—this means looking to fundamental metaphysics. Whatever causa-
tion is, it is the kind of thing which will be revealed through constructing fundamental
metaphysical theories of causation and weighing their theoretical virtues against one
another. According to the causal fundamentalist, causation is emphatically not to be
investigated through what has come to be known as ‘conceptual analysis’. It is not
be investigated by constructing theories of causation, and weighing them against one
another in terms of how well they capture our pre-theoretic causal judgments.

e metaphysical tenet of causal fundamentalism is that, once the causal structure
of the fundamental level of reality is settled—once, that is, we know which fundamen-
tal physical events cause which other fundamental physical events—all of the world’s
causal structure is settled. is could either be because the fundamental causal struc-
ture is the only causal structure that there is to settle, or it could be because all other
causal structure that there is in some sense reduces to that found at the fundamental
physical level.

e ërst part of the dissertation—consisting of chapters 1 and 2—disputes both
tenets of causal fundamentalism. Chapter 1 argues against the methodology, advo-
cated by D (2000), among others, of attempting to locate causation within the
theories of fundamental physics without reference to any of our pre-theoretic causal
judgments—without, that is, engaging in conceptual analysis. (e arguments of that
chapter generalize straightforwardly to those who wish to eschew conceptual analysis
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in favor of investigating the “fundamental metaphysics of the causal relation”1 through
a priori insight and considerations of theoretical simplicity.) Chapter 2 argues that the
world comes equipped with novel and irreducible causal structure at higher levels of
description. Settling the world’s fundamental causal structure does not suffice to set-
tle all of the world’s causal structure. Accepting this thesis does not commit us to the
view that there are irreducible higher-level laws, or irreducible higher-level properties.
We can accept this thesis while consistently maintaining that, once the fundamental
physical laws of nature and the fundamental physical state of the world are settled, all
causal facts, at every level of description, are settled as well.

e second part of the dissertation—consisting of chapters 3, 4, and 5—takes up
the task of constructing an anti-fundamentalist theory of causation. On this theory,
the causal relata are the events of parts of the world acquiring or retaining certain prop-
erties. (roughout, I’ll call the causal relata ‘events’, but I mean to remain neutral
on the question of whether the causal relata are events or facts or perhaps something
else; my theory excludes certain ‘thick’ theories of events according to which no dis-
tinct events share the same spatiotemporal boundaries,2 but beyond this, I can be
ecumenical.) In order for two events such as these to be causally related, one must
counterfactually depend, in at least one way, upon the other, or else there must be a
certain kind of chain of counterfactual dependence leading from the one to the other.
is theory is broadly in the spirit of L’s 1973 counterfactual account of causa-
tion. Yet, as chapter 5 demonstrates, it is able to escape the primary counterexamples
which led even L to eventually abandon that theory. It is the groundwork laid in
chapters 3 and 4 which allows the theory to elude these counterexamples.

e ërst bit of that groundwork comes in chapter 3, with the introduction of
what I call structural determination relations. ese are the relations which are rep-
resented in structural equations models, which have become increasingly prevalent in
philosophical theorizing about causation. It remains opaque, however, what exactly
it takes for one of these models to be correct—what it takes, that is, for one of these
models to represent a network of structural determination relations correctly. To the
extent that this question has been addressed, the answer most have found congenial
is that these models are correct if and only if a certain family of causal counterfactual
conditionals are true. is answer forsakes any hope of offering a reductive analysis
of causal counterfactuals in terms of relations of structural determination. More-

1 S (2011, p. 16, fn 7)
2 See, e.g., Q (1986)
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over, if we had hoped to offer a reductive analysis of causation in terms of causal
counterfactuals, then this answer forsakes any hope of offering a reductive analysis of
causation in terms of relations of structural determination. In chapter 3, I note that
there are other, deeper, problems with this answer as well. In particular, it cannot
explain why relations of structural determination have the properties that they are
standardly assumed to have—in particular, it cannot explain why relations of struc-
tural determination are independently manipulable. I therefore propose an alternate
understanding of structural determination which 1) allows us to give a reductive anal-
ysis of causal counterfactual dependence—one which neatly solves a problem case for
the L/S ‘closest possible world’ semantics; and 2) explains why relations
of structural determination are independently manipulable.

Because causal counterfactuals are evaluated relative to networks of structural de-
termination, and because causal counterfactuals provide the truth conditions for sin-
gular causal claims, these networks of structural determination represent the pathways
along which singular causal inìuence propagates. On the account of structural deter-
mination I outline and defend in chapter 3, merely because the fundamental state of
some part of the world structurally determines the fundamental state of some other
part of the world, this does not mean that the higher-level properties of the former
part of the world structurally determine the higher-level properties of the latter part
of the world. For this reason, settling the world’s fundamental causal structure does
not suffice to settle all the world’s causal structure.

In providing an account of causation which soars to such ontic heights, we risk
losing sight of some more minute details of the world which end up making differ-
ences to the question of which events singularly caused with other events. In chapter
4, this risk becomes manifest. ere, I review H (2007)’s objection that we may
have two systems which—for all I or anyone else has said about what it takes for a
structural equations model to be correct—are correctly modeled by the very same
structural equations model. Nevertheless, these two systems differ from one another
causally. In one, the event C caused the event E; whereas, in the other, the event cor-
responding to C didn’t cause the event corresponding to E. is means that, given
all I or anyone else has said about what it takes for a structural equations model to
be correct, a correct structural equations model radically underdetermines the world’s
causal structure. Many have hoped that this problem could be dealt with by including
information about which states of the world are default, and which are noteworthy
deviations therefrom. In chapter 4, I show that these hopes are in vain. For there are

viii



pairs of systems which—for all I or anyone else has said—may be correctly modeled
by a single structural equations model; moreover, the corresponding events in each
system are all equally deviant; yet, in one system, C caused E, whereas, in the other
system, the event corresponding to C didn’t cause the event corresponding to E. After
a discussion of the various options for dealing with this problem, I ultimately settle
upon the solution that, in order to reveal singular causal information, all of the struc-
tural determination relations in a structural equations model must be autonomous, in
a sense made precise in chapter 4.

With this groundwork laid, I proceed, in chapter 5, to demonstrate that relatively
minor alterations to L’s 1973 account of causation as the ancestral of counterfac-
tual dependence suffice to avoid the numerous counterexamples to that view. e pri-
mary differences between L’s account and my own are four-fold: ërstly, whereas,
for L, the relevant counterfactual to consider is ‘if this event had not occurred,
then some other event would not have occurred either’, on my account, the relevant
counterfactuals are roughly of the form ‘had this property of the world not been what
it was (or had not changed when it did), then this other property of the world would
not be what it was (or would not have changed when it did)’. Because these counter-
factuals do not concern the occurrence or nonoccurrence of events, we need not say
anything about the modal proëles of events in order to say whether they are causally
related or not.3 Secondly, L evaluated his causal counterfactuals using the ‘clos-
est possible world’ semantics of S (1968), L (1973a, 1979b). On my
account, the counterfactuals are evaluated with reference to networks of structural
determination. One consequence of this difference is that, whereas L could only
consider ‘global’ counterfactuals, my account allows us to consider what I call ‘local’
counterfactuals as well—in evaluating a local counterfactual, one looks only at the
parts of the world that immediately structurally determine another part of the world,
and ignores any determination relations that may exist between those determiners. So,
if whether the window shatters is determined by whether Suzy throws and whether
Billy throws, and whether Billy throws is determined by whether Suzy throws (he will
throw iff she doesn’t), then while the global counterfactual ‘if Suzy hadn’t thrown,
the window wouldn’t have shattered’ is false, the local counterfactual ‘if Suzy hadn’t
thrown, then window wouldn’t have shattered’ is true—because, in evaluating this
counterfactual, we hold Billy’s not throwing ëxed. irdly, for L, it did not mat-

3 Cf. P (2000, 2004) and P & H (2013, p. 237 ff.)
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ter what kinds of events were being considered—not whether they involved interesting
deviations from normality, nor whether they involved a property of the world chang-
ing as opposed to remaining constant. On my account, these differences matter. e
kinds of counterfactuals which must be considered differ depending upon whether
we are talking about changes in the state of the world; and whether a chain of coun-
terfactual dependence is sufficient for causation depends, in part, upon whether the
events appearing in the chain are deviations from normality. Fourthly and relatedly,
on L’s account, whenever there is a chain of counterfactual dependence running
from C to E, this is sufficient for C’s causing E. On my account, this is only sufficient
if three additional conditions are met: 1) the chain doesn’t leave out any important
part of the causal process leading from C to E, in a sense to be made precise in chapter
5; 2) every event appearing in the chain is an interesting or noteworthy deviation from
inertial conditions; and 3) the counterfactuals in the chain are all interlocking, in the
sense that the conditions which make the consequent of a counterfactual in the chain
true are the conditions considered in evaluating the antecedent of its successor in the
chain. So emended, I show, throughout chapter 5, that the account can deal with
cases of early and late preemption, it can accommodate the violations of transitiv-
ity, preemptive prevention, short circuits, symmetric overdetermination, preemptive
double prevention, and trumping.

x



T  C

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. e Project of eorizing about Causation . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Empirical and Conceptual Analyses . . . . . . . . . . . . 2
1.3 Conceptual Analysis and Truth . . . . . . . . . . . . . . . 13

1.3.1 Concepts and Conceptions . . . . . . . . . . . 13
1.3.2 Concepts and Metasemantics . . . . . . . . . . 20

1.4 In Summation . . . . . . . . . . . . . . . . . . . . . . . 25

2. e Reduction, Elimination, and Emergence of Causation . . . . 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 e Division . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Causal Reductionism . . . . . . . . . . . . . . 30
2.2.2 Causal Eliminativism . . . . . . . . . . . . . . 37
2.2.3 Causal Emergentism . . . . . . . . . . . . . . . 39
2.2.4 A Taxonomy . . . . . . . . . . . . . . . . . . . 45

2.3 A Defense of Causal Emergentism . . . . . . . . . . . . . 46
2.4 In Summation . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 Looking Forward . . . . . . . . . . . . . . . . 58

3. A eory of Structural Determination . . . . . . . . . . . . . . . 60

xi



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Structural Equations Models . . . . . . . . . . . . . . . . 63
3.3 e Causal Counterfactual Understanding . . . . . . . . . 70

3.3.1 Problems with Modularity . . . . . . . . . . . . 76
3.4 e Nomic Sufficiency Understanding . . . . . . . . . . . 80

3.4.1 Exogenous Independence . . . . . . . . . . . . 82
3.4.2 Interventions . . . . . . . . . . . . . . . . . . 83
3.4.3 Causal Fields and Selection Functions . . . . . . 86
3.4.4 Causal Counterfactual Dependence . . . . . . . 87
3.4.5 A Remaining Worry . . . . . . . . . . . . . . . 93

3.5 In Summation . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.1 Looking Forward . . . . . . . . . . . . . . . . 97

3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4. e Underdetermination of Singular Causation . . . . . . . . . 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 e Halpern-Pearl Account of Singular Causation . . . . . 106
4.3 Problems with Normality . . . . . . . . . . . . . . . . . . 112
4.4 More Underdetermination Problems . . . . . . . . . . . . 115
4.5 Objections and Suggestions . . . . . . . . . . . . . . . . . 120

5. A eory of Singular Causation . . . . . . . . . . . . . . . . . . 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Dynamic Structural Equations Models . . . . . . . . . . . 134

5.2.1 Actual versus Hypothetical Interventions . . . . 136
5.3 A Dynamic eory of Singular Causation . . . . . . . . . 138

5.3.1 Productive Causation . . . . . . . . . . . . . . 139
5.3.1.1 Preemption . . . . . . . . . . . . 141

5.3.2 Preventive Causation . . . . . . . . . . . . . . 145
5.3.2.1 Preemptive Prevention . . . . . . . 147

5.3.3 Background Causation . . . . . . . . . . . . . 148
5.3.4 Sustaining Causation . . . . . . . . . . . . . . 150
5.3.5 Transitivity . . . . . . . . . . . . . . . . . . . 151

5.3.5.1 Tampering . . . . . . . . . . . . . 153
5.3.5.2 Boulder . . . . . . . . . . . . . . 155

5.3.6 e Dynamic Account in Summary . . . . . . . 156
5.3.7 Short-Circuits . . . . . . . . . . . . . . . . . . 157

xii



5.3.8 Switching . . . . . . . . . . . . . . . . . . . . 159
5.3.9 Symmetric Overdetermination . . . . . . . . . 161

5.3.9.1 Disjunctive Causes . . . . . . . . . 162
5.3.9.2 Conjunctive Causes . . . . . . . . 163

5.3.10 Preemptive Double Prevention . . . . . . . . . 164
5.3.11 Trumping . . . . . . . . . . . . . . . . . . . . 166

5.4 In Summation . . . . . . . . . . . . . . . . . . . . . . . 167
5.4.1 Looking Back . . . . . . . . . . . . . . . . . . 167

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xiii



L  F

Figure

1 Lewis’s 1973 account entails causal emergentism . . . . . . . . . . 42
2 Coarse-graining can destroy ëne-grained functional relationships . 59
3 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 A mutilated causal graph . . . . . . . . . . . . . . . . . . . . . . 67
6 A mutilated causal graph . . . . . . . . . . . . . . . . . . . . . . 73
7 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8 e invalidity of  on the Stalnaker semantics . . . . . 79
9 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11 Interventions on the nomic sufficiency understanding . . . . . . . 85
12 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
13 Causal counterfactuals on the nomic sufficiency account . . . . . . 90
14 An intervened-upon variable may still depend upon its structural

parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
15 An intervened-upon variable may still depend upon its structural

parents, an example . . . . . . . . . . . . . . . . . . . . . . . . 94
16 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
17 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 110
18 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
19 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 111
20 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
21 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
22 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 114
23 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
17 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 117
24 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
25 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiv



26 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
27 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 119
28 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
29 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
30 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
31 Structural determination between dynamic variables . . . . . . . . 134
32 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
33 Interventions on the nomic sufficiency understanding, 2 . . . . . . 136
34 Interventions on the nomic sufficiency understanding, 3 . . . . . . 137
35 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
36 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
37 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
38 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 145
39 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
40 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 147
41 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
42 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
43 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 149
44 a neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 154
45 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
46 neuron diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 158
47 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
48 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
49 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 160
50 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 163
51 A causal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
52 A neuron diagram . . . . . . . . . . . . . . . . . . . . . . . . . 165

xv



CHAPTER1
THE PROJECT OF THEORIZING

ABOUT CAUSATION

1.1 I

T philosophy of causality is rife with reìection on and disagreement about its
methodological foundations. For the better part of forty years, at least, philoso-

phers working in the wake of David L have investigated causality by building
theories around our characteristic causal judgments. Given a scenario described non-
causally, do we judge the English sentence ‘C caused E’ to be true or false (assertible
or unassertible)? Roughly, a good account is one which aligns with our characteris-
tic causal judgments, and a bad account is one which departs from our characteristic
causal judgments.1 In sharp contrast, the intellectual descendants of Bertrand R-
 and Hans R—most notably, Wesley S and Phil D—have
constructed accounts of causality which attempt to identify causality with some fea-
ture of our best fundamental physical theories—in the case of D and S,

1 I don’t mean to suggest that this methodology was in any way original with L. Indeed, as
will become clear below, I believe that the methodology is implicit even in those, like D (2000),
who explicitly deny that they utilize this methodology.
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causality is identiëed with, roughly, the transmission or retention of a conserved quan-
tity. According to D, the ground level data for his theory of causality is given by
our fundamental physical theories. On D’s view, just as our physical intuitions
must give way to mature theories of physics, so too must our causal intuitions.

D (2000) dedicates his introductory chapter to defending his method of the-
orizing about causation. He speculates, I believe correctly, that many disputes be-
tween philosophers of causality boil down to metaphilosophical disputes about how
to properly investigate causality—disputes about, e.g., what constitutes evidence in
favor of a theory of causality. In this chapter, I will follow D’s lead, and attempt
to explain how I will be approaching the task of providing a philosophical theory
of causality, and why I will be approaching it in that way. Readers who are already
broadly sympathetic to the Lewisian methodology should feel free to skip ahead to
chapter 2.

I will begin by arguing against D (2000)’s view that a theory of what causa-
tion is in the world should be blind to our characteristic causal judgments. I expect,
however, that merely arguing against this position will be inadequate to move those
philosophers who ënd it mysterious that mere introspection could reveal substantive
truths about the nature of causation. More effective, I believe, than arguing against
positions like D’s is offering a rival understanding of the epistemology underlying
the methodology I am offering. My approach will be to argue that, while c’s being
causally related to e has nothing to do with our concepts, and everything to do with
the way that the world actually is, the fact that the causal relation is the thing which
is picked out by our concept of causation has much to do with the contours of that
concept. And that means that we can use our implicit knowledge of the applicability
conditions of the concept of causation to investigate the mind-independent relation
which we call ‘causation’.

1.2 E  C A

D (2000) distinguishes two tasks which a philosopher of causation might
pursue: ërst, “to elucidate our normal concept of causation,”2 and second, “to dis-
cover what causation is in the objective world.”3 e same distinction is drawn by
P (2009), who separates “a theory of the meaning of causal statements” from

2 D (2000, p. 1)
3 D (2000, p. 1)
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“a theory of what causation is in the world [or] a theory about the worldly constituents
of causation”4 D (2000) calls the ërst task that of providing a ‘conceptual analy-
sis’ of causation and the second, that of providing an ‘empirical analysis’ of causation.
Conceptual analysis is, according to D, a priori, and the facts it discovers are
necessary. Empirical analysis, in contrast, must be a posteriori, and the facts that it
turns up may be only contingently true (indeed, D believes that his account of
causality would be refuted if certain solutions to the Einstein ëeld equations were
actual).5 According to D, each of these two tasks is legitimate, but they must
not be confused with one another. In particular—and this is where D and I part
company—discovering something about our concept of causation does not tell us
anything about what causation is in the world. Similar thoughts show up in S
(2011), who chastises the causation literature for failing

to make up its mind whether it is about fundamental metaphysics or
conceptual analysis...If the project is conceptual analysis, then heavy re-
liance on thought experiments is appropriate...If, on the other hand, the
project is to investigate the fundamental metaphysics of the causal rela-
tion, then...heavy reliance on thought experiments must be abandoned...
(S, 2011, p. 16, fn. 7)

While there is an interesting epistemological point here to be ferreted out, D’s
distinction between the concept of causation and causation as it is in the world is largely
a sideshow. ere is surely a distinction to be drawn between the concept ,
expressed by the English verb ‘to cause’, and the relation ⟨⟩ out in the world.
(To emphasize this difference, I will use small caps to denote concepts and the angle
bracketed ‘⟨⟩’ to denote the thing out in the world denoted by .)
However, simply because these two are distinct does not mean that a theory of one
does not harbor substantive commitments about the other. ere is, after all, just as
surely a distinction to be drawn between 1 and 2.

1. ⟨e cat is on the mat ⟩ is true.6

2. e cat is on the mat.
4 P (2009, p. 133)
5 See D (2000, p. 97).
6 I use ‘⟨p⟩’ to denote the proposition picked out by the sentence ‘p’ in a given context of use.
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1 attributes a property to a proposition; whereas 2 attributes a property to a cat.7

Nevertheless, it is a truism—just about the only uncontroversial truism about truth—
that 1 holds iff 2 does. us, we should be able to infer 2 from 1. But to say this is just
to say that we can infer facts about the world—e.g., that the cat is on the mat—from
facts about our language or our thoughts—e.g., that the English sentence ‘the cat is
on the mat’ picks out a true proposition. And there is precisely the same kind of tight
connection between the concept  and the relation ⟨⟩. Speciëcally,
3 holds iff 4 does.

3.  applies to c and e

4. ⟨⟩ relates c and e

And this tells us that we can infer facts about which events (or facts, or whatever)
are causally related out in the world from facts about which events (or whatever) our
concept of causation applies to.

I expect that authors like D and P would accept that, in some good
sense of the world ‘concept’, the concept  applies to c and e iff the relation
⟨⟩ relates c and e. What they ought to challenge is the idea that, so under-
stood, our concept of causation can be fruitfully investigated from the armchair—that
is, what they ought to challenge is the suggestion that our characteristic causal judg-
ments tell us anything about the concept —in the sense that 3 holds iff 4
does. D, for instance, likens the concept of  to the concept of 
(p. 7). Our characteristic energy judgments might tell us that Zoë is more energetic
than Daniel. However, it would be wrong to infer anything about Zoë and Daniel’s
respective masses from this pre-theoretic judgment, together with the empirical dis-
covery that energy is proportional to mass.

is much is surely correct. D goes on to allege that  had a pre-
theoretic meaning, characterized by judgments like ‘Zoë is more energetic than Daniel’,
before it was given a precise physical deënition. From there, he argues by analogy
that ‘causation’ may be given a precise physical deënition, and that for that reason we
shouldn’t defer to our pre-theoretic causation judgments any more than we defer to
our pre-theoretic energy judgments. He writes that

We can say that application of the scientiëc method of theorizing and
experimentation produced an ‘empirical analysis’ of energy. In the same

7 I’m just assuming here that pro-sentential theories of truth are incorrect.
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way, science may reasonably be expected to throw light on the language-
independent entity called ‘causation.’8

I ënd these remarks confusing. e physicist’s use of the word ‘energy’ in sentences
like ‘Energy is proportional to mass’ appears to be polysemous with my use of the word
‘energy’ in an utterance of 5.9

5. Zoë has more energy than Daniel.

Simply because Daniel weighs more than Zoë—and therefore, has more physical
energy—this does not make my utterance of 5 false. We sometimes use the word
‘bank’ to mean a ënancial institution; and we sometimes use the word ‘bank’ to mean
the building in which a ënancial institution operates.10 So, in one sense of the word
‘bank’, ‘e bank is gone’ could be true when the building operated by one ënancial
institution is taken over by another; in another sense of the word ‘bank’, however,
the same utterance could be false. It seems to me that this is the case with the word
‘energy’ as well. In the physicist’s sense of the word ‘energy’, 5 is false; in the com-
mon, everyday sense of the word ‘energy’, however, 5 is true. It wouldn’t just be rude
or pedantic for somebody to correct my utterance of 5 by pointing out that Daniel
weighs more than Zoë; it would be wrong. e quantity about which physics theorizes
simply isn’t what the word ‘energy’ means in my mouth in a standard utterance of 5.
One bit of evidence for this is provided by the fact that we do not feel any pressure to
revise our judgment that Zoë is more energetic than Daniel in light of the empirical
discovery that energy is proportional to mass. We feel no pressure to respond to the
pedant who corrects an utterance of 5 with an appeal to special relativity by thinking
oh, I suppose that I was wrong about Daniel and Zoë. Rather, we are inclined to respond
by saying something like ‘you know what I mean’.

Of course, one might feel a you know what I mean reaction in two different scenar-
ios: ërstly, when one has made a literally false claim, but where a nearby true claim is

8 D (2000, p. 7)
9 Two words are polysemous when they share spelling and pronunciation, but have distinct—

though related—meanings. Polysemy is distinguished from homonymy, in that the meaning of
homonyms—like, e.g., ‘bank’ (a ënancial institution) and ‘bank’ (a riverside)—need not have any
relation to one another.
10 ‘Word’ appears to be polysemous as well. We might use the word ‘word’ in such a way that there

are (at least) two words ‘bank’, or we could use it in such a way that there is at most one word ‘bank’.
Here, I’ll use the word ‘word’ in the second way. In this sense, words are roughly individuated by their
phonetic and orthographic features in a way that is blind to meaning.
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available and it is clear from context that it was the latter, and not the former, which
was intended. For instance, if somebody says ‘David Cameron is the president of the
United Kingdom’, and a pedant corrects them by pointing out that David Cameron
is actually the prime minister of the United Kingdom, they might well respond by
saying something like ‘you know what I mean.’ However, we do not feel as though
the pedant was misinterpreting them; the original claim was false (or perhaps truth-
valueless)—David Cameron is not the president of the U.K. In this case, the you know
what I mean reaction is rooted in the feeling that the pedant is to some extent not be-
ing a cooperative interlocutor, that they are more interested in nit-picking than in
advancing the conversation. Secondly, we might have a you know what I mean re-
action in cases where we feel that our original claim was indeed true and maximally
informative when properly understood, but our interlocutors are, through negligence
or malice, misunderstanding our claim. For instance, when a comic corrects my utter-
ance of ‘I should get a hair cut’ with ‘you should probably get all of them cut’, the you
know what I mean reaction is rooted in the feeling that what I said was both literally
true and maximally informative, but the comic deliberately misunderstood the claim
that I was making by confusing it with another which has the same surface structure.
I believe that the pedant who corrects an utterance of 5 with an appeal to special rel-
ativity elicits this second kind of you know what I mean reaction. ere simply was
no error in the utterance of 5, any more than there was in an utterance of ‘I should
get a hair cut’. e pedant, like the comic, is confusing the claim made—which is, as
is clear from context, a claim about Zoë’s and Daniel’s respective personalities—with
another claim, a scientiëc claim, which could be expressed by another sentence with
the same surface structure. (ere will doubtless be you know what I mean reactions
which don’t fall neatly into either of these two camps. I don’t mean to suggest that
we have perfect introspective access to whether any particular you know what I mean
reaction falls into the ërst or the second camp. It is enough, for my purposes, that
there are clear cases, and that the case of somebody correcting 5 with an appeal to
special relativity falls clearly into the second camp.)

So I don’t think that it’s right to say that, in the case of ‘energy’, an imprecise
folk term was replaced by a precise physical term. e right thing to say is that, in the
development of physics, a term polysemous with the folk term ‘energy’ was developed.
Just as we should not say that the claim that racial discrimination is against the law has
been refuted by mature physics—which tells us that racial discrimination is entirely
consistent with Schrödinger’s equation—we should not say that claims about how
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much energy Zoë and Daniel have are refuted by mature physics. We were led to
this conclusion by considering our inclination to revise judgments like 5 in the light
of a posteriori discoveries about the referent of the physical term ‘energy’. We were
not inclined in the least to revise the judgment 5 upon discovering that Daniel has
more mass than Zoë and that physical energy is proportional to mass; on this basis, we
concluded that the meaning of ‘energy’ in 5 must be distinguished from the meaning
of ‘energy’ in the sentence ‘energy is proportional to mass’.

I believe that a similar argument would apply to any purported empirical anal-
ysis of causation which diverged radically from our characteristic causal judgments.
Suppose, for the sake of argument, that D (2000) persuades us that there is a
physical property—roughly, the transmission or retention of a conserved quantity—
which is natural and theoretically useful enough to deserve mention, and which bears
enough of a family resemblance to our ordinary talk of ‘causation’ to merit the name.
Call this relation ⟨+⟩. Suppose that we then discover that ⟨+⟩
does not relate the Surgeon General’s report and the subsequent drop in rates of lung
cancer—i.e., suppose that there’s no appropriate transfer of energy-momentum be-
tween the Surgeon General’s report and the lung cancer rate. Perhaps that’s because
this is a case of prevention, where cigarette smoking would have caused+ the cancer
rates to be high, but the Surgeon General’s report simply lowered cigarette smoking,
thereby preventing it from having this effect+, without itself transmitting any con-
served quantity to the cancer rates. (Or perhaps it’s because it’s not even clear what
it means to say that there’s an exchange of a conserved quantity between the Surgeon
General’s report and the lung cancer rates.11) In this case, I think that we would, and
should, nevertheless hold ërm to the judgment that 6 is true.

6. e Surgeon General’s report caused lung cancer rates to drop.

In fact, this is exactly what D (2000) does; he takes examples like this as a reason
to say that ⟨⟩ (the relation picked out by our ordinary concept )
is the relation that two events bear to one another iff either there is the retention
or transfer of a conserved quantity from the one to the other or there is an appro-
priate counterfactual relationship between the two events.12 Call the relation that
two events bear to one another iff there is the appropriate counterfactual relation-
11 See W (2003)
12 For the details, see D (2000, ch. 6).
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ship between them ‘⟨∗⟩’.13 en, D claims that our ordinary concept
of causation picks out a relation which is the union of genuine physical causation,
⟨+⟩ (retention or transfer of conserved quantity), and the counterfactual
relation ⟨∗⟩.

⟨⟩ = ⟨+⟩ ∪ ⟨∗⟩

It is entirely unclear, however, why D should feel any pressure to introduce the
relation ⟨∗⟩ at all. Given D’s methodology, what reason do we have for
thinking that claims like 6 are true in the ërst place? Why shouldn’t we regard claims
like 6 the same way that we regard pre-theoretical physical intuitions like ‘the meter
stick remains one meter long even when you’re moving relative to it’? It is intuitive
that the Surgeon General’s report caused the lung cancer rates to drop, but so too is it
intuitive that the meter stick does not become shorter when it is thrown through the
air.

e physicist’s  is a theoretical concept. Assuming a standard semantics for
theoretical terms/concepts,14 the concept  refers, if at all, to the thing which
plays (well enough) the role that  plays in our theory—that is, it refers, if
at all, to the thing that is (near enough) proportional to the relativistic mass times
the square of the speed of light, the thing that is (near enough) conserved in closed
systems, and so on and so forth. at is to say: we use the concept  with a great
deal of deference to the actual world. It is for this reason that empirical investigation
can reveal a posteriori facts about the physical property ⟨⟩—for instance, that
Daniel has more ⟨⟩ than Zoë. It is for this reason that it would be foolish to
attempt to learn anything interesting about the physicist’s ⟨⟩ through armchair
reìection on thought experiments.15 We would not, and ought not, respond to the
fact that it is very intuitive to say that Zoë has more energy than Daniel by emending
our physical theory of energy, saying that the quantity picked out by our everyday
concept ⟨⟩ is actually a function both of ⟨+⟩ (the quantity picked out
13 Here, I am departing slightly from D’s terminology. D used the term ‘cause∗’ for the

union of the retention or transference of a conserved quantity and the counterfactual relation.
14 See, e.g., L (1970, 1972).
15 Note, however, that even a theoretical concept like  can be to some degree investigated

through thought experiments. For instance, assuming the standard story about theoretical terms, if
there were, at the actual world, no property which played any of the theoretical roles of energy, then
there would be no energy—, like  and  , would be a non-referring
concept. And we can learn this fact about  from the armchair.
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by the theoretical concept) and ⟨∗⟩ (a quantity corresponding to how excitable
a person is).

e point here is just that the way that we do, and ought to, treat the concept
 (and, indeed, the way that D himself treats the concept )16

is not the way that we do, and ought to, treat theoretical concepts like . is is
because  is not a theoretical concept. Indeed, D explicitly affirms that
“‘cause’ is not a technically deëned term in any scientiëc theory” (p. 9). We are led to
the same conclusion by R (1912), who persuasively argues that causal notions
do not appear in our fundamental physical theories; when we look to fundamental
physics, what we ënd are not laws formulated in causal terms, but rather differential
equations governing the time-evolution of systems in an entirely time-asymmetric,
and therefore, acausal, manner. (is is not to deny that we may learn causal facts
by studying fundamental physical theories, nor that causal considerations might play
into which theories we end up accepting,17 but it is to deny that those theories employ
as a theoretical term ‘causation’ or any of its cognates). N (2007) additionally
argues against the suggestion that some notion of causality is built into fundamental
physical theories by providing an ingenious example in which a ball at rest at the tip
of a dome begins to roll down the side of the dome without any force being applied
to it—thus, without any cause—but nevertheless in accordance with Newtonian me-
chanics (given a certain force law). N’s conclusion: the differential equations
of Newtonian mechanics do not hide within them any causal notions, since they are
compatible with radical failures of causality (events having no causes whatsoever).18

Of course, simply because  is not a theoretical concept, this does not
preclude D from deëning up a theoretical notion of physical causation, or -
+; however, if that is his game, then he should not say that his goal is to inves-
tigate the “the language-independent entity called ‘causation’”,19 since the language-
16 D (2000) additionally defers to our ordinary concept of causation in chapter 7, where he

takes the fact that it sounds incredibly odd to say things like ‘hitting the tennis ball caused the wall
to remain in place’ as a reason to revise his theory of physical causation (since there is an exchange
of a conserved quantity between hitting the tennis ball, which rebounded off the wall, and the wall’s
remaining in place).
17 See, e.g., S (2007).
18 ough see M (2008), who shows that the force law N (2007) uses is only once

continuously differentiable at the summit of the dome. M expresses some hesitation at saying
that such a force law is properly ‘Newtonian.’ I believe that we could make the same point that N
(2007) makes with his dome with reference to so-called ‘space invaders’—see (E, 1986, p. 34);
though here, too, there is room to quibble.
19 D (2000, p. 7, emphasis added). Although, as Daniel Drucker pointed out to me, D
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independent entity which is called causation is the relation which is picked out by
our ordinary concept . Moreover, it is entirely unclear what the criteria of
success for such an undertaking would be. eoretical concepts like , ,
and so on earn their keep in making predictions. We can learn about the theoretical
property of  by looking at the predictions that the physical theory implic-
itly deëning  makes, and then checking to see whether they are borne out.
However, D (2000)’s empirical analysis of physical causation makes no novel
predictions—D is not doing physics; he is doing metaphysics—so it is unclear
how we are supposed to get evidence that our empirical analysis is on the right track,
if not by comparing its verdicts to our well-informed characteristic causal judgments.
For instance, suppose that we deëne up a theoretical notion, +, which re-
lates two events c and e iff c is in the past or future light cone of e. is is a fairly nat-
ural notion, one which marks a fairly joint-carving distinction between events which
are space-like and time-like separated (i.e., two events are causally+ related just in
case they are time-like separated). Does this represent an adequate empirical analysis
of causation? Or does the fact that effects+ often precede their causes+ doom this
analysis?

I take it that this is roughly the point L is making when he writes that

...without [conceptual analysis], I see no possible way to establish that
any feature of the world does or does not deserve a name drawn from
our traditional...vocabulary.20

D’s response to this objection is to insist that “the word ‘cause’ as scientists use
it...must make some ‘historical’ or ‘genealogical’ connection to everyday language.”21

However, the notion of + deëned above (+(c, e) iff c is in the past
or future light cone of e) certainly does bear some genealogical relationship to the
standard notion —it even does some work explaining the distinction some
physicists draw between causal and noncausal processes in special relativity. So too
does D (2000)’s notion of physical causation as the retention or transfer of a
conserved quantity. So too does F (1979)’s notion of physical causation as the
ìow of energy. Without any more to anchor our account—without any further idea

(2000) might have merely meant that his goal was to investigate the language-independent entity
called ‘causation’ by him (and not necessarily any other English speaker).
20 L (1994b, p. 415)
21 D (2000, p. 9)
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about what is to constitute success and what it is constitute failure—how are we to
decide between these empirical analyses of causality? In practice, D criticizes
opposing empirical analyses of causation on two grounds: ërstly, that they are con-
ceptually confused or circular (e.g., he criticizes S (1984)’s theory by pointing
out that ‘object’ is deëned in terms of ‘causation’, and ‘causation’ is deëned in terms
of ‘object’); and secondly, that they commit us to claims about ‘causation’ that we
are unwilling to accept. For instance, he criticizes F’s theory that causation is the
transfer of energy or momentum on the grounds that a spaceship moving inertially
with a constant velocity does not transfer any energy or momentum. However, D
alleges, its earlier velocity is a cause of its later velocity. I have a hard time understand-
ing this as anything other than conceptual analysis. From whence do we secure the
putative datum ‘the spaceship’s earlier velocity caused its later velocity’, if not our
implicit grasp of the concept ? As D recognizes,22 ‘cause’ is not a the-
oretical term in any scientiëc theory, so the verdict that the spaceship’s earlier velocity
caused its later velocity cannot be something that we learn from any scientiëc theory
alone. For another example, in the middle of his introductory methodological chap-
ter, D claims that quantum mechanics has disproven the dictum that ‘every event
has a sufficient cause’, since we

...are forced to accept that there are cases that we cannot but call ‘causa-
tion’, where the full cause is not a sufficient condition for the effect.23

It is difficult to see this, too, as anything other than conceptual analysis. Why can’t we
help but to call these cases ‘causation’, if not for the fact that our concept 
intuitively and obviously relates them?

In part, this argument is a tu quoque—that D himself utilizes the method-
ology that he criticizes—but additionally, and more importantly, it is an argument
against the possibility of engaging in the kind of project that D sets for himself
without leaning on at least some judgments about which events are causally related.
Without these judgments to constrain our theorizing, there are just too many notions
of physical causation to be deëned, and no reason to favor one over the others. More-
over, once we open the door to some of our characteristic causal judgments, we would
need some principled reason to keep the others out. Else, we might be fairly accused
of accepting the characteristic causal judgments which speak against opposing theories
22 “...‘cause’ is not a technically deëned term in any scientiëc theory” D (2000, p. 9)
23 D (2000, p. 8, fn. 9)
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and rejecting the characteristic causal judgments which speak against our own theory
on an ad hoc basis. A proponent of an empirical analysis of causation might want to
say that their account appeals to the characteristic causal judgments of scientists (or,
perhaps, physicists).24 However, physicists are also competent speakers of English, so
they should have all the same characteristic causal judgments as the rest of us. In order
to cordon off some of their characteristic causal judgments, we will have to say some-
thing about which of their causal judgments are appropriately scientiíc or physical.
Not only would we have to do this, but we would have to explain why the judgments
of physicists should hold special sway, especially since we’ve admitted that 
is not a theoretical concept that one learns by learning any scientiëc theory. Physicists
do, of course, have the advantage of being better informed than many of us about the
underlying fundamental physical state of the world and the underlying fundamental
physical laws of nature. But nobody should have been claiming—and L certainly
wasn’t claiming—that we should build a theory of causation around the characteris-
tic causal judgments of the scientiëcally illiterate. e appropriate data of a theory
of causation are the characteristic causal judgments of those who are informed of all
relevant details of the case, including (if they are relevant) the fundamental physical
state of the system involved, and the fundamental physical laws of nature.

So what I think is right about D’s methodology—what remains once the
rhetoric about distinguishing the concept of causation from what causation is in the
world has been shed—is that a theory of causation should not be blind to what our
best theories tell us about the world we occupy. In part, that’s because facts about
what causes what at the actual world depend upon the nature of the fundamental
physical state of the actual world, and the fundamental physical laws of nature at the
actual world.

A brief qualiëcation: there may be an extra project to be undertaken, after a philo-
sophical account of causation has been provided; namely, the project of studying
whether there is some physical relation obtaining between any two events which are
causally related at the actual world. is will be a largely empirical project, since em-
pirical investigation is needed to know which events at the actual world are causally
related, and also which physical relations obtain between those events. Now, there
may be some quantity—we can call it biff, if we like—which is given by causes to
their effects. en again, there may not be. Whether there is biff is in part a question
24 Some proponent of an empirical analysis of causation might want to say this, but D explicitly

denies that this is his project. See p. 10–11.

12



to be decided by scientiëc investigation—we need to know which events give and
take fundamental physical quantities to and from which other events—and in part
a question to be decided by philosophical analysis—we need to know, given a full
description of the state of the world, which pairs of events are causally related, and
to do this, we need a philosophical analysis of causation. If it turns out that there is
some quantity that all and only causes give to all and only their effects, then there
is biff. If not, then not. In fact, I think that our world is not a biffy-world. Ours
is a world containing double prevention—where, e.g., c prevents d from preventing
e, and thereby causes e, without transferring any physical quantity to e—so there is
no physical property that all causes give to their effects. ere may be some more
complicated relationship between the causal relation and some kind of biff—see, e.g.,
H et al. (2008)—but, in any case, the way to investigate the relationship is
to ërst discover which events are causally related, and then to see whether the causal
relation corresponds to any fundamental physical relation at the actual world.

1.3 C A  T

Suppose that we ënd the arguments of the previous section compelling. We might
still ënd it mysterious that armchair philosophical reìection could teach us anything
about the relation of causation. After all, aren’t facts about the relation of causation
facts about the physical world? And don’t we have to get up out of the armchair in
order to discover facts like this? In this section, I want to brieìy sketch an episte-
mology for the philosophical investigation of causation. In brief, my proposal is that
for concepts like , the fact that this concept picks out the causal relation,
⟨⟩, is explained by the features of the concept, rather than features of the
actual world. For this reason, learning things about the concept can tell us which
relation it picks out. Such an epistemology is far from mysterious, I contend, because
learning things about the concept  doesn’t reveal anything more about the
relation ⟨⟩ than that it is the relation picked out by our concept—and this is
precisely the kind of knowledge that one would expect to come along with conceptual
competence.

1.3.1 C  C

In this section, I will say a bit about what I take concepts to be and argue that
we must distinguish concepts from what I will call conceptions. is distinction will
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prove methodologically important, since, even though the concept  applies
to a pair of events, this does not mean that a particular conception of causation applies
to a pair of events. So, while facts about the concept of causation provide data that
a philosophical account of causation should feel theoretical pressure to capture, this
does not mean that even widespread agreement in people’s conception of causation
ought to constrain our theorizing.

A concept is some kind of mental representation which is in some sense norma-
tively governed by its application conditions. e concept is applied to some things
correctly, and applied to others incorrectly. When I categorize Cujo as a dog—when
I apply the concept  to Cujo—I do so correctly. When I categorize Cujo as a
rat—when I apply the concept  to Cujo—I do so incorrectly. For some concepts,
possession of those concepts guarantees a covert understanding of at least some of the
concept’s application conditions.25 (I’ll distinguish between beliefs which are overt
and those which are covert. Overt beliefs are those, roughly, which a person is capable
of explicitly formulating and sincerely affirming; whereas covert beliefs are, roughly,
those which they are not capable of either explicitly formulating or sincerely affirming.
For instance, speakers of a natural language covertly belief—and covertly know—the
rules of universal grammar. However, the vast majority are incapable of formulating
the rules of universal grammar, and may even explicitly deny such rules when they
are presented with them.) is does not mean that those who posses a concept always
apply it correctly. For instance, I might apply the concept  to a Barack
Obama look-alike. at does not mean that I don’t possess the concept —
merely that I am mistaken about certain empirical facts about the person before me, or
perhaps that I have just woken up, ingested drugs, or am otherwise not in an optimal
state of mind. Nevertheless, for a variety of concepts in a variety of circumstances, if
a person possesses a concept, then when they are fully informed of the relevant de-
tails and thinking clearly, they will be in a position to make correct judgments about
whether or not the concept applies.26 It is for this reason that philosophical thought
25 In terms of the epistemic two-dimensional framework which I will discuss below, I believe

that possessing a concept puts us in a position to have a covert understanding of the concept’s two-
dimensional intension.
26 I don’t take these claims to be particularly controversial. ey are, for instance, consistent with the

so-called classical theory of concepts, according to which concepts have implicit deënitions—necessary
and sufficient conditions for their application. ey are also consistent with the prototype theory of
concepts, as well as conceptual atomism. For a discussion of philosophical and psychological theories
of concepts, see M & L (1999).
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experiments provide a useful arena for exploring the application conditions of some
concepts. Take, for instance, the concept , expressed by the English verb know.
When we consider a situation in which, at 12:00, John looks at a broken clock read-
ing ‘12:00’ and forms the belief that the time is 12:00, we judge that John does not
know that the time is 12:00. at is, we judge that the English sentence ‘John knows
that the time is 12:00’ is false and that its negation is true. From this judgment we
can infer that the concept  does not apply to John and the proposition ⟨the
time is 12:00⟩ in this situation.27 Call judgments like these—immediate, unreìec-
tive judgments about the appropriateness of English sentences involving the words
which express the concepts in question—characteristic judgments about the concept’s
application conditions.

It is my view that our characteristic causal judgments can constitute evidence for or
against a theory of causation. If we have a clear causal judgment that c caused e, that
is a prima facie mark against a theory which says that c didn’t cause e. Of course, there
may be other theoretical virtues which lead us to accept a theory of causation which
doesn’t align with all of our characteristic causal judgments. Nevertheless, all else
being equal, a theory which accounts for more of our characteristic causal judgments
is ipso facto a better theory.

Five qualiëcations are in order. Firstly, I do not suppose that our characteris-
tic judgments are necessarily judgments about the truth or falsity of certain English
sentences. Rather, I am merely supposing that they are judgments about the appropri-
ateness of English sentences. It is always possible for us to claim that a characteristic
judgment that an English sentence is inappropriate is due not to any semantic defect
of the sentence, but rather to some pragmatic defect. For instance, the sentence

7. Every libertarian president of the U.S. has paid down the national debt.

will be judged inappropriate by most competent and politically informed English
speakers. However, most popular theories of quantiëcation will count 7 as vacuously
true; since there have been no libertarian presidents of the U.S., all of the none of
them have paid down the national debt. If we accept these theories of quantiëcation,
then we will explain the inappropriateness of 7 by appeal to pragmatic theories—for
27 I’m assuming that ⟨the time is 12:00⟩ is a proposition, rather than, e.g., a property attribution

(c.f. L, 1979a). Nothing hangs on this assumption. If you think otherwise, have John give a name
to the present moment in our example—say he calls it ‘Jimbo’—and then let the proposition that John
fails to know be the one expressed by the sentence ‘Jimbo is 12:00’.
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instance, by Grice’s maxim of quality, the claim ‘All Fs are G’ implicates that there
exist some Fs.

Secondly, there may very well be one word in our language which expresses two
distinct but closely related concepts—e.g., as is the case with ‘bank’, the ënancial
institution and ‘bank’, the building in which such a ënancial institution operates. I
do not suppose that we have overt introspective access to whether a single word in
our language is polysemous in this way. Philosophical and/or linguistic reìection
may be required in order to bring out this kind of polysemy. Indeed, this is almost
certainly the case with ‘cause’, as this word is sometimes used to mean ‘because’, as in
‘He went to the store, cause he was out of milk.’ Of course, not much reìection is
required to recognize this polysemy (the phonetics of the two words are even different
in American English; the explanatory ‘cause’ is pronounced /kuhz/, whereas the causal
‘cause’ is pronounced /kawz/). More interestingly, H (2004) argues that there are
two concepts of causation—which he dubs ‘production’ and ‘dependence’—both of
which are expressed by the word ‘cause’. ough I disagree with H (2004) about
this point, I don’t mean to rule his position out as a matter of methodology.

irdly, I do not suppose that every concept is such that possessing that concept
puts us in a position to have a covert understanding of that concept’s application
conditions. It could be that some concepts cannot be individuated by their application
conditions, but rather only by the role they play in our cognitive lives. For instance,
some metaethical expressivists take the concept  to function merely as a way
of expressing non-representational mental states like being for some action. For such
expressivists, a person can possess the concept  without having knowledge of
’s application conditions, simply because they haven’t yet made up their mind
about what they are for.28 I am not disagreeing with those metaethical expressivists
(at least, not here). I am merely claiming that  is not like  in this
respect. To possess the concept  is to be in a position to be able to correctly
judge which causal claims are appropriate in a given scenario.

Fourthly: I say that to possess the concept  is to be in a position to be
able to correctly judge which causal claims are appropriate in a given scenario. I do
not say, however, that possessing the concept  is sufficient for being able
to correctly judge which causal claims are appropriate in a given scenario. In general,
I do not suppose that concept possession alone is sufficient for correctly categorizing

28 I take it that this isn’t the view of more sophisticated Quasi-Realists like Allan G (2003).
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the things to which the concept applies. As W (2007) stresses, it is usually
the case that abilities over and above mere concept possession are necessary for the
correct application of the concept. Figuring out whether a given ëgure is a chilliagon,
for instance, requires either a good enough memory to count up the sides of the ëgure,
or else the ability to keep track of the number of sides in some other fashion. ese
abilities are not guaranteed by possessing the concept . e googol-digit
number which appears in the ërst googol digits in the decimal expansion of πmay or
may not be prime. We are not able to categorize it as prime or composite, but this
doesn’t mean that we don’t possess the concept .

Finally, and most importantly, our characteristic judgments about the application
of a concept should not be confused with any overt beliefs we may have formed about
the referent of that concept. Call our overt beliefs about the referent of a concept our
conception of that referent. A conception is something like a theory about the referent
of our concept—though, in the case of most people, such conceptions will be at best
proto-theories. Conceptions often come into conìict with characteristic judgments.
For instance, some philosophers once had a conception of knowledge according to
which S knows that p iff S has a justiëed, true belief that p. e case of John and the
broken clock given above, however, shows that our characteristic judgments about
 fail to line up with this conception. Our concept  does not apply to John
and the proposition ⟨the time is 12:00⟩, even though John has a justiëed, true belief
that the time is 12:00. Philosophers are not the only ones with conceptions. Any-
one who has taken or taught an undergraduate Epistemology course knows that many
undergraduates have, or can be easily led to adopt, a conception of knowledge accord-
ing to which you can only know that p if your subjective experience is incompatible
with every possibility in which ¬p. ey can be rather easily led, via this conception,
to embrace the conclusion that nobody knows anything about the external world.
Nevertheless, these students continue to make characteristic judgments according to
which I know what will be on the ënal, how it will be curved, etc.

More surprisingly, recent experimental results29 have shown that, if, for instance,
you present subjects with the John case above, and ask them whether John knows
that the time is 12:00, a signiëcant portion of them will systematically judge that
John does know that the time is 12:00. If we take people’s responses to surveys to
reliably tell us something about their characteristic judgments, then we seem to be
29 See, e.g., S & F (2012).
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led to the conclusion that the philosophical account according to which knowledge
is justiëed true belief is not in tension with people’s characteristic causal judgments,
contrary to R (1948), G (1963), and the widespread consensus of the
philosophical community. I do not think that we ought to respond to such evidence
by concluding that the concept  does apply to John and the proposition ⟨the
time is 12:00⟩. e respondents in such a survey are surely making a mistake—albeit
an apparently widespread and predictable mistake. If there were any doubt about this
before, these doubts ought to have been laid to rest by T (2013), who shows that,
by presenting cases like these more slowly and carefully, you can get respondents to
correctly judge that John doesn’t know that the time is 12:00. So respondents are, in
the original studies, making a mistake. What’s needed is an explanation of why they
systemically and predictably make this mistake.

W (2007) explains mistakes like these by appealing to my fourth qual-
iëcation above—namely, that, for concepts like , concept possession does not
on its own guarantee the ability to correctly apply the concept. us, W’s
explanation of the odd judgments about John and the broken clock is that, though
respondents possess the concept , they do not yet have the abilities necessary
to correctly apply that concept to cases like John and the broken clock. e situa-
tion with these respondents and the judgment that John knows that the time is 12:00
is analogous to the situation with non-linguists and the judgment that ‘e rat the
cat the dog scared chased escaped’ is not grammatical.30 ough non-linguists have
covert knowledge of the rules of UG, they do not always have the ability to apply
those rules, especially in eccentric and complicated sentences involving many nested
noun phrases. Similarly, though respondents have covert knowledge of the appli-
cation conditions of , they do not always have the ability to correctly classify
John’s situation as a case of non-knowledge.

I agree that, in general, abilities over and above concept possession are necessary
for correct application of the concept. However, W’s explanation of the
mistake involved in the case of John and the broken clock sells non-philosophers a bit
short. Figuring out that you can’t learn the time from a broken clock is nowhere near
as cognitively demanding as ëguring out that ‘e rat the cat the dog scared chased
escaped’ is grammatical, or determining the number of sides on a chilliagon. It does
not take a philosophy course to teach most people that you can’t learn the time from
30 e sentence means that the rat which was chased by the cat which was scared by the dog escaped.
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a broken clock.
In my judgment, the ëfth and ënal qualiëcation above does a much better job

diagnosing the error which respondents make when they falsely claim that John knows
the time. e distinction between concepts and conceptions affords us the hypothesis
that, when respondents encounter the case of John and the broken clock, they are
clued in to the fact that there is something peculiar or idiosyncratic about the case.
e prompts generally stress the fact that John’s belief is true, for instance (presumably
to make sure that respondents recognize this fact before responding). Respondents are
thus led to wonder whether, given that such features are being stressed, they might
be important in some way. ey stop providing their unreìective, covert judgments,
and start overtly thinking through the relevance of the truth of John’s belief to the
question of whether John knows that the time is 12:00. And the only way to overtly
think through this question is by appeal to one’s overt beliefs about what it takes for
somebody to know that some proposition is true—that is to say, by appeal to some
conception of knowledge. ey may, for instance, reason along the following lines:
John did use the clock to arrive at a true belief, and isn’t that just what all of us do all
the time when we look at working clocks? And, after all, what’s the difference between the
state of the clock when it’s working and when it’s not? Surely it’s just whether the clock
tells the correct time; and in this case, the clock does tell the correct time. So, the clock is
just like a working clock in all relevant respects when John is looking at it; so if any of us
ever know the time by looking at a working clock, then John must know that the time is
12:00. Overt reasoning like this makes use at several points of overt beliefs about the
relation ⟨⟩. Such beliefs are part of the respondent’s conception of knowledge.
So, if the respondent is clued into the fact that something is awry with the case, and
they therefore stop responding unreìectively, but rather appeal to some kind of overt
reasoning like the foregoing, then we ought to expect their responses to only tell us
something about their conception, and not their concept, of knowledge. But, as we
saw above, conceptions and concepts can easily come apart. So there’s no reason to take
what such respondents say as evidence that the agents in Gettier cases have knowledge.

is is, of course, just a hypothesis about what’s going on with these survey results;
it could be tested by measuring how much time respondents spend on this question,
compared with how much time they spend on more mundane questions. Alterna-
tively, we might test the hypothesis as follows: present subjects with a vignette in
which they are told that the clock is broken, reads ‘12:00’, and John, falsely believ-
ing that it is working, looks at the broken clock and forms the belief that the time is
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12:00. en ask them whether a) John knows what time it is, b) John doesn’t know
what time it is, or c) there isn’t enough information to say. e hypothesis that peo-
ple’s concept of knowledge is such that people know in the Gettier case would predict
(c). ey have been told that John has a justiëed belief that the time is 12:00. All
that is needed in order to transform this into a Gettier case is truth. So, if agents
have knowledge in the Gettier case, then the respondents ought to answer (c). My
hypothesis, on the other hand, predicts that people would answer (b). ey have an
implicit grasp of the concept  and are therefore able to see that one cannot come
to know the time by looking at a broken clock. Since the vignettes do not place any
particular emphasis on unusual features of the case, respondents shouldn’t have any
reason to engage in a process of overt reasoning about knowledge by appealing to their
conception of knowledge. So, they will covertly recognize that the fact that the clock
is broken is enough to establish that John doesn’t know the time.

1.3.2 C  M

Consider two concepts:  and . For both of these concepts, we should
accept the trivial claims (8) and (9).

8.  refers to ⟨⟩.

9.  refers to ⟨⟩.

e concept  refers to the property of being round;  applies to an entity
just in case that entity is round. e concept  refers to the property of being
water; it applies to a material just in case that material is water—we now know that
this will hold iff that material is made up of molecules consisting of two parts hydrogen
and one part oxygen.

On the assumption that these concepts refer at all, these claims are trivial, on a
par with the claim that ⟨p⟩ is true iff p, which is trivial on the assumption that ⌜p⌝ is
meaningful. (Part of my goal in this section is to explain their triviality.) Nevertheless,
there is an interesting difference between (8) and (9). Roughly, the difference is this:
the fact that (8) is true is adequately explained by facts about the concept  and
the property ⟨⟩ alone—without reference to any other facts. In order to know
that  picks out the property ⟨⟩, we don’t need to know anything, for in-
stance, about which world is actual. at’s because we don’t use the concept 
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with deference to the actual world. People in other possible worlds could use our con-
cept  to pick out the very same property ⟨⟩. Nor does it matter whether
there even are any round things here at the actual world—this would not render (8)
false.  is different. We do use the concept  with deference to the actual
world. e fact that (9) is true is not adequately explained by facts about the con-
cept  and facts about the property ⟨⟩. In order to properly explain (9),
we must additionally point to facts about the actual world—namely, the fact that the
watery stuff ëlling the lakes and rivers in the actual world is composed of molecules
containing two hydrogen atoms and one oxygen atom. If the actual world had turned
out to be different—if, for instance, the watery stuff ëlling the lakes and rivers in the
actual world had turned out to be composed of molecules containing two hydrogen
atoms and two oxygen atoms, then  would have referred to ⟨ -
⟩. People in possible worlds like these would use our concept  to refer to
⟨ ⟩.31

We might want to draw this distinction with reference to the framework of epis-
temic two-dimensional modal semantics.32 e rough outline of this framework is
as follows. We have a set of epistemic possibilities—(centered) ways the actual world
might turn out to be, for all we know a priori. We endorse a kind of scrutability thesis
to the effect that, given a world in this set—i.e., given a speciëcation of which world is
actual—we have a (perhaps covert) understanding of what the meaning of a concept
or a term in our language would be, were that possibility actual. I’ll assume that the
meaning of a concept or a term in our language is provided by its intension—that is,
by a function from worlds to extensions, or sets of (n-tuples of ) objects to which the
concept or term applies at that world.

To make this a bit more precise, we may introduce a doubly-indexed interpretation
function ⟦ ⟧◦,∗. e ërst index, ◦, is ëlled by an epistemic possibility—a (centered)
way the actual world might be, for all we know a priori. e second index, ∗, is
ëlled by a possible world. e two-dimensional intension of a concept  will then be a
31 I’m here supposing, for the sake of illustration, that  is individuated roughly by the ap-

plication condition ‘ applies to an entity if and only if that entity belongs to the same natural
kind as the watery stuff ëlling the lakes and rivers around here in the world that I occupy.’ at is:
I’m assuming that the concept  has a kind of rigidiëed descriptive content. I think that this is
roughly correct, and I’m using this assumption to help illustrate the distinction between concepts like
 and , but I don’t believe that I need this assumption for anything other than illustrative
purposes. What I do need is the assumption that, given a certain description of a way the actual world
might be, we are able to understand how our concept applies in that scenario.
32 See C (2006a,b).
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function ⟦  ⟧◦,∗ from epistemic possibilities to functions from worlds to extensions.
e intension of a concept  will be a function from worlds to extensions. e function
⟦  ⟧◦,∗ gives us the two-dimensional intension of ; whereas, for any i, the function
⟦  ⟧i,∗ gives us the intension of , if i is actual.

In this framework, the interesting distinction between  and  is that
the two-dimensional intension of  is constant, that is,

∀i, j ⟦  ⟧i,∗ = ⟦  ⟧ j,∗

whereas the two-dimensional intension of  is not constant.

∃i, j ⟦  ⟧i,∗ , ⟦  ⟧ j,∗

It is my contention here that, in this respect,  is more like  than
like . Given full knowledge of a possible world, in order to answer the question
of which events caused which other events at that world, I don’t have to know which
world is actual.33

∀i, j ⟦  ⟧i,∗ = ⟦  ⟧ j,∗

Moreover—and this is, I think, the key move—the relation of causation, ⟨ 
⟩, can be identiëed with (or at least agrees with) the intension of  (‘agrees
with’ in the sense that, if c and e are causally related at a world ω, then < ω, c, e > is
within the intension of ).

⟦  ⟧@,∗ = ⟨  ⟩

From this it follows that we may know a priori facts about the relation of causation,
since (by the scrutability thesis),34 we have a covert understanding of the intension of
, given that any particular world is actual; and, no matter which world is
actual, our concept of causation will pick out the very same intension, which is just
the causal relation.

∀i ⟦  ⟧i,∗ = ⟨  ⟩.
33 I don’t have much by way of argument here other than intuition pumping; think about a causal

relation inferred from a work of ëction, e.g., ‘Romeo’s drinking the poison caused him to die.’ Does it
really seem that this claim could be undermined by discoveries in physics, the same way that the claim
‘Ophelia drowned in H2O’ could be undermined? I invite you to agree that it could not; but I have
nothing to say to those who decline the invitation.
34 is thesis is defended at length in C (2012).
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So, it seems to me, if it is granted that  is not used with deference—if, in
order to know which events caused which other events in a certain possibility, I don’t
have to know which possibility is actual—then, on the assumption that the relation
of causation is (or agrees with) the intension of , it follows that we may
have a priori knowledge of the causal relation.

I suspect that the resistance to this argument will come with my assumption that
the relation of causation is, or agrees with, the intension of the concept .
Why, it will be incredulously asked, would the relation ⟨⟩ out in the world
line up with the intension of the concept ? e answer to this question is,
I believe, that what we mean by the expression ‘the relation of causation’ is just the
thing that agrees with the intension ⟦  ⟧@,∗.

By way of explanation: we might be interested in the question ‘why is (8) true?’
at is, ‘why does  refer to ⟨⟩?’ More speciëcally, we might be inter-
ested in the contrastive question, ‘Why does  refer to ⟨⟩, as opposed
to ⟨⟩ or ⟨⟩ or even ⟨⟩ or ⟨⟩ or...?’ (⟨⟩
and ⟨⟩ are just gerrymandered properties like ‘round in worlds with English
speakers and triangular in worlds with French speakers and no English speakers and
at least twenty feet from anything red in worlds with no English or French speakers’.)
Contention: we may answer this question by only appealing to facts about the con-
cept  itself. On my view, the properties ⟨⟩ and ⟨⟩ and even
⟨⟩ and ⟨⟩ and so on and so forth are all out there to be referred to.
e reason that  refers to ⟨⟩ is just that ⟨⟩ is the property out in
the world which answers to the concept .

Consider, on the other hand, the question of why (9) is true. Consider, that is,
the question of why  refers to ⟨⟩, as opposed to ⟨ ⟩
or ⟨⟩ or ⟨⟩ or.... is question cannot be answered by appealing to
facts about the concept  alone. We must also make reference to features of the
actual world in order to explain the truth of (9).

Imagine that we have two archers shooting arrows at a wall. For the ërst archer,
a target is painted on the wall, and she then draws back her arrow and shoots. e
second draws back his arrow, shoots, and then, wherever his arrow lands, a target is
painted. Consider the question ‘how could the archer hit the target?’ e answer we
give to this question will depend upon which archer we are talking about. If we are
talking about the ërst, then we will have to talk about the archer’s sensitivity to certain
features of the target. If, however, we are talking about the second, then we will not
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think that any sensitivity to the position of the target was required. Wherever his
arrow landed, he would have hit his target—for the target was determined by where
his arrow landed.

When we deploy the concept , we are like the ërst archer. Because  is
used with deference, the actual world has set a certain target for that concept which we
are not in a position to fully understand until we have conducted empirical research.
However, when we deploy the concept , we are like the second archer. By
acquiring the non-deferential concept , we thereby implicitly determine the
property that it refers to, irrespective of what the actual world is like—that property
is just the property which agrees with the intension of . If  were a
theoretical concept, then it would be like , and we would not be in a position to
have an a priori covert understanding of its application conditions merely in virtue of
possessing the concept . However, given that  is not a theoretical
concept, and given that it is not used with deference in any other way, that concept
is like , and not like , in that concept possession puts us in a position to
have an a priori covert understanding of its application conditions (modulo the ëve
qualiëcations from §1.3.1 above).

I suspect that much of the skepticism about conceptual analysis stems from the
sense that it would be mysterious if reìection on the nature of our concepts was able to
reveal something about a relation out in the world. However, on my understanding,
this is no more mysterious than the second archer’s ability to hit his target. Had
we another concept, , this concept’s intension would have agreed with
some other relation, ⟨⟩, and it would have been the relation that we
were talking about when we spoke of ‘the relation of schmausation.’ We could then
have used conceptual analysis to learn about the relation of schmausation. Both of
these relations are out there to be talked and thought about; the reason that possessing
the concept  allows us to think and talk about the ërst is just that this
concept implicitly determines which of the two we are thinking and talking about
when we utilize it. Conceptual analysis therefore doesn’t reveal anything about the
properties or relations our concepts pick out other than that they are the properties and
relations which our concepts pick out. And this is just the kind of covert knowledge
that one would expect to come along with conceptual competence.

A few qualiëcations: the analogy with the archer is somewhat strained. Firstly, in
the case of the concept , there is not just one target, which is painted after
we develop the concept; rather, the wall is already painted with many targets, and the
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one that the concept refers to is determined by where the arrow lands. Secondly, our
covert knowledge of the application conditions of the concept may not, by itself, com-
pletely settle the question of which relation that concept refers to, because of vagueness
or indeterminacy in the concept’s application conditions, e.g., the concept may be a
kind of prototype which simply doesn’t settle how the concept is to be applied in cer-
tain cases. Indeed, I think that this happens in cases of symmetric overdetermination,
see §5.3.9. If that is the case, then considerations of simplicity or other theoretical
virtues may be required in order to determine which relation that concept picks out.
I believe that such theoretical virtues are a priori; however, if they are a posteriori, then
that part of the project of theorizing about causation would have to be a posteriori,
too. Finally, nothing I have said here should lead us to think that  is a rela-
tion worth thinking and talking about. It may very well be that the concept 
bears no interesting relation to the other things that we care about—e.g., explanation,
moral responsibility, rational action, and so on. In fact, I believe that  is
a concept worth thinking and talking about, that it does bear important relations to
explanation, moral responsibility, and so on. I believe that this concept is a relatively
fundamental part of our psychology, and that its importance and usefulness may be
partly explained by evolutionary considerations—creatures with the concept of -
 were better ët to understand and control their world, and therefore more likely
to survive and pass on their genes—but I won’t be defending that claim here. Here,
my goal is merely to allay skeptical doubts about using armchair reìection to learn
things about a mind-independent relation.

1.4 I S

I have argued, ërstly, that to the extent that there is a worthwhile project of em-
pirical analysis to be pursued, it is not the kind of project that may be pursued inde-
pendently of the project of conceptual analysis. Secondly, I have attempted to allay
skeptical doubts about the project of conceptual analysis. On my understanding,
there is nothing mysterious about using our covert understanding of certain con-
cepts to come to an understanding of language- and mind-independent properties
and relations out in the world, since (so long as those concepts aren’t used with defer-
ence) which properties and relations these concepts refer to is implicitly determined by
the concepts themselves. In other words, conceptual analysis doesn’t reveal anything
about the properties or relations our concepts pick out other than that they are the
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properties and relations which our concepts pick out. And this is exactly the kind of
knowledge that one would expect to come along with conceptual competence. Nor is
this methodology seriously challenged by recent results in so-called experimental phi-
losophy. We can accommodate these results by distinguishing between concepts and
conceptions. (is is not to deny, by the way, that empirical results can tell us some-
thing about our concepts; it is merely to deny that certain empirical results warrant
skepticism about the methodology of conceptual analysis). In the subsequent chap-
ters (in particular, chapters 2 and 5), I will be utilizing this methodology to theorize
about the conditions under which two events are causally related.
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CHAPTER2
THE REDUCTION,

ELIMINATION, AND EMERGENCE
OF CAUSATION

2.1 I

I this chapter, I want to foreground a division between philosophical theories of
singular causation which has received relatively little attention in the literature.

In one camp are those theories according to which the causal relations of our day-to-
day, macroscopic lives, as well as the causal relations investigated by special sciences
like climatology, economics, and epidemiology, ultimately reduce to causal relations
between microphysical events—that the causal relation between Zimbabwe’s mone-
tary policy and its hyperinìation is in principle reducible to causal inìuence between
the fundamental particles realizing those events. Following M (1988), call the
members of this camp causal reductionists. Causal reductionists are opposed on two
sides. On one side are those who deny that there are any high-level causal relations to
be reduced—those who think that the causal relations between fundamental physical
states of the world are all the causal relations that there are. Call the members of this
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camp causal eliminativists. On the other side are those who, like causal reductionists,
accept the existence of high-level causal relations between smoking and cancer, carbon
emissions and climate change, and monetary policy and inìation; however, unlike the
causal reductionists, they deny that these high-level causal relations are reducible to
low-level causal relations between fundamental physical events. Call the members of
this camp causal emergentists.

S (2008) has the following to say about causal emergentism:

Some philosophers suspect that...there are irreducible high-level causal
relations...
Given what we now know, these suspicions are, I believe, extravagant:
there simply are no causal relations of which we are aware that cannot
be attributed to to lower-level interaction and, ultimately, to the causal
inìuence of fundamental particle on fundamental particle.1

e primary goal of this paper is to persuade you that S is incorrect—that,
given what we now know, anything other than causal emergentism is extravagant.

In §2.2, I will introduce and clarify the division between theories of causality
which are causally reductionist, causally eliminativist, and causally emergentist. I
will illustrate the division between causal reductionism and causal emergentism with
David L’s two accounts of causation, one of which entails causal emergentism,
the other of which entails causal reductionism. I will illustrate causal eliminativism
with the views of Michael S. In §2.3, I will argue that causal reduction-
ism and causal eliminativism are incapable of adequately accounting for the apparent
abundance of causal relations between ëne-grained events and the apparent scarcity
of causal relations between coarse-grained events. In response, I will counsel a re-
jection of causal reductionism and causal eliminativism, and an acceptance of causal
emergentism. As I will explain in more depth below, causal emergentism is consistent
with the thesis of microphysical reductionism—the thesis that all facts reduce to micro-
physical facts. In order to be causal emergentists, we need only deny that high-level
causal facts reduce to certain microphysical causal facts, and not that they reduce to
any microphysical facts.

1 S (2008, p. 82). When S says that high-level causal relations are “reducible”, he
means that they are reducible to low-level causal relations.
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2.2 T D

In his 1973, David L outlined a counterfactual theory of singular causation.
According to this theory, an event e causally depends upon a distinct2 event c iff, had
c not occurred, e would not have occurred either,

e causally depends upon c ⇐⇒ ¬O(c)� ¬O(e)

is counterfactual is evaluated according to the semantics given in L (1973b,
1979b): ¬O(c)� ¬O(e) is true iff the closest world in which c fails to occur is a
world in which e fails to occur as well.3 Causation is the ancestral, or the transitive
closure, of causal dependence. at is, one event c causes another event e iff there is
a chain of events running from c to e such that, for each link in the chain, the second
event causally depends upon the ërst.

Because the 1973 account determines whether e causally depends upon c by look-
ing to the closest world at which c fails to occur, it requires a sharp line to be drawn
between those possibilities in which an event occurs in a different manner and those
possibilities in which the event simply fails to occur at all. For instance, suppose that
in the actual world, Suzy throws the rock overhand. In order to evaluate whether
this throw caused the bottle to shatter, L’s 1973 account is forced to legislate on
whether a world in which Suzy throws the rock underhand is a world in which Suzy’s
actual throw occurs, but in a different manner, or whether it is a world in which Suzy’s
actual throw is replaced by a different throw. In his 2000 revision of the counterfac-
tual account, L expresses doubt about the prospects of drawing this line in gen-
eral. He thus abandons the strategy of looking to the closest world at which the cause
fails to occur, and instead focuses on all the possible alterations of the time, manner,
or occurrence of an event, whether those alterations constitute the same event or not.
Whether Susie’s throwing underhand is a different event from her actual throw or not,
it will still constitute an alteration of her actual throw. L then says that an event
c causally inîuences a distinct event e iff there is a substantial range of not-too-distant
alterations of c, c1...cN , and a range of alterations of e, e1...eN (at least some of which
differ), such that the alterations of c counterfactually pattern with the alterations of e.

2 Here, ‘distinct’ means a bit more than ‘non-identical’. It must also be the case that e does not
imply, and is not implied by, c and that c and e not overlap. See L (1986a).

3 If we drop the assumption that there is such a world, then ¬O(c)� ¬O(e) is true just in case
there is a possible world in which neither e nor c occurs which is closer than any world in which e
occurs and c does not. e standards of similarity are those speciëed in L (1979b).
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at is, c causally inìuences e iff, for all i, had ci occurred, ei would have occurred.

c causally inîuences e ⇐⇒ O(c1)� O(e1) ∧ ... ∧ O(cN)� O(eN)

Causation is the ancestral of causal inìuence. at is, c causes e iff there is a chain of
events running from c to e such that, for each link in the chain, the ërst event causally
inìuences the second.

On the surface, these two accounts appear very similar. In L’s terminology,
we’ve simply traded whether-upon-whether counterfactual dependence for whether-,
when-, and how-upon-whether, -when, and -how counterfactual dependence. De-
spite their similarities, there is one dimension along which the two theories differ
notably. L’s 2000 account entails causal reductionism. His 1973 account, on the
other hand, entails causal emergentism. Allow me to explain.

2.2.1 C R

Some prefatory remarks: in what follows, I will call the entity denoted by a nom-
inalization ìanking the verb ‘cause’ in a causal claim like ‘Chris’s smoking caused his
contraction of cancer’ an event. I use this word simply because most theories of causa-
tion claim that it is events, as opposed to facts, which are causally related. However, I
mean to leave it open what the causal relata are. I’ll call an event picked out by a nom-
inalization describing a region of spacetime in maximally speciëc detail with just the
predicates of fundamental physics a ínely-individuated, or low-level event. Low-level
events pin down precisely what is happening, at a fundamental physical level, within a
given region of space-time. Events picked out by nominalizations involving predicates
more coarse-grained than this (‘chemical reaction’, ‘birthday party’, or ‘economic de-
pression’, e.g.) I’ll call coarsely-individuated events. If an event is distinct from every
low-level event, then I’ll call it a high-level event. So, if you think that stagìation
is just the event of thus-and-such fundamental entities being arranged thus-and-so
with thus-and-such fundamental properties over a particular time period, then, even
though stagìation is coarsely-individuated, you don’t think that it is a high-level event,
as I am using that term. at is: I leave it open whether coarsely-individuated events
are high- or low-level events. I will assume throughout, however, that if there are
high-level events, then most coarsely-individuated events are high-level. Note also
that, while disjunctions of nominalizations picking out low-level events only utilize
the predicates of fundamental physics, they do not describe a region of spacetime in
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maximally speciëc detail; so, the event picked out by such a disjunction will not count
as a low-level event unless it is identical to an event picked out by one of its disjuncts.
Indeed, one may think that every high-level event is just a (perhaps inënitary) disjunc-
tion of low-level events. Instances of the causal relation between high-level events, I’ll
call high-level causal relations, and instances of the causal relation between low-level
events, I’ll call low-level causal relations.

Jaegwon K gives voice to the position I’m calling ‘causal reductionism’ when he
writes that

macro-causality...must be viewed not as something basic and fundamen-
tal but as something that is reducible to, and explainable in terms of,
more fundamental causal processes.4

On K’s view, the reduction of macro-causality to micro-causality is to be carried
out as follows:

if the macrocausal relation to be reduced is one from an instance of a
property F to an instance of property G, we need to correlate F with
some micro-property f , and also G with g, and then we show that f and
g are appropriately causally connected.5

For K, an event is just a property exempliëcation, so when he talks about macro-
and micro-properties, he is talking about the macro- and micro-events of those prop-
erties being exempliëed.6 e kind of correlation between the macro-properties and
the micro-properties that K has in mind is the relation of supervenience. To cor-
relate F with f is to show that F supervenes upon f . However, for the purposes of
characterizing the position I’m going to call causal reductionism, we can remain neu-
tral on what relation it is that high-level events bear to low-level events. Let’s just call
that relation, whatever it is, ‘reduction’. And let’s call its inverse ‘realization.’ en,
we can characterize K’s view as follows.

Of nomic necessity, where C reduces to c and E reduces to e, C’s causing
E reduces to c’s causing e

4 K (1984b, p. 51).
5 K (1984a, p. 261).
6 See K (1976).
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roughout, I’ll use the uppercase ‘C’ and ‘E’ as variables ranging over high-level
events, and I’ll use the lowercase ‘c’ and ‘e’ as variables ranging over low-level events.
(Be on guard: in this thesis, ‘reduction’ is used in two senses: ërst, as a placeholder
for whatever relation the occurrence of high-level events is supposed to bear to the
occurrence of low-level events according to the causal reductionist; and second, for
the relation between the high-level causal facts and the low-level causal facts in virtue
of which they obtain. ese could be one and the same relation, but they need not
be.) is thesis leaves it open how high-level events are to reduce to low-level events—
it could be supervenience, or grounding, or material constitution, or something else
altogether.

If, as a matter of nomic necessity, A reduces to B, then the material conditional
B⇒ A will be nomically necessary, so the above thesis entails

Causal Reductionism: Of nomic necessity, when C reduces to c and E
reduces to e,

c caused e ⇒ C caused E

For the purposes of this paper, I’m going to take this weaker thesis—along with the
assumption that some high-level events are causally related—to deëne causal reduc-
tionism.7, 8, 9

7 e reason for this is that I am interested in divisions between philosophical theories of causation,
and even though many extant theories of causation entail either causal reductionism or its negation,
those which entail causal reductionism are not usually up front about whether they take C’s causing E
to reduce to c’s causing e or merely be nomically necessitated by c’s causing e.

8 You could accept the thesis I’ve labeled causal reductionism while denying the nomological pos-
sibility of low-level causation, yet accepting the existence of high-level causation. en, because you
would think that the antecedent of the material conditional ‘c caused e⇒ C caused E’ is false at every
nomologically possible world, you would think that the conditional is true at every nomologically pos-
sible world. It is certainly inapt to call such a position causally reductionist, but I’ll leave the deënition
as it is. My goal is not to give a neat and intuitive taxonomy of theories of causation; my goal is just
to subdivide logical space into three regions and argue that two of them are false. If you’re not happy
with the name I’ve given this area of logical space, feel free to substitute another.

9 It seems as though most causal reductionists will be committed to something stronger, namely
that, of nomic necessity, where C reduces to c and E reduces to e, c caused e iff C caused E. Even
though, when a property Q supervenes upon a property P, we can only conclude that □(∀x(Px ⇒
Qx)), and not □(∀x(Px ⇐⇒ Qx)), the view developed by K (1984b,a) is that, at any world at
which C reduces to c, and E to e, what it is for C to cause E at that world is just for c to cause e at
that world. Given this, it follows that, at any world, if C reduces to c at that world, and E reduces to e
at that world, then c caused e iff C caused E. Anyone who accepts this stronger thesis will still count
as a causal reductionist, in the sense that I am using the term here. However, accepting this stronger
thesis is not necessary for being a causal reductionist, as I am using the term here.

32



My use of the terms reduction and reductionism here is slightly idiosyncratic. In
the ërst place, many philosophers, taking cases like the reduction of water to H2O
as paradigmatic of reduction in general, believe that if A reduces to B, then A is
identical to B. e causal reductionist is not a reductionist in this sense, since the
high-level causal relation between C and E cannot be identical to the low-level causal
relation between c and e. After all, C is distinct from c and E is distinct from e,
and identical instances of the causal relation must relate identical events. While the
causal reductionist does not take high-level causal relations to be identical to low-
level causal relations, they generally think in some sense that the high-level causal
relations decompose into,10 or are generated by,11 the low-level causal relations. ey
generally think that the facts in virtue of which C caused E just are the facts in virtue
of which c caused e (and perhaps just this fact, that c caused e, itself ).12 Despite these
terminological issues, I’m going to stick to reduction, since this is the word used by
proponents of the view such as K and P, as well as opponents of the view such
as M.

We might worry that not all high-level events have corresponding low-level events.
For instance, we might worry that there is no low-level realizer of negative events such
as Obama’s failure to close Guantanamo.13 Alternatively, if we think that, for instance,
genetic origin is an essential property of persons, then we might worry that a single
low-level event—the event of all the particles making up David’s body having the fun-
damental properties that they do during his sneeze, e.g.—could correspond to mul-
tiple high-level events, since a particle-for-particle duplicate of a person could count
as a different person in virtue of that particle-for-particle duplicate having a different
genetic origin. In the actual world, this low-level event could realize David’s sneeze.
In some other world, it could realize somebody else’s sneeze, and not realize David’s
sneeze, since the low-level event in that world realizes the sneeze of somebody with a
different genetic origin than David. If we think that reduction requires supervenience
(E supervenes upon e iff it is impossible for E to fail to occur without e failing to oc-
cur), this would mean that the event of David’s sneezing does not reduce to the event
of the particles that compose David having the fundamental physical properties they
10 See P (1992).
11 See M (1988).
12 ough, of course, they could accept the necessity of the conditional ‘c caused e⇒ C caused E’

without making any of these extra claims.
13 anks to Brian Weatherson for this point.
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do during his sneeze. So, we might worry, there is no event that realizes the high-level
event of David’s sneezing, even though David’s sneezing caused me to say ‘God bless
you.’14

For better or worse, the causal reductionist is committed to the claim that every
high-level event which enters into causal relations has some low-level realizer. Without
this assumption, they cannot even formulate their view. e thesis I’ve labeled Causal
Reductionism should, therefore, be taken to presuppose that there is some reduction
relation between every causally-related high-level event and some low-level realizer. If
this claim is false, then Causal Reductionism is false (or perhaps truth-valueless). In
contrast, neither the causal eliminativist nor the causal emergentist is committed to
the claim that every high-level event corresponds to some low-level event. It could
be that negative high-level events occur in virtue of the fact that no low-level event of
the appropriate kind occurs, for instance. Or it could be that which high-level event
occurs at a time and place depends upon more than the low-level state of the world
at that time and place.

Indeed, if one accepts that there are causally related coarsely-individuated events
without any low-level realizers (I’ll use the phrase ‘low-level realizer’ in such a way
that, if e is low-level, then its low-level realizer is itself ), then one has at hand a quick
and easy argument for causal emergentism. For if there are coarsely-individuated
events without any low-level realizers, then those coarsely-individuated events must
be high-level. If those high-level events are causally related, then causal eliminativism
is false. And, since those high-level events don’t reduce to any low-level events, causal
reductionism is false as well. So causal emergentism must be true.

is quick and easy argument is likely to be just as quickly and just as easily
resisted. In the ërst place, the causal reductionist or the causal eliminativist may wish
to deny the possibility of either absence causation or causal relations involving negative
events, and thus deny the claim that Obama’s failure to close Guantanamo caused the
New York Times to write an editorial. ey may similarly want to deny that the event
of David’s sneezing really caused me to say ‘God bless you’. What really caused me
to say ‘God bless you’, they may say, is that somebody sneezed. And this event does
supervene upon the particles that compose David having the fundamental physical
properties that they do. So I won’t lean too heavily on this argument; however, for
those who accept the claim that there are coarsely-individuated events without low-
14anks to David Kaplan and Calvin Normore for helpful conversation on this point—the example

is due to Kaplan.
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level realizers, they have at hand excellent reason to be causal emergentists even before
getting to the arguments in §2.3.

Some causal reductionists might wish to formulate the thesis slightly differently
than K. For instance, Huw P writes that

many of us think that there is something fundamental about micro-
physics. For one thing, we like to think that higher-level properties and
relations obtain in virtue of fundamental physical properties and rela-
tions. For another, we like to think that big physical things and events
are simply collections of little physical things and events. As a result, we
are attracted to the idea that macroscopic causation is constituted by a lot
of microscopic causation. One aspect of this intuition is that causal con-
nections between temporally separated events decompose ‘horizontally’
into chains of more immediate causal connections; another is that these
immediate connections, if not already primitive, decompose ‘vertically’
into a complex of microphysical causal relations. (P, 1992, p. 511)

In P’s ‘vertical’ decomposition claim, he proposes that two causally-related high
level events may each be constituted by, not a single low-level event, but rather a
complex of low-level events, and what it is for the high level events to be causally related
is just for a complex of causal relations to obtain between these low-level constituting
events. ese low-level constituting events differ from the high-level events along two
dimensions. First, they are more ënely-grained than the high-level events. Secondly,
they are more micro than both the high-level events and the low-level realizers of
those high-level events—they describe a smaller region of space-time. For instance,
suppose that we have a gas with a certain temperature in a chamber with a certain
volume. If we move one of the walls of the chamber so as to shrink the volume that
the gas occupies, then the temperature of the gas will rise. e decrease in volume
caused the increase in temperature. On P’s view, this causal relation decomposes
vertically into a complex of causal relations between the particles making up the wall
of the chamber and the particles composing the gas. As the wall is moved inward, the
particles composing the wall collide with the particles composing the gas; since the
particles in the wall are moving, they impart momentum to the particles composing
the gas, thereby increasing those particles’ velocities. And the gas’s temperature is
just a function of the velocities of the particles composing it. So as those velocities
increase, the gas’s temperature increases. en, P’s thought is just this: what it is

35



for the decrease in volume to cause the increase in temperature is just for a bunch of
collisions to occur between the particles making up the wall of the chamber and the
particles making up the gas. In each of these collisions, the movement of the particles
in the wall cause the velocities of the particles they collide with to increase. So the
high-level causal relation decomposes into a bunch of low-level causal relations.

How many of the low-level micro events which compose the low-level realizer
of C must be causally related to the low-level micro events which compose the low-
level realizers of E? And how many of the low-level micro events which compose the
low-level realizers of E must they be related to? Is it enough that a single micro low-
level event which composes the low-level realizer of C cause a single micro low-level
event which composes the low-level realizer of E? Does it matter how large a part
of the realizers of C and E these micro low-level events events make up? Difficult
questions, all. It would be better if P could avoid them entirely. Perhaps he
can. A high-level event will be constituted by a complex of many low-level events.
Take the mereological fusion of those events.15 is mereological fusion will then
just be the low-level realizer of the high-level event. en, P could simply say
that two high-level events are causally related if the fusion of the complex of low-level
events making them up are causally related. Such a view would be equivalent to the
thesis I’ve called Causal Reductionism above. Some reductionists may want to resist
this reformulation. On the one hand, they might think that some fusions are too
spatiotemporally gerrymandered to enter into causal relations. On the other hand,
they might worry about the fact that this reformulation appeals to the principle that
a complex of events are causally related only if their mereological fusions are causally
related. However, a reductionist might think that c1 and c2 can both cause e without
their fusion causing e. I won’t have much here to say about these worries. If the reader
ënds them persuasive, they are free to resist my reformulation. Nevertheless, unless
P says quite a bit more about how much or what kind of low-level micro causation
is takes to have high-level macro causation, or what the relationship is between the
low-level micro causal relations and the low-level macro causal relations, it will remain
unclear whether his view entails Causal Reductionism or its negation, or whether it is
consistent with both Causal Reductionism and its negation. In any case, whether we
accept the reformulation or not, the argument I will provide in §2.3will apply, mutatis
15 I’m presupposing a theory of events according to which they are just regions of space-time, or

properties of regions of space-time. If you think that events are facts, take the conjunction of these
facts.
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mutandis, to P’s version of causal reductionism as well. So it won’t much matter,
at the end of the day, whether I can squeeze P into the K framework. A
P-style reductionist will run into precisely the same troubles.

2.2.2 C E

Causal reductionists accept that there are high-level causal relations, distinct from
the low-level causal relations into which they decompose. ey accept that Chris’s
smoking caused his cancer and that Zimbabwe’s monetary policy caused its hyperinìa-
tion. ey simply believe that these causal relations can be reduced to causal relations
between low-level events. ere is another position which denies that there are any
high-level causal relations to be reduced. Call this position causal eliminativism. In
general, causal eliminativists believe that the causal relations between low-level events
are all the causal relations there are.16

ere are two ways of being a causal eliminativist. Firstly, you could deny that
there are any high-level events. at is, you could think that ‘e Weimar Republic’s
monetary policy’ and ‘the Mark’s hyperinìation’ denote low-level events. en, if you
accept the truth of the causal claim ‘e Weimar Republic’s monetary policy caused
the Mark’s hyperinìation’, you take the causal relation asserted by this claim to be a
relation between two low-level events. Call this position strong causal eliminativism—
strong because it does away with both high-level causal relations and high-level events.

Secondly, you could retain high-level events, and simply deny that these high-level
events are causally related. Call this position weak causal eliminativism—weak because
it only does away with high-level causal relations, retaining the high-level events. It
may be thought that weak causal eliminativism provides its own reductio. To accept
that there are high-level events yet deny that these events enter into causal relations
is to deny that carbon emissions caused global temperatures to rise. It is to deny that
asbestos ever caused mesothelioma and that oxidation ever caused rust. Intelligent
people ought not deny such things, and certainly not on account of philosophical
considerations alone. Unfortunately, weak causal eliminativism cannot be dismissed
so quickly. Sophisticated weak eliminativists will accept the assertibility of the English
sentence ‘Chris’s smoking caused his cancer’, while denying that this sentence is used
to assert the existence of a causal relation between the smoking and the cancer. e

16 Assuming that they think that there are low-level causal relations. Denying the existence of both
high- and low-level causation is another way of being a causal eliminativist. R (1912) provides
an example of this brand of causal eliminativism.
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most developed version of this account that I am aware of comes from S
(2008). According to S,

claims of the form c was a cause of e...do not assert the existence of a raw
metaphysical causal relation between two events c and e; rather, they are
causal-explanatory claims that assert that c is a part of the causal expla-
nation for e.17

S is here picking up on a suggestion of D (1967)’s: namely that, in
sentences like ‘e collapse was caused, not by the fact that the bolt gave way, but
rather by the fact that it gave way so suddenly and unexpectedly’, the verb ‘caused’

is not the ‘caused’ of straightforward singular causal statements, but is
best expressed by the words ‘causally explains.’18

What D suggests as a ëx for a few recalcitrant sentences, S adopts
for all, or at least most, of our everyday causal claims. I’ll call this thesis, that causal
claims are causal explanatory claims, the ‘D-S thesis’.

ere are two ways of understanding the D-S thesis. We could
understand it as a semantic claim: the literal content of ‘C caused E’ is that C is a
part of a causal explanation of E—i.e., the semantic value of ‘caused’ in a sentence ‘C
caused E’ is a function that takes the value true iff the low-level realizer of C is causally
related to the low-level realizer of E and the fact that C occurred explains the fact that
E occurred. Alternatively, we could understand it as a claim about the pragmatics of
causal claims: in ordinary contexts at least, to say ‘C caused E’ is to pragmatically
implicate that the low-level realizer of C is causally related to the low-level realizer of
E and that the occurrence of C explains the occurrence of E, even though the literal
content of ‘C caused E’ is just that C and E are causally related, and not that the
occurrence of C is explanatorily relevant to the occurrence of E. is pragmatic story,
wedded with weak causal eliminativism, entails that most causal claims are used to
implicate true things despite being strictly speaking false. (is is not as odd as it
may seem. On many semantic theories, we often use false sentences to pragmatically
implicate something true—e.g., ‘You can’t get there from here’ and ‘I have nothing to
wear.’)
17 S 2008, p. 4. See also S 2008, ch. 6.
18 D 1967, pp. 161–2.

38



is sophisticated form of weak causal eliminativism is, therefore, not merely a
metaphysical claim; it is also a claim about the semantics (or the pragmatics) of causal
talk. Of course, the view that causal claims are (or pragmatically implicate) causal ex-
planatory claims could be combined with strong causal eliminativism as well. Indeed,
as a purely semantic (or pragmatic) thesis, it is compatible with any of the positions I
am considering here. However, for the weak causal eliminativist, this thesis, or some-
thing like it, is necessary to avoid the absurd conclusion that the sentence ‘carbon
emissions caused climate change’ is unassertable.

2.2.3 C E

e remaining logical space is occupied by a character I will dub the causal emer-
gentist. Many of the so-called British emergentists embraced emergentism about laws
of nature. ey held that the higher-level laws of nature governing complex phe-
nomena such as chemical reactions or the biological activity of living organisms did
not reduce to the fundamental laws of physics.19 To have a name, call this kind of
emergentism nomic emergentism. Just as the nomic emergentist thinks that there are
higher-level laws of nature which cannot be reduced to lower-level laws of nature,
the causal emergenist believes that there are causal relations between high-level events
which cannot be reduced to causal relations between their low-level realizers. ey
agree with the causal reductionist, against the causal eliminativist, that there is high-
level causation. However, they reject the material conditional

c caused e ⇒ C caused E

(where c and e are the low-level realizers of C and E, respectively) for some C and E.
Note that, in rejecting this conditional, the causal emergentist needn’t commit

themselves to the claim that there are low-level realizers of high-level events. Rejecting
the idea that some high-level events reduce to low-level events while maintaining that
those high-level events are causally related is just one way of being a causal emergentist.

Causal emergentism does not entail nomic emergentism. Moreover, you could be
a causal emergentist without denying that causal relations between high-level events
can be reduced to some low-level facts. In order to count as a causal emergentist, it
is enough to claim that the low-level facts in virtue of which high-level events are
causally related are not exclusively low-level causal facts about the realizers of those
19 See ML (1992).
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high-level events. You may, of course, accept a higher-octane version of emergentism,
according to which causal relations between high-level events are not determined by
or in principle predictable on the basis of the low-level state of the world and the low-
level laws of nature; but there’s nothing in the thesis of causal emergentism demanding
such an extravagant claim. Causal emergentists can—and, by the way, should—accept
that the behavior of every physical object is entirely determined by the fundamental
physical state of the world and the fundamental physical laws.20

To see this, return to L’s 1973 account of causation. L accepted that the
high-level causal facts were determined by the low-level facts.21 Nevertheless, his orig-
inal counterfactual account of causation entails causal emergentism. On that account,
recall, an event e causally depends upon a distinct event c iff were c to fail to occur,
e would fail to occur as well. Causation is the ancestral of causal dependence. is
account is in need of a theory of events, and the conditions under which they do and
do not occur. is was provided by L’s 1986 paper Events. ere, L claims
that an event is a property of a space-time region. Since, for L, properties are
just classes of individuals at worlds, a property of a space-time region is just a class of
space-time regions at worlds. A space-time region at a world has the property just in
case it belongs to the class. For an event e to occur at a world is for one of its mem-
bers to exist at that world. Events can be classiëed by their essences, the conditions
necessary for them to occur—i.e., the conditions met by all of their members.

L tells us that some events imply other events, where an event e implies an
event f iff, necessarily, if e occurs in region R, then f occurs in region R. He illus-
trates this kind of implication with the following example: John’s saying ‘hello’ loudly
implies John’s saying ‘hello’. ough he expresses some hesitation at taking these two
events to be distinct, L decides that they must differ, since they differ causally.
John’s saying ‘hello’ caused Fred to greet him; whereas John’s saying ‘hello’ loudly did
not. (Fred would still have greeted John even if he had said ‘hello’ at a normal vol-
ume.) Similarly, John’s saying ‘hello’ loudly was caused by John’s being a bit drunk;
whereas John’s saying ‘hello’ was not caused by John’s being a bit drunk. (Had John
20 Along, perhaps, with some brute facts about the outcome of tychistic chancy processes, like the

collapse of the wave function on some interpretations of Quantum Mechanics.
21 Given L’s physicalism, the low-level facts will specify a unique possible world. e laws at

this world come along for free—they are the generalizations of the axiomatic system of truths which
strikes the best balance of simplicity, strength, and ët (see L 1983, 1994a). e semantics for
counterfactuals given in L (1973b, 1979b) then provides the truth conditions for causal relations
both high and low.
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not been drunk, he would not have said ‘hello’ loudly; however, he would still have
said ‘hello’.) L describes the relation between these two events thusly:

We have, so to speak, a more and a less detailed version of what happens
in a region. Both are occurrent events. e more detailed version has a
richer essence; the otherworldly regions included in it are fewer and less
varied...e more detailed version is one, but only one, of the ways in
which the less detailed version could have occurred.22

e relationship between high-level events and their low-level realizers is analo-
gous to the relationship between John’s saying ‘hello’ and John’s saying ‘hello’ loudly.
Low-level events imply the high-level events they realize. e low-level event is a more
detailed version of what happens in a region; it has a richer essense than the high-level
event it realizes. e low-level realizer is one, but only one, of the ways in which
the high-level event could have occurred. For this reason, just as John’s saying ‘hello’
loudly can be caused by things that John’s saying ‘hello’ is not, a low-level event can
be caused by things which the high-level event it realizes is not. at’s because the
closest possible world at which the cause fails to occur could be a world at which the
low-level realizer fails to occur, yet the high-level event it realizes doesn’t fail to occur.

In addition, two low-level events c and e can be causally related without the high-
level events they realize, C and E, being causally related. For the closest world at
which c fails to occur could be a world at which e fails to occur without the closest
world at which C fails to occur being a world at which E fails to occur. For instance,
suppose that the modal proëles of c, e, C, and E are as shown in ëgure 1. ere,
the counterfactual ¬O(c) � ¬O(e) is true, while the counterfactual ¬O(C) �
¬O(E) is false. Suppose further that there is no sequence of events D1...DN such that
¬O(C)� ¬O(D1) ∧ ... ∧ ¬O(DN)� ¬O(E). en, L’s 1973 account will
tell us that c caused e even though C didn’t cause E. So it is not nomically necessary
that C cause E whenever c causes e.

Due to the universality of fundamental physical forces like gravitation and elec-
tromagnetism, examples with this structure are not difficult to come by.23 e moon
22 L 1986b, p. 257.
23 In the body, I’m going to pretend that the fundamental physical state of the world and the fun-

damental laws of nature are roughly what we thought that they were about a century and a half ago. I
don’t believe, however, that any of the arguments depend upon this assumption. Under more realistic
assumptions, extra provisos about past light cones and the like will be needed. When appropriate, I’ll
make the necessary revisions in the footnotes.
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Figure 1: In the diagram, simiarity is represented with distance. All and only the worlds inside
the innermost circle are worlds at which e occurs; all and only those inside the next largest
circle are those at which c occurs; and so on. e closest world to the actual world, @, at
which c does not occur is a world at which e does not occur. Yet the closest world at which C
does not occur is not a world at which E does not occur.

wanes, and the window shatters. e waning of the moon is microphysically realized
by the fundamental particles which constitute the moon having certain masses and
charges, and taking certain precise trajectories over a certain period of time. Similarly,
the shattering of the window is microphysically realized by the individual particles
which constitute the window having certain masses and charges and taking certain
precise trajectories over a certain period of time. Both of these are incredibly fragile
events. Because their essences are so rich, it is very easy for them to fail to occur—if
any of the particles in the window were to have an ever-so-slightly different mass or
charge or take an ever-so-slightly different trajectory during the time period, then the
low-level realizer of the shattering would fail to occur; and likewise for the masses,
charges, and trajectories of the particles in the moon and the low-level realizer of the
moon’s waning. us, had the low-level realizer of the moon’s waning failed to occur,
at least one of the particles which constitute the moon would have had a slightly dif-
ferent mass or charge or taken a slightly different trajectory. However, if any of those
particles had had a slightly different mass or charge or taken slightly different trajec-
tory, then it would have exerted a slightly different gravitational or electromagnetic
force on all of the particles which realize the window’s shattering. Since the future
trajectories of the particles in the window are entirely determined by the resultant
of the forces acting upon them, they would have taken slightly different trajectories,
had any of the gravitational or electromagnetic forces acting upon them been slightly
different. So the low-level realizer of the window’s shattering would have failed to oc-
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cur. So the low-level realizer of the moon’s waning caused the low-level realizer of the
window’s shattering, on L’s 1973 account. But the moon’s waning did not cause
the window’s shattering, since, had the moon not waned, the window would still have
shattered. (It would have shattered in an ever-so-slightly different way, but it would
have shattered all the same.) Assuming that there is no intermediate event which de-
pends upon the moon’s waning and upon which the shattering depends, it follows on
the 1973 account that the moon’s waning did not cause the window’s shattering.

So, on L’s 1973 counterfactual account of causation, if you look at low-level
events, then you see one causal structure. If you look at high-level events, you see a
different causal structure. And which causal structure you see depends upon which
high-level events you’re looking at. ere is one network of causes and effects leading
into and out of John’s saying ‘hello’ and another network of causes and effects leading
into and out of John’s saying ‘hello’ loudly.

Interestingly, this aspect of the counterfactual account goes away in L’s 2000
revision. On the revised account, recall, an alteration of an event is just a variation
of the time or manner of the event’s occurrence, whether that variation leads to the
event failing to occur, or merely occurring in a slightly different manner, or at a slightly
different time. An event c causally inìuences a distinct event e iff there is a substantial
range of not-too-distant alterations of c, c1...cN , and a range of alterations of e, e1...eN

(at least some of which differ), such that the ci counterfactually pattern with the ei—
that is to say, had ci occurred, ei would have occurred, for all i. Causation is the
ancestral, or the transitive closure, of causal inìuence.

On this account, no longer can John’s saying ‘hello’ loudly be caused by something
which does not also cause John’s saying ‘hello’. If not-too-distant alterations of John’s
being drunk counterfactually pattern with alterations of John’s saying ‘hello’ loudly,
then they will also counterfactually pattern with alterations of John’s saying ‘hello’.
at’s because an alteration of John’s saying ‘hello’ loudly just is an alteration of John’s
saying ‘hello’. A variation in the time or manner of the event of John’s saying ‘hello’
loudly just is a variation in the time or manner of the event of John’s saying ‘hello.’ is
variation might be a variation which makes it the case that John’s saying ‘hello’ loudly
doesn’t occur, while his saying ‘hello’ still does occur, but that doesn’t matter, on the
2000 account. So long as alterations in John’s being drunk counterfactually pattern
with alterations of John’s saying ‘hello’, it doesn’t matter whether those alterations are
ones in which the saying ‘hello’ occurs in a different manner, or at a different time, or
whether they are ones in which it doesn’t occur at all.
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For similar reasons, if not-too-distant alterations of the low-level realizer of the
moon’s waning counterfactually pattern with alterations of the low-level realizer of
the window’s shattering, then not-too-distant alterations of the moon’s waning will
counterfactually pattern with alterations of the window’s shattering. at’s because
not-too-distant alterations of the low-level realizer of the moon’s waning just are not-
too-distant alterations of the moon’s waning; and alterations of the low-level realizer
of the window’s shattering just are alterations of the window’s shattering. So, if a low-
level event c inìuences another low-level event e, then the high-level event C which
c realizes must inìuence the high-level event E which e realizes—for any high-level
events C and E which c and e realize. So, if c inìuences e, then C inìuences E.24

is is just a claim about inìuence. Causation, however, is the ancestral of in-
ìuence. If c causes e by inìuencing it directly, then, since—as we just saw—if c in-
ìuences e, then C inìuences E, we can conclude that C inìuences E, and therefore,
that C causes E. If, on the other hand, c causes e by being connected to it by a chain
of inìuence c → d1 → d2 → ... → dN → e, then we know that not-too-distant
alterations of c counterfactually pattern with alterations of d1. But not-too-distant
alterations of c just are not-too-distant alterations of C, so not-too-distant alterations
of C must also counterfactually pattern with alterations of d1. And, since dN inìu-
ences e, not-too-distant alterations of dN counterfactually pattern with alterations of
e. But alterations of e just are alterations of E, so not-too-distant alterations of dN

must also counterfactually pattern with alterations of E. So there is a chain of causal
inìuence running from C to E via d1, d2, ..., dN . Since causation is the ancestral of
causal inìuence, C caused E. So, whether c caused e by inìuencing it directly or by
being linked to e by a chain of inìuence, if c caused e, then C caused E. So the 2000
24 We might worry about the requirement that the range of alterations of C be substantial. It could

be that what counts as a substantial range of alterations for c does not count as a substantial range of
alterations for C. Perhaps. But even so, the range of alterations of c which counterfactually pattern with
alterations of e will be at least a subset of a substantial range of alterations of C; and if a set of alterations
counterfactually pattern with a range of alterations of e, then any superset will also counterfactually
pattern with a range of alterations of e, since L allows arbitrarily many of the alterations of e to
be identical, so long as some of them differ. Gordon Belot (p.c.) has pointed out that this renders the
requirement that the range of alterations of c be substantial an empty one; whenever two alterations of
c counterfactually pattern with e, a proper superset of these alterations will as well. I’m more inclined
to see this as an objection to L’s formulation of his deënition of inìuence than as an objection
to my interpretation of L, especially given that L in several places (e.g., p. 188) cites two
alterations of an event which counterfactually pattern with two distinct alterations of another event,
and straightaway concludes that the ërst event inìuences the second.
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account entails causal reductionism.25

Before moving on, let me stress again that causal emergentism, unlike nomic emer-
gentism, does not entail that there are irreducible higher-level laws or even that high-
level causal relations are irreducible. Causal emergentists can, like L (1973), take
high-level causal relations to be entirely reducible to fundamental physical facts with-
out taking them to be entirely reducible to low-level causal facts. So when K writes
that

macro-causality...must be viewed not as something basic and fundamen-
tal but as something that is reducible to, and explainable in terms of,
more fundamental causal processes26

he poses a false dichotomy. We need not choose between claiming that high-level
causal relations are basic and fundamental and claiming that they are reducible to
low-level causal relations. We can insist that the high-level causal relations are entirely
reducible to low-level facts without claiming that they are entirely reducible to low-
level causal facts.

2.2.4 A T

In summary, we can categorize these three positions according to whether they
agree with the following claims.

High-Level Causation: ere are high-level causal relations.

High-Level Events: ere are high-level events.

Causal Reductionism: Of nomic necessity, where C reduces to c and E reduces to
e, if c caused e, then C caused E.27

25 Brian Weatherson (p.c.) worries that L (2000) might not count as a causal reductionist, since
he might not accept that all high-level events that are causally related reduce to low-level events. e
implication relation gives us some relation between the high-level and the low-level events; however, it
may be that, on L’s view, some high-level events that enter into causal relations—like, e.g., absences
(though these are not events in L’s terminology, they are events in mine)—are not implied by, or
otherwise appropriately related to, any low-level event. is is an interesting exegetical question, but
one that I’ll set aside for now. Even if L (2000) is not technically a causal reductionist, he is still
much more reductionist than he was in 1973; and more reductionist than the arguments in §2.3 will
allow.
26 K (1984b, p. 51).
27 We should understand this thesis in such a way that it is false if there is no appropriate reduction

relation between high- and low-level events.
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If you reject High-Level Causation, then you are a causal eliminativist. If you addi-
tionally reject High-Level Events, then you are a strong causal eliminativist. If you
additionally accept High-Level Events, then you are a weak causal eliminativist. If you
accept High-Level Causation and accept Causal Reductionism, then you are a causal
reductionist. If you accept High-Level Causation but deny Causal Reductionism, then
you are a causal emergentist.

High-Level Causation?

×

High-Level Events?

×

Strong Causal Eliminativism

✓

Weak Causal Eliminativism

✓

Causal Reductionism?

×

Causal Emergentism

✓

Causal Reductionism

2.3 A D  C E

In this section, I’m going to argue that both causal reductionism and causal elim-
inativism are untenable. In brief, the problem I will pose for the causal reductionist is
that high-level causal relations appear to be relatively sparse, whereas low-level causal
relations appear to be relatively abundant. ese two claims are in tension with the
thesis that high-level events are causally related if the low-level events which realize
them are causally related. e same objection applies, mutatis mutandis, to the strong
causal eliminativist. e tension between the apparent abundance of low-level causa-
tion and the apparent sparsity of high-level causation has been noted before,28 but it
has been thought that the tension can be massaged and mitigated in various ways. In
this section, I’m going to try to make trouble for those mitigating strategies. In the
course of stirring up that trouble, I’ll provide an independent argument against what
I earlier called the D-S thesis—that causal claims are (or implicate)
causal explanatory claims. Since weak causal eliminativism is only as plausible as the

28 See R (1912), F (2003), and P & C (2007).
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D-S thesis—without this thesis, the weak eliminativist is forced to
say that sentences like ‘carbon emissions caused climate change’ are unassertable—an
argument against the D-S thesis is an argument against weak causal
eliminativism as well. I will therefore counsel a rejection of causal reductionism and
causal eliminativism, and an acceptance of causal emergentism.

More carefully, the problem for causal reductionism and strong causal elimina-
tivism is this: the following three claims form an inconsistent set.

10. A coarsely-individuated event C caused another coarsely-individuated event E
if C’s low-level realizer caused E’s low-level realizer.

11. e orbit of Gliese 163c did not cause stagìation.

12. e low-level realizer of the orbit of Gliese 163c did cause the low-level realizer
of stagìation.

(Gliese 163c is a potentially habitable planet, approximately 49 light years from Earth,
ërst discovered in 2012. roughout, let’s take the phrase ‘the orbit of Gliese 163c’
to refer to Gliese 163c’s taking a single trip around its star, beginning at the start of
Earth year 1900.) In 10, I’m going to understand the phrase ‘low-level realizer’ in
such a way that, if C is low-level, then C’s low-level realizer is itself. en, the strong
causal eliminativists thinks that 10 says that if C caused E, then C caused E. Since
this is a truth of logic, the strong causal eliminativist is committed to 10. e causal
reductionist takes 10 to just be a statement of their view, so they are committed to it
as well. I will contend that both 11 and 12 are true. Since 11 and 12 are true, 10 is
false. From the falsehood of 10, it follows that both causal reductionism and strong
causal eliminativism are false.
11 really should not need defense. It is a Moorean fact if any is. Perhaps there are

possible worlds in which the orbit of Gliese 163c led to a decrease in the growth rate
of production, an increase in the growth rate of prices, and above average unemploy-
ment in the United States during the 1970’s. But ours is not a world like that. Imagine
seriously suggesting the negation of 11 to an economist. We can put in all the qualië-
cations we like: ‘I don’t mean to suggest that Gliese 163c’s orbit was an interesting or
salient cause of stagìation. But it was, nevertheless, one of the causal factors leading
to stagìation.’ Even with these qualiëcations, we should be embarrassed to say such
a thing. e precise duration and severity of stagìation in the U.S. is entirely deter-
mined by three factors: the number of goods produced and consumed in the U.S.,
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the price of each of those goods, and the percentage of the workforce employed. And
not a single job in the U.S. economy would have been saved, not a single ërm’s pro-
duction, nor any consumer’s consumption, would have been any higher, nor a single
price any lower, had the orbit of Gliese 163c occurred differently or not at all. And
that’s not because this is a recherché case of preemption, where something else would
have done the work of Gliese 163c’s orbit had Gliese 163c not orbited. e right thing
to say about Gliese 163c’s orbit is that it simply wasn’t a causal factor for stagìation,
however slight, however uninteresting, however negligible. (But I will have more to
say about this below.)

In support of 12: every major theory of causation in good standing gets the re-
sult that the low-level realizer of Gliese 163c’s orbit caused the low-level realizer of
stagìation. Start with the counterfactual account. As we saw above with respect to
the moon’s waning and the window’s shattering, the low-level realizer of an event like
stagìation or the orbit of Gliese 163c consists in certain fundamental physical parti-
cles having certain masses and charges and taking certain precise trajectories over a
certain period of time. ese events are incredibly fragile—if the masses, charges, or
trajectories of those fundamental particles were to differ in the slightest, those low-
level events would fail to occur. Apply the counterfactual test for causation: were
the microphysical realizer of Gliese 163c’s orbit to fail to occur, at least one of the
particles which realize Gliese 163c’s orbit would have differed, however slightly, in its
mass, charge, or trajectory; it would therefore have exerted a slightly different grav-
itational or electromagnetic force upon all of the particles which realize stagìation.
Since the trajectories of those particles are completely determined by the resultant of
the forces acting upon them, the trajectories of those particles would have differed,
however slightly. So the low-level realizer of stagìation would have failed to occur.
So the low-level realizer of stagìation counterfactually depends upon the low-level
realizer of Gliese 163c’s orbit. No philosopher in the counterfactual tradition claims
that non-backtracking counterfactual dependence between distinct events like this is
necessary for causation. But almost all accept that non-backtracking counterfactual
dependence between distinct events is a sufficient condition for causation.29 And that
29 Besides the non-backtracking and distinct event qualiëcations, we should also add that the coun-

terfactuals relate intrinsic properties of the events in question. If we’re allowed to appeal to mere
Cambridge properties, then the counterfactual test would imply that a distant supernova could cause
me to become such that a supernova has recently occurred. However, many ënd this result unpalatable.
(Not the least because it seems to involve action-at-a-distance.) See M (2011).
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is all we need here in order to conclude that the low-level realizer of Gliese 163c’s orbit
caused the low-level realizer of stagìation.

Consider instead a regularity account of causation. On M (1965)’s account,
for instance, c is a cause of e iff c is a part of a minimally sufficient condition for e
which actually obtains. And the low-level realizer of Gliese 163c’s orbit, together with
the simultaneous state of the rest of the universe, is a minimally sufficient condition
for the low-level realizer of stagìation. Given determinism, the entire state of the
universe at a time, together with the laws of nature, is both necessary and sufficient
for the state of universe at every other moment—and, in particular, for the part of the
universe which realizes stagìation.30

Or consider a probabilistic account of causation. According to the most plausible
versions of those accounts, c caused e just in case c changes the probability of e in
a causally homogenous background context. A causally homogenous background
context is given by all of the causes of e, except c and events caused by c (if c is
indeed a cause of e). So, given the universality of the fundamental forces, the entire
state of the rest of the universe at a time, other than the realizer of the orbit of Gliese
163c, constitutes a causally homogenous background context for the microphysical
realizer of stagìation—call that background context ‘K’. K does not entail that the
microphysical realizer of stagìation occurs, so, given some plausible assumptions, the
probability of the microphysical realizer of stagìation, given K, should be less than
1. However, assuming determinism, the probability of the microphysical realizer of
stagìation, given K and the realizer of the orbit of Gliese 163c, will be 1. So, on
the probabilistic account, the realizer of the orbit of Gliese 163c caused the realizer of
stagìation.

Or consider a process theory of causality, like that of D (2000) or S
(1994). On D’s account, a low-level event c caused another low-level event e
if, roughly, c and e are connected by a series of causal processes whose intersections
constitute causal interactions. A causal process is just the world line of an object which
possesses a conserved quantity, and a causal interaction is an intersection of world lines
that involves the exchange of a conserved quantity. Photons collide with the particles
30 On certain interpretations of Quantum Mechanics, the entire state of the universe at one time

only determines a probability distribution over the state of the universe at future times. In that case,
the entire state of the universe at one time, together with facts about the outcome of tychistic chancy
processes—the collapse of the wavefunction—will constitute a minimally sufficient condition for the
state of the universe at future times.
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which make up the realizer of Gliese 163c’s orbit. ese collisions constitute causal
interactions; in the collisions, there is an exchange of momentum between the particles
and the photons. Some of these photons make their way to Earth; some of those
collide with some of the particles which make up the low-level realizer of stagìation.
ese collisions also count as causal interactions; momentum is exchanged between
the photons and the particles. So there is a causal process leading from the low-level
realizer of Gliese 163c’s orbit to the low-level realizer of stagìation. So, on D’s
process theory, the low-level realizer of Gliese 163c’s orbit caused the low-level realizer
of stagìation. (Similar remarks apply to S’s process theory.)

And since an in-principle intervention upon the state of the low-level realizer of
Gliese 163c’s orbit would bring about a change in the state of the low-level realizer of
stagìation (for the very reason that the counterfactual ‘had the low-level realizer of
Gliese 163c’s orbit not occurred, the low-level realizer of stagìation would not have
occurred’ comes out true) the manipulationist account of W (2003) will
rule the realizer of Gliese 163c’s orbit a cause of the realizer of stagìation.

Every major philosophical theory of causality in good standing implies that the
low-level realizer of Gliese 163c’s orbit and the low-level realizer of stagìation are
causally related. I conclude that they are causally related. So 12 is true. Since 11
is also true, causal reductionism and strong causal eliminativism are both false.

Some respond to these kinds of considerations by rejecting 11. ey accept 12,
and this, together with their reductionism or strong eliminativism, entails that the
orbit of Gliese 163c caused stagìation. So they countenance the counterintuitive
causal relationship, but insist that they can explain away the intuitive appeal of 11
with various semantic or pragmatic theses about our causal talk. Here is Alyssa N
(2009) endorsing this general strategy:

Although it is true that the foundationalist picture of causation under
consideration31 has the consequence that due to the multitude of funda-
mental causal interactions, there are many, many factors of causal inìu-
ence for every event we might consider, we ordinarily want to single out
at most a few as ‘the causes’ of an event, in our ordinary causal assertions.
(N, 2009, p. 741)

31 While she doesn’t say enough for me to precisely locate her in the taxonomy of 2.2.4, the view of
causation N (2009) calls ‘foundationalist’ is at least committed to the disjunction of causal reduc-
tionism and causal eliminativism.
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For the remainder of this chapter, therefore, I will be considering the plausible se-
mantic or pragmatic theses which it has been supposed are capable of successfully
explaining away the intuitive appeal of 11, and arguing that none of them meet with
success. Of course, it is worth emphasizing that there will always be some pragmatic
story the reductionist or eliminativist can tell which will be capable of getting all the
data right. Suppose, for instance, that you have produced a emergentist theory of
causation, call it ‘Te’, which aligns perfectly with our characteristic causal judgments
in every case; it says that two events are causally related when and only when we judge
the corresponding causal claim to be true. Suppose then that a reductionist puts for-
ward a theory of causation, call it ‘Tr’, which does a much worse job aligning with our
characteristic causal judgments; it frequently asserts the existence of a causal relation-
ship when we judge there to be none. Such a reductionist could always put forward
the following semantic/pragmatic thesis: a sentence ‘c caused e’ is true/assertible iff
Te claims that there is a causal relationship between c and e. is will be capable of
capturing all of the data iff Te was capable of capturing all of the data. But, I take
it, such an account wears its implausibility on its sleeve. It’s not enough to provide
some ad hoc pragmatic theory of which causal claims are true/assertible. It must ad-
ditionally make sense, given the theory of what the causal relation is and given general
features of language, that we would talk in accord with the semantic/pragmatic the-
ory. e two theses I will consider below—viz., that we choose to ignore the causes
which have negligible inìuence, and that we choose to ignore the causes which don’t
provide good explanations—both meet this minimal standard of adequacy. It is a
general feature of language that we neglect the negligible. And, given that we often
look to causal relations in order to provide explanations, it makes good sense that we
would only focus on those that succeed in providing such explanations.

Turning now to those strategies: in the ërst place, a causal reductionist or a strong
causal eliminativist may wish to suggest that, while Gliese 163c’s orbit did cause
stagìation, the causal inìuence that Gliese 163c’s orbit had on stagìation was so
minute that, for all practical purposes, it can be ignored. For this reason, we hesi-
tate to accept 11. For instance, L recognizes that his 2000 account commits him
to saying that

...almost everything that precedes an event will be counted among its
causes. By the law of universal gravitation, a distant planet makes some
minute difference to the trajectory of Suzy’s rock, thereby making a tiny
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difference to the shattering of the bottle...we open the gate to a ìood of
spurious causes.32

His response to this worry is that we are justiëed in ignoring these so-called spurious
causes33 on the grounds that their inìuence will be negligible:

Well—these differences made by spurious causes are negligible, so surely
we are entitled to neglect them.34

Here, L diagnoses the oddity of 11 by appeal to a pragmatic thesis about which
causes are most felicitously cited in a causal claim. e thesis, which I’ll call ‘the L
thesis’, is that the causes with the most inìuence are most felicitously cited in a causal
claim. Importantly, the L thesis is a thesis about relative, not absolute, inìuence.
It doesn’t say that events with tiny inìuence will not be felicitously cited as causes; if
all of an event’s causes have tiny inìuence, then it could be that a cause with a tiny
amount of inìuence is most felicitously cited in a causal claim, so long as its inìuence
is greater than that of all of the other causes. Similarly, the L thesis doesn’t tell us
that causes with large inìuence will always be appropriately cited in a causal claim; if
there is another cause with still larger inìuence, it could be infelicitous to cite even a
very inìuential cause.

e L thesis tells us that 11 appears true because, while the orbit of Gliese 163c
did cause stagìation, in ordinary linguistic contexts, we ignore inìuences as negligible
as the orbit of Gliese 163c—just as, for instance, in ordinary linguistic contexts, the
32 L 2000, p. 188, L 2004, p. 89.
33 L calls these causes “spurious”, but he doesn’t really mean it. On his 2000 account, they

are genuine causes; they are merely appropriately treated as spurious in most contexts—but this is
a matter of the pragmatics of causal talk, and not the metaphysics of causation. ere seems to be
some confusion about this in the literature. For instance, P & H (2013) claim that L’s
2000 view is that “C inìuences E just in case E counterfactually covaries with C to a sufficient extent”
(p. 17, emphasis added). Pace P & H, the requirement that the counterfactual covariation be
sufficiently large is not a part of the metaphysical account of inìuence; it is rather a pragmatic thesis
about our causal talk. L obscures this point considerably by talking about “spurious” causes and
saying things like “Billy’s throw does not inìuence the shattering” (L 2004, p. 92), when what
he really means is ‘Billy’s throw (near enough) does not inìuence the shattering.’ (Of course, given
L’s pragmatic thesis, he is within his linguistic rights to say these things.)
34 L 2000, p. 189. Interestingly, the quoted sentence changes between the 2000 Journal of

Philosophy version and the 2004 version in Causation and Counterfactuals. While nothing else in the
surrounding text changes, this sentence, which ends with a period in the 2000 version, ends with a
question mark in the 2004 version.
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sentence ‘there’s nothing in the fridge’ is assertible, even though the sentence is false
so long as there is air and dust in the fridge.35

As I said before, I don’t think that the right thing to say about Gliese 163c’s or-
bit is that it makes a negligible difference to stagìation. Given that not a single job
would be saved, not a single ërm’s production would be higher, and not a single price
would be lower without Gliese 163c’s orbit—and given that these factors completely
determine the precise duration and severity of stagìation—the right thing to say is
that Gliese 163c’s orbit didn’t make any difference to stagìation, however negligible.
But put that point aside. ere’s a bigger worry. e worry is that, often enough,
seemingly spurious causes have quite a large inìuence on their putative effects—even
larger inìuence than the apparently genuine causes.

Suppose that Sabeen tells you truthfully that she plans to slip a fatal poison into
Stephanie’s drink. You are unable to warn Stephanie, and you don’t know how to neu-
tralize the poison, but you do have on you a powerful anesthetic which will numb and
immobilize Stephanie, making her death far less painful. You pour the anesthetic into
Stephanie’s drink. She drinks, and dies quickly and painlessly. According to L’s
2000 account, your pouring the anesthetic into Stephanie’s drink caused Stephanie’s
death—since not-too-distant alterations in your pouring of the anesthetic counter-
factually pattern with alterations in Stephanie’s death; had you not poured, the death
would have occurred in a different manner. However, the inìuence that it had on
the death is by no means negligible. Had you not given Stephanie the anesthetic, she
would have died a much more painful death. ere would have been writhing and
cursing and gnashing of teeth. Moreover, the inìuence of the fatal poison is compar-
atively small. Given the presence of the immobilizing anesthetic, alterations in the
pouring of the poison counterfactually pattern with comparatively minor alterations
of Stephanie’s breathing, heartbeat, and other metabolic functions. (In fact, we can
stipulate that, if the lethal poison had not killed Stephanie, then the anesthetic would
have eventually prevented her from breathing, causing her to die shortly thereafter.
en, not pouring the poison would only slightly delay the death.) Nevertheless, we
are loath to countenance your pouring of the anesthetic into Stephanie’s drink as a
cause of her death. We judge the sentence

13. # Your pouring the anesthetic into Stephanie’s drink caused her to die.
35 is is L’s diagnosis of sentences like ‘there’s nothing in the fridge.’ One could, of course,

think that the quantiëer in this sentence is restricted to foodstuffs, rendering the sentence just plain
old true.
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to be in some deep sense inappropriate; and we judge the sentence

14. Sabeen’s pouring the lethal poison caused Stephanie to die.

to be in some deep sense appropriate. It is my view that 13 is not only inappropriate,
but false, but everybody should be able to agree that it is infelicitous to utter 13.
e problem is that the L thesis predicts that 13 should be felicitous, or at least
as felicitous as 14 (if not more so). is prediction is not borne out; which gives
us strong reason to reject the L thesis.36 Of course, no pragmatic thesis is ever
decisively refuted; we can always wheel in other pragmatic considerations to explain
away any recalcitrant data. However, explaining the infelicity of sentences like 13 was
precisely the kind of work the L thesis was meant to accomplish. If the thesis
cannot explain the infelicity of 13, it is not doing its work well.

In the foregoing argument, I supposed that, if minor alterations of an event c1

counterfactually pattern with large macroscopic alterations in an event e, and minor
alterations of an event c2 counterfactually patterns with macroscopically undetectable
alterations in e, then c1 inìuences e more than c2 does. In conversation, several peo-
ple have suggested that a causal reductionist or a strong causal eliminativist should
deny this principle, and instead maintain that which inìuences are greater than oth-
ers should be a context-sensitive matter. In the case presented above, for instance,
they might suggest that, while the poison didn’t make any macroscopically detectable
difference to the event of Stephanie’s death; it still made a difference to whether it
was a death. Such a strategy would help in the present case, but it would fail in
general. So understood, the L thesis falls immediately to cases of preemption;
alterations of neither Billy’s nor Suzy’s throw counterfactually pattern with alterations
of the window’s shattering in which the window doesn’t shatter. So, on the revised
account, neither will be appropriately cited as a cause, so long as there is some other
event which does make a difference to whether the window shatters—as surely there
is: witness the window’s being fragile, the shutters being open, etc.

Perhaps the reductionist and the strong eliminativist could borrow a page from the
weak eliminativist’s playbook, and say that claims of the form ‘C caused E’ are either
causal explanatory claims in disguise, or else pragmatically implicate that C causally
explains E—what I called earlier the ‘D-S thesis.’ Unfortunately,
that thesis does not pan out. In both its semantic and pragmatic ìavors, it leads us

36 Similar points are made by S (2001) and S (2003, 2008).
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into bad predictions. Moreover, even if we accept the pragmatic ìavor of the thesis,
it does not help to explain the infelicity of 11.

In the ërst place, C’s being a part of an adequate explanation of E is not neces-
sary for the truth (or the felicity—depending upon which version of the D-
S thesis we are arguing against) of the causal claim ‘C caused E.’ Suppose
that you come to me with a bad case of insomnia and ask for something to help you
rest better. I hand you a herb and tell you to eat it. You do, and shortly thereafter
become sleepy. Suppose that it is common knowledge between us, in this context,
that the herb brought about your sleepiness. If you then ask me 15,

15. Why did I get sleepy?

most philosophers of explanation, including S, maintain that 16,

16. Because the herb has a dormitive virtue.

would be a poor answer. In this context, it is common knowledge between us that
the herb brought about your sleepiness, and all that it is to have a dormitive virtue
is to produce sleepiness. erefore, in this context, the fact that the herb has a dor-
mitive virtue provides no genuinely explanatory information about why you became
sleepy. In this context, there is no adequate explanation of your sleepiness that makes
reference to the herb’s dormitive virtue. So 17

17. Your sleepiness is explained by the herb’s having a dormitive virtue.

is false. Nevertheless, the causal claim 18

18. Your sleepiness was caused by the herb’s having a dormitive virtue.

appears to be true, or at least felicitous, in this context. Even though citing the fact that
the herb has a dormitive virtue doesn’t adequately explain your sleepiness, the herb’s
having a dormitive virtue still did cause your sleepiness. If your intuitions vacillate
here, consider 19:

19. Your sleepiness wasn’t caused by the herb’s having a dormitive virtue.

It would be perfectly appropriate, if somebody uttered 19, to correct them with an
utterance of 18. So the adequacy of an explanation whose explanandum is E and
whose explanans include C is not necessary for the truth, or the felicity, of a causal
claim ‘C caused E’.
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A causal reductionist or eliminativist might want to claim that the fact that the
herb has a dormitive virtue does provide some explanatory information in this context,
since to have a dormitive virtue, the herb must at least be such as to produce sleepiness
in situations similar to this one. However, simply because the herb produced sleepi-
ness in this case, it doesn’t follow that the herb will produce sleepiness in other similar
cases. Insofar as modal resiliency is an explanatory virtue, the fact that the herb has
a dormitive virtue would provide at least some genuinely explanatory information in
this case. In response to this objection, we may alter the case so that my response isn’t
16, but rather ‘Because the herb has a one-off dormitive virtue’, where what it is to
have a ‘one-off dormitive virtue’ is to be such as to produce sleepiness in exactly these
circumstances (then, having a dormitive virtue entails having one-off dormitive virtue,
though having a one-off dormitive virtue does not entail having a dormitive virtue).
at the herb has a one-off dormitive virtue does not tell us anything about the herb’s
ability to produce sleepiness in similar situations or nearby possibilities. en, the
herb’s having a one-off dormitive virtue does not provide any genuinely explanatory
information about why you got sleepy. Even so, it seems correct to say, in this context,
that your sleepiness was caused by the herb’s having a one-off dormitive virtue. Had
the herb not had a one-off dormitive virtue, you wouldn’t have gotten sleepy.

Moreover, note that, even if the pragmatic version of D-S thesis
were correct, it wouldn’t be sufficient to explain the intuitive truth of 11. at’s be-
cause, according to the pragmatic version of the D-S thesis, a causal
claim ‘C caused E’ implicates that C explains E. However, negating a claim which
implicates that p need not implicate that not-p. ‘Some of the boys went to the lake’
implicates that not all of the boys went to the lake. However, ‘None of the boys went
to the lake’ certainly does not implicate that all of the boys went to the lake. So, even
if ‘e orbit of Gliese 163c caused stagìation’ implicates that the orbit of Gliese 163c
is explanatorily relevant to the economy’s stagìating, this doesn’t show that ‘e orbit
of Gliese 163c didn’t cause stagìation’ implicates that the orbit of Gliese 163c isn’t ex-
planatorily relevant to the economy’s stagìating. Perhaps if it were obvious that Gliese
163c’s orbit did cause stagìation, then we could tell some story about how a claim like
11 could be used to implicate that Gliese 163c’s orbit does not explain stagìation—e.g.,
uttering 11 ìouts the maxim of quality. However, it is far from obvious that Gliese
163c’s orbit caused stagìation (in fact, I’m fairly certain that it didn’t; and I hope to
have at least cast the reader into some doubt on this question). And given this, there
is no reason to rule out that an utterance of 11 is intended to deny the existence of a

56



causal relation—and not merely an explanatory relation—between the orbit of Gliese
163c and stagìation.

To sum up: L’s strategy for denying 11—we mistakenly judge 11 to be true be-
cause we usually neglect causes whose inìuence is negligible—founders because high-
level events can have substantial and non-negligible effects upon the way in which
another high-level event occurs, without intuitively causing that high-level event (as
demonstrated by the infelicity of 13). e D-S strategy for denying
11—claims like 11 are either true in virtue of the fact that the cause does not explain
the effect, or else they are false, but mistaken for true because they implicate the true
claim that the cause does not explain the effect—founders because, ërstly, causal ex-
planatoriness is not necessary for either the apparent truth or the felicity of a causal
claim, and secondly, in its pragmatic form, the thesis fails to explain the apparent
truth of 11, since denying a claim which implicates that p need not implicate that
not-p. More generally, given that it is far from obvious that there is a causal relation
between Gliese 163c’s orbit and stagìation, there’s no reason for a listener to rule out
that an utterance of 11 is meant to deny the existence of a causal relation between these
two events.

2.4 I S

e straightforward strategies for explaining 11’s apparent truth while maintaining
its falsity all come up short. I conclude that appearances are not deceiving, and 11 ac-
tually is true. Since 12 is also true, causal reductionism and strong causal eliminativism
are false. Additionally, we saw above that weak causal eliminativism is only as plau-
sible as the D-S thesis, since it is this thesis which allows the weak
eliminativist to avoid the absurd conclusions that ‘carbon emissions caused climate
change’ is unassertible. Since the D-S thesis falters, so too does weak
causal eliminativism. is leaves causal emergentism as the last position standing.

Of course, additional epicycles are always available; additional semantic or prag-
matic theses could be introduced to pick up the slack left over by the L and
D-S theses. (As I said above, it is a criterion of bare adequacy on
such an account that it provide some explanation of why it is that we would choose
to talk in accord with such semantic or pragmatic theses.) It cannot be predicted in
advance whether counterexamples to these further theses could be discovered. More
effective than arguing against these epicycles, I think, is demonstrating that there is
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a more attractive alternative. And, as the example of L’s 1973 account demon-
strates, in order to be causal emergentists, we need not deny that high-level causal
facts reduce to, or obtain in virtue of, fundamental physical facts. We need only deny
that they obtain exclusively in virtue of low-level causal facts. Such a metaphysical
commitment is far from “extravagant”, as S claims. And theories of causa-
tion which entail causal emergentism are already well established and well regarded.
Besides the account of L (1973), by the way, causally emergentist theories of
causation include the process theory of D,37 the regularity theory of M,38

the probabilistic theory of S,39 and the interventionist theory of W.40

(Or, at least, these theories generate causal emergentism is we are allowed to feed both
high- and low-level events into their truth-conditions.) Causal emergentism allows
us to account for the apparent truth of both 11 and 12 without the contortions of
elaborate semantic or pragmatic theses. And it can do so without rustling any (mi-
crophysical) reductionist feathers. To my mind, this counts as a considerable point in
its favor.

2.4.1 L F

In the following three chapters, I will advance an emergentist theory of singular
causation. Before proceeding, I’d like to sketch, in broad outline, how this theory
will end up entailing causal emergentism. On the theory to be developed here, causal
relations presuppose the existence of what I will call structural determination relations
between variables. Variables represent properties of the world; they stand to their
values as determinables stand to determinates. For instance, color is a variable whose
values are red, blue, yellow, etc. On my view, what it is for a structural determination
37 ough I don’t have the space to go into it here, the curious reader will ënd that D more or

less explicitly embraces causal emergentism in chapter 7 of his 2000.
38 Simply because c is part of a minimally sufficient condition for e, this does not entail that C

is a part of a minimally sufficient condition for E, as the case of Gliese 163c and stagìation readily
illustrates.
39 is is because it is possible for both Pr(e | c) , Pr(e | ¬c) and Pr(E | C) = Pr(E | ¬C) to be

true, if we understand C and E to be events in the measurable space over which Pr is deëned, and c
and e to be events such that c ⊊ C and e ⊊ E.
40 Simply because there’s an in-principle intervention on the maximally-ëne-grained variable de-

scribing the fundamental physical state of Gliese 163c which brings about a change in the value of
the maximally-ëne-grained variable describing the fundamental physical state of stagìation, this does
not mean that there is an in-principle intervention on a more coarse-grained variable describing Gliese
163c’s orbit which brings about a change in the value of a coarse-grained variable describing whether
or not the U.S. economy stagìates during the 1970’s.
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relation to obtain between two variables X and Y is, roughly, for there to exist a func-
tion, ϕ, such that the fundamental laws of nature map possibilities in which X takes
on the value x to possibilities in which Y takes on the value ϕ(x), for every possible
value x of X. But then note that the existence of a mapping from the values of a ënely-
grained variable X to the values of a ënely-grained variable Y does not guarantee the
existence of a mapping from the values of a more coarsely-grained variable U to the
values of a more coarsely-grained variable V—even when the value of X entails the
value of U and the value of Y entails the value of V . (See ëgure 2.) So, even when a
variable U’s taking on the value u reduces to a variable X’s taking on the value x, and
a variable V ’s taking on the value v reduces to a variable Y ’s taking on the value y, it
doesn’t follow from the fact that X = x caused Y = y that U = u caused V = v.
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Figure 2: Just because there is a functional relationship ϕ between the ëne-grained variables
X and Y , 2(a), that does not mean that there is a functional relationship between the more
coarse-grained variables U and V , 2(b).
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CHAPTER3
A THEORY OF STRUCTURAL

DETERMINATION

3.1 I

A a rough approximation, regularity theories of causation hold that, given the cir-
cumstances, causes are nomically sufficient for their effects. As a matter of law,

if the cause is present in these circumstances, then the effect will be present too. As
a rough approximation, counterfactual theories of causation hold that, given the cir-
cumstances, causes are nomically necessary for their effects. As a matter of law, were
the cause to have been absent in these circumstances, so too would the effect have
been absent. As L (1973) notes, H appears to affirm both a regularity and
a counterfactual account, saying ërst that a cause is “an object followed by another,
and where all the objects, similar to the ërst, are followed by objects similar to the
second”, and then that a cause is an object followed by another, “where, if the ërst
object had not been, the second never had existed.”1 In this chapter and in chapter
5, I will suggest that we follow H in accepting that causes are in some good sense

1H 1975, §VII.
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both nomically sufficient and nomically necessary for their effects. On this dual the-
ory, nomic sufficiency accounts are roughly correct about what I will call structural
determination; while nomic necessity accounts are roughly correct about the relation
of singular causation.

Singular causal relations, the relations expressed by sentences of the form c’s ϕ-ing
caused e to ψ, where c’s ϕ-ing and e’s ψ-ing are particular events or facts, are famil-
iar philosophical fare. Structural determination, less so. As I will explain in further
depth below, structural determination relations link localized qualities or quantities
of different parts of the world.2 We can represent these qualities or quantities with
variable values. When we do so, structural determination relations are representable
as structural equations, which establish functional relationships between the values of
those variables.

Structural equations like these have become increasingly prevalent both in applied
work in the special sciences and in the philosophical literature on causation. Within
philosophy, these models have been used to provide novel semantics for causal coun-
terfactual conditionals,3 investigate traditional metaphysical questions about singular
causation,4 explicate the nature of causal enquiry in the special sciences,5 and under-
gird novel statistical techniques for drawing inferences about the causal structure of
the world on the basis of sample data.6 However, relatively little has been said about
how exactly to understand these structural equations models. at is, very little has
been done to get clear about what exactly someone commits themselves to when they
endorse one of these models—what exactly, that is, a structural equations model says
about the world.7 is chapter is my attempt to ameliorate that situation, to supply

2 Contrasting structural determination with singular causation invites the interpretation that struc-
tural determination relations are general, or type, relations. To be clear: relations of structural deter-
mination relate particular, or token, qualities or quantities of the world.

3 See, e.g., H (2005a), S (2011), and B (2012).
4 See, e.g., H (2001), W (2003, ch. 2), M (2004), H & P

(2001, 2005), M (2007), and W (ms)
5 See, e.g., W (1999), P (1999), W & H (2003a,b), and W-

 (2003, ch. 7)
6 See, e.g., P (2000, 2009) and S et al. (2000)
7 Some notable exceptions include H et al. (2008), B (2013), and G

(2013). W (2003) provides a non-reductive account of structural equations models in terms
of in-principle interventions, where what constitutes an intervention is cashed out in terms of structural
equations models and singular causation; and singular causation is cashed out in terms of interventions
and singular causation. While I do not think that W (2003)’s account is viciously circular,
and while it does tell us something about what somebody commits themselves to when they endorse
a structural equations model, it tells us far less than we might have hoped. I also agree with G
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an understanding of the content of structural equations models.
To the extent that it has been discussed, the consensus view appears to be that

structural equations represent patterns of causal counterfactual dependence among
variable values.8 (Not just any counterfactual is a causal counterfactual. While the
question of which counterfactuals are causal is a question to be decided by theory
rather than stipulation, at the least, causal counterfactuals must be non-backtracking,9

and they must relate distinct events.10.) In §3.3 below, I will explain why causal coun-
terfactuals are not well-suited to provide a reduction basis for structural determination
relations. My contention there will be that causal counterfactuals are not capable of
securing the independent manipulability of the structural determination relations in
a structural equations model—a property known as modularity.11 In contrast, I will
suggest that one variable is structurally determined by others just in case, within a
certain region of modal space, the values of the latter variables are sufficient for the
value of the former. Once this notion of structural determination has been speciëed,
we will ënd that we can use structural determination relations to provide a seman-
tics for causal counterfactuals. In chapter 5, I will use these causal counterfactuals to
provide an account of singular causation. e upshot of the discussion there will be
that L’s 1973 analysis of causation as the ancestral of counterfactual dependence
was in large part correct. A few extra bells and whistles are necessary; however, once
the counterfactuals have been properly grounded in the networks of structural deter-
mination codiëed in a correct structural equations model, the standard objections to
L’s original counterfactual account will dissolve.

Here’s how the rest of this chapter is going to go: In §3.2, I will introduce struc-
tural equations models. In §3.3, I will review and work to explicate the currently
mainstream understanding of structural equations models, according to which they
represent patterns of causal counterfactual dependence. In §3.3.1, I will demonstrate

(2013) that W’s reasons for forsaking a reductive account of structural equations models in
terms of causal counterfactuals are not ultimately persuasive.

8 In particular, see H (2001), H (2007), H (2007), W & H-
 (2003a), H & H (2010), as well as the summary of W & H
(2003a) provided in M (2008), which ìeshes out some of the claims of W & H-
 in interesting ways. G (2013) ably defends a reductive causal counterfactual account of
structural equations models against W (2003)’s arguments that such a reductive account is
infeasible.

9 See L (1979b)
10 See K (1973), L (1986b)
11 See H & W (1999) and W (2003).
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that this understanding of structural equations models is incapable of guaranteeing
that structural determination relations are independently manipulable—that is, that
the equations in a structural equations model are modular. is will lay the ground-
work for §3.4, in which I present my preferred way of understanding structural equa-
tions models, which I dub the ‘nomic sufficiency’ account of structural determination.
In §3.4.2, I will show how the nomic sufficiency account allows us to understand the
technical notion of an intervention and how it guarantees the independent manipula-
bility of the structural determination relations in a correct structural equations model.
In §3.4.4, I will show how the semantics for causal counterfactuals provided by the
nomic sufficiency account advances on the standard L/S semantics. In
§3.4.5, I will consider and respond to a potential problem for the nomic sufficiency
account. I’ll conclude in §3.5.

3.2 S E M

A structural equations model M is a triple < U ,V , E > of a vector of exogenous
variable U = (U1...Um), a vector of endogenous variables V = (V1...Vn) and a
vector of structural equations E = (ϕV1 ...ϕVn), one for each endogenous variable.12

Formally, a variable is a partial function from a set of possibilities (or ‘worlds’) Ω to the
real line R. What makes the function partial is just that it needn’t map each and every
possibility ω ∈ Ω to some real number. So, for instance, I might be interested in the
variable S = number appearing on the digital scale at t. is variable assigns a value, s,
to every world at which the scale displays a number at t. However, it will not assign
any value to a world at which the scale does not display a number at t, or does not
exist t. Here’s another (equivalent) way to understand a variable: it is an assignment
of values to a set of pairwise inconsistent propositions {Pi} ⊂ ℘(Ω). Which value
the variable takes on depends upon which of these propositions is true. For instance,
12 A word on notation: throughout, I’ll be using uppercase Latin letters (A, B, C, ..., Z) to represent

variables, and the corresponding lowercase letters (a, b, c, ..., z) to stand for the values of those variables.
Functions will be denoted with ϕ, with subscripts added to indicate which variable the function is
associated with. Vectors will be denoted with boldface (V, v, etc.). At times (as in the sentence to which
this note is appended) I will use the function name alone to denote the entire structural equation—for
instance, I will write ‘ϕY ’ to denote the structural equation ‘Y := ϕY(X1, ..., XN)’. Propositions will
be denoted with uppercase script letters (A , B, C , ...).

I’ll also be slightly abusing set-theoretic notation, ∈,∪,⊆,−, and so on, by applying it to vectors of
variables. So, ‘V ⊆ V∗’ says that every variable in V is also in V∗, ‘V∪V∗’ refers to a vector containing
all the variables in V as well as all those in V∗, and so on. (ere will in general be many such vectors.
It won’t matter for my purposes which is denoted by these expressions. Pick one.)
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the variable F could assign the value f to the proposition you exert a force of f Newtons
on the surface of the scale at t, for every f in some speciëed range. If you exert a force
of 5 Newtons on the surface of the scale at t, then F = 5; if you exert a force of 12
Newtons on the surface of the scale at t, then F = 12; and so on. In general, variables
stand to their values as determinables stand to their determinants; just as being red
is one way for an object to be colored, having the property represented by V = v is
one way for a part of the world to have the property represented by V . (A word on
notation: I’ll write ‘Vω = v’ to mean that the value of ω, under the function V , is v.
I will often use ‘V = v’ to denote the proposition that V takes on the value v—i.e.,
‘V = v’ denotes the set of worlds ω such that Vω = v.)

e structural equations in E establish functional relationships amongst the vari-
ables in U ∪ V . For instance, suppose that the digital scale is accurate at t, zeroed out
in the appropriate way, so that it reads ‘0’ when subjected to the earth’s gravitational
force and the ambient air pressure, and nothing else (besides you) is exerting any force
upon the surface of the scale. en, the value of S will be determined by the value of
F. If F = 712, then S = 161. If F = 657, then S = 148. In general, if F = f ,
then S = ⌈0.2248 · f ⌉.13 (An object weighing 0.2248 pounds exerts 1 Newton on
the surface of the Earth.) We can thus write down: S := ϕS (F), where

ϕS (∗) = ⌈0.2248 · ∗⌉

‘S := ϕS (F)’ is a structural equation. What makes it structural is that the equation
is asymmetric; it matters which variable is to the left of the ‘ := ’. at’s because,
in addition to claiming that the value of S is a function ϕS of the value of F, the
structural equation makes the further claim that that the value of S is determined by
the value of F in a way that the value of F isn’t determined by the value of S . Which
number is displayed on the scale at t is determined by the amount of force you exert on
the surface of the scale at t. However, the amount of force you exert on the surface of
the scale at t is not determined by which number is displayed on the scale at t. Here’s
a way of getting at this asymmetry: if there were a certain kind of intervention on the
value of F—if, for instance, you were to put one foot on the ìoor—then the value of
S would have been different—the scale would have displayed a different number. If,
however, there were an intervention on the value of S —if, for instance, the scale was
re-zeroed to read ‘0’—then the value of F would not be different—you would not
13 ‘⌈x⌉’ is the function which rounds x up to the closest integer.
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Figure 3

suddenly exert 0 Newtons on the surface of the scale. (To emphasize this asymmetry,
I use ‘ := ’ to distinguish that asymmetrical relation from the symmetrical ‘=’.)14

ese variables and this structural equation together constitute a structural equa-
tions model, or a causal model (I’ll use these terms interchangeably throughout). A
causal graph provides a particularly intuitive and succinct way of representing much
of the information contained in a causal model. A causal graph displays all of the
determination relationships between the variables in U ∪ V ; if the value of a variable
U determines the value of another variable V , then there will be an arrow with its
tail at U and its head at V in the causal graph. For instance, the model of the scale’s
display and the force you exert on the scale’s surface generates the causal graph shown
in ëgure 3. is causal graph tells us that the value of F determines the value of S ,
without telling us exactly how. It tells us that the numbers on the scale’s display are
determined by the force you exert upon it, but it doesn’t tell us what number will
be displayed if you exert 500 Newtons on the scale; it doesn’t, for instance, tell us
what units the scale’s display is set to. For that information, we’ll have to look to S ’s
structural equation in E .

A causal model can involve many more variables and structural equations than
this. Also, a single structural equation can relate more than two variables. Adapting an
example from P (2000, ch. 7), suppose that there are two riìemen, one standing
on the left, the other standing on the right, who have their riìes aimed at a deserter. If
the captain gives the order, then both riìemen will ëre, and the deserter will die. We
can model the causal structure of this case with M4 =< (C), (L, R, D), E4 >, where
C is a binary variable which takes the value 1 if the captain gives the order to ëre and
takes the value 0 otherwise, L is a binary variable which takes the value 1 iff the left
riìeman ëres, R is a binary variable which takes the value 1 iff the right riìeman ëres,
and D is a binary variable which takes the value 1 iff the deserter dies. e structural
14 It’s worth noting that the functions ϕV must be non-constant. A constant function from one

variable to another does not represent any kind of determination of of the latter variable by the former.
(is restriction is important; leaving it out could make a difference to an account of singular causa-
tion; for instance, VW (2009) presents a counterexample to the H & P (2005)
account of singular causation which turns on the fact that he models the system with constant func-
tions.) We should also require that the domain of each structural equation include the entire image of
their parent variables’ structural equations, and only that image.
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E4 =

 L := C
R := C
D := L ∨ R


Figure 4

equations in E4 are shown in ëgure 4. (ere, ◦ ∨ ∗ is the truth function max{◦, ∗}.)
ese equations tell us that the left riìeman will ëre iff the captain gives the order,
and likewise for the right riìeman. And the deserter will die iff at least one of the
riìemen ëre. M4 tells us that the value of C determines the values of L and R and
that the values of L and R jointly determine the value of D .

When discussing a single structural equation Y := ϕY(X1, X2, ..., Xn), it is com-
mon to refer to the left-hand-side variable Y as the dependent variable, and it is com-
mon to refer to the right-hand-side variables X1, X2, ..., Xn as the independent vari-
ables. In the context of a structural equations model, however, X1, X2, ..., Xn may
each appear on the left-hand-side of their own structural equations. One structural
equation’s dependent variable may be another’s independent variable. When we are
talking about systems of structural equations, it is common to use the metaphor of
genealogy to talk about the structural relationships between variables. us, all of
the variables which directly determine the value of a given variable, V , (those which
appear on the right-hand-side of V ’s structural equation, ϕV ) are called V ’s structural
parents. I’ll use ‘PA(V)’ to refer to a vector of V ’s structural parents.15 (If U is ex-
ogenous, then PA(U) is the empty vector.) In the model shown in ëgure 4, e.g.,
PA(D) = (L, R). In a similar fashion, we can deëne V ’s structural descendants—with
the slight wrinkle that we stipulate that every variable V is one of its own descendants.
I’ll use ‘DE(V)’ to refer to a vector of V ’s causal descendants. In the model shown in
ëgure 4, DE(L) = (L, D).

A few paragraphs back, I invoked the notion of an intervention. Formally, an
intervention is a way of setting the values of some of the variables in U ∪ V without
directly affecting any of the other variables in U ∪V , or their determination structure.
To illustrate, suppose that in the model shown in ëgure 4, the value of L is set to 1
via an intervention. Suppose, that is, that we perform an intervention to make the
left riìeman ëre—perhaps we bribe him. e way this is modeled is by replacing
15 In general, for a variable V , there will be many vectors of V ’s structural parents, but it won’t matter

which one ‘PA(V)’ refers to. Pick one.
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E4, L=1 =

 L = 1
R := C
D := L ∨ R


Figure 5

L’s structural equation, L := C, with L = 1 (indicating that L has been set to 1
via an intervention) and leaving all other structural equations unchanged. We thus
get the mutilated model16 M4, L=1 =< (C), (L, R, D), E4, L=1 >, shown in ëgure
5. In M4, L=1, the value of L is no longer determined by the value of C. Whether
the left riìeman ëres is no longer determined by whether the captain gives the order.
However, the value of D is still determined by the value of L. Whether the deserter
dies is still determined by whether the left riìeman ëres. In general, the graphical
result of an intervention on a variable V is to remove all of the arrows leading into V
(if such there be), to destroy all of the structural determination relations between V
and PA(V), while leaving all other structural determination relations intact.

is property of a structural equations model—that there are in-principle hypo-
thetical interventions upon the variables which leave all the other structural deter-
mination relations intact—is known as modularity.17 Without modularity, structural
equations models do not tell us anything about the results of hypothetical interven-
tions, since without the assumption that the structural equations other than ϕV remain
in place post-intervention, we cannot calculate the down-stream effects of setting the
value of V .

Notice that not every way of setting the value of V will have this result. Some ways
of setting the value of V will affect other variables in the graph as well. For instance,
one way of setting S to 0, one way of making the scale read ‘0’, is to simply lift you
off of the scale. But this wouldn’t count as an intervention on the value of S , since
it wouldn’t alter the manner in which the value of F determines the value of S . It
wouldn’t be correct to model this way of setting S to 0 by replacing S := ϕS (F) with
S = 0, since the determination relation represented by S := ϕS (F) would still be
in force. It would be this very determination relation that we would exploit in order
to affect the value of S . Additionally, we could set the value of F in such a way that
we affect the manner in which the value of F determines the value of S —i.e., our
16 e outstanding phrase ‘mutilated model’ comes from P (2009).
17 See H & W (1999) and W (2003).
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meddling could have the result of changing the structural equation ϕS . For instance,
we might decide to keep you from stepping onto the scale by placing a dead ëve-
pound rat on the scale. In that case, our method for setting the value of F would alter
the structural equation ϕS , replacing it with S := ϕ′S (F), where

ϕ′S (∗) = ⌈0.2248 · ∗+ 5⌉

So only certain methods of setting the value of a variable in a causal model will count
as interventions on the value of that variable, in our technical sense.18

Once we have this method for modeling interventions, a method for evaluating
causal counterfactual conditionals comes along for free. On this account, the coun-
terfactual A � C is true at a world ω according to the model M just in case
MA ,Uω |= C . at is: the counterfactual A � C is true at a world ω, according
to the model M, given the variable assignment U = Uω, iff C is true in the model
that we get by mutilating M, with the variable assignment U = Uω, so as to make
A true. To illustrate: suppose that, in the causal model shown in ëgure 4, the actual
value of C is 0. Suppose, that is, the the captain doesn’t actually give the order to ëre.
en, neither the left nor the right riìeman ëres, and the deserter does not die. And
suppose that we want to evaluate the causal counterfactual ‘If the left riìeman were to
have ëred, then the deserter would have died’—or ‘L = 1 � D = 1’. To evaluate
this causal counterfactual, we simply perform an intervention on the value of L so
as to make the antecedent true; we mutilate the model, so that the value of L is no
longer determined by the value of C, we set L to 1, and then we calculate the values of
R and D in the mutilated model in accordance with their structural equations. If the
consequent comes out true in the mutilated model M4, L=1, then the counterfactual
was true in the original model M4. According to M4, then, ‘L = 1 � D = 1’ is
true. If the left riìeman were to ëre, then the deserter would have died. Note that,
without modularity, we would not be able to evaluate these counterfactual condition-
als, since, without modularity, there is no guarantee that the downstream structural
determination relations would remain intact post-intervention.

18 at the structural equations need not be invariant under all methods of setting the values of
the variables of interest is, in my opinion, one of the central lessons of the so-called Lucas Critique of
macroeconometric policy evaluation—see L (1976). For an excellent essay on the topic of how
certain manipulations can change the underlying structural determination relations, and why such
manipulations can nevertheless constitute effective strategies for achieving our ends, see C
(2009).
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As an aside: this framework additionally allows us to distinguish these causal coun-
terfactuals from backtracking causal counterfactuals like ‘if the left riìeman were to
have ëred, then the captain would have to have given the order to ëre’, and ‘if the left
riìeman were to have ëred, then the right riìeman would have to have ëred as well
(since, after all, had the left riìeman ëred, the captain would have to have given the
order)’. While these counterfactuals have a true reading, they should also be distin-
guished from the causal counterfactuals above. In the framework of causal models, we
can mark the distinction between these two kinds of counterfactuals as follows: while
a causal counterfactual is evaluated by performing an intervention on the model so as
to make the antecedent true and then solving for the other variables in the model, a
backtracking causal counterfactual is evaluated by keeping the original model intact,
making the antecedent true, and solving for the other variables in the model (if there
is such a solution).19

An account of structural determination must explain why structural equations
models have the properties they do. In particular, it must explain why they allow us
to correctly evaluate causal counterfactual conditionals in this way, and it must explain
why a correct system of structural equations is modular. It would be a beneët of an
account if it could explain why only certain ways of setting the values of variables leave
the downstream structural determination relations unaffected, as well as providing
a principled way of distinguishing the ways of setting the values of variables which
do from those which do not constitute interventions, in our technical sense. I will
attempt to provide an account which is capable of meeting each of these explanatory
demands. I will not attempt to account for probabilistic structural determination
relations (of the sort that I believe are implicated in probabilistic causation). Nor will I
be concerning myself with backwards structural determination relations, in which the
future state of the world structurally determines the past state of the world. at’s not
because I think that there aren’t, or couldn’t be, probabilistic or backwards structural
determination relations. Considering these issues here would simply muddy already
murky waters. Another task for another day.
19 In the event that there is no solution consistent with the truth of the antecedent, we could choose

to say that the backtracking counterfactual is either false, truth-valueless, or trivially true. For instance,
in model M4, there is no solution to the system of equations E4 within which L = 1 and R = 0.
So there would be something defective about the backtracking counterfactual ‘had the left riìeman
ëred and the right riìeman not ëred, then the captain would have both given and not given the order
to ëre.’ Perhaps considerations of theoretical economy would lead us to count it as trivially true, but
there would be something defective about it all the same.
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3.3 T C C U

Let’s say that a structural equation V := ϕV(PA(V)) is descriptively adequate at
world ω just in case Vω = ϕV(PA(V)ω). Just as mere descriptive adequacy is not
sufficient for a universal generalization to be a law of nature, mere descriptive adequacy
is not enough for a structural equation to be correct. ere must additionally be some
kind of genuine determination of V by PA(V). So an account of structural equations
models must say something about what it takes, beyond mere descriptive adequacy,
for a structural equation to be correct.

One of the more popular ways of understanding structural equations models ap-
peals to causal counterfactual conditionals.20 H articulates this view in his
2001:

A system of structural equations is an elegant means for representing a
whole family of counterfactuals...e correctness of a set of structural
equations, and of the corresponding graph, depends upon the truth of
these counterfactuals. (H, 2001, p. 283–84).

On this account, what it is for an isolated structural equation V := ϕV(PA(V)) to
be correct is just for it to be the case that, for any subvector PA∗ ⊆ PA(V), were PA∗

to take on the values pa∗, V would take on the value ϕV(pa∗(V)),

(V1) ∀PA∗ ⊆ PA(V) ∀pa∗ (PA∗ = pa∗ � V = ϕV(pa∗(V)))

where pa∗(V) is the assignment given to V ’s causal parents by pa∗ (if pa∗ doesn’t
assign any value to one of V ’s causal parents, then pa∗(V) gives that parent its actual
value).

More generally, we can say that what it is for a structural equation ϕV , in the
context of a causal model M =< U ,V , E >, to be correct at a world ω, is just
for it to be the case that, for every subvector V

∗ ⊆ V def
= U ∪ (V − V), and any

assignment of values v∗ to V
∗
, were V

∗
to take on those values, V would take on the

value ϕV(pav∗(V))

(V1) ∀V ∈ V ∀V
∗ ⊆ V ∀v∗ (V

∗
= v∗ � V = ϕV(pav∗(V)))

where pav∗(V) assigns V ’s parents the values determined by (U −V
∗
)ω, v∗, and E −∪

i{ϕUi}, for each endogenous Ui ∈ V
∗
. at is, pav∗(V) assigns PA(V) the values

20 In addition to H (2001), see H (2007), H (2007), W & H-
 (2003a), M (2004, 2008), H & H (2010), and G (2013).
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determined by the mutilated model MV∗=v∗ , with the actual assignment of values to
the exogenous variables.21

e causal counterfactuals in (V1) and (V1) are to be evaluated in the standard
way (see S 1968, L 1973b). To evaluate a counterfactual A � C ,
we consider some privileged set of possibilities determined by A and the world of
evaluation ω, and check to see whether C is true in those possibilities. Exactly which
possibilities we ought to check is a complicated and controversial matter. However,
for the most part, we can sidestep these issues here. We need only endorse the fol-
lowing general framework: there is a selection function, f , which is a function from
pairs of propositions, A , and worlds, ω, to sets of worlds, f (A ,ω). Whenever a
counterfactual conditional A � C is true at a world ω, what makes it the case that
A � C is true is that f (A ,ω) |= C .22 Different accounts of the selection func-
tion will yield different truth conditions for counterfactual conditionals. S
interprets f (A ,ω) as the singleton containing the A world which is most similar
to ω, on some suitable similarity metric. I personally favor the account of counter-
factuals given by M (2007), according to which f (A ,ω) is the set of worlds
generated by performing localized, surgical alterations to the state of ω so as to make
A true at the appropriate time, and then time-evolving the state of those worlds into
the future according to the fundamental laws of nature.23 However, for my purposes,
it won’t matter what we say about f , so long as we agree that it satisëes the following
21 Here and throughout, I’m using ‘actual’ as an indexical like ‘here’, and not as a rigid designator

for the actual world.
22 From the standpoint of L (1973b)’s account of counterfactuals, it will appear that, by adopting

this general framework, I am tolerating the so-called limit assumption—the assumption that, for any
arbitrary antecedent A and world ω, there is a set of most similar A -worlds from ω, that there is not
an inënite sequence of ever-more-similar worlds (see L 1973b, S 1980). Appearances are
deceiving. e limit assumption is not needed for any of my arguments here. In L’s framework,
for any case in which the limit assumption fails and A � C is true, we can just deëne f (A ,ω) to be
the largest sphere centered on ω containing at least one A world and throughout which the matieral
conditional A ⊃ C is true. So long as A � C is true, there will be some such sphere. If it is false,
of course, there won’t be such a sphere, so this won’t do as an account of the truth conditions of these
counterfactuals. However, I am not interested in providing truth conditions for these counterfactuals.
Rather, I am interested in the question of whether the truth of a set of counterfactuals is sufficient to
guarantee the correctness of a structural equations model. And this trick will tell us what we can infer
from the truth of A � C at a world ω, on L’s account. From the truth of A � C at ω,
we can infer that there is a sphere centered on ω containing an A world, and throughout which the
material conditional A ⊃ C is true.
23 See H (2007) and P & H (2013) for a discussion of how M’s semantics for

counterfactuals can be used to provide truth conditions for structural equations models.
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three properties.24

f (A ,ω) |= A( f 1)

if A |= B then f (B,ω) ∩A ⊆ f (A ,ω)( f 2)

at ω, there is a hypothetical intervention to set any V ⊆ U ∪ V to v which( f 3)

yields a world ωV=v ∈ f (V = v,ω)

( f 1) guarantees that the set of worlds at which we check to see what follows from the
counterfactual supposition that A are all worlds at which this counterfactual suppo-
sition obtains. In terms of similarity, it guarantees that the most similar A worlds are
all worlds at which A is true. And ( f 2) tells us that, if all A worlds are B worlds,
then, if there are any A worlds among those that we consider when entertaining the
counterfactual supposition that B, then those worlds must also be considered when
we entertain the counterfactual supposition that A . In terms of similarity: if all A

worlds are B worlds, then, if the most similar B worlds contain some A worlds,
then those A worlds must be amongst the most similar A worlds.25 ( f 3) connects
the logic of counterfactuals to the notion of an intervention. It says that there is a hy-
pothetical intervention to set some vector of variables V to the values v which yields
one of the V = v worlds we consider when entertaining the counterfactual suppo-
sition that V = v. ( f 3) may seem a bit odd if we think about f (A ,ω) as the set
of A worlds most similar to ω. Going back to the causal model shown in ëgure 4,
suppose, for the sake of illustration, that there are only two ways of setting the value
of L to 1. We could either bribe the left riìeman to ëre or we could bribe the captain
to give the order. Only the former counts as an intervention setting the value of L
to 1. But why shouldn’t we think that the worlds where we bribe the left riìeman
are less similar than the worlds where we bribe the captain? Perhaps the left riìeman
would take a greater risk by ëring, and would therefore require a higher bribe than
the captain. In that case, it appears as though the worlds in which we bribe the left
riìeman are less similar than the worlds in which we bribe the captain.26 In any event,
24 A dialectical note: in evaluating the causal counterfactual understanding of structural determi-

nation, I will be happy to grant the causal counterfactual theorist more than ( f 1)–( f 3). In laying
down these conditions, I am not, therefore, tying the counterfactual theorist’s hands behind their back
before the ëght. However, when I appropriate the counterfactual theorist’s selection function for my
own ends in §3.4, I will only require ( f 1)–( f 3).
25 ( f 1) corresponds to L’s 2nd condition on the selection function; and ( f 2) is a weakening of

L’s 4th condition. See L 1973b, p. 58.
26 To re-frame the objection in terms of L (1979b)’s semantics: perhaps the miracles required
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E6 =

(
L := C
D := L

)
Figure 6

the causal counterfactual account needs ( f 3) to be true. Without ( f 3), that account
would not be able to use the correctness of a system of structural equations to infer
anything about the results of hypothetical interventions.

Returning to (V1): that condition imposes two constraints on a structural equa-
tion, ϕV , in the context of a causal model M. In the ërst place, it says that the value
of ϕV ’s left-hand-side variable, V , is sensitive to the values of ϕV ’s right-hand-side vari-
ables, PA(V), and they are sensitive in precisely the way speciëed by ϕV . Changes in
the values of those variables would lead to changes in the value of V , and they would
lead to precisely the changes speciëed by ϕV . Additionally, it says that the value of V
is only directly sensitive to the values of PA(V). Holding ëxed those values, changes
in the values of the other variables in the model would not lead to changes in the value
of V .

Note that (V1) is stronger than the conjunction of each of the quantiëed counter-
factuals (V1), for each endogenous variable V ∈ V . (V1) guarantees that hypothetical
interventions on the value of a variable, X, in a causal model would determine the
values of DE(X) in accordance with the equations in E − {ϕX}. In contrast, the con-
junction of each of the quantiëed counterfactuals (V1) associated with each V ∈ V
does not guarantee that hypothetical interventions on the value of X will determine
the values of DE(X) in accordance with the equations in E − {ϕX}. To illustrate: sup-
pose that the right riìeman takes the day off, so that the causal model shown in ëgure
6 correctly describes the structural determination relations between the captain’s giv-
ing the order (C), the left riìeman’s ëring (L), and the deserter’s dying (D). Suppose
that, at the actual world, the captain doesn’t give the order. Given the method for
evaluating causal counterfactuals introduced in the previous section, this model en-
tails that

(3.1) C = 1 � D = 1

If the captain had given the order, then the deserter would have died.
However, (3.1) does not follow from the truth of (V1), for each of the isolated

to get the captain to give the order are much smaller and more localized than the miracles required to
get the left riìeman to give the order.
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structural equations in E6,
C = 0� L = 0

C = 1� L = 1

L = 0� D = 0

L = 1� D = 1

since the counterfactual conditional is not transitive. Simply because, had the captain
given the order, the left riìeman would have ëred, and, had the left riìeman ëred, the
deserter would have died, this does not guarantee that, had the captain given the order,
the deserter would have died. Perhaps the captain has a loud voice which distracts the
riìeman and makes him miss his target. And perhaps the deserter is a good friend of
the captain, so that the world where the left riìeman is bribed to shoot is much more
similar to the actual world than the world in which the left riìeman shoots because
the captain gave the order. In that case, it could be true that, had the captain given the
order, then the left riìeman would have ëred (though he would have missed, and the
deserter would have lived). And it could also be true that, had the left riìeman shot
(because he was bribed, not because the captain gave the order), the deserter would
have died. Nevertheless, it would be false that, had the captain given the order, the
deserter would have died. Had the captain given the order, the riìeman would have
missed, and the deserter would have lived.

(V1), by contrast, will require, inter alia, that both (3.2) and (3.3) be true in order
for the structural equations model to be correct.

C = 1� L = 1(3.2)
C = 1 ∧ L = 1� D = 1(3.3)

And (3.2) and (3.3) do entail (3.1), given ( f 1) and ( f 2).27

However, the truth of (V1) is not sufficient for the correctness of a structural
equations model. Take the familiar example of Suzy and Billy throwing their rocks
at a window. Both Suzy and Billy have excellent aim, so if either of them throws
their rock, then the window will shatter; and the window is sturdy enough so that

27 Let C
def
= C = 1, L

def
= L = 1, D

def
= D = 1. en, (3.2) is C � L and (3.3) is

C ∧ L � D . ( f 1) tells us that f (C ,ω) |= C , and (3.2) tells us that f (C ,ω) |= L . us,
f (C ,ω) |= C ∧ L . us, f (C ,ω) ∩ (C ∧ L ) = f (C ,ω). And since C ∧ L |= C , ( f 2)
tells us that f (C ,ω) ∩ (C ∧ L ) ⊆ f (C ∧ L ,ω); so f (C ,ω) ⊆ f (C ∧ L ,ω). And since
f (C ∧ L ,ω) |= D (from (3.3)), f (C ,ω) |= D .
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E7 = (W := S ∨ B)

Figure 7

if neither of them throw their rock, then the window will not shatter. Suppose that
Suzy actually throws and Billy doesn’t, and that (3.4–3.11) are all true.

B = 0 ∧ S = 0 � W = 0(3.4)
B = 0 ∧ S = 1 � W = 1(3.5)
B = 1 ∧ S = 0 � W = 1(3.6)
B = 1 ∧ S = 1 � W = 1(3.7)

S = 1 � W = 1(3.8)
S = 0 � W = 0(3.9)
B = 1 � W = 1(3.10)
B = 0 � W = 1(3.11)

(where B takes the value 1 if Billy throws and 0 otherwise, S takes the value 1 if
Suzy throws and 0 otherwise, and W takes the value 1 if the window shatters and
0 otherwise). If the truth of (V1) were sufficient for the correctness of a structural
equations model, then the system of structural equations E7, shown in ëgure 7, would
have to be correct.

However, this structural equations model says more than the counterfactuals (3.4–
3.11) do. is models entails that were Billy to have thrown, Suzy (still) would have,
B = 1� S = 1. But it is consistent with the truth of (3.4–3.11) that Suzy wouldn’t
have thrown her rock if Billy had thrown his. e problem here is that, even though
the counterfactuals (3.4–3.11) are all true, there is another counterfactual that we must
consider in order to know whether Suzy would have thrown if Billy hadn’t, namely
B = 1� S = 0. If this counterfactual is true, then the value of S is determined by
the value of B. And if S is determined by B, then M7 would be incorrect in virtue
of its missing a necessary determination relation.

We can ëx this problem by requiring that each exogenous variables is counter-
factually independent of all the other variables in the model—i.e., at a world ω, for
any exogenous variable U ∈ U , and any assignment of values u∗ to any subvector
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U
∗ ⊆ U def

= (U −U) ∪ V , were U
∗
to take on those values, U would (still) take on its

actual value, Uω.

(U1) ∀U ∈ U ∀U
∗ ⊆ U ∀u∗ (U

∗
= u∗� U = Uω )

is gives us the following account of the correctness of a structural equations
model M:

(M1)
M is correct at ω iff:
1. V satisëes (V1) at ω
2. U satisëes (U1) at ω

at is: a model M =< U ,V , E > is correct iff i) the endogenous variables V ∈ V
counterfactually depend upon the variables in PA(V) in precisely the manner spec-
iëed by ϕV ∈ E , ii) holding ëxed the value of PA(V), they don’t counterfactually
depend upon the variables in (U ∪ V) − PA(V), and iii) the exogenous variables
U ∈ U are counterfactually independent of the rest of the variables in the model.

3.3.1 P  M

Problems remain. In order for a structural equations model to be correct, the
equations in E must be modular—that is, that there be in-principle interventions to
set the values of any subset of V which leaves the structural equations of the non-
intervened-upon variables intact. e problem is that modularity does not follow
from (M1) alone; nor can we formulate the requirement of modularity in terms of
any ënite number of causal counterfactual conditionals.

Distinguish two kinds of modularity: weak and strong. According to weak modu-
larity, when there is an intervention or interventions to set the values of variables, the
structural equations of the non-intervened-upon endogenous variables in the model
will still be descriptively adequate. at is, when we perform hypothetical interven-
tions on the values of the variables in U ∪V , taking us to the worldωI , then, for every
non-intervened-upon endogenous variable V ,

ωI |= V = ϕV(PA(V))

According to strong modularity, whenever there is an intervention or interventions
to set the values of variables, the structural equations of the non-intervened-upon
endogenous variables in the model will still be correct. at is, when we perform
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hypothetical interventions on the values of the variables in U ∪ V , taking us to the
world ωI , for every non-intervened-upon endogenous variable V ,

ωI |= V := ϕV(PA(V))

On the counterfactual account, this means that it must at least be true that, for every
non-intervened-upon endogenous variable V ,

(3.12) ωI |= ∀V
∗ ⊆ V ∀ v∗ ( V

∗
= v∗ � V = ϕV(pav∗(V)))

(M1) does not guarantee strong modularity because it does not guarantee the truth
of (3.12).

To see why, consider again the structural equations model shown in ëgure 6. For
that model, (M1) requires that C = 1� D = 1: at all the closest worlds at which
the captain gives the order, the deserter will die, f (C = 1, @) |= D = 1. However,
(M1) does not require that f (C = 1, @) |= L = 0� D = 0. It does not require
that, at all the closest worlds at which the captain gives the order, whether the deserter
dies counterfactually depends upon whether the left riìeman ëres. And that means
that (M1) does not require that, at the worlds at which a hypothetical intervention
setting C to 1 occurs, D’s value is still structurally determined by L’s value. So (M1)
will not guarantee that the equations in E are strongly modular.

Weak modularity is not modularity enough. Structural equations don’t merely
represent accidentally true patterns amongst variable values. ey represent determi-
nation relations between variable values. To say that the structural equation V := ϕ(PA(V))
is unaffected by an intervention on another variable should be to say that the deter-
mination of V by PA(V) is unaffected. While weak modularity will be enough to
tell us what values the variables in DE(X) will take on if there were an intervention
on X, it will not be enough to tell us about the truth of nested counterfactuals of the
form A � (B � C ), since, at the world at which the hypothetical intervention
making A true occurs, there’s no guarantee that B� C will be true.

Here’s a thought about how to achieve strong modularity: we don’t merely require
that (V1) be satisëed. We additionally require that V meets the following condition.
(V2)
∀V ∈ V ∀V

∗ ⊆ V ∀v∗
[

V
∗
= v∗�[

∀W ∈ V −V
∗ ∀W

∗ ⊆W ∀w∗ (W
∗
= w∗� W = ϕW(paw∗(W)))

]]
(V2) says that, if there were an intervention to set the values of any set of variables V

∗
,

then (V1) would still hold for all the non-intervened upon variables. is solution
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is not satisfying. With this new account, we are told that what it is for a structural
equations model to be correct is, inter alia, for both (V1) and (V2) to be satisëed. But
while (V2) guarantees that, at the world where the hypothetical intervention occurs,
(V1) will hold, we have as yet no guarantee that, at that world, (V2) will be satisëed.
But if what it is for a structural equation to be correct is for both (V1) and (V2)
to hold, then this account fails to guarantee that the structural equation will still be
correct post-intervention; that is, it fails to secure strong modularity.

It’s actually a bit worse than that. (M1) cannot even guarantee weak modularity.
To begin to see why, consider the following inference,

()
(A ∧ B) � C

A � (B � C )

in the special case where A and B are compossible conjunctions of variable values,
 is valid on the semantics given by the structural equations models.28

(A ∧ B)� C is evaluated by mutilating the model so as to set the variable values
A ∧ B, and then checking to see whether C is true. A � (B� C ) is evaluated
by mutilating the model so as to set the variable values A , and then mutilating the
model so as to set the variable values B, and then checking to see whether C is true.
So long as A and B are compossible conjunctions of variable values, the model that
one gets by írst setting the values A and then setting the values B is just the model
that one gets by setting the values A ∧ B. So  will be valid in this
special case, on the semantics provided by the structural equations models.

However,  is not valid on the standard semantics, even when A and
B are unary and compossible.29 In S’s terms, the closest A ∧ B world
need not be the closest B world from the closest A world. In other words, there’s no
28 On the semantics provided by B (2012) (the only author I’ve encountered who extends the

structural equation semantics for counterfactuals to include disjunctive antecedents), 
will not be valid if A and B are allowed to be disjunctive. For example, in the system of equations
E = (X := ϕX(Z), Y := ϕY(Z)),

((X = x ∨ Y = y) ∧ (X = x ∨ Y = y′))� X = x

(where y′ , y) will be true (the antecedent is logically equivalent to X = x), while

(X = x ∨ Y = y)� ((X = x ∨ Y = y′)� X = x)

will be false.
29 See MG (1985) for a discussion of whether  is in fact valid for the counterfactual

conditional.
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Figure 8:  is invalid on the S semantics. In the diagram, modal space
is spread out horizontally. Similarity is represented in terms of distance. e shaded area to
the left of ‘A ’ represents the possible worlds in which A is true. Similarly for the shaded
areas to the left of ‘B’ and ‘C .’ In the diagram, then, the closest A ∧ B world is a C world.
However, the closest B world from the closest A world is not a C world.

guarantee that
f (A ∧ B, @) = f (B, f (A , @))30

And thus, it is possible that f (A ∧ B, @) |= C , even while f (B, f (A , @)) ̸|= C .
(An example is shown in ëgure 8.)

By the same token, it could easily turn out that, for any three variables V1, V2,
and V3,

(3.13) f (V1 = v1 ∧ V2 = v2, @) |= V3 = ϕV3(PA(V3))

even though

(3.14) f (V2 = v2, f (V1 = v1, @)) ̸|= V3 = ϕV3(PA(V3))

While (M1) guarantees (3.13), it is consistent with (3.14). But this means that (M1)
fails to guarantee that the equations in E will even be descriptively adequate after multi-
ple sequential interventions. And the number of potential interventions is unbounded
(we can always just set the value of X to x, then set it to x′ , x, then set it back to x,
then back to x′, and so on and so forth, indeënitely). So there is no ënite number of
causal counterfactuals that is sufficient to guarantee that the equations in E are even
weakly modular.31

30 Above, I didn’t deëne f for sets of worlds. Let’s say that f (B, f (A , @)) is the union of f (B,ω)
for every ω ∈ f (A , @).
31 We might think that the fact that there is no ínite number of causal counterfactuals that is

sufficient to guarantee modularity isn’t that worrying, since we could always just give a theory consisting
of a counterfactual schema which entailed the requisite inënite number of counterfactuals. (anks to
Jim Joyce for raising this objection.) In essence, this is just what the nomic sufficiency account does—
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3.4 T N S U

In this section, I will suggest that we can retain all of the virtues of the causal
counterfactual understanding of structural equation models, without running into
the problems with modularity raised in §3.3.1 above, by moving to an understanding
of structural equations according to which what makes them correct is that they are
descriptively adequate throughout an area of modal space meeting certain constraints.
at is, an isolated structural equation V := ϕV(PA(V)) is correct just in case, for
every world ω in some set of worlds FV , Vω = ϕV(PA(V)ω).

A useful orienting picture here is M’s notion of a causal íeld. In his 1965,
M states that causal claims must be evaluated relative to a set of alternate states of
affairs within which the causes are parts of an occurrent minimally sufficient condition
for the effect.32 He calls this set of alternative states of affairs the causal íeld. is is
roughly how I am thinking of the set of worlds FV . Just as, on M’s account,
the causes are the parts of an occurent minimally sufficient condition for the effect
within the causal ëeld, on the nomic sufficiency account, the values of a variable V ’s
causal parents, PA(V), must be minimally sufficient for the value of V within FV .33

In virtue of this resemblance, I will call the set of possibilities FV V ’s causal íeld.
Of course, this is far too rough. For any structural equation ϕV , it will be easy

to ënd some set of worlds FV within which ϕV is descriptively adequate. A structural
equation according to which my height structurally determines the size of the earth
will be descriptively adequate throughout FV if I only include worlds in FV in which
the earth’s diameter is a constant multiple of my height. But my height does not
determine the size of the earth. e question of what possibilities to consider when
evaluating the determination of one variable by another is a complicated one, but it
is one that is faced by the nomic sufficiency account and the causal counterfactual

the recursive (F2) entails an inënite number of S-style counterfactuals. So while I have a hard
time seeing how to formulate a schematic counterfactual account which avoids the nomic sufficiency
account’s talk of causal ëelds, I suspect that the account would end up being very similar to the nomic
sufficiency account. However, the resulting account would lack the beneët of the nomic sufficiency
account which I discuss in §3.4.4.
32 e condition is minimally sufficient for the effect just in case no subset of the condition is also

sufficient for the effect. e minimal sufficient condition is occurrent iff it actually obtained on the
occasion in question.
33 e values of PA(V) are sufficient, and not (or not necessarily) necessary, for the value of V

because two different assignments of values to PA(V) could get mapped by ϕV to the very same value
of V . PA(V) must be minimally sufficient for V ’s value because we require that ϕV be a non-constant
function of each of its parents. See fn 14.
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account both. e causal counterfactual account solves it by appeal to some suitable
selection function f . And I see no reason why the nomic sufficiency account cannot
similarly avail itself of this very selection function—whichever one we fancied for the
causal counterfactual understanding of structural equations models—to characterize
the worlds which must be included in FV .

As a ërst step, if we’re considering an isolated structural equation V := ϕV(V) at
a world ω, then we can require that, for every assignment pa∗ to any PA∗ ⊆ PA(V),
every world in f (PA∗ = pa∗,ω) must be included in FV . Similarly, if we’re consid-
ering a structural equation V := ϕV(V) in a causal model M at a world ω, then we
can require that, for every assignment of values v∗ to any V

∗ ⊆ V, all the worlds in
f (V

∗
= v∗,ω) must be included in FV .

(F1) ∀V
∗ ⊆ V ∀v∗ f (V

∗
= v∗,ω) ⊆ FV

Putting this together with the requirement that ϕV be descriptively adequate through-
out FV , we can say that a causal model M =< U ,V , E > is correct at a world ω only
if (V3).

(V3) ∀V ∈ V ∃FV such that FV satisëes (F1) and FV |= V = ϕV(PA(V))

If we stop here, then, in the presence of (U1), we get an account which is equivalent
to the causal counterfactual account’s (V1). at is, given (U1), M satisëes (V1) iff
M satisëes (V3). (eorem 1, proved in §3.6, establishes the equivalence.)

Since this condition on the endogenous variables is equivalent to the causal coun-
terfactual account’s, if we stop here, we will run into the problems with modularity
that we encountered in §3.3.1. However, we needn’t stop here. We can additionally re-
quire that the condition imposed by (F1) holds, not only for the world of evaluation,
but for every other world in FV as well.

(F2) ∀ω ∈ FV ∀V
∗ ⊆ V ∀v∗ f (V

∗
= v∗,ω) ⊆ FV

is amounts to the requirement that the set FV is closed under counterfactual sup-
positions about the values of any of the variables in V. At any world ω ∈ FV , making
counterfactual suppositions about the values of any of the the variables in V will de-
liver a set of worlds inside of FV .

Putting this together with the requirement that ϕV be descriptively adequate through-
out FV , we get an account according to which a causal model M is correct at a world
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ω only if (V4).

(V4) ∀V ∈ V ∃FV ∋ ω such that FV satisëes (F2) and FV |= V = ϕV(PA(V))

A structural equation belonging to a causal model satisfying (V4) will continue
to belong to a causal model satisfying (V4) after any number of interventions to set
the values of any of the other variables in the model. In §3.6, I offer a proof of the
following theorem.

eorem 2. If ϕV belongs to a causal model satisfying (V4) at a world ω0, then ϕV

will continue to belong to a causal model satisfying (V4) after any number of consecutive
hypothetical interventions to set the values of any V

∗ ⊆ V def
= (U ∪ V) − V .

is means that the nomic sufficiency account is not subject to the objection I raised
for the counterfactual account in the previous section—viz., that it could not guaran-
tee that a structural equation ϕV would continue to be correct after multiple sequential
interventions to set the values of the variables other than V .

3.4.1 E I

In §3.3, we saw that a structural equations model says more than just that the
endogenous variables V ∈ V are structurally determined by their parents, and are not
structurally determined by any of the other variables in U ∪ V . It additionally says
that the exogenous variables aren’t determined by any of the other variables in U ∪V .
We can accomplish this within the nomic sufficiency account in the following way.
Say that one model M′ = (U ′,V ′, E ′) eclipses another model M = (U ,V , E),
M ⊏M′, iff M′ and M share all the same variables and M′ contains strictly more
structural determination relations between those variables. at is:

M ⊏M′ iff:
1. U ∪ V ⊆ U ′ ∪ V ′
2. ∀V ∈ U ∪ V , PA(V) ⊆ PA′(V)
3. ∃V ∈ U ∪ V , PA(V) ⊊ PA′(V)

(Where ‘PA′(V)’ is a vector of V ’s causal parents in the model M′.) Now, we can
enrich our account of the correctness of causal models by requiring that a model not
be eclipsed by any other model which satisëes (V4).

(M2)
M is correct at ω iff:
1. M satisëes (V4) at ω
2. ¬∃M′ such that M′ satisëes (V4) at ω and M ⊏M′

82



E9 =

(
W := S ∨ B
B := S

)
Figure 9

E10 =

(
W := S ∨ B
S := B

)
Figure 10

Returning to the example of Billy, Suzy, and the window (shown in ëgure 7): if
Billy is eager to see the window shatter, and will throw his rock if (but only if ) Suzy
doesn’t throw hers, then, given some assumptions about the selection function f , the
system of structural equations shown in ëgure 9 will satisfy (V4). (Here, ‘ ∗ ’ is the
truth function 1− ∗.) And this causal model eclipses the model consisting of the sole
structural equation W := S ∨ B, shown in ëgure 7. So, according to (M2), the causal
model in ëgure 7 will not be correct, if this one is. So, if Billy’s decision about whether
or not to throw is determined by whether Suzy throws, then the model consisting of
just the equation W := S ∨ B is not correct. at model tells us that whether Billy
throws isn’t determined by whether Suzy throws, which is false. Similarly, if whether
Suzy throws is determined by whether Billy does (she will throw iff he doesn’t), then
the system of structural equations shown in ëgure 10 will satisfy (V4). And this causal
model eclipses the one shown in ëgure 7. So that model will not be correct if this one
is, according to (M2).

3.4.2 I

e nomic sufficiency account of causal models affords a speciëc and novel way
of thinking about hypothetical interventions. On this understanding, a hypothetical
intervention on an endogenous variable V is just a counterfactual supposition which
takes one outside of the causal ëeld FV , while remaining inside the causal ëelds of all
the other endogenous variables in the model. Consider, for instance, the causal model
of the captain, the riìemen, and the deserter, reproduced below.
Suppose that this causal model is correct at world ω0, and that Cω0 = 0—the cap-
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E4 =

 L := C
R := C
D := L ∨ R


Figure 4

tain doesn’t give the order at ω0. Suppose that we wish to entertain a hypothetical
intervention to set the value of L to 1. We know that this is to be modeled in the
following way: we take the original system of structural equations E4 and replace it
with E4, L=1.

E4, L=1 =

 L = 1
R := C
D := L ∨ R


Figure 5

In the mutilated system of equations E4, L=1, L does not merely take on the value
of 1. Additionally, the value of L is not structurally determined by the value of C.
Whether the left riìeman ëres is not determined by whether the captain gives the or-
der. is follows immediately from the correctness of the system of equations E4, L=1,
given (M2), since if L were still structurally determined by C, then M4, L=1 =<

(C), (L, R, D), E4, L=1 > would be eclipsed by M4 =< (C), (L, R, D), E4 >. Since
M4, L=1 is correct, it must not be so eclipsed, so L must not be structurally deter-
mined by C.

Since we’ve said that a structural equation ϕV is in force at a world ω iff ω lies
inside of a causal ëeld FV satisfying (F2), this means that a hypothetical intervention
to set the value of L must take us to a world ω1 which lies outside of FL (since L
is not structurally determined by C), but still inside of FR and FD (since D is still
structurally determined by L and R, and R is still structurally determined by C), as
shown in ëgure 11(a). is provides a semantic interpretation of what’s going on when
we model an intervention on L by removing Ls’s structural equation and leaving the
other structural equations in place.

It also provides an explanation of why only certain methods of setting the value of
L to 1 count as interventions, and it provides a criterion for distinguishing those ways
of setting the values of the variables which do from those which do not constitute
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(a) (b) (c)

Figure 11

interventions. For instance, if we were to get the left riìeman to ëre by bribing the
captain to give him the order, then this would not constitute an intervention on L,
since it would leave us inside of the causal ëeld FL, as shown in ëgure 11(b). Similarly,
suppose that the captain does not want to kill the deserter, but would welcome an
opportunity to let the riìemen blow off some steam. en, we might be able to get
the left riìeman to ëre by putting up a bullet-proof partition between the riìemen
and the deserter. en, the captain would give the order, and the left riìeman would
ëre. Even though this is an intervention which makes the left riìeman ëre, it is not
an intervention on on the value of L. Rather, since it leaves L and R’s determination
by C intact, but severs the determination of D by L and R, as shown in ëgure 11(c),
it constitutes an intervention on D.

is generalizes. A causal modelM will be correct throughout FM
def
=

∩
V∈V FV .

is is the area of modal space in which every endogenous variable’s structural equa-
tion V ∈ V is in force—it is the area in which all of the causal ëelds of the endogenous
variables overlap. eorem 3, proved in §3.6, establishes that, given (M2), this area
of modal space will contain every assignment of values to U ∪ V which is consistent
with the structural equations in E , and no assignments of values to U ∪ V which is
not consistent with the structural equations in E .

eorem 3. If a causal model M = (U ,V , E) is correct according to (M2), then FM
def
=

∩
V∈V FV contains all and only allowed assignment of values to the variables V ∈ V ,

where an assignment is allowed just in case it is a solution to the equations in E .

is means that, for any assignment of values to the exogenous variables, there will
be some area of modal space inside FM where that assignment of values is realized.
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So there are in principle hypothetical interventions to set the values of any of the
exogenous variables without disrupting any of the structural determination relations
in E .

Moreover, it follows from (M2) that for any correct causal modelM =< U ,V , E >,
for any V ⊊ V , and any assignment of values to V, there will always be an area of
modal space which is outside the causal ëelds of all the members of V but still inside
the causal ëelds of all of the members of V − V, and which contains every possible
assignment of values to V∪ U .

eorem 4. Given (M2), for any V ⊊ V ,∩
W<V
FW −

∪
V∈V
FV

is non-empty and contains every assignment of values to the variables in V∪ U .

is means that, if a structural equations model is correct, according to (M2), then
there is an in-principle intervention to set any subset of the variables in V to any
assignment of values which will leave the structural equations of the non-intervened
upon variables intact. is, together with theorem 2 and theorem 3, guarantees that
the structural equations in E are strongly modular.

3.4.3 C F  S F

In the preceding, I took the selection function f as primitive, and deëned a con-
dition on the causal ëeld FV in terms of it. However, once we have the notion of
a causal ëeld, we needn’t continue to take the selection function as primitive. If we
think that we can provide an independent characterization of the notion of a causal
ëeld which will guarantee the truth of theorems 2–4, then we can use these causal
ëelds to deëne the selection function f . We can just say that, relative to a correct
causal model M, at any world ω0 ∈ FM, f (V = v,ω0) is the set of worlds outside
of the causal ëelds of all the endogenous V ∈ V but still inside of the causal ëelds of
all of the other variables in V . at is, relative to a correct causal model M we may
deëne f (V = v,ω0) as follows.

f (V = v,ω0)
def
=

ω : ω <
∪
V∈V
FV ∧ ω ∈

∩
W<V
FW ∧ Vω = v


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Such a theory would be in line with the theory of K (2006), according to which
the world’s causal structure determines the comparative similarity relations between
worlds used to evaluate causal counterfactuals.34

It is noteworthy that a theory like that has an easy time explaining the truth of
( f 3). Recall, the causal counterfactual account did not appear to have a story to
tell about why the set of worlds that we consider when evaluating the hypothetical
supposition that the left riìeman ëred were worlds at which the left riìeman’s decision
to ëre didn’t depend upon the captain’s order, but at which the deserter’s death still
depended upon whether the left riìeman ëred. If we just deëne the selection function
f so that it picks out the worlds that constitute interventions, in our technical sense,
then ( f 3) is no longer mysterious; rather, it is a straightforward consequence of the
deënition of f together with our deënition of intervention.

A theory along these lines owes an independent account of which worlds get in-
cluded in the causal ëeld FV . I’m optimistic that such an account can be provided,
but I won’t attempt to provide it here. If the reader is less optimistic than I, then they
are free to continue to take the selection function f as more primitive than the causal
ëeld FV in what follows.

3.4.4 C C D

(M2) allows us to provide an account of causal counterfactual conditionals in
terms of relations of structural determination. On this account, a causal counterfac-
tual A � C is true at a world ω iff there is a correct structural equations model M
such that, given the exogenous variable assignment Uω, if M is minimally mutilated
so as to make A true, then C is true in the resulting model.35

(�M) A � C ⇐⇒ MA ,Uω |= C

With this kind of account, we could take structural determination to be more primi-
tive than causal counterfactual dependence, and use the former to provide a reductive
34 K (2006)’s account is slightly more general than this. He thinks that relations of explanatory

relevance underlie the similarity relation. In the case of causal counterfactuals, however, the causal
theory of explanation entails that it is at least in part causal relevance which determines similarity.
35 I mean to leave it open whether the counterfactual is evaluated only relative to a correct modelM,

or whether the counterfactual is evaluated by quantifying over all correct models, or whether context
in some way selects a class of structural equations models relevant to evaluating the counterfactual. It
is my view that context plays a large role in selecting which structural equations models are relevant
to the evaluation of a causal claim (whose truth conditions are given by causal counterfactuals), but a
defense of that claim will have to wait for another occasion.
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E12 = (W := B + B · H)

Figure 12

account of the latter. at is to say: with this account, we need not deëne causal
counterfactual dependence directly in terms of the selection function; rather, f can
be used to provide the truth conditions for M, which can be used to provide the
truth conditions for�. (Or, if we choose to deëne the selection function in terms
of antecedently understood causal ëelds, as discussed in §3.4.3 above, then we could
take facts about causal ëelds to ground both facts about f and facts about M.)

e causal counterfactual understanding, (M1), in contrast, retained an account
of causal counterfactual conditionals according to which A � C is true at the world
of evaluation, ω, iff all the worlds in f (A ,ω) are worlds at which C is true.

(� f ) A � C ⇐⇒ f (A ,ω) |= C

Depending upon our semantics for f , there may be cases in which (�M) and (� f )
diverge. Just to ëx ideas: consider an account roughly like that of L (1979b) or
M (2007).36 On M (2007)’s account, f (A ,ω) is the set of worlds
that you get by performing a surgical alteration to ω so as to make A true at the rele-
vant time, and then time-evolving the resulting state of the world forward in time ac-
cording to the fundamental laws of nature. While L (1979b)’s account is slightly
more complicated, it will achieve the same results as M’s in the case I’ll be
considering.

Imagine that I’ve got a tychistically chancy coin—whether it lands heads is not
determined by the previous microphysical state of the universe and the laws of na-
ture; rather, the previous state of the universe and the laws of nature assign a precise
probability of one half to the coin landing heads and a probability of one half to the
coin landing tails. I’m going to ìip the coin, and I offer you a bet on whether or not
the coin lands heads. I’m an honest player, so if you take the bet and the coin lands

36 Again, L’s theory will not take the selection function as primitive, but for any true coun-
terfactual A � C , we can deëne a set f (A ,ω) of closest A -worlds which will entail that C —see
fn 22. Given the semantics of L (1979b), this set will be a set of worlds identical to the actual
world up until a time shortly before the antecedent, at which point, there will be a tiny miracle so as
to bring about the truth of the antecedent.
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heads, then you’ll win some money. If you take the bet and the coin lands tails, then
you’ll lose some money. If you don’t take the bet, then you’ll neither win nor lose any
money, independent of whether or not the coin lands heads. Let’s stipulate that the
chance that the coin lands heads is unaffected by whether you take the bet. In this
scenario, it appears that the structural equations model shown in ëgure 12 is correct,
where B is a binary variable that takes the value 1 if you accept the bet and 0 if you
don’t accept the bet, H is a binary variable which takes the value 1 if the coin lands
heads and 0 if the coin lands tails, and W is a ternary variable which takes the value 0
if you neither win nor lose money, 1 if you lose money, and 2 if you win money. e
structural equation says that whether you win is determined by whether you play and
whether the coin lands heads. If you don’t accept the bet, then you’ll neither win nor
lose; if you take the bet and the coin lands tails, then you’ll lose; and if you take the
bet and the coin lands heads, then you’ll win. Let’s say that, at the actual world, you
refuse the bet, and the coin lands heads.

Suppose that we adopt the M account of the selection function. en,
(M1) and (� f ) will tell us that this structural equations model is not correct,
since condition (U1) will not be satisëed. (U1), recall, required that, were some of
the exogenous variables to have taken on different values, the other exogenous vari-
ables would have retained their actual values. However, f (B = 1, @) ̸|= H = 1,
since when we surgically alter the state of the world so as to make B = 1 true and
time-evolve the resulting state of the world into the future according to fundamen-
tal the laws of nature, there are two possibilities: one in which the coin lands heads
and one in which the coin lands tails. In contrast, the structural equations model
M12 =< (B, H), (W), E12 > will satisfy the second clause of (M2)—(M2, 2)—so
long as there is no other structural equations model which satisëes (M2, 1) accord-
ing to which W is determined by B and H, and either B is determined by H or H
is determined by B. Since f (B = 1, @) contains both H = 0 worlds and H = 1
worlds, there will be no set of worlds containing f (B = 1, @) which entails that H
is any function of B. So H is not determined by B, according to (M2, 1). Assuming
that, under the counterfactual supposition that the coin lands tails, you still refused
the bet—i.e., that f (H = 0, @) |= B = 0—M will satisfy (M2, 2).

Of course, there’s no reason that the counterfactual account can’t replace (U1)
with the requirement that a causal model be uneclipsed. On an account like this, a
model M =< U ,V , E > will be correct iff V satisëes (V1) and there is no other
structural equations model M′ which both satisëes (V1) and eclipses M. Even this
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Figure 13: e relationship between the causal ëeld FW , the selection function f , and the
causal counterfactual B = 1 � W = 2. According to (M2) and (�M), the modal
proële shown above is, in the presence of other plausible assumptions, sufficient for the truth
of B = 1� W = 2. However, according to (� f ), this modal proële is incompatible with
the truth of B = 1� W = 2, since f (B = 1, @) ̸|= W = 2.

emended counterfactual account will fail to say that the system of equations in ëgure
12 is correct. at’s because, even though the following counterfactuals will all be
deemed true,

B = 0 ∧ H = 0� W = 0

B = 1 ∧ H = 0� W = 1

B = 0 ∧ H = 1� W = 0

B = 1 ∧ H = 1� W = 2

at the actual world (where, recall, you turned down the bet and the coin landed heads)
the counterfactual B = 1 � W = 2 will be false. For f (B = 1, @) ̸|= W = 2,
since there are some worlds in f (B = 1, @) where the coin lands tails and you
therefore lose the bet (W = 1). So, (V1), wedded with a M-esque account
of the selection function, entails that the system of structural equations in ëgure 12 is
incorrect.37

Independent of its ability to vindicate the system of structural equations E12, the
fact that this account of the selection function, together with (� f ), entails the falsity
of B = 1� W = 2 strikes me, as it has struck many,38 as the wrong result. Whether
37 Some readers will feel tempted at this point to give up on the subvector clause of (V1), and merely

require that for every assignment of values v to V, were those values realized, V would be ϕV (pav(V)).
ose readers should reconsider the problems with transitivity from page 74. Note that, without the
subvector clause, we will not be able to infer C = 1� D = 1 from the correctness of the structural
equations model shown in ëgure 6.
38 See B (2003, ch. 15) and K (2006)
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the coin lands heads is entirely unaffected by whether you took the bet. Since the coin
actually landed heads, if you had taken the bet, you would have won. B = 1� W =

2 is true. Now, there are moves to be pulled here—we can alter our account of the
selection function so that, if the coin actually lands heads, then only the worlds where
the coin lands heads are included in f (B = 1, @). Note, however, that the account
consisting of (M2) and (�M) need not avail itself of those maneuvers. Even with
the bare M account of the selection function, that account entails that, were
you to take the bet, you would have won. at’s because (M2) only requires that
f (B = 1, @) be included in FW , and that FW |= W = B + B · H. e correctness
of the structural equations model in ëgure 12 does not depend upon whether the
worlds in f (B = 1, @) are worlds in which the coin lands heads or tails, or whether
they are worlds in which you win or lose. (M2) only requires that, at all the worlds
in f (B = 1, @) at which the coin lands tails, you lose; and that, at all the worlds
in f (B = 1, @) at which the coin lands heads, you win. Assuming that similar
remarks apply to all the other worlds in FW , the structural determination relations
shown in ëgure 12 will be in force. en, those structural determination relations will
entail, via (�M), that B = 1 � W = 2. So, according to (M2) and (�M),
B = 1 � W = 2 can be true even though f (B = 1, @) ̸|= W = 2. us,
according to (M2) and (�M), it is possible for a counterfactual A � C to be
true at a world ω, even though f (A ,ω) ̸|= C . (See ëgure 13.)

is is not easily mimicked by the causal counterfactual account, for that account
is committed to both (�M) and (� f ). For instance, the counterfactual theorist
might want to attempt to adopt the nomic sufficiency account’s treatment of the coin
toss case by emending (V1) to read:

(V5) ∀V ∈ V ∀V
∗ ⊆ V ∀v∗ (V

∗
= v∗ � V = ϕV(PA(V)))

(V5), unlike (V1), does not require that, were V
∗

to take on the values v∗, V would
take on the value it is given in the mutilated model MV∗=v∗ , with the actual assign-
ment of values to the exogenous variables. It simply requires that, whatever values
V ’s parent variables end up taking on when the values of V

∗
change, the value of V

remains a function ϕV of those values. is would allow the counterfactual theorist
to agree with the nomic sufficiency theorist that were you to have taken the bet, you
would have won, B = 1 � W = 2. However, since the counterfactual theorist
is still committed to (� f ), so long as they retain the simple M account of
the selections function, they must also deny that were you to have taken the bet, you
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would have won, ¬(B = 1 � W = 2), since f (B = 1, @) ̸|= W = 2. is
appears to be a straightforward contradiction. Of course, English counterfactuals are
highly context-sensitive, and the English ‘If A were the case, C would be the case’ can
be true in one context and false in another. However, this kind of context-sensitivity
is usually handled by letting context have a role to play in determining f . I also think
that context has a role to play in bringing to salience certain systems of structural de-
termination. However, neither of these kinds of context-sensitivity are going to help
keep the envisaged counterfactual account out of trouble. Holding íxed the selection
function, and holding íxed the relations of structural determination, this account will
still end up entailing (B = 1� W = 2) ∧ ¬(B = 1� W = 2).

e causal counterfactual theorist might want to respond to these kinds of consid-
erations by denying (� f ), and reformulating their account of the correctness con-
ditions of a structural equations model directly in terms of the selection function f ,
saying nothing of causal counterfactuals. at is, they could replace (V5) with (V6)

(V6) ∀V ∈ V ∀V
∗ ⊆ V ∀v∗ f (V

∗
= v∗, @) |= V = ϕV(PA(V))

It follows immediately from theorem 1 that, in the presence of (U1), (V6) is equiv-
alent to (V1). Of course, we just encountered reason for such a theorist to abandon
(U1)—namely that, together with the M-esque account of f , it is inconsistent
with the correctness of E12. And once (U1) has been replaced with a condition along
the lines of (M2, 2), (V6) will no longer be equivalent to (V1).39 Given that it de-
nies any direct connection between f and counterfactual conditionals, we might well
wonder whether the resulting account deserves the name ‘counterfactual’ any longer,
but put that question to the side. Whatever we call the resulting account, it is only
able to avoid complicating its account of f by inching ever closer to the nomic suffi-
ciency account. e only thing separating the two accounts at this point is the nomic
sufficiency account’s closure condition, (F2). is is the aspect of the account which
solves the problems with modularity raised in §3.3.1 above. Moreover, it appears that
any counterfactual account built around (V6) which was able to solve those problems
with modularity would end up being equivalent to (or would entail) the nomic suffi-
ciency account. For it appears that the only way to solve those problems is to impose a
constraint on which worlds are reachable by repeated counterfactual supposition; for
worlds that are so reachable, put them in the set FV , and strong modularity will then
39 e case currently under discussion provides a counterexample to the equivalence.
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Figure 14: An intervened-upon variable may still depend upon its structural parents. Suppose
that ω0 ∈ FM and that, for each V ∈ V, FV |= V = ϕV(PA(V)). en, the nomic
sufficiency account fails to guarantee that f (V = v,ω0) will not lie within another causal
ëeld F′V |= V = ϕ′V(PA(V), ...), for some V ∈ V.

guarantee that FV |= V = ϕV(PA(V)). If that’s right, then such an account would
impose all the same constraints as the nomic sufficiency account; and counterfactual
theorists would have mimicked nomic sufficiency theorists only by becoming nomic
sufficiency theorists themselves.

3.4.5 A R W

Above, I deëned modularity as the thesis that any number of interventions on a
set of variables V leaves the structural equations associated with every variable V < V
unaffected. eorems 2–4 guarantee that a correct system of structural equations
will be modular in this sense. Note, however, that modularity does not guarantee that
there will always be an intervention on a set of variables V such that, post-intervention,
the variables in V are no longer determined by any of the variables in PA(V). For
a schematic example, consider the causal ëelds shown in ëgure 14. In that diagram,
the causal model M will be correct at the world ω0 ∈ FM

def
=

∩
V∈V FV . Now,

theorem 3 guarantees us that there is a set of worlds f (V = v,ω0) which lie outside
of

∪
V∈V FV , yet inside of

∩
U<V FU , and at which V = v, for any assignment v.

However, we have no guarantee that this set of worlds doesn’t lie within some other
causal ëeld F′V such that F′V |= V = ϕ′V(PA(V), ...), for some V ∈ V. And that
means that, even though we have a guarantee that an intervention on a set of variables
will sever the actual structural determination relations between V and PA(V), we
don’t have any guarantee that the intervention won’t make it the case that some other
structural determination relations link PA(V) to V.
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(a) (b) (c)

Figure 15

For a concrete example which might give rise to a case like this, consider the steam
vent illustrated in ëgure 15. ere, a switch, which may be placed to the left or to
the right, will either divert the steam to the left or the right. (If the switch is left, the
steam will go right, as shown in ëgure 15(a); if the switch is right, the steam will go
left, as shown in ëgure 15(b).) ere is a lid on the right steam vent. If the steam is
directed up to the right vent, then the lid will heat up. Consider the variables S and
L. S is 1 if the switch is to the left, and is 0 if the switch is to the right. L is 1 if the
lid is hot and is 0 if the lid is not hot. When the system is as depicted in ëgure 15(a),
the structural equation L := S will be in force. Whether the lid is hot is determined
by whether the switch is to the left or right. In ëgure 15(a), both S and L will be 1.
Now, suppose that the lid is attached to a hinge, so that it can be pivoted to sit atop
either the left or the right steam vent. ere is then an intervention we may perform
to set L to 0. at is, there is a method for making the lid not hot which will take
us outside of the causal ëeld FL. We may simply pivot the lid on its hinge to put it
atop the left steam vent, as in ëgure 15(c). en, it will no longer be the case that
L = 1, nor will it be the case that S determines L according to the equation L := S .
However, even after this intervention has taken place, the value of S will determine
the value of L. It will now do so according to the equation L := S . If the switch is
set to the left, then the lid will not be hot, and if the switch is set to the right, then
the lid will be hot.

Given the account of interventions provided in §3.4.2 above, this will count as
an intervention on the value of L. However, it would be inappropriate to model the
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result of this intervention by mutilating the model, removing L’s structural equation,
and replacing it with nothing. For, in order for the mutilated model to be correct, it
must be uneclipsed by any correct structural equations model. And, in this case, the
mutiliated model in which S does not structurally determine L would be eclipsed by
the model containing the equation L := S .

Cases such as these might also make trouble for (�M), as (�M) would predict
that, if we are in the situation depicted in ëgure 15(a), then, were the lid to not be
hot, then, if the switch were moved to the right, the lid would not be hot, i.e., L =

0 � (S = 0 � L = 0). However, if we think that there are worlds in f (L =

0, @) at which the lid has been pivoted on its hinge, then we might think that this
counterfactual should be false; rather, we may think, were the lid to not be hot, then,
if the switch were moved to the right, the lid would be hot—i.e., L = 0 � (S =

0� L = 1). Or perhaps, were the lid to not be hot, then, if the switch were moved
to the right, the lid might be hot—i.e., L = 0� (S = 0� L = 1).40

It is unclear to me whether this ought to be regarded as a problem for the nomic
sufficiency account. To the extent that one is inclined to think that f (L = 0, @)

includes worlds at which the lid has been pivoted on its hinge, it seems to me entirely
correct to say that we ought not model an intervention on L which pivots the lid
on its hinge by removing the structural determination relation between L and S ,
and it seems a mark in the nomic sufficiency account’s favor that it says so. To the
extent that one is inclined to think that f (L = 0, @) contains worlds at which the
lid is removed from its hinge, or perhaps worlds at which some kind of L
miracle keeps the lid from getting hot even though the steam is being directed up
towards it, it seems entirely correct to model this kind of intervention by removing
the structural determination relation between S and L. Once there is a miracle to set
L to 0, changes in the value of S will not affect the value of L, so long as God’s hand
is steady. If one is unhappy with the possibility of L being determined by S post-
intervention, then one may simply require that f (L = 0, @) contain only worlds
40 I haven’t said anything about how to understand so-called might counterfactuals, of course. One

might simply deëne them as the dual of the standard counterfactual A � C
def
= ¬(A � ¬C ).

However, I don’t think that we should; in part because I think that this duality leads pretty quickly
into counterfactual skepticism—the view that almost all counterfactuals are false. (See DR, 1999,
H, 2005, and H, ms.) At the moment, I’d rather say that might counterfactuals are
epistemic modals wide-scoping over would counterfactuals—i.e., A � C

def
= ^(A � C ). But I

don’t think that how we come down on these issues makes any difference to the issues being discussed
in the body.
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at which L miracles determine the value of L. Of course, nothing in the
account guarantees that there will always be some possible L miracle which
will constitute an intervention. However, if there are cases in which L miracle
interventions are impossible, then I’m inclined to say just what I said above about the
case in which f (L = 0, @) contained worlds at which the lid was pivoted on its hinge:
in such cases, it is incorrect to model the result of the intervention by mutilating the
model, and it would be a mark against an account of structural determination if said
otherwise. (Of course, we might want to use the term intervention in such a way that
these ways of setting variable values don’t constitute interventions. at’s a matter of
semantic legislation; I’d prefer to count them as interventions, but I don’t see how
anything of substance hangs on it.) So my settled judgment is that this is a feature,
rather than a bug, of the nomic sufficiency account, though I wouldn’t be too surprised
to be persuaded otherwise.

3.5 I S

I developed and explored a common way of understanding structural equations
models, according to which they represent patterns of causal counterfactual depen-
dence between variable values. I argued that it faces difficulties in securing the inde-
pendent manipulability—the modularity—of the structural determination relations
codiëed in a correct system of structural equations. I put forward a different way of
understanding structural equations models, according to which one variable value is
structurally determined by others only if the values of the latter variables are nomically
sufficient for the value of the former throughout a certain region of modal space. I
showed how this way of understanding structural equations models allows us to secure
the independent manipulability of structural determination relations. I showed that it
provides a clear and straightforward way of thinking about hypothetical interventions,
as well as a criterion for distinguishing hypothetical changes in the values of variables
which constitute interventions from those that do not. Finally, I showed that, since
the account does not require causal counterfactual conditionals to undergird the cor-
rectness of a structural equations model, it is free to use structural equations models
to provide a reductive account of causal counterfactuals. By treating structural de-
termination relations as more fundamental than causal counterfactuals, the resulting
theory was able to yield a clean solution to a problem case that has troubled previous
accounts of causal counterfactuals.
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3.5.1 L F

In chapter 5, I will provide an account of singular causation in terms of the net-
works of structural determination represented in a correct structural equations model.
at account will be very much in the spirit of L’s 1973 counterfactual account. I
will say that the event of one variable C’s having or changing its value at a time caused
the event of another variable E’s having or changing its value at a time if and only if the
later event counterfactually depends—in at least one way—upon the former within a
correct structural equations model, or there is a certain kind of chain of counterfactual
dependence running from the latter event to the former. By carefully ìeshing out the
details, we will see that this account can avoid the plethora of counterexamples which
have emerged in response to L’s original 1973 account.

However, before getting to that, there is a serious problem to be dealt with. e
problem, which will be developed at length in chapter 4, is that a correct structural
equations model—on either the counterfactual or the nomic sufficiency understanding—
underdetermines singular causal relations. at is, there exist pairs of systems which
are, according to both the counterfactual and the nomic sufficiency account, cor-
rectly modeled by the same structural equations models, but which nevertheless dif-
fer causally. In one system, two variable’s values are causally related; whereas, in the
second system, the corresponding variable’s values are not causally related. We must
therefore say more about the conditions under which a correct structural equations
model may be used to infer something about which events singularly caused with
other events. e conclusion of chapter 4 will be that we may do so iff all of the
structural determination relations in the model are autonomous, in a sense to be made
precise below.
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3.6 P

Deëne the rank of a variable V ∈ U ∪ V recursively as follows:

rank(V) = 0 ⇐⇒ V ∈ U
rank(V) = k + 1 ⇐⇒ max{rank(U) : U ∈ PA(V)} = k

Graphically, a variable’s rank is the largest number of edges lying between that variable
and an exogenous variable along a directed path. Let ‘Rank(i)’ denote the set of all
variables of rank i, and let ‘Rank(i, j, ..., k)’ denote the union Rank(i)∪Rank( j)∪
...∪Rank(k).

Lemma 1. Given (V1), (U1), and ( f 1), for all V ∈ V , all V
∗ ⊆ V, all v∗, and

all ω′ ∈ f (V
∗
= v∗,ω), PA(V)ω′ = pav∗(V), where pav∗(V) assigns the values

to PA(V) determined by the structural equations in E −∪
i{ϕUi}, for every endogenous

Ui ∈ V
∗
, and (U −V

∗
)ω ∪ v∗.

Proof. By induction on the rank of the variables in V .

Base Case. For all V ∈ Rank(1), all V
∗ ⊆ V, all v∗, and all ω′ ∈ f (V

∗
= v∗,ω),

PA(V)ω′ = pav∗(V).

Proof. If rank(V) = 1, then every X ∈ PA(V) is exogenous. Without loss of gener-
ality, consider one X ∈ PA(V). If X ∈ V

∗
, then f (V

∗
= v∗,ω) |= X = Xv∗ (the

value assigned to X by v∗), by ( f 1). If X < V
∗
, then f (V

∗
= v∗,ω) |= X = Xω, by

(U1). In either case, X takes on the value assigned to it by pav∗ .

Inductive Step. If for all V ∈ Rank(1, 2, ..., k), it is true that, for all V
∗ ⊆ V, all v∗,

and all ω′ ∈ f (V
∗
= v∗,ω), PA(V)ω′ = pav∗(V), then for all V ∈ Rank(k + 1),

it will be true that, for all V
∗ ⊆ V, all v∗, and all ω′ ∈ f (V

∗
= v∗,ω), PA(V)ω′ =

pav∗(V).

Proof. Without loss of generality, consider one V ∈ Rank(k + 1), one V
∗ ⊆ V,

one v∗, and one X ∈ PA(V). Either X ∈ V
∗

or X < V
∗
. Suppose that X ∈ V

∗
.

en, f (V
∗
= v∗,ω) |= X = Xv∗ , by ( f 1). If X < V

∗
, then, since rank(X) ≤ k,

PA(X)ω′ = pa(X)v∗ (the values of X’s parents determined by E −∪
i{ϕUi}, for all

Ui ∈ V
∗
, and (U − V

∗
)ω ∪ v∗), for all ω′ ∈ f (V

∗
= v∗,ω), by the inductive

hypothesis (since X < V
∗
, V
∗ ⊆ X). en, (V1) guarantees that f (V

∗
= v∗,ω) |=

X = ϕX(pa(X)v∗). So, whether X ∈ V
∗
or X < V

∗
, X takes on the value Xv∗ at every

98



ω′ ∈ f (V
∗
= v∗,ω). Since X, V , V

∗
, and v∗ were arbitrary, for all V ∈ Rank(k+ 1),

all V
∗ ⊆ V, and all v∗, PA(V)ω′ = pav∗ for every ω′ ∈ f (V

∗
= v∗,ω).

Lemma 2. Given (V3), (U1), and ( f 1) for all V ∈ V , all V
∗ ⊆ V, all v∗, and

all ω′ ∈ f (V
∗
= v∗,ω), PA(V)ω′ = pav∗(V), where pav∗(V) assigns the values

to PA(V) determined by the assignment of values (U − V
∗
)ω ∪ v∗ and the structural

equations in E −∪
i{ϕUi}, for every endogenous Ui ∈ V

∗
.

Proof. By induction on the rank of the variables in V .

Base Case. For all V ∈ Rank(1), all V
∗ ⊆ V, all v∗, and all ω′ ∈ f (V

∗
= v∗,ω),

PA(V)ω′ = pav∗(V).

Proof. Consider, without loss of generality, a variable V ∈ Rank(1). Since V ’s rank
is 1, every X ∈ PA(V) is exogenous. If X ∈ V

∗
, then f (V

∗
= v∗,ω) |= X = Xv∗

(the value assigned to X by v∗), by ( f 1). If X < V
∗
, then f (V

∗
= v∗,ω) |= X = Xω,

by (U1). In either case, X takes on the value assigned to it by pav∗ .

Inductive Step. If for all V ∈ Rank(1, 2, ..., k), it is true that, for all V
∗ ⊆ V, all v∗,

and all ω′ ∈ f (V
∗
= v∗,ω), PA(V)ω′ = pav∗(V), then for all V ∈ Rank(k + 1),

it will be true that, for all V
∗ ⊆ V, all v∗, and all ω′ ∈ f (V

∗
= v∗,ω), PA(V)ω′ =

pav∗(V).

Proof. Without loss of generality, consider one V ∈ Rank(k + 1), one V
∗ ⊆ V,

one v∗, and one X ∈ PA(V). Either X ∈ V
∗

or X < V
∗
. Suppose that X ∈ V

∗
.

en, f (V
∗
= v∗,ω) |= X = Xv∗ , by ( f 1). If X < V

∗
, then, since rank(X) ≤ k,

PA(X)ω′ = pa(X)v∗ (the values of X’s parents determined by E −∪
i{ϕUi}, for all

Ui ∈ V
∗
, and (U −V

∗
)ω ∪ v∗), for allω′ ∈ f (V

∗
= v∗,ω), by the inductive hypoth-

esis (since X < V
∗
, V
∗ ⊆ X). en, (V3) and (F1) guarantee that f (V

∗
= v∗,ω) ⊂

FX and FX |= X = ϕX(pa(X)v∗). So f (V
∗
= v∗,ω) |= X = ϕX(pa(X)v∗) So,

whether X ∈ V
∗

or X < V
∗
, X takes on the value Xv∗ at every ω′ ∈ f (V

∗
= v∗,ω).

Since X, V , V
∗
, and v∗ were arbitrary, for all V ∈ Rank(k + 1), all V

∗ ⊆ V, and all
v∗, PA(V)ω′ = pav∗ for every ω′ ∈ f (V

∗
= v∗,ω).

eorem 1. In a causal model M =< U ,V , E >, if U satisíes (U1), then V satisíes
(V3) iff V satisíes (V1).
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Proof. First assume that V satisëes (V1). en, we know that for all V ∈ V , all
V
∗ ⊆ V, and all assignments v∗ to V

∗
,

f (V
∗
= v∗,ω) |= V = ϕV(pav∗(V))

By lemma 1, it then follows that

∀ω′ ∈ f (V
∗
= v∗,ω), Vω′ = ϕV(PA(V)ω′)

So
f (V

∗
= v∗,ω) |= V = ϕV(PA(V))

So, if for every V , every V
∗
, and every v∗, we include every ω′ ∈ f (V

∗
= v∗,ω)

in FV , then we will have a set FV which satisëes (F1) and which entails that V =

ϕV(PA(V)). So every V ∈ V will satisfy (V3).
To establish the other direction, assume that V satisëes (V3). en, for every

V ∈ V , every V
∗
, and every v∗, f (V

∗
= v∗,ω) ∈ FV and FV |= V = ϕV(PA(V)).

By lemma 2, it then follows that, for all V , V
∗
, and v∗,

f (V
∗
= v∗,ω) |= V = ϕV(pav∗(V))

So V must satisfy (V1) as well.

eorem 2. If ϕV belongs to a causal model satisfying (V4) at a world ω0, then ϕV

will continue to belong to a causal model satisfying (V4) after any number of consecutive
hypothetical interventions to set the values of any V

∗ ⊆ V def
= (U ∪ V) − V .

Proof. By induction on the number of interventions.

Inductive Step. If ϕV belongs to a causal model satisfying (V4) at world ωk after k
interventions to set the values of any V

∗ ⊆ V, then ϕV will belong to a causal model
satisfying (V4) at the world ωk+1 where there is a k + 1st intervention to set the values
of any V

∗ ⊆ V.

Proof. By the inductive hypothesis, ϕV belongs to a causal model satisfying (V4) at
ωk. is means that there must exist a set of worlds FV which satisëes (F2) and
which contains ωk. By ( f 3), an intervention setting the value of some V

∗ ⊆ V
to v∗ must take us to a world ωk+1 ∈ f (V

∗
= v∗,ωk). Since ωk ∈ FV , (F2)
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guarantees that f (V
∗
= v∗,ωk) ⊆ FV , so ωk+1 ∈ FV as well. And, by assumption,

FV |= V = ϕV(PA(V)). So there is a FV ∋ ωk+1 such that FV satisëes (F2) and
FV |= V = ϕV(PA(V)). As ϕV was arbitrary, the same holds for every V′ < V

∗
. So,

(V4) will be correct at ωk+1. So ϕV will belong to a causal model satisfying (V4) at
ωk+1.

Setting k = 0 in the proof of the inductive step establishes the base case.

eorem 3. If a causal modelM =< U ,V , E > is correct according to (M2), thenFM
def
=

∩
V∈V FV contains all and only allowed assignment of values to the variables V ∈ V ,

where an assignment is allowed just in case it is a solution to the equations in E .

Proof. e proof proceeds by induction on the rank of the variables in V .

Base Case. FM contains all and only allowed assignment of values to the variables in
Rank(0).

Proof. For every V ∈ V , FV contains f (U = u,ω), for every assignment u to U ,
and every ω ∈ FV . So FM contains f (U = u,ω), for every assignment u to U and
every ω ∈ FM. If U ∈ Rank(0), then U is exogenous, U ∈ U . Every assignment
of values to the exogenous variables is allowed. So FM contains all and only allowed
assignments to the variables in Rank(0).

Inductive Step. IfFM contains all and only allowed assignment of values to the variables
in Rank(0, 1, ..., k), then it contains all and only allowed assignment of values to the
variables in Rank(0, 1, ..., k, k + 1).

Proof. Take an arbitrary V ∈ Rank(k + 1). Since PA(V) ⊆ Rank(0, 1, ..., k), the
inductive hypothesis gets us that every and only the allowed assignment of values to
PA(V) are realized in FM. And because M is correct, Vω = ϕ(PA(V)ω), for every
ω ∈ FV . Since FM ⊆ FV , this means that Vω = ϕ(PA(V)ω) for every ω ∈ FM as
well. So FM contains all and only the allowed values of V . Since V was arbitrary, the
above holds for every V ∈ Rank(k + 1).

eorem 4. Given (M2), for any V ⊊ V ,∩
W<V
FW −

∪
V∈V
FV

is non-empty and contains every assignment of values to the variables in V∪ U .

101



Proof. Take an arbitrary V ⊊ V , an arbitrary assignment of values v to V, an ar-
bitrary W < V, and an arbitrary assignment u to U . en, FW contains worlds
at which V ∪ U is set to v ∪ u by an intervention, by (F2) and ( f 3). erefore,
for every u and every V ∈ V, there are worlds ω ∈ FW at which Uω = u and
Vω , ϕV(PA(V)ω). However, for every V ∈ V, FV does not contain a world ω
at which Vω , ϕV(PA(V)ω). Since W, V, v, u, and V were arbitrary, for every
W < V, every u, and every V ∈ V, there are worlds in FW which are not in FV and
at which the value of V ∪U is set to any value v∪ u. us,

∩
W<V FW −

∪
V∈V FV is

non-empty and contains every assignment of values to the variables in V∪ U .
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CHAPTER4
THE UNDERDETERMINATION

OF SINGULAR CAUSATION

4.1 I

I the previous chapter, I introduced and provided an account of structural equa-
tions models. As I mentioned there, these models have been used, by various

authors in various ways, to construct accounts of singular causation.1 When under-
taking a project like this, there are two distinct but interrelated questions to answer.
Firstly, there is the question to which I dedicated the previous chapter—viz., what
does it take for one of these models to be correct? Secondly, there is the question
to which I will dedicate chapter 5—viz., what is the relationship between a correct
structural equations model and relations of singular causation?

A broad consensus has begun to emerge about how to answer these two ques-
tions. As I mentioned in the previous chapter, with respect to the ërst question,
the consensus appears to be that what it takes for an isolated structural equation

1 See in particular H (2001, 2007), W (2003), H & P (2001,
2005), H (2005b), M (2007), H (2008), and H & H
(2010).
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V := ϕV(PA(V)) to be correct is, inter alia, the truth of the causal counterfactuals
‘were PA(V) to take on the values pa(V), V would take on the value ϕV(pa(V))’,
for each assignment pa(V) to the variables in PA(V). While these causal counter-
factuals form the backbone of the account of the correctness conditions of structural
equations models, most believe that there are other conditions that a structural equa-
tions model must meet in order to be correct. For instance, everybody seems to accept
that the variables in V must be distinct, in the sense of L (1986b). at is, there
cannot be any purely logical relationship between those variables. So, for instance,
V cannot contain both a variable for rainfall in Ann Arbor and precipitation in Ann
Arbor, since the value of the latter (non-causally) puts an upper bound on the value of
the former. H (2007) has an extended discussion of what kinds of variables can be
allowed to ëgure in a structural equations model. G et al. (2010) suggest that
more attention must be paid to the ways in which variable values change over time.
I’m going to ignore most of these additional constraints here, just as I ignored them in
the previous chapter, because, with the exception of a few from H (2007)
and H & H (2010), none of these additional constraints are going
to make a difference to my central thesis here (just as none of them would have made
a difference to my arguments in the previous chapter). I’ll discuss the exceptions in
§4.5.

With respect to the second question, the consensus appears to be that, while the
correctness of a system of equations within which E ∈ DE(C) is not sufficient for the
event of a variable C taking on the value c to cause the event of a variable E taking
on the value e, the correctness of such a system of equations is necessary for C = c to
cause E = e. ese authors have attempted to provide additional conditions which,
together with the correctness of the structural equation model, will be sufficient for
C = c causing E = e.

Some counterexamples to this general approach to answering the second ques-
tion have emerged in the work of H (2005b) and H (2007). ese
counterexamples demonstrate that an apparently correct structural equations model
underdetermines the causal structure of the variables appearing in the equations. at
is: if we accept the orthodox answer to the ërst question, then there will be a single
structural equations model which will correctly model two different systems; yet, in
one of these systems, the event represented by C = c caused E = e; whereas, in the
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other, C = c did not cause E = e. To deal with these counterexamples, some2 have
amended their accounts to include information about variables’ default, normal, or
typical values. Unfortunately, in this chapter, I must be the bearer of bad news. If
we provide the consensus answer to the ërst question—that what it is for a system of
structural equations to be correct is for some set of associated causal counterfactuals
to be true—then there are further underdetermination worries which cannot be dealt
with by including a normality ranking over variable values. at is, in this chapter I
will demonstrate that information about singular causation cannot be gleaned from
a correct systems of equations together with a speciëcation of the actual variable val-
ues and a normality ranking of the variable’s possible values, so long as what it takes
for a model to be correct is spelled out in terms of causal counterfactuals. In fact,
things are a bit worse than this. ere are three prima facie plausible conditions on
the correctness of a structural equations model, much weaker than the counterfactual
account, which suffice on their own to get us the conclusion that singular causal rela-
tions cannot be inferred from a correct structural equations model, the actual variable
values, and a normality ranking of those variable’s possible values. So this is not a
problem for the causal counterfactual account alone; indeed, the nomic sufficiency
account outlined and defended in chapter 3 is also committed to these three princi-
ples. So, if I am to provide an account of singular causation formulated in term of
systems of structural equations—as I hope to do in chapter 5—then I must say more
about when we can, and when we cannot, infer singular causal facts from a correct
structural equations model.

In §4.2, I will introduce one of the more prominent attempts to deëne singular
causation in terms of a correct structural equations model—the account of H
& P (2005)—and outline some counterexamples to that account, as well as the
revision of H (2008) which appeals to the normality of a variable’s potential
values. After presenting some problems for H (2008)’s normality-based ap-
proach in §4.3, I will go on in section §4.4 to demonstrate that, given three principles
which follow from, but are strictly weaker than, the causal counterfactual understand-
ing of structural equations models, the correctness of a structural equations model,
together with a normality ranking on the variable’s potential values, underdetermines
the singular causal relations holding between the variables appearing in that model.
In section §4.5, I’ll consider some objections and outline some potential strategies for

2 H (2007), H (2007), and H (2008). See also H & K
(2009).
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coping with this bad news. I’ll ultimately decide that the relations of structural deter-
mination appearing in a correct structural equations model must be autonomous—in
a sense to be made precise below—if we are to infer singular causal facts from the
model.

4.2 T H-P A  S C

H & P (2001, 2005) present an inìuential account which attempts to
derive facts about singular causation from structural determination relations amongst
variables, along with a speciëcation of the variable’s actual values. Some notation:
given a structural equations model M =< U ,V , E > and a speciëcation of the vari-
able values at a world ω at which M is correct, Uω, we can write that

M, Uω |= A

iff A is true of the system of equations M, given the assignment Uω.3 en, the
H & P account of singular causation is as follows.4

(HP) C = c is a singular cause of E = e at world ω, according to M, iff

1) M, Uω |= C = c ∧ E = e

2) ere is a partition of U ∪ V into P and O, such that C ∈ P, and assign-
ments of values c′ and o such that

3 Given the values of the exogenous variables, Uω, and the structural equations in E , we can work
out the values of all the endogenous variables, Vω.

4 is is not exactly the account presented in H & P (2001, 2005). at account
allowed arbitrary vectors of variable values C = Cω to be causes, and additionally included a minimality
condition requiring that there not be any subvector of C = Cω which also meets conditions (HP, 1)
and (HP, 2). E & L (2002) proved that, given the 2001 HP account, the minimality
condition will always winnow C = Cω down to a single variable value, so I have decided to sacriëce
generality for perspicacity by presupposing that the cause will be a single variable’s value and ditching
the minimality condition.

ings are slightly complicated by the fact that the account was slightly modiëed between H
& P (2001) and H & P (2005) to include the requirement that (HP, 2, b) hold for
any subvector O∗ ⊆ O, and H (2008) demonstrates that, with this addition to the account, the
result of E & L, that the minimality condition will always winnow C = Cω down to
a single variable value, no longer holds. Since I will only consider cases in which O is unitary, there
will not be any difference between the 2001 and 2005 account with respect to any of the cases I’m
considering (which is why I’ve chosen the simpler 2001 account), so it’s safe for me to neglect the
minimality condition and presuppose that the cause will be a single variable value.
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a) M, Uω |= (C = c′ ∧O = o)� E , e
and

b) M, Uω |= (C = c∧O = o∧ P∗ = P∗ω)� E = e
for all P∗ ⊆ P.

Condition (HP, 1) simply requires that, as a matter of fact, both C = c and E = e
actually occur. e interesting part of the account comes in condition (HP, 2). (HP,
2) is something of a counterfactual criterion, stating that E = e counterfactually
depends upon C = c. However, (HP, 2) does not require this counterfactual depen-
dence to obtain given the actual assignment of variable values Uω. Rather, it merely
requires that there be some assignment of variable values (possibly, but not necessar-
ily, the actual assignment) to a vector of variables O such that, holding those variables
ëxed at that assignment, E = e counterfactually depends upon C = c. ough the
account doesn’t specify which variables go in P and O, it helps to get a feel for the
account to think of P as a vector of the variables laying on some path between C and
the variables appearing in E, and to think of O as a vector of the off-path variables.
en, condition (HP, 2, a) requires that, were we to hold the off-path variables ëxed
at some (possibly non-actual) values, if C were set to some value c′ , c, E would not
be e. Condition (HP, 2, b) is meant to require that it is not our holding the off-path
variables ëxed which is, all by itself, responsible for the changes in E. e idea is
this: if, holding ëxed any number of the variables on the path between C and E at
their actual values, changing the values of the off-path variables to o does not by itself
result in a change in E, then these changes in the off-path variables are not entirely
responsible for the change in E; therefore, C = c′ must be partly responsible for these
changes, in the counterfactual scenario where C = c′ ∧ O = o.

In both the 2001 and the 2005H & P articles—as well as in H
(2008) and H & H (2010)—this twist in the simple counterfactual
condition is motivated by appeal to symmetric overdetermination cases. To use the
example that appears in all of those articles, suppose that, given the circumstances,
either a lit match or lightning would be sufficient for a forest ëre, so that the structural
equation F := M∨ L is true (where all these variables are binary and F is 1 iff there is a
forest ëre, M is 1 iff the match is lit, L is 1 iff there is lightning, and ◦∨∗ is the familiar
truth function max{◦, ∗}). In the case where M = L = 1, the simple counterfactual
test will fail for both M = 1 and L = 1, so the simple counterfactual test will
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E16 =
(
W := S ∧ P

)
Figure 16

claim that neither the match nor the lightning caused the forest ëre.5 H &
P (2001, 2005), H (2008), and H & H (2010) deem
this result unacceptable; they claim that it is a desideratum of an account of singular
causation that it say that both M = 1 and L = 1 individually cause F = 1. ey
diagnose the problem with the standard counterfactual criterion thusly: L = 1 serves
to mask the causal inìuence of M = 1 on F = 1. However, we can reveal this
inìuence by considering the counterfactual setting L = 0, M = 1, F = 1. In this
counterfactual setting of the variables, F = 1 will counterfactually depend upon
M = 1; so, on the (HP) account, given the actual variable settings, M = 1 causes
F = 1.

Unfortunately, (HP) is all too easily satisëed. Just because E = e counterfactually
depends upon C = c in some counterfactual world, this does not mean that C = c
causes E = e in the actual world. Here’s a case which demonstrates the problem:
Suzy stands in front of a window with a rock in hand, and there is a partition raised
which separates Suzy from the window. Suzy does not throw her rock; and the window
does not shatter. Were Suzy to throw the rock with the partition lowered, the window
would have shattered. However, were Suzy to throw the rock with the partition raised,
then the window would not have shattered. en, given a counterfactual account
of the truth conditions of structural equations models—which H & P
(2005) appear to accept6—the system of structural equations E16, shown in ëgure
16, should be correct. (In ëgure 16, W, S , and P are binary variables with the natural
interpretation, ◦∧ ∗ is the truth function min{◦, ∗}, and ∗ is the truth function 1−∗.)

5 Although, note, if we allow disjunctions of variable values to be causes, it will get the result
that the disjunction M = 1 ∨ L = 1 caused the forest ëre. (is is the approach to symmetric
overdetermination that I endorse in §5.3.9.)

6 See H & P 2005, p. 847: “An equation such as Y := ϕY(X) should be thought of
as saying that...if X were set to x by some means (not speciëed in the model), then Y would take on
the value ϕY(x), as dictated by ϕY .” (Here, I have changed H & P’s notation to match my
own.)
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And the actual variable values are

P = 1

S = 0

W = 0

Now, (HP) ends up entailing that P = 1 causes W = 0. at’s because both P = 1
and W = 0 are true in the actual context, so (HP, 1) is satisëed. And we can partition
the variables into P = (P, W) and O = (S ), and there are assignments P = 0 and
S = 1, such that

(P = 0∧ S = 1)� W = 1

and
(P = 1∧ S = 1)� W = 0

So (HP, 2) is satisëed.7 So, according to (HP), the partition being up kept the window
from shattering.8 But this is crazy. Suzy didn’t even throw her rock. It’s true that, if
Suzy had thrown, then the partition being up would have kept the window from
shattering. But, as it is, the partition simply didn’t have anything to do with the
window’s not shattering.

H (2007) presents a deeper problem. It is not an objection to the particulars of
(HP), but rather an objection to the very project of providing an account of singular
causation in terms of causal models and variable values in the ërst place. e problem
H poses is that there are systems of structural equations which are isomorphic
to one another, and in which all the variables take on the same values, but which
nevertheless differ in their singular causal structure.

First, H calls our attention to the neuron diagram (in the style of L, 1986a)
displayed in ëgure 17. Here’s how to read the diagram in ëgure 17: for every time
t listed at the bottom, the neurons above it can either ëre or not ëre at that time.
If a neuron actually ëres at its designated time, then it is colored gray. e arrows
represent stimulatory connections between neurons: if the neuron at the tail of the
arrow ëres at its designated time, then, ceteris paribus, the neuron at the head will
ëre at its designated time. e lines with circles at their heads give the reason for the

7 (HP, 2, b) will also require the truth of the counterfactual ‘(P = 1 ∧ S = 1 ∧ W = 0)�
W = 0’.

8 Slightly more carefully: the partition being up caused the window to not shatter. (We might
worry that the causative ‘kept from shattering’ says more than ‘caused to not shatter’.)
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Figure 17

E18 =


g := a∧ f
f := d ∧ e
d := b∨ c
e := c


Figure 18

ceteris paribus clause in the previous sentence; they represent inhibitory connections
between neurons: if the neuron at the base of the line ëres, then the neuron at the
head of the line won’t ëre. So, for instance, if f ëres at t3, then g will not ëre at t4
(whether a ëres or not).

H points out that we can model this neuron diagram with the set of structural
equations E18, shown in ëgure 18. In ëgure 18, each of the variables take the value 1
if their associated neurons ëre and 0 if they don’t. E18 tells us that g will ëre iff a ëres
and f does not ëre; that f will ëre iff d ëres and e does not; that d will ëre iff either
b or c ëres; and that e will ëre iff c does.

H then asks us to consider the neuron diagram shown in ëgure 19. ere, the
double-circle around G indicates that it is a dull neuron — it requires two stimulatory
signals in order to ëre. So, it will ëre iff both A and F ëre. e reason for drawing
our attention to this neuron diagram is that it can be modeled with a set of structural
equations, E20, shown in ëgure 20, which is isomorphic to the ërst. In ëgure 20,
following the same conventions as before, F∗ def

= F, D∗ def
= D, and B∗ def

= B. Moreover,
not only are the two structural equations isomorphic in this case, but the actual values
of the corresponding variables are the same:

a = A = 1 d = D∗ = 1 g = G = 1

b = B∗ = 0 e = E = 1

c = C = 1 f = F∗ = 0

us, if we are to extract singular causal information from M and Uω alone, then

110



Figure 19

E20 =


G := A∧ F∗

F∗ := D∗ ∧ E
D∗ := B∗ ∨C
E := C

 Figure 20

the singular causal structure of the two neuron diagrams should be the same. But the
singular causal structure of the two neuron diagrams aren’t the same. In the ërst, the
ëring of c doesn’t cause the ëring of g; while, in the second, the ëring of C does cause
the ëring of G.

So the causal model and the actual values of the variables alone don’t give us
enough information to tell which events cause which other events. H (2007),
H (2007), and H (2008) deal with this problem by throwing in-
formation about a variable’s default, normal, or typical values into the mix as well. By
way of explanation: some authors9 have thought that either judgements of default
versus deviation, or else comparative notions of normality or typicality, are central
to our understanding of causation—e.g., M (2004) suggests that all causal
claims presuppose laws governing how something will behave if it is left alone, its
default condition, along with laws detailing conditions under which the system will
deviate from its default state, and prescribing how it will so deviate. And not ëring is
the default behavior of a neuron, whereas íring is a deviation therefrom. Note that in
the neuron diagram in ëgure 17, d does ëre, while in the neuron diagram in ëgure 19,
D doesn’t ëre. If we’re persuaded that the default/deviation distinction, or some more
comparative notion of normality or typicality, is central to causation, then we’ll think
that these are two very different kinds of events. However, both of these events just

9 H (2008) points in particular to the psychological work of K & M (1986).
H & K (2009) contend that there is an important relationship between judgments of
singular causation and judgments of normality or typicality, and situate their account in a framework
of structural equations models.
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get represented in the structural equations model by the associated variable taking the
value 1. e model thus ignores default, normality, or typicality information. And
the obvious way of remedying this defect is to just include this information in our
models.

H (2008) achieves this by enriching structural equations models with a
ranking function r which maps assignments of variable values to the positive integers
Z+—variable assignments mapped to lesser integers are more normal or typical than
those mapped to greater integers. en, condition (HP, 2) is changed to read:

2) ere is a partition of U ∪ V , (P, O), such that C ∈ P, and there is some
assignment U ∪ V = u ∪ v such that r(u ∪ v) ≤ r(Uω ∪ Vω), and according
to which C = c′ and O = o, and

a) M, Uω |= C = c′ ∧O = o� E , e
and

b) M, Uω |= C = c∧O = o∧ P∗ = P∗ω� E = e
for all P∗ ⊆ P.

In other words, the counterfactual scenario in which you test for counterfactual de-
pendence must be at least as normal or typical as the actual scenario.

To get a feel for this extra requirement, think back to the counterexample I pre-
sented to the HP account on page 109—in which Suzy did not throw her rock at a
window which was protected by a raised partition. e souped-up version of the (HP)
account does not get the result that the partition being raised caused the window to
not shatter, so long as we suppose that the assignment S = 1 is less normal than the
actual assignment S = 0; so long, that is, as we suppose that not throwing is Suzy’s
default state, and throwing is a deviation therefrom.

4.3 P  N

Unfortunately, I don’t think that the souped-up (HP) account is going to work
either. Suppose there is a live grenade sitting with Suzy and the window. If the grenade
explodes where it sits, then the shock waves will shatter the window, unless a partition
protecting the window is raised. If Suzy throws the grenade away, then the window
will not shatter. So, the window will shatter iff Suzy doesn’t throw and the partition
is down. So the structural equations model E21, shown in ëgure 21, will be correct.
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E21 = (W := S ∧ P)

Figure 21

(ere, W, S , and P are binary variables with the natural interpretation.) Suppose
that the partition is up and Suzy throws, so that the actual assignment of values are

S = 1

P = 1

W = 0

Now, it is actually true that P = 1 and W = 0. And I can partition the variables into
P = (P, W) and O = (S ), and it is true that

(P = 0 ∧ S = 0)� W = 1

and that
(P = 1 ∧ S = 0)� W = 0.10

And, given that not throwing is a default and throwing is a deviation therefrom, the
assignment S = 0 should be at least as normal as S = 1.

So the souped-up (HP) deënition rules that the partition being up caused the
window to not shatter, even though Suzy threw the grenade away. is is a case of
preemptive prevention.11 ese cases are interesting, since it is not clear whether we
ought to count Suzy’s throwing of the grenade as a cause of the window’s failure to
shatter. We can reason that, either Suzy’s throwing it or the partition’s being up saved
the window, and it wasn’t the partition’s being up that did it, so it must have been
Suzy’s throwing the grenade that did it. Or we can reason that, since the partition
would have protected the window even if she didn’t throw it, the throw didn’t actually
save the window. Which of these reasonings we should favor is controversial. What
ought not be controversial is that, given that Suzy actually threw the grenade away,
the partition’s being up didn’t save the window. e souped-up (HP) account says
otherwise. So much the worse for the souped-up (HP) account.
10 e revised (HP, 2, b) will also require the truth of the counterfactual ‘(P = 1 ∧ S = 0 ∧ W =

0)� W = 0’.
11 See MD (1995, p. 525). ese kinds of cases are discussed in greater detail in C

(2004).
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Figure 22

E23 =


D := A
E := A∧ B
F := C ∧ B
G := (E ∧ (D∨ F)) ∨ (D∧ F)


Figure 23

A defender of the souped-up (HP) account might try to say that, while throwing
rocks is atypical, throwing grenades is typical. Such ad hoc normality claims are a
clever strategy for avoiding counterexamples—too clever by half, if you ask me—but
the mere fact that such maneuvers are necessary should lessen our conëdence that the
account is on the right track. In any case, we can produce a counterexample to the
souped-up (HP) account using simple neuron diagrams, and everybody seems to agree
about how the default-deviation distinction is to be applied to neuron diagrams—to
remain dormant is default; to ëre is deviant. Consider, then, the neuron diagram
shown in ëgure 22. In this neuron diagram, the inhibitory signal from E cancels
out any one stimulatory signal to G. So G will ëre just in case E doesn’t ëre and
either D or F ëres, or else E does ëre and both D and F ëre. is neuron diagram
can be represented with the system of structural equations E23, shown in ëgure 23.
ere, A, B, C, D, E, F, and G are all binary variables which take the value 0 if their
associated neurons do not ëre at their associated times and take the value 1 if they do.
Now, we can partition the variables into P = (A, B, D, E, F, G) and O = (C), and
it is true that

(B = 0 ∧ C = 0)� G = 0

and it is also true that

(B = 1 ∧ C = 0 ∧ P∗ = P∗@)� G = 1
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for all P∗ ⊆ P—since, in the counterfactual scenario in which B ëres and C does not,
there will be no difference between the actual and the counterfactual values of any of
the variables in P. In other words: if we have C not íre—which, everybody seems to
agree, is more normal or typical than C ëring—then whether G ëres counterfactually
depends upon whether B ëres; so the normality-based HP account of causation entails
that B’s ëring caused G to ëre. However, given that A and C both actually ëred, B’s
ëring was not a cause of G’s ëring. Even if B’s ëring caused G’s ëring to be caused by
D alone, rather than jointly caused by D and F, B’s ëring didn’t cause G to ëre.

4.4 M U P

It gets worse. Not only does H (2008)’s normality-based account fail to
work, but it can be shown that no normality-based approach can be made to work,
given a counterfactual understanding of structural equations models. Further, no
normality-based approach can be made to work, so long as our account of the correct-
ness conditions for causal models satisëes three independently plausible conditions.
Both the causal counterfactual understanding and the nomic sufficiency understand-
ing of structural equations models sketched in the previous chapter are committed to
these three principles. And if we accept these three principles, then there will be pairs
of isomorphic structural equations models, each of which are correct, whose variables
take on all the same actual values, and where each of those values have the same nor-
mality ranking, but which nevertheless differ with respect to which variable values
singularly caused which other variable values.

To begin with, I will assume that, given a neuron diagram, a system of structural
equations which consists entirely of binary variables for each neuron, together with
equations specifying the conditions under which the neurons will ëre, will constitute a
correct structural equations model of that neuron diagram. Call a structural equations
model like this the canonical representation of a neuron diagram. e ërst principle I
will require, then, is that the canonical representation of a neuron diagram is correct.

e Canonical Representation of Neuron Diagrams is Correct. A neuron diagram
is correctly modeled by a variable for each neuron which takes the value 0 if the neuron
doesn’t íre and takes the value 1 if it does, and a system of structural equations specifying
which other neurons each neuron immediately depends upon and how it so depends.

is principle follows from the counterfactual understanding of structural equations
models, since all of the counterfactuals associated with such a structural equations
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model will be true. It also follows from the nomic sufficiency account sketched in the
previous chapter.

A quick word on neuron diagrams: L (1986a) introduced neuron diagrams
as a means for representing some part of the actual world’s causal structure. However,
we need not understand neuron diagrams as representational tools. We can simply
understand them as completely describing a self-contained system which follows cer-
tain very simple laws. ere are possible worlds which consist entirely of neurons
connected in the ways speciëed by the diagram and obeying the law ‘ëre only if you
receive a stimulatory signal, unless you also receive an inhibitory signal’. Such possi-
ble worlds make good test cases for thinking about the world’s causal structure, since
often enough, it is very clear which neural ërings caused which other neural ërings,
and which did not. In their simplicity, these neuron diagrams provide a minimal bar
which an account of causation ought to meet. Where it is clear which neural ërings
caused which other neural ërings, it is a desideratum of an account of causation that
it get these cases right. If the account can’t be made to work in the simple and sterile
world of neuron diagrams, then it can’t be expected to work in the rich and messy
actual world.

We need not include every feature of a system in our structural equation model. It
is ëne for a model to take some features of the world for granted. When we model Suzy
and Billy throwing their rocks at the window, we need not include a variable for the
moon’s gravitational pull. Since the moon’s gravitational pull is constant, our model is
no worse for not including this variable—even though, at some counterfactual values,
this variable would make a difference to whether the window shatters. e same ought
to be true of neuron diagrams. We need not include a variable for every neuron in
the diagram. So long as the counterfactuals entailed by the system of equations are
all true, it doesn’t matter whether every neuron is explicitly represented. For instance,
in the neuron diagram displayed in ëgure 17 (reproduced above for convenience), we
need not include a variable for the neuron b in the diagram. Given that b didn’t
actually ëre, this neuron diagram would also be adequately described by the system
of structural equations E24 shown in ëgure 24. Of course, if we wanted to reason
about what would happen if we were to intervene upon neuron b, we would have
to include such a variable in our model. But that doesn’t mean that the pared-down
structural equations model can’t also be correct, and that we can’t appropriately use it
to determine the causal relationships between, e.g., the ëring of c and the ëring of e.
So it seems that we should accept the following principle.
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Figure 17

E24 =


g := a ∧ f
f := d ∧ e
d := c
e := c


Figure 24

RemovingExogenousVariables PreservesCorrectness. If a structural equations model
< U ,V , E > is correct, then any structural equations model attainable by removing an
exogenous variable U ∈ U is also correct.

e way to remove an exogenous variable is just to exchange the variable U for its
actual value u in all structural equations in which U appears. Again, this principle
follows from the counterfactual understanding of structural equations models, since
the counterfactuals entailed by the pared-down model is just a subset of the counter-
factuals entailed by the original model. If the original model was correct, then the
pared-down model ought to be correct as well. e same goes for the nomic suffi-
ciency account from chapter 3.

Similarly, we need not include every intermediate step between two events in our
structural equations model. So long as there is the right kind of counterfactual co-
variation between values of U and V , it shouldn’t matter which other variables sit
intermediate between U and V . For instance, we need not include a variable for the
ëring of d in the model shown in ëgure 17. Since d takes on the same value as c, we
can simply exchange c for d in f ’s structural equation and get the system of equations
E25 shown in ëgure 25. Similarly, since f ’s value is just a function of c and e, we can
reduce the system of equations further to get the system of equations shown in ëgure
26. e counterfactuals entailed by this system of structural equations are all true;
and there are not any extra counterfactual relationships between the variables a, c, e,
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E25 =

 g := a ∧ f
f := c ∧ e
e := c


Figure 25

E26 =

(
g := a∧ (c∨ e)
e := c

)
Figure 26

and g which the structural equations model fails to capture. If the original variable
set was an appropriate variable set, then the new variable set should be appropriate
as well, since the new variable set is just a subset of the original. So the structural
equations model E26 ought to be correct.

In general, it seems that we should accept the principle that functional composi-
tion of the equations in E preserves the correctness of a structural equations model.

Functional Composition Preserves Correctness. If a structural equations model <
U ,V , E > is correct, then any structural equations model attainable by taking the func-
tional composition of equations in E and removing the intermediate variables and their
structural equations is correct as well (so long as the composed function is not constant).

is principle also follows from the counterfactual understanding of structural equa-
tions models; as well as the nomic sufficiency account. (It is important, by the way,
that we remove the intermediate variables and their equations from the model, since
otherwise, the resulting system of equations may entail false counterfactuals. For
instance, if we replace g’s equation with g := a ∧ (c ∨ e) but retain the equation
f := c∧ e, then the resulting system of equations will entail that, if we were to inter-
vene so as to set f to 1 and c to 0, then g would still ëre, which is false.)

e problem is that, if we accept each of these three principles, then we ought to
think that the system of equations E26 correctly describes both the neuron diagram
from ëgure 17 and the neuron diagram shown in ëgure 27. Since, given these three
principles, we can start with the canonical representation of the neuron diagram on
display in ëgure 27, shown in ëgure 28. And, by removing the exogenous variable B,
get the system of equations E29, shown in ëgure 29. en, by functional composition,
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Figure 27

E28 =


G := F ∧ (D∨ E)
F := A ∧ B
D := B ∧ C
E := C


Figure 28

we can remove the variables F and D, getting the system E30, shown in ëgure 30,
which is isomorphic to the system E26.

Not only are the structural equations the same, but the values of the variables are
the same:

a = c = e = g = A = C = E = G = 1

And, in each case, the assignment 1 to a variable corresponds to that variable ëring at
its designated time. So there’s no difference between the two models with respect to
the normality of their variable assignments.

However, in the neuron diagram on display in ëgure 17, the ëring of c didn’t cause
the ëring of g; whereas, in the neuron diagram on display in ëgure 27, the ëring of C
did cause the ëring of G.

e lesson: if we accept the three principles about the correctness of structural
equations models laid down above, then we must think that a correct structural equa-
tions model and a normality ranking of variable values underdetermines the singular
causal relations between the values of the variables appearing in that model. Equiv-
alently: if we want to be able to derive relations of singular causation from a correct
structural equations model, the standards of correctness must be strong enough to
invalidate one of these three principles.
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E29 =


G := F ∧ (D∨ E)
F := A
D := C
E := C


Figure 29

E30 =

(
G := A ∧ (C ∨ E)
E := C

)

Figure 30

4.5 O  S

Rejecting recalcitrant data is always an option. We could, then, simply deny that
the ëring of C caused the ëring of G in the neuron diagram in ëgure 27. Alternatively,
we could deny that the ëring of c didn’t cause the ëring of g in the neuron diagram
in ëgure 17. To do this, however, is only to solve one instance of a more general
problem. Other neuron diagrams can be constructed which, together with the three
principles of the previous section, give rise to a conìict between our theory and our
characteristic causal judgments. If we take the strategy of rejecting recalcitrant data,
there may be quite a lot of recalcitrant data to reject. I take this to be a signiëcant
theoretical cost; and an option of, if not last resort, then at least late resort.

Another potential response to these kinds of worries shows up in H &
H (2010), where we are told that

the structural equations can be viewed as describing objective [counter-
factual] features of the world. However...the choice of variables and their
values can also have a signiëcant impact on causality. Moreover, these
choices are, to some extent, subjective. is, in turn, means that judg-
ments of [singular] causation are subjective.12

ese comments about subjectivism could be taken in at least two ways. Firstly, we
might suspect that H & H are endorsing a kind of contextualism
about claims of singular causation; so that two different contexts could raise to salience
two different structural determination relations, and the salience of those structural
12 H & H (2010, §1)
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determination relations could make a difference to the proposition expressed by a
sentence of the form ‘c caused e’. We might then think that two correct structural
equations models could differ in their verdicts about which variable values are causally
related by representing, or failing to represent, these structural determination rela-
tions.13 If we think this, we might be inclined to reject the counterexample of §4.4
by claiming either that there are contexts within which the sentence ‘C’s ëring didn’t
cause G’s ëring’ is true, or that there are contexts within which the sentence ‘c’s ëring
caused g’s ëring’ is true, and that the verdicts of the pared-down structural equations
models E26 and E30 align with these contexts.

If there’s a context within which it’s true to say ‘c’s ëring caused g’s ëring’, it’s a
context in which we hold ëxed (for whatever reason) the fact that d ëred. In that
case, d would represent a threat to g’s ëring which c diffused by causing e to ëre. But
we ought not think that the pared-down structural equations model E26 puts us in
this context, since it doesn’t even include a variable for d. It therefore doesn’t allow
us to consider the possibility in which d ëres even though c doesn’t. And if there’s
a context in which it’s true to say ‘C’s ëring didn’t cause G’s ëring’, it’s a context
in which we are thinking about the lack of counterfactual dependence between C’s
ëring and G’s ëring—since, had C not ëred, B would have made G ëre. However,
there is a lack of counterfactual dependence between C’s ëring and G’s ëring in both
the original structural equations model and in the pared-down system of equations
E30. Moreover, only the original model allows us to explicitly consider the possible
inìuence of B’s ëring. So I’m dubious that contextualism is going to give us the
leverage to diffuse the counterexample of §4.4.

Alternatively, we might ënd in H & H’s comments a deeper kind
of subjectivism, according to which there either is no fact of the matter, contextually-
dependent or not, about which variable values singularly cause which other variable
values, or else these facts vary from person to person, depending upon which struc-
tural equations model they use to model the situation. In either case, if we are to be
in the business of giving an account of anything at all, then we must be in the busi-
ness of providing an account of causal judgments. And the claim must be that causal
judgments vary from person to person depending upon which structural equations
model they use to model the situation.14 Speaking for myself, I do not ënd my causal
13 See M (2007) for a development of this kind of contextualism about singular causation.
14 In that case, talk of ‘modeling a situation’ must be taken to be metaphorical; as the overwhelming

majority of causal judgments precede the mathematical formalism of structural equations models.
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judgments shifting when I model either of the neuron diagrams with the system of
equations E26 or E30; nor when I draw my attention only to the neurons A, C, E,
and G (or a, c, e, and g) and the counterfactual relationships between them (nor do
the judgments shift for a smattering of philosophers and non-philosophers to whom
I have presented the case). If this is right, then subjectivism is just another instance of
the strategy ‘deny the recalcitrant data’, bundled up with extra metaphysical baggage.
As I said, this should be a strategy of late resort. (Perhaps there are other reasons to
favor this brand of subjectivism, but it does not receive motivation from, nor provide
a convincing response to, the counterexample of §4.4.)

(As a matter of exegesis, it seems to me that another, perhaps more charitable
reading of H & H is suggested by H (ms)’s comment that
“As [H & H (2010)] pointed out, constructing a good model is
still more of an art than a science.”15 e “still” here suggests that the fact that
constructing a good model is more of an art than a science—and the concomitant
subjectivism—are understood as an ideally temporary state of affairs; the result of the
research program being still in its infancy. is reading also jibes better with some of
the comments I’ll discuss below.)

ere is another kind of response to underdetermination problems like these that
shows up in H & P (2005) and H & H (2010). In
each of these articles, the authors consider the well-worn preemption case from L
(1986a) in which Suzy and Billy both throw their rocks at the window, but Suzy’s rock
arrives ërst. As a ërst pass, it appears that we can properly model this case with three
binary variables, one which is 1 iff Suzy throws her rock and is 0 otherwise, one which
is 1 iff Billy throws his rock and is 0 otherwise, and one which is 1 iff the window
shatters and is 0 otherwise. With these variables, all of the causal counterfactuals
entailed by the system of structural equations

E = (W := S ∨ B)

are true. However, this equation is perfectly symmetric with respect to S and B; and
if S = B = 1, then there is nothing to distinguish S = 1 from B = 1. But, in
the standard story, it was Suzy’s throw, and not Billy’s, which caused the window to
shatter, since Suzy’s rock was the one that actually hit the window. e window was
already shattered by the time Billy’s rock arrived. It could also be the case, consistent
15 H (ms, §6, emphasis added)
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with the structural equation W := S ∨ B, that S = B = 1, yet Billy’s rock was the
one that shattered the window. e model, therefore, underdetermines the singular
causal structural of the variables S , B, and W. is is another ìavor of the kind of
underdetermination worry that I’ve been discussing for the past twenty-odd pages.
H & P (2005) and H & H (2010) both consider this
causal model, and both deem it inadequate. However, neither have much to say about
why the model is inadequate. Both simply say:

e trouble with this model is that it cannot distinguish the case where
both rocks hit the [window] simultaneously...from the case where Suzy’s
rock hits ërst. (H & P 2005, p. 861, H & H-
 2010, § 3.2, p. 11)

Both are quick to point out that there are other models of the Suzy and Billy case
which can be used to ground an asymmetry between Suzy’s and Billy’s throw.

ese remarks suggest a simplistic strategy for dealing with any underdetermina-
tion problem (which I do not attribute to these authors): just reject the model within
which singular causation is underdetermined, and suggest an alternate model. Per-
haps we also throw in some very speciëc remarks about what was wrong with the
original model that doesn’t clearly generalize to any other models. ere is something
frustratingly evasive about this strategy. H & P (2005) and H
& H (2010) are, of course, clearly right that what’s wrong with the struc-
tural equation W := S ∨ B is that it doesn’t allow us to distinguish the case where
both rocks hit simultaneously from the case where one of the rocks hits ërst. But this
remark doesn’t tell us anything about what more than the correctness of the causal
counterfactuals is required for a structural equations model to be adequate. It may, of
course, be a good strategy for practicing researchers: if a model yields results known
to be false, ënd a new model. But it does nothing to address the question of what it
is for one of these models to be correct in the ërst place. And, presumably, if we’re
in the business of providing an account of singular causation, we will want to know
how to answer this question.

We may well also wonder why, if this is an acceptable strategy to adopt in response
to the the problematic structural equation W := S ∨ B, isn’t it also an appropriate
strategy to adopt in response to H (2007)’s counterexample from §4.2? It is pos-
sible, after all, to provide a new variable set and a new system of structural equations
which entail only true counterfactuals and which will join with the (HP) account to
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deliver the verdict that c’s ëring didn’t cause g’s ëring in the neuron diagram described
in ëgure 17. (e (HP) account already gets the result that C’s ëring caused G’s ër-
ing in the neuron diagram described in ëgure 19, since, were B to not ëre, G’s ëring
would counterfactually depend upon C’s ëring.) To do this, we just have to remove
the variables a, b, and d from the model to get the system of equations

E =


g := f
f := c∧ e
e := c


All of the counterfactuals entailed by this model are correct, and, in this model, there
is no way of partitioning the variables so as to satisfy (HP, 2).16

is points to a deeper problem with this strategy for dealing with underdetermi-
nation worries. If we play the game this way—any counterexample is simply evidence
that a different structural equations model is called for—then an account of singu-
lar causation will be immune from counterexamples. Any potential counterexample
simply provides evidence that the structural equations model needs to be changed in
some way. If we play by these rules, the account of singular causation never has to
stick its neck out; it never has to make any predictions at all.

Here’s another suggestion. Up until now, I’ve been running with the idea that,
if you have a correct structural equations model M, then all the singular causal rela-
tions between the values of the variables in U ∪ V can be extracted from M and Uω,
and perhaps a normality ranking function r. at is, I’ve been accepting the general
approach of H & P (2001, 2005), which is to deëne singular causation

16 H (ms) shows that enriching a model with extra endogenous variables in a conservative way
(in a way such that all the counterfactuals of the original model are still true) can never turn a non-cause
into a cause. is case shows that this result cannot be generalized to cases in which we enrich the model
with additional exogenous variables in a conservative way (a way such that all the counterfactuals of the
original model are still true). Since, in the canonical representation of the neuron diagram in ëgure 17,
(HP) counts c = 1 as a cause of g = 1 (in the counterfactual setting in which b = 1, whether g = 1
depends upon whether c = 1). And this is a conservative extension of the impoverished structural
equations model in the body immediately above. However, (HP) does not rule c = 1 a cause of g = 1
in the impoverished model. So, this is a case in which enriching the model with extra variables changes
a non-cause to a cause, according to (HP). Moreover, the present case shows, I think, that this latter
notion (enriching by including extra variables, be they endogenous or exogenous) must surely be the
notion that we ought to care about when it comes to ferreting out singular causal relations. If start
with the impoverished model in the body immediately above, and we want to understand the causal
structure of the neuron diagram shown in ëgure 17, we had better enrich it with additional exogenous
variables.
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only relative to a particular structural equations model. However, there are other ap-
proaches to accounting for singular causation which insist that there’s an important
relationship between singular causation and structural determination without claim-
ing that singular causation is only deëned relative to a particular structural equations
model. For instance, we could account for singular causation by quantifying over all
correct structural equations models. We could, for instance, claim that C = c is a
cause of E = e iff there is some correct structural equations model within which our
account yields the verdict that C = c is a cause of E = e.17 is doesn’t rule out
that there might be other correct structural equations models within which our ac-
count fails to yield this verdict. If we think about the relationship between causation
and structural equations models this way, then we will not be as bothered by false
negatives (correct structural equations models within which our account tells us that
C = c doesn’t cause E = e even though C = c does cause E = e) as we are by false
positives (correct structural equations models within which our account tells us that
C = c causes E = e even though C = c doesn’t cause E = e). For a false negative
would still leave open the possibility that some other structural equations model gets
the judgment that C = c does cause E = e. And notice that the pair of isomorphic
structural equations models at the end of §4.4 do not provide a counterexample to
this way of using structural equations to understand singular causation, since an ac-
count of singular causation could rule that C = 1 isn’t a singular cause of G = 1
in the structural equations model E30. is would be a false negative, but we could
simply look to the more detailed structural equations model to get the verdict that
C = 1 is a singular cause of G = 1. Such an account would still stick its neck out. It
would open itself up to the risk of false positives within particular structural equations
models, as well as the risk of false negatives for which no correct structural equations
model can be found which joins with the account to yield the verdict that C = c
causes E = e.18

17 is approach is implicitly adopted in H (2001).
18 B & S (forthcoming) criticize this kind of approach on the grounds that there

could be one correct structural equations model within which C = c caused E = e and D = d
didn’t cause E = e, and another correct model within which C = c didn’t cause E = e, and D = d
did cause E = e, yet no model within which both C = c and D = d caused E = e. ey worry
that the above suggestion would yield the result that both C = c and D = d caused E = e, even
though there is no correct structural equation model within which both C = c and D = d caused
E = e. Whether we should be worried by this possibility depends, I believe, upon whether there
are possible situations like this. If such a situation were speciëed, it may constitute a counterexample
to the approach; however, we ought not be concerned by the mere fact that out account allows the
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While I don’t have any objections to this strategy, I am not hopeful that it will
solve all of our problems. e reason is that I suspect that singular causation is deeply
connected to counterfactual dependence within a correct structural equations model,
and I suspect that causation is, in some special circumstances, transitively closed—at
times, we can trace out a chain of causal relations and conclude that the ërst event
in the chain caused the last event in the chain, even though the last event doesn’t
counterfactually depend upon the ërst (see §5.3.5). So I believe that, given the im-
poverished structural equations model on display in ëgure 26, the correct account of
singular causation will rule that c = 1 causes e = 1 (since, in that structural equa-
tions model, e = 1 counterfactually depends upon c = 1), and e = 1 will cause
g = 1 (since, in that structural equations model, g = 1 counterfactually depends
upon e = 1). So c = 1 will cause g = 1—a false positive. Of course, all of that is
incredibly theory-driven. ose who don’t accept my theoretical commitments ought
not be moved. Nevertheless, I and those who share my theoretical commitments have
reason to look elsewhere for a solution to these underdetermination worries.

H & H provide another potential response. On this line, what’s
gone wrong with the structural equation modeling consisting of the sole equation
W := S ∨ B is that, if that model is enriched with more variables in a certain way, then
the (HP) account’s causal judgments are reversed (a cause becomes a non-cause). is
might tell us that the original model was incorrect. Here are H & H
(2010):

Suppose that we have an inënite sequence of models M1,M2, ... such
that the variables in Mi are C0, ..., Ci+1, E, and Mi+1,Ci+1=1 = Mi

(so that Mi+1 can be viewed as an extension of Mi). Is it possible that
whether C0 = 1 is a cause of E = 1 can alternate as we go through
this sequence? is would indicate a certain ‘instability’ in the causality.
In this circumstance, a lawyer should certainly be able to argue against
using, say, M7 as a model to show that C0 = 1 is a cause of Y = 1. On
the other hand, if the sequence stabilizes, that is, if there is some k such
that for all i ≥ k; Mi delivers the same verdict on some causal claim of
interest, that would provide a strong reason to accept Mk as sufficient.19

abstract form of a counterexample to be speciëed (in fact, we should be worried if our account didn’t
allow this).
19 H & H 2010, §4.1, with notational changes
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is suggests that we might want to impose a kind of stability criterion on a model’s
judgments about causation. If there is some way of enriching the variables appearing
in the model which changes our account’s judgments about which variable values are
causally related, then the original model is not correct. Note two things about this
strategy. Firstly, we could deëne stability only with respect to causes, only with respect
to non-causes, or with respect to both. On the ërst approach, if our account looks at
M and rules that C = c caused E = e, then, if there exists a model M′ with more
variables than M such that our account looks at M′ and rules that C = c didn’t
cause E = e, then the original model was incorrect. However, if our account looks at
M and rules that C = c didn’t cause E = e, and there is some model M′ with more
variables that M such that our account looks at M′ and rules that C = c did cause
E = e, this does not mean that the original model was incorrect. at is: on the
ërst approach, if enriching the variable set leads a cause to become a non-cause, then
the original model is incorrect; whereas, the fact that enriching the variable set leads
a non-cause to become a cause does not tell us that the original model was incorrect.
On the second approach, if enriching the variable set leads a non-cause to become a
cause, then the original model was not correct; however, just because enriching the
variable set leads a cause to become a non-cause, this does not mean that the original
model was incorrect. And, on the ënal approach, if enriching the variables leads a
cause to become a non-cause or a non-cause to become a cause, then the original
model was incorrect.

Secondly, the notion of stability in play here will depend upon the particulars of
our account of singular causation. erefore, if we take stability to be a necessary
condition on the correctness of a model, then whether a model is correct will depend
upon our account of singular causation. is is at least a prima facie mark against such
a strategy. If we have hopes of offering a reductive analysis of causation in terms of
relations of structural determination, then we ought to have hopes that we’ll be able to
tell a story like this: there are networks of structural determination out in the world.
We can specify what it takes for the world to have a certain determination structure
without reference to facts about which events caused which other events. Singular
causation can then deëned in terms of these networks of structural determination.
With the stability criterion, however, we are no longer able to tell this story, and it’s
unclear what other reductive story we have to tell in its stead.

H (ms) shows that, while including further endogenous variables in a
model can lead (HP) to revise its judgment about causes, it cannot lead (HP) to re-
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vise its judgments about non-causes. He begins by deëning the notion of a conser-
vative extension of a causal model. M′ =< U ′,V ′, E ′ > is a conservative extension
of M =< U ,V , E > just in case U = U ′, V ⊊ V ′, and for every V ∈ V , every
V
∗ ⊆ V def

= V − {V}, every assignment v∗ to V
∗
, and every possible setting of the

exogenous variables u,

M, u |= V
∗
= v∗� V = v ⇐⇒ M′, u |= V

∗
= v∗� V = v

at is: M′ is a conservative extension of M just in case M′ has all the same exoge-
nous variables as M, strictly more endogenous variables than M, and M′ entails all
the same counterfactuals about the endogenous variables in M as M does. He then
proves that, if the (HP) account of singular causation rules C = c a non-cause of
E = e in M, then it will rule C = c a non-cause of E in any conservative extension
of M. at is, non-causation is, in a certain sense, stable.

is is an interesting result; however, it does not appear to be relevant to our
present worries. If we thought that a causal model counts as correct iff all of its associ-
ated counterfactuals are true and the model is stable, in the sense that no conservative
extension overturns its causal judgments, then we would think that this result means
that, if we have a structural equations model all of whose counterfactuals are true, then
we can trust the (HP) account’s judgments of non-causation, even though we might
want to remain skeptical about its judgments of causation. However, it seems clear
that this is not the notion of stability that we’re after. ere may be no conservative
extension, in H (ms)’s sense, of a model within which our account of singular
causation tells us that C = c causes E = e; however, we shouldn’t conclude from
this that C = c doesn’t cause E = e.

To see this, note that the canonical representations of the neuron diagrams shown
in ëgures 17 and 27, E18 and E28, are not conservative extensions of the impoverished
models E26 and E30. at’s because both E18 and E28 contain more exogenous variables
than E26 and E30. Yet H (ms)’s deënition of conservative extension required that
the exogenous variables are held ëxed when we extend the model. So, it seems to me,
the notion of stability that we’re after is not the notion of holding true within every
conservative extension. We may, of course, generalize H’s notion by deëning a
new notion, call it conservative extension+ so that M′ is a conservative extension+ of
M iff U ∪ V , U ′ ∪ V ′, U ⊆ U ′, V ⊆ V ′, and all the counterfactuals true in M are
true in M′. However, then H (ms)’s result no longer holds—(HP) may rule
C = c a non-cause of E = e in M yet rule C = c a cause of E = e in a conservative
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extension+ of M (see footnote 16). So I don’t believe that this result is particularly
relevant to the question of how to avoid underdetermination worries.

In the absence of a result like H (ms)’s, if we accept stability as a criterion
of correctness, then ëguring out whether C = c caused E = e becomes incredibly
complex. It is not enough to recognize some network of structural determination rela-
tions out in the world and apply some simple counterfactual test. One must addition-
ally explore all networks of structural determination which include some additional
exogenous variables. But there will always be myriad additional, not-too-unnatural
variables which may be included in a model. For any exogenous variables in a given
model, we can simply consider the variables which structurally determine them; and
then consider the variables which structurally determine the variables which struc-
turally determine the exogenous variables, and so on and so forth. On an account
like this, without a result like H (ms)’s, it becomes mysterious how we are
often able to attain causal knowledge so effortlessly.

H & H (2010) suggest another kind of stability that a model
might have: not stability with respect to our account of singular causation’s judgments;
but rather stability with respect to certain features of the structural equations model
itself. eir suggestion is that

...adding additional variables to a model will not affect the relations of
[singular] causation that hold in the model unless the addition of those
variables changes the ‘topology’ of the model.

e suggestion is, then, that in order for a model to be correct, it must entail only true
counterfactuals, and, moreover, there must be no other model including all the vari-
ables from the ërst, which entails only true counterfactuals, and which has a relevantly
different topological structure than the original model.

Here is a way of precisifying this idea. Say that a parent-child relationship between
the variables C and P in a causal model—the relationship represented in a causal graph
by an arrow with its tail at P and its tip at C—is autonomous if there is no other parent
of C, P′, and no omitted variable O, such that, by including the omitted variable O
in our model, we get a correct causal model within which P and P′ are parents of O,
and O is an ancestor of C.

Autonomy: P → C is an autonomous structural determination relation
in a causal model M iff there is no correct causal model M′ such that
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V ⊊ V ′ and, in M, P, P′ ∈ PA(C), and in M′, P, P′ ∈ PA(O) and
O ∈ AN(C).20

at is: if there’s a way of tying together multiple of the arrows leading from PA(C)

to C, so that some of C’s parents only inìuence C via some intermediary variable
O, then these arrows do not represent autonomous structural determination relations.
Naturally, we must rule out gerrymandered omitted variables to keep this deënition
from ruling every structural determination relation non-autonomous. But some such
restriction on the kinds of variables that get to enter into a structural equations model
is going to be needed if there’s any hope of using these models to give an account of
causation.

If we then say that a structural equations model is only correct if all of its structural
determination relations are autonomous, then we can say that the system E30 correctly
represents the neuron diagram displayed in ëgure 27, whereas E26 does not correctly
represent the neuron diagram displayed in ëgure 17—for the structural determination
relation c→ g is not autonomous from the structural determination relation e→ g.
We can tie these two structural determination relations together by including the
variable f in our model. With f included we get the system of equations E25, in
which c, e ∈ PA( f ) and f ∈ PA(g). Adopting autonomy as a necessary condition for
the correctness of a causal model means rejecting Functional Composition Preserves
Correctness, since functional composition can remove variables lying along the joint
path by which two ancestors inìuence their descendant. We can, however, retain
Removing Exogenous Variables Perserves Correctness.

For my money, this ënal suggestion is the most promising—i.e., singular cau-
sation can only be uncovered in structural equations models all of whose structural
determination relations are autonomous. Of course, this suggestion could very well be
combined with the suggestion that two variable values are causally related iff there is
some structural equations model within which the account rules them to be causally
related. Indeed, this dual approach is the one that I adopt in chapter 5. However, I will
not defend it any further here. e proof of this pudding lies in the eating of chapter
5. Here, I am content to have 1) argued that if we think that the truth conditions for
structural equations models are given by causal counterfactual conditionals—or if we
simply accept the three principles laid down in §4.4—then relations of singular cau-
sation are underdetermined by a correct structural equations model, and 2) outlined
20 ‘AN(C)’ is a vector of C’s ancestors.
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some general strategies which we may adopt to deal with this problem, and discussed
some of the advantages and pitfalls of these strategies.
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CHAPTER5
A THEORY OF SINGULAR

CAUSATION

5.1 I

I chapter 3, I argued that an understanding of structural equations models accord-
ing to which their correctness conditions are provided by causal counterfactual

conditionals is incapable of securing the independent manipulability of the structural
determination relations in a correct structural equations model—a property known
as modularity. In contrast, I presented an alternate understanding of the content of a
structural equations model, dubbed the ‘nomic sufficiency’ understanding, according
to which a structural equations model is correct only if, for every endogenous vari-
able in the model, there exists a set of possibilities meeting certain constraints, and
throughout which that endogenous variable’s structural equation is descriptively ad-
equate. It was demonstrated that this account entails that structural determination
relations are independently manipulable, that it provides a way of understanding the
technical notion of an intervention, as well as a criterion for distinguishing ways of
setting the values of variables which do from those which do not constitute interven-
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tions, and that it allows correct structural equations models to provide a reductive
semantics for causal counterfactual conditionals.

In chapter 4, I introduce the additional requirement that the structural determi-
nation relations in a correct structural equations model be autonomous. What it is
for a structural determination relation between a parent variable P ∈ PA(C) and its
child C to be autonomous is for there to be no way of including omitted variables in
the model which delivers a correct structural equations model according to which two
parents P, P′ ∈ PA(C) in the original model are both parents of an omitted variable,
O, which is an ancestor of C in the new model. If the structural determination rela-
tions in a structural equations model are autonomous, then each arrow in the causal
graph represents a structural determination relation which operates independently of
all of the others.

Here, I will use the relations of structural determination codiëed in a correct struc-
tural equations model to provide an account of singular, token, or actual causation.1

Key to my account will be the distinction between events in which a variable value
changes and those in which a variable value remains constant. However, given the
way that I deëned variables in chapter 3—as a mapping from possible worlds to the
real line—variable values are not capable of changing over time within a world. I will
therefore introduce dynamic variables—mappings from world-time pairs to the real
line.

I will then introduce dynamic structural equations models, which are capable of
modeling structural determination relations between dynamic variables, determina-
tion relations which endure through time. In rough outline, the view to be advanced
here is that such structural determination relations provide the pathways along which
causal inìuence propagates, and that causation is a form of counterfactual dependence
in a correct structural equations model—sometimes, and in a certain way, transitively
closed. In §5.2, I will introduce dynamic structural equations models and explain
how they allow us to draw the important distinction between actual and merely hy-
pothetical interventions. In §5.3, I will develop my account of singular causation. On
this account, there are important causal differences between events in which variable
values change and those in which they remain constant. For this reason, I will dub this
account the dynamic counterfactual account of singular causation. roughout §5.3,
I will demonstrate how the dynamic account handles cases of early and late preemp-

1 I take these terms to be synonymous. For the sake of consistency, I’ll stick to ‘singular’ throughout.
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Figure 31: Structural Determination between dynamic variables. e value of a dynamic vari-
able at one time can determine the value of another dynamic variable at a distinct time. In the
ëgure above, Y is determined by X during the interval [t0 + δ, t1 + δ], and X determines Y
during the interval [t0, t1]. is structural determination relation is represented by the struc-
tural equation Yt = ϕ(Xt−δ), ∀t ∈ [t0 + δ, t1 + δ].

tion (§5.3.1.1), preemptive prevention (§5.3.2.1), transitivity violations (§5.3.5.2)—
including cases of switching (§5.3.8)—short circuits (§5.3.7), symmetric overdetermi-
nation (§5.3.9), preemptive double prevention (§5.3.10), and trumping (§5.3.11).

5.2 D S E M

As I said in chapter 3, the variables which enter into structural determination
relations with one another are standardly understood to be partial functions from the
set of possible worlds to the real line.2 is has the consequence that variable values
cannot change over time at a world. It will be important to my account of singular
causation that the variables entering into relations of structural determination with
one another can change their values over time. So let us start thinking about variables,
not as partial functions from possibile worlds ω ∈ Ω to the real line, but rather as
partial functions from world-time pairs, < ω, t >∈ Ω×T (where T is the set of times
t), to the real line, R. We can call variables like these dynamic variables. Call variables
from worlds to R static variables. Just as the value of static variables can vary over
different worlds, the values of dynamic variables can vary over time within a world.
For any dynamic variable V , I’ll use ‘Vω, t’ to denote the value of V at world-time pair
< ω, t >, just as ‘Vω’ denoted the value of V at world ω. As before, I will use ‘Vt = v’
to denote the proposition that V takes on the value v at t (i.e., the set of worlds ω such
that Vω,t = v).

For illustration, consider a dynamic system of structural equations like the follow-
ing:

2 At least, this is how they are deëned when they are explicitly and rigorously deëned, which is not
as often as one which have hoped—see H (2007).
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E32 =

(
Yt := ϕY(Xt−δ) ∀t ∈ [t0, t1]
Zt := ϕZ(Xt−δ, Yt−δ) ∀t ∈ [t0, t1]

)

Figure 32

Here, the value of Y at t is structurally determined by the value of X at t − δ, for
any t in the interval [t0, t1]. And the value of Z at t is structurally determined by the
value of both X and Y at t − δ, for any t in the interval [t0, t1]. (Notice that, here,
variables at distinct time indices can enter into structural determination relations with
one another. For instance, even though Y is structurally determined by X, it takes δ
seconds for a change in the value of X to affect the value of Y . Y ’s value at any
time is structurally determined not by X’s value at that time, but rather by X’s value
δ seconds prior. Similarly, Z’s value at any time is structurally determined by the
values X and Y had δ seconds prior. See ëgure 31.) If we take each of the variables
appearing in these equations to be static variables, then, for every t ∈ [t0, t1], we will
have a structural equation of the form Yt := ϕY(Xt−δ). Since, on this understanding,
for every t, t′ ∈ [t0, t1](t , t′), Yt, Yt′ , Xt−δ, and Xt′−δ are distinct variables, this
means that the structural determination relation between Yt and Xt−δ must be distinct
from the structural determination relation between Yt′ and Xt′−δ. Since there are
continuum many times in [t0, t1], there will be continuum many static variables in
our model, and therefore continuum many structural determination relations. On
the other hand, if we treat X and Y as dynamic variables, then we need have only a
single structural determination relation between X and Y which persists from t0 to t1.

What we mean by ‘structural determination relation’ thus depends upon whether
we take the variables to be static or dynamic. If we conëne our attention to static vari-
ables, then the term ‘structural determination relation’ will not pick out something
which persists through time. If we conëne our attention to dynamic variables, then
‘structural determination relation’ will pick out something which persists through
time. Nevertheless, so long as the values of the static variables depend solely upon the
state of the world at a certain speciëc time—as my discussion in chapter 3 presupposed
that they did—we can straightforwardly translate talk about structural determination
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relations between dynamic variables into talk about structural determination relations
between (perhaps continuum many) static variables. What it is for a dynamic struc-
tural determination relation between the dynamic variables Y and X to persist from t0
to t1 is just for there to be continuum-many static structural determination relations
between the static Yt and Xt−δ, for all t ∈ [t0, t1].3 So we can translate everything that
I have to say about dynamic structural determination between dynamic variables into
talk about static structural determination between static variables. So translated, the
account I offered in chapter 3, together with the autonomy condition from chapter 4,
will provide the correctness conditions for dynamic structural equations models.

5.2.1 A  H I

In chapter 3, I noted that the nomic sufficiency account of structural equations
models allowed us to give an account of which ways of setting a variable value count
as interventions. One advantage of the move to dynamic causal models which is worth
mentioning is that it allows us to easily distinguish between two kinds of interven-
tions: actual and hypothetical interventions. at is, the interventions that are actually
performed and those which are not actually, but could possibly have been, performed.
In the case of hypothetical interventions, we consider a non-actual world in which the
structural equation ϕV is not in force, despite all the other structural equations in the
model remaining in force, as in ëgure 33. In the case of actual interventions, the actual

Figure 33: A hypothetical intervention

world’s history takes it on a path from a time during which all the equations in E are
in force to a time during which ϕV is not in force, but all the equations in E − {ϕV }
are, as shown in ëgure 34.

3 If the value of Y at t1 is structurally determined by all values had by X throughout [t0, t1], as
in E 36 below, then there is a single structural determination relation between the static Yt1 and the
continuum-many static variables Xt, for all t ∈ [t0, t1].
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Figure 34: An actual intervention

While the distinction between actual and merely hypothetical interventions is
quite natural, it is difficult to make sense of actual interventions if we think of struc-
tural equations models as relating static variables. at’s because, if we are dealing with
variables V , U which only take on a single value at any possible world, then either V
is actually structurally determined by U, in which case there is no actual interven-
tion, or V is not actually structurally determined by U, in which case it’s unclear why
we should think that any event at the actual world which determines the value of V
should count as destroying or removing a structural determination relation between V
and U—ex hypothesi, there is not and never was any such dependence relation. I think
the best thing to say about actual interventions in a framework that deals exclusively
with static variables is that an intervention destroyed U’s structural determination of
V just in case, had the intervention not taken place, U would have structurally de-
termined V . However, this counterfactual deënition of an actual intervention runs
into the same kind of preemption worries that the counterfactual analysis of causa-
tion runs into. Simply because I is an actual intervention on the value of a variable V
which destroys its determination by U, this doesn’t mean that, had I not occurred, V
would have been determined by U, since it could be that, had I not occurred, another
intervention I′ would have occurred, which would have destroyed the determination
of V by U. I could continue adding epicycles, but there’s no reason to. My point isn’t
that there’s no way to make sense of actual interventions without dynamic structural
equations models; it is rather merely that it’s difficult to make sense of actual inter-
ventions using static structural equations models, and that it isn’t nearly as difficult
to make sense of them using dynamic models.
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5.3 A D T  S C

If we think of a causal model as relating these dynamic variables, then it describes
a determination structure which persists through time. On this way of understanding
structural determination, we can begin to take much more seriously the understanding
of structural determination which says that E is determined by PA(E) just in case
wiggling the variables in PA(E) wiggles E, since, on this understanding of variables,
PA(E) and E are actually capable of wiggling. e values of PA(E) can actually
change, and if E is structurally determined by the variables in PA(E), then this change
in the values of PA(E) can bring about a change in the value of E. In the previous
sentence, I said ‘bring about’, but I might just as well have said ‘cause’. Let me go
ahead and say it, then: one thing, at least, that can cause and be caused is changes in
the values of dynamic variables. e structural determination relations represented in
a correct dynamic structural equations model provide the pathways along which this
causal inìuence propagates.

On my view, an understanding of all the complexities of singular causation, and
our thought and talk about it, requires distinguishing events in which a variable value
changes from those in which its value stays constant. Events of the ërst kind are
exciting; they are the events that usually attract our attention. Events of the second
kind are boring; they rarely catch our attention, but they are no less ët to enter into
causal relations for all that. All causation reduces to a species of causal counterfactual
dependence, but causal relations between exciting events require different treatment
than those relating boring events. While causal relations between exciting events are
always transitively closed (or near enough—more on that below), those relating boring
events are not. Because this account places so much weight on the kinds of changes
that variable values undergo or fail to undergo, and the times at which they (fail to)
undergo them, I will dub it the dynamic counterfactual theory of singular causation.

To make explicit what was implicit in the foregoing: On the dynamic theory, the
causal relata are the events of variables taking on or changing their values at certain
times. is cuts the causal relata somewhat thin—the event of John’s saying ‘hello’ will
be distinct from the event of John’s saying ‘hello’ loudly, since a binary variable which
tells us whether John says ‘hello’ will be distinct from the variable which tells us how
loudly John says ‘hello’—which will, of course, be distinct from the variable which
tells us both whether John says hello, and, if he said ‘hello’, how loudly he said it.
(For this reason, it allows for the existence of high-level events, in the sense of chapter
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2. Moreover, simply because there is a structural determination relation between the
low-level variable describing the fundamental physical state of Gliese 163c’s orbit and
the low-level variable describing the fundamental physical state of the U.S. economy,
this does not mean that there will be a structural determination relation between a
variable describing whether Gliese 163c has orbited and a variable describing whether
the U.S. economy has stagìated (see ëgure 2). For this reason, so long as we are
allowed to feed high-level variables into the dynamic account, it will entail the thesis
I called ‘causal emergentism’ in chapter 2.)

5.3.1 P C

Some notation: I’ll represent a change in a variable V ’s value at time t with ‘∆Vt’.
I’ll represent a change in a variable V ’s value, from v0 to v1, at time t with ‘∆(v0, v1)V

t ’.
And I’ll use ‘C’ to represent the singular causal relation. If there is a network of
structural determination relations described by a correct structural equations model
M =< U ,V , E >, with C, E ∈ U ∪V , then we can lay down the following sufficient
condition for a change in C’s value, from c0 to c1, at time t causing a change in E’s
value, from e0 to e1, at time t′, at world ω, according to the model M:

(P 1) M,Uω,[ fE(t′),t′] |= ¬∆Ct � ¬∆Et′

at is, if M, together with a speciëcation of the values of the variables in the model
throughout the relevant time period at ω, entails that, had C not changed its value at
t, then E wouldn’t have changed its value at t′, then according to M, C’s change in
value caused E’s change in value, C(∆Ct,∆Et′). e relevant time period is the time
period during which E’s ancestors could have had an effect upon E. Each structural
determination relation between a variable and its children will involve some time lag
(in the case of instantaneous causation, this time lag will be zero). Add up the time
lags along every directed path between E and each of its exogenous ancestors. Let
l(E) be the longest such time lag. en, let fE(t) be t − l(E). en, the relevant
time period is the period [ fE(t′), t′].

We should evaluate this counterfactual as follows: in order to satisfy the an-
tecedent, we mutilate the model, severing the determination of C by PA(C), and
make it the case that C’s value doesn’t change at t. at means that C should stay at
its original value c0 at t. We then see whether, according to the structural equations
in E − {ϕC}, given the actual values of the variables during the period [ fE(t′), t′], E’s
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value changes to e1 at t′. ere are three ways this could fail to happen: either 1)
E could fail to change its value to e1 at t′, changing its value either earlier or later
instead, or 2) E could fail to change its value to e1 at t′, remaining at e0 instead, or 3)
E could fail to change its value to e1 at t′, changing its value to something else instead.
In any of these cases, ∆Ct is a cause of ∆Et′ .

It may seem that to say this is not yet to say very much—it is, after all, merely
to say that a certain kind of counterfactual dependence in a correct structural equa-
tions model is sufficient for singular causation. Most everyone in the counterfactual
tradition is willing to accept that causal counterfactual dependence is sufficient for
causation. So, if a correct structural equations model succeeds at its job of providing
a semantics for causal counterfactuals, then (P 1) should be true. Note, though,
that this counterfactual appeals only to the changes in variables values at times, and
not to the occurrence or non-occurrence of events. In order to evaluate this counter-
factual, we don’t have to say anything about whether, if C hadn’t changed its value
at t, there would have been a different event in its place; nor do we have to say any-
thing about which possibility in which C’s value doesn’t change is the possibility most
similar to actuality. ough we’ve said that the causal relata are the events of vari-
able values taking on such-and-such values, or changing their values at such-and-such
time, in order to say this, we don’t have to say anything about the modal proële of
these events. We just evaluate the counterfactual in the straightforward way outlined
in the previous chapter: sever the connections between C and it’s causal parents at t,
set its value to c0, and solve for the values of all the other variables in the model ac-
cording to their structural equations, given the values of their parent variables during
the period [ fE(t′), t′].

We can go further by considering another kind of counterfactual dependence—
what we can call local counterfactual dependence. Local counterfactual dependence
is not counterfactual dependence of ∆Et′ on ∆Ct within a full network of structural
determination. Rather, it is counterfactual dependence of ∆Et′ on ∆Ct within the
local determination structure relating E and its parent variables. ∆Et′ locally depends
upon ∆Ct at ω according to M =< U ,V , E > (with ϕE ∈ E) just in case (P 2).

(P 2) ϕE , PA(E)ω,[ fE(t′),t′] |= ¬∆Ct � ¬∆Et′

at is, if the isolated structural equation ϕE , together with the values of E’s parent
variables throughout the period [ fE(t′), t′] entails that, had C not changed its value
at t, then E wouldn’t have changed its value at t′, then ∆Et′ locally counterfactually
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depends upon ∆Ct at ω according to M. (Note that ϕE could only entail this if
C ∈ PA(E), so a change in variable value can only locally counterfactually depend
upon the values of its parent variables in some correct structural equations model.)
is counterfactual is to be evaluated in the same way as the previous one, except with
our attention conëned to E’s structural equation alone—it is true so long as, were C
to remain at its previous value at t, and were all of the variables in PA(E) to be held
ëxed at their actual values during [ fE(t′), t′],4 ϕE tells us that E would have either 1)
never changed its value, or 2) changed its value earlier or later, or 3) changed its value
to something else.

Below, I will explain what looking at local counterfactual dependence gains us.
For now, let me just state that, if a change in E’s value at t′ counterfactually depends,
either globally or locally, upon a change in C’s value at t in some correct dynamic
structural equations model, then ∆Ct is what I will call a productive cause of ∆Et′ .

(P) ∃M : (P 1) or (P 2) =⇒ C(∆Ct,∆Et′)

e reason for the ‘productive’ modiëer is that I do not think that changes in variable
values are the only kinds of events that can be causally related. A variable’s static value
at a time can also cause and be caused. I’ll have more to say about those kinds of
causal relata in the following sections. Right now, I just want to focus on productive
causation.

5.3.1.1 P

Billy and Suzy stand in front of a window with rocks in hand. Billy is a bit closer
than Suzy. Both Suzy and Billy throw rocks at the same speed, and both have excel-
lent aim. If either of them throw their rocks at the window, then the window will
shatter. In this case, the structural determination relations described by the system of
equations E 35, shown in ëgure 35, will be in force. (In ëgure E35, δ > ϵ). Suppose
that Billy never throws his rock, but that, at some time t − δ, Suzy throws her rock
at the window. is means that, at t − δ, S changes its value from 0 to 1. So, at t,
the window will break, so at t, W will change its value from 0 to 1. According to the
account given here, ∆(0, 1)S

t−δ is a productive cause of ∆(0, 1)W
t (either disjunct of

(P) will get this result).
4 Holding ëxed does not mean holding static. If the variables in PA(E) change their values during

[ fE(t′), t′], then such changes should be held ëxed when evaluating the counterfactual.
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E 35 = (Wt := S t−δ ∨ Bt−ϵ ∀t ∈ T)

Figure 35

E 36 =

(
Wt := S t−δ ∨ Bt−ϵ ∀t ∈ [t0, t′]

Bt′−ϵ := ∀t ∈ [t0, t′ − ϵ] S t

)

Figure 36

Suppose, on the other hand, that both Suzy and Billy are determined to have the
window shatter before t′. Billy will let Suzy shatter the window, but if she waits too
long, then he will have to throw in order to have the window break in time. is
is a case of early preemption. In this case, E 36, shown in ëgure 36, will be in force.
(In E36, δ > ϵ, and, in the bottom equation, the quantiëer is a part of B’s structural
equation—the state of B at t′ − ϵ is determined by the state of S at all times between
t0 and t′ − ϵ.) If Suzy throws before t′ − ϵ, then Billy will not throw. However, if she
doesn’t throw before t′ − ϵ, then Billy will throw. Suppose that Suzy throws at t′ − δ,
and so the window shatters at t′. If we evaluate the counterfactual

¬∆S t′−δ� ¬∆Wt′

with respect to the system of equations E 36 and the values of S , B, and W during
the relevant time period, it will tell us that the counterfactual is false. ∆Wt′ does
not counterfactually depend upon ∆S t′−δ. Had Suzy not thrown at t′ − δ, then Billy
would have thrown at t′ −ϵ, and the window would have shattered at t′ just the same.
However, ∆Wt′ does locally counterfactually depend upon ∆S t′−δ. If we look just at
W ’s structural equation, given the actual values of S and B from t0 to t′, ∆S t′−δ�
¬∆Wt′ is true. Given that Billy didn’t actually throw his rock, had Suzy not thrown
hers, the window wouldn’t have shattered. So (P 2) tells us that Suzy’s throw was
a productive cause of the window’s shattering.

Suppose, ënally, that the system of structural equations E35 is in force, and both
Suzy and Billy throw their rocks at the same time—i.e., S and B change their value
from 0 to 1 at t. en, E35 tells us that, had Suzy not thrown her rock at t, the bottle
would not have shattered at t + δ. Rather, it would have shattered at t + ϵ. So the
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counterfactual
¬∆S t � ¬∆Wt+δ

is true. So (P) tells us that Suzy’s throwing the rock caused the bottle to shatter.
at’s a case (commonly called a case of late preemption) that M’s 1965 ac-

count fails to get right, since Billy’s throw is an  condition for the bottle shattering.
It’s a case that Lewis’s 1973 counterfactual account was never able to get quite right,
since the bottle would have shattered even in the absense of Suzy’s throw and there
are no events intermediate between the throw and the shattering such that the shat-
tering counterfactually depends upon them. It’s one of the main problem cases which
motivated the epicycles of quasi-dependence5 and L’s 2000 inîuence account of
causation.

Here, we were able to get the result that Suzy’s throw caused the window to shatter
rather effortlessly. We did so by playing on a feature of the case which at least one
undergraduate seems to pick up on whenever the case is taught: while the window
would have still shattered if Suzy hadn’t thrown, it would have shattered a little bit
later. What we tell that undergraduate is what L told us: that they are playing
a dangerous game, making the events this fragile. What’s good for the goose is good
for the gander. If the window’s shattering could have so easily not occurred, then
Suzy’s throw could also have easily not occurred; she could have thrown her rock
from a slightly different angle, or with one eye closed, or with a smirk. And if it is so
easy to destroy the event of Suzy’s throwing the rock, then surely one of these is the
closest possibility in which the throw doesn’t occur. But the window would have still
shattered at the same time if Suzy had thrown her rock with a smirk. And, even if not,
by making the window’s shattering this fragile, we’ve opened the door to a host of non-
causes. Billy and his rock exert a gravitational pull on the window, so, if the shattering
of the window becomes too fragile, it may turn out that Billy caused the window to
shatter after all! And even if it’s hard not to feel happy for poor Billy, ënally getting
to shatter that window, we shouldn’t let our emotions cloud our judgment, the hard
truth is that Billy’s throw did nothing to bring about the shattering of the window.

In contrast, all the above account talks about is the values of variables at times.
It says that, were S to have stayed at 0 at t, W wouldn’t have ìipped to 1 at t + δ.
But saying this doesn’t commit us to anything about the modal proële of the event
of Suzy’s throw or the window’s shattering. e window could have shattered ear-

5 See L (1986a, postscript E)

143



lier or later than it actually did; it could have been caused by Billy’s throw; it could
have been shattered by a baseball rather than a rock. Even though (P) appeals to
counterfactuals, the counterfactuals aren’t of the form ‘¬O(C) � ¬O(E)’, so we
don’t have to futz with questions about what it takes for an event to fail to occur;6

similarly, since we’re not using the standard L/S semantics for evaluat-
ing these counterfactuals, but rather utilizing the methods afforded us by structural
equations models, we don’t have to futz with questions about which of the ways that
Suzy’s throwing the rock could fail to occur is most similar to the actual world. (Does
Suzy throw something else? Does she throw it at something else? Does she not throw
anything at all?)7

P & H (2013) say the following about this kind of strategy:

...it seems easy enough to construct late preemption examples in which,
had the cause not occurred...the effect would have occurred at exactly the
same time.8

I concur. However, in these cases, a different system of equations will be needed to
correctly describe the structural determination relations amongst the variables. For
instance, suppose that both Suzy and Billy stand equidistant from the window, and
both throw their rocks at the same time, but that Suzy’s rock, if thrown, exerts a
retarding force on Billy’s rock which slows its velocity. is will prevent Billy’s rock
from reaching the window before Suzy’s rock has already shattered it. However, had
Suzy not thrown, her rock would not have exerted the retarding force, and Billy’s rock
would have shattered the window at exactly the same time. In this case, the structural
equation Wt+δ := S t ∨ Bt will not be in force, since, according to this structural
equation, the time it takes Billy’s rock to reach the window is unaffected by whether
Suzy has thrown. In this case, there will be a true structural equations model according
to which whether the window shatters at a given time is determined by whether Suzy
or Billy has thrown in the recent past, and also upon the velocity of Billy’s rock (V);
the velocity of Billy’s rock, in turn, is determined both by whether Billy has thrown
and by whether Suzy has thrown—see ëgure 37. But now, even though the window’s
shattering, ∆W, doesn’t counterfactually depend upon Suzy’s throw, ∆S , ∆W does

6 Cf. P (2000, 2004) and P & H (2013, p. 237 ff.)
7 Closely related questions will be relevant to the question of whether W is structurally determined

by S , but they will be questions about the modal proële of the variable S , and not the modal proële
of the event of Suzy’s throw.

8 P & H (2013, p. 107).

144



Figure 37 Figure 38

E 39 =

(
Bt := At−1 ∧ Ct−1
Et := Bt−1 ∨Ct−2

∀t ∈ T
)

Figure 39

locally counterfactually depend upon ∆S . Holding ëxed that Billy actually threw his
rock and holding ëxed the rock’s actual velocity, ϕW will tell us that, had Suzy not
thrown her rock, the window wouldn’t have shattered when it did. So, according to
(P), Suzy’s throw productively causes the window’s shattering in this scenario as
well.

Not all cases of preemption are cases in which the preempting cause is a parent
of its effect. For instance, consider the neuron diagram displayed in ëgure 38. ere,
C’s ëring caused E’s ëring, even though, had C not ëred, E would still have ëred.
However, in the ërst place, in the canonical structural equations model, C’s ëring
productively caused D’s ëring, and D’s ëring productive caused E’s ëring; for this
reason, it will end up following, on my account of the transitivity of causation, that
C’s ëring caused E’s ëring (see §5.3.5). Moreover, we needn’t even appeal to transi-
tivity to get the verdict that C’s ëring caused E’s ëring. at’s because the account
merely requires local counterfactual dependence in some correct structural equations
model. e structural equations model shown in ëgure 39 meets all the conditions
given in chapter 3, and all of the structural determination relations in that model are
autonomous. So it correctly models the neuron diagram in ëgure 38. And, in this
structural equations model, ∆Et3 locally counterfactually depends upon ∆Ct1 .

5.3.2 P C

Changes in variable values are particularly exciting and noteworthy events, but
they are not the only kinds of events when enter into causal relations. Less exciting
events may cause and be caused as well. For instance, consider a structural determi-
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nation network described by the following structural equation:

Zt := Xt−δ ∨ Yt−δ ∀t ∈ T X −→ Z ←− Y

where X, Y , and Z are each binary variables. is structural equation says that, for
any time t ∈ T, Z will be 1 iff either X or Y was 1 δ seconds prior. Now, suppose that,
prior to t0, Y is 1 and X is 0. en, at t0, Y changes its value to 0 and X changes its
value to 1. At time t0 + δ, Z remains at 1. In that case, the change in X’s value at t0,
∆(0, 1)X

t0 , caused Z’s value to remain at 1 at t0 + δ, the event that I’ll denote ‘1Z
t0+δ

’.
But, while the cause is an exciting or interesting event—X’s value changes—the effect
is a boring event—Z’s value does not change. I’m going to call causal relations like
this, causal relations in which the cause is exciting, the effect boring, preventive causal
relations. Here’s a sufficient condition for a change in the value of a variable C at t
counting as a preventive cause of the value of a variable E at t′, at world ω, according
to the model M:

(P 1) M,Uω,[ fE(t′),t′] |= ¬∆Ct � Et′ , Eω,t′

at is: if, according to a correct system of structural equations and the values of the
variables throughout the period [ fE(t′), t′], were C to not change its value at t—that
is, were it to stay ëxed at its original value—then E would have taken on a different
value at t′.

As with productive causation, local counterfactual dependence is also sufficient for
∆Ct to be a preventive cause of Et′—where Et′ locally depends upon∆Ct atω accord-
ing to M =

< U ,V , E > (with ϕE ∈ E) just in case (P 2).

(P 2) ϕE , PA(E)ω,[ fE(t′),t′] |= ¬∆Ct � Et′ , Eω,t′

at is: holding ëxed the values of E’s parents other than C, if it’s the case that, were
C to not change its value, E would not taken on a different value at t′, then ∆Ct is a
preventive cause of Et′ .

Either way, ∆Ct is a preventive cause of Et′ . at is: ∆Ct is a preventive cause of
Et′ at world ω if Et′ counterfactually depends, either globally or locally, upon ∆Ct in
some structural equations model which is correct at ω.

(P) ∃M : (P 1) or (P 2) =⇒ C(∆Ct, Et′)
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Figure 40

E41 =

 Dt := At−1 ∧ Bt−1

Et := Ct−1 ∧ Bt−2 ∧ Dt−1
∀t ∈ T


Figure 41

5.3.2.1 P P

For an example of preventive causation in which we have local counterfactual de-
pendence without global counterfactual dependence, consider the neuron diagram
shown in ëgure 40. is neuron diagram provides a case of preemptive prevention.9

Intuitively, B’s ëring, and not A’s ëring, prevented E from ëring—even though, had
B not ëred, A’s ëring would have prevented E from ëring. (P) can accommodate
this intuition. e structural determination relations in this neuron diagram can be
represented by E 41, shown in ëgure 41. D will ëre at t just in A ëres one second prior
and B doesn’t ëre one second prior. And E will ëre just in case C ëres one seconds
prior, B doesn’t ëre two seconds prior, and D doesn’t ëre one second prior. e full
network of structural equations tells us that, had B not ëred, E still wouldn’t have
ëred, since A would have kept it from ëring. Nevertheless, looking just at E’s struc-
tural equation, and holding ëxed the actual values of E’s parents during the relevant
time period, had B not ëred, E would have ëred. So, E’s failure to ëre locally coun-
terfactually depends upon B’s ëring. So B’s ëring is a preventive cause of E’s failure
to ëre, according to (P). Similarly, (P) tells us that, had B not ëred, then A
would have prevented E from ëring.

We will get the wrong verdict here if we model the neuron diagram with E42,
shown in ëgure 42. Given this model, the dynamic account tells us, wrongly, that
neither A’s ëring nor B’s ëring caused E to remain dormant.10 However, in this

9 See MD (1995), C (2004)
10 ough, it would tell us that their disjunction caused E to remain dormant—see §5.3.9.
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E42 = ( Et := Ct−2 ∧ Bt−2 ∧ At−2 ∀t ∈ T)

Figure 42

model, the structural determination relation between A and E is not autonomous
from the structural determination relation between B and E. So this model is not
correct.

5.3.3 B C

Just as exciting events can cause boring ones, so too can boring events cause ex-
citing ones. A variable C’s static value at a time t, Ct, can cause a change in E’s value
at time t′, ∆Et′ . e gun will ëre if the trigger is pulled and the safety is off. While
the trigger being pulled is a productive cause of the gun’s ëring, the safety’s being off
is also a cause of the gun’s ëring. Had the safety not been off, the gun would not
have ëred. I’m going to call causal relations like these background causal relations. In
general, a variable C’s static value at t is a background cause of a variable E’s change in
value at t′ at a world ω, according to the model M, if, had C taken on some different
value at t, E would not have changed its value as it did at t′.

(B 1) M,Uω,[ fE(t′),t′] |= ∃c (Ct = c� ¬∆Et′)

As before, there are three ways that the consequent of this counterfactual could be
satisëed: either E could change its value earlier or later than t′, or it could change its
value to something else at t′, or it could fail to change its value at all. And, as before, Ct

is a background cause of ∆Et′ , at ω according to M, if ∆Et′ locally counterfactually
depends upon Ct.

(B 2) ϕE , PA(E)ω,[ fE(t′),t′] |= ∃c (Ct = c� ¬∆Et′)

Ct is a background cause of ∆Et′ at ω if either (B 1) or (B 2) is satisëed for
some structural equations model which is correct at ω.

(B) ∃M : (B 1) or (B 2) =⇒ C(Ct,∆Et′)

For an example of background causation in which we have local counterfactual
dependence without global counterfactual dependence, consider the neuron diagram
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Figure 43

displayed in ëgure43. In ëgure43, E is a dull neuron, which requires two stimulations
to ëre. It takes 1 second for changes in the state of either C or D to affect the state
of E, whereas it takes 1/2 seconds for a change in the state of C to affect the state of
B, and 1/2 seconds for a change in the state of B to affect the state of E. At t, both
A and C are ëring (they continue to ëre throughout the period [t, t + 2]. At t + 1,
D ëres. So, at t + 2, E ëres. Here, C’s ëring at t + 1 is a background cause of E’s
ëring at t + 2. However, had C not been ëring at t + 1, B would have been ëring at
t + 3/2, and, therefore, E still would have ëred at t + 2. However, if we hold ëxed
the values of E’s parent variables during the period [t, t + 2], then, had C not been
ëring at t + 1, E would not have ëred at t + 2. So Ct+1 is a background cause of
∆Et+2, according to (B).

In standard contexts, background causes are not felicitously cited as causes in
causal claims. It usually sounds odd to say that the safety’s being off is what caused
John’s gunshot wound, or that the presence of oxygen is what caused the ëre. Better
to tell me that Jack pulled the trigger, or that Chloë lit a match. But that’s not to
say that the safety’s being off didn’t cause the gunshot wound or that the presence of
oxygen didn’t cause the ëre. ey both did. Indeed, there are explanatory contexts
in which it is entirely appropriate to cite background causes, and inappropriate to
cite productive causes. When a gun safety demonstration goes awry and John is shot,
or a ëre starts in a clean room which was not properly drained of oxygen, these are
precisely the causes we are most apt to mention. However, in most standard contexts,
it appears that we prefer to focus on productive causes. Indeed, note how intuitions
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shift when we alter the ëre case to be an instance of productive causation. Suppose
that, in the clean room, Chloë is handling highly ìammable chemicals when the hap-
less Daniel accidentally opens the oxygen tank. A ëre ensues. In this case, there is no
hesitation to say that opening the oxygen tank caused the ëre.

I am willing to accept that the presence of oxygen caused the match to light,
and that the safety’s being off caused John’s gunshot wound. Does this mean that
I, like L, think that distinguishing between causes and background or enabling
conditions is “invidious discrimination”11? e answer is ‘no’, twice over. First, my
metaphysics draws a sharp distinction between productive and background causation.
Both are causes, but causes of different stripes. Second, because my account requires
the presence of structural determination relations between variables in order to have
any causation at all, there are many events that L will count as causes that I will
count as mere enabling conditions. Had Caesar not been born, he wouldn’t have died.
So, L concludes, his birth caused his death. I reject this inference. Even though,
had Caesar not been born, he wouldn’t have died, this is not a causal counterfactual.
For it is not the case that the variable D, which takes the value 1 if Caesar dies and takes
the value 0 if Caesar goes on living, is structurally determined by the variable B, which
takes the value 1 if Caesar is born and 0 if he isn’t. Alterations in the state of the world
which set B to 0 at the appropriate time time-evolve, according to the laws of nature,
into states of the world in which D is undeëned. ere is another variable, of course,
call it ‘D′’, which takes the value 1 if Caesar dies and takes the value 0 otherwise. Even
if this variable is natural enough to enter into causal relations, it is not the variable
we are talking about when we talk about the causes of somebody’s death. In normal
contexts, we are interested in what caused Caesar to die, as opposed to continuing
to live; and not what caused Caesar to die, as opposed to never having been born.
And that is enough for my account to tell us that, in all but the most outré contexts
prompted by philosophers’ ìights-of-fancy,12 the sentence ‘Caesar’s birth caused him
to die’ is false. So not all discrimination is invidious, on the dynamic account.

5.3.4 S C

Finally, boring events can cause other boring events. A variable C’s static value at
a time can cause another variable E’s static value at a time. e light switch’s being on
is causing the room to be illuminated. As I stand on the scale, my weight is causing it
11 L (1973a, p. 559)
12 See L (2004, p. 101)
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to read a certain number. I’m going to call causal relations like these sustaining causal
relations. In general, at a world ω, according to a model M, a variable C’s value at t is
a sustaining cause of a variable E’s value at t′ if, had C taken on some different value
at t, E would have taken on a different value at t′.

(S 1) M,Uω,[ fE(t′),t′] |= ∃c (Ct = c� Et′ , Eω,t)

Additionally, a variable C’s static value at t can be a sustaining cause of another
variable’s static value at t′ if E’s value locally counterfactually depends upon C’s value.

(S 2) ϕE , PA(E)ω,[ fE(t′),t′] |= ∃c (Ct = c� Et′ , Eω,t)

Electricity is ìowing from the power plant, and the room is illuminated. e ìow
of electricity from the power plant is a sustaining cause of the room’s illumination.
However, had the electricity stopped ìowing, the backup generator would have in-
stantly kicked in, and the room would have been illuminated all the same. e causal
counterfactual ‘Had the electricity not been ìowing from the power plant, the room
wouldn’t have been illuminated’ is false. However, holding ëxed the fact that the
backup generator is not turned on, the local causal counterfactual ‘Had the electricity
not been ìowing from the power plant, the room wouldn’t have been illuminated’
is true. So the room’s illumination locally depends upon the electricity ìowing from
the power plant, even though it doesn’t depend upon it globally.

Either (S 1) or (S 2) is sufficient for Ct to be a cause of Et′ .

(S) ∃M : (S 1) or (S 2) =⇒ C(Ct, Et′)

at is, Ct is a sustaining cause of Et′ if Et′ counterfactually depends, either globally
or locally, upon Ct in some correct structural equations model.

5.3.5 T

In all its guises, counterfactual dependence—either global or local—is sufficient
for causation. However, it is not necessary. Sometimes, we trace out a sequence of
events such that each event in the sequence counterfactually depends upon its prede-
cessor in the sequence and we judge the ërst event to have caused the last, even though
the last event does not itself counterfactually depend upon the ërst. When can we do
this? L (1973a, 2000) gave the answer ‘always’. is answer allowed him to deal
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with cases of preemption, but it came at a cost. Chris smokes, contracts cancer, un-
dergoes chemo, and survives. e survival counterfactually depends upon the chemo,
the chemo counterfactually depends upon the cancer, and the cancer counterfactually
depends upon the smoking. L concludes that the smoking caused the survival.
is is difficult to swallow, no matter how it’s seasoned. e answer to give is ‘some-
times’, and the difficulty lies in working out just when.

Recently, the idea that some distinction between defaults and deviations is central
to causation has been picking up steam. M (2004), H (2007), H
(2007), H (2008), H & K (2009), and P & H (2013)
all claim that a proper understanding of the causal relation must incorporate some
standards of normality and deviations from normality. e basic idea, articulated
beautifully by M, is that causation requires a kind of quasi-Newtonian system,
specifying an inertial state and the kinds of forces that will kick the system out of its
inertial state. e inertial state is the default; non-inertial states are deviations.

I propose that the distinction between defaults and deviations enters into the
metaphysics of causation by providing the correct answer to the question of when
we can trace out a chain of events such that each link in the chain counterfactually
depends upon its predecessor and say that the ërst event in the chain caused the last,
even though the last doesn’t counterfactually depend upon the ërst. We can do so
when three conditions are met: 1) the chain doesn’t leave out any crucial part of the
causal process leading from the ërst event to the last; 2) all of the links in the chain are
non-inertial, interesting, or noteworthy events, and 3) the links in the chain are counter-
factually interlocked. Each of these conditions requires explanation. On condition (1):
what it is for the chain to not leave out any part of the causal process leading from the
ërst event to the last is for it to be the case that the variables appearing in the chain
form a directed path in a correct causal model. On condition (2): e events in the
chain must all be interesting, noteworthy deviations from inertial conditions. Changes
in variable values are always interesting and noteworthy deviations. However, static
variable values can also be noteworthy deviations. When they are, and when there
is a counterfactually interlocked chain of them lying upon a directed path in a cor-
rect structural equations model, then causes of causes will be causes. On condition
(3): For each of the consequents of the counterfactuals appearing in (P), (P),
(B), and (S), there are multiple ways that they may be satisëed. It may be, for
instance, that in the counterfactual ‘¬∆Ct � ¬∆Et′ ’, were C to have remained at
its original value at t, E would still have changed at t′, but it would have changed to a
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different value e′ at t′. On the other hand, it might be that in some other counterfac-
tual ¬∆Et′� ¬∆Ft′′ , the antecedent which makes the consequent true is not that
E changes to e′ at t′, but rather than E doesn’t change at all at t′. Two counterfactuals
such as these are not interlocking. e variable values which make the ërst’s conse-
quent true at not the variable values which are considered in the second’s antecedent.
Imagine that we have a sequence of counterfactuals Cf1 → Cf2. If (and only if ) the
variable values making Cf1’s consequent true are the ones considered in evaluating
Cf2’s antecedent will Cf1 and Cf2 be interlocking counterfactuals. Imagine that there
is a directed path C → D → E in some correct model, and some deviant (change
in) variable value Ct causes some deviant (change in) variable value Dt′ , which causes
some deviant (change in) variable value Et′′ , but Et′′ does not counterfactually depend
upon Ct directly. e counterfactuals which must be considered to see whether Ct

nevertheless causes Et′′ may not be the same counterfactuals which had to be checked
to see whether Ct causes Dt′ and whether Dt′ causes Et′′—for those counterfactuals
might have failed to be interlocking. is doesn’t automatically mean that Ct didn’t
cause Et′′ . We must check the interlocking counterfactuals to ënd out.

5.3.5.1 T

For an example in which condition (3) above becomes relevant, consider the neu-
ron diagram shown in ëgure 44 (from P & H, 2013, p. 96).13 In that neuron
diagram, neurons may ëre with different intensities. ey may either ëre weakly (il-
lustrated by the neuron being colored light gray) or strongly (illustrated by the neuron
being colored dark gray). If A ëres strongly, then, if C doesn’t ëre, then B will ëre
strongly, as shown in ëgure 44(b). If, however, A ëres strongly and C ëres (weakly
or strongly), then B will ëre weakly. E, however, is a sensitive neuron. It will ëre
strongly so long as it receives any signal, however strong. So, even if B ëres weakly, as
in ëgure 44(a), E will still ëre strongly.

In the canonical structural equations model, each of the variables (except E) have
three possible values, 0 (if their corresponding neurons don’t ëre at all), 1 (if they ëre
weakly), and 2 (if they ëre strongly). e following structural equations will then be
13 is case comes up during P & H’s discussion of a case that they call ‘tampering.’
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(a) (b)

Figure 44

in force.

Et :=

 2 if Bt−1 , 0
0 if Bt−1 = 0

∀t ∈ T

Bt :=


2 if At−1 = 2 and Ct−1 = 0
1 if At−1 = 1 and Ct−1 = 0 or At−1 = 2 and Ct−1 , 0
0 if At−1 = 0

∀t ∈ T

Suppose that both A and C ëre strongly, as shown in ëgure 44(a). It will then follow
that, had C not ëred at t1, B would not have ëred as it did at t2.

(5.1) ¬∆(0, 2)C
t1 � ¬∆(0, 1)B

t2

at’s because, had C remained at 0, B would have ëred strongly, and would have
changed from 0 to 2 at t2—∆(0, 2)B

t2 . It will also follow that, have B not ëred at t2,
E would not have ëred at t3.

(5.2) ¬∆(0, 1)B
t2 � ¬∆(0, 2)E

t3

However, we cannot conclude, on the dynamic account, that C’s ëring caused E’s
ëring. e reason is that (5.1) and (5.2) are not interlocking. e variable values
which make the consequent of (5.1) true when we mutilate the model so as to keep C
at 0 at t1—viz., ∆(0, 2)B

t2—are not the variable values considered in the antecedent of
(5.2). In evaluating the antecedent of (5.2), we mutilate the model so that B remains
at its initial value of 0 at t2. According to the dynamic account, however, in order to
see whether C’s ëring caused E’s ëring, we must consider the counterfactual which
interlocks with (5.1), namely (5.3).

(5.3) ∆(0, 2)B
t2 � ¬∆(0, 2)E

t3
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E45 =

(
Mt := Ft−δ ∀t ∈ T1

Lt := Ft−δ−ϵ ∨Mt−ϵ ∀t ∈ T2

)
Figure 45

However, this counterfactual is false. So, the dynamic account rules that C’s ëring
did not cause E’s ëring. And, in this, it rules justly. While C’s ëring caused B to ëre
as it did, and while B’s ëring as it did caused E’s ëring, the manner in which B ëred
made no difference to whether E ëres, so long as it ëred. erefore, since C’s ëring
made no difference, globally or locally, to whether B ëred, C’s ëring did not cause E’s
ëring.

5.3.5.2 B

A boulder is dislodged, and begins rolling toward Hiker. Before it reaches him,
Hiker sees the boulder and moves out of the way. e boulder rolls past him, and
Hiker survives.14 e boulder’s falling caused Hiker to move out of the way. Hiker’s
moving out of the way caused him to survive. But the boulder’s falling didn’t cause
Hiker to survive.

We can model the structural determination relations in this case with the system
of dynamic structural equations E45. In E 45, F, M, and L are all a binary variables,
and F is 1 at t if the boulder is f alling at t and is 0 if it hasn’t fallen at t, M is 1 at t if
Hiker has moved out of the way at t and is 0 if he is underneath the boulder at t, and
L is 1 if Hiker is al ive at t and is 0 if Hiker is dead at t. T1 is the set of times during
which Hiker is beneath the loose boulder. Once Hiker is clear of the loose boulder,
whether he moves is no longer determined by whether or not the boulder falls.

Suppose that at t0, the boulder falls. Seeing the boulder, Hiker moves at t0 + δ.
Consequently, at t0 + δ+ ϵ, Hiker is still alive. Since, were the boulder to not fall at
t0, i.e., were Ft0 to be 0, Hiker would not have moved at t0 + δ,

(5.4) ¬∆(0, 1)F
t0 � ¬∆(0, 1)M

t0+δ

(P) tells us that the boulder’s falling caused Hiker’s moving. And since, were Hiker
not to move, he would have died—i.e., were M to have stayed at 0, Lt0+δ+ϵ would

14 is example is adapted from H (2001), who attributes it to an early draft of H
(2004).
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have been 0,

(5.5) ¬∆(0, 1)M
t0+δ� Lt0+δ+ϵ , 1

(P) tells us that Hiker’s moving caused him to continue living. However, had the
boulder not fallen, Hiker would still have continued living at t0 + δ+ ϵ. So we don’t
have counterfactual dependence, either local or global, between the boulder’s falling
and Hiker’s survival. We do, however, have a chain of counterfactual dependence
running from the boulder’s falling through Hiker’s moving to Hiker’s survival. F,
M, and L lie on a directed path in a correct structural equations model, and the
counterfactuals (5.4) and (5.5) are interlocking. Can we conclude that the boulder’s
falling caused Hiker’s survival? Only if Hiker’s survival is an interesting or noteworthy
deviation. Survival is, however, Hiker’s default, inertial state. So the boulder’s falling
did not cause Hiker’s survival, on the dynamic account.

e dynamic account ends up saying precisely the same thing about Chris’s sur-
vival. e smoking causes the cancer and the chemo; the cancer causes the chemo;
and the chemo causes the survival. However, neither the smoking nor the cancer
cause the survival. Because survival is an inertial state, we cannot take the ancestral
of these interlocking counterfactuals and conclude that the smoking, or the cancer,
caused the survival. We’ll see other failures of transitivity below.

5.3.6 T D A  S

In summary, on the dynamic account, there are four species of the causal relation,
and a simple causal counterfactual conditional is sufficient for each.

Productive : ¬∆Ct � ¬∆Et′ =⇒ C (∆Ct,∆Et′)

Preventive : ¬∆Ct � Et′ , Eω,t′ =⇒ C (∆Ct, Et′)

Background : ∃c(Ct = c � ¬∆Et′) =⇒ C (Ct,∆Et′)

Sustaining : ∃c(Ct = c � Et′ , Eω,t′) =⇒ C (Ct, Et′)

In each case, the counterfactual relationship must hold in some correct structural equa-
tions model. e counterfactuals can be evaluated either with respect to the entire
system of structural equations or with respect to E’s structural equation alone—local
counterfactual dependence is counterfactual dependence enough. If there is an inter-
locking chain of counterfactuals between deviant, interesting, or exciting events lying
along a directed path in a correct structural equations model, then the ërst event in the
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chain caused the last event in the chain—whether it counterfactually depends upon it
or not. e disjunction of these sufficient conditions for causation is necessary—and
therefore necessary and sufficient—for causation.

We shouldn’t read too much into the labels ‘productive’, ‘preventive’, ‘background’,
and ‘sustaining’. ese are evocative names, but they are used here stipulatively. I
don’t pretend, for instance, that every instance of preventive causation is intuitively a
case of prevention.

We have to be careful in our understanding of ‘∆Ct’ and ‘Ct’. e value of C
may in fact change at t and yet the relation still be a background or sustaining causal
relation. e difference lies in the kind of counterfactual relationship between C and
E. If it’s true that were the change to fail to occur—that is, were C to remain at its
initial value—E wouldn’t have changed, or wouldn’t have changed at t′, or would
have changed to a different value at t′, then C is a productive cause of E. However, if
C has multiple values that would have allowed E to change, and it changed from one
of those values to another, then it wasn’t the change in C which is responsible for E’s
change. In that case, while it’s not true that, were the change to fail to occur, E wouldn’t
have changed, it may still be true that, were C to take on some different value, then E
wouldn’t have changed, or wouldn’t have changed at t′, or would have changed to a
different value at t′. In that case, even though C’s value changed at t, C’s value at t
was a background, rather than a productive, cause of E’s change at t′ (we’ll see a case
like this in §5.3.11 below).

5.3.7 S-C

As I mentioned in chapter 4, H (2007) provides a problem case for accounts of
causation formulated using structural equations models. e problem is that a causal
system involving ‘short circuits’, like the neuron diagram shown in ëgure 46(a), can
be modeled with a system of structural equations isomorphic to a system of structural
equations which models a case of preemption, such as the one shown in ëgure 46(b).
(In ëgure 46(b), G is a dull neuron. It will only ëre if it receives two stimulations.)

For illustration, the neuron diagram shown in ëgure 46(a) can be modeled with
the system of structural equations shown in ëgure 47. (e variables are given the
obvious interpretation, with the value 1 corresponding to the associated neuron ëring,
and the value 0 corresponding to it remaining dormant.) And the neuron diagram
displayed in ëgure 46(b) can be modeled with the system of equations shown in ëgure
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(a) a short circuit (b) a case of preemption

Figure 46

E47 =


g t := at−3 ∧ f t−1
ft := dt−1 ∧ et−1
dt := bt−1 ∨ ct−1
et := ct−1

∀t ∈ T


Figure 47

48 (where, following the same conventions, F∗ def
= F, D∗ def

= D, and B∗ def
= B).

H (2007)’s challenge is this: not only are E47 and E48 isomorphic to one an-
other, but additionally, the corresponding variables in each system of equations take
on the same values at their respective times. So, if we are to use correct structural
equations models, and a speciëcation of the variable values, to derive information
about the world’s singular causal structure, then it should be that c’s ëring caused g’s
ëring if and only if C’s ëring caused G’s ëring. But c’s ëring didn’t cause g’s ëring,
and C’s ëring did cause G’s ëring. So we need more information than the simple
structural equations models are capable of giving us.

To see how the dynamic account handles this case, notice that, had C not ëred,
E would not have ëred.

(5.6) ¬∆(0, 1)C
t1 � ¬∆(0, 1)E

t2

And, had E not ëred, F would not have ëred.

(5.7) ¬∆(0, 1)E
t2 � ¬∆(1, 0)F∗

t3

Finally, had F not ëred, G would not have ëred.

(5.8) ¬∆(1, 0)F∗
t3 � ∆(0, 1)G

t4
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E 48 =


Gt := At−3 ∧ F∗t−1

F∗t := D∗t−1 ∧ Et−1
D∗t := B∗t−1 ∨Ct−1
Et := Ct−1


Figure 48

Each of these events are changes in variable values, so they are all interesting deviations,
C → E → F∗ → G is a directed path, and (5.6–5.8) are interlocking counterfactuals,
so it follows on the dynamic account that ∆(0, 1)C

t1 is a productive cause of ∆(0, 1)G
t4 .

Parallel reasoning does not apply to the short circuit. While there is a sequence
of interlocking counterfactual dependence running from c’s ëring to g’s ëring which
lies on a directed path, namely

∆(0, 1)c
t1 → ∆(0, 1)e

t2 → 0 f
t3 → ∆(0, 1)gt4

0 f
t3 is a boring, default event. Remaining dormant is the inertial state of a neuron.

Nor does g’s ëring counterfactually depend, either globally or locally, on c’s ëring in
any correct structural equations model. So we cannot conclude that c’s ëring caused
g’s ëring.

Note that, without condition (1) from §5.3.5—i.e., the condition that the inter-
locking counterfactuals relate events whose variables lie along a directed path—we
would be able to conclude that C (∆ct1 ,∆gt4), since the counterfactuals

¬∆ct1 � ¬∆et2

¬∆et2 � ¬∆gt4

are both true, interlocking, and relate interesting, deviant events.

5.3.8 S

A train approaches a fork in the tracks. At the fork, the switch leads off to the left.
So, when the train arrives at the fork, it travels off on the left-hand track, rather than
the right. Since the tracks reconverge up ahead, the train arrives at its destination just
as it would if it had taken the right-hand track.15

15 Adapted from H (2000, p. 205)
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Figure 49: A switching case involving a chain of productive causation.

Here, the argument goes, the switch being set to the left caused the train to take
the left-hand track; and it’s taking the left-hand track caused it to arrive at the station.
But the switch being set to the left didn’t cause the train to arrive at the station.16

In a natural structural equations model, it follows that, had the switch been set to
the right, the train wouldn’t have taken the left-hand track. So, the switch’s being set
to the left is a background cause of the train’s taking the left-hand track. It’s less clear
in what sense, had the train not taken the left-hand-track, it would not have arrived
at the station. However, we needn’t fuss over this. Since the switch being set to the
left is not a deviant, interesting, or exciting event—being set to the left, like being set
to the right, is an inertial state for the switch—we don’t get to trace out a causal path
from it to the train’s arrival at the station. So the dynamic account doesn’t conclude
that the switch’s being set to the left caused the train to arrive.

However, not every case that’s been called a case of switching in the literature is
of this form. Sometimes, cases involving chains of productive causation are presented
as cases of switching. A representative example is displayed in the neuron diagram in
ëgure 49.17 In ëgure 49, B is a neuron which can ëre either weakly or strongly. If it
receives one stimulation, it will ëre weakly. If it receives two, then it will ëre strongly
(strong ëring is represented with a darker shade of gray). D1 is a dull neuron which
will only ëre if it receives a strong stimulation. D2 is a fragile neuron, which will
ëre if it receives a weak stimulation, but which will burst, and not ëre, if it receives
a strong stimulation. en, if C doesn’t ëre, the signal from A will travel along the
lower path via D2. If C does ëre, then the signal from A will travel along the upper
path via D1. Either way, E will ëre. Now, if C hadn’t ëred, then B wouldn’t have

16 I’m a bit uneasy with the second causal relation in this purported counterexample, but it’s not my
focus now, so I’ll let it be. ere are other cases with the same structure in which the second link in
the causal chain is far less objectionable.
17 Similar neuron diagrams can be found in H (2009) and P & H (2013, p. 232)
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ëred strongly (it would have ëred weakly); and, had B ëred weakly, then D1 would
not have ëred; moreover, had D1 not ëred, E would not have ëred. So, there is a
chain of interlocking counterfactual dependence lying along a directed path leading
from C’s ëring to E’s ëring. e dynamic account rules that C’s ëring caused E’s
ëring.

If you are inclined to think that this is the wrong verdict, it might be because of
the way the case was described. I said that “the signal from A” will either travel along
the upper or lower path, and that C’s ëring will determine which. Language like this
encourages you to think of A at the thing providing the signal, and C as the switch
which determines the path it takes. But there’s no good reason for this differential
treatment. A and C are perfectly symmetrical in this neuron diagram. I might just as
well have said, then, that, if A ëres, then the signal from C will take the upper path;
and if A doesn’t ëre, then the signal from C will take the lower path.

Because A and C are perfectly symmetrical, A’s ëring caused E’s ëring iff C’s ëring
did. We might want to say that neither A’s ëring nor C’s ëring caused E’s ëring. is
isn’t crazy—we could still say that their disjunction caused E’s ëring. is is, indeed,
exactly what the dynamic account says about simple symmetrical overdetermination
cases (see §5.3.9). But neither is there anything crazy about saying that both A’s and
C’s ëring caused E’s ëring. Like symmetric overdetermination cases, this is a case
about which intuition delivers no clear verdict—so long as we’re careful to not think
about A’s and C’s ërings differently, one as signal, the other as switch. It is, therefore,
a case to be settled by theory, not intuition—spoils to the victor.

5.3.9 S O

Suppose that Suzy and Billy stand on opposite sides of the window, both throw
their rocks, and both rocks strike the window at the same time. Either rock would
have been sufficient, on its own, to shatter the window. However, given that Billy
threw, the window’s shattering does not depend upon Suzy’s throw. And, given that
Suzy threw, the window’s shattering does not depend upon Billy’s throw. Did Suzy’s
throw cause the window to shatter? Intuition is split. ere is some inclination to
say that it did, since, obviously, either Billy’s or Suzy’s throw caused it, and there’s
nothing that Billy’s throw has that Suzy’s doesn’t. So, if either of them caused it, then
both of them did. And it’s not the case that neither of their throws caused it, since
then, it seems, the window’s shattering would be uncaused. We should resist this
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seductive reasoning. Just because neither Suzy’s nor Billy’s throw individually caused
the window to shatter, this doesn’t mean that the shattering is uncaused, since it can
be caused by the disjunction of Suzy’s and Billy’s throws without being caused by either
throw individually.18

5.3.9.1 D C

If we countenance disjunctions of (changes in) variable values as causal relata,
then the simple counterfactual condition provides a sufficient condition for these dis-
junctions causing (a change in) another variable’s value. For instance, the simple
counterfactual condition tells us that ∆Ct1 ∨ ∆C′t2 caused ∆Et3 if, had both C and
C′ stayed at their original values at t1 and t2, respectively, then E would either have
not changed, or not have changed at t3, or have changed to a different value at t3.

(¬∆Ct1 ∧ ¬∆C′t2)� ¬∆Et3

It is straightforward to evaluate causal counterfactuals like these, given a correct dy-
namic structural equations model. It simply involves one extra intervention. As be-
fore, local counterfactual dependence is dependence enough.

When causes are disjunctive, however, we must emend the account of transitivity
that I offered back in §5.3.1. Call a counterfactual conditional stating that if one
deviant event hadn’t occurred, another deviant event wouldn’t have occurred a ‘deviant
counterfactual.’ en, the new wrinkle is this: if there is a chain of interlocking
deviant counterfactuals running from C to D along a directed path, and another chain
of interlocking deviant counterfactuals running from C to D′ along a directed path,
D, D′ ∈ PA(E), and there is a true, interlocking counterfactual of the form ‘¬(D ∨
D′)� ¬E’, then C caused E.19

Consider, for instance, the neuron diagram on display in ëgure 50. ere, C’s
ëring caused E’s ëring. However, the counterfactual conditional ¬∆Ct1 � ¬∆Et4

is false. Nor is there any correct model within which C is a parent of E, since this
would involve a violation of autonomy. However, the following interlocking deviant
(local) counterfactuals are true.

¬∆Ct1 � ¬∆D1t3

¬∆Ct1 � ¬∆D2t3

18 S (2006) offers a defense of disjunctive causes.
19 Here, I’m using ‘C’ and the like to refer to an event involving the value of the variable C, whether

C’s value changes or not.
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Figure 50

and, moreover,
(¬∆D1t3 ∧¬∆D2t3)� ¬∆Et4

So C’s ëring caused E’s ëring.
is emendation could, and should, be generalized to disjunctive causes involving

more than two disjuncts, but in the interests of space, I’ll leave that generalization as
an exercise for the reader.

5.3.9.2 C C

We can similarly use the simple counterfactual test to say something about when
conjunctive events are causes and effects. e conjunctive event ∆Ct1 ∧ ∆C′t2 is a
cause of ∆Et3 if, had either C not changed its value at t1 or else had C′ not changed
its value at t2, then E would not have changed its value at t3.

(¬∆Ct1 ∨¬∆C′t2)� ¬∆Et3

Here’s how we evaluate this counterfactual: it is true iff every way of intervening on
the actual values of C and C′ so as to make the antecedent true makes the consequent
true as well.20 So, it is true iff all of the following three counterfactuals are true:

¬∆Ct1 � ¬∆Et3

¬∆C′t2 � ¬∆Et3

(¬∆Ct1 ∧ ¬∆C′t2)� ¬∆Et3

e ërst two counterfactuals guarantee that, if ∆Ct1 ∧ ∆C′t2 is a cause of ∆Et3 , then
both ∆Ct1 and ∆C′t2 are individually causes of ∆Et3 . However, the third counterfac-

20 is is in line with B (2012)’s treatment of disjunctive antecedents.
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E51 = (Vt+δ := ϕV(Ut, Wt, Tt))

Figure 51

tual shows us that both ∆Ct1 and ∆C′t2 individually causing ∆Et3 is not sufficient for
their conjunction causing ∆Et3 .

21

For an example of a case in which C(∆Ct1 ,∆Et3) and C
(
∆C′t2 ,∆Et3

)
, yet it is not

the case that C
(
∆Ct1 ∧ ∆C′t2 ,∆Et3

)
, consider the structural equations model shown

in ëgure 51. In that model, V , U, W, and T are all binary variables and

ϕV(Ut, Wt, Tt) =

 1 if Tt = 1
Ut ≡ Wt if Tt = 0

(∗ ≡ ◦ is the familiar truth function 1 − | ∗ − ◦ |.) at is, if Tt = 1, then Vt+δ = 1.
If, however, Tt = 0, then Vt+δ = 1 iff Ut and Wt have the same value. Now, suppose
that, at t∗, ∆(1, 0)T , ∆(0, 1)U , and ∆(1, 0)W . en, at t∗ + δ, V will change from
1 to 0. is change in V ’s value will be caused by ∆(0, 1)U

t∗ since, given that W
changed to 0, had U stayed at 0, V would have remained at 1. It will also be caused
by ∆(1, 0)W

t∗ since, given that U changed to 1, had W remained at 1, V would have
remained at 1. However, the change in V ’s value will not be caused by ∆Ut∗ ∧ ∆Wt∗

since, had neither U nor W changed, V would still have changed.
is account could, and should, be generalized to conjunctive causes involving

more than two conjuncts, as well as cases involving preventive, background, and sus-
taining causation. However, in the interest of space, I will leave this, too, as an exercise
for the reader.

5.3.10 P D P

Consider the neuron diagram shown in ëgure 52. is is a case of preemptive
double prevention.22 F is prevented from ëring; and, had F ëred, it would have
prevented G from ëring. Stopping short the signal from B prevents F’s ëring from
preventing G’s ëring—double prevention. C stops short the signal from B which,
21 In general, this means that C(C ∧C′, E) entails that C(C ∨C′, E), but not vice versa.
22 roughout C et al. (2004), cases with this structure are simply called cases of ‘preventive

prevention’, or ‘double prevention’. However, I think it is important to distinguish this case from the
neuron diagram in ëgure 40, as well as double prevention cases not involving any preemption.

164



Figure 52

unabated, would have caused F to ëre. However, had C not stopped this signal, E
would have stopped it—preemption.

e dynamic account delivers the verdict that C’s ëring did not cause G’s ëring.
However, it is not difficult to reason yourself to the opposite verdict. Either C’s ëring
or E’s ëring prevented F from ëring, and thereby allowed G to ëre. And it wasn’t E’s
ëring that did it, so it must have been C’s ëring that did it. So C’s ëring must have
caused G’s ëring. is reasoning is seductive, but it is a temptation to be resisted.

In this case, we judge that either C’s ëring or E’s ëring caused G’s ëring.

C (∆Ct1 ∨∆Et2 ,∆Gt4)

We also judge that it is not the case that E’s ëring caused G’s ëring.

¬C (∆Et2 ,∆Gt4)

And we are led to conclude, via the seductive reasoning, is that it was C’s ëring which
caused G’s ëring,

C (∆Ct1 ,∆Gt4)

I don’t deny either of the intuitions which make up the premises of this argument.
(ough the ërst requires some care to adequately capture. We judge that it was either
C’s ëring or E’s ëring that caused G’s ëring. is judgment doesn’t discern between
C(∆Ct1 ,∆Gt4)∨ C(∆Et2 ,∆Gt4) and C (∆Ct1 ∨∆Et2 ,∆Gt4). erefore, an account
which secures either does an adequate job capturing the judgment.) I deny the va-
lidity of the inference. If the reasoning works here, then it works in the symmetric
overdetermination case as well. If we’re comfortable saying that the disjunction of
Suzy’s and Billy’s throws caused the window to shatter even though neither Billy’s nor
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Suzy’s throw on their own caused the window to shatter, then we should also be com-
fortable saying that the disjunction of C’s ëring and E’s ëring caused G’s ëring, even
though neither C’s ëring nor E’s ëring on their own caused caused G’s ëring. Notice
that this doesn’t prevent us from saying that C’s ëring cut short the signal from B and
that E’s ëring did not. For C’s ëring prevented D’s ëring; but it’s not the case that E’s
ëring prevented F’s ëring.

5.3.11 T

e soldiers will advance iff the order of the highest-ranked officer tells them to
advance.23 Let S take on the value 1 if the Sergeant orders to advance, 2 if he orders
to stay put and 0 if the Sergeant issues no order. M is 1 if the Major orders to advance,
2 if he orders to stay put, and 0 if he issues no order. A is 1 if the soldiers advance and
0 if they stay put. en, the following structural equation will be correct

At := ϕA(Mt−δ, S t−δ) M −→ A←− S

where

ϕA(Mt, S t) =


0 if Mt = 2
1 if Mt = 1
0 if Mt = 0 ∧ S t = 2, 0
1 if Mt = 0 ∧ S t = 1

If the Major orders the soldiers to stay put, then stay put they will, regardless of what
the Sergeant orders. If the Major orders the soldiers to advance, then advance they
will, regardless of what the Sergeant orders. If the Major issues no order, then the
soldiers will follow the orders of the Sergeant, if such there be. If the soldiers receive
no orders, then they will stay put.

At t, both the Sergeant and the Major order the soldiers to advance, and advance
they do. Had the Major not issued the order to advance—i.e., had he remained silent
at t—then the soldiers would still have advanced, since, if the Major had remained
silent, the Sergeant’s orders would have held sway. Similarly, had the Sergeant not
issued the order to advance—i.e., had he remained silent at t—then the soldiers would
still have advanced, since the Major would still have issued his order. So, on the
dynamic account, neither the Major nor the Sergeant productively caused the soldiers
to advance. However, had neither the Major nor the Sergeant issued their orders, then
23 See S (2004), who attributes the example to Bas van Fraassen.

166



the soldiers would have stayed put. So the dynamic account rules that the disjunction
of the Major’s and the Sergeant’s orders is a productive cause of the soldier’s advancing.

So far, the dynamic account treats this case just like a case of symmetric overde-
temination. But it does not feel like a case of symmetric overdetermination. Given
that the Major issued an order, it just doesn’t matter what order the Sergeant gives.
In this case, it appears as though the Major’s higher rank breaks the tie between the
two orders. e Major’s order trumps the Sergeant’s order. at is, it seems correct to
say that it was the Major that caused the soldiers to advance, and it seems incorrect
to say that it was the Sergeant that caused them to advance.

In fact the dynamic account secures just this result, since, even though the Major’s
orders do not count as a productive cause of the soldier’s advancing, they do count as a
background cause of the soldier’s advancing. Had the Major ordered the soldiers to stay
put, then they would have stayed put, even though the Sergeant had ordered them to
advance. e Sergeant’s orders, on the other hand, do not count as a background cause
of the soldier’s advancing. Given that the Major had ordered them to advance, there
is nothing that the Sergeant could have done to prevent the soldiers from advancing.
In my view, this captures the ‘tie breaking’ intuition of the case fairly well.

Note that we don’t get this result if we consider the binary variables M′ and S ′,
which either take the value 0, if no order is issued, or 1, if the order to advance is issued.
M′’s determination of A and S ′’s determination of A are perfectly symmetrical. ese
structural determination relations are representable with the equation At := M′t−δ ∨
S ′t−δ. So if both M′ and S ′ change from 0 to 1 at t,∆M′t caused∆At+δ iff∆S ′t caused
∆At+δ, and M′t caused ∆At+δ iff S ′t caused ∆At+δ. Due to the perfect symmetry,
there is no sense in which M′ could trump S ′. Insofar as we are thinking about the
property of the world described by the Major’s orders in such a way that they could
trump the Sergeant’s orders, this shows that we are thinking about a property of the
world better represented by M than by M′.24

5.4 I S

5.4.1 L B

e foregoing three chapters have outlined an account of singular causation ac-
cording to which causes are, in some good sense, both nomically sufficient and nom-
24 Similar diagnoses of the trumping case are provided by L (2000) and H & H-

 (2010).
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ically necessary for their effects. e sense in which they are nomically sufficient is
that, in order for the event of a certain part of the world having or acquiring a cer-
tain property (i.e., the event of a variable taking on or retaining a certain value) to
be causally related to the event of some other part of the world having or acquiring
a certain property (i.e., the event of another variable taking on or retaining a certain
value), it is necessary that the ërst variable enters into a network of structural determi-
nation with the second. What it is for a variable to enter into a network of structural
determination like this is for its value (perhaps in tandem with other variables’ val-
ues) to be nomically sufficient for the value of its structural descendants throughout
a certain swath of modal space.

Because structural determination relations are, in some sense, more sparse be-
tween high-level variables than they are between low-level variables (see ëgure 2), this
account is causally emergentist, in the sense of chapter 2. e structural determi-
nation relations found at the low-level, fundamental physical level of description are
not the only structural determination relations that there are. ere are additionally
structural determination relations between high-level variables which do not reduce
to, and do not even supervene upon, the structural determination relations between
the low-level variables whose values their values supervene upon. erefore, given
that these determination relations are necessary for singular causation—they provide
the pathways along which singular causal inìuence propagates—causal relations be-
tween high-level events do not reduce to causal relations between low-level events. In
providing an emergentist account such as this, there is the danger that, by soaring to
such ontic heights, we will lose sight of more minute details which end up making a
difference to the question of which events singularly caused which other events. is
led us into the problems of chapter 4, where, by ignoring too much of the world’s
causal structure, we lost the ability to correctly discriminate causes from non-causes.
ere, I suggested that the solution lies in maintaining that a network of structural
determination is correctly represented by a structural equations model only if each of
the determination relations in our model are autonomous of each other.

In this chapter, I’ve offered an account of the sense in which causes are nomically
necessary for their effects by outlining a counterfactual account of singular causation,
dubbed ‘the dynamic counterfactual account’. is account is broadly in the spirit of
L’s original 1973 counterfactual account. e primary differences are four-fold:
ërstly, whereas L’s counterfactuals concerned the occurrence or nonoccurrence of
events, the dynamic account simply looks at the counterfactual relationship between
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(changes in) variable values at times. It may therefore remain neutral on questions
about the modal proële of the corresponding events. Secondly, whereas L eval-
uated his counterfactuals using the ‘closest possible world’ analysis, the dynamic ac-
count evaluates its counterfactuals relative to a network of structural determination
between variable values. irdly, whereas, for L, it did not matter what kinds
of events were being related—neither whether they were events in which something
changed or whether something remained the same, nor whether they were events in
which something noteworthy or deviant happened or whether something boring and
default happened—for the dynamic account, these differences matter. Fourthly and
relatedly, whereas L thought that, whenever there was a chain of counterfactual
dependence leading from C to E, C caused E, according to the dynamic account,
such chains of counterfactual dependence only entail that C caused E when three ad-
ditional conditions are met: 1) the chain doesn’t leave out any important part of the
causal process leading from C to E, 2) every event along the chain is an interesting or
noteworthy deviation from normality, and 3) the counterfactuals in the chain are all
interlocking.

I’ve shown that these emendations to L’s original counterfactual account are
able to deal with many of the most pressing counterexamples which that account
faced. Indeed, I believe that the account deals with many other counterexamples to
the counterfactual analysis as well,25 though a defense of that claim must be post-
poned. e dynamic account should, of course, be generalized to deal with cases of
indeterministic causation, as well as possible cases of backwards causation. ough I
won’t be providing those generalizations here, I believe that both problems are dealt
with by paying more attention to the structural dependence relations that underlie
the causal counterfactuals appearing in the dynamic account. In particular, I believe
that, when backwards causation is possible, the past state of the world is structurally
determined by the future state of the world. And, when causation is indeterministic,
it is because the underlying structural determination relations are indeterministic.

25 To name but a few: D (1977), MD (1995), H (1996), T
(2003), S (2003), C (2004), MG (2005), S (2005), H &
K (2009), S (2012), B (forthcoming), and every counterexample from the com-
pendium of counterexamples provided by P & H (2013).
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