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ABSTRACT 

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. 

Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in 

human breast milk, serum and placenta. Exposure to BDE-47 has been linked to adverse 

pregnancy outcomes in humans including preterm birth, low birth weight, and stillbirth. 

Although underlying mechanisms of adverse birth outcomes are poorly understood, critical roles 

of impaired trophoblast invasion and placental dysfunction characterized with dysregulated 

inflammatory pathways have been implicated. The present study examined the hypothesis that 

BDE-47 stimulates oxidative stress-mediated activation of inflammatory pathways in a human 

first trimester extravillous trophoblast (EVT) cell line, HTR-8/SVneo, and that the antioxidant 

transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a protective role 

against BDE-47-induced inflammatory pathways. 

Our results provide evidence of altered mitochondrial membrane potential, enhanced 

production of reactive oxygen species (ROS), and enhanced production of the pro-inflammatory 

interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2) stimulated by BDE-47 in human placental 

cells. The inhibition of stimulated release of IL-6 and PGE2 by a variety of antioxidant 

treatments implicates the involvement of ROS in the regulation of BDE-47-stimulated 

inflammatory pathways in HTR-8/SVneo cells. In addition, treatment with BDE-47 activated 

Nrf2-mediated oxidative stress responses as indicated by increased Nrf2 transactivation, 

differential expression of redox-sensitive genes, and augmented glutathione (GSH) production. 

Pretreatment with the Nrf2 inducers tert-butyl hydroquinone (tBHQ) or sulforaphane suppressed 

BDE-47-stimulated IL-6 production and nuclear factor kappa B (NF-κB) transactivation in HTR-
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8/SVneo cells, with stimulated Nrf2 transactivation, intracellular GSH production, and mRNA 

expression of antioxidant genes compared with non-pretreated controls. The latter findings 

suggest that Nrf2 may play a protective role against BDE-47-stimulated inflammatory responses.  

In conclusion, BDE-47, a predominant flame retardant chemical found in human tissues, 

activates proinflammatory responses in human first trimester EVTs. The present study provides 

the first experimental data to support a mechanism by which PBDE exposure could contribute to 

increased risk for adverse birth outcomes. By demonstrating that a common toxicological effect, 

oxidative stress, activates inflammatory pathways associated with impaired trophoblast function 

and placental dysfunction, these data provide support for a plausible biological explanation for 

environmental contaminant exposure associations with adverse obstetrical outcomes. 

Furthermore, this research contributes new information for potential interventions to reduce 

adverse obstetrical outcomes originating from abnormal placental function, with attendant 

possible economic, societal and public health benefits.
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 INTRODUCTION  CHAPTER 1.

 

The hallmark of placentation - trophoblast invasion 

The placenta plays critical roles during pregnancy ranging from anchoring the conceptus 

and preventing its rejection by the maternal immune system to enabling the transport of nutrients 

and wastes between the mother and the embryo/fetus (Maltepe et al., 2010). Proper placental 

development is a prerequisite for a successful pregnancy. Placentation is a unique biologic 

process which involves the intimate dialogue between fetal and maternal tissues leading to 

profound remodeling of the uterine vasculature. Invasion of extravillous trophoblast into the 

spiral arteries is a key event during placentation (Brosens et al., 1967;  Pijnenborg et al., 1983;  

Pijnenborg et al., 1980). The extravillous trophoblasts (EVTs) are a highly proliferative and 

migratory cell population that invades  the decidual and myometrial segments of the spiral 

arteries, resulting in the reversible remodeling of the arterial wall architecture (Anton et al., 

2012;  Brosens, et al., 1967;  Pijnenborg, et al., 1983;  Pijnenborg, et al., 1980) (Figure 1.1). This 

transformation leads to reduced peripheral vascular resistance in the placental bed, thereby 

maximizing blood flow to the fetus (Brosens, et al., 1967;  Pijnenborg, et al., 1983;  Pijnenborg, 

et al., 1980). Abnormal placentation has contributes to the pathophysiology of adverse obstetrical 

complications such as preeclampsia (PE) (Brosens, 1977;  Gerretsen et al., 1981;  Robertson et 

al., 1967;  Sheppard and Bonnar, 1976) , intrauterine growth restriction (IUGR) (Gerretsen, et 

al., 1981;  Hustin et al., 1983;  Labarrere and Althabe, 1987;  Sheppard and Bonnar, 1981), 

spontaneous abortion (Hustin et al., 1990;  Khong et al., 1987), preterm premature rupture of 

membranes (Kim et al., 2002),  and preterm birth (Kim et al., 2003). Although the mechanisms 
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responsible for improper placentation are not fully understood, impaired trophoblast invasion has 

been implicated (Zhou et al., 1997a;  Zhou et al., 1997b). 

 

Regulation of trophoblast invasion 

Trophoblast invasion is tightly regulated by trophoblast-derived as well as maternal 

factors in time- and distance-dependent manners (Bischof et al., 2000;  Lala and Hamilton, 

1996). These regulators include a number of autocrine and paracrine factors, including growth 

factors, growth factor-binding proteins, and proteoglycans (Chakraborty et al., 2002;  Lala and 

Chakraborty, 2003). Recently, inflammatory mediators such cytokines and prostaglandins have 

been shown to play a role in the regulation of trophoblast function during first trimester of 

pregnancy (Biondi et al., 2006;  Horita et al., 2007a;  Jovanovic et al., 2010;  Jovanovic and 

Vicovac, 2009;  Nicola et al., 2005b).  

 

-Cytokines 

Cytokines are small (8-30 kDa) hydrophilic signaling peptides and glycoproteins used in 

autocrine, paracrine and endocrine signaling throughout the body (Miller, 2009). In the placenta 

and extraplacental membranes, cytokines are produced by trophoblasts and diverse decidual cell 

types, and are assumed to play a role in establishment of successful pregnancy (Salamonsen et 

al., 2007) 

 Interleukin (IL)-6 is a pleiotropic cytokine that belongs to the family of gp130 cytokines 

(Dimitriadis et al., 2005).  IL-6 is produced by many cell types and is involved in various 

processes such as immune response, acute phase reaction and hematopoiesis (Jovanovic and 

Vicovac, 2009). It has been shown that IL-6 is released from human first trimester placenta in 
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tissue culture (Kameda et al., 1990). IL-6 was expressed in both syncytiotrophoblasts and 

extravillous trophoblasts (Jauniaux et al., 1996;  Kauma et al., 1993).  Receptor protein for IL-6 

(IL-6R) and gp130 have been detected in trophoblast (Nishino et al., 1990;  Sawai et al., 1995) 

IL8 (CXCL8) is a pro-inflammatory molecule belonging to the CXC chemokine 

subfamily (Jovanovic, et al., 2010).  IL8 is shown to play roles in regulation of neutrophil 

transendothelial migration (Huber et al., 1991), angiogenesis (Koch et al., 1992), and 

proliferation myeloid progenitor cells (Sanchez et al., 1998). IL-8 is constitutively expressed in 

trophoblasts and placental macrophages, and its expression is highest at term (Shimoya et al., 

1992). mRNA and protein expression of IL-8 was reported in cytotrophoblast, 

syncytiotrophoblast, and Hofbauer cells of the placenta (Saito et al., 1994). Expression of IL-8 

receptors, CXCR1 and CXCR2, has been reported in human first trimester EVT (Hanna et al., 

2006), cytotrophoblast, and the human choriocarcinoma BeWo cell line (Hirota et al., 2009;  

Tsui et al., 2004). 

 

-Prostaglandins 

Prostaglandins are small lipid molecules synthesized from membrane phospholipids in 

response to various physiological and pathological stimuli (Nicola, et al., 2005b). Prostaglandin 

E2 (PGE2) is one of the most extensively studied prostaglandins, with critical roles for 

successful pregnancy, including implantation (Psychoyos et al., 1995;  Yee et al., 1993), 

immunoprotection of the semiallogenic conceptus (Parhar et al., 1988), and parturition (Keelan 

et al., 2003). Prostaglandin production begins with arachidonic acid liberation from membrane-

bound phospholipids by the action of phospholipase A2 (PLA2) (Jakobsson et al., 1999;  Kuroda 

and Yamashita, 2003;  Stichtenoth et al., 2001). Then, liberated arachidonic acid is converted to 
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prostaglandin H2 (PGH2) by two cyclooxygenase (COX) isoforms, COX-1 and COX-2 

(Jakobsson, et al., 1999;  Kuroda and Yamashita, 2003;  Stichtenoth, et al., 2001). Finally, 

prostaglandins are further isomerized by tissue-specific prostaglandin synthases. In the case of 

PGE2, PGH2 is converted to PGE2 by PGE2 synthase (PGES) (Horita, et al., 2007a). 

Prostaglandins can be further catabolized to biologically inactive keto-metabolites by 15-

hydroxyprostaglandin dehydrogenase (HPGD) (Tai et al., 2006). It has been reported that COX-

2 and microsomal PGES-1 are expressed in human first trimester EVT cells (Meadows et al., 

2004). 

 

Inflammation and adverse birth outcomes 

There is a growing body of evidence that improper regulation of the inflammatory 

networks may lead to adverse pregnancy outcomes (Orsi and Tribe, 2008;  Tjoa et al., 2004). 

Specifically, increased levels of cytokines, prostaglandins, adhesion molecules, and C-reactive 

protein in cervical fluid, amniotic fluid and maternal serum have been linked to the 

pathophysiology of preterm birth, PE, and IUGR (Cox et al., 1993;  Goldenberg et al., 2005;  

Lyall et al., 1994;  Romero et al., 2002;  Tjoa et al., 2003;  Vince et al., 1995). High levels of IL-

6, IL-8 and PGE2 in the cervicovaginal fluid and amniotic fluid of pregnant women have been 

associated with increased risk for preterm birth (Dortbudak et al., 2005;  Goepfert et al., 2001;  

Romero, et al., 2002;  Wenstrom et al., 1996). PTGS2 mRNA levels were approximately seven 

times higher in chorionlaeve from spontaneous preterm extra-embryonic membranes compared 

to non-laboring tissues of equivalent gestational age (Mijovic et al., 1998). Through pathologic 

activation of pro-inflammatory pathways, pregnancies complicated with bacterial vaginosis 

(Flynn et al., 1999;  Leitich et al., 2003) or intrauterine infection (Goldenberg et al., 2008;  

Romero et al., 2001) have been associated with increased risk of preterm birth. These studies 
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suggest that inflammation occurring at the maternal–fetal interface during pregnancy contributes 

to adverse obstetrical outcomes. Although the etiology of inflammation-related adverse birth 

outcomes is not fully understood, it has been recently suggested that inflammation within the 

gestational compartment may lead to impaired trophoblast cellular function, contributing to the 

placental dysfunction seen in pregnancy-related disorders (Anton, et al., 2012).   

 

Inflammation and placentation 

A possible link between placental dysfunction and inflammation has been implicated in 

studies showing that women who delivered preterm had higher rates of placental ischemia and 

abnormal placentation than controls (Germain et al., 1999;  Kim, et al., 2003), with high levels 

of IL-6 and IL-8 in cervical fluid, amniotic fluid and maternal serum (Goldenberg, et al., 2005). 

In HTR-8/SVneo cells, LPS reduced invasion activity (in a matrigel-based assay) with increased 

production of IL-8 and IL-6 (Anton, et al., 2012). However, treatment with IL-6 increased 

gelatinase (matrix metalloproteinase-9) activity when assessed with a gelatin zymography assay 

(Jovanovic, et al., 2010;  Jovanovic and Vicovac, 2009). Inhibition of endogenous IL-6 in JEG-3 

choriocarcinoma cells inhibited migration and invasion (Dubinsky et al., 2010). Roles for PGE2 

in trophoblast cellular function have been suggested, also, although reported findings are not 

consistent. For example, PGE2 promoted migration of HTR-8 cells with suppressed migration by 

COX-2 inhibition (Horita et al., 2007b;  Nicola et al., 2005a), whereas Biondi et al. showed that 

PGE2 suppressed the proliferation and migration of HTR-8/SVneo cells (Biondi, et al., 2006). 

Despite the inconsistencies, these published reports suggest that inflammatory mediators 

including IL-6, IL-8 and PGE2 may play critical roles in regulating trophoblast cellular function 

during placentation.  
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Reactive oxygen species as a signaling molecule 

Oxidative stress is defined as the imbalance between cellular pro-oxidants and 

antioxidants resulting in increase of reactive oxygen species (ROS). Oxidative stress in placenta 

has been associated with pathologies of pregnancy, including preterm labor, PE, and IUGR 

(Agarwal et al., 2012). A growing body of literature has reported that ROS can function as 

signaling molecules in mammalian cells (Finkel, 1998;  Khan and Wilson, 1995;  Remacle et al., 

1995) to regulate signal transduction pathways that control gene expression and posttranslational 

changes of proteins (Allen and Tresini, 2000;  Palmer and Paulson, 1997) involved in various 

cellular functions (Droge, 2002;  Valko et al., 2007). ROS can activate a variety of transcription 

factors, including nuclear factor kappa B (NF-κB), activator protein 1(AP-1), and nuclear factor 

like 2 (Nrf2), leading to altered expression of genes for inflammatory cytokines, chemokines, 

and anti-inflammatory molecules (Reuter et al., 2010). Moreover, N-acetylcysteine, which can 

act as an antioxidant by increasing cellular concentrations of glutathione, prevents 

lipopolysaccharides (LPS)-stimulated parturition, fetal death in mice, and LPS-induced release of 

pro-inflammatory cytokines from human extraplacental membranes in vitro (Buhimschi et al., 

2003;  Cindrova-Davies et al., 2007). Together, these findings implicate interplay between 

oxidative stress and inflammation in the etiology of adverse pregnancy outcomes. 

  

Nrf2-Keap1 pathway: cellular defensive mechanism  

To defend against exogenous toxicants and injury, cells possess a variety of 

cytoprotective and detoxifying enzymes. The expression of some of these genes is regulated by a 

common promoter element called the antioxidant response element (ARE). Nrf2 is a redox-
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sensitive transcription factor that binds to ARE and activates the ARE-mediated gene expression 

(Itoh et al., 1997;  Motohashi and Yamamoto, 2004;  Osburn et al., 2006). Under basal 

conditions, Nrf2 is sequestered in the cytoplasm by the cytosolic regulatory protein Kelch-like 

erythroid cell-derived protein with CNC homology (ECH)-associated protein1 (Keap1) (Imhoff 

and Hansen, 2010). While sequestered, Nrf2 constantly undergoes ubiquitination and subsequent 

proteosomal degradation. Keap1 contains many cysteine residues which sense changes in the 

redox status in the intracellular environment and are modified directly through either conjugation 

or oxidation to a sulfenic acid (−SOH) (Imhoff and Hansen, 2010). Modifications on the cysteine 

residues causes a conformational change of Keap1, leading to the release of Nrf2. Then, Nrf2 

translocates to the nucleus and binds to ARE (Rushmore et al., 1991) resulting in the 

upregulation of phase II detoxification enzymes and antioxidants such as NAD(P)H 

dehydrogenase, quinone 1 (NQO1), heme oxygenase-1 (HMOX1), glutamate–cysteine ligase 

catalytic subunit (GCLC), and glutamate–cysteine ligase modifier subunit (GCLM) (Kensler et 

al., 2007).  There have been extensive studies on the protective role of Nrf2 against carcinogens 

and xenobiotics in vitro and in vivo (Fahey et al., 2002;  Kensler, et al., 2007).   

 

-Anti-inflammatory effects of Nrf2  

Recently, many studies provided evidence implicating the anti-inflammatory effect of 

Nrf2 in a variety of experimental models (Khor et al., 2006;  Rangasamy et al., 2004;  

Rangasamy et al., 2005;  Thimmulappa et al., 2006). In response to traumatic brain injury (TBI), 

mice lacking Nrf2 exhibited increased intestinal inflammatory response and mucosal injury (Jin 

et al., 2008;  Jin et al., 2009). In addition, oral administration of the synthetic Nrf2 inducer tert-

butylhydroquinone (tBHQ) decreased NF-κB activation, inflammatory cytokines production 
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(TNF-α, IL-1β, and IL-6), and ICAM-1 expression in TBI-induced gut injury in mice (Jin et al., 

2010). In rat neuron-like PC12 cells, tBHQ inhibited LPS-induced cyclooxygenase 2 (COX-2), 

TNF-α, and NF-κB expression in a dose-dependent manner while stabilizing Nrf2 (Khodagholi 

and Tusi, 2011). Moreover, pretreatment of murine BV-2 microglial cells with tBHQ attenuated 

the LPS-derived overproduction of pro-inflammatory TNF-α, IL-1β, IL-6, and PGE2 (Koh et al., 

2009). Although the precise mechanism regarding the anti-inflammatory ability of tBHQ remains 

elusive, several lines of evidence indicate that the anti-inflammatory properties of tBHQ might 

result from the augmentation of the cellular antioxidant response via up-regulation of the Nrf2 

signaling pathway and inhibition of NF-κB signaling pathway, along with suppression of MAP 

kinase (p38, ERK1/2, and JNK) phosphorylation (Jin et al., 2011;  Khodagholi and Tusi, 2011). 

 

-Nrf2 in gestational compartments 

Despite the importance of Nrf2 in cellular anti-oxidative and anti-inflammatory 

responses, there have been relatively few studies regarding Nrf2 activation in placenta and 

pregnancy. In vitro cell culture studies have been a useful tool to show the involvement of Nrf2 

in the regulation of placental cell functions. It has been reported that Nrf2 may play a critical role 

in regulating angiogenesis by human umbilical vein endothelial cells (HUVECs) (Valcarcel-Ares 

et al., 2012) and human choriocarcinoma BeWo cells (Kweider et al., 2011). In addition, genetic 

profiling of highly migratory human EVT and villous cytotrophoblasts revealed that reduced 

expression of HO-1, a hallmark of Nrf2 activation, is associated with decreased cell motility and 

trophoblast invasion (Bilban et al., 2009). Wruck et al. provided the first experimental data 

showing that Nrf2 is active within cytotrophoblasts of preeclamptic placentae, with PE 

associated with increased Nrf2 activity compared to normal gestation-matched controls (Wruck 
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et al., 2009). Later, Kweider et al. (Kweider et al., 2012) reported that not only cytotrophoblasts 

but also extravillous trophoblasts are a source of Nrf2-regulated proteins in human placenta. 

Moreover, the latter study showed that extravillous trophoblasts showed an increased 

cytoplasmic expression of Nrf2 and 4-hydroxynonenal (4-HNE), a marker of oxidative stress, in 

IUGR/PE cases. In addition, the genome-wide transcriptional profiling of preeclamptic and 

normal pregnancies showed that the Nrf2-mediated oxidative stress response is upregulated in 

PE (Loset et al., 2011). Another study appears to contradict the prior studies, reporting that Nrf2 

activation and HO-1 mRNA were significantly decreased in preeclamptic placentae compared 

with normal controls (Chigusa et al., 2012). Nonetheless, when assessed together these reports 

suggest that Nrf2 may play a critical role in the regulation of trophoblast cellular function and 

invasion, and that dysregulation of Nrf2 may contribute to the etiology and progression of birth 

complications. Although studies have linked Nrf2 to adverse pregnancy outcomes, the present 

study is the first to explore the role of Nrf2 activation in the regulation of inflammatory 

responses in the gestational compartment, to the best of our knowledge. 

 

Environmental exposures and adverse birth outcomes 

There has been increasing global concern over the adverse health impacts attributed to 

environmental pollutants (Luo et al., 2010). In particular, maternal exposure to various 

chemicals, such as heavy metals, xenoestrogen and tobacco, during critical periods of pregnancy 

has been identified as a rising public health concern, because those chemicals are reported to 

pass across the placental barrier into the fetal blood stream and can be transferred to the fetus 

(Barr et al., 2007). In addition, there has been growing evidence that environmental exposure can 

play an important role in the etiology of adverse birth outcomes (Stillerman et al., 2008). For 
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example, cigarette smoking has been associated with increased risk for PE, preterm birth, low 

birth weight, IUGR, and pregnancy loss (Cnattingius, 2004;  Delpisheh et al., 2006), associated 

with increased systemic markers of oxidative stress and inflammation (Yanbaeva et al., 2007). 

Similarly, air pollution (Sram et al., 2005) and organochlorine pesticides including 

dichlorodiphenyltrichloroethane (DDT) (Pathak et al., 2010)  have been associated with adverse 

birth outcomes with increased markers for ROS. Exposure to lead and phthalates has also been 

associated with increased risk for IUGR, low birth weight, and preterm birth (Dietrich, 1991;  

Jelliffe-Pawlowski et al., 2006;  Meeker et al., 2009;  Torres-Sanchez et al., 1999). A critical 

knowledge gap that is identified and addressed in this study is the lack of information on 

biological explanations that link environmental contaminant exposures with adverse birth 

outcomes. Because pregnant women are constantly exposed to many environmental chemicals, 

an improved understanding of the impacts of those chemicals on gestational tissues is warranted. 

 

Polybrominated diphenyl ethers – growing public health concerns 

Polybrominated diphenyl ethers (PBDEs) are commercially produced synthetic flame-

retardants consisting of two phenyl rings linked by an ether bond with variable hydrogen to 

bromine substitutions (Figure 1.2A). PBDEs have been used in textiles, plastics, building 

materials and insulation (Miller et al., 2009b). Because PBDEs are not chemically bound to the 

products, they may migrate from the products into the environment. In addition, they are 

persistent and bioaccumulative because of their lipophilic chemical properties (Frederiksen et al., 

2009a). Due to widespread use and bioaccumulation of PBDEs, human exposure to PBDEs 

increased exponentially over recent decades (Hites, 2004). Analysis of 2,062 human serum 

samples from the NHANES 2003-2004 detected PBDEs in nearly all participants, with BDE-47 
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(Figure 1.2B), one of the most prevalent PBDE congeners, having the highest concentration of 

the PBDE congeners measured (Sjodin et al., 2008). Moreover, PBDEs have been reported to 

exhibit neurodevelopmental (Branchi et al., 2003;  Viberg et al., 2006), hepatic (Zhou et al., 

2001;  Zhou et al., 2002), immunological (Fowles et al., 1994;  Thuvander and Darnerud, 1999) 

and thyroid toxicities (Zhou, et al., 2002) in animal studies, leading to growing public concerns 

about their use.  

Because of PBDEs’ environmental persistence and toxicity, the US EPA has identified 

PBDEs as a priority human health concern (U.S. Environmental Protection Agency, 2006). 

Production of penta-BDE (tri- to hexa-BDE mixtures) and octa-BDE (hexa- to nona-BDE 

mixtures) ceased in the United States and in Europe (European Chemicals Bureau, 2003).  

Recently, tetra-, penta-, hexa- and hepta-BDEs were listed as persistent organic compounds  at 

the 4th meeting of the Convention of Parties of the Stockholm Convention on Persistent Organic 

Chemicals and banned in over 160 countries (Stockholm Convention News Release, 2009). 

Deca-BDE is still produced, although Sweden and some states in the USA (Maine and 

Washington) have prohibited the use of deca-BDE (Costa et al., 2008;  Frederiksen, et al., 

2009a).  

Despite these efforts to limit production and use of PBDEs in recent years, PBDE 

exposure still persists and remains a potential risk to human health. The globalization of 

commerce has allowed access the goods from regions with little or no regulation on PBDEs 

(Miller, 2009). Furthermore, there still exists a wide stock of old products containing penta- and 

octa-BDEs, allowing continued exposures. Moreover, a growing body of literature suggested that 

highly brominated deca BDEs could be degraded into lower brominated congeners (Stapleton et 

al., 2006;  Thuresson et al., 2005). Finally, many PBDE congeners have long environmental and 
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biological half-lives (Hakk and Letcher, 2003), which lead to persistent exposure to PBDEs after 

disposal of the products. Besides, the potential risk of bioaccumulation through the food chain 

has been implicated in many animal studies (Debruyn et al., 2009;  Letcher et al., 2009;  Yu et 

al., 2009). High levels of PBDEs in human samples from people who work at recycling facilities 

have also been reported (Bi et al., 2007). 

 

 -PBDEs and reproductive toxicity 

Limited studies report possible reproductive toxicity of PBDEs during pregnancy. 

Rabbits orally exposed to PBDEs show decreased gestation length (Breslin et al., 1989). In 

human studies, Main et al. report a significantly higher risk of cryptorchidism for sons born to 

mothers with elevated PBDE levels in breast milk (Main et al., 2007). In addition, Chao et al. 

found elevated levels of PBDEs in breast milk correlated with decreased infant birth weight, 

infant birth length, infant chest circumference and infant body mass index (Chao et al., 2007). 

Elevated levels of PBDEs in human umbilical cord blood have been correlated with preterm birth, 

low birth weight or stillbirth (Wu, et al. 2010). Although these studies suggest the association 

between PBDE exposure and adverse birth outcomes, and PBDEs distribute to human placenta 

(Frederiksen et al., 2009b), extraplacental membranes (Miller et al., 2009a), amniotic fluid 

(Miller et al., 2012), and umbilical cord blood (Frederiksen, et al., 2009b), studies of 

mechanisms by which PBDEs act on gestational tissues during pregnancy are limited. 

 

-PBDEs and Oxidative Stress 

A few studies suggest that PBDEs induce increased generation of ROS in mammalian 

cells. He et al. (2008) showed that PBDEs induce lipid peroxidation and DNA damage in 
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primary cultured rat hippocampal neurons. Reistad and Mariussen reported that pentabrominated 

diphenyl ether (DE-71) and BDE-47 enhanced the production of ROS, potentially through 

NADPH oxidase activation in human granulocytes (Reistad and Mariussen, 2005). It is also 

reported that BDE-47 induced apoptosis in Jurkat cells, possibly through ROS overproduction 

and mitochondrial dysfunction (Yan et al., 2011). Shao et al (2008) reported that BDE-47 

induced ROS overproduction, loss of mitochondrial membrane potential and apoptosis in human 

fetal liver hematopoietic stem cells. Together, these reports suggest a close relationship between 

ROS formation and toxicity induced by PBDEs. However, there is no previous report on PBDE-

stimulated ROS formation in human placental cells and tissues. 

 

-PBDEs and inflammation 

Oxidative stress has been implicated in inflammatory disease, and a growing body of 

literature shows that ROS can play a role in regulation of inflammatory pathways (Finkel, 1998;  

Reuter, et al., 2010). Although BDE-47-stimulated oxidative stress has been extensively studied, 

little is known about interactions of BDE-47 with the innate immune response. It was recently 

reported that BDE-47-pretreatment of peripheral blood mononuclear cells from children with 

autism spectrum disorders exhibit divergent LPS-stimulated cytokine responses compared with 

age-matched controls (Ashwood et al., 2009).  Peltier  et al. (2012) reported that pre-exposure of 

human second trimester placental explants to a PBDE mixture of congers 47, 99 and 100 

enhanced placental proinflammatory response to heat-killed E. Coli, with increased IL-1β and 

reduced IL-10 production. In the latter study by Peltier et al.(2012), however, PBDE treatment 

alone did not stimulate proinflammatory cytokine production in placental explant cultures. To 
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our knowledge, there are no previous reports of PBDEs directly altering inflammatory pathways 

in human placental cells. 

 

Research hypothesis 

Although inappropriate activation of the innate immune response can lead to placental 

dysfunction and certain environmental contaminants can activate innate immune responses 

(Campbell, 2004;  Lin et al., 2010), there is a paucity of reports on PBDE-stimulated 

inflammation in first trimester placenta. Moreover, increased oxidative stress in placenta has 

been observed in pathological pregnancies, and ROS have been implicated in the activation of 

inflammatory responses in gestational compartments (Buhimschi, et al., 2003;  Cindrova-Davies, 

et al., 2007). The present study examines the hypothesis that BDE-47 stimulates pro-

inflammatory cytokine and prostaglandin production via a ROS-mediated mechanism in the first 

trimester EVT human placental cell line HTR-8/SVneo. Furthermore, the roles of the redox 

sensitive transcription factor Nrf2 on the regulation of BDE-47-stimulated inflammation were 

investigated as a potential therapeutic target for adverse birth outcomes.  
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Figure 1.1. Trophoblast invasion during placentation.  

In the first trimester of human pregnancy, fetal extravillous trophoblasts (EVTs) invade the 

decidua and maternal spiral arteries. This physiologic transformation leads to reduced peripheral 

vascular resistance enabling the transport of nutrients and wastes between the mother and the 

fetus. Figure adapted from Wang et al. (2009). 
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Figure 1.2. Chemical structure of PBDEs 

A) General chemical structure of PBDEs (m+m=1-10). B) Chemical structure of BDE-47.  



17 

 

References 

 

 

Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A., and Gupta, S. (2012). The 

effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol 10, 

49, 10.1186/1477-7827-10-49. 

Allen, R. G., and Tresini, M. (2000). Oxidative stress and gene regulation. Free Radic Biol Med 

28(3), 463-99. 

Anton, L., Brown, A. G., Parry, S., and Elovitz, M. A. (2012). Lipopolysaccharide induces 

cytokine production and decreases extravillous trophoblast invasion through a mitogen-

activated protein kinase-mediated pathway: Possible mechanisms of first trimester 

placental dysfunction. Human reproduction 27(1), 61-72, 10.1093/humrep/der362. 

Ashwood, P., Schauer, J., Pessah, I. N., and Van de Water, J. (2009). Preliminary evidence of the 

in vitro effects of bde-47 on innate immune responses in children with autism spectrum 

disorders. Journal of neuroimmunology 208(1-2), 130-5, 

10.1016/j.jneuroim.2008.12.012. 

Barr, D. B., Bishop, A., and Needham, L. L. (2007). Concentrations of xenobiotic chemicals in 

the maternal-fetal unit. Reproductive Toxicology 23, 260-266. 

Bi, X., Thomas, G. O., Jones, K. C., Qu, W., Sheng, G., Martin, F. L., and Fu, J. (2007). 

Exposure of electronics dismantling workers to polybrominated diphenyl ethers, 

polychlorinated biphenyls, and organochlorine pesticides in south china. Environmental 

science & technology 41(16), 5647-53. 

Bilban, M., Haslinger, P., Prast, J., Klinglmuller, F., Woelfel, T., Haider, S., Sachs, A., 

Otterbein, L. E., Desoye, G., Hiden, U., Wagner, O., and Knofler, M. (2009). 

Identification of novel trophoblast invasion-related genes: Heme oxygenase-1 controls 

motility via peroxisome proliferator-activated receptor gamma. Endocrinology 150(2), 

1000-13, 10.1210/en.2008-0456. 

Biondi, C., Ferretti, M. E., Pavan, B., Lunghi, L., Gravina, B., Nicoloso, M. S., Vesce, F., and 

Baldassarre, G. (2006). Prostaglandin e2 inhibits proliferation and migration of htr-

8/svneo cells, a human trophoblast-derived cell line. Placenta 27(6-7), 592-601, 

10.1016/j.placenta.2005.07.009. 

Bischof, P., Meisser, A., and Campana, A. (2000). Paracrine and autocrine regulators of 

trophoblast invasion--a review. Placenta 21 Suppl A, S55-60. 

Branchi, I., Capone, F., Alleva, E., and Costa, L. G. (2003). Polybrominated diphenyl ethers: 

Neurobehavioral effects following developmental exposure. Neurotoxicology 24(3), 449-

62, 10.1016/S0161-813X(03)00020-2. 

Breslin, W. J., Kirk, H. D., and Zimmer, M. A. (1989). Teratogenic evaluation of a 

polybromodiphenyl oxide mixture in new zealand white rabbits following oral exposure. 

Fundamental and applied toxicology : official journal of the Society of Toxicology 12(1), 

151-7. 

Brosens, I., Robertson, W. B., and Dixon, H. G. (1967). The physiological response of the 

vessels of the placental bed to normal pregnancy. The Journal of pathology and 

bacteriology 93(2), 569-79, 10.1002/path.1700930218. 



18 

 

Brosens, I. A. (1977). Morphological changes in the utero-placental bed in pregnancy 

hypertension. Clinics in obstetrics and gynaecology 4(3), 573-93. 

Buhimschi, I. A., Buhimschi, C. S., and Weiner, C. P. (2003). Protective effect of n-

acetylcysteine against fetal death and preterm labor induced by maternal inflammation. 

American journal of obstetrics and gynecology 188(1), 203-8. 

Campbell, A. (2004). Inflammation, neurodegenerative diseases, and environmental exposures. 

Ann N Y Acad Sci 1035, 117-32, 10.1196/annals.1332.008. 

Chakraborty, C., Gleeson, L. M., McKinnon, T., and Lala, P. K. (2002). Regulation of human 

trophoblast migration and invasiveness. Canadian journal of physiology and 

pharmacology 80(2), 116-24. 

Chao, H. R., Wang, S. L., Lee, W. J., Wang, Y. F., and Papke, O. (2007). Levels of 

polybrominated diphenyl ethers (pbdes) in breast milk from central taiwan and their 

relation to infant birth outcome and maternal menstruation effects. Environment 

international 33(2), 239-45, 10.1016/j.envint.2006.09.013. 

Chigusa, Y., Tatsumi, K., Kondoh, E., Fujita, K., Nishimura, F., Mogami, H., and Konishi, I. 

(2012). Decreased lectin-like oxidized ldl receptor 1 (lox-1) and low nrf2 activation in 

placenta are involved in preeclampsia. The Journal of clinical endocrinology and 

metabolism 97(10), E1862-70, 10.1210/jc.2012-1268. 

Cindrova-Davies, T., Yung, H. W., Johns, J., Spasic-Boskovic, O., Korolchuk, S., Jauniaux, E., 

Burton, G. J., and Charnock-Jones, D. S. (2007). Oxidative stress, gene expression, and 

protein changes induced in the human placenta during labor. The American journal of 

pathology 171(4), 1168-79, 10.2353/ajpath.2007.070528. 

Cnattingius, S. (2004). The epidemiology of smoking during pregnancy: Smoking prevalence, 

maternal characteristics, and pregnancy outcomes. Nicotine Tob Res 6 Suppl 2, S125-40, 

10.1080/14622200410001669187. 

Costa, L. G., Giordano, G., Tagliaferri, S., Caglieri, A., and Mutti, A. (2008). Polybrominated 

diphenyl ether (pbde) flame retardants: Environmental contamination, human body 

burden and potential adverse health effects. Acta bio-medica : Atenei Parmensis 79(3), 

172-83. 

Cox, S., King, M., Casey, M., and MacDonald, P. (1993). Interleukin-1 beta, -1 alpha, and -6 and 

prostaglandins in vaginal/cervical fluids of pregnant women before and during labor. J 

Clin Endocrinol Metab 77, 805-815. 

Debruyn, A. M., Meloche, L. M., and Lowe, C. J. (2009). Patterns of bioaccumulation of 

polybrominated diphenyl ether and polychlorinated biphenyl congeners in marine 

mussels. Environmental science & technology 43(10), 3700-4. 

Delpisheh, A., Brabin, L., and Brabin, B. J. (2006). Pregnancy, smoking and birth outcomes. 

Womens Health (Lond Engl) 2(3), 389-403, 10.2217/17455057.2.3.389. 

Dietrich, K. N. (1991). Human fetal lead exposure: Intrauterine growth, maturation, and 

postnatal neurobehavioral development. Fundamental and applied toxicology : official 

journal of the Society of Toxicology 16(1), 17-9. 

Dimitriadis, E., White, C. A., Jones, R. L., and Salamonsen, L. A. (2005). Cytokines, 

chemokines and growth factors in endometrium related to implantation. Human 

reproduction update 11(6), 613-30, 10.1093/humupd/dmi023. 

Dortbudak, O., Eberhardt, R., Ulm, M., and Persson, G. R. (2005). Periodontitis, a marker of risk 

in pregnancy for preterm birth. J Clin Periodontol 32(1), 45-52, 10.1111/j.1600-

051X.2004.00630.x. 



19 

 

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82(1), 

47-95, 10.1152/physrev.00018.2001. 

Dubinsky, V., Poehlmann, T. G., Suman, P., Gentile, T., Markert, U. R., and Gutierrez, G. 

(2010). Role of regulatory and angiogenic cytokines in invasion of trophoblastic cells. 

Am J Reprod Immunol 63(3), 193-9, 10.1111/j.1600-0897.2009.00778.x. 

European Chemicals Bureau (2003). European union risk assessment report: Diphenyl ether, 

octabromo derivative. In (Ispra, Italy. 

Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., 

Talalay, P., and Lozniewski, A. (2002). Sulforaphane inhibits extracellular, intracellular, 

and antibiotic-resistant strains of helicobacter pylori and prevents benzo[a]pyrene-

induced stomach tumors. Proceedings of the National Academy of Sciences of the United 

States of America 99(11), 7610-5, 10.1073/pnas.112203099. 

Finkel, T. (1998). Oxygen radicals and signaling. Curr Opin Cell Biol 10(2), 248-53. 

Flynn, C. A., Helwig, A. L., and Meurer, L. N. (1999). Bacterial vaginosis in pregnancy and the 

risk of prematurity: A meta-analysis. J Fam Pract 48(11), 885-92. 

Fowles, J. R., Fairbrother, A., Baecher-Steppan, L., and Kerkvliet, N. I. (1994). Immunologic 

and endocrine effects of the flame-retardant pentabromodiphenyl ether (de-71) in 

c57bl/6j mice. Toxicology 86(1-2), 49-61. 

Frederiksen, M., Vorkamp, K., Thomsen, M., and Knudsen, L. E. (2009a). Human internal and 

external exposure to pbdes--a review of levels and sources. International journal of 

hygiene and environmental health 212(2), 109-34, 10.1016/j.ijheh.2008.04.005. 

Frederiksen, M., Vorkamp, K., Thomsen, M., and Knudsen, L. E. (2009b). Human internal and 

external exposure to pbdes--a review of levels and sources. Int J Hyg Environ Health 

212(2), 109-34, 10.1016/j.ijheh.2008.04.005. 

Germain, A. M., Carvajal, J., Sanchez, M., Valenzuela, G. J., Tsunekawa, H., and Chuaqui, B. 

(1999). Preterm labor: Placental pathology and clinical correlation. Obstet Gynecol 94(2), 

284-9. 

Gerretsen, G., Huisjes, H. J., and Elema, J. D. (1981). Morphological changes of the spiral 

arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. 

British journal of obstetrics and gynaecology 88(9), 876-81. 

Goepfert, A. R., Goldenberg, R. L., Andrews, W. W., Hauth, J. C., Mercer, B., Iams, J., Meis, P., 

Moawad, A., Thom, E., VanDorsten, J. P., Caritis, S. N., Thurnau, G., Miodovnik, M., 

Dombrowski, M., Roberts, J., and McNellis, D. (2001). The preterm prediction study: 

Association between cervical interleukin 6 concentration and spontaneous preterm birth. 

National institute of child health and human development maternal-fetal medicine units 

network. Am J Obstet Gynecol 184(3), 483-8. 

Goldenberg, R. L., Culhane, J. F., Iams, J. D., and Romero, R. (2008). Epidemiology and causes 

of preterm birth. Lancet 371(9606), 75-84, 10.1016/S0140-6736(08)60074-4. 

Goldenberg, R. L., Goepfert, A. R., and Ramsey, P. S. (2005). Biochemical markers for the 

prediction of preterm birth. American journal of obstetrics and gynecology 192(5 Suppl), 

S36-46, 10.1016/j.ajog.2005.02.015. 

Hakk, H., and Letcher, R. J. (2003). Metabolism in the toxicokinetics and fate of brominated 

flame retardants--a review. Environment international 29(6), 801-28, 10.1016/S0160-

4120(03)00109-0. 

Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., 

Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, 



20 

 

D., Porgador, A., Keshet, E., Yagel, S., and Mandelboim, O. (2006). Decidual nk cells 

regulate key developmental processes at the human fetal-maternal interface. Nature 

medicine 12(9), 1065-74, 10.1038/nm1452. 

He, P., He, W., Wang, A., Xia, T., Xu, B., Zhang, M., and Chen, X. (2008). Pbde-47-induced 

oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal 

neurons. Neurotoxicology 29(1), 124-9. 

Hirota, Y., Osuga, Y., Hasegawa, A., Kodama, A., Tajima, T., Hamasaki, K., Koga, K., Yoshino, 

O., Hirata, T., Harada, M., Takemura, Y., Yano, T., Tsutsumi, O., and Taketani, Y. 

(2009). Interleukin (il)-1beta stimulates migration and survival of first-trimester villous 

cytotrophoblast cells through endometrial epithelial cell-derived il-8. Endocrinology 

150(1), 350-6, 10.1210/en.2008-0264. 

Hites, R. A. (2004). Polybrominated diphenyl ethers in the environment and in people: A meta-

analysis of concentrations. Environmental science & technology 38(4), 945-56. 

Horita, H., Kuroda, E., Hachisuga, T., Kashimura, M., and Yamashita, U. (2007a). Induction of 

prostaglandin e2 production by leukemia inhibitory factor promotes migration of first 

trimester extravillous trophoblast cell line, htr-8/svneo. Human reproduction 22(7), 1801-

9, 10.1093/humrep/dem125. 

Horita, H., Kuroda, E., Hachisuga, T., Kashimura, M., and Yamashita, U. (2007b). Induction of 

prostaglandin e2 production by leukemia inhibitory factor promotes migration of first 

trimester extravillous trophoblast cell line, htr-8/svneo. Human reproduction 22(7), 1801-

9, 10.1093/humrep/dem125. 

Huber, A. R., Kunkel, S. L., Todd, R. F., 3rd, and Weiss, S. J. (1991). Regulation of 

transendothelial neutrophil migration by endogenous interleukin-8. Science 254(5028), 

99-102. 

Hustin, J., Foidart, J. M., and Lambotte, R. (1983). Maternal vascular lesions in pre-eclampsia 

and intrauterine growth retardation: Light microscopy and immunofluorescence. Placenta 

4 Spec No, 489-98. 

Hustin, J., Jauniaux, E., and Schaaps, J. P. (1990). Histological study of the materno-embryonic 

interface in spontaneous abortion. Placenta 11(6), 477-86. 

Imhoff, B. R., and Hansen, J. M. (2010). Tert-butylhydroquinone induces mitochondrial 

oxidative stress causing nrf2 activation. Cell biology and toxicology 26(6), 541-51, 

10.1007/s10565-010-9162-6. 

Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., 

Satoh, K., Hatayama, I., Yamamoto, M., and Nabeshima, Y. (1997). An nrf2/small maf 

heterodimer mediates the induction of phase ii detoxifying enzyme genes through 

antioxidant response elements. Biochemical and biophysical research communications 

236(2), 313-22. 

Jakobsson, P. J., Thoren, S., Morgenstern, R., and Samuelsson, B. (1999). Identification of 

human prostaglandin e synthase: A microsomal, glutathione-dependent, inducible 

enzyme, constituting a potential novel drug target. Proceedings of the National Academy 

of Sciences of the United States of America 96(13), 7220-5. 

Jauniaux, E., Gulbis, B., Schandene, L., Collette, J., and Hustin, J. (1996). Distribution of 

interleukin-6 in maternal and embryonic tissues during the first trimester. Molecular 

human reproduction 2(4), 239-43. 

Jelliffe-Pawlowski, L. L., Miles, S. Q., Courtney, J. G., Materna, B., and Charlton, V. (2006). 

Effect of magnitude and timing of maternal pregnancy blood lead (pb) levels on birth 



21 

 

outcomes. Journal of perinatology : official journal of the California Perinatal 

Association 26(3), 154-62, 10.1038/sj.jp.7211453. 

Jin, W., Kong, J., Wang, H., Wu, J., Lu, T., Jiang, J., Ni, H., and Liang, W. (2011). Protective 

effect of tert-butylhydroquinone on cerebral inflammatory response following traumatic 

brain injury in mice. Injury 42(7), 714-8, 10.1016/j.injury.2011.03.009. 

Jin, W., Ni, H., Dai, Y., Wang, H., Lu, T., Wu, J., Jiang, J., and Liang, W. (2010). Effects of tert-

butylhydroquinone on intestinal inflammatory response and apoptosis following 

traumatic brain injury in mice. Mediators of inflammation 2010, 502564, 

10.1155/2010/502564. 

Jin, W., Wang, H., Ji, Y., Hu, Q., Yan, W., Chen, G., and Yin, H. (2008). Increased intestinal 

inflammatory response and gut barrier dysfunction in nrf2-deficient mice after traumatic 

brain injury. Cytokine 44(1), 135-40, 10.1016/j.cyto.2008.07.005. 

Jin, W., Wang, H. D., Hu, Z. G., Yan, W., Chen, G., and Yin, H. X. (2009). Transcription factor 

nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute 

intestinal mucosal injury in mice. The Journal of surgical research 157(2), 251-60, 

10.1016/j.jss.2008.08.003. 

Jovanovic, M., Stefanoska, I., Radojcic, L., and Vicovac, L. (2010). Interleukin-8 (cxcl8) 

stimulates trophoblast cell migration and invasion by increasing levels of matrix 

metalloproteinase (mmp)2 and mmp9 and integrins alpha5 and beta1. Reproduction 

139(4), 789-98, 10.1530/REP-09-0341. 

Jovanovic, M., and Vicovac, L. (2009). Interleukin-6 stimulates cell migration, invasion and 

integrin expression in htr-8/svneo cell line. Placenta 30(4), 320-8, 

10.1016/j.placenta.2009.01.013. 

Kameda, T., Matsuzaki, N., Sawai, K., Okada, T., Saji, F., Matsuda, T., Hirano, T., Kishimoto, 

T., and Tanizawa, O. (1990). Production of interleukin-6 by normal human trophoblast. 

Placenta 11(3), 205-13. 

Kauma, S. W., Herman, K., Wang, Y., and Walsh, S. W. (1993). Differential mrna expression 

and production of interleukin-6 in placental trophoblast and villous core compartments. 

American journal of reproductive immunology 30(2-3), 131-5. 

Keelan, J. A., Blumenstein, M., Helliwell, R. J., Sato, T. A., Marvin, K. W., and Mitchell, M. D. 

(2003). Cytokines, prostaglandins and parturition--a review. Placenta 24 Suppl A, S33-

46. 

Kensler, T. W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to 

environmental stresses via the keap1-nrf2-are pathway. Annual review of pharmacology 

and toxicology 47, 89-116, 10.1146/annurev.pharmtox.46.120604.141046. 

Khan, A. U., and Wilson, T. (1995). Reactive oxygen species as cellular messengers. Chem Biol 

2(7), 437-45. 

Khodagholi, F., and Tusi, S. K. (2011). Stabilization of nrf2 by tbhq prevents lps-induced 

apoptosis in differentiated pc12 cells. Molecular and cellular biochemistry 354(1-2), 97-

112, 10.1007/s11010-011-0809-2. 

Khong, T. Y., Liddell, H. S., and Robertson, W. B. (1987). Defective haemochorial placentation 

as a cause of miscarriage: A preliminary study. British journal of obstetrics and 

gynaecology 94(7), 649-55. 

Khor, T. O., Huang, M. T., Kwon, K. H., Chan, J. Y., Reddy, B. S., and Kong, A. N. (2006). 

Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced 

colitis. Cancer research 66(24), 11580-4, 10.1158/0008-5472.CAN-06-3562. 



22 

 

Kim, Y. M., Bujold, E., Chaiworapongsa, T., Gomez, R., Yoon, B. H., Thaler, H. T., Rotmensch, 

S., and Romero, R. (2003). Failure of physiologic transformation of the spiral arteries in 

patients with preterm labor and intact membranes. American journal of obstetrics and 

gynecology 189(4), 1063-9. 

Kim, Y. M., Chaiworapongsa, T., Gomez, R., Bujold, E., Yoon, B. H., Rotmensch, S., Thaler, H. 

T., and Romero, R. (2002). Failure of physiologic transformation of the spiral arteries in 

the placental bed in preterm premature rupture of membranes. American journal of 

obstetrics and gynecology 187(5), 1137-42. 

Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, 

S. G., and Strieter, R. M. (1992). Interleukin-8 as a macrophage-derived mediator of 

angiogenesis. Science 258(5089), 1798-801. 

Koh, K., Cha, Y., Kim, S., and Kim, J. (2009). Tbhq inhibits lps-induced microglial activation 

via nrf2-mediated suppression of p38 phosphorylation. Biochemical and biophysical 

research communications 380(3), 449-53, 10.1016/j.bbrc.2009.01.082. 

Kuroda, E., and Yamashita, U. (2003). Mechanisms of enhanced macrophage-mediated 

prostaglandin e2 production and its suppressive role in th1 activation in th2-dominant 

balb/c mice. Journal of immunology 170(2), 757-64. 

Kweider, N., Fragoulis, A., Rosen, C., Pecks, U., Rath, W., Pufe, T., and Wruck, C. J. (2011). 

Interplay between vascular endothelial growth factor (vegf) and nuclear factor erythroid 

2-related factor-2 (nrf2): Implications for preeclampsia. The Journal of biological 

chemistry 286(50), 42863-72, 10.1074/jbc.M111.286880. 

Kweider, N., Huppertz, B., Wruck, C. J., Beckmann, R., Rath, W., Pufe, T., and Kadyrov, M. 

(2012). A role for nrf2 in redox signalling of the invasive extravillous trophoblast in 

severe early onset iugr associated with preeclampsia. PloS one 7(10), e47055, 

10.1371/journal.pone.0047055. 

Labarrere, C. A., and Althabe, O. H. (1987). Inadequate maternal vascular response to 

placentation in pregnancies complicated by preeclampsia and by small-for-gestational-

age infants. British journal of obstetrics and gynaecology 94(11), 1113-6. 

Lala, P. K., and Chakraborty, C. (2003). Factors regulating trophoblast migration and 

invasiveness: Possible derangements contributing to pre-eclampsia and fetal injury. 

Placenta 24(6), 575-87. 

Lala, P. K., and Hamilton, G. S. (1996). Growth factors, proteases and protease inhibitors in the 

maternal-fetal dialogue. Placenta 17(8), 545-55. 

Leitich, H., Bodner-Adler, B., Brunbauer, M., Kaider, A., Egarter, C., and Husslein, P. (2003). 

Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am J Obstet 

Gynecol 189(1), 139-47. 

Letcher, R. J., Gebbink, W. A., Sonne, C., Born, E. W., McKinney, M. A., and Dietz, R. (2009). 

Bioaccumulation and biotransformation of brominated and chlorinated contaminants and 

their metabolites in ringed seals (pusa hispida) and polar bears (ursus maritimus) from 

east greenland. Environment international 35(8), 1118-24, 10.1016/j.envint.2009.07.006. 

Lin, C. C., Lee, I. T., Yang, Y. L., Lee, C. W., Kou, Y. R., and Yang, C. M. (2010). Induction of 

cox-2/pge(2)/il-6 is crucial for cigarette smoke extract-induced airway inflammation: 

Role of tlr4-dependent nadph oxidase activation. Free Radic Biol Med 48(2), 240-54, 

10.1016/j.freeradbiomed.2009.10.047. 

Loset, M., Mundal, S. B., Johnson, M. P., Fenstad, M. H., Freed, K. A., Lian, I. A., Eide, I. P., 

Bjorge, L., Blangero, J., Moses, E. K., and Austgulen, R. (2011). A transcriptional profile 



23 

 

of the decidua in preeclampsia. American journal of obstetrics and gynecology 204(1), 84 

e1-27, 10.1016/j.ajog.2010.08.043. 

Luo, Z. C., Liu, J. M., and Fraser, W. D. (2010). Large prospective birth cohort studies on 

environmental contaminants and child health - goals, challenges, limitations and needs. 

Med Hypotheses 74(2), 318-24, 10.1016/j.mehy.2009.08.044. 

Lyall, F., Greer, I. A., Boswell, F., Macara, L. M., Walker, J. J., and Kingdom, J. C. (1994). The 

cell adhesion molecule, vcam-1, is selectively elevated in serum in pre-eclampsia: Does 

this indicate the mechanism of leucocyte activation? Br J Obstet Gynaecol 101(6), 485-7. 

Main, K. M., Kiviranta, H., Virtanen, H. E., Sundqvist, E., Tuomisto, J. T., Tuomisto, J., 

Vartiainen, T., Skakkebaek, N. E., and Toppari, J. (2007). Flame retardants in placenta 

and breast milk and cryptorchidism in newborn boys. Environmental health perspectives 

115(10), 1519-26, 10.1289/ehp.9924. 

Maltepe, E., Bakardjiev, A. I., and Fisher, S. J. (2010). The placenta: Transcriptional, epigenetic, 

and physiological integration during development. The Journal of clinical investigation 

120(4), 1016-25, 10.1172/JCI41211. 

Meadows, J. W., Pitzer, B., Brockman, D. E., and Myatt, L. (2004). Differential localization of 

prostaglandin e synthase isoforms in human placental cell types. Placenta 25(4), 259-65, 

10.1016/j.placenta.2003.09.004. 

Meeker, J. D., Hu, H., Cantonwine, D. E., Lamadrid-Figueroa, H., Calafat, A. M., Ettinger, A. 

S., Hernandez-Avila, M., Loch-Caruso, R., and Tellez-Rojo, M. M. (2009). Urinary 

phthalate metabolites in relation to preterm birth in mexico city. Environmental health 

perspectives 117(10), 1587-92, 10.1289/ehp.0800522. 

Mijovic, J. E., Zakar, T., Nairn, T. K., and Olson, D. M. (1998). Prostaglandin endoperoxide h 

synthase (pghs) activity and pghs-1 and -2 messenger ribonucleic acid abundance in 

human chorion throughout gestation and with preterm labor. J Clin Endocrinol Metab 

83(4), 1358-67. 

Miller, M. (2009). The human gestational membranes as a site of polybrominated diphenyl ether 

toxicity. Ph.D., University of Michigan, Ann Arbor, Michigan. 

Miller, M. F., Chernyak, S. M., Batterman, S., and Loch-Caruso, R. (2009a). Polybrominated 

diphenyl ethers in human gestational membranes from women in southeast michigan. 

Environmental science & technology 43(9), 3042-6. 

Miller, M. F., Chernyak, S. M., Batterman, S., and Loch-Caruso, R. (2009b). Polybrominated 

diphenyl ethers in human gestational membranes from women in southeast michigan. 

Environmental science & technology 43(9), 3042-6. 

Miller, M. F., Chernyak, S. M., Domino, S. E., Batterman, S. A., and Loch-Caruso, R. (2012). 

Concentrations and speciation of polybrominated diphenyl ethers in human amniotic 

fluid. Sci Total Environ 417-418, 294-8, 10.1016/j.scitotenv.2011.11.088. 

Motohashi, H., and Yamamoto, M. (2004). Nrf2-keap1 defines a physiologically important stress 

response mechanism. Trends in molecular medicine 10(11), 549-57, 

10.1016/j.molmed.2004.09.003. 

Nicola, C., Timoshenko, A. V., Dixon, S. J., Lala, P. K., and Chakraborty, C. (2005a). Ep1 

receptor-mediated migration of the first trimester human extravillous trophoblast: The 

role of intracellular calcium and calpain. J Clin Endocrinol Metab 90(8), 4736-46, 

10.1210/jc.2005-0413. 

Nicola, C., Timoshenko, A. V., Dixon, S. J., Lala, P. K., and Chakraborty, C. (2005b). Ep1 

receptor-mediated migration of the first trimester human extravillous trophoblast: The 



24 

 

role of intracellular calcium and calpain. The Journal of clinical endocrinology and 

metabolism 90(8), 4736-46, 10.1210/jc.2005-0413. 

Nishino, E., Matsuzaki, N., Masuhiro, K., Kameda, T., Taniguchi, T., Takagi, T., Saji, F., and 

Tanizawa, O. (1990). Trophoblast-derived interleukin-6 (il-6) regulates human chorionic 

gonadotropin release through il-6 receptor on human trophoblasts. The Journal of clinical 

endocrinology and metabolism 71(2), 436-41, 10.1210/jcem-71-2-436. 

Orsi, N. M., and Tribe, R. M. (2008). Cytokine networks and the regulation of uterine function in 

pregnancy and parturition. J Neuroendocrinol 20(4), 462-9, 10.1111/j.1365-

2826.2008.01668.x. 

Osburn, W. O., Wakabayashi, N., Misra, V., Nilles, T., Biswal, S., Trush, M. A., and Kensler, T. 

W. (2006). Nrf2 regulates an adaptive response protecting against oxidative damage 

following diquat-mediated formation of superoxide anion. Archives of biochemistry and 

biophysics 454(1), 7-15, 10.1016/j.abb.2006.08.005. 

Palmer, H. J., and Paulson, K. E. (1997). Reactive oxygen species and antioxidants in signal 

transduction and gene expression. Nutr Rev 55(10), 353-61. 

Parhar, R. S., Kennedy, T. G., and Lala, P. K. (1988). Suppression of lymphocyte alloreactivity 

by early gestational human decidua. I. Characterization of suppressor cells and 

suppressor molecules. Cellular immunology 116(2), 392-410. 

Pathak, R., Suke, S. G., Ahmed, T., Ahmed, R. S., Tripathi, A. K., Guleria, K., Sharma, C. S., 

Makhijani, S. D., and Banerjee, B. D. (2010). Organochlorine pesticide residue levels and 

oxidative stress in preterm delivery cases. Hum Exp Toxicol 29(5), 351-8, 

10.1177/0748233710363334. 

Peltier, M. R., Klimova, N. G., Arita, Y., Gurzenda, E. M., Murthy, A., Chawala, K., Lerner, V., 

Richardson, J., and Hanna, N. (2012). Polybrominated diphenyl ethers enhance the 

production of proinflammatory cytokines by the placenta. Placenta 33(9), 745-9, 

10.1016/j.placenta.2012.06.005. 

Pijnenborg, R., Bland, J. M., Robertson, W. B., and Brosens, I. (1983). Uteroplacental arterial 

changes related to interstitial trophoblast migration in early human pregnancy. Placenta 

4(4), 397-413. 

Pijnenborg, R., Dixon, G., Robertson, W. B., and Brosens, I. (1980). Trophoblastic invasion of 

human decidua from 8 to 18 weeks of pregnancy. Placenta 1(1), 3-19. 

Psychoyos, A., Nikas, G., and Gravanis, A. (1995). The role of prostaglandins in blastocyst 

implantation. Human reproduction 10 Suppl 2, 30-42. 

Rangasamy, T., Cho, C. Y., Thimmulappa, R. K., Zhen, L., Srisuma, S. S., Kensler, T. W., 

Yamamoto, M., Petrache, I., Tuder, R. M., and Biswal, S. (2004). Genetic ablation of 

nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. The Journal 

of clinical investigation 114(9), 1248-59, 10.1172/JCI21146. 

Rangasamy, T., Guo, J., Mitzner, W. A., Roman, J., Singh, A., Fryer, A. D., Yamamoto, M., 

Kensler, T. W., Tuder, R. M., Georas, S. N., and Biswal, S. (2005). Disruption of nrf2 

enhances susceptibility to severe airway inflammation and asthma in mice. The Journal 

of experimental medicine 202(1), 47-59, 10.1084/jem.20050538. 

Reistad, T., and Mariussen, E. (2005). A commercial mixture of the brominated flame retardant 

pentabrominated diphenyl ether (de-71) induces respiratory burst in human neutrophil 

granulocytes in vitro. Toxicological sciences : an official journal of the Society of 

Toxicology 87(1), 57-65, 10.1093/toxsci/kfi222. 



25 

 

Remacle, J., Raes, M., Toussaint, O., Renard, P., and Rao, G. (1995). Low levels of reactive 

oxygen species as modulators of cell function. Mutat Res 316(3), 103-22. 

Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B. (2010). Oxidative stress, 

inflammation, and cancer: How are they linked? Free radical biology & medicine 49(11), 

1603-16, 10.1016/j.freeradbiomed.2010.09.006. 

Robertson, W. B., Brosens, I., and Dixon, H. G. (1967). The pathological response of the vessels 

of the placental bed to hypertensive pregnancy. The Journal of pathology and 

bacteriology 93(2), 581-92, 10.1002/path.1700930219. 

Romero, R., Espinoza, J., Chaiworapongsa, T., and Kalache, K. (2002). Infection and 

prematurity and the role of preventive strategies. Seminars in neonatology : SN 7(4), 259-

74. 

Romero, R., Gomez, R., Chaiworapongsa, T., Conoscenti, G., Kim, J. C., and Kim, Y. M. 

(2001). The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol 

15 Suppl 2, 41-56. 

Rushmore, T. H., Morton, M. R., and Pickett, C. B. (1991). The antioxidant responsive element. 

Activation by oxidative stress and identification of the DNA consensus sequence required 

for functional activity. The Journal of biological chemistry 266(18), 11632-9. 

Saito, S., Kasahara, T., Sakakura, S., Umekage, H., Harada, N., and Ichijo, M. (1994). Detection 

and localization of interleukin-8 mrna and protein in human placenta and decidual 

tissues. Journal of reproductive immunology 27(3), 161-72. 

Salamonsen, L. A., Hannan, N. J., and Dimitriadis, E. (2007). Cytokines and chemokines during 

human embryo implantation: Roles in implantation and early placentation. Seminars in 

reproductive medicine 25(6), 437-44, 10.1055/s-2007-991041. 

Sanchez, X., Suetomi, K., Cousins-Hodges, B., Horton, J. K., and Navarro, J. (1998). Cxc 

chemokines suppress proliferation of myeloid progenitor cells by activation of the cxc 

chemokine receptor 2. Journal of immunology 160(2), 906-10. 

Sawai, K., Matsuzaki, N., Kameda, T., Hashimoto, K., Okada, T., Shimoya, K., Nobunaga, T., 

Taga, T., Kishimoto, T., and Saji, F. (1995). Leukemia inhibitory factor produced at the 

fetomaternal interface stimulates chorionic gonadotropin production: Its possible 

implication during pregnancy, including implantation period. The Journal of clinical 

endocrinology and metabolism 80(4), 1449-56, 10.1210/jcem.80.4.7714123. 

Shao, J., White, C. C., Dabrowski, M. J., Kavanagh, T. J., Eckert, M. L., and Gallagher, E. P. 

(2008). The role of mitochondrial and oxidative injury in bde 47 toxicity to human fetal 

liver hematopoietic stem cells. Toxicol Sci 101(1), 81-90, 10.1093/toxsci/kfm256. 

Sheppard, B. L., and Bonnar, J. (1981). An ultrastructural study of utero-placental spiral arteries 

in hypertensive and normotensive pregnancy and fetal growth retardation. British journal 

of obstetrics and gynaecology 88(7), 695-705. 

Sheppard, B. L., and Bonnar, J. (1976). The ultrastructure of the arterial supply of the human 

placenta in pregnancy complicated by fetal growth retardation. British journal of 

obstetrics and gynaecology 83(12), 948-59. 

Shimoya, K., Matsuzaki, N., Taniguchi, T., Kameda, T., Koyama, M., Neki, R., Saji, F., and 

Tanizawa, O. (1992). Human placenta constitutively produces interleukin-8 during 

pregnancy and enhances its production in intrauterine infection. Biology of reproduction 

47(2), 220-6. 

Sjodin, A., Wong, L. Y., Jones, R. S., Park, A., Zhang, Y., Hodge, C., Dipietro, E., McClure, C., 

Turner, W., Needham, L. L., and Patterson, D. G., Jr. (2008). Serum concentrations of 



26 

 

polybrominated diphenyl ethers (pbdes) and polybrominated biphenyl (pbb) in the united 

states population: 2003-2004. Environmental science & technology 42(4), 1377-84. 

Sram, R. J., Binkova, B., Dejmek, J., and Bobak, M. (2005). Ambient air pollution and 

pregnancy outcomes: A review of the literature. Environ Health Perspect 113(4), 375-82. 

Stapleton, H. M., Brazil, B., Holbrook, R. D., Mitchelmore, C. L., Benedict, R., Konstantinov, 

A., and Potter, D. (2006). In vivo and in vitro debromination of decabromodiphenyl ether 

(bde 209) by juvenile rainbow trout and common carp. Environmental science & 

technology 40(15), 4653-8. 

Stichtenoth, D. O., Thoren, S., Bian, H., Peters-Golden, M., Jakobsson, P. J., and Crofford, L. J. 

(2001). Microsomal prostaglandin e synthase is regulated by proinflammatory cytokines 

and glucocorticoids in primary rheumatoid synovial cells. Journal of immunology 167(1), 

469-74. 

Stillerman, K. P., Mattison, D. R., Giudice, L. C., and Woodruff, T. J. (2008). Environmental 

exposures and adverse pregnancy outcomes: A review of the science. Reprod Sci 15(7), 

631-50, 10.1177/1933719108322436. 

Stockholm Convention News Release (2009). 

Tai, H. H., Cho, H., Tong, M., and Ding, Y. (2006). Nad+-linked 15-hydroxyprostaglandin 

dehydrogenase: Structure and biological functions. Current pharmaceutical design 12(8), 

955-62. 

Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W., and 

Biswal, S. (2006). Nrf2 is a critical regulator of the innate immune response and survival 

during experimental sepsis. The Journal of clinical investigation 116(4), 984-95, 

10.1172/JCI25790. 

Thuresson, K., Bergman, A., and Jakobsson, K. (2005). Occupational exposure to commercial 

decabromodiphenyl ether in workers manufacturing or handling flame-retarded rubber. 

Environmental science & technology 39(7), 1980-6. 

Thuvander, A., and Darnerud, P. O. (1999). Effect of polybrominated diphenyl ether (pbde) and 

polychlorinated biphenyl (pcb) on some immunological parameters after oral exposure in 

rats and mice. Toxicological and Environmental Chemistry 70(1-2), 229-242. 

Tjoa, M. L., Oudejans, C. B., van Vugt, J. M., Blankenstein, M. A., and van Wijk, I. J. (2004). 

Markers for presymptomatic prediction of preeclampsia and intrauterine growth 

restriction. Hypertens Pregnancy 23(2), 171-89, 10.1081/PRG-120028292. 

Tjoa, M. L., van Vugt, J. M., Go, A. T., Blankenstein, M. A., Oudejans, C. B., and van Wijk, I. J. 

(2003). Elevated c-reactive protein levels during first trimester of pregnancy are 

indicative of preeclampsia and intrauterine growth restriction. J Reprod Immunol 59(1), 

29-37. 

Torres-Sanchez, L. E., Berkowitz, G., Lopez-Carrillo, L., Torres-Arreola, L., Rios, C., and 

Lopez-Cervantes, M. (1999). Intrauterine lead exposure and preterm birth. Environmental 

research 81(4), 297-301, 10.1006/enrs.1999.3984. 

Tsui, K. H., Chen, L. Y., Shieh, M. L., Chang, S. P., Yuan, C. C., and Li, H. Y. (2004). 

Interleukin-8 can stimulate progesterone secretion from a human trophoblast cell line, 

bewo. In vitro cellular & developmental biology. Animal 40(10), 331-6, 

10.1290/0404033.1. 

U.S. Environmental Protection Agency (2006). Polybrominated diphenyl ethers (pbdes) project 

plan. In (Office of Pollution Prevention & Toxics, Ed.) Eds.). 



27 

 

Valcarcel-Ares, M. N., Gautam, T., Warrington, J. P., Bailey-Downs, L., Sosnowska, D., de 

Cabo, R., Losonczy, G., Sonntag, W. E., Ungvari, Z., and Csiszar, A. (2012). Disruption 

of nrf2 signaling impairs angiogenic capacity of endothelial cells: Implications for 

microvascular aging. The journals of gerontology. Series A, Biological sciences and 

medical sciences 67(8), 821-9, 10.1093/gerona/glr229. 

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J. (2007). Free 

radicals and antioxidants in normal physiological functions and human disease. Int J 

Biochem Cell Biol 39(1), 44-84, 10.1016/j.biocel.2006.07.001. 

Viberg, H., Johansson, N., Fredriksson, A., Eriksson, J., Marsh, G., and Eriksson, P. (2006). 

Neonatal exposure to higher brominated diphenyl ethers, hepta-, octa-, or 

nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory 

functions of adult mice. Toxicological sciences : an official journal of the Society of 

Toxicology 92(1), 211-8, 10.1093/toxsci/kfj196. 

Vince, G. S., Starkey, P. M., Austgulen, R., Kwiatkowski, D., and Redman, C. W. (1995). 

Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in 

women with pre-eclampsia. Br J Obstet Gynaecol 102(1), 20-5. 

Wang, A., Rana, S., and Karumanchi, S. A. (2009). Preeclampsia: The role of angiogenic factors 

in its pathogenesis. Physiology 24, 147-58, 10.1152/physiol.00043.2008. 

Wenstrom, K. D., Andrews, W. W., Tamura, T., DuBard, M. B., Johnston, K. E., and Hemstreet, 

G. P. (1996). Elevated amniotic fluid interleukin-6 levels at genetic amniocentesis predict 

subsequent pregnancy loss. Am J Obstet Gynecol 175(4 Pt 1), 830-3. 

Wruck, C. J., Huppertz, B., Bose, P., Brandenburg, L. O., Pufe, T., and Kadyrov, M. (2009). 

Role of a fetal defence mechanism against oxidative stress in the aetiology of 

preeclampsia. Histopathology 55(1), 102-6, 10.1111/j.1365-2559.2009.03339.x. 

Yan, C., Huang, D., and Zhang, Y. (2011). The involvement of ros overproduction and 

mitochondrial dysfunction in pbde-47-induced apoptosis on jurkat cells. Experimental 

and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische 

Pathologie 63(5), 413-7, 10.1016/j.etp.2010.02.018. 

Yanbaeva, D. G., Dentener, M. A., Creutzberg, E. C., Wesseling, G., and Wouters, E. F. (2007). 

Systemic effects of smoking. Chest 131(5), 1557-66, 10.1378/chest.06-2179. 

Yee, G. M., Squires, P. M., Cejic, S. S., and Kennedy, T. G. (1993). Lipid mediators of 

implantation and decidualization. Journal of lipid mediators 6(1-3), 525-34. 

Yu, M., Luo, X. J., Wu, J. P., Chen, S. J., and Mai, B. X. (2009). Bioaccumulation and trophic 

transfer of polybrominated diphenyl ethers (pbdes) in biota from the pearl river estuary, 

south china. Environment international 35(7), 1090-5, 10.1016/j.envint.2009.06.007. 

Zhou, T., Ross, D. G., DeVito, M. J., and Crofton, K. M. (2001). Effects of short-term in vivo 

exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme 

activities in weanling rats. Toxicological sciences : an official journal of the Society of 

Toxicology 61(1), 76-82. 

Zhou, T., Taylor, M. M., DeVito, M. J., and Crofton, K. M. (2002). Developmental exposure to 

brominated diphenyl ethers results in thyroid hormone disruption. Toxicological sciences 

: an official journal of the Society of Toxicology 66(1), 105-16. 

Zhou, Y., Damsky, C. H., and Fisher, S. J. (1997a). Preeclampsia is associated with failure of 

human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective 

endovascular invasion in this syndrome? The Journal of clinical investigation 99(9), 

2152-64, 10.1172/JCI119388. 



28 

 

Zhou, Y., Fisher, S. J., Janatpour, M., Genbacev, O., Dejana, E., Wheelock, M., and Damsky, C. 

H. (1997b). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A 

strategy for successful endovascular invasion? The Journal of clinical investigation 99(9), 

2139-51, 10.1172/JCI119387. 

 

 

 

 

 

 

 

 

 

 



29 

 

 INVOLVEMENT OF REACTIVE OXYGEN SPECIES IN CHAPTER 2.

BROMINATED DIPHENYL ETHER-47-INDUCED 

INFLAMMATORY CYTOKINE RELEASE FROM HUMAN 

EXTRAVILLOUS TROPHOBLASTS IN VITRO 

 

Abstract 

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. 

Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in 

human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, 

effects of PBDEs on placental cell function are poorly understood. The present study 

investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-

stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast 

cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 µM BDE-47 increased 

ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, 

superoxide anion production increased approximately 5 fold at 10 and 15 µM and 9 fold at 20 

µM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 

20 µM) decreased the mitochondrial membrane potential by 47-64.5% at 4, 8 and 24 h as 

assessed with the fluorescent probe Rh123. Treatment with 15 and 20 µM BDE-47 stimulated 

cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24 h exposures: the greatest 

increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein 

concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, 

or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, 

implicating a role for ROS in regulation of inflammatory pathways in HTR-8/SVneo cells. 

Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with 
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non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not 

consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve 

BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. 

Because abnormal activation of proinflammatory responses can disrupt trophoblast functions 

necessary for placental development and successful pregnancy, further investigation is warranted 

of the impact of ROS and BDE-47 on trophoblast cytokine responses. 

Introduction 

Polybrominated diphenyl ethers (PBDEs) are synthetic flame-retardants widely used in 

polyurethane foam, textiles, plastics, building materials and insulation (Hites, 2004). Among the 

209 PBDE congeners, BDE-47 (2,2′,4,4′-tetra-BDE) is one of the most prevalent congers found 

in human tissues and environmental samples (Hites, 2004). Because of PBDEs’ environmental 

persistence and toxicity, the US EPA has identified PBDEs as a priority human health concern 

(U.S. Environmental Protection Agency, 2006).  Limited studies reported possible reproductive 

toxicity of PBDEs during pregnancy. Rabbits orally exposed to PBDEs show decreased gestation 

length (Breslin et al., 1989). Elevated levels of PBDEs in human umbilical cord blood have been 

correlated with preterm birth, low birth weight or stillbirth (Wu et al., 2010). Although these 

studies suggest the association between PBDE exposure and adverse birth outcomes, and PBDEs 

distribute to human placenta (Frederiksen et al., 2009), extraplacental membranes (Miller et al., 

2009), amniotic fluid (Miller et al., 2012), and umbilical cord blood (Frederiksen, et al., 2009), 

studies of mechanisms by which PBDEs act on gestational tissues during pregnancy are limited.

 It is suggested that cytokine dysregulation alters extravillous trophoblast (EVT) 

processes, leading to placental dysfunction that may compromise pregnancy (Anton et al., 2012). 

For example, increased levels of inflammatory mediators such as cytokines and C-reactive 
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protein are associated with the pathophysiology of preeclampsia and intrauterine growth 

restriction (IUGR), possibly contributing to abnormal placental function (Tjoa et al., 2003;  

Vince et al., 1995). Also, women who delivered preterm had higher rates of placental ischemia 

and abnormal placentation than controls (Germain et al., 1999;  Kim et al., 2003), with high 

levels of interleukin (IL)-8 and IL-6 in cervical fluid, amniotic fluid and maternal serum 

(Goldenberg et al., 2005). Although these studies suggest that inflammation occurring at the 

maternal–fetal interface during pregnancy could contribute to abnormal placental function 

associated with adverse obstetrical outcomes, a recent report on PBDE-stimulated cytokine 

release in placenta, using second trimester human placental explant cultures (Peltier et al., 2012), 

showed that pre-exposure of placental explants to a PBDE mixture of congers 47, 99 and 100 

enhanced placental proinflammatory response to heat-killed E. Coli. However, to our knowledge, 

there are no previous reports of BDE-47 directly altering inflammatory pathways in human 

placental cells. 

 Oxidative stress is defined as the imbalance between pro-oxidants and antioxidants 

resulting in increase of reactive oxygen species (ROS). Oxidative stress in placenta has been 

associated with pathologies of pregnancy, including preterm labor, preeclampsia, and IUGR 

(Agarwal et al., 2012). A growing body of literature indicates that oxidative stress can activate a 

variety of transcription factors, including nuclear factor kappa B (NF-κB), activator protein 

1(AP-1), and nuclear factor like 2 (Nrf2), leading to altered expression of genes for inflammatory 

cytokines, chemokines, and anti-inflammatory molecules (Reuter et al., 2010). Moreover, N-

acetylcysteine, which can act as an antioxidant by increasing cellular concentrations of 

glutathione, prevents lipopolysaccharides (LPS)-stimulated parturition, fetal death in mice, and 

LPS-induced release of pro-inflammatory cytokines from human extraplacental membranes in 
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vitro (Buhimschi et al., 2003;  Cindrova-Davies et al., 2007). Together, these findings implicate 

interplay between cytokines and oxidative stress in the etiology of adverse pregnancy outcomes. 

 A few studies suggest that PBDEs induce generation of ROS in mammalian cells. He et 

al. (2008) showed that PBDEs induce lipid peroxidation and DNA damage in primary cultured 

rat hippocampal neurons. Reistad and Mariussen reported that pentabrominated diphenyl ether 

(DE-71) and BDE-47 enhanced the production of ROS, potentially through NADPH oxidase 

activation in human granulocytes (Reistad and Mariussen, 2005b). It is also reported that BDE-

47 induced apoptosis in Jurkat cells, possibly through ROS overproduction and mitochondrial 

dysfunction (Yan et al., 2011). Shao et al (2008) reported that BDE-47 induced ROS 

overproduction, loss of mitochondrial membrane potential and apoptosis in human fetal liver 

hematopoietic stem cells. These data suggest a close relationship between ROS formation and 

toxicity induced by PBDEs. However, there is no previous report on PBDE-stimulated ROS 

formation in human placental cells and tissues. 

 Although inappropriate activation of the innate immune response can lead to placental 

dysfunction and certain environmental contaminants can activate innate immune responses 

(Campbell, 2004;  Lin et al., 2010), there is a paucity of reports on PBDE-stimulated 

inflammation in first trimester placenta. Moreover, increased oxidative stress in placenta has 

been observed in pathological pregnancies, and ROS have been implicated in the activation of 

inflammatory responses in gestational compartments (Buhimschi, et al., 2003;  Cindrova-Davies, 

et al., 2007). The present study examines the hypothesis that BDE-47 stimulates pro-

inflammatory cytokine production via a ROS-mediated mechanism in the first trimester EVT 

human placental cell line HTR-8/SVneo.    
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Materials and Methods 

Chemicals and assay kits. BDE-47 was purchased from AccuStardard (New Haven, CT, USA). 

DMSO, deferoxamine mesylate (DFO), tert-butyl hydroperoxide (TBHP), cytochrome c from 

bovine heart, superoxide dismutase (SOD) from bovine erythrocytes, N-ethylmaleimide and 

rhodamine (Rh) 123, 4-hydroxy-TEMPO (tempol), and (±)-α-tocopherol were purchased from 

Sigma Aldrich (St. Louis, MO, USA). The 6-carboxy-dichlorodihydrofluorescein diacetate 

(carboxy-H2DCF-DA), CellMask
TM

 Deep Red plasma membrane stain C10046,  RPMI medium 

1640, fetal bovine serum (FBS), OptiMem 1 reduced-serum medium, Hank's balanced salt 

solution (HBSS), 0.25% trypsin/EDTA solution and penicillin/streptomycin (P/S) were 

purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). Recombinant IL-1β and 

sandwich enzyme-linked immunosorbent assay (ELISA) kits for human IL-6, IL-8 were 

purchased from R & D systems (Minneapolis, MN, USA). The MultiTox-Glo Multiplex 

cytotoxicity assay kit was purchased from Promega (Madison, WI, USA).  QIAshredder, RNeasy 

mini plus kit, RT
2
 First Strand kit for reverse transcriptase reaction, RT

2
 qPCR SYBR 

Green/ROX Master Mix and primers for human β-microglobulin, IL-6, and IL-8 were purchased 

from Qiagen (Valencia, CA, USA).  BDE-47 was prepared in dimethyl sulfoxide (DMSO) as a 

50 mM stock solution. (±)-α-tocopherol was prepared in DMSO as a 100 mM stock solution. 

Rh123 was prepared in DMSO as a 2µg/ml stock solution. Carboxy-H2DCF-DA was prepared in 

DMSO as 50 mg/ml stock solution. Other chemicals were applied directly into media. 

Cell Culture and treatment.  The human first trimester extravillous trophoblast cell line HTR-

8/SVneo was kindly provided by Dr. Charles S. Graham (Queen's University, Kingston, ON, 

Canada). Cells between passages 71 and 84 were cultured in RPMI 1640 medium supplemented 

with 10% FBS and 1% penicillin/streptomycin  at 37°C in a 5% CO2 humidified atmosphere. 
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Cells were grown to a confluence of 70-90% before treatment. Cells were washed with OptiMem 

1 containing 1% FBS and 1% P/S twice and acclimated with the medium for 1 h at 37 °C. From 

solutions of 5, 10, 15 and 20 mM BDE-47 in DMSO, exposure media containing 5, 10, 15 and 

20 µM BDE-47 were made in OptiMem 1 containing 1% FBS and 1% P/S immediately prior to 

initiating the experiment. The final concentration of DMSO in medium was 0.7 % (v/v).  

Viability and Cytotoxicity Assays. Cells were seeded in a white 96-well plate at a density of 1 × 

10
4 
cells per well and incubated for 24 h at 37 °C. Cells were exposed to DMSO (solvent control) 

or BDE-47 (5, 10, 15 or 20 μM) and incubated for 24 h. After the 24-h incubation with BDE-47, 

cell viability and cytotoxicity were measured by the MultiTox-Glo Multiplex cytotoxicity assay 

kit. Briefly, this assay is based on two protease activities: one is a live-cell protease, and the 

other is a dead-cell protease, which is released from cells. Fluorescence is proportional to live 

cells while luminescence is proportional to dead cells. The assay was performed according to the 

manufacturer’s instructions. Digitonin (300 μg/ml) was used as a positive control.  

Dichlorofluorescein assay. Stimulation of ROS generation was assessed using the 

dichlorofluorescein (DCF) assay.  Because artifactual results can occur in the DCF assay due to 

interactions with toxicants (Tetz et al., 2013), we confirmed that there was no increased DCF 

fluorescence by BDE-47 in cell free medium (data not shown). The HTR-8/SVneo cells were 

seeded at a density of 2.4 × 10
5
cells per well in a 6-well plate and cultured for 24 h at 37 °C. 

Cells were pre-incubated in the presence or absence of 1 mM DFO for 1 h. Cells were washed 

once with Optimem1 medium containing 10 % FBS and 1% P/S, and then exposed to 5, 10, 15 

or 20 μM BDE-47 for 4 h. Treatment with 100 µM tert-butyl hydroperoxide (TBHP) was 

included as a positive control. After removal of the treatment and rinsing with HBSS, cultures 

were incubated for an additional 1 h with 100 μM carboxy-H2DCF-DA in HBSS. After removal 
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of the dye solution and rinsing with HBSS, cells were counterstained with 5 μg/ml CellMask
TM

 

Deep Red plasma membrane stain for 5 min. After washing with HBSS and adding fresh HBSS 

back to the cultures, intracellular DCF fluorescence was visualized at 470 nm excitation and 525 

nm emission, and Deep Red stain was visualized at 530 nm excitation and 593 nm emission 

using an EVOS digital inverted fluorescence microscope. Five images per treatment were taken: 

one image in each of the four quadrants and one in the center of the well.  Equivalent 

adjustments for brightness and contrast were applied to each image in ImageJ software (National 

Institutes of Health). Additionally, fluorescence intensity was quantified using the method of He 

et al. (2008) with a few modifications. Cells exposed to BDE-47 were collected by treatment 

with 0.25% trypsin/EDTA solution for 2 min and washed twice with HBSS by centrifugation at 

1200 rpm for 3 min, then re-suspended in HBSS. After 1-h incubation with 100 μM carboxy-

H2DCF-DA in HBSS,  the fluorescence intensity of 200,000 cells in a 96-well, black, clear-

bottomed plate was measured using the Molecular Devices SpectraMax Gemini M2e at an 

excitation wavelength of 492 nm and emission wavelength of 522 nm. 

Cytochrome c reduction assay. Superoxide production in HTR-8/SVneo cells exposed to BDE-

47 was quantified by the cytochrome C reduction assay based on the method of Boota et al. 

(1996) with a few modifications. Superoxide production in HTR-/SVneo cells exposed to BDE-

47 was quantified by the cytochrome C reduction assay. HTR-8/SVneo cells were seeded at a 

density of 1 × 10
4 
cells per well in a white, clear bottomed, 96-well plate, and incubated for 24 h 

at 37 °C. Cells were exposed to 5, 10, 15 or 20 μM BDE-47 for 1 h. Pyrogallol (100 μM) was 

included as a positive control. Reaction buffer was prepared in HBSS with 70 μM 

ferricytochrome c with or without 80 μg/ml of SOD. After treatment with BDE-47, cells were 

washed once with HBSS and a 100 μl-aliquot of the reaction buffer solution was added to each 
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well of the plates. Cytochrome c reduction was measured at 550 nm after 10, 30, 60 and 90 min 

incubation with reaction buffer: results are shown for the 90-min time point because this was the 

reaction time that yielded maximal response. Superoxide production was determined based on 

the difference in cytochrome c reduction with or without SOD. An extinction coefficient of 28.0 

mM
-1

cm
-1 

was used for calculations. Results were expressed as nmoles superoxide released per 

1×10
4
 cells.  

Determination of the mitochondrial membrane potential (MMP). Rh123, which can bind 

specifically to mitochondria, was used to estimate MMP based on the methods of Yan et al. 

(2011)  with few modifications. HTR-8/SVneo cells were seeded at a density of 3 × 10
4 
cells per 

well in a black, clear bottomed, 96-well plate, and incubated for 24 h at 37 °C. Cells were 

exposed to 5, 10, 15 or 20 μM BDE-47 for 4, 8 or 24 h. Treated cells were washed once with 

HBSS and incubated with Rh123 (2.5 µg/ml) in HBSS for 60 min in the dark at 37 °C. After 

replacing Rh123 with fresh HBSS, the fluorescence was measured with a fluorescence 

spectrophotometer using 507 nm Ex and 529 nm Em filter settings. 

Measurement of cytokine release. The HTR-8/SVneo cells were seeded at a density of 2.4 × 

10
5
cells per well in a 6-well plate and cultured for 24 h at 37 °C. Cells were washed once with 

OptiMem1 medium containing 10 % FBS and 1% P/S and exposed to 5, 10, 15 or 20 μM BDE-

47 for 4, 8 or 24 h.  After incubation with BDE-47, culture medium was collected and 

centrifuged to remove any residual cell lysates. The concentration of IL-6 and IL-8 in the 

supernatant was measured by sandwich ELISA following the manufacturer’s protocols. To 

determine oxidative stress-mediated activation of inflammatory pathways by BDE-47, HTR-

8/SVneo cells were pretreated with 1 mM DFO for 1 h prior to BDE-47 treatment for 24 h, or co-

treated either with 20 µM (±)-α-tocopherol, a peroxyl radical scavenger, or with 1mM tempol, a 
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membrane-permeable SOD mimetic for 24 h. Concentrations of IL-6 and IL-8 in the medium 

was analyzed by ELISA as described above. Release of cytokines was expressed as pg/ml.  

RNA extraction and Quantitative real-time polymerase chain reaction. After 4, 12 or 24-h 

incubation with BDE-47, cell lysates were collected and homogenized using QIA shredder. Total 

RNA was extracted from homogenized lysates using RNeasy mini plus kit and cDNA was 

synthesized from 1μg of total RNA using RT
2
 First Strand Kit. The procedures were performed 

according to the instructions of the manufacturer. Quantitative real-time polymerase chain 

reaction (qPCR) was performed in a total volume of 25 μL containing 4 μL of cDNA template, 1 

μL of a gene-specific  primer (IL-6, IL-8, TNF-α, or IL-10), 12.5 μL of  RT
2 
SYBR Green qPCR 

Master Mix and 7.5 μL of nuclease-free H2O using  CFX96 Real-Time PCR Detection System 

(Bio-Rad Laboratories, Hercules, CA, USA). A housekeeping gene, β-microglobulin, was co-

amplified as an internal control. qRT-PCR was performed with an initial denaturation step of 10 

min at 95°C, followed by 40 cycles of 15 s at 95°C, 5 s at 60°C. At the end of each cycle, the 

fluorescence emitted by the SYBR Green was measured. After completion of the cycling process, 

samples were subjected to a temperature ramp (from 65°C to 95°C at 0.5°C/s) with continuous 

fluorescence monitoring for melting curve analysis. Signal intensities of target genes were 

quantified and normalized to the signal of β-microglobulin using Bio-Rad CFX manager 

software. The level of mRNA expression was presented as fold change compared to solvent 

controls. 

Statistical analysis. Statistical analysis was performed with Sigma Plot 11.0 software (Systat 

Software Inc., San Jose, CA, USA). Data were analyzed either by one-way analysis of variance 

(ANOVA) or repeated measured two-way ANOVA. If significant effects are detected, the 

ANOVA will be followed by Tukey post-hoc comparison of means. A P <0.05 was considered 
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statistically different. Data were expressed as means ± SEM. All experiments were repeated at 

least three times and all treatments were performed at least in triplicate in each experiment. 

Results 

Cytotoxicity of BDE-47  

To investigate the cytotoxic effect of BDE-47 on HTR-8/SVneo cells, protease-based viability 

and cytotoxicity assays were performed. Exposure to BDE-47 with concentrations up to 20 μM 

for 24 h did not result in a significant loss of cell viability in HTR-8/SVneo 8 cells as measured 

by cellular retention of proteases and indicated by sustained cellular fluorescence 

(Supplementary Figure 1A). In contrast, the loss of cell viability was clearly evident in cells 

treated with digitonin, included as a positive control. Similarly, cytotoxic effects were not 

significant with concentrations of BDE-47 up to 20 μM, as measured by increased luminescence 

due to protease release from dead cells, although digitonin-mediated cytotoxicity of HTR-

8/SVneo cells was apparent (Supplementary Figure 1B; P<0.05).  

Effect of BDE-47 on ROS production  

Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 4 h increased DCF fluorescence 

compared with solvent controls as visualized with epifluorescence microscopy, indicating 

increased carboxy-H2DCF-DA oxidation to the fluorescent DCF moiety, an indication of cellular 

reactive species generation (Figure 1A).  Pretreatment with the iron-chelating antioxidant DFO 

decreased BDE-47-stimulated DCF fluorescence (Figure 1A). There were no differences in 

fluorescence comparing cells from control cultures incubated in HBSS alone, HBSS with 0.7% 

DMSO, or HBSS with 1 mM DFO (data not shown). Quantification of the fluorescence intensity 

using a spectrophotometer showed that treatment with 20 μM BDE-47 induced 1.7-fold increase 
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in the DCF fluorescence in the HTR-8/SVneo cells (Table 1; P<0.05), which was inhibited by 

DFO pretreatment to the equivalent level of the solvent control (Table 2; P<0.05). There were no 

statistically significant differences between non-treated controls and solvent controls (Table 1 

and 2). 

Effect of BDE-47 on superoxide production  

BDE-47 treatment increased production of superoxide in HTR-8/SVneo cell cultures as 

measured with the cytochrome c reduction assay (Figure 2; P<0.05). Specifically,  superoxide 

production was 0.49, 0.5 and 0.93 nmoles/10
4
 cells in cells exposed to 10, 15, and 20 µM BDE-

47 for 1 h, significantly increased compared to the solvent control (Figure 2; P<0.05). Treatment 

with 100 µM pyrogallol, included as a positive control, increased ferricytochrome c reduction to 

2.19 nmoles/10
4
 cells, a significant increase compared to the solvent control and BDE-47-treated 

groups (Figure 2; P<0.05). The negative values detected in solvent controls with the cytochrome 

c reduction assay suggest oxidation of ferricytochrome c under our basal experimental 

conditions, as observed by others (Arthur et al., 1987).  

Changes in mitochondrial membrane potential (MMP) by BDE-47 treatment 

Because mitochondria are potential sources of cell-generated ROS, MMP was assessed by 

measuring fluorescence of Rh123, a dye specifically taken up by mitochondria in the normal 

polarized state. Treatment with 10, 15 and 20 µM BDE-47 significantly decreased Rh123 

fluorescence compared to solvent controls at 4, 8 and 24 h (Figure 3; P<0.05), indicating 

decreased MMP. Reduction in Rh123 fluorescence ranged from 47% to 65%, but was neither 

concentration-dependent nor time-dependent. The decrease of MMP was significant compared to 
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non-treated control, also, at 4 h with 20 µM BDE-47 and at 8 h with 10, 15, and 20 µM BDE-47 

(Figure 3; P<0.05). Treatment with 5 µM BDE-47 did not significantly change Rh123 

fluorescence at any time point up to 24 h. There were no statistically significant differences 

between non-treated controls and solvent controls at any time points. 

Effect of BDE-47 on cytokine production  

Because cytokines play critical roles in pregnancy (Keelan et al., 2003;  Orsi, 2008), we 

investigated the effect of BDE-47 on IL-6 and IL-8 production in HTR-8/SVneo cells. BDE-47 

treatment for 12 and 24 h stimulated concentration-dependent and time-dependent increases in 

IL-6 (Figure 4A; P<0.05) and time-dependent increases in IL-8 release (Figure 4B; P<0.05). 

Treatment with 15 or 20 μM BDE-47 significantly increased  IL-6 3.7- fold and 6.3- fold at 12 h, 

and 3.7-fold and 12-fold at 24 h, respectively, relative to the solvent control (Figure 4A; P<0.05). 

After 24 h, the lower concentration of 10 μM BDE-47 also induced a significant 1.9-fold 

increase of IL-6 compared to the solvent control (Figure 4A; P<0.05). Moreover, 15 and 20 μM 

BDE-47 treatment increased IL-6 release in a time-dependent manner from 12 h to 24 h (Figure 

4A; P<0.05). No statistically significant changes in IL-6 concentrations were observed with 4 h 

treatment at any BDE-47 concentration examined or with the lowest concentration evaluated, 5 

μM BDE-47, at any time point. Pro-inflammatory chemokine IL-8 concentrations in the medium 

was significantly increased after a 12-h treatment with 15 and 20 μM BDE-47 by 2.1-fold and 

2.3-fold, respectively, compared with solvent control (Figure 4B; P<0.05). In addition, 24-h 

treatment with 20 μM BDE-47 increased IL-8 release 1.8-fold compared with solvent control, to 

an average concentration that was significantly increased compared the average IL-8 

concentration observed after 12 h of exposure to 20 μM BDE-47 (Figure 4B; P<0.05). No 

statistically significant changes in IL-8 concentrations were observed with 4-h treatment at any 
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BDE-47 concentration examined or with 5 and 10 μM BDE-47 at any time point. There were no 

statistically significant differences between non-treated controls and solvent controls at any time 

point. 

Effect of BDE-47 on mRNA expression of cytokines in HTR-8/SVneo cells 

Expression of inflammatory cytokine genes in HTR-8/SVneo cells exposed to BDE-47 was 

quantified using real time qRT-PCR. Treatment with 15 and 20 µM BDE-47 for 12 h increased 

IL-6 mRNA expression by 14.7 fold and 35.4 fold, respectively, compared to the solvent control 

(Figure 5A; P<0.05).  Treatment with 20 µM BDE-47 for 24 h increased IL-6 mRNA 20.1 fold 

compared to the solvent control (Figure 5A; P<0.05).  Likewise, IL-8 expression increased with 

20 µM BDE-47 after 4, 12 and 24-h exposures compared to solvent control (Figure 5B; P<0.05). 

IL-8 mRNA expression increased with 12-h exposure to 15 and 20 µM BDE-47 by 12.1 fold and 

24.9 fold, respectively, compared with solvent control (Figure 5B; P<0.05). For both  IL-6 and 

IL-8, concentration-dependent increases in mRNA expression were observed with 15 and 20 µM 

at 12 h only. Treatment with 5 and 10 BDE-47 did not result in significant changes in IL-6 and 

IL-8 mRNA expression at any time point. Treatment with DMSO (solvent control) suppressed 

IL-8 mRNA expression at 12 h compared to non-treated control (Figure 5B, P<0.05). There were 

no other statistically significant differences between non-treated controls and solvent controls for 

IL-6 and IL-8 mRNA expression. 

Effect of Antioxidant treatment on BDE-47-stimulated cytokine production in HTR-8/SVneo 

cells 

To investigate the role of reactive oxygen species on BDE-47-mediated cytokine release in HTR-

8/SVneo cells, cells were pretreated with 1 mM DFO for 1 h prior to BDE-47 treatment for 24 h, 
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or co-treated with 20 µM (±)α-tocopherol for 24 h. As shown in Figure 6A, DFO pretreatment 

inhibited IL-6 release stimulated by 20 µM BDE-47 in HTR-8/SVneo cells, reducing IL-6 

release by 54.1% compared to cultures exposed to BDE-47 without DFO pretreatment (Figure 

6A; P<0.05). Although IL-6 concentrations in cultures pretreated with DFO prior to exposure to 

15 µM BDE-47 were not significantly reduced compared with cultures exposed to 15 µM BDE-

47 without DFO pretreatment, they also were not statistically significantly different from the 

non-treated or solvent controls. Similar to DFO, (±)α-tocopherol and tempol co-treatment for 24 

h resulted in 56.3% (relative to No Vehicle Control group, Figure 6B; P<0.05) and 37.7% 

(Figure 6C; P<0.05) reduction in BDE-47-mediated IL-6 production in HTR-8/SVneo cells. In 

the absence of (±)α-tocopherol cotreatment, a significant reduction in IL-6 release was observed 

for cultures  exposed to DMSO (0.7 % v/v) as the solvent control group for BDE-47 treatments  

compared to non-treated controls (Fig. 6B; P<0.05); however, there were no statistically 

significant differences between (DMSO) solvent and non-treated controls that also received the 

vehicle (DMSO 0.02% v/v) used with (±)α-tocopherol cotreatment (Fig. 6B). There were no 

significant changes in IL-8 production from HTR-8/SVneo cells with DFO pretreatment, (±)α-

tocopherol co-treatment, or tempol co-treatment (data not shown). 

 

Discussion 

Due to widespread use as flame-retardants in household and commercial products, human 

exposure to PBDEs increased exponentially over recent decades (Hites, 2004). Analysis of 2,062 

human serum samples from the NHANES 2003-2004 detected BDE-47 in nearly all participants, 

with BDE-47 having the highest concentration of the PBDE congeners measured (Sjodin et al., 

2008). Despite BDE-47 presence in human placental tissues (Frederiksen, et al., 2009;  Miller, et 
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al., 2009) and the importance of cytokine regulation in placental development during early 

pregnancy (Anton, et al., 2012), there are no previous reports of BDE-47-stimulated effects on 

inflammatory pathways in human first trimester placental cells. Moreover, we identified only a 

single previous report on PBDE-stimulated cytokine release in placenta with results showing that 

pre-exposure of second trimester human placental explant cultures to a PBDE mixture of congers 

47, 99 and 100 enhanced placental proinflammatory response to heat-killed E. Coli (Peltier, et 

al., 2012). The present study is distinct from the latter study in that we showed direct stimulation 

of proinflammatory cytokines in the absence of pathogen exposure in a first trimester human 

extravillous trophoblast cell line treated with a single BDE congener. 

 Oxidative stress has been suggested to play a role in human pregnancy-related disorders, 

such as preterm labor, preeclampsia, and IUGR (Agarwal, et al., 2012). The present study 

provides new information that BDE-47 increased ROS generation in the human trophoblast cell 

line HTR-8/SVneo. Moreover, BDE-47 decreased mitochondrial membrane potential, indicating 

mitochondrial dysfunction (Brand and Nicholls, 2011). Because mitochondrial defects can lead 

to enhanced mitochondrial production of ROS and superoxide is a major type of ROS generated 

by mitochondrial respiration (Sohal et al., 1995), we suggest that the BDE-47-stimulated 

superoxide production in HTR-8/SVneo cells may have originated from mitochondria. 

Superoxide also acts as a precursor for formation of other types of ROS (Al-Gubory et al., 2010). 

As such, the increased DCF fluorescence observed with BDE-47 could be explained by 

subsequent formation of peroxyl, hydroxyl radical and other ROS from mitochondrial 

superoxide. However, our findings are correlative only and require further research to confirm 

the present findings and to elucidate our mechanistic hypothesis.  
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 Similar to our results with HTR-8/SVneo cells, BDE-47-stimulates intracellular ROS 

formation in rat neuronal cells (He, et al., 2008), Jurkat cells (Yan, et al., 2011), human fetal 

liver hematopoietic stem cells (Shao, et al., 2008), and human neutrophil granulocytes (Reistad 

and Mariussen, 2005a). In contrast to previously reported studies that BDE-47 induces apoptosis 

in Jurkat cells (Yan, et al., 2011) and human fetal liver hematopoietic stem cells (Shao, et al., 

2008), we observed no significant loss of cell viability in HTR-8/SVneo cells after a 24-h 

treatment with BDE-47 (Supplementary Figure 1). A possible explanation for these 

inconsistencies is that the range of BDE-47 concentrations used in our study (5-20 µM) was 

much lower than concentration ranges used in studies reporting BDE-47-induced cytotoxicity 

and/or a mitochondrial membrane potential reduction: 25-100 µM (Yan, et al., 2011) and 50 µM 

(Shao, et al., 2008). Moreover, different types of cells (human trophoblasts versus rat neuronal 

cells, Jurkat cells, human fetal liver hematopoietic stem cells, or human neutrophil granulocytes) 

and experimental conditions (media, serum concentration, exposure duration, cell density, etc.) 

may generate divergent responses to the same chemical. Notably, our study provides the first 

evidence that BDE-47 decreases mitochondrial membrane potential at lower concentrations of 

BDE-47 (10, 15 and 20 µM) than reported previously.  

Treatment with BDE-47 reduced mitochondrial membrane potential, though the observed 

reduction was not concentration-dependent for the BDE-47 concentration range examined (10, 

15, and 20 µM). The lack of a concentration-dependent reduction in mitochondrial membrane 

potential could be explained by the narrow range of BDE-47 concentrations in our studies, 

especially if the sensitivity of Rh123 may not be sufficient to detect the differences in 

mitochondrial membrane potential within this range of concentrations. Similar to our findings, 

Yan et al. (2011) did not show a concentration-dependent decrease in mitochondrial membrane 
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potential in BDE-47-treated Jurkat cells with 5, 10 and 25 µM BDE-47 using Rh123, although a 

decreasing trend was observed as concentrations increased up to 100 µM. Shao et al.(2008) also 

reported a decrease in mitochondrial membrane potential in human fetal liver hematopoietic stem 

cells at 12.5 and 50 µM using another mitochondria-specific dye, JC-1, but did not show a 

significant concentration-dependent reduction, either. Further study using an expanded range of 

BDE-47 concentrations will be needed to clarify reasons for the lack of a concentration-

dependent effect on the mitochondrial membrane response. 

 Little is known about interactions of BDE-47 with the innate immune response. It was 

recently reported that BDE-47-pretreatment of peripheral blood mononuclear cells from children 

with autism spectrum disorders exhibit divergent LPS-stimulated innate cytokine responses 

compared with age-matched controls (Ashwood et al., 2009).  Peltier  et al. (2012) reported that 

pre-exposure of placental explants to a PBDE mixture of congers 47, 99 and 100 enhanced 

placental proinflammatory response to heat-killed E. Coli, with increased IL-1β and reduced IL-

10 production. In the latter study by Peltier et al.(2012), however, PBDE treatment alone did not 

stimulate proinflammatory cytokine production in placental explant cultures. We observed that 

BDE-47-stimulated cytokine mRNA expression increased for IL-8 as early as 4 h with 20 µM 

exposure, then peaked 12 h after initiating exposure, the only time point in our study where we 

observed significantly increased IL-6 and IL-8 mRNA expression at the lower concentration of 

15 µM, also. Compared with mRNA expression, cytokine protein release lagged temporally, 

with initial increases after 12 h and further increases after 24 of exposure to BDE-47.  The lowest 

effective concentration for cytokine response was observed with 10 µM BDE-47-stimulated 

increase of IL-6 protein after 24 h of exposure. As such, our study is the first to report direct 

effect of BDE-47 on regulation of cytokine production in human placental cells, showing that 
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BDE-47 increased proinflammatory IL-8 and IL-6 in HTR-8/SVneo cells at the transcriptional 

and protein levels. Moreover, the BDE-47-stimulated increased mRNA levels of IL-6 and IL-8, 

suggesting that activation of transcription contributes to the overall increased cytokine 

expression. Because the fold change in cytokine protein production was modest compared to the 

fold change in cytokine mRNA expression, additional post-transcriptional mechanisms may 

modulate protein expression (Griesinger et al., 2001;  Wang et al., 2011;  Ye et al., 2011).  

 Inflammation within the gestational compartment may lead to impaired trophoblast 

cellular function, contributing to the placental dysfunction seen in pregnancy-related disorders. 

Histologic examination found evidence of localized inflammation (histologic chorioamnionitis) 

in 85% of placentae from spontaneous preterm births delivered at 28 weeks gestation (Yoon et 

al., 2000) with higher rates of placental ischemia and abnormal placentation compared with 

controls at term (Germain, et al., 1999;  Kim, et al., 2003). A recent study reported that LPS 

increases production of IL-8 and IL-6 and decreases invasion activity in HTR-8/SVneo cells 

(Anton, et al., 2012). Our study showed that exposure to BDE-47 stimulated pro-inflammatory 

IL-6 and IL-8 production in HTR-8/SVneo cells, suggesting that BDE-47 could potentially 

impair normal trophoblast cellular function and invasion. However, we did not measure BDE-47 

effects on trophoblast invasion, and further investigation is needed to ascertain the potential 

relevance of BDE-47 exposure to placental function and pregnancy.  

 It has been reported that ROS can regulate signal transduction pathways in mammalian 

cells as second messengers (Khan and Wilson, 1995). Our study clearly showed the novel 

finding that ROS play a role in activation of BDE-47-mediated inflammatory response in HTR-

8/SVneo cells. Three different antioxidant treatments suppressed BDE-47-stimulated IL-6 

production in HTR-8/SVneo cells. Although mechanisms of regulation of inflammatory response 
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by ROS are not fully understood, involvement of the redox-sensitive transcription factor NF-κB 

has been implicated (Reuter, et al., 2010). NF-κB plays a crucial role in immune and 

inflammatory response, regulating gene expression of a large number of genes, including 

cytokines, growth factors, adhesion molecules, immunoreceptors, and acute-phase proteins 

(Blackwell and Christman, 1997). Several lines of evidence suggest a role for ROS in activation 

of NF-κB, and antioxidants inhibit NF-κB activation in vitro and in vivo (Blackwell and 

Christman, 1997). Moreover, NF-κB plays a crucial role in the transcription of IL-6 and IL-8 

(Blackwell and Christman, 1997;  Reuter, et al., 2010). Although we did not assess BDE-47-

induced NF-κB activation in HTR-8/SVneo cells, we speculate that NF-κB may be involved in 

BDE-47-stimulated cytokine production in HTR-8/SVneo cells because both cytokines were 

notably increased with BDE-47 treatment.  

 The mechanisms of PBDE toxicity have not been fully resolved. Because of the similar 

chemical structures of PBDEs and their metabolites to thyroid hormones, polychlorinated 

biphenyls (PCBs), and 2,3,7,8-tetra- chlorodibenzo-p-dioxin (TCDD) (Ren and Guo, 2013),  

other studies have focused on PBDEs' toxic effects through nuclear hormone receptor (NR) 

mediated pathways involving thyroid hormone receptor (TR), estrogen receptor (ER), aryl 

hydrocarbon receptor (AhR), androgen receptor (AR) and progesterone receptor (PR) 

(Ibhazehiebo et al., 2011;  Kojima et al., 2009;  Mercado-Feliciano and Bigsby, 2008) (Liu et al., 

2011;  Ren and Guo, 2013;  Stoker et al., 2005). For example, hydroxylated BDE-47 metabolites 

showed modest binding potency with rat TR (Kitamura et al., 2008) whereas BDE-199, 153, 

154, 209  and DE-71 (a commercial PBDE mixture) showed antagonistic activity for TRβ in CV-

1 monkey fibroblast-derived cells (Ibhazehiebo, et al., 2011). BDE-47 showed agonistic 

activities in the ERα and ERβ by the ER-CALUX assay using Chinese hamster ovary cells 
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(Kojima, et al., 2009). Chen et al. (2001)  reported that 18 PBDE congeners and 3 commercial 

mixtures bound to rat hepatic AhR with affinities 10
-2

 to 10
-5

 times that of TCDD. Anti-

androgenic activity of PBDEs also has been observed (Kojima, et al., 2009;  Liu, et al., 2011). 

Although these studies suggest potential roles of NRs on endocrine disruption by PBDEs, the 

contribution of NR activation to BDE-47-stimulated inflammatory responses in the present study 

is not clear. It was recently suggested that NRs regulate inflammatory pathways by altering the 

turnover or recruitment of co-repressors and co-activators in a gene-specific manner. These NR-

dependent trans-repression pathways may play roles in controlling the initiation, magnitude and 

duration of pro-inflammatory gene expression (Glass and Saijo, 2010;  Huang and Glass, 2010). 

However, further study on the biological mechanisms of action of PBDEs is warranted to 

investigate roles of potential receptors and mediators in the activation and regulation of BDE-47 

mediated inflammation in human placental cells.  

 In the present study, we used DMSO at a final concentration of 0.7% to deliver BDE-47 

to the cell cultures. Although previous reports used lower DMSO concentrations to deliver 

similar or higher concentrations of BDE-47 to cell cultures (Shao, et al., 2008;  Yan, et al., 

2011), we found that BDE-47 precipitated out over time in cultures at final DMSO 

concentrations below 0.7% in our laboratory. DMSO is widely used as a vehicle for hydrophobic 

pharmaceutical agents in biomedical research. In preliminary experiments, we evaluated 1,4-

dioxane as an alternative vehicle for BDE-47, but decided on using DMSO because BDE-47 had 

better solubility  in DMSO and because DMSO is more commonly used in cell culture studies 

with PBDEs. However, DMSO’s reported antioxidant and anti-inflammatory properties raise 

cautions when interpreting results from studies using DMSO as a solvent. It has been reported 

that DMSO (≥1% v/v) is a strong antioxidant that scavenges hydroxyl free radicals (Bektasoglu 
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et al., 2006;  Halliwell et al., 1987;  Panganamala et al., 1976), and reduces production of 

hydroxyl radicals, lipid peroxidation, and protein carbonyl formation (Sanmartin-Suarez et al., 

2011). DMSO also exhibits anti-inflammatory properties by inhibiting secretion and/or mRNA 

expression of pro-inflammatory mediators such as TNF-α, IL-6, and IL-8, by decreasing 

prostaglandinE2 production related to COX-2 activity,  and by reducing  NF-κB activation in in 

vivo and in vitro (Chang et al., 1999;  DeForge et al., 1992;  Hollebeeck et al., 2011;  Kelly et 

al., 1994;  Nakamuta et al., 2001). Although means of solvent controls and non-treated controls 

had divergent values in most experiments in the present study, statistically significant differences 

between these control groups were detected only in experiments measuring IL-8 mRNA 

expression and IL-6 protein. Preliminary data prior to this study showed that treatment of HTR-

8/SVneo cells with higher DMSO concentrations (0.75-1%) suppressed BDE-47-stimulated IL-6 

release in a concentration-dependent manner (Supplementary Figure 2). Because DMSO effects 

were in the opposite direction than the observed BDE-47-stimulated effects, it is likely that any 

confounding by DMSO on IL-6 release would result in muting the IL-6 response, making it more 

difficult to observe significant increases. We clearly show that BDE-47 stimulated ROS 

overproduction and inflammatory responses in HTR-8/SVneo cells, outweighing possible 

opposing DMSO effects. We suggest that the DMSO effects on cytokine production are due to 

its radical scavenger or anti-inflammatory properties. However, it is out of the scope of the 

present work to clarify the mode of actions of DMSO in cytokine production because DMSO 

was used purely as a vehicle control in this investigation. 

 A limitation of our study is that overproduction of IL-6 and IL-8 alone may not 

accurately represent the proinflammatory response and the possible impact of BDE-47 exposure 

on trophoblast cellular function in vivo. Although changes in cytokine levels by an activated 
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immune response play an important role in regulating trophoblast function, there are complex 

interactions between cytokines and trophoblast invasion involving other pro- and anti-invasive 

factors, such as other cytokines/chemokines, integrins, and adhesion and proteolytic molecules 

(Anton, et al., 2012).  

The concentrations of BDE-47 in this study are several orders of magnitude higher (100-

fold or more) than the median concentrations reported previously in utero and placenta: 337 - 

21842 pg/ml in amnionic fluid (Miller, et al., 2012), 0.11- 3000 ng/g lipid in placentae (Doucet 

et al., 2009;  Frederiksen, et al., 2009), and 0.46 to 504 ng/g lipid in umbilical cord blood 

(Frederiksen, et al., 2009;  Guvenius et al., 2003;  Wu, et al., 2010). However, PBDE 

concentrations vary markedly among samples and can differ by three orders of magnitude, 

possibly due to factors such as proximity to the source of contamination, length of exposure, 

individual life style, occupation, nutritional status, absorption, metabolism, and excretion 

(Athanasiadou et al., 2008;  Doucet, et al., 2009;  Gill et al., 2004;  Stapleton et al., 2008). 

Taking this variability of exposure into consideration and assuming that the lipid content in 

placentae is 1.31%, the concentrations of PBDEs in placentae can be as high as ~8 µM (Doucet, 

et al., 2009). Moreover, correcting for adsorption onto plastic, estimated at 73% (Barber et al., 

2006;  Mundy et al., 2004), the corrected concentrations of BDE-47 in culture medium in this 

study range from 1.34 to 5.4 µM. In addition, we have not examined the effect of multiple or 

chronic exposures to PBDEs, and it is unlikely for people to be exposed to a single PBDE 

congener like BDE-47 (Shao, et al., 2008).  Moreover, some PBDE congeners showed the ability 

to act synergistically when combined (Tagliaferri et al., 2010) or with other toxicants (Fischer et 

al., 2008;  Pellacani et al., 2012).  Ongoing research in our laboratory on the effects of other 

prevalent PBDE congeners, such as BDE-49 and 99, will lead us toward a better understanding 
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of the mechanisms and relevant risks associated with PBDE exposures in gestational 

compartments. Moreover, ongoing analysis of gene expression array data is expected to guide us 

in future experiments to elucidate the mechanisms of BDE-47-stimulated ROS formation and 

cytokine production.  

In summary, BDE-47, a predominant flame retardant chemical found in human tissues, 

activates proinflammatory responses in human first trimester EVTs. Our results provide evidence 

of altered mitochondrial membrane potential, enhanced production of ROS, and enhanced 

production of the proinflammatory cytokines IL-6 and IL-8 stimulated by BDE-47 in human 

placental cells. The inhibition of stimulated release of IL-6 by a variety of antioxidant treatments 

implicates the involvement of ROS in regulation of cytokine production in HTR-8/SVneo cells. 

This is the first study to show that BDE-47 activates proinflammatory pathways in human first 

trimester EVTs and to link PBDE-stimulated pro-inflammatory responses with ROS. Because 

proper trophoblast function is necessary for placental development and successful pregnancy, 

further investigation of the impact of BDE-47 on trophoblast function is warranted. 

  



52 

 

 

Table 2.1. Quantification of BDE-47-Stimulated ROS Production in HTR-8 cells
a 

 

Treatment DCF fluorescence intensity 

NT                   174.60 ± 8.17 

Solvent control                   183.10 ± 12.36 

 5 µM BDE-47                   257.50 ± 23.77 

10 µM BDE-47                   260.60 ± 25.88 

15 µM BDE-47                   247.40 ± 27.36 

20 µM BDE-47                   309.10 ± 16.72* 

100 µM TBHP  555.00 ± 109.40* 

 

a
 HTR-8 cells were non-treated (NT; control), or were treated with DMSO (solvent control), 

BDE-47 or tert-butyl hydroperoxide (TBHP, positive control) for 4 h, then loaded with carboxy-

H2DCF-DA for 1 h. Values represent the means ± SE of 3 independent experiments containing 4 

replicates each. *P<0.05, significant compared to solvent control. 

 

  



53 

 

Table 2.2.  Inhibition of BDE-47-Stimulated ROS Production by Antioxidant Pretreatment in 

HTR-8 cells
b
 

Treatment 
DCF Fluorescence Intensity 

No DFO 1mM DFO 

NT 216.30 ± 7.71 218.80 ± 5.71 

Solvent control 216.70 ± 7.53 215.60 ± 6.96 

20 µM BDE-47  279.60 ± 8.98*  215.40 ± 6.98# 

 

b
 HTR-8 cells were pretreated for 1 h with or without deferoxamine mesylate (DFO) prior to 

exposure to non-treated control (NT), DMSO (solvent control) or BDE-47 for 4 h, and then 

loaded with carboxy-H2DCF-DA for 1 h. Values represent the means of 3 independent 

experiments containing 4 replicates each ± SE. *P<0.05, significant compared to solvent control. 

#P<0.05, significantly different compared to non-DFO treated group.  
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Figure 2.1. Fluorescence microscopy visualization of BDE-47-stimulated dichlorofluorescein 

(DCF) fluorescence, an index of reactive oxygen species production, in a first trimester human 

extravillous trophoblast cell line, HTR-8/SVneo.  

HTR-8/SVneo cells were pretreated for 1 h with or without 1 mM deferoxamine mesylate (DFO), 

and then received no further treatment (NT, non-treated control) or were exposed to DMSO 

(solvent control), 20 µM BDE-47 or 100 µM tert-butyl hydroperoxide (TBHP; positive control) 

for 4 h. Subsequently, the cells were loaded with the non-fluorescent pro-dye carboxy-H2DCF-

DA for 1 h, counterstained with CellMask
TM

 Deep Red plasma membrane dye, and 

photographed using an epifluorescence microscope. The top panel shows representative images 

of intracellular DCF fluorescence, and the bottom panel show corresponding Deep Red 

membrane staining. Representative images of 3 independent experiments.  
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Figure 2.2. BDE-47-induced cytochrome c reduction, an index of superoxide anion production, 

in HTR-8/SVneo cells.  

HTR-8/SVneo cells were treated for 1 h with DMSO (solvent control) or BDE-47, then 

incubated with cytochrome c reaction buffer with or without SOD for 90 min. Bars represent the 

means of 3 independent experiments containing 6 replicates each ±SE. *P<0.05, significant 

compared to solvent control. 
#
P<0.05, significant compared to 5, 10, 15, and 20 µM BDE-47. 
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Figure 2.3. BDE-47 effects in HTR-8/SVneo cells on mitochondrial membrane potential (MMP).  

HTR-8/SVneo cells were treated for 4, 8 or 24 h with non-treated control (NT), DMSO (solvent 

control) or BDE-47, and then loaded with Rh123 for 1 h. Bars represent the means of 6 

independent experiments containing 4 replicates each ±SE. *P<0.05, significant compared to 

solvent control within same time point. 
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Figure 2.4.  BDE-47-induced pro-inflammatory cytokine production in HTR-8/SVneo cells. 

HTR-8/SVneo cells were untreated (NT, non-treated control), or treated for 4, 8 or 24 h with 

DMSO (solvent control) or BDE-47, and then concentrations of IL-6 (A) and IL-8 (B) in culture 

medium were quantified by EIA.  Bars represent the means ± SE of 3 independent experiments 

containing 3 replicates each. *P<0.05, significant compared to solvent control within same time 

point.
 #
P<0.05, significant compared to same treatment at12 h. 

+
P<0.05, significantly different 

from next lowest concentration within time point. 



58 

 

 

Figure 2.5. BDE-47 effects on mRNA expression of inflammatory cytokine genes in HTR-

8/SVneo cells.   

HTR-8/SVneo cells were treated for 4, 8 or 24 h with non-treated control (NT), DMSO (solvent 

control) or BDE-47. The mRNA expression of IL-6 (A) and IL-8 (B) was quantified by qRT-

PCR. Bars represent the means ± SE of 3 independent experiments containing 3 replicates each. 

*P<0.05, significant compared to solvent control within same time point. 
#
P<0.05, significantly 

different from next lowest concentration within time point. 
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Figure 2.6. Effects of antioxidant treatments on BDE-47-stimulated IL-6 release in HTR-

8/SVneo cells. 

 HTR-8/SVneo cells receiving antioxidant treatments were pretreated with DFO for prior to 

exposure to had no further treatment (non-treated control, NT), or were exposed to DMSO 

(solvent control), 15 µM BDE-47 or 20 µM BDE-47, or were co-treated with (±)-α-tocopherol or 

tempol. A) Effects of 1-h pretreatment with DFO on BDE-47-stimulated IL-6 release. B) Effects 

of (±)-α-tocopherol cotreatment on BDE-47-stimulated IL-6 release; vehicle controls were 

exposed to DMSO (used to deliver (±)-α-tocopherol, 0.02% v/v) and additional controls received 

no vehicle. C) Effects of tempol cotreatment on BDE-47-stimulated IL-6 release. Bars represent 

the means ± SE of 3 independent experiments containing 3 replicates each. *P<0.05, significant 

compared to respective solvent controls. 
&

P<0.05, significant compared to 15 µM BDE-47-

treated group. 
#
P<0.05, significantly different from each other. 
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Appendix 2.1. BDE-47 effects in HTR-8/SVneo cells on A) cytotoxicity and B) cell viability 
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Appendix 2.2. DMSO effects in HTR-8/SVneo cells on BDE-47-stimulated IL-6 release. 
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 PROTECTIVE EFFECT OF (±)α-TOCOPHEROL ON CHAPTER 3.

BDE-47-STIMULATED PROSTAGLANDIN PATHWAYS IN 

HUMAN EXTRAVILLOUS TROPHOBLASTS IN VITRO 

 

Abstract 

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. 

Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in 

human breast milk, serum and placenta. Exposure to BDE-47 has been linked to adverse 

pregnancy outcomes in humans including preterm birth, low birth weight and stillbirth. Although 

the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles of 

prostaglandin pathways are implicated. The present study investigates BDE-47- activation of 

prostaglandin pathways in a human extravillous trophoblast cell line, HTR-8/SVneo. In addition, 

the role of the peroxyl radical scavenger (±)-α-tocopherol on the regulation of prostaglandin 

production was evaluated. HTR-8/SVneo cells were treated with BDE-47 in the presence or 

absence of (±)-α-tocopherol for 24 h. Then, prostaglandin E2 (PGE2) release was measured 

using enzyme-linked immunesorbant assay. mRNA expression of prostaglandin-endoperoxide 

synthase 2 (PTGS2), prostaglandin E synthase (PTGES), and 15-hydroxyprostaglandin 

dehydrogenase (HPGD) was quantified by qRT-PCR. Protein expression of COX-2 and 

prostaglandin E synthase (PGES) was measured by western blot. At 24 h, 20 μM BDE-47 

induced significant increases in PGE2 concentration in the culture medium, suggesting increased 

COX activity. The PGE2 increases were accompanied by significant 5.3, 4.4 and 4.7-fold 

increases in mRNA expression of PTGS2 at 4, 12 and 24 h, respectively. Furthermore, treatment 

with 15 and 20 μM BDE-47 significantly decreased mRNA expression of PTGES and HPGD. 

Treatment with 20 μM BDE-47 for 24 h induced a significant 2.0-fold increase in COX-2 
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expression. (±)-α-Tocopherol  cotreatment suppressed BDE-47-stimulated increases of  PGE2 

without affecting COX-2 mRNA and protein expression, implicating post-translational 

regulations of COX activity by (±)-α-tocopherol. Because abnormal activation of prostaglandin 

production can disrupt trophoblast functions that are necessary for placental development and 

successful pregnancy, further investigation is warranted of the impact of BDE-47 on trophoblast 

cellular responses. 

Introduction 

Proper placental development is prerequisite for a successful pregnancy. Abnormal 

placentation contributes to the pathophysiology of adverse obstetrical complications such as 

preeclampsia (Brosens, 1977;  Gerretsen et al., 1981;  Robertson et al., 1967;  Sheppard and 

Bonnar, 1976), intrauterine growth restriction (IUGR) (Gerretsen, et al., 1981;  Hustin et al., 

1983;  Labarrere and Althabe, 1987;  Sheppard and Bonnar, 1981), spontaneous abortion (Hustin 

et al., 1990;  Khong et al., 1987), preterm premature rupture of membranes (Kim et al., 2002),  

and preterm birth (Kim et al., 2003). Although the mechanisms responsible for improper 

placentation have not been fully elucidated, the role of impaired trophoblast invasion has been 

implicated (Zhou et al., 1997). The extravillous trophoblasts (EVTs) are a highly proliferative 

and migratory cell population that invades  the decidual and myometrial segments of the spiral 

arteries, resulting in the reversible remodeling of the normal arterial wall architecture (Anton et 

al., 2012;  Brosens et al., 1967;  Pijnenborg et al., 1983;  Pijnenborg et al., 1980). Trophoblast 

invasion is tightly regulated by a number of autocrine and paracrine factors including growth 

factors, growth factor-binding proteins, and proteoglycans (Chakraborty et al., 2002;  Lala and 

Chakraborty, 2003). Recently, inflammatory mediators such cytokines and prostaglandins have 

been shown to play a role in the regulation of trophoblast function during first trimester of 
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pregnancy (Biondi et al., 2006;  Horita et al., 2007a;  Jovanovic et al., 2010;  Jovanovic and 

Vicovac, 2009;  Nicola et al., 2005b).  

Prostaglandins are small lipid inflammatory molecules synthesized from membrane 

phospholipids in response to various physiological and pathological stimuli (Nicola, et al., 

2005b). Of these, prostaglandin E2 (PGE2) is one of the most extensively studied prostaglandins, 

and has been shown to play critical roles in successful pregnancy, for example in  implantation 

(Psychoyos et al., 1995;  Yee et al., 1993), immunoprotection of the semiallogenic conceptus 

(Parhar et al., 1988), and parturition (Keelan et al., 2003). PGE2 is produced by a series of 

biochemical reactions invoving conversion of arachidonic acid to PGH2 by cyclooxygenase 

(COX)-1 and COX-2 (Jakobsson et al., 1999;  Kuroda and Yamashita, 2003;  Stichtenoth et al., 

2001), followed by PGH2 metabolism to PGE2 by PGE2 synthase (PGES) (Horita, et al., 

2007a). PGE2 can be catabolized further to the biologically inactive keto-metabolites by 15-

hydroxyprostaglandin dehydrogenase (HPGD) (Tai et al., 2006). Dysregulation of PGE2 

production within the gestational compartment has been linked to adverse birth outcomes such as 

intrauterine growth restriction, preeclampsia and preterm birth (Germain et al., 1999;  Ness and 

Sibai, 2006). Although it is not fully understood how dysregulated prostaglandin pathways lead 

to these adverse impacts, it is suggested that PGE2 regulates trophoblast cellular functions that 

are critical for successful placentation (Biondi, et al., 2006;  Horita et al., 2007b;  Nicola et al., 

2005a).   

Polybrominated diphenyl ethers (PBDEs) are commercially produced synthetic flame-

retardants that have been used in textiles, plastics, building materials and insulation (Miller et al., 

2009b). Among the 209 PBDE congeners, BDE-47 (2,2′,4,4′-tetra-BDE) is one of the most 

prevalent congers found in human tissues and environmental samples (Hites, 2004). Because of 



72 

 

PBDEs’ environmental persistence and toxicity, the US EPA has identified PBDEs as a priority 

human health concern (U.S. Environmental Protection Agency, 2006). Limited studies report 

reproductive toxicity of PBDEs during pregnancy. Rabbits orally exposed to PBDEs showed 

decreased gestation length (Breslin et al., 1989). In human studies, Main et al. reported a 

significantly higher risk of cryptorchidism for sons born to mothers with elevated PBDE levels in 

breast milk (Main et al., 2007). In addition, Chao et al. found that elevated levels of PBDEs in 

breast milk correlated with decreased infant birth weight, infant birth length, infant chest 

circumference and infant body mass index (Chao et al., 2007). Elevated levels of PBDEs in 

human umbilical cord blood have been correlated with preterm birth, low birth weight or 

stillbirth (Wu et al., 2010). Although these studies report associations between PBDE exposure 

and adverse birth outcomes, and although PBDEs distribute to human placenta (Frederiksen et 

al., 2009), extraplacental membranes (Miller et al., 2009a), amniotic fluid (Miller et al., 2012), 

and umbilical cord blood (Frederiksen, et al., 2009), studies of mechanisms by which PBDEs act 

on gestational tissues during pregnancy are limited. Specifically, we identified one study 

reporting that pre-exposure of placental explants to a PBDE mixture of congers 47, 99 and 100 

enhanced placental pro-inflammatory response to heat-killed E. Coli, with increased PGE2 

release and COX-2 expression (Peltier et al., 2012).  

Our previous study showed that treatment with BDE-47 stimulated production of reactive 

oxygen species in in the first trimester EVT human placental cell line HTR-8/SVneo (Park et al., 

2014).  Increased oxidative stress in placenta, possibly due to increased generation of ROS,  has 

been observed in pathological pregnancies, and ROS have been implicated in the activation of 

inflammatory responses in gestational compartments (Buhimschi et al., 2003;  Cindrova-Davies 

et al., 2007). Moreover, formation of reactive oxygen species (ROS) has been shown to modulate 
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pathways in various experimental models (Basu, 1999;  Davidge, 1998;  Gonzalez et al., 2000;  

Wentzel et al., 1999). The present study examines the hypothesis that BDE-47 stimulates PGE2 

production via a ROS-mediated mechanism in the first trimester EVT human placental cell line 

HTR-8/SVneo. 

Materials and Methods 

Chemicals and assay kits. BDE-47 was purchased from AccuStandard (New Haven, CT, USA). 

Dimethyl sulfoxide (DMSO), tert-butyl hydroperoxide (TBHP), indomethacin, NS398, and (±)-

α-tocopherol were purchased from Sigma Aldrich (St. Louis, MO, USA). Purchase of 6-carboxy 

dichlorodihydrofluorescein diacetate (carboxy-H2DCF-DA), Hoechst 33342 dye, RPMI medium 

1640, fetal bovine serum (FBS), OptiMem 1 reduced-serum medium, Hank's balanced salt 

solution (HBSS), 0.25% trypsin/EDTA solution and penicillin/streptomycin (P/S) was from 

Invitrogen Life Technologies (Carlsbad, CA, USA).  PGE2 ELISA kit and arachidonic acid was 

purchased from Cayman Chemical (Ann Arbor, MI, USA QIAshredder, RNeasy mini plus kit, 

RT
2
 First Strand kit for reverse transcriptase reaction, RT

2
 qPCR SYBR Green/ROX Master 

Mix, and primers for human β-microglobulin, PTGS2, PTGES and HPGD were purchased from 

Qiagen (Valencia, CA, USA). IGEPAL The NP-40 substitute, CA-630 was purchased from 

United States Biological (Salem, MA). PhosStop protease inhibitor cocktail and complete mini 

protease inhibitor cocktail tablets were from Roche (Indianapolis, IN). Reducing Laemmli SDS 

sample buffer was purchased from Boston BioProducts (Ashland, MA). Memcode reversible 

protein staining kit and bicinchoninic acid (BCA) assay kit were from Thermo Scientific 

(Waltham, MA). Alkaline phosphatase-linked secondary antibody was purchased from Cell 

Signaling Technology (Beverly, MA). Enhanced chemifluorecence (ECF) substrate and PVDF 

membrane Hybond-P were purchased from GE Healthcare Life Sciences (Pittsburgh, PA).  
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Cell Culture and treatment.  The human first trimester extravillous trophoblast cell line HTR-

8/SVneo was kindly provided by Dr. Charles S. Graham (Queen's University, Kingston, ON, 

Canada). Cells between passages 71 and 84 were cultured in RPMI 1640 medium supplemented 

with 10% FBS and 1% penicillin/streptomycin  at 37°C in a 5% CO2 humidified atmosphere. 

Cells were grown to 70-90% confluence before treatment. Cells were washed twice with 

OptiMem 1 containing 1% FBS and 1% P/S, and then acclimated with the medium for 1 h at 37 

°C. From solutions of 20 mM BDE-47 in DMSO, exposure media containing 20 µM BDE-47 

were made in OptiMem 1 containing 1% FBS and 1% P/S immediately prior to initiating the 

experiment. The final concentration of DMSO in medium was 0.7 % (v/v).  

Dichlorofluorescein assay. Stimulation of ROS generation was assessed using the 

dichlorofluorescein (DCF) assay. Because artifactual results can occur in the DCF assay due to 

interactions with toxicants (Tetz et al., 2013), we confirmed that there was no increased DCF 

fluorescence by BDE-47 in cell free medium (data not shown).The HTR-8/SVneo cells were 

seeded at a density of 2.4 × 10
5
cells per well in a 6-well plate and cultured for 24 h at 37 °C. 

Cells were washed once with OptiMem 1 medium containing 1% FBS and 1% P/S, and then 

were untreated (NT, non-treated controls), or exposed to solvent control (DMSO 0.7% v/v), 15 

μM BDE-47 or 20 μM BDE-47 for 4 h in the absence or presence of 20 μM (±)-α-tocopherol. 

Treatment with 100 µM tert-butyl hydroperoxide (TBHP) was included as a positive control 

(Vessey et al., 1992). After removal of the exposure media and rinsing with HBSS, cells were 

collected by treatment with 0.25% trypsin/EDTA solution for 2 min, washed twice by 

centrifugation and resuspension in HBSS, and then re-suspended in HBSS. After 1-h incubation 

with 100 μM carboxy-H2DCF-DA in HBSS,  the fluorescence intensity of 200,000 cells in a 96-

well, black, clear-bottomed plate was measured using the Molecular Devices SpectraMax 



75 

 

Gemini M2e plate reader at an excitation wavelength of 492 nm and emission wavelength of 522 

nm. 

Cyclooxygenase activity assay. HTR-8/SVneo cells were seeded at a density of 5 × 10
4
 cells per 

well in a 24-well plate and cultured for 24 h at 37 °C. Cells were washed once with OptiMem1 

medium containing 1% FBS and 1% P/S, and then exposed to 20 μM BDE-47 in the absence and 

presence of 10 μM indomethacin, a non-selective COX inhibitor,  or 5 μM NS398, a COX-2 

specific inhibitor. After 24-h incubation, the culture medium was removed and cells were 

washed once with HBSS. Then, cells were incubated with 2.5 μM arachidonic acid in HBSS for 

4 h at 37 °C. After the 4-h incubation, the concentration of PGE2 was measured by sandwich 

ELISA following the manufacturer’s protocols. To determine ROS-related activation of 

prostaglandin pathways by BDE-47, HTR-8/SVneo cells were co-treated with 20 µM (±)-α-

tocopherol, a peroxyl radical scavenger for 24 h. Concentrations of PGE2 in the medium were 

analyzed by ELISA as described above. Release of PGE2 was expressed as pg/ml.  

RNA extraction and quantitative real-time polymerase chain reaction. After a 24-h incubation 

with BDE-47, cell lysates were collected and homogenized using QIA shredder. Total RNA was 

extracted from homogenized lysates using a RNeasy mini plus kit, and cDNA was synthesized 

from 1 μg of total RNA using a RT
2
 First Strand Kit. The procedures were performed according 

to instructions of the manufacturer. Quantitative real-time polymerase chain reaction (qPCR) was 

performed in a total volume of 25 μL containing 4 μL of cDNA template, 1 μL of a gene-specific 

primer (PTGS2, PTGES, HPGD), 12.5 μL of  RT
2 
SYBR Green qPCR Master Mix, and 7.5 μL 

of nuclease-free H2O using  CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, 

Hercules, CA, USA). A housekeeping gene, β-microglobulin, was co-amplified as an internal 

control. qRT-PCR was performed with an initial denaturation step of 10 min at 95°C, followed 
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by 40 cycles of 15 s at 95°C, 5 s at 60°C. At the end of each cycle, the fluorescence emitted by 

the SYBR Green was measured. After completion of the cycling process, samples were subjected 

to a temperature ramp (from 65°C to 95°C at 0.5°C/s) with continuous fluorescence monitoring 

for melting curve analysis. Signal intensities of target genes were quantified and normalized to 

the signal of β-microglobulin using Bio-Rad CFX manager software. The level of mRNA 

expression was presented as fold change compared to solvent controls. 

Western blot The HTR-8/SVneo cells were seeded at a density of 2.4 × 10
5 
cells per well in a 6-

well plate and cultured for 24 h at 37 °C. Cells were washed once with Optimem1 medium 

containing 1% FBS and 1% P/S, and then exposed to 20 μM BDE-47 in the absence or presence 

of 20 µM (±)-α-tocopherol. After a 24-h incubation, the culture medium was removed, and cells 

were washed twice with ice-cold dPBS, incubated with lysis buffer (0.5% IGEPAL, 250 mM 

NaCl, 50 mM tris-HCl, with a protease inhibitor tablets), and then scraped from the plates to 

collect cell lysates. After centrifugation of lysates, the supernatant was collected and stored at -

80°C until analysis. Total protein was quantified by BCA assay. The protein samples were boiled 

in sample buffer, and then 75 μg protein was subjected to SDS-polyacrylamide gel 

electrophoresis followed by electrotransfer to a PVDF membrane. Transfer efficiency was 

confirmed by reversible membrane staining (Memcode or Ponceau). Membranes were blocked at 

room temperature for 1 h with 5% milk in Tris-buffered saline supplemented with 0.1% tween 

(TBST; 20 mM Tris-HCl, 137 mM NaCl, pH 7.6). Membranes were probed with primary 

antibodies overnight at 4°C with agitation in 5% BSA TBST. Following washing with TBST 

under agitation for 3 min three times, membranes were incubated with alkaline phosphatase-

conjugated secondary antibodies for 1 h at RT in 5% milk TBST. All antibodies were diluted at 

1:2000. Bands were imaged after developing the blot with ECF for 5 min, and imaged on a 
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Fujifilm Fluorescent Image Analyzer FLA-5000. Images shown are representative of 3 

individual experiments. Densitometry was used to semi-quantitate data using Multi Gauge 

software (Fujifilm).  

Statistical analysis. Statistical analysis was performed with Sigma Plot 11.0 software (Systat 

Software Inc., San Jose, CA, USA). Data were analyzed either by one-way analysis of variance 

(ANOVA) or repeated measured two-way ANOVA. If significant effects were detected, the 

ANOVA was followed by Tukey post-hoc comparison of means. A P <0.05 was considered 

statistically different. Data were expressed as means ± SEM. All experiments were repeated at 

least three times and all treatments were performed at least in triplicate in each experiment. 

  

 

Results 

Effects of (±)-α-tocopherol on BDE-47-stimulated ROS production 

The DCF fluorescence assay was used to assess the effect of (±)-α-tocopherol on BDE-47-

stimulated ROS production. Treatment with 20 µM BDE-47 increased DCF fluorescence by 66% 

in the HTR-8/SVneo cells indicating increased generation of reactive species, and this BDE-

stimulated response was blocked by (±)-α-tocopherol cotreatment (P<0.05, Table 1.). Treatment 

with 100 µM TBHP, included as a positive control, increased DCF fluorescence by 176%. There 

were no statistically significant differences between non-treated controls, solvent controls, and 

(±)-α-tocopherol-treated groups, nor was the DCF fluorescence observed with 15 µM BDE-47 

statistically different from solvent controls.  

Effects of BDE-47 on PGE2 release 
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COX activity in HTR-8/SVneo cells was determined by measuring PGE2 release into culture 

medium from cells supplemented with exogenous arachidonic acid for 4 h. Treatment with 20 

µM BDE-47 induced a significant 1.8 fold-increase in PGE2 release from HTR-8/SVneo cells 

compared to the solvent control (P<0.05, Figure 3.1A).  Co-treatment with indomethacin, a 

nonspecific COX inhibitor, or NS-398, a COX-2 specific inhibitor, resulted in the complete 

suppression of BDE-47-stimulated PGE2 release to the levels comparable of the solvent control 

(P<0.05, Figure 3.1B), indicating that BDE-47-induced PGE2 release was dependent on COX 

activity. Notably, NS-398-mediated PGE2 decrease was similar to indomethacin-mediated PGE2 

decrease, suggesting that BDE-47-stimulated PGE2 production is mainly dependent on COX-2 

activity. There were no statistically significant differences between non-treated controls and 

solvent controls, nor did treatment with COX inhibitors alone significantly alter PGE2 release. 

Effects of BDE-47 on mRNA expression of PTGS2, PTGES and HPGD 

Expression of enzymes involved in prostaglandin synthesis and catabolism was measured at the 

mRNA levels. Treatment with 20 µM BDE-47 significantly increased mRNA expression of 

PTGS2 in HTR-8/SVneo cells compared to the solvent control at 4, 12 and 24 h by 5.3-fold, 4.5-

fold, and 4.7-fold, respectively (P<0.05, Figure 3.2A), in agreement with BDE-47-stimulated 

COX activity shown in Figure 3.1A. On the other hand, mRNA expression of PTGES, the gene 

for membrane-bound PGES-1 (mPGES-1), was suppressed 66% with 20 µM BDE-47 treatment 

compared with solvent control (P<0.05, Figure 3.2B). The mRNA expression of HPGD, the gene 

for 15-hydroxyprostaglandin dehydrogenase, was also reduced by 66% and 44% with 15 and 20 

µM BDE-47, respectively (P<0.05, Figure 3.2C). There were no statistically significant 

differences between non-treated controls and solvent controls at any time point, nor was the 
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mRNA expression observed with 5 and 10 µM BDE-47 statistically different from solvent 

controls. 

Effects of (±)-α-tocopherol treatment on BDE-47-stimulated PGE2 release 

To investigate the role of reactive oxygen species in BDE-47-induced PGE2 production, HTR-

8/SVneo cells were co-treated with 20 µM (±)-α-tocopherol for 24 h. As shown in Fig. 3.3, (±)-

α-tocopherol cotreatment inhibited COX activity stimulated by 20 µM BDE-47 in HTR-8/SVneo 

cells, reducing PGE2 concentrations in culture medium 22.5% compared to cultures exposed to 

BDE-47 without (±)-α-tocopherol pretreatment (Figure 3.3; P<0.05). There were no statistically 

significant differences between non-treated controls and solvent controls, nor did treatment with 

(±)-α-tocopherol alone significantly alter PGE2 release. 

Effects of (±)-α-tocopherol treatment on COX-2 and PGES expression 

To test whether suppression of BDE-47-induced COX activity by (±)-α-tocopherol cotreatment 

stems from changes in expression of COX-2 and PGES, qRT-PCR or western blot were 

conducted. Treatment with 20 µM BDE-47 induced a significant 3.2-fold increase in PTGS2 

mRNA expression in HTR-8/SVneo cells compared with solvent control (P<0.05, Figure 3.4). 

The mRNA expression of PTGS2 was not significantly changed with (±)-α-tocopherol 

cotreatment compared to non-(±)-α-tocopherol-treated groups (Figure 3.4), suggesting that ROS 

do not regulate COX-2 expression at the transcription level. Treatment with 20 µM BDE-47 

increased COX-2 protein expression by 2.0-fold compared with control (dashed line, Solvent 

Control with no (±)-α-tocopherol cotreatment) (P<0.05, Figure 3.5B). Cotreatment with (±)-α-

tocopherol did not significantly change BDE-47-stimulated COX-2 expression compared to non-

(±)-α-tocopherol-treated groups, implicating that ROS do not regulate COX-2 expression at the 
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translational level, either (Figure 3.5B). Protein expression of PGES was not significantly 

changed either with BDE-47 treatment or with (±)-α-tocopherol cotreatment (Figure 3.6).  

Discussion 

PGE2 is a pro-inflammatory mediator of critical trophoblast functions during placentation 

(Biondi, et al., 2006;  Horita, et al., 2007b;  Nicola, et al., 2005a;  Zhou, et al., 1997). The 

present study demonstrated that BDE-47, a prevalent flame retardant chemical in the 

environment and in human tissue samples, stimulated COX activity leading to increased PGE2 

release from a human first trimester EVT cell line, HTR-8/SVneo. In addition, we showed that 

treatment with BDE-47 resulted in differential expression of genes relevant to PGE2 pathways 

such as PTGS2, PGTES, and HPGD. Furthermore, we showed that BDE-47-stimulated COX-2 

activity was dependent on ROS formation in HTR-8/SVneo cells. The interaction of PBDEs and 

prostaglandin pathways in gestational tissues has not been extensively explored previously. 

Indeed, we found only one related previous study, which  showed that pre-exposure of placental 

explants to a PBDE mixture of congers 47, 99 and 100 enhanced placental pro-inflammatory 

response to heat-killed E. Coli, with increased PGE2 release and COX-2 expression (Peltier, et 

al., 2012).  

PGE2 production is mainly regulated by substrate availability (arachidonic acid) and the 

activity of COX, the rate limiting step in PGE2 production (Beharka et al., 2002;  Shanmugam et 

al., 2006). Because each treatment group was supplemented with exogenous arachidonic acid in 

the present study, stimulated PGE2 production is not affected by substrate availability but may 

be a reflection of increased COX activity (Hayek et al., 1994;  Hayek et al., 1997). Suppression 

of PGE2 release by co-treatment with COX inhibitors confirmed that BDE47-induced PGE2 

production was dependent on COX activity. Because treatment with NS-398, a COX-2-specific 
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inhibitor, was sufficient to completely suppress BDE47-stimulated PGE2 release, it is suggested 

that BDE47-mediated PGE2 production was mainly dependent on COX-2 activity in HTR-

8/SVneo cells.  

Stimulated PGE2 release could result from changes in the rate of protein synthesis or the 

rate of mRNA transcription (Beharka, et al., 2002). Our results showed that mRNA expression of 

PTGS2 was highly induced by BDE-47 treatment in HTR-8/SVneo cells whereas mRNA 

expression of PTGES and HPGD was reduced. Stimulated PTGS2 expression is consistent with 

increased COX activity we observed, supporting the hypothesis that increased gene transcription 

may contribute to the increased COX activity. Decreased HPGD expression may also contribute 

to the increased PGE2 concentrations in medium, due to reduced conversion of PGE2 to inactive 

metabolites (Tai, et al., 2006). Because PGES plays a role in the final step of PGE2 synthesis by 

converting PGH2 to PGE2, decreased PTGES mRNA expression is inconsistent with our 

findings of elevated PGE2 concentrations. However, western blot analysis on PGES protein 

showed that PGES protein abundance was not affected by BDE-47 treatment, suggesting that 

PGES protein remains at a level with sufficient activity for PGE2 production even in the 

circumstance of decreased PGES mRNA. An alternative explanation may involve isoforms of 

PGES, because there are three different PGESs including cytosolic PGES (cPGES) and two 

membrane-bound PGES (mPGES-1 and mPGES-2) (Samuelsson et al., 2007). Of these isoforms, 

cPGES and mPGES-2 are constitutively expressed, whereas mPGES-1 (PTGES) is mainly an 

induced isoform (Samuelsson, et al., 2007). Although the present study only measured mRNA 

expression of inducible mPGES-1 (PTGES), constitutively expressed cPGES and mPGES-2 

would convert PGH2 produced by COX to PGE2. Moreover, the rate of PGE2 synthesis is 

mainly dependent on COX activity (Beharka, et al., 2002;  Shanmugam, et al., 2006).  
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The present study provides new information that ROS play a role in activation of BDE-

47-mediated prostaglandin pathways in HTR-8/SVneo cells. Our finding that cotreatment with 

the antioxidant (±)-α-tocopherol suppressed BDE-47-stimulated ROS production and PGE2 

release suggests that ROS likely play a key role in BDE-47 stimulation of PGE2 release from 

HTR-8/SVneo cells.  Our results are in agreement with previous findings that α-tocopherol 

diminished ROS-stimulated placental PGF2α and thromboxane B2 (TXB2), as well as 

lipoperoxide levels (White et al., 2002). Interestingly, (±)-α-tocopherol cotreatment led to 

reduced COX activity without changing its expression, implicating post-translational regulation 

of COX activity by (±)-α-tocopherol. Similarly, α-tocopherol inhibited PGE2 production and 

COX activity, but had no effect on the expression of COX in murine macrophages and in Caco2 

cells (Jiang et al., 2000;  O'Leary et al., 2004;  Wu et al., 1998).  

Vitamin E (tocopherols and tocotrienols) is an effective biological antioxidant and lipid 

peroxide chain-breaking free radical scavenger (Wu, et al., 1998). It is reported that COX 

activity requires the presence of oxidant hydroperoxides (Hemler and Lands, 1980;  Kulmacz 

and Wang, 1995;  Smith et al., 1992).Therefore, it has been proposed that vitamin E may 

attenuate COX activity by scavenging the oxidant hydroperoxides necessary for COX activation 

(Wu et al., 2001). Increased lipid peroxidation by BDE-47 treatment in vitro is consistent with 

this mechanism (He et al., 2008;  Shao et al., 2008); however, we did not measure lipid 

peroxidation in the present study. Another proposed mechanism involves nitric oxide (NO) and 

peroxynitrite (ONOO) in regulation of COX activity (Wu, et al., 2001). Specifically, NO and 

ONOO stimulate COX activity without affecting COX expression (Salvemini et al., 1995;  Wu, 

et al., 2001),  and vitamin E reduces COX activity in murine macrophages by decreasing NO and 

ONOO production(Wu, et al., 2001). Production of NO, ONOO, and NO synthase activity were 
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reported in human first trimester primary trophoblasts, first trimester trophoblast cell lines, term 

primary trophoblasts, and term placenta (Al-Hijji et al., 2003;  Asagiri et al., 2003;  Dash et al., 

2003). Because NO can combine with superoxide to form ONOO (Wu, et al., 2001), our 

previous report of increased superoxide production by BDE-47 in HTR-8/SVneo cells (Park, et 

al., 2014) is consistent with the potential production of  ONOO in BDE-47-treated HTR-

8/SVneo cells. However, further study will be need to measure NO and ONOO levels in HTR-

8/SVneo cells stimulated by BDE-47 to test the roles of NO and ONOO on COX activity in 

human trophoblasts.  

Sakamoto et al. suggested an alternative explanation to post-translational modulation of 

COX activity by vitamin E (Sakamoto et al., 1993). They reported that PGE2 production 

stimulated by phorbol 12-myristate 13-acetate or A-23187 was inhibited by intraperitoneal 

injection of vitamin E via suppression of PLA2 activity and the subsequent decrease in 

arachidonic acid release (Sakamoto et al., 1991;  Sakamoto, et al., 1993). The latter mechanism 

may be relevant to our findings because we observed augmented PGE2 production with 

endogenous arachidonic acid in BDE-47-treated HTR-8/SVneo cells compared to controls 

without exogenous arachidonic acid supplementation (data not shown). However, we used an 

experimental approach that supplemented the cell culture medium with exogenous arachidonic 

acid because the observed PGE2 levels were close to the limit of detection in the assay 

otherwise. Therefore, the effect of vitamin E on PLA2 activity and subsequent arachidonic acid 

release was not tested in the present study because arachidonic acid was not limited in our 

experimental setting. Because prostaglandin production involves multiple step-wise reactions, 

we suggest that multiple mechanisms, not a single mechanism, may contribute to modulation of 

COX activity mediated by vitamin E. Besides, (±)-α-tocopherol treatment was not able to 
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suppress BDE-47-stimulated COX activity completely, supporting additional mechanisms. 

Therefore, further study will be needed to better understand the mechanisms for modulatory 

effects by vitamin E on COX activity. 

Our findings implicate PGE2 as a potential mediator of adverse impacts on trophoblast 

cellular function by PBDE exposure. A few studies indicate that PGE2 regulates trophoblast 

cellular functions in vitro. For example, PGE2 promoted migration of HTR-8/SVneo cells 

(Horita, et al., 2007b;  Nicola, et al., 2005a) and the stimulated migration was suppressed by 

COX-2 inhibition. In contrast, Biondi et al. (2006) showed that PGE2 suppressed the 

proliferation and migration of HTR-8/SVneo cells. These contradictory results may be due to 

different experimental conditions (media, serum concentration, exposure duration, cell density, 

etc.) generating divergent responses to the same stimuli. Regardless of these inconsistencies, 

these data implicate that PGE2 may play a role in regulating trophoblast cellular function and 

that dysregulation of PGE2 production at the gestational compartment may affect trophoblast 

invasion and migration that are critical for proper placentation (Pijnenborg, et al., 1983;  

Pijnenborg, et al., 1980). Moreover, dysregulation of PGE2 production within the gestational 

compartment has been linked to adverse birth outcomes such as intrauterine growth restriction, 

preeclampsia and preterm birth (Germain, et al., 1999;  Ness and Sibai, 2006). Because improper 

placentation has been associated with adverse obstetrical complications (Brosens, 1977;  Hustin, 

et al., 1983;  Kim, et al., 2003), further investigation will be needed to ascertain the potential 

relevance of BDE-47 stimulation of PGE2 on trophoblast invasion and placental function. 

In conclusion, this is the first study to show that treatment with BDE-47, a predominant flame 

retardant chemical found in human tissues, stimulated COX activity and expression of COX2, 

leading to increased conversion of arachidonic acid to PGE2 in human first trimester placental 
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cells. In addition, (±)-α-tocopherol cotreatment reduced BDE-47-stimulated COX activity 

without affecting mRNA and protein expression of COX2, implicating post-translational 

regulation of COX activity. Because dysregulation of PGE2 has been implicated in improper 

trophoblast invasion and placental dysfunction, and associated with adverse birth outcomes, 

further investigation of the impact of BDE-47 on trophoblast function is warranted. 
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Table 3.1. Quantification of reactive oxygen species production in HTR-8/SVneo cells
a 

 

Treatment DCF fluorescence intensity 

NT 177.88 ±  5.22 

Solvent control 178.79 ±  7.38 

15 µM BDE-47  236.63 ± 16.60 

20 µM BDE-47   296.81 ± 18.70* 

20 µM BDE-47+ 20 µM (±)-α-tocopherol 183.88 ±  7.96 

100 µM TBHP   493.82 ± 40.47* 

20 µM (±)-α-tocopherol  181.39 ±  6.97# 

 
 a
 HTR-8 cells were non-treated (NT; control), or were treated with DMSO (solvent control), 

BDE-47 or tert-butyl hydroperoxide (TBHP, positive control) in the absence or presence of (±)-

α-tocopherol for 4 h. After 1-h incubation with 100 µM carboxy-H2DCF-DA, the fluorescence 

intensity was measured using a spectrophotometry. Values represent the means ± SE of 3 

independent experiments containing 3 replicates each. *P<0.05, significant compared to solvent 

control. 
#
P<0.05, significantly different compared to 20 µM BDE-47-treated group. 
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Figure 3.1. BDE-47 effects on COX activity in HTR-8/SVneo cells.   

HTR-8/SVneo cells were non-treated (NT, control), or treated with solvent control (DMSO, 0.7% 

v/v) or BDE-47 for 24 h in the absence or presence of the nonspecific cyclooxygenase (COX) 

inhibitor indomethacin or the COX-2 specific inhibitor NS 398. COX activity was inferred by 

quantification of PGE2 in the culture medium from cells stimulated with exogenous arachidonic 

acid after BDE-47 treatment. A) BDE-47 effects on COX activity in HTR-8/SVneo cells. B) 

Suppression of BDE47-stimulated PGE2 release by treatment with COX inhibitors. Bars 

represent the means of 3 independent experiments containing 3 replicates each ±SE. *P<0.05, 

significant compared to solvent control. #P<0.05, significantly different from each other. 

*P<0.05, significant compared to solvent control. 
#
P<0.05, significantly different from each 

other. 
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Figure 3.2. BDE-47 effects on mRNA expression of PTGS-2, PTGES, and HPGD.  

HTR-8/SVneo cells received no treatment (non-treated control, NT), or were treated with solvent 

control (DMSO, 0.7% v/v) or BDE-47 for 4, 12, or 24 h, and then mRNA expression of target 

genes was quantified by qRT-PCR. A) Time-course of BDE-47 concentration-dependent effects 

on PTGS2 mRNA expression. B) BDE-47 concentration-dependent effects on PTGES mRNA 

expression. C) BDE-47 concentration-dependent effects on HPGD mRNA expression. Bars 

represent the means of 3 independent experiments containing 3 replicates each ±SE. *P<0.05, 

significant compared to solvent control within each time point. 

A 
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Figure 3.3. (±)-α-Tocopherol effects on BDE-47-stimulated PGE2 release.  

HTR-8/SVneo cells received no treatment (non-treated control, NT), or were treated with solvent 

control (DMSO, 0.7% v/v) or BDE-47 for 24 h in the absence or presence of (±)-α-tocopherol. 

COX activity was inferred by quantification of PGE2 in the culture medium of cells stimulated 

with exogenous arachidonic acid after BDE-47 treatment. Bars represent the means of 3 

independent experiments containing 3 replicates each ±SE. *P<0.05, significant compared to 

solvent control. #P<0.05, significantly different from each other. 
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Figure 3.4. (±)-α-Tocopherol effects on BDE-47-stimulated PTGS2 mRNA expression.  

HTR-8/SVneo cells received no treatment (non-treated control, NT), or were treated with solvent 

control (DMSO, 0.7% v/v) or BDE-47 for 24 h in the absence or presence of (±)-α-tocopherol. 

The mRNA expression of PTGS2 was quantified by qRT-PCR. Bars represent the means of 3 

independent experiments containing 3 replicates each ±SE. *P<0.05, significant compared to 

solvent controls. 
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Figure 3.5. (±)-α-Tocopherol effects on BDE-47-stimulated COX-2 protein expression.  

HTR-8/SVneo cells received no treatment (non-treated control, NT), or were treated with solvent 

control (DMSO, 0.7% v/v) or BDE-47 for 24 h in the absence or presence of (±)-α-tocopherol. A) 

Representative image of western blotting for COX-2 and β-tubulin loading control. 1: NT, 2: 

Solvent control, 3: 20 µM BDE-47, 4: NT+20 µM (±)-α-tocopherol, 5: Solvent control +20 µM 

(±)-α-tocopherol, 6: 20 µM BDE-47+20 µM (±)-α-tocopherol . B) Fold changes in COX-2 

protein expression relative to control (dashed line, Solvent control with no (±)-α-tocopherol 

cotreatment). Densitometry data for COX-2 were normalized to the β-tubulin loading control. 

Data represent mean ± SEM for 3 experiments.*P<0.05, significant compared to control.  
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Figure 3.6. (±)-α-Tocopherol effects on PGES protein expression. 

HTR-8/SVneo cells received no treatment (non-treated control, NT), or were treated with solvent 

control (DMSO, 0.7% v/v) or BDE-47 for 24 h in the absence or presence of (±)-α-tocopherol. A) 

Representative image of western blotting for PGES and β-tubulin loading control. 1: NT, 2: 

Solvent control, 3: 20 µM BDE-47, 4: NT+20 µM (±)-α-tocopherol, 5: Solvent control +20 µM 

(±)-α-tocopherol, 6: 20 µM BDE-47+20 µM (±)-α-tocopherol . B) Fold changes in PGES protein 

expression relative to control (dashed line, Solvent control with no (±)-α-tocopherol cotreatment). 

Densitometry data for PGES were normalized to the β-tubulin loading control. Data represent 

mean ± SEM for 3 experiments.*P<0.05, significant compared to control.  
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 PROTECTIVE EFFECT OF NUCLEAR FACTOR E2-CHAPTER 4.

RELATED FACTOR 2-DEPENDENT ANTIOXIDANT RESPONSE 

ELEMENT ACTIVATION ON INFLAMMATORY RESPONSE IN 

HUMAN FIRST TRIMESTER EXTRAVILLOUS TROPHOBLASTS 

EXPOSED TO BROMINATED DIPHENYL ETHER-47 

 

Abstract 

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. 

Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in 

human breast milk, serum and placenta. Exposure to BDE-47 has been linked to adverse 

pregnancy outcomes in humans including preterm birth, low birth weight and stillbirth. Although 

the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for 

oxidative stress and inflammation are implicated. The present study investgated the role of 

nuclear factor E2-related factor 2 (Nrf2), a redox-sensitive transcription factor, in oxidative stress 

responses in a human extravillous trophoblast cell line, HTR-8/SVneo cells, and examined the 

protective roles of Nrf2 on BDE-47-induced inflammatory re sponses in the cells.  After 6 or 24 

h exposure of HTR-8 cells to BDE-47, intracellular glutathione (GSH) concentration, Nrf2 

transactivation, and expression of 84 redox-regulated genes were assayed. Treatment of HTR-8 

cells with 20 μM BDE-47 for 24 h resulted in differential expression of redox-sensitive genes 

compared to solvent control, as assayed with a commercial Oxidative Stress PCR Array. 

Treatment of HTR-8 cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular 

GSH levels compared to solvent control, consistent with increased mRNA expression of genes 

related to GSH synthesis. At 24 h, 20 μM BDE-47 induced significant increases in the Nrf2 

activity. To test the protective role of Nrf2 activation on BDE-47-stimulated inflammation, HTR-



100 

 

8/SVneo cells were pretreated with tert-butyl hydroquinone (tBHQ) or sulforaphane,known Nrf2 

inducers which induced cellular antioxidant defenses of the HTR-8/SVneo cells, and then treated 

with BDE-47. Pretreatment with tBHQ or sulforaphane reduced BDE-47 stimulated pro-

inflammatory IL-6 release, suggesting that Nrf2 may play a protective role against BDE-47-

mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 

activation significantly attenuated BDE-47-induced inflammation by augmentation of cellular 

antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may 

be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-

induced oxidative stress and inflammation. Further investigation about the mechanisms of the 

anti-inflammatory effect mediated by Nrf2 induction is warranted. 

 

Introduction 

Polybrominated diphenyl ethers (PBDEs) are synthetic flame-retardants widely used in 

polyurethane foam, textiles, plastics, building materials and insulation (Hites, 2004). BDE-47 

(2,2′,4,4′-tetra-BDE) is one of the most prevalent congers found in human tissues and 

environmental samples (Hites, 2004), detected in nearly all human serum samples from the 

NHANES 2003-2004 biomonitoring assessment (Sjodin et al., 2008). Because of PBDEs’ 

environmental persistence and toxicity, the US EPA has identified PBDEs as a priority human 

health concern (U.S. Environmental Protection Agency, 2006).  Limited studies report  

associations between PBDE exposure and adverse birth outcomes such as preterm birth, low 

birth weight or stillbirth (Breslin et al., 1989;  Wu et al., 2010). Although PBDEs have been 

found in gestational tissues such as human placenta (Frederiksen et al., 2009), extraplacental 

membranes (Miller et al., 2009), amniotic fluid (Miller et al., 2012), and umbilical cord blood 
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(Frederiksen, et al., 2009), studies of mechanisms by which PBDEs act on gestational tissues 

during pregnancy are limited. 

Improper regulation of the inflammatory networks has been associated with adverse 

pregnancy outcomes such as miscarriage, preeclampsia (PE), intrauterine growth restriction 

(IUGR), and preterm labor (Orsi and Tribe, 2008;  Tjoa et al., 2004). Specifically, increased 

levels of inflammatory mediators such as interleukin (IL)-6 and C-reactive protein are associated 

with the pathophysiology of PE and IUGR  (Tjoa et al., 2003;  Vince et al., 1995), and women 

who delivered preterm had higher rates of placental ischemia and abnormal placentation than 

women who delivered at term (Germain et al., 1999;  Kim et al., 2003). Moreover, increased 

levels of IL-8 and IL-6 in cervical fluid, amniotic fluid and maternal serum have beeb associated 

with preterm birth (Goldenberg et al., 2005). It is suggested that cytokine dysregulation alters 

extravillous trophoblast (EVT) functions during placentation, leading to placental alterations that 

may compromise pregnancy (Anton et al., 2012). 

A few studies reported modulation of innate immune responses by BDE-47 treatment in 

peripheral blood mononuclear cells or placental explants (Ashwood et al., 2009;  Peltier et al., 

2012). Our previous study showed that BDE-47 treatment of a human first trimester EVT cell 

line, HTR-8/SVneo, stimulated mRNA and protein expression of the pro-inflammatory cytokines 

IL-6 and IL-8 (Park et al., 2014). Furthermore, suppression of BDE-47-induced IL-6 production 

by antioxidant treatments implicates a role for reactive oxygen species (ROS) in the initiation 

and regulation of BDE-47-stimulated inflammatory responses in the cells (Park, et al., 2014). 

Similarly, the antioxidant N-acetylcysteine (NAC) prevents LPS-stimulated parturition, fetal 

death in mice and LPS-induced release of pro-inflammatory cytokines from human 

extraplacental membranes in vitro (Buhimschi et al., 2003b;  Cindrova-Davies et al., 2007). 
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Together, these findings suggest an interaction between oxidative stress and inflammatory 

pathways in gestational compartments. In fact, a growing body of literature shows that ROS can 

function as signaling molecules in mammalian cells (Finkel, 1998;  Khan and Wilson, 1995;  

Remacle et al., 1995) to regulate expression of genes for inflammatory cytokines, chemokines, 

and anti-inflammatory molecules (Reuter et al., 2010).  

Nuclear factor E2-related factor 2 (Nrf2) is the master transcriptional regulator of 

oxidative and xenobiotic stress responses (Tjoa, et al., 2003). In response to oxidative insults, 

Nrf2 binds to the antioxidant response element (ARE) in a promoter and activates ARE-

regulated genes. A wide range of natural and synthetic small molecules such as tert-butyl 

hydroquinone (tBHQ) and sulforaphane induce Nrf2 activity to exert cytoprotective activities 

(Gharavi et al., 2007;  Juge et al., 2007). Especially, the anti-inflammatory effect of Nrf2 

activation have been implicated in a variety of experimental models (Khor et al., 2006;  

Rangasamy et al., 2004;  Rangasamy et al., 2005;  Thimmulappa et al., 2006). Although the 

mechanisms for the anti-inflammatory effects of Nrf2 are not fully understood, it is suggested 

that augmentation of cellular antioxidant responses via up-regulation Nrf2 signaling pathway and 

inhibition of NF-κB signaling pathway may have roles in these responses (Jin et al., 2011;  

Khodagholi and Tusi, 2011). 

Despite its importance, there are few studies about the roles of Nrf2 in gestational tissues during 

pregnancy. It has been recently reported that dysregulation of Nrf2 signaling pathways is 

associated with adverse birth outcomes such as PE and IUGR outcomes (Chigusa et al., 2012;  

Kweider et al., 2012;  Loset et al., 2011;  Wruck et al., 2009). To our knowledge, however, there 

is no report about the role of Nrf2 activation in the regulation of toxicant-stimulated 

inflammatory responses in human first trimester placental cells. Because ROS have been 



103 

 

implicated in the activation of inflammatory responses in gestational compartments (Buhimschi 

et al., 2003a;  Cindrova-Davies, et al., 2007) and our previous study showed that BDE-47-

stimulated cytokine production was dependent on ROS formation (Park, et al., 2014), the present 

study aimed to investigate the protective roles of Nrf2 on BDE-47-induced inflammatory 

responses in the HTR-8/SVneo cell model. 

Materials and Methods 

Chemicals and assay kits. BDE-47 was purchased from AccuStardard (New Haven, CT, USA). 

dimethyl sulfoxide (DMSO), tBHQ, and sulforaphane purchased from Sigma Aldrich (St. Louis, 

MO, USA). RPMI medium 1640, fetal bovine serum (FBS), OptiMem 1 reduced-serum medium, 

10 mM non-essential amino acids in minimal essential medium, 0.25% trypsin/EDTA solution 

and penicillin/streptomycin were purchased from Invitrogen Life Technologies (Carlsbad, CA, 

USA). Sandwich enzyme-linked immunosorbent assay (ELISA) kit for human IL-6 was 

purchased from R & D systems (Minneapolis, MN, USA). Antioxidant Response Cignal reporter 

assay kit, NF-κB Cignal reporter assay kit, Attractene transfection reagent, QIAshredder 

columns, and RNeasy kits were purchased from Qiagen (Germantown, MD). Dual Luciferase, 

GSH-Glo™ Glutathione Assays were purchased from Promega (Madison, WI). iScript cDNA 

synthesis kits and SsoAdvanced SYBR Green Supermix were purchased from Bio-Rad 

(Hercules, CA). Primers were synthesized by Integrated DNA Technologies (Coralville, IA).   

Cell Culture and treatment.  The human first trimester extravillous trophoblast cell line HTR-

8/SVneo was kindly provided by Dr. Charles S. Graham (Queen's University, Kingston, ON, 

Canada). Cells between passages 71 and 84 were cultured in RPMI 1640 medium supplemented 

with 10% FBS and 1% penicillin/streptomycin  at 37°C in a 5% CO2 humidified atmosphere. 

Cells were grown to a confluence of 70-90% before treatment. Cells were washed with OptiMem 
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1 containing 1% FBS and 1% penicillin/streptomycin twice and acclimated with the medium for 

1 h at 37 °C. From solutions of 5, 10, 15 and 20 mM BDE-47 in DMSO, exposure media 

containing 5, 10, 15 and 20 µM BDE-47 were made in OptiMem 1 containing 1% FBS and 1% 

P/S immediately prior to initiating the experiment. The final concentration of DMSO in medium 

was 0.7 % (v/v).  

Measurement of intracellular gluthathione concentration. Changes in intracellular glutathione 

(GSH) levels by BDE-47 treatment on HTR-8/SVneo cells were quantified using the GSH-Glo 

Glutathione assay kit (Promega). Cells were seeded at a density of 10,000/well in a white, clear-

bottomed 96-well plate and incubated for 24 h at 37°C. Then, cells were exposed to BDE-47 for 

0.5, 4 or 24 h at 37°C. To assay for GSH, the culture medium was removed and 100 µl of GSH-

Glo
TM

 Reagent was added to each well. After a 30 min-incubation, 100 µl of Luciferin Detection 

Reagent was added to each well, followed by a additional 15-min incubation. The plate was then 

read in a luminometer. To examine the effect of Nrf2 induction on GSH production, cells were 

pretreated with tBHQ for 1 h or sulforaphane for 24 h prior to BDE-47 treatment. After treatment 

with BDE-47, GSH levels were measured following the manufacturer’s protocol.  

Oxidative stress gene array and qRT validation. Changes in mRNA expression of 84 target 

genes by BDE-47 treatment on HTR-8 cells were quantified using the Oxidative Stress 

Responses PCR Array (SA biosciences; Valencia, CA). Cells were treated with DMSO (solvent 

control, 0.7% v/v) or BDE-47 (20 µM) for 4 or 24 h. After incubation, cell lysates were collected 

and homogenized using QIA shredder (Qiagen; Valencia, CA). Total RNA was extracted from 

homogenized lysates using RNeasy mini plus kit (Qiagen; Valencia, CA), and cDNA was 

synthesized from 1 μg of total RNA using iScript cDNA synthesis kits (Bio-Rad; Hercules, CA) 

following the manufacturer’s protocols. For the array, cDNA from the solvent control and BDE-
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47 treatment groups were analyzed using the Applied Biosystems 7900HT Sequence Detection 

System following the SABiosciences recommended protocol. Fold Changes were calculated 

from ΔCT values (gene of interest CT values – Average of all housekeeping gene CT values) 

using the ΔΔCT method. Mean ΔCT values were compared between groups using paired t-tests 

from the Limma package of Bioconductor (Smyth, 2004). With qRT-PCR, we validated the 

findings of the array for those genes with significant mRNA expression changes that were 

approximately two-fold or more with 20 µM BDE-47 treatment: Solute carrier family 7 (anionic 

amino acid transporter light chain, xc- system), member 11(SLC7A11), Heme oxygenase 

(decycling) 1(HMOX1), Aldehyde oxidase 1 (AOX1), Sulfiredoxin 1(SRXN1), Prostaglandin-

endoperoxide synthase 2 (PTGS2), Sequestosome 1 (SQSTM1), Prion protein (PRNP), 

Glutathione reductase (GSR), Ring finger protein 7 (RNF7), Thioredoxin reductase 1 (TXNRD1), 

Four and a half LIM domains 2 (FHL2), Glutamate-cysteine ligase , modifier subunit (GCLM), 

Glutathione peroxidase 1(GPX1), Ferritin, heavy polypeptide 1 (FTH1), and  24-

dehydrocholesterol reductase (DHCR24). The qRT-PCR reactions were prepared with 

SsoAdvanced SYBR Green Supermix and primers, and run on a Bio-Rad CFX96 Real time 

C1000 thermal cycler following the manufacturer’s recommended protocols. The mRNA levels 

of each gene of interest were normalized to β-2-micoglobulin mRNA levels and presented as fold 

change compared to solvent controls. 

Measurement of ARE reporter activity. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

activity was assessed using a commercially available reporter construct (SABiosciences, 

Qiagen). The reporter consists of a mixture of inducible firefly luciferase gene downstream of 

tandem antioxidant response element (ARE) consensus binding site repeats and constitutive 

Renilla luciferase gene controlled by cytomegalovirus (CMV) promoter. HTR-8/SVneo cells 
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were seeded at a density of 20,000/well  in white, clear bottom 96-well plates containing 

transfection reagent complexed with negative control, positive control, or ARE reporter 

constructs in Opti-MEM 1 supplemented with 1% NEAA and 3% FBS. After transfection for 6 h 

at 37°C, transfection complex was replaced with the fresh medium and cells were incubated for 

18 h at 37°C.  Cells were then pretreated with tBHQ for 1 h or with sulforaphane for 24 h prior 

to treatment with BDE-47 for 24 h. Treatment solutions were prepared in  OptiMEM 1 

supplemented with 1% NEAA, 1% FBS and 1% P/ S. After treatment with BDE-47, medium 

was aspirated, and cells were passively lysed. Dual luciferase assays were performed according 

to manufacturer’s instructions. Luminescence was measured using a GloMax Multi Plus 

detection system (Promega) with two injectors. ARE firefly luciferase activity was normalized to 

luciferase activity of Renilla, included as an internal control accounting for cell number and 

transfection efficiency. Data are presented as the fold change in luciferase activity normalized to 

the control.  

Measurement of NF-κB reporter activity. NF-κB activity was assessed using a commercially 

available reporter construct (SABiosciences, Qiagen). The reporter consists of a mixture of 

inducible firefly luciferase gene downstream of tandem NF-κB consensus binding site repeats 

and constitutive Renilla luciferase gene controlled by a CMV promoter. The assay was 

conducted as described above for ARE reporter activity. NF-κB firefly luciferase activity was 

normalized to luciferase activity of Renilla. Data are presented as the fold change in luciferase 

activity normalized to the control. 

Measurement of cytokine release. The HTR-8/SVneo cells were seeded at a density of 5 × 10
4
 

cells per well in a 24-well plate and cultured for 24 h at 37 °C. Cells were washed once with 

OptiMem1 medium containing 1 % FBS and 1% P/S and pretreated with tBHQ for 1 h or 



107 

 

sulforaphane for 24 h prior to 20 µM BDE-47 treatment for 24 h.  The concentration of  IL-6 in 

the medium was then analyzed by ELISA as described above, expressed as pg/ml.  

Statistical analysis. Statistical analysis was performed with Sigma Plot 11.0 software (Systat 

Software Inc., San Jose, CA, USA). Data were analyzed either by one-way analysis of variance 

(ANOVA) or repeated measured two-way ANOVA. If significant effects were detected, the 

ANOVA was followed by Tukey post-hoc comparison of means. A P <0.05 was considered 

statistically different. Data were expressed as means ± SEM. 

Results 

Effect of BDE-47 on cellular GSH  

Because our previous work showed that BDE-47 increases generation of reactive oxygen species 

(Park, et al., 2014), we quantified intracellular GSH concentration in HTR-8/SVneo cells after 

24-h treatment with BDE-47. Treatment with 5, 10, 15 and 20 µM BDE-47 increased GSH 

production by 22%, 39%, 29%, and 52%, respectively, compared to the solvent control (Figure 

4.1A; P<0.05).  Treatment with 20 µM BDE-47 resulted in significantly increased GSH 

production compared to treatment with 5 µM BDE-47, indicating a concentration-dependent 

response (Figure 4.1A; P<0.05). To examine the temporal changes in GSH production in BDE-

47-treated cells, GSH levels were measured at 0.5, 4, and 24 h after treatment with BDE-47. 

Treatment with 20 µM BDE-47 stimulated GSH production after 24 h (51% compared to solvent 

control), as observed in the prior experiment, but there were no statistically significant changes 

in GSH levels at 0.5 or 4 h (Figure 4.1B; P<0.05) (Figure 4.2B).  Treatment with 50 µM BSO, 

included as a positive control, significantly decreased GSH at 4 h and almost completely 

depleted GSH after 24 h. 
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Effect of BDE-47 treatment on ARE reporter activity 

To investigate possible explanation for the increased cellular GSH observed with BDE-47, we 

evaluated BDE-47-stimulated Nrf2 activation using an ARE reporter activity assay. After 24 h 

treatment, 10 and 20 µM BDE-47 increased ARE activity by 1.7fold and 2-fold, respectively, 

compared to solvent control, indicating Nrf2 activation (Figure 4.2; P<0.05). We did not observe 

statistically significant changes at 6 h, although slight increases in ARE activity were suggested.  

Oxidative stress PCR array 

Probing BDE-47 activation of antioxidant responses further, we used the Oxidative Stress PCR 

Array to investigate changes in expression of redox-sensitive genes. We identified 15 genes with 

mRNA expression significantly changed two-fold or more by 20 µM BDE-47 treatment 

compared to solvent  control (for complete mRNA array data, see Appendix, Table 1). Changes 

in expression of the array-identified genes were then examined by qRT-PCR. Consistent with the 

array results, treatment with 20 µM BDE-47 for 24 h significantly increased mRNA expression 

of HMOX1, PTGS2, and PRNP by 4.9-fold, 4.7-fold, and 2.5-fold, respectively, and nearly 

abolished mRNA expression of  DHCR24 to 0.08-fold relative to solvent control (Figure 4.3A, 

P<0.05). The mRNA expression of genes involved in GSH redox cycling was also induced by 20 

µM BDE-47 treatment,  with SLC7A11, SRXN1, GCLM, and GPX1 increased 3-fold, 1.8-fold, 

1.5-fold and 1.7-fold, respectively (Figure 4.3B, P<0.05). BDE-47 suppressed mRNA expression 

of GSR to 0.7-fold relative to solvent control (Figure 4.3B, P<0.05). We did not observe any 

significant changes in mRNA expression with 15 µM BDE-47. 

Effect of Nrf2 inducers on ARE reporter activity  
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We validated the efficacy of tBHQ and sulforaphane as Nrf2 inducers in the HTR-8/SVneo cells 

and investigated effects of the Nrf2 inducers on BDE-47-stimulated Nrf2 activation using an 

ARE reporter activity assay. Treatment with 20 and 50 µM tBHQ increased ARE activity by 1.7- 

fold and 2.4-fold, respectively, compared with controls not exposed to tBHQ (No BDE-47 with 0 

µM tBHQ , Fig. 4.4A; P<0.05). Similarly, 10 µM sulforaphane increased ARE activity by 1.8-

fold compared with controls not exposed to sulforaphane (No BDE-47 with 0 µM sulforaphane, 

Fig. 4.4B; P<0.05). No statistically significant changes were observed with 5 µM tBHQ, or with 

5 and 7.5 µM sulforaphane. These results identified 20 and 50 µM tBHQ, and 10 µM 

sulforaphane, as effective concentrations for Nrf2 activation. Because subsequent experiments 

would utilize co-treatments of BDE-47 with the Nrf2 inducers, we also measured ARE activity 

in the presence of BDE-47. µMPretreatment with 0, 5, 20, and 50 µM tBHQ followed by 20 µM  

BDE-47 treatment increased ARE activity 1.9-fold, 2.8-fold, 3-fold, and 3.5-fold, respectively, 

compared to control (No BDE-47 with 0 µM  tBHQ) (Figure 4.4A; P<0.05). Treatment with 50 

µM tBHQ increased ARE activity significantly higher than 0, 5 µM tBHQ and 10 µM tBHQ 

within the 20 µM BDE-47 treated group, showing a concentration-dependant reponse. BDE-47-

treated cells always showed significantly higher ARE activity compared to cells with no BDE-47 

and the same tBHQ concentration (Figure 4.4A; P<0.05). Similarly, pretreatment with 0, 5, 7.5, 

and 10 µM sulforaphane followed by 20 µM  BDE-47 treatment increased ARE activity 1.6-fold, 

1.8-fold, 2-fold, and 3-fold, respectively, in BDE-47-treated cells compared to control (No BDE-

47 with 20 µM  tBHQ) (Figure 4.4B; P<0.05). Treatment with 10 µM sulforaphane resulted in 

significantly increased activity compared to 5 and 7.5 µM sulforaphane, showing a 

concentration-dependent increase (Figure 4.4B; P<0.05). BDE-47-treated cells showed 

significantly higher ARE activity compared to cells with no BDE-47 and the same sulforaphane 
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concentration (Figure 4.4B; P<0.05). These data show that pretreatment with Nrf2 inducers 

stimulates Nrf2 transactivation, leading to increased antioxidant capacity in HTR-8/SVneo cells.  

Effect of Nrf2 inducers on BDE-47-stimulated GSH production 

To examine the effect of Nrf2 transactivation by tBHQ on cellular antioxidative capacity, 

changes in intracellular antioxidant GSH concentrations were assayed. In cells without BDE-47-

treatment, 20 and 50 µM tBHQ increased GSH production 20% and 37%, respectively, 

compared to control (No BDE-47 with 0 µM tBHQ) (Figure 4.5; P<0.05). In 20 µM BDE-47-

treated cells, pretreatment with 0, 10, 20 and 50 µM tBHQ increased GSH production by 17%, 

27%, 40%, and 63%, respectively, compared to control (No BDE-47 with 0 µM tBHQ) (Figure 

4.5; P<0.05). tBHQ induced GSH production in a concentration-dependent manner, such that 

pretreatment with 50 µM tBHQ significantly increased GSH compared with pretreatment with 

10 and 20 µM tBHQ in those cells subsequently exposed to 20 µM BDE-47 (Figure 4.5; P<0.05). 

BDE-47-treated cells showed significantly higher ARE activity compared to no BDE-47-treated 

cells (Figure 4.5; P<0.05). These findings suggeset that cells pretreated with tBHQ may have an 

augmented defensive capacity against BDE-47 treatment with increased GSH production.  

Effect of Nrf2 inducers on expression of HMOX1 and GCLM  

To test activation of Nrf2 pathways by Nrf2 inducers further, mRNA expression of the 

antioxidant genes HMOX1 and GCLM was quantified in HTR-8/SVneo cells after Nrf2 

induction by pretreatment with tBHQ followed by treatment with BDE-47. 20 µM BDE-47 

treatment resulted in significantly increased mRNA expression of HMOX1 and GCLM 

compared to control (No BDE-47 with 0 µM tBHQ at all tBHQ concentrations (0, 10, 20 and 50 

µM ) (Figure 4.6 A and B; P<0.05). Pretreatment with 50 µM tBHQ significantly increased 
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HMOX1 mRNA expression by 68% compared to no pretreatment in BDE-47-treated cells 

(Figure 4.6A; P<0.05). However, mRNA expression of GCLM was not statistically significantly 

increased (Figure 4.6B; P=0.062). We did not observe any significant changes in solvent controls 

(No BDE-47) with tBHQ pretreatment. Increased expression of antioxidant enzymes by tBHQ 

suggests that cells pretreated with tBHQ might be able to protect themselves from BDE-47-

stimulated oxidative damage.  

Effect of Nrf2 inducers on IL-6 production 

To investigate the roles of Nrf2 induction on the regulation of BDE-47-stimulated IL-6, HTR-

8/SVneo cells were pretreated with tBHQ or sulforaphane prior to exposure to BDE-47. 

Treatment with BDE-47 increased IL-6 release in HTR-8/SVneo cells compared to solvent 

controls (No BDE-47) regardless of tBHQ or sulforaphane pretreatment (Figures 4.7A and 

Figure 4.7B, respectively; P<0.05). Notably, pretreatment with 50 µM tBHQ significantly 

suppressed BDE-47-stimulated IL-6 release by 55% from HTR-8/SVneo cells compared to 20 

µM BDE-47 with 0 µM tBHQ (Figure 4.7A; P<0.05). Similarly, pretreatment with 10 µM 

sulforaphane decreased BDE-47-induced IL-6 release by 65 % (Figure 4.8B; P<0.05) compared 

to 20 µM BDE-47 with 0 µM sulforaphane. We did not observe any significant changes in 

solvent controls (No BDE-47) with tBHQ or sulforaphane pretreatment. 

Effect of tBHQ on NF-κB transactivation 

It is implicated that Nrf2 activation exhibits its anti-inflammatory effect partly via suppression of 

an inflammatory transcription factor NF-κB (Jin, et al., 2011). To examine the possible 

involvement of NF-κB in BDE-47 mediated IL-6 release and suppression of IL-6 release by Nrf2 

inducion, NF-κB reporter activity was measured. Treatment with 20 µM BDE-47 increased NF-
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κB reporter activity 3.4-fold compared to control (No BDE-47 with 0 µM tBHQ) (Figure 4.8; 

P<0.05). Pretreatment with tBHQ suppressed the BDE-47-stimulated activation of NF-κB by 32% 

(Figure 4.8; P<0.05). Treatment with tBHQ alone had no statistically significant effect compared 

with solvent controls not exposed to tBHQ (No BDE-47 treatment groups; Figure 4.8).  

Discussion 

PBDEs are flame retardant chemicals commonly detected in human serum, with BDE-47 

among the most abundant of the PBDE congeners detected (Sjodin, et al., 2008). During 

pregnancy, BDE-47 accumulates in human placenta (Frederiksen, et al., 2009;  Miller, et al., 

2009), extraplacental membranes (Miller, et al., 2009), and amniotic fluid (Miller, et al., 2012). 

Previously, we showed that BDE-47 directly stimulates proinflammatory cytokine responses in 

the first trimester human EVT cell line, HTR-8/SVneo (Park, et al., 2014). In the present study, 

we show that BDE-47 stimulated Nrf2-mediated oxidative stress responses in HTR-8/SVneo 

cells, resulting in differential expression of redox-sensitive genes, transactivation of Nrf2 and 

NF-κB, and augmentation of GSH. Especially, we report novel findings that induction of Nrf2 

activity by Nrf2 inducers suppressed BDE-47-stimulated proinflammatory IL-6 release and NF-

κB reporter activity in HTR-8/SVneo cells, implicating crosstalk between Nrf2 and NF-κB 

pathways.  

Consistent with ROS generation previously described (Park, et al., 2014), BDE-47 

treatment resulted in differential expression of the redox-sensitive genes HMOX1, PTGS2, 

PRNP, DHCR24, SLC7A11, SRXN1, GSR, GCLM, and GPX1 in HTR-8/SVneo cells. We 

observed stimulated mRNA expression of HMOX1, the gene for the antioxidant and anti-

inflammatory enzyme heme oxygenase (HO)-1 (Tjoa, et al., 2003). HO-1 cleaves the α-methene 

bridge of heme moiety to produce equimolar amounts of carbon monoxide (CO), bilirubin and 
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iron (Abraham and Kappas, 2008;  Ndisang et al., 2004). CO and bilirubin are known to alleviate 

apoptosis, necrosis, inflammation and oxidative stress (Bainbridge et al., 2006;  Baranano et al., 

2002;  Jadhav et al., 2008;  Ndisang and Jadhav, 2009;  Stocker et al., 1987), while iron 

enhances the synthesis of the antioxidant ferritin (Balla et al., 1992;  Hintze and Theil, 2005). 

Several lines of evidence suggest that HO-1 is a key regulator during pregnancy (Vince, et al., 

1995). For example, HO-1 polymorphisms have been associated with incidence of idiopathic 

recurrent miscarriages in women (Denschlag et al., 2004). In addition, placentas from human 

pathologic pregnancies including spontaneous abortion, choriocarcinoma, and hydatidiform mole, 

express lower levels of HO-1 compared with normal pregnancies (Zenclussen et al., 2003), 

further suggesting that HO expression is required to support successful pregnancy in humans. 

Based on the observed increase in HMOX1 expression with BDE-47 and previously published 

reports, we suggest that HMOX1 may play a protective role against BDE-47-stimulated 

oxidative stress and inflammation in placental cells. 

 Among other genes, expression of PTGS2, the gene for COX-2, was highly induced in 

our study.  COX-2 is a rate-limiting enzyme in the synthesis of prostaglandins (Shanmugam et 

al., 2006). Increased PTGS2 mRNA expression and prostaglandins in gestational compartments 

have been associated with preterm birth (Cox et al., 1993;  Mijovic et al., 1998). In addition, 

prostaglandin E2 (PGE2) has been reported to regulate trophoblast migration and invasion that 

are critical for proper placentation (Biondi et al., 2006;  Horita et al., 2007;  Nicola et al., 2005). 

Given the critical roles for prostaglandins in pregnancy, further study could investigate the 

effects of BDE-47 on PGE2 production and trophoblast cellular function.  

Expression of DHCR24, the gene for 3β-hydroxysterol-D24 reductase, was decreased in 

the present study. Because DHCR24 catalyzes the last step in cholesterol biosynthesis, reduced 
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DHCR24 expression could potentially interfere with synthesis of steroid hormones, including  

progesterone, which plays critical roles in maintenance of pregnancy (Luu et al., 2014;  Tetz et 

al., 2013). Moreover, DHCR24 expression was downregulated in the IUGR placentas (Diplas et 

al., 2009). The increased mRNA expression of PRNP, the gene for prion protein, is consistent 

with BDE-47-stimulated ROS production because PNRP is known to protect cells from oxidative 

damage and to prevent apoptosis (Liang et al., 2006;  Watt et al., 2005). Potential roles for PRNP 

during pregnancy are largely unknown, but it was recently reported that PRNP is highly 

expressed in placentas from preeclamptic pregnancies (Hwang et al., 2010). Whether the BDE-

47-stimulated DHCR24 and PRNP gene responses observed in the present study are relevant to 

human pregnancy requires additional experiments beyond the scope of the present study. 

Expression of genes involved in GSH redox cycling such as SLC7A11, SRXN1, GSR, 

GCLM, and GPX1 was also differentially regulated with BDE-47 treatment in HTR-8/SVneo 

cells. SLC7A11 encodes an amino acid antiporter that mediates the exchange of extracellular L-

cystine and intracellular L-glutamate across the cellular plasma membrane, which is critical to 

glutathione production and oxidative protection (Lewerenz et al., 2013). SRXN1 codes for 

sulfiredoxin 1, which plays a role in reduction of oxidative modification on proteins (Findlay et 

al., 2005), and GPX1 is the gene for gluthathione peroxidase 1, which catalyzes the reduction of 

hydroperoxides and lipid peroxides using GSH as a reductant (Chance et al., 1979). Increased 

expression of SRNX1 and GPX1 in the present study may implicate increased oxidation of 

proteins and lipids in BDE-47-treated cells by BDE-47-stimulated ROS generation (Park, et al., 

2014), although further studies should be conducted to measure oxidation of proteins and lipids. 

Expression of SLC7A11 was stimulated with BDE-47 treatment, suggesting increased cellular 

uptake of cystine as a substrate for intracellular GSH production. The first step of GSH synthesis 
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is rate-limiting and is catalyzed by glutamate-cysteine ligase composed of a glutamate-cysteine 

ligase catalytic subunit (GCLC)  and a glutamate-cysteine ligase modifier subunit (GCLM) (Lu, 

2009). Expression of GCLM was stimulated with BDE-47 treatment, consistent with the 

augmented GSH concentrations observed in HTR-8/SVneo cells. Gluthathione reductase (GSR) 

is an antioxidant enzyme that catalyzes the reduction of GSH disulfide by NADPH (Harvey et 

al., 2009), leading to increased availability of reduced GSH. mRNA expression of GSR was 

reduced by BDE-47 treatmentalso in agreement with the changes in cellular redox status. 

Expression of the genes identified in the PCR array are either directly or indirectly regulated by 

Nrf2 (Ma, 2013;  Taylor et al., 2008;  Wakabayashi et al., 2010), suggesting that Nrf2 may play 

a critical role in the regulation of BDE-47-mediated cellular defense responses.  

Consistent with array results showing differential expression of redox-sensitive genes, the 

present study found increased ARE reporter activity in BDE-47-exposed HTR-8/SVneo cells, 

indicating Nrf2 induction in response to BDE-47. To defend against exogenous toxicants and 

injury, cells express a variety of cytoprotective and detoxifying enzymes regulated by redox-

sensitive transcription factors that bind to the antioxidant response element (ARE) in the 

promoter. Nrf2 is a well-known redox-sensitive transcription factor that binds to ARE and 

activates the ARE-mediated gene expression (Itoh et al., 1997;  Motohashi and Yamamoto, 

2004;  Osburn et al., 2006). BDE-47 stimulates increased ROS generation (Park, et al., 2014), 

and ROS  can oxidize cysteine residues on Nrf2 inhibitor Keap1, leading to conformational 

changes in Keap1, Nrf2 release, and translocation of Nrf2 to activate ARE-dependent gene 

expression (Rushmore et al., 1991) as a defensive mechanism to protect cells from ROS and 

inflammation. Although there have been extensive studies on the protective role of Nrf2 against 
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carcinogens and xenobiotics in vitro and in vivo (Fahey et al., 2002;  Kensler et al., 2007), this is 

the first study to report BDE-47-stimulated activation of Nrf2 pathways in human placental cells. 

In limited studies, increased Nrf2 activity was reported in cytotrophoblasts and EVTs 

from placentae with IUGR or PE (Kweider, et al., 2012;  Wruck, et al., 2009). In addition, 

genome-wide transcriptional profiling of preeclamptic and normal pregnancies showed that the 

Nrf2-mediated oxidative stress response was dysregulated in PE (Chigusa, et al., 2012;  Loset, et 

al., 2011). Furthermore, decreased expression of HO-1, a hallmark of Nrf2 activation, was 

associated with lower cell motility and trophoblast invasion (Bilban et al., 2009). Together, these 

data imply that Nrf2 may play a critical role in the regulation of trophoblast cellular function and 

invasion, and that dysregulation of Nrf2 may contribute to the etiology and progression of birth 

complications.  

Our results clearly show that pretreatment with the Nrf2 inducer tBHQ or sulforaphane 

suppressed BDE-47-stimulated IL-6 production in HTR-8/SVneo cells. In addition, induction of 

Nrf2 with tBHQ pretreatment suppressed BDE-47-stimulated NF-κB transactivation. NF-κB is a 

transcription factor that plays a crucial role in immune and inflammatory response (Blackwell 

and Christman, 1997). Although we did not assess a causal relationship between BDE-47-

stimulated NF-κB activity and IL-6 release, NF-κB is well known to regulate the transcription of 

IL-6 (Blackwell and Christman, 1997;  Reuter, et al., 2010). As such, decreased NF-κB activity  

partially explains the anti-inflammatory effect of tBHQ in the present study. Consistent with our 

findings, many studies have provided evidence of an anti-inflammatory effect of Nrf2 in a 

variety of experimental models (Khor, et al., 2006;  Rangasamy, et al., 2004;  Rangasamy, et al., 

2005;  Thimmulappa, et al., 2006). For example, tBHQ has shown to decrease NF-κB activation, 

inflammatory cytokines production (TNF-α, IL-1β, and IL-6), COX-2 expression, and PGE2 
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release in vivo and in vitro (Jin et al., 2010;  Khodagholi and Tusi, 2011;  Koh et al., 2009). 

Another Nrf2 inducer, sulforaphane, has shown to reduce DNA binding of NF-κB and decrease 

generation of nitric oxide (NO), PGE2 and TNF-α in Raw 264.7 murine macrophages (Heiss et 

al., 2001). However, to the best of our knowledge, the present study is the first to report the 

protective role of Nrf2 activation on toxicant-stimulated inflammatory responses in human 

placental cells. 

A wide range of natural and synthetic small molecules including tBHQ and sulforaphane 

induce Nrf2 activity (Ma, 2013). Although the precise mechanism regarding the anti-

inflammatory activity of Nrf2 inducers remains elusive, it is suggested that the anti-inflammatory 

properties might result from augmentation of cellular antioxidant systems via up-regulation of 

the Nrf2 signaling pathway and inhibition of the NF-κB signaling pathway (Jin, et al., 2011;  

Khodagholi and Tusi, 2011). The augmented GSH concentrations and increased antioxidant gene 

expression observed in the present study are consistent with a role of Nrf2 inducers on increased 

cellular antioxidative capacity in previous studies (Alfieri et al., 2011;  Hara et al., 2003). In 

addition, our results showed that suppression of BDE-47-stimulated NF-κB transactivation by 

tBHQ pretreatment, implicating cross talk between the Nrf2 and NF-κB signaling pathways.  

The Nrf2 and NF-κB signaling pathways interact at several points through mechanisms of 

regulation ranging from direct effects on the transcription factors themselves to protein–protein 

interactions and second-messenger effects on target genes (Wakabayashi, et al., 2010). It is 

suggested that Nrf2 may reduce available co-activator levels and promote recruitment of a co-

repressor, leading to interruption of NF-κB binding to DNA. In addition, Nrf2 target genes such 

as HO-1, NQO1, and thioredoxin (TRX) are able to influence NF-κB activity (Wakabayashi, et 

al., 2010). Moreover, Nrf2 interferes with NF-κB inflammatory signaling pathways through the 
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maintenance of cellular redox status because NF-κB is activated in the oxidizing environment 

(Kabe et al., 2005). Our results are in agreement with this model of Nrf2 and NF-κB interactions, 

showing that tBHQ stimulated mRNA expression of HMOX1, the gene for HO-1, and 

augmented GSH production concomitant with suppression of NF-κB reporter activity. Based on 

our findings and other relevant reports, the following model is suggested: that BDE-47-

stimulated ROS may activate Nrf2 to restore cellular redox status to a less oxidizing environment 

via increased cellular antioxidant capacity, resulting in suppression of NF-κB activity, and, in 

turn, decreasing IL-6 production in HTR-8/SVneo cells. In addition, expression of the Nrf2 

target protein HO-1 may modulate NF-kB activity through the action of bilirubin and free iron 

that are produced by HO-1 activity (Alam et al., 1999;  Jun et al., 2006;  Pae et al., 2006;  Seldon 

et al., 2007;  Soares et al., 2004;  Tenhunen et al., 1968). Further studies could investigate the 

effect of HO-1 induction or its products on inflammation induced by BDE-47 treatment in HTR-

8/SVneo cells. However, we shoud note that the observed anti-inflammatory effects may 

originate from not a single mechanism, but from multiple mechanisms involving various proteins 

and signaling molecules (Kabe, et al., 2005). Moreover, the direct dependance of the anti-

inflammatory effect on Nrf2 should be tested using genetic knockdown approaches such as 

RNAi.  

In summary, BDE-47, a predominant flame retardant chemical found in human tissues, 

activates Nrf2-dependent oxidative stress responses in human first trimester EVTs as indicated 

by differential expression of oxidative stress genes, stimulated ARE reporter activity, and 

augmented production of GSH. Our results provide evidence that Nrf2 activation by chemical 

inducers suppressed BDE-47-stimulated IL-6 production in human placental cells with 

stimulated ARE reporter activity, reduced NF-κB reporter activity, increased GSH production, 
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and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups. 

This is the first study to show that BDE-47 activated Nrf2-dependent oxidative stress pathways 

in human first trimester EVTs and to link PBDE-stimulated pro-inflammatory responses with 

Nrf2 signaling pathways. Because proper trophoblast function is necessary for placental 

development and successful pregnancy, and dysregulation of inflammatory responses are 

associated with altered trophoblast invasion and placental dysfunction, further investigation of 

the impact of BDE-47 on trophoblast function is warranted. In addition, further studies about the 

role of Nrf2 on BDE-47-stimulated responses will be needed to confirm its protective effects and 

to consider Nrf2 as a potential therapeutic target to prevent adverse birth outcomes. 
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Figure 4.1. BDE-47-stimulated intracellular GSH production in HTR-8/SVneo cells.  

A) HTR-8/SVneo cells were exposed to NT (non-treated control), solvent control (0.07% v/v 

DMSO) or BDE-47 treatment for 24 h, and then GSH levels were quantified. B) Time-course of 

GSH levels. Bars represent means±SEM (n=3 experiments). Each experiment was performed in 

triplicate.*P<0.05, significant compared to solvent control within same time point. 
#
P<0.05, 

significantly different from each other. 
&

P<0.05, different from NT, solvent control, and BDE-47 

treated groups within same time point. 
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Figure 4.2.  BDE-47-stimulated ARE reporter activity in HTR-8/SVneo cells.  

HTR-8/SVneo cells were exposed to solvent control (0.7% v/v DMSO) or BDE-47 treatment for 

6 or 24 h, and then ARE reporter activity was assessed. Data are presented as means±SEM fold 

change over solvent control (dashed line) for each respective time point. To derive fold changes, 

Firefly luciferase relative light unit (RLU) values were first normalized to Renilla luciferase to 

compensate for cell number and transfection efficiency, then fold changes were calculated 

relative to solvent control for each time point (n=3 experiments). Each experiment was 

performed in triplicate.*P<0.05, significant compared to solvent control within same time point. 
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Figure 4.3. BDE-47 effects on HTR-8 cell mRNA expression of genes previously identified with 

a targeted gene expression array.  

A) mRNA expression of HMOX1, PTGS2, PRNP, and DHCR24. B) mRNA expression of 

SLC7A11, SRXN1, GSR, GCLM, and GPX1. HTR-8/SVneo cells were exposed to solvent 

control (0.7% v/v DMSO) or BDE-47 treatment for 24 h. Then, mRNA expression of redox-

sensitive genes was quantified by qRT-PCR. Bars represent means±SEM (n=3 experiments). 

Each experiment was performed in triplicate.*P<0.05, significant compared to solvent control. 
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Figure 4.4.  Effect of pretreatment with Nrf2 inducers on BDE-47-stimulated ARE reporter 

activity in HTR-8/SVneo cells.  

A) Cells were pretreated with TBHQ for 1 h prior to subsequent incubation without or with 

BDE-47 for 24 h. Then, ARE reporter activity was quantified.  B) Cells were pretreated with 

sulforaphane for 24 h h prior to subsequent incubation without or with BDE-47 for 24 h. Then, 

ARE reporter activity was measured. Data are presented as means±SEM fold change over 

control (dashed line, No BDE-47 with 0 µM TBHQ). To derive fold changes, Firefly luciferase 

relative light unit (RLU) values were first normalized to Renilla luciferase to compensate for cell 

number and transfection efficiency, then fold changes were calculated relative to control (n=3 

experiments). Each experiment was performed in triplicate. *P<0.05, compared to control. 
&

P<0.05, compared to 0, 5, and 10 µM TBHQ within 20 µM BDE-47 treatment (A) or compared 

to 0, 5, and 7.5 µM sulforaphane within 20 µM BDE-47 treatment (B). 
#
P<0.05, significantly 

different from each other. 
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Figure 4.5. Effect of pretreatment with the Nrf2 inducer TBHQ on BDE-47-stimulated GSH 

production in HTR-8/SVneo cells.  

Cells were pretreated with TBHQ, and then exposed to solvent control (No BDE-47, 0.7% v/v 

DMSO) or BDE-47 for 24h. GSH levels were quantified using a luminescence-based assay (n=3 

experiments). Each experiment was performed in triplicate. *P<0.05, compared to control 

(dashed line, No BDE-47 with 0 µM TBHQ).
+
P<0.05,compared to 0 µM TBHQ within 20 µM  

BDE-47 treatment.  
&

P<0.05, compared to 0, 10, and 20 µM TBHQ within 20 µM BDE-47 

treatment. 
#
P<0.05, significantly different from each other. 
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Figure 4.6. Effect of pretreatment with the Nrf2 inducer TBHQ on mRNA expression of 

antioxidant genes.  

HTR-8/SVneo cells were pretreated with TBHQ, and then exposed to solvent control (No BDE-

47, 0.7% v/v DMSO) or BDE-47 for 24h. Bars represent means±SEM fold change over control 

(dashed line, No BDE-47 with 0 µM TBHQ). The target gene expression from each sample was 

first normalized to the housekeeping gene B2M, and then fold changes were calculated relative 

to the normalized control (n=3 experiments). A) mRNA expression of HMOX1. B) mRNA 

expression of GCLM. *P<0.05, compared to control. 
#
P<0.05, significantly different from each 

other. 
&

P<0.05, compared to 20 µM BDE-47 with 0 µM TBHQ. 
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Figure 4.7. Effect of pretreatment with Nrf2 inducers on BDE-47-stimulated IL-6 release from 

HTR-8/SVneo cells.  

A) HTR-8/SVneo cells were pretreated with TBHQ for 1 h prior to treatment with BDE-47 for 

24 h. B) After treatment with sulforaphane for 24 h, cells were exposed to solvent control (No 

BDE-47, 0.7% v/v DMSO) or BDE-47 for 24h. Then, IL-6 levels were quantified using ELISA. 

Bars represent means±SEM (n=3 experiments). Each experiment was performed in triplicate. 
*P<0.05, compared to No BDE-47 with 0 µM TBHQ or sulforaphane. 

#
P<0.05, significantly 

different from each other.
 &

P<0.05, compared to 20 µM BDE-47 with 0 or 5 µM sulforaphane. 
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Figure 4.8. Effect of pretreatment with TBHQ on BDE-47-induced NF-κB reporter activity in 

HTR-8/SVneo cells.  

HTR-8/SVneo cells were pretreated with TBHQ for 1 h prior to treatment with BDE-47 for 24 h. 

After incubation with BDE-47, NF-κB reporter activity was quantified. Data are presented as 

means±SEM fold change over control (dashed line, No BDE-47 with 0 µM TBHQ). To derive 

fold changes, Firefly luciferase relative light unit (RLU) values were first normalized to Renilla 

luciferase to compensate for cell number and transfection efficiency, then fold changes were 

calculated relative to control (n=3 experiments). *P<0.05, compared to control. 
#
P<0.05, 

significantly different from each other. 
&

P<0.05, compared to 20 µM BDE-47 with 50 µM 

TBHQ. 
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Appendix 4.1. Oxidative stress response array1 

 

Symbol Description 

4 h 24 h 

Fold 

change 
P value 

Fold 

change 
P value 

ALB Albumin 0.79 0.85728 0.46 0.24648 

ALOX12 Arachidonate 12-lipoxygenase 1.07 0.91189 1.16 0.72132 

AOX1 Aldehyde oxidase 1 0.81 0.52586 2.95 0.00028 

APOE Apolipoprotein E 0.87 0.66628 0.56 0.01941 

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) 0.97 0.71154 0.68 0.00007 

BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 1.00 0.96417 1.14 0.10141 

CAT Catalase 1.01 0.91189 0.81 0.00109 

CCL5 Chemokine (C-C motif) ligand 5 0.56 0.54991 1.94 0.31119 

CCS Copper chaperone for superoxide dismutase 1.10 0.47196 1.30 0.01038 

CYBB Cytochrome b-245, beta polypeptide NA NA NA NA 

CYGB Cytoglobin 0.70 0.33950 0.95 0.81152 

DHCR24 24-dehydrocholesterol reductase 0.95 0.74263 0.26 0.00000 

DUOX1 Dual oxidase 1 0.93 0.88184 1.61 0.14186 

DUOX2 Dual oxidase 2 0.75 0.53378 1.18 0.58108 

DUSP1 Dual specificity phosphatase 1 3.04 0.05355 1.43 0.26027 

EPHX2 Epoxide hydrolase 2, cytoplasmic 0.58 0.29158 0.66 0.15208 

EPX Eosinophil peroxidase 0.78 0.63692 0.84 0.58108 

FOXM1 Forkhead box M1 0.94 0.63692 0.88 0.13214 

FTH1 Ferritin, heavy polypeptide 1 1.02 0.90003 1.74 0.00016 

GCLC Glutamate-cysteine ligase, catalytic subunit 0.83 0.54750 1.54 0.05160 

GPX1 Glutathione peroxidase 1 1.01 0.90003 1.85 0.00001 

GPX2 Glutathione peroxidase 2 (gastrointestinal) 0.95 0.91189 1.15 0.72132 

GPX3 Glutathione peroxidase 3 (plasma) 1.05 0.47196 0.62 0.00000 

GPX4 
Glutathione peroxidase 4 (phospholipid 

hydroperoxidase) 
1.04 0.65208 0.63 0.00001 

GPX5 
Glutathione peroxidase 5 (epididymal androgen-

related protein) 
NA NA NA NA 

GSR Glutathione reductase 1.35 0.29964 2.08 0.00141 

GSS Glutathione synthetase 1.01 0.95134 1.22 0.03016 

GSTP1 Glutathione S-transferase pi 1 1.12 0.36484 1.04 0.58108 

GSTZ1 Glutathione transferase zeta 1 1.04 0.74263 1.02 0.74909 

HSPA1A Heat shock 70kDa protein 1A 0.39 0.29158 1.03 0.92751 

KRT1 Keratin 1 NA NA NA NA 

LPO Lactoperoxidase NA NA NA NA 

MB Myoglobin 1.23 0.87559 0.63 0.56381 

MBL2 Mannose-binding lectin (protein C) 2, soluble NA NA NA NA 

MPO Myeloperoxidase NA NA NA NA 

MPV17 MpV17 mitochondrial inner membrane protein 0.93 0.29964 1.04 0.36442 
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MSRA Methionine sulfoxide reductase A 0.86 0.41372 1.61 0.00162 

MT3 Metallothionein 3 NA NA NA NA 

NCF1 Neutrophil cytosolic factor 1 0.40 0.29964 0.51 0.22023 

NCF2 Neutrophil cytosolic factor 2 0.91 0.84078 1.20 0.52355 

NOS2 Nitric oxide synthase 2, inducible 0.76 0.41372 1.10 0.67158 

NOX4 NADPH oxidase 4 0.74 0.65208 0.91 0.80238 

NOX5 NADPH oxidase, EF-hand calcium binding domain 5 1.51 0.42014 2.24 0.12118 

NUDT1 
Nudix (nucleoside diphosphate linked moiety X)-type 

motif 1 
0.95 0.65208 0.97 0.68372 

PDLIM1 PDZ and LIM domain 1 0.89 0.42014 0.66 0.00137 

PRDX1 Peroxiredoxin 1 0.92 0.66628 0.79 0.09428 

PRDX2 Peroxiredoxin 2 0.91 0.29964 0.71 0.00016 

PRDX3 Peroxiredoxin 3 0.96 0.76440 0.83 0.08061 

PRDX4 Peroxiredoxin 4 1.07 0.76440 1.69 0.00322 

PRDX5 Peroxiredoxin 5 0.98 0.81849 1.08 0.13692 

PRDX6 Peroxiredoxin 6 0.98 0.75656 1.15 0.00511 

PRNP Prion protein 1.06 0.71154 2.43 0.00001 

PTGS1 
Prostaglandin-endoperoxide synthase 1 (prostaglandin 

G/H synthase and cyclooxygenase) 
0.02 0.06755 0.02 0.00621 

PTGS2 
Prostaglandin-endoperoxide synthase 2 (prostaglandin 

G/H synthase and cyclooxygenase) 
2.18 0.15622 2.90 0.00353 

RNF7 Ring finger protein 7 1.15 0.54750 1.98 0.00089 

SELS Selenoprotein S 1.17 0.15622 1.68 0.00001 

SEPP1 Selenoprotein P, plasma, 1 0.75 0.74263 2.27 0.14876 

SFTPD Surfactant protein D 0.59 0.29158 1.07 0.76998 

SIRT2 Sirtuin 2 0.89 0.42596 0.95 0.61995 

SOD1 Superoxide dismutase 1, soluble 0.98 0.90003 0.92 0.32389 

SOD2 Superoxide dismutase 2, mitochondrial 0.88 0.29964 1.04 0.59632 

SOD3 Superoxide dismutase 3, extracellular NA NA NA NA 

SQSTM1 Sequestosome 1 1.10 0.42596 2.66 0.00000 

SRXN1 Sulfiredoxin 1 0.90 0.41372 2.92 0.00000 

TPO Thyroid peroxidase NA NA NA NA 

TTN Titin NA NA NA NA 

TXNRD2 Thioredoxin reductase 2 1.03 0.88184 1.09 0.56381 

UCP2 Uncoupling protein 2 (mitochondrial, proton carrier) 0.81 0.29158 0.66 0.00170 

AKR1C2 

Aldo-keto reductase family 1, member C2 

(dihydrodiol dehydrogenase 2; bile acid binding 

protein; 3-alpha hydroxysteroid dehydrogenase, type 

III) 

1.20 0.84078 2.81 0.07325 

BAG2 BCL2-associated athanogene 2 1.02 0.87559 1.48 0.00013 

FHL2 Four and a half LIM domains 2 1.63 0.03733 1.91 0.00023 

GCLM Glutamate-cysteine ligase, modifier subunit 0.93 0.54750 1.90 0.00001 

GLA Galactosidase, alpha 0.92 0.56400 1.11 0.26027 

HMOX1 Heme oxygenase (decycling) 1 1.15 0.33950 4.72 0.00000 
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HSP90AA1 
Heat shock protein 90kDa alpha (cytosolic), class A 

member 1 
0.91 0.29964 1.68 0.00001 

LHPP 
Phospholysine phosphohistidine inorganic 

pyrophosphate phosphatase 
0.92 0.54991 0.91 0.31780 

NCOA7 Nuclear receptor coactivator 7 1.16 0.29158 1.59 0.00016 

NQO1 NAD(P)H dehydrogenase, quinone 1 0.83 0.29964 1.23 0.09026 

PTGR1 Prostaglandin reductase 1 0.91 0.29158 0.88 0.02136 

SLC7A11 
Solute carrier family 7 (anionic amino acid transporter 

light chain, xc- system), member 11 
1.25 0.29964 6.71 0.00000 

SPINK1 Serine peptidase inhibitor, Kazal type 1 NA NA NA NA 

TRAPPC6A Trafficking protein particle complex 6A 1.05 0.71154 1.13 0.15208 

TXN Thioredoxin 1.01 0.94674 1.61 0.00016 

TXNRD1 Thioredoxin reductase 1 0.90 0.65208 1.97 0.00123 
1HTR-8 cells were treated with DMSO (0.7% v/v; solvent control) or 20 µM MEHP for 4 or 24 h (n=3 

experiments).  The Oxidative Stress Response qRT-PCR Array (SABiosciences; Valencia, CA) was used 

to explore changes in gene expression as described in the “Materials and Methods” section.  Fold changes 

and p-values are shown for all genes and time points tested.  NA= CT value of above 40 for one or more 

experiments, suggesting low level expression of that gene. 
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 DISCUSSION CHAPTER 5.

Polybrominated diphenyl ethers (PBDEs) are synthetic flame-retardants that have been 

used in textiles, plastics, building materials and insulation (Miller et al., 2009). Due to 

widespread use and bioaccumulation of PBDEs, human exposure to PBDEs increased 

exponentially over recent decades (Hites, 2004). Despite distribution of PBDEs to human 

gestational compartments during pregnancy (Frederiksen et al., 2009a;  Frederiksen et al., 

2009b;  Miller, et al., 2009;  Miller et al., 2012), studies of mechanisms by which PBDEs act on 

gestational tissues during pregnancy are limited. This thesis explores mechanisms by which 

BDE-47-stimulated reactive oxygen species (ROS) may activate inflammatory pathways in 

human first trimester placental cells. As such, this is the first study to show that BDE-47, a 

prevalent PBDE congener, induced oxidative stress responses such as ROS formation, 

modification of redox-sensitive gene expression and activation of Nrf2, a master regulator of 

oxidative stress, in a human first trimester extravillous trophoblast (EVT) cell line, HTR-

8/SVneo (Figure 5.1). In addition, BDE-47 stimulated production of inflammatory mediators 

including the cytokines interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2) in HTR-8/SVneo 

cells (Figure 5.1). Finally, our results demonstrated signal transduction crosstalk between the 

oxidative stress and inflammatory pathways, showing that BDE-47-stimulated IL-6 and PGE2 

release were suppressed by treatment with antioxidants and/or Nrf2 inducers (Figure 5.1).  

Cytokines and prostaglandins are considered key players in reproductive processes 

including the establishment and maintenance of pregnancy, and the initiation of labor (Bowen et 

al., 2002;  Gibb, 1998;  Goldenberg and Andrews, 1996;  Gomez et al., 1997;  Hansen et al., 

1999;  Khan et al., 2008;  Kniss, 1999;  Mitchell et al., 1995;  Orsi, 2008). There have been 

extensive studies suggesting that improper regulation of the inflammatory networks may lead to 
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adverse pregnancy outcomes such as miscarriage, preeclampsia, intrauterine growth restriction 

(IUGR) and preterm labor (Orsi and Tribe, 2008;  Tjoa et al., 2004). However, studies about the 

roles of cytokines and prostaglandins in first trimester placenta are limited because many studies 

focused on their roles in the biological processes of birth, including dynamic cervical remodeling 

(Norman et al., 2007), uterine contractility (Baggia et al., 1996), and gestational membrane 

rupture (Keelan et al., 2003). In addition, increased production of cytokines and prostaglandins 

has been used as an indicator of pathologic activation of pro-inflammatory pathways by bacterial 

vaginosis (Flynn et al., 1999;  Leitich et al., 2003) or intrauterine infection (Goldenberg et al., 

2008;  Romero et al., 2001) in association with increased risk of preterm labor. Although adverse 

birth outcomes often manifest during the later stages of pregnancy, there is a growing body of 

literature suggesting that adverse obstetrical outcomes may result from abnormal placentation 

and placental dysfunction occurring in early pregnancy (Anton et al., 2012;  Ness and Sibai, 

2006). 

It has been suggested that defects in EVT cellular function involving dysregulation of 

inflammatory mediators in placenta contribute to the placental dysfunction seen in IUGR, 

preeclampsia, and preterm birth (Arechavaleta-Velasco et al., 2002;  Goldenberg et al., 2000;  

Goncalves et al., 2002;  Lamont, 2003;  von Dadelszen and Magee, 2002;  von Dadelszen et al., 

2003). Histologic examination found evidence of localized inflammation (histologic 

chorioamnionitis) in 85% of placentae from spontaneous preterm births delivered at 28 weeks 

gestation (Yoon et al., 2000), with higher rates of placental ischemia and abnormal placentation 

compared with controls at term (Germain et al., 1999;  Kim et al., 2003). A recent study reported 

that LPS increases production of IL-8 and IL-6 and decreases invasion activity in HTR-8/SVneo 

cells (Anton, et al., 2012). Moreover, a few studies showed that dysregulation of IL-6, IL-8, and 
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PGE2 changed trophoblast cellular functions such as proliferation, migration, and invasion in  

vitro (Biondi et al., 2006;  Dubinsky et al., 2010;  Horita et al., 2007b;  Jovanovic et al., 2010;  

Jovanovic and Vicovac, 2009;  Nicola et al., 2005a). Our results clearly show that treatment with 

BDE-47 stimulated proinflammatory cytokines IL-6 and IL-8 at protein and mRNA levels in 

HTR-8/SVneo cells. Moreover, BDE-47 treatment induced COX activity leading to increased 

PGE2 release from HTR-8/SVneo cells. Although interaction between BDE-47 exposure and 

inflammation have been implicated in limited studies (Ashwood et al., 2009;  Peltier et al., 

2012), this study is the first to show the activation of inflammatory pathways by BDE-47 in 

human first trimester placental cells.  

In the present study, we proposed ROS as a critical regulator of BDE-47-stimulated 

inflammatory pathways in human placental cells. Our findings showed that treatment with BDE-

47 stimulated ROS in HTR-8/SVneo cells, and that BDE-47-induced IL-6 and PGE2 production 

was suppressed by antioxidant treatment, indicating that ROS play a role in the initiation of 

inflammatory responses in response to BDE-47 exposure. It has been reported that ROS can 

regulate signal transduction pathways in mammalian cells as second messengers (Khan and 

Wilson, 1995). Similar to our results, ROS have been shown to activate production of IL-6 and 

IL-8 (Frossi et al., 2003;  Verhasselt et al., 1998), and cyclooxygenase (COX) expression and/or 

activity (Feng et al., 1995;  Kiritoshi et al., 2003;  Martinez-Revelles et al., 2013). Although 

mechanisms of regulation of inflammatory response by ROS are not fully understood, 

involvement of the redox-sensitive transcription factor NF-κB has been implicated (Reuter et al., 

2010). NF-κB plays a crucial role in immune and inflammatory response, regulating expression 

of a large number of genes, including those for cytokines, growth factors, adhesion molecules, 

immunoreceptors, and acute-phase proteins (Blackwell and Christman, 1997). Of direct 
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relevance to the present study, NF-κB has been shown to regulate expression of IL-6, IL-8 

(Blackwell and Christman, 1997;  Reuter, et al., 2010) and COX gene expression (Chiang et al., 

2003;  Crofford et al., 1997). Several lines of evidence suggest a role for ROS in activation of 

NF-κB, and antioxidants inhibit NF-κB activation in vitro and in vivo (Blackwell and Christman, 

1997). Our results showed that NF-κB reporter activity increased with BDE-47 treatment 

concomitant with increases in IL-6, IL-8, COX-2 expression, and COX activity, implicating the 

involvement of NF-κB on BDE-47-stimulated inflammatory responses. However, our findings 

are correlative only, and further study will be needed to demonstrate the causal relationship 

between NF-κB activation and the observed inflammatory responses.  

In addition to NF-κB, other redox-sensitive transcription factors may play a role in the 

regulation of BDE-47-stimulated inflammatory pathways in the present study. The promoter 

region of the IL-6 and IL-8 genes contains multiple regulatory elements including NF-κB, 

antioxidant response element (ARE)/ARE-like element, and activator protein (AP)-1 (Dendorfer 

et al., 1994;  Roebuck, 1999). The promoter region of PTGS2 gene also contains various cis-

acting elements such as NF-κB, AP-1, cAMP response element (CRE), and NF-IL6 (Inoue et al., 

1995). Our findings showed that ARE reporter activity increased with BDE-47 treatment 

coinciding with increases in IL-6, IL-8, and COX-2 expression in HTR-8/SVneo cells. Although 

the protective role of Nrf2 activation against oxidative stress and inflammation is well 

established, it is suggested that Nrf2 may play a role in activation of inflammatory genes. For 

example, it is reported that Nrf2 induces IL-6 and IL-8 expression via binding to ARE in vivo 

and in vitro (Wruck et al., 2011;  Zhang et al., 2005). Moreover, PTGS2 is a known Nrf2 target 

gene (Tufekci et al., 2011) and its expression is regulated by Nrf2/ARE signaling pathways in 

various experimental models (Luo et al., 2011;  Rojo et al., 2010;  Wang et al., 2010). Further 
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study is warranted to examine the role Nrf2 in the activation of BDE-47-stimulated 

inflammation. Furthermore, the involvement of other redox-sensitive transcription factors such 

as AP-1 could be investigated, considering the observed ROS formation by BDE-47 treatment 

(Park et al., 2014). 

ROS overproduction has been a common contributing factor to toxicity of PBDEs as 

detected with in vitro systems (He et al., 2008;  Reistad and Mariussen, 2005;  Shao et al., 2008;  

Yan et al., 2011). The present study provides new information that BDE-47 increased ROS 

generation in the human trophoblast cell line HTR-8/SVneo. Moreover, BDE-47 decreased 

mitochondrial membrane potential, indicating mitochondrial dysfunction (Brand and Nicholls, 

2011). Because mitochondrial defects can lead to enhanced mitochondrial production of ROS 

(Sohal et al., 1995), we suggest that the BDE-47-stimulated ROS in HTR-8/SVneo cells may 

have originated from mitochondria (Park, et al., 2014). Similar to our results, a few studies 

reported reduced mitochondrial membrane potential (Shao, et al., 2008;  Yan, et al., 2011), 

implicating the involvement of mitochondria on BDE-47-stimulated ROS. However, the 

mechanisms of BDE-47-stimulated ROS formation is still not clear. Specifically, the 

mitochondrial origin of BDE-47-stimulated ROS has not been verified experimentally yet. In 

addition, we don’t know whether BDE-47-stimulated ROS formation is a direct result from its 

exposure or a secondary response followed by signaling cascades. Moreover, not BDE-47, but its 

reactive metabolites may play a role in the activation of BDE-47-stimulated responses. It was 

recently reported that hydroxylated PBDEs may be more toxic than the parent PBDEs 

(Dingemans et al., 2008;  Feo et al., 2013). Oxidative stress by hydroxylated BDE-47, such as 

formation of ROS and DNA damage, has also been reported (An et al., 2011;  Ji et al., 2011). 

Finally, BDE-47-stimulated ROS could originate from multiple sources, not a single source. In 
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fact, Reistad and Mariussen (2005) reported that BDE-47 enhanced the production of ROS, 

potentially through NADPH oxidase activation in human granulocytes, suggesting complex 

pathways of BDE-47-mediated ROS formation.  

In the present study, we explored the ability of Nrf2 to inhibit BDE-47-stimulated 

inflammatory responses in HTR-8/SVneo cells. Nrf2 is a well-known redox-sensitive 

transcription factor that binds to antioxidant response element (ARE) and activates ARE-

mediated gene expression (Itoh et al., 1997;  Motohashi and Yamamoto, 2004;  Osburn et al., 

2006), resulting in the upregulation of phase II detoxification enzymes and antioxidant enzymes 

(Kensler et al., 2007).  Therefore, activation of Nrf2 pathways is an important cellular defense 

mechanism against exogenous toxins and injury. Our results clearly showed that treatment with 

BDE-47 stimulated Nrf2-mediated oxidative stress responses via differentially regulating 

expression of redox-sensitive genes, augmenting intracellular GSH production, and stimulating 

Nrf2 reporter activity in HTR-8/SVneo cells. These findings not only confirm the previous data 

showing BDE-47-stimulated ROS formation, but also implicate a protective role of Nrf2-

signaling pathways in response to inappropriate inflammatory responses by BDE-47 treatment. 

In addition, there is a growing body of literature reporting anti-inflammatory effect of Nrf2 

activation in vivo and in vitro (Jin et al., 2011;  Jin et al., 2008;  Jin et al., 2009;  Khodagholi and 

Tusi, 2011;  Khor et al., 2006;  Koh et al., 2009;  Rangasamy et al., 2004;  Rangasamy et al., 

2005;  Thimmulappa et al., 2006). Therefore, we tested the hypothesis that activation of Nrf2 by 

Nrf2 inducers may show an anti-inflammatory effect on BDE-47-stimulated pro-inflammatory 

cytokine production in HTR-8/SVneo cells. Indeed, our results, for the first time, showed that 

pretreatment with Nrf2 inducers such as tert-butylhydroquinone (tBHQ) or sulforaphane resulted 

in suppression of BDE-47-stimulated IL-6 release from HTR-8/SVneo cells via upregulating 
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Nrf2 reporter activity, increasing intracellular GSH production, increasing expression of 

antioxidant enzymes, and downregulating NF-κB reporter activity, implicating interplay between 

the NF-κB and Nrf2 pathways. 

Among a wide range of natural and synthetic small molecules that are potent inducers of 

Nrf2 activity (Khodagholi et al., 2010;  Stewart et al., 2003;  Tusi et al., 2010), tBHQ is one of 

the most common. tBHQ has a variety of other pharmacological activities including antioxidant 

and anti-inflammatory potential (Koh, et al., 2009). Although the precise mechanism regarding 

the anti-inflammatory ability of tBHQ remains elusive, the prevailing theory has been that Nrf2 

interferes with inflammatory signaling pathways by inhibiting NF-kB activation through the 

maintenance of cellular redox status. Activation of the NF-kB signaling pathway has been shown 

to be responsive to excess ROS and is important in the generation of inflammation 

(Thimmulappa, et al., 2006). The antioxidant transcription factor Nrf2 plays an important role in 

limiting ROS levels and thereby suppressing the redox-sensitive NF-kB signaling pathway 

involved in inflammation (Itoh, et al., 1997;  Lee and Johnson, 2004). It is therefore implied that 

tBHQ may play an important role in anti-inflammation by a mechanism of augmentation of 

cellular antioxidative responses via up-regulation of the Nrf2 signaling pathway, resulting in 

decreased pro-inflammatory cytokine production via inactivation of NF-kB signaling pathway 

(Jin, et al., 2011). Consistent with this theory,  anti-inflammatory effects of  tBHQ have been 

reported with the evidence of stabilization of Nrf2, suppression of NF-κB expression and 

activity, and suppression of phosphorylation of MAP kinases (p38, ERK1/2, and JNK) (Jin, et 

al., 2011;  Jin et al., 2010;  Jin, et al., 2009;  Khodagholi and Tusi, 2011;  Koh, et al., 2009). In 

addition, our results showed that pretreatment with tBHQ suppressed BDE-47-stimulated IL-6 

release from HTR-8/SVneo cells while upregulating Nrf2 reporter activity, intracellular GSH 
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production, and expression of antioxidant enzymes, and downregulating NF-κB reporter activity. 

Although our study did not investigate changes in cellular redox status by tBHQ treatment, 

tBHQ-stimulated increased cellular production of GSH suggests that tBHQ may help maintain 

cellular redox status by augmenting GSH levels against BDE-47-stimulated ROS. However, the 

mechanism by which tBHQ activates Nrf2 is not entirely understood. It has been shown that 

ROS can activate ARE by stimulating nuclear translocation of the transcription factor Nrf2 (Itoh 

et al., 1999;  Sian et al., 1994). tBHQ-induced ROS production may be a consequence of redox 

cycling from a fully reduced form to an oxidized form as a semiquinone anion radical (Gharavi 

et al., 2007). Oxidative stress-dependent Nrf2 activation by tBHQ has been reported in a few 

studies, showing that antioxidant treatments inhibited tBHQ-induced gene induction in certain 

cell types (Hara et al., 2003;  Itoh, et al., 1999;  Pinkus et al., 1996). On the other hand, it is 

reported that Nrf2-dependent activation of ARE by tBHQ is mediated via an oxidative stress-

independent pathway in IMR32 cells and SH-SY5Y cells (Sian, et al., 1994). The oxidative 

stress-independent ARE activation mediated by Nrf2 is shown to be mediated via various kinase 

pathways such as phosphatidylinositol-3-kinase and p38 (Kang et al., 2001;  Lee et al., 2001;  

Yu et al., 2000). An explanation for cell-specific differences may be due to variations in 

subcellular compartmentalized redox status (Imhoff and Hansen, 2010). It is suggested that redox 

status changes in specific subcellular compartments, and each compartment may dictate different 

steps in the Nrf2 pathway (Hansen et al., 2004;  Imhoff and Hansen, 2010). Although we 

observed tBHQ-mediated ROS formation in HTR-8/SVneo cells (data not shown), we have not 

tested the hypothesis that tBHQ-mediated Nrf2 activation is ROS-dependent because this was 

not directly relevant to the objectives of this study. Rather, this study utilized tBHQ as a tool to 

induce Nrf2 and thereby inactivate NF-κB as a means to test the role of NF-κB in the BDE-47-
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stimulated inflammatory response. To better understand the mechanism, further investigation 

using antioxidants treatment and measuring redox status in subcellular compartments will be 

needed.   

In addition to tBHQ, we used another Nrf2 inducer, sulforaphane, to investigate the role of 

NF-κB in BDE-47-stimulated cytokine release. Sulforaphane is an isothiocyanate derived from 

cruciferous vegetables (Keum, 2011). Cytoprotective and anti-inflammatory effects of 

sulforaphane have been reported (Heiss et al., 2001;  Juge et al., 2007). Sulforaphane is an 

electrophile that can react with protein thiols to form thionoacyl adducts and is believed to 

modify cysteine residues in Keap 1 protein to a sulfenic acid (−SOH), causing a conformational 

change of Keap1 (Imhoff and Hansen, 2010;  Keum, 2011). It is reported that the induction of 

Nrf2 by sulforaphane is regulated by posttranslational stabilization, attenuating ubiquitinylation 

and proteosomal degradation of Nrf2 and decreasing protein expression level of Keap1 (Keum et 

al., 2006;  Nguyen et al., 2003). In addition, sulforaphane may affect the activity of a variety of 

intracellular kinases to phosphorylate Nrf2 proteins, which dictates the nucleocytoplasmic 

trafficking of Nrf2 or modulates the Nrf2 protein stability (Rada et al., 2011;  Rojo et al., 2008). 

Our results showed that sulforaphane pretreatment induced Nrf2 transactivation and suppressed 

BDE-47-stimulated IL-6 production in HTR-8/SVneo cells (Figure 4.7B). Although 

sulforaphane stimulated induction of Nrf2-regulated genes such HO-1, NQO1 and TXR1(Juge, 

et al., 2007), further investigation will be necessary to confirm sulforaphane-mediated Nrf2 

activation and to elucidate mechanisms for the anti-inflammatory effect by sulforaphane 

observed in this study. Unlike pretreatment with tBHQ, we did not observe ROS formation with 

sulforaphane pretreatment in the HTR-8/SVneo cells, implicating different mechanisms on Nrf2 

activation by each inducer (data not shown).  
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We have to be cautious in interpreting our results because overproduction of IL-6, IL-8, 

and PGE2 alone may not accurately represent the response of trophoblast cells during an 

inflammatory state nor the impact of BDE-47 exposure on trophoblast cellular function in vivo. 

Although changes in inflammatory mediators play an important role in regulating trophoblast 

function, there are complex interactions between these mediators and trophoblast invasion, 

involving a number of autocrine and paracrine factors such as growth factors, growth factor-

binding proteins, proteoglycans, other cytokines/chemokines, integrins, adhesion and proteolytic 

molecules (Anton, et al., 2012;  Chakraborty et al., 2002;  Lala and Chakraborty, 2003). In 

addition, the impact of BDE-47-stimulate inflammatory responses on trophoblast cellular 

function and invasion should be investigated further to confirm potential relevance of our 

findings to placentation and pregnancy.  

Another limitation of the present study is that the results of in vitro experiments using a 

transformed cell line may not accurately reflect responses of primary extravillous trophoblast 

cells. It has been reported that HTR-8/SVneo cells have a similar phenotype compared to their 

primary counterparts (Biondi et al., 2006; Graham et al., 1993; Jovanović et al., 2010). For 

example, HTR-8/SVneo cells retain migratory capability and express specific placental 

trophoblast markers including HLA-G, cytokeratin-7, and α5β1 integrin up to passage number 

105 (Biondi, et al., 2006;  Khan et al., 2011). However, it has been reported that HTR-8/SVneo 

cells may have a different transcriptomic and epigenetic profile compared to primary extravillous 

trophoblast cells (Bilban et al., 2010;  Novakovic et al., 2011). To address this issue, further 

investigation using primary trophoblasts or placental tissues will be needed to validate the 

potential relevance of our results to pregnancy.  
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Finally, using pharmacological Nrf2 inducers may impact multiple cellular mechanisms 

other than Nrf2 signaling pathways. For example, tBHQ or sulforaphane may bind in a non-

specific manner to other proteins and affect other redox-sensitive transcription factors and 

protein kinases (Reuter, et al., 2010). In addition, the present study did not examine direct anti-

inflammatory effects of Nrf2 activation, but rather presented the concomitant activation of Nrf2-

mediated pathways with suppression of IL-6 release when pretreated with Nrf2 inducers. 

However, our conclusion that Nrf2 activation may be involved in BDE-47-stimulated 

inflammatory responses is supported by the use of two Nrf2 inducers, tBHQ and sulforaphane, 

which activate  Nrf2 pathways by different mechanisms yet resulted in a similar 

antiinflammatory effect in response to BDE-47, . Although our findings implicate Nrf2 

activation as a potential therapeutic target against toxicant-induced inflammatory responses in 

human placental cells, further investigation using genetic knockdown and overexpression of Nrf2 

is warranted to understand the role of Nrf2 on BDE-47-stimulated responses more accurately.  

Despite these limitations, our findings suggest potential adverse impacts of PBDE 

exposure during pregnancy. Invasion of EVTs into maternal spiral arteries is a key event during 

placentation (Brosens et al., 1967;  Pijnenborg et al., 1983;  Pijnenborg et al., 1980), and 

impaired EVT invasion has been attributed to pathologies of adverse birth outcomes with the 

evidence of abnormal placentation (Zhou et al., 1997a;  Zhou et al., 1997b).  The present study 

used HTR-8/SVneo, a human first trimester EVT cell line as a model to study the effects of 

BDE-47 treatment. Because  IL-6, IL-8, and PGE2 have been shown to regulate EVT 

proliferation, migration, and invasion during first trimester of pregnancy (Biondi, et al., 2006;  

Horita et al., 2007a;  Jovanovic, et al., 2010;  Jovanovic and Vicovac, 2009;  Nicola et al., 

2005b),  overproduction of these mediators in HTR-8/SVneo cells by BDE-47 suggests that 



150 

 

BDE-47 exposure may disrupt trophoblast cellular function, leading to improper trophoblast 

invasion and abnormal placentation, thereby potentially contributing to adverse obstetrical 

outcomes. Ongoing research in our laboratory on the effects of PBDEs on trophoblast cellular 

function will lead us toward a better understanding of the mechanisms and relevant risks 

associated with PBDE exposures during pregnancy.  

In conclusion, the present study provided the first experimental data to support a 

mechanism by which PBDE exposure could contribute to increased risk for adverse birth 

outcomes. Although inappropriate activation of the innate immune response can lead to placental 

dysfunction and certain environmental contaminants can activate innate immune responses 

(Campbell, 2004;  Lin et al., 2010), there is a paucity of reports on PBDE-stimulated 

inflammation in first trimester placenta. By demonstrating that a common toxicological effect, 

oxidative stress, activates inflammatory pathways associated with impaired trophoblast function 

and placental dysfunction, these data provide support for a plausible biological explanation for 

environmental contaminant exposure associations with adverse obstetrical outcomes. . Given that 

multiple antioxidant trials for preventing adverse birth complications have not  been successful 

(Polyzos et al., 2007;  Rumbold et al., 2008), the activation of Nrf2 antioxidant signaling 

pathways using various synthetic/natural Nrf2 inducers may be a novel approach leading to 

augmentation of intracellular antioxidant capacity (Polyzos et al., 2007;  Rumbold et al., 2008). 

Therefore, this research contributes new information for potential interventions to reduce adverse 

obstetrical outcomes originating from abnormal placental function, with possible economic, 

societal and public health benefits. 
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Figure 5.1. Proposed model of BDE-47 effects in human placental trophoblast cells. 

BDE-47 stimulates production of reactive oxygen species (ROS) with the evidence of decreased 

mitochondrial membrane potential. BDE-47-induced ROS activates a redox-sensitive 

transcription factor NF-kB leading to increased expression of COX-2 and stimulated production 

of proinflammatory PGE2, IL-6, and IL-8. Suppression of IL-6 and PGE2 release by antioxidant 

treatments suggests that BDE-47-stimulated ROS play a role in the initiation of proinflammatory 

responses. BDE-47-stimulated ROS also activate the antioxidative transcription factor Nrf2, 

resulting in differential expression of antioxidant and detoxifying enzymes and increased GSH 

production. Pretreatment with the Nrf2 inducers tBHQ and sulforaphane suppressed BDE-47-

induced NF-kB activity and IL-6 release by stimulating Nrf2 activity, expression of antioxidant 

genes, and GSH production, suggesting the protective role of Nrf2 on BDE-47-stimulated 

inflammatory responses in human trophoblasts. The dotted lines represent relationships that are 

inferred, but are not shown in the present study. 
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