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CHAPTER I

Introduction

1.1 Background and Motivation

Common wisdom in the defense acquisition community states that an acquisi-

tion program should be structured around the following three questions, related to

product, process and organization (Winter, 2014):

1. What to buy?

2. How to buy it?

3. Who to buy it from?

However, if current programs are an indicator, then answering the fundamental ques-

tions often digresses, things do not go according to plan and unexpected or undesirable

outcomes result (Work, 2013; GAO, 2002). The structure and challenges of design

are a microcosm of acquisition. Leopold’s (1975) paper, “Should the Navy Design its

own Ships?”, discusses historical programmatic shortcomings and highlights a critical

point, “Clearly, proper organizational arrangements and communication among orga-

nizations involved in the design process are crucial factors which influence strongly the

resulting product.” The salient observation is that product, process and organization

are inextricably linked, and together determine the outcome of a naval design.
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The ability of an individual naval engineer to wholly comprehend and manage

this combined system was surpassed by 1865 (Brown, 1997). This has not stopped

most naval architects from formulating their own favored version of a technical de-

sign process, and though there has always been a grudging recognition that external

factors play a deterministic role few have attempted to codify them. Andrews (1981)

did incorporate them in his variation on the design spiral, a cone, with the addition

of constraints pushing on the design from the outside, including “...wider constraints

on the environment in which the designer functions.” These constraints have always

been ill defined, yet “Any discussion of the ship design process which neglects the

limitations imposed by the constraints on the designer is unlikely to provide a real

framework for designing ships in the future” (Andrews, 1981). A 19th century Con-

troller of the Royal Navy said, “I hardly know of a case in which we have built a ship

in the manner we should liked to have built it,” and not much has changed (Brown,

1997). This problem is not limited to naval design, “Large-scale engineered systems

are more than just a collection of technological artifacts: They are a reflection of the

structure, management, procedures, and culture of the engineering organization that

created them, and they are also, usually, a reflection of the society in which they were

created”(Leveson, 2002).

The discipline that bears the standard for this viewpoint is Systems Engineering

(SE), “an approach to creating executable solutions to complex real world prob-

lems” (Winter, 2014). Systems Engineering relies heavily on the principles of systems

thinking, mainly focusing “...on systems taken as a whole, not on the parts taken sep-

arately. It assumes that some properties of systems can only be treated adequately

in their entirety, taking into account all facets relating the social to the technical

aspects”(Leveson, 2002). Good systems engineering is considered key to success, but

it is not a guarantee. Accounting for the complex interactions inherent in systems

design does not necessitate understanding them or their implications, either at a mi-
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cro or emergent level. Systems engineers have framed the problem, but lack the tools

to represent and analyze the entire combined system of product, process and orga-

nization. The Systems Engineering V is a process that has been developed through

experience (i.e. trial and error); when followed the chances of success are increased

but not predictable. Experience is highly valued, but avoiding the failures of the past

is not the same as predicting the failures of the future.

What is needed is a mathematical framework capable of representing the many

different domains of design in context, providing an opportunity for analysis and

understanding before commitment. Such a framework must function with only low

fidelity inputs, all that are available in early-stage design. A focus on the early-stages

is critical because the “wicked” problem in design is requirements elucidation, finding

the set of requirements that can yield a materially feasible and affordable solution

(Andrews, 2012). This is the most influential stage of design, and understanding

the complete problem is necessary for proper requirements elucidation (McKenney,

2013).

Design can be viewed as the act of generating information for decision making. It

consists of people using methods and tools to generate and exchange specific pieces of

information in a process. The process is part of an approach, such that information

collects in context to form sets, from which decisions are made. McKenney (2013)

provided much needed clarification to the terminology of design:

• Design Approach: The overarching guiding principles of a design effort

• Design Process: A series of structured steps to implement the design approach

• Design Method: The way in which design alternatives are understood, analyzed,

and selected for a particular approach and process

• Design Tool: [Supports design methods by providing information for designer

decision making, typically by automating mundane tasks]
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McKenney notes that over reliance on design tools can lead to misunderstanding the

complete design problem. It is a short logical jump to say that understanding design

tools can predicate the outcome of requirements elucidation, which predicates the

solutions generated, which predicate the success or failure of the design effort, which

predicates the success or failure of an acquisition program as a whole. The lowly

design variable is transformed into a monumental acquisition decision point by the

context of the intermediate process and organizational structure. Comprehending

and understanding these contextual relationships is only of value a priori, as lead

indicators.

1.2 The Present Study

1.2.1 An Application for Network Theory

It is not a new thought that certain elements of design have more in common

with the social sciences than engineering, yet a common framework must adequately

represent the social, technical and temporal elements together in a mathematically

rigorous way (Andrews, 1981). Network theory, a field largely developed within and

for the social sciences featuring current developments from physicists focusing on the

temporal and mathematical roots resting with Euler (1741) provides such a basis

(Holme and Saramäki, 2012; Euler, 1956). It is of lesser value to the practicing engi-

neer to represent and analyze the conglomerate of product, process and organization

when a design has concluded, as the results are already plain to see. Any new repre-

sentation must be constructable prior to beginning a design effort, meaning only the

most basic information, the existence of relationships between problem components,

can be counted on. Minimally a network is a set of points joined together by lines,

and its mathematical treatment is irrespective of what it represents. The fidelity

required to use networks matches that available in early-stage design.
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1.2.2 Current Research Scope

Three broad problems have been identified:

• The complexity of naval design has gone beyond the limit of individual com-

prehension. It spans social and technical domains which must be represented

together for context.

• It is ineffective to judge and analyze success at the end of design. Early-stage

design is the most influential, and must be evaluated in advance.

• Many failures occur because incomplete information is available when decisions

are made. Reliable outcomes depend on knowing whether sufficient information

will be available when decisions must be made.

The problems can be restated as three research questions:

1. Can the structure of design (approach, process, methods, tools and organiza-

tion) be accounted for?

2. Can a design be understood without designing anything?

3. Can the impact and timing of information be understood in advance?

The scope of this thesis is to address these questions by introducing new methods

rooted in network theory — a simple and easily comprehended mathematical frame-

work capable of representing design in all its esoteric forms. Addressing these ques-

tions represents a paradigm shift away from the classic a posteriori “How do we make

this structure better?” to an a priori view, “How will this structure function?” The

paradigm shift requires prognostic methods operating with only the most basic in-

formation to produce lead indicators. Approximate information becomes available

where no information existed before, and consequences can be predicted rather than

suffered.
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1.2.3 Contributions

This thesis broadens the application of network theory for naval design from the

analysis of physical systems to the general structure of design. It is the author’s

belief that this broader view is only valuable if the multitude of domains in play are

represented simultaneously. The local and emergent behavior of design is a function

of the context provided by the broader environment. The primary contribution of this

thesis is a network structure to represent this context, with supporting contributions

of methods for analysis and verification. The specific contributions addressing the

research questions are:

1. Can the structure of design (approach, process, methods, tools and organiza-

tion) be accounted for?

• Introduction of a contextual multipartite network approach to represent

the structure of naval design

• Application and extension of existing network mathematics to provide

meaningful predictive insight using multipartite design networks as inputs

2. Can a design be understood without designing anything?

• Recognition that algorithms for finding path lengths can be used to quan-

titatively capture all node to node influence across multipartite design

networks

– Formulation of path influence algorithms and network

weighting schemes, showing equivalency with first order Taylor series

expansions

– Introduction of interpretations for path influence results, comparable

with a full factorial design of experiments

6



– Development of a new metric, Winston centrality, enabling compar-

isons between path influence and other metrics

3. Can the impact and timing of information be understood in advance?

• Application of network diffusion to model continuous information flow

across a multipartite design network, effectively capturing classic flow prob-

lems in a closed form solution

– Development of metrics to quantify and interpret continuous informa-

tion flow across multipartite design networks

• Introduction of a discrete information flow equivalent of the path influence

algorithm, with requisite network weighting schemes

– Verification of the path influence algorithm using discrete event simu-

lation

– Extension of diffusion metrics for discrete information flows

– Testing of path influence and other metrics against more realistic dis-

crete event simulations

1.3 Organization of the Thesis

Chapter II discusses the areas of research that are similar or contribute to the

present study. Chapter III introduces basic network mathematics used throughout

the thesis, and introduces multipartite networks as a structure to represent multiple

design domains in context. The construction of two networks used as case studies

throughout the thesis are presented as examples. Chapter IV demonstrates that the

structure of design formulations alone provides information through network analysis

to be useful for the engineer in a new way. The results of analyzing two multipartite

networks are discussed, demonstrating not only their coherency but revealing the
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intent implicit in design formulations. Chapter V introduces network methods for

predicting the explicit behavior of design formulations, dynamic network behavior,

using fewer function calls than comparable non-network methods. A metric is also

introduced to compare static and dynamic methods. Chapter VI is the first step in

extending network methods to account for the temporal nature of design. This chapter

approaches the problem by modeling the flow of information across a design network

using an abstraction of Fick’s second law of diffusion, which assumes continuous

information flow. Chapter VII uses network methods and discrete event simulation to

model the flow of information across a design network, meaning information transfer

at discrete points in time. General concepts and metrics from Chapters V and VI are

adapted for the discrete case. The results of previous chapters are then tested against

those for discrete time. The importance of hierarchy and the multipartite structure

for capturing discrete flow behavior is discussed.
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CHAPTER II

Related Research

The purpose of this chapter is to present similar and overlapping research to this

thesis. This allows the current research to be placed into context and its unique

attributes to be better appreciated. The difficulty of searching for similar work in

network theory and design is greatly exacerbated by the number of unique fields of

study utilizing both, wittingly or unwittingly, with their own terminology and specific

applications. This section represents the author’s best effort to find and present

those topics and references of most import. No synopsis of the general nature and

approaches to naval design is provided, but an excellent one can be found in McKenney

(2013). Readers unfamiliar with network theory may wish to read Section 3.1, defining

the basic terminology, before this chapter.

The first subject of discussion is Design Structure Matrix (DSM) methods, Sec-

tion 2.1, because they are the closest parallel to the current research. The DSM in

its simplest form is actually the adjacency matrix of a network. The sections fol-

lowing will reference DSM methods because many of the fundamental concepts are

similar. Section 2.2 introduces the use of networks in ship design, highlighting how

ship designers have thought in network terms for a long time but have only recently

discovered the underlying powerful mathematics. Section 2.3 then introduces the

many varied applications of network like concepts to general design. Section 2.4 dis-
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cusses design space exploration and design of experiments, highlighting the difference

between proactively comprehending structure and retroactively measuring outcomes.

A brief summary concludes the chapter.

2.1 Design Structure Matrix Methods

A popular commonality between network theory and the design world are the

Design Structure Matrix (DSM) methods pioneered by Steward in the 1960’s. His

original work appears in a General Electric company document which does not seem

to be publicly available, but his subsequent book or IEEE paper are often cited as

the origins of DSM, which he expanded upon in later publications (Steward, 1981b,a,

1991, 1993). A symmetric DSM implies either an undirected or bi-directional network,

whereas an asymmetric DSM implies a directed network. Similarly, the operations

performed on DSMs such as clustering have network equivalents as well (Browning,

2001). Interestingly, little visualization beyond the matrix representation of DSMs

appears in the literature until recently, though Steward actually drew networks in his

original paper as shunt diagrams when describing the procedure for tearing (Steward,

1981b). The recognition that networks are the foundation of DSMs has only recently

been emphasized in the literature. Eppinger and Browning (2012) state that “The

DSM is a network modeling tool used to represent the elements comprising a system

and their interactions, thereby highlighting the system’s architecture (or designed

structure).”

Browning identifies four main types of DSMs: system architecture, engineering

organization, scheduling and parameter-based. The parameter-based DSM is of par-

ticular interest to the current research because it is “Used for modeling low-level rela-

tionships between design decisions and parameters, systems of equations, subroutine

parameter exchanges, etc”(Browning, 2001). A narrow application of the methods of

Chapters III and IV could be viewed as expanding the idea of parameter-based DSMs
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to entire design formulations, revealing the designer intent which predicates the solu-

tions generated. This was published in Parker and Singer (2013), but the structure is

substantially different. DSM research has focused almost exclusively on system archi-

tecture, organization and scheduling DSMs, leaving parameter-based DSM methods

an attractive area for new research (Yassine and Braha, 2003; Yassine et al., 1999;

Sosa et al., 2007b; Kerns, 2011; Guenov and Barker, 2005; Eppinger and Rowles, 2000;

Doerry, 2009; Cooper et al., 2011; Black et al., 1990). If network methods were limited

exclusively to design tools, then parameter-based DSMs are the closest comparison.

A more recent definition of DSMs reduces their primary types to Product Archi-

tecture, Process Architecture, Organization Architecture and combinations of them,

termed Multidomain Architectures. Parameter-based DSMs are demoted to a sub-

type of process architecture (Eppinger and Browning, 2012). The new Multidomain

Architecture definition is an integration of the other three types into a larger struc-

ture through some variation of “domain mapping,” yielding work like that of Bar-

tolomei (2007); Maurer (2007); Danilovic and Browning (2007); Eppinger and Brown-

ing (2012). Bartolomei’s Engineering Systems Matrix (ESM) relates objects or phys-

ical artifacts of the system to other levels, such as political requirements, which are

originally represented in separate matrices. The ESM requires an existing or tem-

plate design environment from which to build. In his thesis, Bartolomei’s ESM was

constructed after the design process was complete, rather than being predictive. The

main contributions were to provide a structure for representing an entire engineer-

ing system in matrix form, and a methodology to populate the matrix. Maurer has

a similar thesis that predates Bartolomei’s, but is focused specifically on managing

complexity in design, describing a multiple-domain matrix (MDM) which is similar

in function to Bartolomei’s ESM (Maurer, 2007). Maurer focuses much more on an-

alyzing the structure of the dependencies modeled, noting that, “...many approaches

face the challenge of managing complexity in product development, but only a few
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focus directly on the structures implied in the system considered” and “A method-

ology focusing on the consideration of structures in product development seems to

be promising as an approach for enhancing the possibilities of the analysis, control,

and optimization of complex design”(Maurer, 2007). This thesis is in agreement with

the first statement, and largely with the second. However, enhancing the control

and optimization of complex design should only be attempted if it is well understood

in the first place. DSM research and methods are largely motivated under the old

paradigm, “How do we make this structure better,” rather than the paradigm this

thesis promotes, “How will this structure function.”

A pure DSM usually relates the elements of one domain to itself. The evolution

of the MDM or ESM allows the representation of links between different domains,

but work in this area is still tied to a matrix representation and matrix mathemat-

ics. DSM researchers have tried to incorporate more information into a visual matrix

structure, the result is matrices that may not be amenable to mathematical analysis

because multiple pieces of information reside within a cell (Kreimeyer et al., 2008;

Yassine et al., 2003a). To address this issue Kreimeyer et al. (2008) proposed another

modification to the MDM, demonstrating in matrix form a relationship between el-

ements in domain A & B through C, where C is conceivably a type of relationship.

This splits what was once two pieces of information in one cell into a matrix math

capable representation. This came at the cost of adding a new domain containing C

to the MDM. However, the structure of this expanded MDM inadvertently created

relationships that did not exist. The solution to this problem was to add yet another

domain to the MDM, further complicating the interpretation. The DSM approach to

handling multiple domains is motivated by a belief that only homogenous matrices

are coherent. “From a structural point of view, a system can be disentangled down to

a network-like model of entities and their relations. These entities can be of different

kinds, e.g. some entities in a process can be documents, while others can be oral
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information, and other again can be work packages. However, if many such kinds are

mixed, the network is incoherent”(Biedermann et al., 2013). The major divergence

of this thesis from DSM work is that multiple domains are represented in a single

network, and that this is, in fact, critical to understanding design as a whole. This

thought is developed in Chapter III as multipartite networks, a much simpler and

intuitive multidomain representation. This thesis can be considered an independent

response to Bartolomei’s (2007)’s question, “to what extent [are] existing social net-

work measures applicable when analyzing a heterogeneous network with components

from multiple domains?”

Applying MDMs of Kreimeyer et al.’s (2008)’s variety to larger systems yields an

exponential growth in the size of the matrix; common sense suggests there is a limit to

the amount of information that can be legibly presented or interpreted in matrix form.

Kreimeyer et al. (2008) also identified this shortcoming anecdotally, but experimental

results are mixed depending on which type of information is being sought. Generally

networks that are dense (meaning many edges) have been found easier to understand

with DSMs, while sparser networks are better represented as graphs (a synonym for

network) (Keller et al., 2006). Situations where the relative position of nodes, or

where path tracing is important are better represented with graphs (Keller et al.,

2006). In terms of populating the nodes and edges/arcs of a network, the experience

of ship designers leans towards a graph representation (Cooper et al., 2011). As

mentioned previously, a DSM is actually the adjacency matrix of a network, so either

representation can be converted to the other as the need arises.

In summary, DSM methods can be considered a design-specific mathematical sub-

set of existing network theory. DSMs have not been found that metricize the role of a

complete design formulation’s internal structure in affecting the outcome of product

development, either narrowly as parameter-based or more broadly. They have typi-

cally been applied to model product, process, or organization separately, though some
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success has been found through domain mapping to merge different types of DSMs

into one coherent system model. Other matrix-related design tools such as the House

of Quality and N2 diagrams share similar bounds to those discussed for DSMs, and

will not be specifically addressed. An excellent overview of current matrix methods

to manage design complexity and their relationship to graph theory can be found in

Lindemann et al. (2009).

2.2 Networks in Ship Design

The idea of representing a ship design through networks is not new. In many cases

the representation of the design is in the form of constraints or variable interactions,

which are shown as networks, though networks are not mentioned explicitly (Brown,

1986; Watson, 1962; Watson and Gilfillan, 1977). A good example is that of Brown

(1993b), who used the term “mesh” to describe ship design in general. There are cases

where networks are mentioned directly, but more often the term is used in associa-

tion with design activities, in some way relating or contrasting with the design spiral

(Laverghetta and Brown, 1999; Cooper et al., 2011). Cooper et al. (2011) describe a

large Navy effort to capture the ship design process, primarily using the commercial

software Plexus. They started their effort using DSMs, but found network represen-

tations easier to populate. Practitioners described the naval ship design process in

several workshops, creating the network and making it the only (and therefore most

accurate) representation available. Their nodes are design activities, whose basic re-

lations are defined by a product model. In essence, their model starts with a notion

of the product and works backwards. The current research starts with fundamen-

tal relationships within design formulations before any notion of the product exists,

more amenable to revolutionary design concepts. Similar in nature to Cooper et al.’s

(2011) work is the Design Building Block (DBB) approach introduced at IMDC in

1997 and championed in many other works by Andrews (Andrews, 2006). It is an
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academic vision of an ideal preliminary ship design process, although he does not

use the term Andrews’ illustration of the approach can be interpreted as a directed

network of design activities. The DBB approach has been implemented in software

form as a module of Paramarine, with each of the design activities corresponding to

analysis tools, but novice users of the software lack an understanding of the funda-

mental impact of model structure on the outputs. In summary, beyond the occasional

graphical representation of a network or a lead in to the DSM methods introduced

in Section 2.1, network concepts in ship design have not been further developed until

recently with one outlying exception.

MacCallum (1982) produced a paper for the first IMDC which could be consid-

ered a seminal work, though it has received little attention. With regards to design

tools, “The designer is restricted to the methods used by available programs and

very limited facilities are given to the designer to allow him to set up his own tests

and evaluations. Thus one of the key features of creative design is lost”(MacCallum,

1982). In other words, the choice of a formulation predicates an outcome. The ti-

tle of the paper “Understanding Relationships in Marine Design” hints at the intent

of MacCallum to better inform the designer about the formulations they use rather

than make a better tool. The dependencies between the parameters of a ship design

method were drawn as a directed network, where the arcs connecting them repre-

sented quantitative functional relationships. This enabled the network to be coded as

a design space exploration tool, where the “strength” of the arcs were generated to

represent the influence of characteristics over one another. The directed network was

fully recognized for what it was, but only as a visual. The underlying mathematics

were not network based. The paper was expanded upon by Whitfield et al. (2003),

adding a parameter-based DSM with the added wrinkle that both indirect and direct

dependencies could be represented. A genetic algorithm (an optimizer) was run on

the DSM to minimize the feedback loops. This is more like a process DSM and di-
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verges from the original paper and the current research by seeking to improve rather

than fundamentally understand the formulation. Chapter V of this thesis introduces

a concept similar to MacCallum’s arc “strength,” though a network algorithm is at

the core.

Justin Gillespie proved the applicability of networks to ship design layout prob-

lems in his thesis and other works by adapting the extensive constraint library of the

Intelligent Ship Arrangements (ISA) software program into a network representation.

ISA is a ship general arrangement tool that produces rational space allocation and

arrangements for designer review (Parsons et al., 2008). Explicitly demonstrated in

Gillespie’s work is how a network approach to a product layout yielded innovative

results not seen using other methods. He used computationally simple network math-

ematics to generate significant designer insight in a way ISA was not enabled to do,

and generated rational layouts in a fraction of the time (Gillespie et al., 2010, 2011;

Gillespie and Singer, 2011; Gillespie, 2012). The network methods provided different

solution mechanisms to the same problem while generating insight into how the tool

functioned, similar in concept to MacCallum (1982).

Of particular relevance to this research, Gillespie’s network generated designs

were baselined against ISA. In the process of doing so, he discovered designer intent

implicit within ISA. This discovery demonstrates that tool structure can have an

affect on the outcome of product development, and network theory can identify it. The

current research diverges from Gillespie’s work in that he focused on product structure

(creating designs) rather than formulation structure (creating information). Network

research into the development and understanding of physical product structures has

continued with other affiliated researchers (Rigterink et al., 2013).

Capitalizing on Gillespie’s insights, Parker and Singer (2013) conducted a case

study verifying that a network representation of a ship design tool was feasible, and

introduced a directed multipartite formulation suitable for representing such tools.
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Standard network metrics were applied to the case study, concluding that network

analysis can correctly identify what naval architects should intuitively understand

about a design tool, identifying design drivers, constraints and other structural fea-

tures. This work is included in Chapter IV, but with a broader focus on formulations

rather than tools.

2.3 Networks in Design Generally

Network drawings and the mathematics underpinning them have no specific tai-

loring to any particular field or application. Researchers and practitioners have been

using them under many different names for quite some time. The following sections

highlight some of the more relevant examples.

2.3.1 Design Information Flow and Timing

Steward’s (1981b) original Design Structure Matrix work aimed to show how in-

formation flowed during design among other things. Design can be defined as the

act of generating information used for decision making, so almost every topic in this

chapter relates in some way to information flow. Chapter VI introduces a network

model of continuous design information flow as function of time that has not been

found elsewhere, but discrete information flow is more realistic and much more com-

plicated to represent. Baldwin et al. (1999) created an extensive data flow diagram of

a construction project that was transformed into a process DSM for standard analysis,

but the real contribution was a three-phase discrete event simulation. The simulation

was motivated by the need to measure the impact of missing information, assumed

information, and the timing of information availability. Baldwin et al. (1999) claims

that techniques other than discrete event simulation are incapable of producing this

information, and in the narrowest temporal sense they may be right. However, there

are researchers that have produced similar results without discrete event simulation.
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Yassine et al. (2003b) provides a good example of this, using a combination of DSMs

and state space models to account for the asynchronous timing that results in “design

churn.” Smith and Eppinger (1997a) presents a model to account for and estimate

the duration of iterations within coupled design tasks using a weighted abstraction

of a DSM, a dynamical system analogy where the Eigen values and vectors are the

primary output.

Research into the timing of design information such as Baldwin et al.’s (1999),

Yassine et al.’s (2003b) or Smith and Eppinger’s (1997a) are worthy of their own, if not

multiple theses. A member of the present committee cautioned about over ambition

on this front, a caution well justified. Baldwin et al. (1999) sought to create an

extensive generic process model for construction projects, but recognized that every

project would require changes to the model. This is representative of all three methods

— they are homogenous in nature and require significant specialized definition and

setup. This thesis advocates heterogeneous networks and lead indicators, meaning

a minimalist setup, and no improved process or structure is advocated. Chapter VI

introduces a continuous information flow model, and Chapter VII a discrete one.

The distinguishing point about these methods is not their capability to measure the

effect of timing in design, but that they operate on the same heterogeneous network

structure that is the basis of all the methods in this thesis. A representative network

is created one time, and built upon to produce multiple different lead indicators.

2.3.2 Information Flow in Other Fields

Information flow means many different things, and network methods have been

developed in other fields, especially software and telecommunications, to solve spe-

cific problems. A good example is Ahlswede et al. (2000), who used the concepts of

maximum flow and minimum cut set to determine the admissible coding rate region

between multiple independent sources and a receiver. Daly and Haahr (2009) used
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network measures to identify improved data routing schemes for mobile networks

where nodes were not continuously connected. Both papers used homogenous net-

works, but the mathematics presented could provide useful analogies in the future

study of design networks.

2.3.3 Statistical Properties of Design Networks

The statistical properties of large scale product development networks have been

studied using network theory. Braha and Bar-Yam (2004b) used large real world ho-

mogenous product development networks to develop insights about degree distribu-

tions, number of connections a node has, compared with other product development

networks. Though they studied homogenous networks the potential importance of

interplay between domains was recognized, “...there is a strong association between

the information flows underlying the PD task network and the design network com-

posed of the physical (or logical) components of the product and interfaces between

them.” The statistical properties of networks are not in the scope of this thesis,

but larger heterogeneous networks could be studied in the same way. Batallas and

Yassine (2006) built on the work of Braha and Bar-Yam (2004b,a) by adding DSM

methods and applying other network metrics to identify critical nodes that broker

information in the process. A mega team of these highly connected nodes is recom-

mended to be formed to improve information exchange and knowledge retention over

multiple projects. The applicability of network theory to study large organizations

is supported, noting that the number of people involved in the development of the

Boeing 777 was on the order of 17,000. The work is insightful, but like most DSM

applications it uses a homogenous network. The concept of brokerage is represented

differently in Chapter III using nodes providing context between different levels of a

heterogeneous network.
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2.3.4 Change Propagation

Change propagation data from large design activities has been studied extensively

using network methods. Pasqual and de Weck (2012) and Pasqual (2010) analyzed

the relationships in an organization between people, design teams and design artifacts

to metricize those that absorb change, multiply change, carry change, are receptive

to change, resist change, etc. Their data set included the outcome of engineers’ indi-

vidual change requests, so they then inferred a metric which evaluated an individual

engineers’ innovative capability. “By contrast, the 10% of engineers with RPAR < 1

struggled to get changes accepted by relatively receptive areas. These engineers may

not be quite as innovative or systems savvy, and might benefit from additional train-

ing”(Pasqual and de Weck, 2012). In this author’s opinion, it is not good science to

infer a specific individual’s complex sociological status from a metric derived statisti-

cally from a large population, especially when the data set involved was not collecting

sociological information. This highlights the danger in applying what is commonly

thought of as a social science to engineering applications; the mathematics translate

easily but the meaning of the results do not. A network measure must be put into

context with the network it is used to describe. This being excepted, their work is

very insightful in how networks can be used to analyze change propagation, and many

of their created metrics are promising. Change propagation research helps inform the

current research by demonstrating the application of networks to new fields, and pro-

vides examples for deriving custom metrics. However, it is essentially product or

organization focused and is not predictive. “...It is unclear (and not within the scope

of this paper) whether sufficient data would have been available to reveal any action-

able trends in real time”(Pasqual and de Weck, 2012). Where change propagation

research analyzes static product or organization networks after design completion,

the current research analyzes networks to understand how technical, process and

organizational structure together affect future designs.
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2.3.5 Modularity

Modularity is actually a network metric itself, being used to describe the extent

to which a network is divided into minimally interacting groups of like nodes. It

is only natural then to try and apply network concepts to the growing interest in

product modularity and architecture. Sosa et al. (2007a) provide a very good discus-

sion of this subject in terms of component modularity, with great emphasis placed

on the varying dependencies between different physical components. They also focus

on the cascading of dependencies, which shares roots with the change propagation

research mentioned earlier. To capture the impact of dependencies on the product

level, they “...embed product-level requirements within “virtual” physical elements of

the product and treat these as any other physical product components”(Sosa et al.,

2007a). They include multiple types of dependencies (spatial, structural, material,

energy, information) by creating a component DSM for each one, and apply a variety

of modularity metrics to each dependency type. Their work again highlights the pri-

mary difference between DSM and the current research, homogenous vs. multipartite

networks. They create different networks for different dependency types, but all the

nodes in these networks are of the same type, a physical component.

2.3.6 Product Architecture

Wyatt et al. (2011) gave a more general discussion of product architecture, once

again referencing physical system layouts, and use some network concepts to create a

computational tool to aid in architecture design. Both Wyatt et al.’s (2011) and Sosa

et al.’s (2007a) work provides meaningful demonstrations of network applicability to

design generally, but both are limited to the study of physical products . In that

sense, there is much in common with Gillespie’s work. The current research diverges

primarily on this point, as no physical product is being modeled or analyzed.
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2.3.7 Bayesian & Neural Networks

When searching for literature involving networks and design, Bayesian and neural

network literature dominates the results. A concise overview of both with applications

to ship design was written by Clausen et al. (2001). The paper compares regression,

Bayesian and neural network models for the determination of principal dimensions.

The major distinction between Bayesian and neural network methods and the current

research is that they are primarily concerned with taking a valued data set and

predicting or calculating a valued output through the construction and tuning of a

network. In Clausen et al. (2001), the edges and arcs were statistically discovered

from a large as-built data set, rather than being specified ahead of time. A more

rigorous mathematical description of the capabilities of Bayesian networks was shown

by Shahan and Seepersad (2012), who used simulation rather than historical data to

tune their network. Their work further highlights that Bayesian network methods are

envisioned to be used as a design process, by demonstrating how the work can satisfy

some of the principles of set-based design as defined by Sobek et al. (1999).

Neural and Bayesian network methods are often used to mathematically con-

struct a design formulation rather than decode one. To construct such networks,

a designer must select appropriate inputs and outputs, implying a priori knowledge

about the existence and appropriateness of links between them. The current research

is concerned with generating (and predicting) that knowledge based on fundamental

relationships within existing formulations. An example of how the two methods could

work together would be to use the current research to better formulate the inputs

and outputs to a Bayesian or neural network using a common set of nodes, noting the

existence of particularly strong relationships. Once the Bayesian or neural network

model is created, its statistically derived relationships could be verified against those

noted previously. If the results agreed, the designer has more confidence that the

formulation will utilize relevant information and behave as expected.
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2.3.8 Product Optimization & Design Problems

So far, it has been shown that network analysis has been used very broadly in

the description and analysis of design processes, organizations and products. There

is another area also being explored, where network analysis is a major part of solving

well formulated design problems. Devendorf et al. (2010) used a 16 variable con-

tinuous multi-objective optimization problem for a case study . The variables were

divided among five designers with individual objective functions. The convergence

time, or transient response, for solving each variable was recorded. Then network

analysis, mostly centrality, was used to identify and rearrange the solution process to

reduce the overall convergence time. DSM’s are used as the first visualization, with

actual network representations also being shown. This work could be considered an

example of a parameter-based DSM, with some network metrics being used to further

optimize the solution process. Subsequent work by the same authors on the same sub-

ject (distributed design process architecture) dropped all mention of network theory

(Devendorf and Lewis, 2011).

The concept of using networks to visualize and aid in problem solving is not new,

networks being a common representation of linear programming problems (Bertsi-

mas and Tsitsiklis, 1997). Michelena and Papalambros (1995) used some network

reliability concepts to optimally decompose multi-objective structured partitioned

optimization problems. Along similar lines, Shai (2003) transferred an engineering

problem into a graph theory representation, which can then either be solved directly

or transformed into a form with a known solution process in another engineering

discipline.

These works are used different types of network theory to directly solve product

focused engineering design problems, or aid the process of doing so. The current

research is operating on a macro level comparatively, analyzing the structure of the

formulations used to generate these specific problems.
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2.4 Design Space Exploration and Design of Experiments

Design space exploration is similar to Design of Experiments in that the primary

purpose is to correlate valued inputs to valued outputs. When studying well posed de-

sign problems, design space exploration is often used to correlate an outputted feasible

region to inputs, without necessarily understanding the “how” of the link between the

two. This is evident from the use of Pareto fronts, meta-models, response surfaces,

etc. These results are lag indicators, meaning that they are generated post process.

An appropriate analogy is the marionette. Design space exploration correlates the

movements of the puppet with the position of the control bar, while the strings be-

tween puppet and control bar are left unresolved. Deb et al. (2014) diverges slightly

from this definition by trying to reverse engineer the relationships between problem

components, solving for a Pareto front and then creatively examining the variables

that define the optimums. This approach still qualifies as a lag indicator, watching

the puppet show and then trying to figure out how the strings are connected. Design

of Experiments (DOE) is a set of statistical methods in which an engineer or scientist

can quantify and understand the errors and inferences resulting from an experiment.

A DOE can be used to quantify and increase the accuracy of the correlations found

in design space exploration by guiding the sampling of the design space. An example

of a more typical implementation that mixes design space exploration, DOEs, opti-

mization and meta-models can be found in Diez et al. (2013). The current research is

not focused on lag indicators, but using fundamental structure to generate preprocess

or lead indicators. The analogy is to look at the strings before the show, knowing in

advance what the marionette can and cannot do. Chapter V introduces a network

version of design space exploration, but utilizing the fundamental structure. A DOE

is used to validate the lead indicators produced by the network method, but overall

the current research is inherently preprocess or lead indicator focused.
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2.5 Summary

The purpose of this chapter was to give a general sense of similar and overlap-

ping research to that of this thesis. This allows the current research to be placed

into context and its unique attributes better appreciated. There has been significant

research, some of it network related, into the structure of design products, processes,

and organizations, as well as analogous network research in other fields. The distin-

guishing characteristics of this thesis include a focus on understanding rather than

improvement, recognizing that the structure of a formulation will have an impact on

the outcome. The second distinguishing feature is that a design’s logical structure,

process and organization can be represented and analyzed together in a heterogeneous

network. Symbolically, if the goal of design is to put an arrow in the bullseye, then

process research investigates the ballistics of the arrow through its flight, accounting

for wind, range, angle and power. Organizational research tries to place the archer

in the best location to make the shot and product research has made the bullseye as

large as possible and optimized the bow and arrow themselves. But what has gone

largely unaddressed is that it is the complete integration of archer, bow, arrow and

environment which ultimately predicates the possibility of success or failure.
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CHAPTER III

Network Methods & Construction

This chapter introduces network terminology and mathematics common to the

remaining chapters with Section 3.1, and then discusses the creation of multipartite

ship design networks in Section 3.2. Representing design and acquisition structures

as context based multipartite networks is one of the unique contributions of this

work, and is fundamental to the analysis methods discussed in subsequent chapters.

The specific construction of two multipartite ship design networks is discussed in

Sections 3.3 and 3.4, both of which are used as test cases in later analysis.

3.1 Terminology and Essential Mathematics

Network theory and graph theory are essentially the same, with mathematicians

typically preferring graph theory terminology and the social sciences preferring the

network equivalents. A network is defined as a finite set of n elements called nodes

and a set of m lines that connect pairs of nodes. If a line has a direction, it is

referred to as an arc, if it is directionless, or bidirectional, it can be referred to as

an edge. Typically, a network containing edges contains no arcs, and vice versa. A

network containing only arcs is called a directed graph, digraph, or directed network.

This research makes extensive use of directed networks, and unless otherwise noted

a directed network is assumed.
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3.1.1 The Adjacency Matrix

The adjacency matrix, A, is an n×nmatrix representing them arcs in the network.

Entry Aij of the adjacency matrix represents the arc running from node i to node

j. This notation is not consistent across the literature. The notation adopted here

is consistent with very common Design Structure Matrix (DSM) literature (Brown-

ing, 2001), but inverted from the main network references this research draws upon

(Gillespie, 2012; Newman, 2010). It is more natural to the naval designer to say i

influences j, rather than j is influenced by i. Mathematically there is no difference;

converting between notations requires merely the transpose of the adjacency matrix.

In an undirected network, the adjacency matrix is symmetric as each edge is bidirec-

tional thus Aij = Aji. In an unweighted network, i.e. each arc is of equal importance,

the existence of an arc from i to j is denoted by a 1 in the adjacency matrix. In a

weighted network, the existence of an arc is signified by a non-zero value denoting

the arc weight. Some types of networks allow for a self edge or arc, Aii 6= 0. This

research does not require the existence of self arcs so the entries along the diagonal

are equal to 0. In DSM visualizations, the diagonal elements are often presented with

no value, but are shaded in. A simple directed network and its adjacency matrix are

shown in Figure 3.1. This is a digraph of the 2011 NCAA college football schedule

within the Big 10 conference. Each arc is a game played, with the arrow pointing

towards the loser, i.e. Michigan was victorious over Ohio State.

3.1.2 Centrality

The most basic network metric is degree centrality. The degree of a node is the

total number of edges or arcs connected to it. A directed network requires more

specificity, where in-degree is the total number of arcs directed at the node, and

out-degree is the total number of arcs the node is directing. These metrics can be

calculated by summing over the columns or rows of the adjacency matrix respectively,
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(a) 2011 Big 10 Football Network

A =



0 1 1 0 0 1 1 1 0 0 1 1
0 0 0 1 0 0 1 0 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 1 1 1 1 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0


(b) 2011 Big 10 Football Adjacency Matrix

Figure 3.1: 2011 Big 10 Football

yielding vectors kin and kout containing an entry for each node.

Degree centrality evaluates nodes as if they exist in isolation, or can be decoupled

somehow from the network. Though informative, a lot of information contained in the

network is not represented using only degree centrality. In naval design, considering

only degree centrality might show the direct importance of one aspect of design, but

neglects the indirect influences that cause cascading changes. Park and Newman

developed a relatively new measure to college football, referred to herein as Park

centrality, which takes into account the relationship of each node to every other node

(Park and Newman, 2005). This is one creative way of addressing the limitations

of degree centrality. The idea is that a node’s ranking is increased from each node

it directly influences (out-degree), and a discounted increase for each node that the

influenced node influences and so on. At the same time, a node receives a decrease

in rank for each node that influences it (in-degree), and a discounted decrease for

each node that influences the influencing node and so on. Though the application

is new, Park centrality is actually a generalization of Katz centrality as shown in

Eq. 3.1 where w and l are the win (influencing) and loss (influenced) ranking vectors

respectively. Subtracting the loss ranking from the win ranking yields overall Park
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centrality as shown in Eq. 3.2.

w = kout + αAw → w = (I− αA)−1kout (3.1)

l = kin + αAT l → l = (I− αAT )−1kin

Park Centrality = w − l (3.2)

The parameter α is the discount factor, the weighting desired for indirect wins/losses.

However, α is limited to α < λ−1max if the result is to converge, where λmax is the largest

eigenvalue of A. In cases where the exact final eigenvalues are not fully known, i.e.

halfway through a season, a reasonable bound for α can be derived from an equivalent

randomly generated network. This yields the expression for α shown in Eq. 3.3.

α =
〈2k〉

〈k2〉 − 〈k〉
(3.3)

The full derivation can be found in Park and Newman’s work, though their no-

tation is different, requiring an opposite placement of the matrix transposition (Park

and Newman, 2005). As shown in Table 3.1, this ranking scheme accurately reflects

what was generally perceived as the Big 10 standings at the end of the 2011 season.

In analysis of the entire college football season for the same year, this simple ranking

scheme had the same accuracy as the AP Top 25 (88%), and took only seconds to

calculate. This accuracy is on par with Park and Newman’s results from an earlier

season (Park and Newman, 2005).

Another common measure of centrality is betweenness centrality. Degree centrality

and Katz centrality are measures of a nodes direct and indirect impacts on a network

from the standpoint that flow from the network is either emanating from, or termi-

nating at the node being evaluated. Consider these egotistical measures of centrality.
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Betweenness centrality is a measure of a nodes impact on flow between other nodes

in the network, hence betweenness. In naval design formulations, betweenness is one

way of representing how important a node is for transferring information between

other aspects which are not directly connected. As an example, engine rpm is only

connected to speed by acting through gear ratios in most naval vessels, showing the

importance of gear ratios in the selection of a prime mover. A design model which

yields no betweenness for gear ratios might be assuming a directly connected two-

stroke diesel. A frigate designer would want to follow up on that. Betweenness can be

calculated by quantifying the number of geodesic paths (shortest paths) between all

other nodes in the network that pass through the node of interest. Newman’s general

definition of betweenness centrality is shown in Eq. 3.4 (Newman, 2010).

xi =
∑
st

nist
gst

(3.4)

In Eq. 3.4, xi is the betweenness score of node i, s and t are the index values for all

other nodes in the network, nist is the number of geodesic paths from s to t that pass

through i, and gst is the total number of geodesic paths between s and t.

There are a few variations on how to calculate betweenness which may change the

magnitude of the metric, but not the ranking of nodes relative to one another. Some

measures include the reference node in the summation of geodesic paths, meaning

a connected node will never have zero betweenness. This work does not use this

definition, meaning s or t cannot be equal to i, and connected nodes can have zero

betweenness in certain circumstances. Several examples will be discussed in later

sections. The betweenness values shown in this work are computed by the software

Pajek , and most are then normalized over the lowest nonzero result (de Nooy et al.,

2005). Normalizing emphasizes that betweenness centrality is important as a compar-

ison across nodes, not necessarily as an individual attribute which may be important
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for other applications. Though nodes are used as the example, betweenness can also

be calculated for edges or arcs.

Betweenness results from the Big 10 2011 season show that Indiana has a score of

zero, this is expected because Indiana did not win a single conference game. All arcs

connected to Indiana terminate at Indiana so there are no paths connecting other

teams running through Indiana. All of the centrality measures discussed for the 2011

Big 10 Conference network are shown in Table 3.1.

Table 3.1: 2011 Big 10 Football Centrality Measures

Node # Team Out-Degree In-Degree w l Park Betweenness

1 Wisconsin 7 2 48.54 11.79 36.75 0.61
2 Purdue 4 4 13.85 20.28 -6.43 0.20
3 Penn St. 6 2 27.96 10.37 17.59 0.16
4 Ohio St. 3 5 18.40 24.78 -6.37 0.55
5 Northwestern 3 5 17.21 31.38 -14.17 0.82
6 Nebraska 5 3 40.85 18.29 22.56 1.00
7 Minnesota 2 6 10.19 34.91 -24.72 0.36
8 Michigan St. 7 2 49.56 10.37 39.18 0.33
9 Michigan 6 2 35.87 11.73 24.14 0.32
10 Iowa 4 4 22.64 24.59 -1.95 0.70
11 Indiana 0 8 0.00 55.68 -55.68 0.00
12 Illinois 2 6 6.79 37.70 -30.91 0.26

3.1.3 Similarity

Centrality measures can be somewhat anonymous. For instance, the fact that

Penn State and Michigan have identical in-degree and out-degree values does not

provide any information about which teams were played to yield this record. It is

obvious that there were differences, as the Park and betweenness centrality measures

are quite different. Direct observation of the adjacency matrix can reveal the specifics,

but that information can also be encoded in a similarity measure. Structural equiva-

lence is one type of similarity; two nodes are structurally equivalent if they have the

exact same set of relationships to the exact same set of other nodes. For example,

if Penn State and Michigan played the exact same teams during the season and the
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results of those games was the same they would be structurally equivalent. In naval

design, structural equivalence could mean that two nodes are involved in the exact

same set of calculations. This could signify a redundant unnecessary variable, or two

variables which should belong to the same discipline etc. One way to calculate struc-

tural equivalence is cosine similarity. The principle is the same as that of a vector

dot product. If the dot product between two rows or columns of the adjacency matrix

is 1, then the corresponding nodes are structurally equivalent for an undirected net-

work. For directed networks, the cosine similarity for in-degree and out-degree must

be calculated separately as either the column or row dot products, respectively. For

unweighted networks, all entries in A are either 1 or 0, out-degree cosine similarity

can be computed as shown in Eq. 3.5.

σijout =
Ai •Aj√
kioutk

j
out

(3.5)

In Eq. 3.5, σijout is the out-degree similarity, Ai is the ith row of A and kiout is the

out-degree of node i. In-degree cosine similarity is computed in the same fashion

using the columns of A rather than the rows.

3.2 Multipartite Networks

3.2.1 Design Context and a Multipartite Definition

This research uses a single network with multiple node types based on a hypoth-

esis that in complex product design, elements of a domain do not directly influence

one another, they must have context provided by another domain. As an example,

variables within a design tool do not directly influence each other, they must have the

context provided by a mathematical function. In naval architecture, length (L) alone

has no bearing on longitudinal strength, it is its relation to depth (D) that is com-
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monly used in early design. The L/D ratio is a function through which length and

depth relate. Again, when formulating a network an engineer might conclude that

length influences beam (B) for powering reasons, but that influence is routed through

the L/B ratio, a function which provides context. This insight leads one toward a

specific network structure, a multipartite network. A network is called r-partite (or

multipartite) if it is partitioned into r classes such that every arc or edge has its ends

in different classes: nodes in the same partition cannot be adjacent (Diestel, 2005).

Multipartite thinking is not new to engineering, but has been ill defined and narrowly

applied (Kreimeyer et al., 2008). The multipartite networks presented in Sections 3.3

and 3.4 accurately represent ship design methods, and as used in later chapters they

can also represent processes and organizations, in hierarchy, context and fidelity. The

author argues that the multipartite representation is an accurate reflection of how de-

signers think. Thus, a multipartite representation is one possible way of increasing a

designer’s understanding of the methods they use and the processes and organizations

they are a part of.

3.2.2 Contrast with Similar Methods

A multipartite structure can be projected into a homogeneous network, called a

one mode projection. In standard network theory multipartite networks are typically

used to show a node’s membership in a group. All nodes belonging to the same group

will have an edge to the same node of another type which defines the group. In

this form, an incidence matrix substitutes for the role of an adjacency matrix, and

is defined with dimension g × n in Newman’s notation, where g is the number of

groups and n the number of nodes belonging to groups (Newman, 2010). One mode

projections are easier to analyze, so methods of weighting the edges to retain some of

the information of the full network have been developed (Newman, 2010; Zhou et al.,

2007). However, it is not possible to recreate the full multipartite network using only
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the information available in the one mode projection, and representing grouping is

not why multipartite methods were chosen for this research. As a result, this thesis

does not make use of the incidence matrix or the one mode projection techniques

common to existing theory.

The reason that Multi-Domain Matrices of the Design Structure Matrix world

have such complicated transition rules is that they essentially start from a one mode

projection and then attempt to add context to build up a larger structure. As DSM

researchers have attempted to correctly map these different homogeneous domains to

one another, the resulting matrix representations have been increasingly cumbersome

and complicated as described in Kreimeyer et al. (2008). Avoiding this mistake, a

fundamental property of the current research is that multipartite networks are created

with all the a priori nodes and context available from the start. Separate homogeneous

networks cannot be used independently, or easily, to capture the context provided by

a multipartite network. Fig. 3.2 demonstrates this visually using the basic naval

architecture relationships described earlier. The multipartite network on the left

naturally provides context, while its associated one mode projections on the right do

not.

3.2.3 Application to Design Networks

Design tools in the classic sense are simply design formulations or methods that

have been automated to remove tedium from the human role, but their underlying

logical structure is identical in nature to that of design and acquisition. The name of

nodes differs but not their context or the interpretation of their function. The common

structural makeup is important, as it allows concepts to be developed and tested on

smaller formulations that remain applicable to larger ones. This thesis uses design

methods as case studies to test the contributions, but is not a specifically method

or tool focused thesis. The literature supporting the methods and their quantitative
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Figure 3.2: Multipartite Network Example and Associated One Mode Projections

outputs allows the network metrics to be compared with reality, meaning their value

as predictors of formulation behavior can be shown. This would not be possible for

case studies derived from design or acquisition programs at large.

Converting a design tool or method to a multipartite network is relatively simple.

For the purposes of this research a design tool or method is any systematic formula-

tion an engineer might use to manipulate or analyze a design. With this definition, a

physics based model, an empirical model, or a black box piece of software all equally

qualify. At the earliest stages, an engineer might have a simple regression model to

determine basic parameter ranges. This model might have a list of variables, require-

ments, functions and design disciplines with which to group them. Design Structure

Matrix methods would typically represent each of these in a separate matrix, meaning

a separate network. These separate networks are in effect one mode projections of a

larger multipartite network. The following two sections document the creation of such

a multipartite network from two different design formulations. This allows designers

to think about different problem components in context and with all the a priori
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information available, avoiding the decoupling that results in a loss of information.

3.3 Watson & Gilfillan Tripartite Network Construction

The metrics presented in Section 3.1 and the context based multipartite network

formulation of Section 3.2 were first tested on an abbreviated network representation

of the classic Watson & Gilfillan ship design method, the complete results of which

are presented and discussed in Chapter IV (Watson and Gilfillan, 1977). The word

method is used as opposed to the word tool because the paper described a design

approach based on regression equations and first principles that was not automated.

“Methods” also appeared in the title of the paper. To construct the network for

analysis a set of relationships were modeled from formulae or presumed functions of

the paper, either as printed or derived from printed charts. Terms involving cost were

not available from Watson & Gilfillan, and were taken from the NA 470 cost spread-

sheet used for instruction at the University of Michigan. The three node types of the

network are variables, functions and disciplines. The relationships between variables,

their defining functions and the disciplines involved are shown in Table 3.2. There are

a total of 51 nodes in this network, 28 variables, 17 functions and 6 disciplines. The

function to variable relationships are well defined in the source paper. The discipline

groupings are the judgment of the author, with guidance from the organization of

the source paper. Since there are three different node types being represented, the

network is tripartite. Once the relationships between nodes were assigned, each node

was given a number. An arc list, containing the ordered pairs of nodes for each arc

was then constructed from the node numbers. With software (it can be done by hand)

this arc list was used to create the adjacency matrix. In this case, the arc list was

input directly into the freeware network analysis software Pajek for visualization and

basic metric calculation. The Watson & Gilfillan ship design network as visualized

by Pajek is shown in Fig. 3.3. Both views are the exact same network, just displayed
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in different layouts. Of primary importance is that the formulae of the Watson &

Gilfillan method naturally form a multipartite network, the network structure was

not forced upon the method. This lends support to the idea that designers think, and

later write about their methods, in a multipartite manner.

Table 3.2: Watson & Gilfillan Network Nodes

Variable Defining Function Discipline

L
B f(L) Powering
T f(D) Rules/Safety Freeboard
D f(B,L) Stability/Seakeeping & Structures
V
Ct
s
l1
h1
l2
h2
RPM
∆ f(Cb, L,B, T, s) Ship Type
Cb f(L, V ) Powering & Ship Type
LCB f(Cb) Powering & Stability/Seakeeping
S f(Cb, L,B, T ) Powering
E f(L,B, T,D, l1, h1, l2, h2) Weights
C

′

b f(T,D,Cb) Weights
K
Ws7 f(E,K) Weights
Ws f(Ws7, C

′

b) Weights
Pe f(V,Ct, S) Powering
η
MCR f(Pe, η) Powering
Wme f(RPM,MCR) Weights
Structural Cost f(L,Cb,Ws) Ship Type
Machinery Cost f(MCR) Ship Type
Total Cost f(L,Cb,Ws,MCR) Ship Type
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(a) Circular Layout for Ease of Viewing

(b) Typical Tripartite Layout

Figure 3.3: Watson & Gilfillan Ship Design Equation Network
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3.4 Sen Bulker Problem Multipartite Network Construction

The dynamic network structural analysis methods discussed in Chapter V were

best demonstrated on a test network representing a complete ship design problem

amenable to optimization. The design formulation selected to create the test network

is a principal dimension evaluation for bulk carriers developed by Yang and Sen

(1996) and expanded upon by Sen and Yang (1998). The case study, referred to

as the Sen Bulker problem, has three objectives. The objectives are minimization

of transportation cost (f1), minimization of light ship mass (f2), and maximization

of annual cargo (f3), dependent on a set of equations which can be organized into

11 levels that build upon each other as shown in Eqs. B.1 to B.30, and a set of

constraints Eqs. B.31 to B.43. Six variables, six parameters and six constants are

shown in Tables B.1 to B.3 which complete the model definition.

To construct a network from the Sen Bulker problem, each parameter, variable,

function and constraint becomes an individual node. There is an arc between each

variable/parameter node and the function(s) in which it is a term. Similarly, functions

can be terms of other functions, which are also represented as an arc. Once this base

network was constructed, it was partitioned into a multipartite network. This was

accomplished by ordering the nodes such that all arcs pointed in one direction, forming

the 11 levels of functions with each level dependent only on the levels preceding it

as shown in Appendix B. Each level is naturally a layer in a multipartite network,

as there are no arcs within a level. This is a further demonstration that multipartite

networks are amenable to how engineer’s structure design problems, and thus the

methods to analyze them, reinforcing the conclusions of Parker and Singer (2013).

The network is shown in Fig. 3.4 and consists of 59 nodes and 95 arcs. Each color

represents a unique level, 13 in total when the variable and constant/parameters levels

are included. The arc list for this network can be found in Tables B.4 and B.5.

Though constraints are dependent on variables, parameters and functions, all
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represented by arcs toward constraints, the problem formulation contains no explicit

feedback from the constraints to the rest of the problem. These interactions are

optimizer rather than formulation dependent, an important distinction. A second

version of the Sen Bulker network was created to represent the impact of constraints

on the rest of the problem, meaning bi-directional arcs. The test case network with

bidirectional arcs will be denoted as the ↔ network when discussed.

Figure 3.4: Sen Bulker Multipartite Network

Several other versions of a multipartite network were created from the Sen Bulker

problem, the differences being the number of node types and the manner in which

constraints were handled. The largest version included separate node types for the

exponents and coefficients within functions and constraints, allowing for potential

insight into the impacts beyond variable/function interaction. This larger network

was not used in an effort to control the scope of the thesis, but it does show that there

is great flexibility in how networks are created and their level of fidelity, even at the

earliest stages of design. Though there are many possible network representations of

the Sen Bulker problem, none is more or less correct than another. Every network
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derived as outlined is an accurate representation of the problem structure.
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CHAPTER IV

Static Network Structural Analysis

The purpose of this chapter is to demonstrate that the structure of engineering

formulations alone provides information through static network structural analysis

that can be useful in a new way. One of the major novel contributions of this thesis

is the introduction of multipartite networks to model design dependencies in context.

Sections 3.2 to 3.4 explained the logic behind and construction of multipartite net-

works for design, but the proof is in the pudding. This chapter displays and discusses

the results of analyzing multipartite networks, demonstrating not only coherency,

but usefulness. These results contradict the claims of practitioners in other fields

that advocate for homogenous networks (Biedermann et al., 2013; Maurer, 2007).

Static structural analysis means that only the structure of the network is being

analyzed, not the information carried on the network. This type of analysis can

be used on any network, meaning that what has been shown to work for design

networks can be applied to acquisition structures at large. A benefit of using design

formulations as test cases is that they exist prior to the formation of a process or

organization, and long before a finished product emerges. For instance, if a ship is to

be designed then a set of variables and the existence of relationships between them

is known to exist simply by the existence of suitable design formulations. This is

especially true if design organizations utilize tools or models like ASSET or Holtrop
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and Mennen, with well defined functions and variables (NSWCCD, 2005; Holtrop

and Mennen, 1982). Without an explicit understanding of how these formulations

function, how is the engineer to know how they will influence the final product?

A network representation of these design formulations, and other known or guessed

relationships, can inform an engineer about design drivers, constraints, conflicts and

general structure without performing a single design calculation, and without having

to deeply study each one. A complete understanding of the minutia of every formu-

lation used is ideal, gained through training, experience, and maybe even reading the

user manual. Reality suggests that this is often not the case and is not likely to be.

When new tools are under development, training, experience or manuals may not

even exist. A network representation and analysis can provide an intermediate level

of understanding when the ideal is not achievable.

Section 4.1 presents and discusses the results from analyzing the Watson & Gil-

fillan network described in Section 3.3, including perturbation analysis, and is an

adaption of the PhD prospectus and a published conference paper (Parker, 2013;

Parker and Singer, 2013). Static structural analysis was also conducted on the Sen

Bulker problem network, primarily to verify the Watson & Gilfillan results, and is

discussed in Section 4.2. Conclusions and contributions form Section 4.3.

4.1 Watson & Gilfillan Static Structural Analysis

4.1.1 Centrality Results

Four centrality measures were calculated for the Watson & Gilfillan network’s

nodes as outlined in Section 3.1, Park, out-degree, in-degree and betweenness. The

results, sorted by node number are shown in Tables 4.1 to 4.3.

Significant insight can be gleaned from centrality, and example of which can be

found by studying the results for length (L). It can be concluded that length is
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Table 4.1: Watson & Gilfillan Variable Centrality Results

Node # Node Park Out-Degree In-Degree Betweenenss

1 L 30.64 8 0 0.00
2 B 12.18 4 1 0.31
3 T 8.70 4 1 0.51
4 D 8.59 3 1 0.47
5 V 9.97 2 0 0.00
6 Ct 3.16 1 0 0.00
7 s 2.07 1 0 0.00
8 l1 2.92 1 0 0.00
9 h1 2.92 1 0 0.00
10 l2 2.92 1 0 0.00
11 h2 2.92 1 0 0.00
12 RPM 2.07 1 0 0.00
13 ∆ -5.34 0 1 0.00
14 Cb 12.70 6 1 0.41
15 LCB -2.12 0 1 0.00
16 S -1.64 1 1 0.80
17 E -4.07 1 1 0.61
18 C

′

b -1.30 1 1 0.41
19 K 2.99 1 0 0.00
20 Ws7 -0.83 1 1 0.58
21 Ws -0.39 2 1 0.77
22 Pe -0.13 1 1 0.94
23 η 3.83 1 0 0.00
24 MCR 3.00 3 1 0.91
25 Wme -2.98 0 1 0.00
26 Structural Cost -4.48 0 1 0.00
27 Machinery Cost -2.44 0 1 0.00
28 Total Cost -5.92 0 1 0.00
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Table 4.2: Watson & Gilfillan Function Centrality Results

Node # Node Park Out-Degree In-Degree Betweenenss

29 f(L) 8.32 2 1 0.01
30 f(D) 5.51 2 1 0.35
31 f(B,L) 6.11 3 2 0.27
32 f(L, V ) 8.88 3 2 0.22
33 f(Cb) 0.90 3 1 0.07
34 f(Cb, L,B, T, s) -6.12 2 5 0.17
35 f(Cb, L,B, T ) -3.44 2 4 0.83
36 f(L,B, T,D, l1, h1, l2, h2) -7.76 2 8 0.71
37 f(T,D,Cb) -2.91 2 3 0.48
38 f(E,K) -2.04 2 2 0.66
39 f(Ws7, C

′

b) -2.40 2 2 0.94
40 f(V,Ct, S) -1.52 2 3 1.00
41 f(Pe, η) 1.19 2 2 1.00
42 f(RPM,MCR) -1.71 2 2 0.26
43 f(L,Cb,Ws) -4.52 2 3 0.28
44 f(MCR) -0.71 2 1 0.20
45 f(L,Cb,Ws,MCR) -7.23 2 4 0.39

Table 4.3: Watson & Gilfillan Discipline Centrality Results

Node # Node Park Out-Degree In-Degree Betweenenss

46 Powering -17.69 0 6 0.00
47 Weights -23.19 0 5 0.00
48 Ship Type -20.25 0 5 0.00
49 Stability/Seakeeping -4.63 0 2 0.00
50 Rules/Safety -2.25 0 1 0.00
51 Structures -2.50 0 1 0.00
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a primary design driver for two reasons. First, it has the highest Park centrality

of any node (functions and disciplines included) in the network. This means that

the direct and indirect influence of length over other nodes in the network, minus

the amount to which length itself is influenced, is far greater than any other node.

Secondly, closer examination reveals that length itself is not influenced at all, its in-

degree and thus “loss” term for Park centrality are zero. By contrast, the out-degree

is eight, the highest of any node in the network. In terms of design, this means that

a change in length will have more and farther reaching impacts on other parts of the

design than any other change, whereas changes anywhere else will have no direct or

indirect impact on length. If an optimization problem were to be formulated using this

network, length could serve as an independent variable. What cannot be concluded

from these metrics is the magnitude of impact a change in length will have on other

nodes, only that an impact exists. Recalling that betweenness centrality is a measure

of a nodes impact on flow between other nodes in the network, it becomes obvious

that without non-zero in and out-degree centrality the betweenness score for a node

will be zero, as is the case for length. This reinforces the concept that length is an

independent variable, though with more nuance. Length is not required for coupling

between other nodes, though its removal from the network can still isolate flow to

nodes solely dependent on length, such as Node 29 (f(L)) and thus Node 2 (B, beam).

There are multiple ways in which a design can be “driven”, such as that shown

by length or the opposite, by constraining a design. By Park centrality, the most

influenced variable in the network was Total Cost, Node 28. It has no influence over

other variables with an out-degree of zero, and thus a betweenness of zero. If there

were constraints on cost, the network indicates the design could be highly sensitive.

In practice, this has proved to be exactly the case. The NA 470 Weights I spreadsheet

uses the same basic Watson & Gilfillan formulation. There are no cost inputs (i.e. zero

out-degree and betweenness) when students formulate their principal ship parameters
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using the Weights I spreadsheet. It is only when those parameters have stabilized

that cost is checked. If their cost value is deemed too high, they must restart the

entire process or fudge the cost number. The network indicates the addition of a

function that relates cost back to length within the Weights I tool might alleviate the

risk of this occurrence. This example is anecdotal, but changes in network structure

to account for such feedback have been shown to have major influence as discussed

later in Section 4.2.2.

The previous two examples of structural insight focus primarily on variables.

Looking beyond variables, Park centrality results show that the weights discipline,

defined by the author in the tripartite structure, is the most influenced node of the

entire network. By contrast, the structural and stability/seakeeping disciplines were

not as influenced as several functions, and even variables. This indicates that the for-

mulation is focused more heavily on the weight related aspects of design rather than

structural. This is a potential shortcoming. This was in fact a complaint noted in the

discussion section of the original paper, “At the technical level the paper has main

sections devoted to dimensions, displacement, form, powering, and so on, but nowhere

is there even a sub-heading for ship strength, much less structural materials”(Watson

and Gilfillan, 1977).

Comparative analysis across different node types should be undertaken carefully,

as there are complex interactions taking place. However, standard parameter-based

DSM methods would not have been able to characterize any of these cross node type

interactions because by definition they define homogeneous networks. This is impor-

tant, because to accurately model a complete design evolution multiple node types

must be considered as part of the total network. For comparison, a one mode projec-

tion of the variable network is shown in Fig. A.1 found in Appendix A. Recreating

the information inherent in the full tripartite representation shown in Fig. 3.3 is not

possible without adding significant contextual information from an outside source.
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Given that every arc in the one mode projection might represent several paths in the

tripartite representation, this becomes a very tedious process even for the small test

case network. This demonstrates the value of starting with a network containing as

much information as possible in a multipartite representation, especially for larger

networks.

4.1.2 Similarity Results

Cosine similarity measures were also calculated for the Watson & Gilfillan network.

Given that the similarity between node i and node j is commutative, a matrix showing

the results is symmetric, with ones along the diagonal as a node is similar with itself.

As a result, the cosine similarity for a directed network can be displayed as a square

table, the upper triangular portion being either in or out-degree, with the lower

triangular portion being the other. Despite this compact representation, the Watson

& Gilfillan similarity table is too large for display in this document. The network was

simplified into an undirected tripartite network for simplicity and the single cosine

similarity measure calculated. This does not alter the structure of the network with

respect to the existence of arcs, but does cast out their directed nature for the benefit

of a smaller set of results.

Of interest, eight pairs of nodes were perfectly similar, all variables as shown in

Table 4.4. The first two entries in the table do not correlate to the directed equivalents,

but are present because each node has only one edge, that to a common function

which relates the two. The other six entries do correlate to the out-degree similarity

measures. The in-degree similarity measure is zero for these nodes, as these particular

variables have zero in-degree. The l1, l2, h1, and h2 terms all feed into the equipment

number function, and since the edges point in the same direction (from variable

to function) the similarity is the same in the undirected and out-degree directed

case. This is an example of a set of variables that might be merged. In the paper
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they represent the dimensions of either full width deck erections (superstructures)

or deck houses. These two types of structures typically being mutually exclusive or

combined in modern ships, only one set of these variables is generally needed. This

illustrates the application of similarity to identify a source of unnecessary complexity

in a ship design formulation. Given that an acquisition program might involve tens

of thousands of engineers using hundreds of different formulations, the identification

of redundancy to reduce complexity could have a huge impact on program structure.

This is especially true in a temporal network, where it takes time for information to

propagate. Waiting for redundant information is a wasted opportunity.

Table 4.4: Watson & Gilfillan Undirected Perfect Similarity

Node 1 Node 2

s ∆
RPM Wme

l1 h1
l1 l2
l1 h2
h1 l2
h1 h2
l2 h2

There are a variety of possible interpretations for similarity measures in a ship de-

sign formulation. Redundancy has been demonstrated, but cohesive groups of nodes

might also be identified. These might then be merged, better organized under one dis-

cipline, or perhaps divided across disciplines for parallel design activities. Conversely,

two nodes which are perceived as similar to the designer may not be similar within the

formulation, requiring a check to see if the formulation is using the variable, function

or discipline as expected.

4.1.3 Perturbation Analysis Results

Network perturbation analysis can help identify areas where a false or missing

basic assumption in the creation of a network can make a significant structural dif-
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ference. For a design tool, a missing assumption can be thought of as the existence

of a relationship between nodes that is not present in the formulation, but that will

be a factor in the resulting design. The impact of such a missing assumption can be

measured by adding an arc to the network and observing the overall change to the

network’s structure.

Perturbation analysis is particularly useful for formulations such as Watson &

Gilfillan which are used in the early stages of design when very little information is

available. In early design there is still a great deal of uncertainty in both the inputs

to the formulation and the resulting outputs. As has been described in literature

regarding Set-Based Design (SBD), and is common knowledge to practicing designers,

an inaccurate assumption or mistake in early stage design can be quite costly to

remedy later on (McKenney et al., 2012; Singer et al., 2009). The Watson & Gilfillan

unweighted directed network structure allows for 1073 possible arcs that can be added

to the network while maintaining the multipartite definition. Said another way, there

are 1073 potential missing relationships between the existing nodes.

It is useful to the engineer to think about the general stability of the network

structure via risk. Risk in this case can be defined as the likelihood that a change

will occur along with the magnitude of that change. To measure the risk of a missing

assumption each node was ranked by its Park centrality, and then the deviations

between the initial ranking and the ranking created after the addition of a single

arc was recorded. One visual representation of this risk is a histogram, as shown in

Fig. 4.1. The abscissas of the plots show the deviation from the initial ranking, while

the ordinate shows the total number of times that deviation occurred over all 1073

new arcs added separately. If a plot peaks at zero deviation with a sharp drop off, it

is unlikely a deviation will occur, and if one does occur it is likely to be small. This

means low risk, i.e. a generally stable network structure. The mean deviation alone,

µ in Fig. 4.1, does not provide a good estimate of network stability.
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The most significant result of this analysis is that length (L), already identified

as the most influential node in the Watson & Gilfillan network, faces zero risk in

losing this distinction with the addition of any single arc to the network. Showing

the same trend are other variables classically perceived to be the principal dimensions

of a vessel. The mode of deviation for each principal dimension in all cases is zero

with a sharp drop off. The bottom right plot in Fig. 4.1 shows the additive result for

all nodes in the network, once again indicating low risk.

The perturbation analysis conducted was the addition of any single arc to the ex-

isting set of nodes. Perturbation analysis can also be done for the addition or deletion

of multiple arcs, though computational time will increase geometrically with number

of simultaneous changes being evaluated. It is also within reason to randomly add or

remove nodes, measuring the structural impacts from missing or incorrect variables,

functions, disciplines etc. The basic principle of perturbation analysis having been

defined for design networks, these studies are left for future work.
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Figure 4.1: Perturbation Results
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4.2 Sen Bulker Static Structural Analysis

In-degree, out-degree, Park and betweenness centrality were calculated for the

Sen Bulker test case networks, the results for the ↔ network are shown in Tables 4.5

and 4.6, meaning the structural impact of feedback from constraints is included.

This network with bidirectional arcs is shown in Fig. 4.2, and is only distinguishable

from Fig. 3.4 by the fact that arcs connected to constraints have arrows pointing in

the upward and downward directions. The ↔ results are discussed in the following

subsections.

4.2.1 Degree Centrality Results

The network generally resembles a funnel, logical since it is many variables and

functions inputting to a few objectives. The node identifier numbers 1 through 33

are variables and functions, roughly ordered in increasing levels through the network,

i.e. variables are on level one (Nodes 1-6), functions of only variables are on level

two (Nodes 7-13) etc. Nodes 34-59 are functions that input only to constraints, are

formulation parameters or constraints themselves. If Nodes 1-33 actually behave like

a funnel then one would expect the out-degree to be roughly inversely proportional

to node number, which a quick glance reveals to be true. Thus the visual and math-

ematical representation of a number of variables funneling into a smaller number of

objectives is verified. From an out-degree perspective then, variables are the most in-

fluential nodes in the network with the exception of the function node for deadweight

(∆DW , Node 23), which has an out-degree equal to the highest in the network, be-

longing to L. Interestingly similar to the Watson & Gilfillan network, the Sen Bulker

problem also appears to be driven by weight.

It might be expected that the objectives would have zero out-degree because the

Sen Bulker networks were derived from an optimization problem independent of the

optimizer and without recursive loops. This is true for the Transportation Cost
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Table 4.5: Sen Bulker ↔ Centrality Results Part One

# Node In-degree Out-degree Park Betweenness

1 L 3 7 292.00 0.33
2 T 3 6 209.22 0.65
3 D 2 5 173.67 0.12
4 Cb 2 8 104.37 0.11
5 B 2 6 148.27 0.26
6 V 2 5 24.54 0.11
7 Fn 3 3 -44.95 0.14
8 Steel Mass 4 2 -72.37 0.05
9 Outfit Mass 4 2 -72.37 0.05
10 a 4 2 2.57 0.16
11 b 4 2 2.57 0.16
12 ∆ 4 2 -66.12 0.39
13 Sea Days 2 3 2.02 0.04
14 P 5 3 -73.29 0.72
15 Aco 3 0 -30.74 0.00
16 Ship Costs 3 1 -118.62 0.10
17 Machinery Mass 1 1 -11.84 0.44
18 Daily Consumption 1 2 -33.58 0.16
19 Fuel Cost 3 1 -18.10 0.03
20 Light Ship Mass 3 1 -39.49 0.57
21 Fuel Carried 2 1 -16.34 0.07
22 Capital Charges 1 1 -48.60 0.06
23 ∆DW 5 7 -108.57 1.00
24 Running Costs 1 1 -102.54 0.03
25 Port Costs 1 1 -102.38 0.03
26 Stores&Water 1 1 -101.61 0.00
27 Voyage Costs 2 1 -51.00 0.01
28 ∆Cargo 3 2 -152.67 0.17
29 Port Days 2 1 -63.44 0.06
30 RTPA 2 2 -27.44 0.03

54



Table 4.6: Sen Bulker ↔ Centrality Results Part Two

# Node In-degree Out-degree Park Betweenness

31 Annual Cargo 2 1 -76.93 0.02
32 Annual Costs 4 1 -99.48 0.05
33 Transportation Costs 2 0 -74.74 0.00
34 BM 3 1 -71.42 0.06
35 KG 1 1 -10.47 0.01
36 KB 1 1 -44.22 0.04
37 GM 4 1 -63.03 0.22
38 ζ1 0 1 4.38 0.00
39 ζ2 0 1 4.38 0.00
40 ζ3 0 1 4.38 0.00
41 η1 0 1 4.38 0.00
42 η2 0 1 4.38 0.00
43 η3 0 1 4.38 0.00
44 Round Trip Miles 0 1 3.34 0.00
45 Fuel Price 0 1 1.64 0.00
46 Cargo Handling Rate 0 1 1.88 0.00
47 g1 2 2 179.52 0.10
48 g2 2 2 189.88 0.04
49 g3 2 2 204.37 0.21
50 g4 2 2 41.04 0.60
51 g5 2 2 156.12 0.13
52 g6 1 1 -44.27 0.00
53 g7 1 1 -44.27 0.00
54 g8 1 1 42.56 0.00
55 g9 1 1 42.56 0.00
56 g10 1 1 10.01 0.00
57 g11 1 1 10.01 0.00
58 g12 1 1 -18.33 0.00
59 g13 2 2 34.76 0.23
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Figure 4.2: Sen Bulker Bidirectional Network

objective (Node 33), but the only other node with zero out-degree is the Admiralty

Coefficient (Aco, Node 15). As the Admiralty Coefficient has zero out-degree and is not

an objective, one must wonder then what its purpose is in the formulation. In name

it is redundant and does not even appear in a MATLAB formulation of the problem,

but in function is the denominator of function for power (Eq. B.11). This quirk in the

network is a product of the fact that Sen and Yang (1998) used Aco to explain and

develop a resistance regression curve using a, b and Fn, but did not use it by name in

the formulation. This shows the human element of design, where a classically trained

naval architect might gain value from seeing Aco even though it is an unnecessary

abstraction for the problem formulation. The remaining two objectives, Light Ship

Mass and Annual Cargo, have non-zero out-degree because they have indirect and

direct influence on Transportation Cost respectively. The network identifies that the

objectives are far from independent, and a more computationally efficient formulation

may exist.

Gaining insight from in-degree is less clear cut, though as the in-degree of the vari-
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ables is non-zero it is immediately obvious that results are for the ↔network. Nodes

38-46 have zero in-degree, correctly identifying them as either variables, parameters

or constants of the formulation. This assumption is reinforced by the corresponding

out-degree values which are all one, with relatively low Park centrality and zero be-

tweenness centrality (due to zero in-degree). Similarity results, though not displayed

here show that Nodes 38-40 and 41-43 are structurally equivalent. Though they are

independently important to the mathematical formulation, it may be redundant to

display them separately in the network.

4.2.2 Park Centrality Results

The variables of the ↔ network have some of the highest relative Park centrality

values in the network, as expected from studying the Watson & Gilfillan network.

L, as with the Watson & Gilfillan formulation was the highest ranking node in the

network, followed by T . What is interesting is that the variable V is the 14th ranked

node. The rankings between 1 and 14 not held by variables are held by constraints.

The reason for the highly ranked constraints is that they influence what would oth-

erwise be the most important nodes in the network (the variables), which in turn

influence every other node. Thus their propagation “win” score is discounted by only

αx+1 compared with αx for the variables themselves, see Eq. 3.1. On the other hand,

they are only influenced by those same variables (bidirectional arcs), which in turn

are influenced by no other nodes but the constraints themselves. So the “lose” score

is relatively low. In summation, the Park centrality reflect the potential importance

of constraints on the problem. A visual representation of this is found in Tables 4.7

and 4.8, which compares the bidirectional network Park centralities with the uni-

directional ones. The number 1 ranked node has the highest park centrality and

is shaded dark green, with a continuum of decreasing rank to number 59 and dark

red. The unidirectional rankings clearly reflect the funneling effect discussed earlier,
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Nodes 1-33 showing a rough continuum of decreasing rankings. More importantly,

the comparison shows that using bidirectional arcs to represent constraint influence

can have a major impact on network behavior.

Beyond variables and constraints, it would be expected that the objectives have

some of the lowest relative Park centralities of the functions in the ↔ network.

Though they are in fact low, they are not the lowest. That distinction goes to ∆Cargo,

Ship Costs and ∆DW . Interestingly, the objectives could be viewed as abstractions

of the three lowest nodes. In fact, each objective is separated by at most three arcs

from one of the three lowest nodes. ∆Cargo and the objective Annual Cargo are are

directly connected. Though high Park centralities indicate driving nodes by connec-

tion, low Park centralities indicate what is being driven toward. If the objectives did

not have low Park centralities, or they were significantly separated from those nodes

with the lowest Park centralities, it could indicate that the formulation is ill suited

for the task at hand. In the case of the Sen Bulker problem, weight (as the name

implies) is of primary importance. Both the network structure of the formulation

and the choice of objectives reflects this, showing good agreement between intent and

formulation structure. This structure could be collapsed into a set of variables, three

objective functions and a set of constraints. If relatively low Park centrality objectives

are the measure of a quality formulation, this collapsed network would show perfect

agreement between formulation structure and objective choice.

4.2.3 Betweenness Centrality Results

∆DW has the highest betweenness score in the ↔ network, scores shown in Ta-

bles 4.5 and 4.6 being normalized by the highest value. ∆DW has already proven to be

a node of distinction based on the other measures, and a high in and out-degree (5 &

7) explain the high betweenness score. Given prior emphasis on this node, it would be

in the engineer’s best interest to verify that whatever value ∆DW holds is an accurate
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Table 4.7: Park Centrality Comparison Part One

# Node Park Centrality ↔ Park Centrality →
1 L 1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

2 T
3 D
4 Cb
5 B
6 V
7 Fn
8 Steel Mass
9 Outfit Mass
10 a
11 b
12 Delta
13 Sea Days
14 P
15 Aco
16 Ship Costs
17 Machinery Mass
18 Daily Consumption
19 Fuel Cost
20 Light Ship Mass
21 Fuel Carried
22 Capital Charges
23 ∆DW

24 Running Costs
25 Port Costs
26 Stores&Water
27 Voyage Costs
28 ∆Cargo

29 Port Days

Legend

Maximum Minimum
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Table 4.8: Park Centrality Comparison Part Two

# Node Park Centrality ↔ Park Centrality →
30 RTPA1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

31 Annual Cargo
32 Annual Costs
33 Transportation Costs
34 BM
35 KG
36 KB
37 GM
38 ζ1
39 ζ2
40 ζ3
41 η1
42 η2
43 η3
44 Round Trip Miles
45 Fuel Price
46 Cargo Handling Rate
47 g1
48 g2
49 g3
50 g4
51 g5
52 g6
53 g7
54 g8
55 g9
56 g10
57 g11
58 g12
59 g13

Legend

Maximum Minimum
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reflection of the input variables, and a comparison of the Sen Bulker formulation to

other bulker preliminary design formulations could usefully center around ∆DW .

On the opposite end of things are the nodes with zero betweenness. Excepting Aco,

already identified as a quirk of the formulation, these nodes fall into three categories.

Parameters/constants, constraints of one variable and sideline functions. Parameters

and constants, having zero in-degree by definition have zero betweenness. That con-

straints of one variable have zero betweenness despite non-zero in and out-degree is

due to the bidirectional arc formulation. Constraints of one variable are directly con-

nected to only one other node, thus all paths going through the constraint must pass

through the other node twice. As no geodesic path will go through the same node

twice (they are self-avoiding), the constraint can lay on no geodesic paths. This yields

zero betweenness using Eq. 3.4. The Sen Bulker network contains one sideline func-

tion, Stores & Water (Eq. B.23), which takes ∆DW as an input and outputs to ∆Cargo.

Unlike with bidirectional arcs, Stores & Water has no betweenness because the nodes

it connects are already directly connected, meaning any path through Stores & Water

would be shorter skipping it, meaning no geodesic paths. The sideline configuration

is shown in Fig. 4.3. This is further evidence of a formulation structure based around

designer intuition and intent, rather than computational efficiency.

Figure 4.3: Sideline Node
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4.3 Conclusions & Contributions

This chapter and the previous one are responsible for the first two novel contri-

butions of this thesis:

• Introduction of a contextual multipartite network approach to represent the

structure of naval design which enabled a new type of analysis and understand-

ing

• Application and extension of existing network mathematics to provide mean-

ingful predictive insight using multipartite design networks as inputs

Specifically, this chapter demonstrates that the structure of engineering formula-

tions alone provides information through static network structural analysis that can

be useful in a new way. Analysis of the Watson & Gilfillan and Sen Bulker problem

multipartite networks yielded the following conclusions:

• A network representation of a ship design formulation is feasible and can gen-

erate lead indicators

• A multipartite network formulation can accurately reflect a ship design formu-

lation and thus expose designer intent

• Analysis of multipartite ship design networks can correctly identify what naval

architects intuitively understand about the formulation, correctly identifying

design drivers, constraints and other features of model structure

• Many multipartite networks can be created for one design formulation, enabling

the analysis of the formulation in different ways

The multipartite network structure now has a demonstrated ability to represent

naval design, with corresponding analysis methods to better understand it. In the
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frame of design formulations, engineers now have the capability to better understand

the impacts of the formulations they use on the products they will produce using

a framework that naturally represents both formulations and thinking. Using static

structural analysis, insight can be gained using the structure of formulations alone,

meaning before design work begins. The successful construction and analysis of mul-

tipartite networks for design also contradicts the common practice of separating node

types into separate homogenous networks or matrices. Taken as a whole, these con-

clusions support the hypothesis that in complex product design, elements of a domain

do not directly influence one another, they must have context provided by another

domain.

These results provide appropriate justification for further research into the subject.

If analyzing the multipartite network structure of a simple ship design formulation

verifies intuition, then analyzing network structures where no intuition is present,

such as with very complex or new formulations, could prove highly valuable. The

successful test of the multipartite formulation also validates its basis for extension to

larger multipartite networks that include process and organizational elements.

The case studies presented in this chapter, though promising, were intention-

ally limited to static structural analysis. This means that only the structure of the

networks were analyzed, not the information carried on them. Standard, yet unquan-

tifiable, designer intuition was verified rather than reproducible experimental results.

This research hypothesizes that multipartite network analysis can predict impacts

of formulation structure on resulting designs. This chapter has shown this, but the

next chapter describes and demonstrates a network method that produces verifiable

results through dynamic structural analysis. This means the information carried on

the network is represented, and formulation behavior can be predicted.
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CHAPTER V

Dynamic Network Structural Analysis

Design formulations are increasingly becoming opaque, if not outright black boxes.

Engineers often do not have the resources to intuitively understand the functioning of

the tools they use, despite the common wisdom that this understanding is necessary.

This opacity is not entirely driven by tool developers, but is also a reflection of the

increasing complexity of vessels and the breadth and fidelity of analysis expected

before fielding them. To cope with the challenge it is common to use a design of

experiments or other meta-model that correlates the inputs of a formulation to the

outputs. Thus an engineer has an idea in advance that changes inX will likely produce

a change in Y . Such analysis is informative, but it does not provide information about

the linkage between X and Y, that is how and why does X affect Y ?

In Chapter IV network models of the Watson & Gilfillan ship design method

and Sen Bulker problem were analyzed for the inherent properties in their static

structure, answering the question of why X affects Y . This also proved informative

for identifying design intent and design drivers/constraints, confirming the work of

Parker and Singer (2013) and extending the work of Gillespie and Singer (2013).

Though static structural analysis provides information about linkages, it does not

explicitly resolve formulation behavior; i.e. how X affects Y. X may be identified as

a design driver, but whether it increases or decreases Y has not been determined.
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What is desired is a method that can both inform the engineer about the general

nature and linkages within a formulation, while still resolving behavior.

This chapter addresses the need by introducing a network metric, termed path

influence, creating information about the dynamic behavior of design problems using

an identical network formulation to that for static analysis. Static analysis provides

the engineer with a sense of whether a formulations’s structure is representative of

their design intent, whereas dynamic analysis provides quantitative information about

how that intent will manifest in variables, functions, disciplines etc. when the formu-

lation is actually used. The advantages of using network analysis to generate such

information include an intuitive understanding of the interactions between problem

components, not simply results. This means that a single network representation can

now be used to answer questions of how and why inputs influence outputs. Secondly,

network analysis can require significantly fewer function calls than comparable meth-

ods, especially when the structure of the problem is changing, requiring repetitive

analysis. The third, and arguably most important advantage of network methods

is that they can provide lead indicators. Its possible to generate design knowledge

prior to fully exercising a formulation or beginning a design since only the most basic

initial information is required, making network methods a candidate for use in early

stage design when little is actually known. Design space exploration comparatively

provides lag indicators because a tool or design must be fully exercised before results

are available, often requiring a significant investment in time. The disadvantage of

network analysis is that results are indicative, not exact, a trait shared with many

competing methods. In reality this disadvantage may not exist, as the speed could

be sufficient to apply network analysis to larger problems than possible with other

methods, meaning that indicative information becomes a substitute for no informa-

tion, which can only be advantageous.

Section 5.1 explains the mechanics of a Taylor series expansion, from which path
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influence is then derived. Section 5.2 displays and discusses the results of using path

influence on the Sen Bulker problem, comparing partial and interpolated derivative

weighting schemes with a full factorial design of experiments. Both of these sections

are abstractions of Parker and Singer (2014). Section 5.3 discusses the differences

between capturing tool formulation and optimization behavior, along with path in-

fluence results from the latter. Section 5.4 introduces a new metric to compare static

and dynamic analysis, and Section 5.5 discusses further application of the metric.

Section 5.6 concludes the chapter.

5.1 Capturing Formulation Behavior with Path Influence

5.1.1 Taylor Series Expansions and Paths

A Taylor series expansion provides a simple approximation of complex problem

behavior by extrapolating around a baseline point using partial derivatives as a guide.

This type of approximation is suitable for many design formulations and especially

those encoded as continuous optimization problems. Many optimization algorithms

rely on the Taylor series expansion or mathematically similar methods to guide the

optimizer toward a local minimum (Bazaraa et al., 2006). The vector form of a Taylor

series expansion of a real and differentiable function of multiple variables is shown in

Eqs. 5.1 and 5.2.

f(r) =
n∑
j=0

[
1

n!
((r− a) · ∇)n f(a)

]
+Rn+1(r) (5.1)

Rn(r) =
1

n!
((r− a) · ∇)n f(ζ(r)) (5.2)

In Eq. 5.1 r is the vector of variables and a is the point of expansion. Rn(r) is the

Lagrange form of the remainder (higher order terms). If f is continuous Eq. 5.2 is

used to compute Rn(r) where ζ is the point on the interval [a, r] where the Lagrange
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form matches the actual remainder. Determining the correct value ζ is not always

practical, but by sweeping over the interval the maximum and minimum of Rn(r) can

be found which provides error bounds on an expansion that neglects the higher order

terms (Greenberg, 1998).

A complete expansion is shown in Eq. 5.3, but for engineering applications the first

order terms are often sufficiently accurate to ignore the remainder, yielding Eq. 5.4.

f(r) = f(a) + (r− a) · ∇f(a) +R2(r) (5.3)

f(r) ≈ f(a) + (r− a) · ∇f(a) (5.4)

A Taylor series expansion on the objective function(s) of a design tool that uti-

lizes only the variables provides equivalent information to that gained from a design

of experiments or other meta-model, excepting that the accuracy can vary between

methods. However, in creating an objective function there are often many interme-

diate steps. The variables, objectives and intermediate functions can be represented

as a network as shown in Fig. 5.1, where x and y are input variables, f3 and f4 the

intermediate functions, and f5 the objective. Including these intermediate functions

in the expansions provides context to a variables influence on an objective. One way

to think about the behavior of such problems is paths of influence, where a variable

affects a function, which then has an effect upon another function and so on until the

ultimate influence is on an objective. Problems become complicated when there are

many paths of influence, often sharing component variables and functions. Mathe-

matically f5 could be stated in terms of x and y alone, that is f5(x, y) rather than

f5(f3, f4), and the Taylor series expansion would be Eq. 5.5.

f5 = f(x, y) ≈ f o5 + (x− xo) ∂f5
∂x

∣∣∣∣
xo,yo

+ (y − yo) ∂f5
∂y

∣∣∣∣
xo,yo

(5.5)

In Eq. 5.5 the contextual information provided by f3 and f4 is lost, i.e. the paths
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f3x

y

f5

f4

Figure 5.1: Network of Functions

that x and y take to get to f5 are discarded. Maintaining this path information in the

Taylor series expansion is a simple application of chain differentiation starting with

the first order expansions of f5, f4, and f3 written as they appear in Fig. 5.1 (Eqs. 5.6

to 5.8).

f5 = f(f3, f4) ≈ f o5 + (f3 − f o3 )
∂f5
∂f3

∣∣∣∣
fo3 ,f

o
4

+ (f4 − f o4 )
∂f5
∂f4

∣∣∣∣
fo3 ,f

o
4

(5.6)

f4 = f(y) ≈ f o4 + (y − yo) ∂f4
∂y

∣∣∣∣
yo

(5.7)

f3 = f(x, y) ≈ f o3 + (x− xo) ∂f3
∂x

∣∣∣∣
xo,yo

+ (y − yo) ∂f3
∂y

∣∣∣∣
xo,yo

(5.8)

Then, substituting the first order expansions of f3 and f4 into that for f5 yields

Eq. 5.9.

f5 ≈ f o5 + (x− xo)
(
∂f3
∂x

∂f5
∂f3

)∣∣∣∣
xo,yo

+ (y − yo)
(
∂f3
∂y

∂f5
∂f3

+
∂f4
∂y

∂f5
∂f4

)∣∣∣∣
xo,yo

(5.9)

For the simple network in Fig. 5.1, computing a path conscious first order Talyor series

expansion is relatively concise, as there are only three total paths in the network. For

even the simplest design formulations there can be many hundreds of unique paths

that link variables to objectives, requiring the path influence algorithm as described

in the following section.
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5.1.2 Path Influence

A path is defined as a sequence of connected nodes, but in the present context it

is easier to think of path length as the number of arcs required to connect two nodes

(Newman, 2010). A network representation such as Fig. 5.1 visualizes and allows the

existence and length of paths to be computed using Eq. 5.10, where N is the number

of paths of length r between i and j, computed using the adjacency matrix A.

N r
ij = [Ar]ij (5.10)

This information by itself can be useful, i.e. counting the number of unique ways

that x influences objective y, but if the influence of nodes over their neighbors can be

quantified, then Eq. 5.10 can be applied to a weighted adjacency matrix, where N is

no longer the number of paths of length r from i to j but the sum of the products of

those paths’ arc weights. A geodesic path is the shortest path between two nodes in a

network. The diameter of a network is the longest geodesic path that exists, and the

longest it can be is n− 1 arcs since it takes n− 1 arcs to connect n nodes in a chain.

The weighted paths connecting each node can be computed by Ar ∀ r ∈ [1, n− 1] if

they exist. It is often unnecessary to compute all the way until r = n − 1, as once

Ar = 0 there is no reason to continue as a path of length r + 1 cannot exist if there

is no path of length r. In the worst case a total path influence matrix, P, can be

computed as shown in Eq. 5.11.

P =
n−1∑
r=1

Ar (5.11)

There are much faster algorithms, running in O(m+ n) time or less, for finding path

lengths (Newman, 2010). However, the networks analyzed in this thesis are small

enough that the simplicity of Eqs. 5.10 and 5.11 outweigh the speed advantage of
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faster algorithms. More discussion of speed can be found in Section 5.2.5.

As stated earlier, a weighted adjacency matrix can be used where entry Aij quan-

tifies the influence of i over j. A mathematically elegant way to quantify “influence”

is the partial derivative, where Aij =
∂fj
∂fi

. Instantiating this weighting scheme on

the original network of Fig. 5.1 yields the weighted network and adjacency matrix

of Fig. 5.2. Applying Eq. 5.11 to this matrix yields the the P matrix of Eq. 5.12.

Though similar to a Jacobian matrix, terms on the diagonal are by network definition

zero (no self arcs), and the functions and variables denoted in Fig. 5.1 are treated as

separate scalar functions rather than as a single vector-valued function (which would

not include the variables) as is the case of the Jacobian.

A13 f3x

y

f5

f4

A23

A24

A35

A45

(a) Weighted Network

A =


0 0 ∂f3

∂x
0 0

0 0 ∂f3
∂y

∂f4
∂y

0

0 0 0 0 ∂f5
∂f3

0 0 0 0 ∂f5
∂f4

0 0 0 0 0


(b) Weighted Adjacency Matrix

Figure 5.2: Partial Derivative Weighted Network

P =
2∑
r=1

Ar = A + A2 =



0 0 ∂f3
∂x

0 ∂f3
∂x

∂f5
∂f3

0 0 ∂f3
∂y

∂f4
∂y

∂f3
∂y

∂f5
∂f3

+ ∂f4
∂y

∂f5
∂f4

0 0 0 0 ∂f5
∂f3

0 0 0 0 ∂f5
∂f4

0 0 0 0 0


(5.12)

Entry P15 is the influence term of x on the objective f5, and this entry matches

the x partial derivative terms of the network conscious Taylor series expansion of f5

found in Eq. 5.9, the same being true for the y terms and P25. However, not all the

terms in the fifth column belong in Eq. 5.9, only those corresponding to independent
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variables. In this instance the variables are known in advance, but this may not

always be the case. Networks often contain subsets of nodes that can be classified in

various ways. Directed networks contain in-components and out-components among

others. The in-component of node i is the set of all other nodes that have a path to

i, and includes i itself. An out-component is the opposite, being the set of nodes that

can be reached from i, inclusive of i itself. In network terminology, the independent

variables can be identified as the nodes with zero in-degree that also belong to the

in-component of the objective node. This definition holds as an independent variable

must have a path to the objective, and may not be influenced by another node.

A first order Taylor series expansion can be expressed using the path influence

matrix as shown in Eq. 5.13, where v is an 1×n vector of the independent variables,

with all other entries equal to 0, vo the equivalent for the initial variable values, and

P|i|vo the ith column of P evaluated at vo.

fi = fi(v) ≈ f oi + (v − vo)TP|i|vo (5.13)

In an elegant fashion, the same network methods used to find paths, path lengths

and path influence can be used to generate a first order Taylor series expansion.

If first order Taylor series accuracy is acceptable, then by extension path influence

can be an accurate predictor of formulation behavior that maintains the benefits of a

network representation. In terms of design, an engineer can use their existing network

representation to create path conscious first order Taylor series expansions of their

objectives, meaning the context of all the intermediate functions used to create the

objectives is still present. This means that the influence of variables on objectives is

quantified, along with the way that influence is achieved.
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5.1.3 The Influence of Loops

The Sen Bulker network and the example network shown in Fig. 5.2 do not contain

loops, an important property when discussing path influence. A loop is still a path,

so the the shortest length of a loop between i and itself is the minimum r for which

[Ar]ii 6= 0. This means a path of length r exists between node i and itself. Similarly,

the length of a geodesic path between nodes i and j (if one exists) is the minimum

value of r such that [Ar]ij 6= 0. Thus any non-zero entry of [Ar] when r > n − 1

signifies the existence of a loop, as any path longer than n − 1 must contact the

same node more than once, necessarily creating a loop. For path influence, any node

involved in a loop shorter than n − 1 will have a non-zero Pii entry and Eq. 5.11

will not necessarily converge. Such a loop effectively creates a recursive relation, and

makes path influence results suspect.

The characteristics of loops and path influence described above are demonstrated

in Fig. 5.3. Fig. 5.3a shows a loop free network with its associated path influence

matrix. Fig. 5.3b shows the same network where a loop with length n is added. In

this case, the lower triangular portion of the P matrix reflects the influence of Node

4 on the other nodes of the network but the upper triangular entries of the P matrix

are unchanged. The Pii are all still zero, because the path influence algorithm stops

at n− 1, meaning the loop is not accounted for. Fig. 5.3c shows a network where the

loop length is less than n. In this case the loop affects the upper triangular P values.

P11 and P22 are non-zero, showing that these nodes are involved in a loop, though it

does not necessarily show they are in the same loop.

The implication is that path influence is potentially ineffective for any network

containing a loop with a minimum length less than n (there can be no loops with

minimum length greater than n). Path influence was originally created to answer

questions of how and why X affects Y within a design formulation. Design formu-

lations often resemble the Sen Bulker problem, meaning no loops. However, some
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(a) Loop Free Network
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(b) Loop Length = n
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
(c) Loop Length < n

Figure 5.3: Path Influence with Loops

formulations are used to represent an iterative synthesis process, which by its very

nature is a loop, and often contains many sub loops. However, an “iteration” is the

repetition of a set of steps, and that set of steps can usually be traversed in a linear

fashion. This means that the loop is created by linking the end of the process with

the beginning, i.e. the design spiral. As long as the minimum loop length is greater

than the longest geodesic path, the case of Fig. 5.3b, path influence can be used if

the algorithm is stopped short of the loop length. Networks containing loops shorter

or equal to the length of the longest geodesic path can be modified by removing an

offending arc, or by consolidating the nodes of a loop into a single node. In the case

of Fig. 5.3c this would mean merging nodes one and two. Path influence could then

be applied with confidence.

5.1.4 Adjacency Matrix Normalization and Interpolated Derivatives

The form of A outlined in the previous section is necessary to derive Eq. 5.13, but

is not the most useful form for understanding formulation behavior. In this case, it
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is preferable to know the relative influence of one node over another, not necessarily

the magnitude of the partial derivative. This is important for problems where the

magnitude of the various functions differ by orders of magnitude. As an example,

the value of the partial derivative of the Froude number with respect to length is

quite small compared with that of the Reynolds number, but the Froude number

itself is also quite small comparatively. Thus, the form of A used in the remainder

of this thesis normalizes the partial derivative relative to the original function value.

Mathematically this is expressed as Eq. 5.14, where a unit change in i resulting in a

unit change in j corresponds to an Aij value of 1.

Aij =

f 0
i
∂fj
∂fi

∣∣∣
foi

|f oj |
(5.14)

Computing the partial derivatives for use in Eq. 5.14 may not always be feasible,

one reason being the often discrete nature of design formulations, which often lack

locally differentiable functions. Though path influence was derived as a form of Taylor

series, the overall path influence concept does not necessitate partial derivative A

weightings. Alternative adjacency matrix weighting schemes are equally valid if they

accurately reflect the influence of nodes over one another. A logical way around

non-differentiable functions is to compute an interpolated derivative. One example is

Eq. 5.15, where the inputs to each function are increased separately by 10%, and the

resulting normalized change in the output becomes the arc weight. A 10% change

in an input resulting in a 10% change in the output has an arc weight of 1, making

this weighting scheme directly comparable to that of Eq. 5.14 and the matrix form of

MacCallum’s (1982) “strengths.”
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let fj be a function dependent on inputs k, l,m, ..., then

Akj =
fj((k + |0.1k|, l,m, ...)− fj

|fj|(0.1)

Alj =
fj(k, l + |0.1l|,m, ...)− fj

|fj|(0.1)

Amj =
fj(k, l,m+ |0.1m|, ...)− fj

|fj|(0.1)

...

(5.15)

The discussion so far has focused on design formulations involving quantitative

functions, as in design tools. However, the path influence algorithm is not limited

to quantitative functions. Networks that represent more than just quantitative func-

tions, such as processes, organizations or any combination thereof can utilize path

influence if there is a suitable weighting scheme.

5.2 Path Influence Results

A case study was conducted to compare first order objective function Taylor series

expansions and the two forms of path influence against a full factorial design of

experiments. The Sen Bulker problem was specifically selected for this purpose, the

network and formulation are defined in Chapter III and Appendix B respectively.

A design of experiments, Taylor series expansion and path influence all require an

expansion point, Eq. 5.16 defines the expansion point used unless otherwise stated.

Watson (1998) provides similar principal dimensions from the “Solidarnose”, a repre-

sentative bulk carrier built in 1991. His dimensions have been slightly modified such

that Eq. 5.16 satisfies the constraints of the Sen Bulker problem. Length (L), draft

(T ), depth (D), block coefficient (Cb), beam (B) and speed (V ) are the entries, the

independent variables of the problem.

x0 = [L, T,D,Cb, B, V ] = [225, 12.5, 19, 0.68, 32.2, 14.5] (5.16)
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5.2.1 Objective Function Taylor Series Expansion Results

It is possible to collapse the 11 function levels into the three non-linear objectives,

becoming functions of the independent variables only. This form may be more suitable

for classic optimization and direct Taylor series expansion. However, designer intu-

ition provided by the intermediate functions would be nonexistent, and the potential

insight gained from viewing the objective functions alone is limited. The collapsed

objective function with the fewest terms, Annual Cargo (f3), is still too large to dis-

play on the written page. This makes makes viewing it let alone interpreting it very

difficult. As derived in Sections 5.1.1 and 5.1.2 the results of an objective function

Taylor series expansion and that of the corresponding partial derivative path influ-

ence matrix entry are identical, meaning the normalized results presented in Table 5.1

for Transportation Costs, Annual Cargo and Light Ship Mass are the same for both

forms, and are not restated here. Their equivalence was verified to check both the

path influence algorithm and the translation of the Sen Bulker problem formulation

to MATLAB.

5.2.2 Partial Derivative Path Influence Results

Transposed portions of the P matrix are shown in Tables 5.1 and 5.2 for the

variable to function and variable to constraint path weights respectively. The A

matrix weights were calculated using the normalized partial derivative weighting from

Eq. 5.14. To clarify the weighting scheme, a unit change in L is approximated to result

in a negative half unit change in Fn using the expansion, thus a normalized arc weight

of -0.50 in the top left entry of Table 5.1. Bold entries in the tables denote non-zero

values, necessary because there are several instances where the influence exists but is

too small to show. Influence is shaded on a continuum from dark red for the most

negative influence in a column, to dark green for the most positive influence in a

column. The P matrix in this format allows an engineer to quickly:
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• Determine if an interaction exists

• Determine the local magnitude and sign of an interaction

• Determine the relative importance of one interaction versus another

• Determine via summation the cumulative effect of interactions

Having an indication of problem behavior is helpful in two primary ways. First,

for an engineer unfamiliar with the formulation there is an indication of where solu-

tions or problems lay, and the general structure that produces them. An example can

be seen by looking at the line for Transportation Costs. Recalling that lower costs

are better, the strongest indicators are for a short, deep drafted, low freeboard and

slow ship. Block Coefficient, and Beam are weak indicators, more liable to inaccurate

trending (the actual block coefficient P value is 0.04). Using Power (P ) as another

example, any underwater dimension increases power, but beam, draft and block co-

efficient more than length. Above all however, speed increases required power. These

results indicate that the formulation will behave as would be expected to optimize the

dimensions of a bulk carrier. The second helpful contribution is that path influence

analysis provides an easy verification for the engineer developing the formulation. If

an error is made then it could show up as an odd or unexpected weighting scheme.

Rather than going line by line through the code looking for errors, odd path weights

can quickly be traced back until the error is found. This was experienced first hand.

Interpreting the path influence results for the constraints in Table 5.2 is similar

to that for the functions in Table 5.1. However, the magnitude of several entries is

significantly higher. A constraint that lies on its boundary has a value of zero, thus

using the normalization scheme of Eq. 5.14 or Eq. 5.15 would result in an infinite

arc weight. Similarly, constraints near their boundary have small values, potentially

leading to high arc weights. Thus those constraints in Table 5.2 with highly influential

inputs such as V ’s influence on g10, could be examined for proximity to a constraint
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boundary. This is the case of g10. If a variable is beneficial to an objective and highly

detrimental to a constraint, or the inverse, this could be a lead indicator of constraint

activity in an optimization problem. This line of reasoning is discussed in Section 5.3.

5.2.3 Interpolated Derivative Path Influence Results

The interpolated derivative path influence P matrix was formed from the A matrix

weighting scheme of Eq. 5.15. To clarify the weighting scheme, a +10% change in L

resulted in a -4.7% change in Fn, thus a normalized arc weight of -0.47 in the top

left entry of Table 5.3. This weighting method allows the interpolated and partial

derivative weighting schemes to be directly compared. Transposed portions of the P

matrix are shown in Tables 5.3 and 5.4 for the variable to function and variable to

constraint path weights respectively. The results of interpolated and partial derivative

path influence are very consistent and the interpretation is mostly the same. The

interpolated derivative weighting predicts the correct trend of Transportation Cost

with Block Coefficient, but flips it for Beam (actual value -0.10). Again, these are

the two weakest indicators.

5.2.4 Path Influence Accuracy

Like a Taylor series, path influence results are approximations of actual formu-

lation behavior. The partial derivative weighting scheme will have the same error

as a first order Taylor series by definition, and the interpolated derivative error also

depends on the validity of a linear extrapolation around the baseline point. For path

influence results to be useful the magnitudes of entries in the P matrix must be close

enough to draw conclusions about the relative influence of one variable/function ver-

sus another, while the sign of entries is perhaps more important. A fully enumerated

DOE using the six independent variables was conducted, allowing the error inherent

in both path influence weighting schemes to be calculated. The DOE used zero and
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Table 5.1: Transposed Partial Derivative P Matrix - Functions

# Node L T D Cb B V

7 Fn
L

-0.50

1.70

0.80

0.00

0.00

1.00

0.00

0.31

0.36

0.94

0.28

0.31

0.31

1.54

0.31

0.94

0.87

0.26

0.70

0.44

0.48

0.88

0.82

-0.39

0.49

0.65

0.16

0.00

0.00

0.00

0.00

T

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.67

0.00

0.11

0.60

0.66

0.66

0.02

0.66

0.11

1.23

0.37

0.99

0.62

0.81

1.25

1.15

-0.56

0.69

0.19

-0.50

-1.00

0.00

1.00

-0.07

D

0.00

0.40

0.30

0.00

0.00

0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.37

0.00

0.25

-0.09

-0.03

-0.07

-0.04

-0.03

-0.09

-0.08

0.04

-0.05

0.15

0.20

0.00

0.91

0.00

-3.87

Cb

0.00

0.50

0.10

-0.73

-0.40

1.00

0.00

1.63

-0.96

0.49

1.46

1.62

1.62

0.49

1.62

0.49

1.12

0.34

0.90

0.56

1.30

1.12

1.04

-0.50

0.62

0.52

-0.10

0.04

0.00

0.00

0.10

B

0.00

0.70

0.60

0.00

0.00

1.00

0.00

0.67

0.00

0.58

0.60

0.66

0.66

0.68

0.66

0.58

1.08

0.32

0.86

0.54

0.75

1.09

1.00

-0.49

0.60

0.47

-0.13

2.00

0.00

0.00

5.34

V

1.00

0.00

0.00

0.00

0.00

0.00

-1.00

3.71

-0.71

0.63

3.34

3.69

2.69

0.13

2.94

0.63

-0.03

-0.01

-0.02

-0.02

1.48

-0.07

-0.06

0.55

0.48

0.78

0.30

0.00

0.00

0.00

0.00

8 Steel Mass
9 Outfit Mass
10 a
11 b
12 ∆
13 Sea Days
14 P
15 Aco
16 Ship Costs
17 Machinery Mass
18 Daily Consumption
19 Fuel Cost
20 Light Ship Mass
21 Fuel Carried
22 Capital Charges
23 ∆DW

24 Running Costs
25 Port Costs
26 Stores&Water
27 Voyage Costs
28 ∆Cargo

29 Port Days
30 RTPA
31 Annual Cargo
32 Annual Costs
33 Transportation Costs
34 BM
35 KG
36 KB
37 GM

Legend

Maximum Zero Minimum
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Table 5.2: Transposed Partial Derivative P Matrix - Constraints

# Node L T D Cb B V

47 g1 -7.08

3.75

18.00

-7.73

0.00

-0.92

0.10

0.00

0.00

0.00

0.00

-0.49

0.00

0.00

0.00

-18.00

16.69

8.33

-1.31

0.14

0.00

0.00

0.00

0.00

0.00

0.61

0.00

-3.75

0.00

0.79

-8.87

0.10

-0.01

0.00

0.00

0.00

0.00

0.00

33.20

0.00

0.00

0.00

-9.97

0.00

-1.19

0.13

-13.60

9.71

0.00

0.00

0.00

-0.82

7.08

0.00

0.00

-9.55

0.00

-1.14

0.12

0.00

0.00

0.00

0.00

0.00

-38.18

0.00

0.00

0.00

0.27

0.00

0.03

0.00

0.00

0.00

-29.00

4.14

0.98

0.00

48 g2
49 g3
50 g4
51 g5
52 g6
53 g7
54 g8
55 g9
56 g10
57 g11
58 g12
59 g13

Legend

Maximum Zero Minimum

+10% as the two possible states for each variable. A DOE only links independent

variable inputs to function outputs, meaning that only a subset of the full path in-

fluence matrix is comparable. For example, there are 6 variables and 44 functions

in the Sen Bulker problem, so the DOE results form a 6 × 44 matrix for each DOE

combination. Path influence produces a single 59 × 59 P matrix. The influence of

multiple variable changes is computed with the same logic as Eq. 5.13, but as only

the variable to function path influence results are comparable a 6 × 44 subset was

used instead of the full 59 × 59 P matrix. In other words, a majority of the path

influence results were not validated against a full factorial DOE, because the DOE

did not produce comparable results.

5.2.4.1 Overall Path Influence Accuracy

For the results that are comparable, the network methods performed very well

overall. Deviation is defined as the percentage difference between a path influence

result and the comparable exact DOE result relative to the baseline function value.
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Table 5.3: Transposed Interpolated Derivative P Matrix - Functions

# Node L T D Cb B V

7 Fn
L

-0.47

1.76

0.79

0.00

0.00

1.00

0.00

0.30

0.33

1.05

0.27

0.30

0.30

1.59

0.30

1.05

0.86

0.25

0.68

0.42

0.47

0.87

0.80

-0.37

0.50

0.72

0.26

0.00

0.00

0.00

0.00

T

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.66

0.00

0.33

0.59

0.65

0.65

0.02

0.65

0.33

1.23

0.36

0.98

0.60

0.80

1.25

1.15

-0.53

0.71

0.32

-0.33

-0.91

0.00

1.00

0.17

D

0.00

0.39

0.29

0.00

0.00

0.00

0.00

0.00

0.00

0.24

0.00

0.00

0.00

0.36

0.00

0.24

-0.09

-0.03

-0.07

-0.04

-0.03

-0.09

-0.08

0.04

-0.05

0.15

0.19

0.00

0.91

0.00

-3.87

Cb

0.00

0.49

0.10

-0.54

-0.56

1.00

0.00

1.03

-0.54

0.72

0.92

1.02

1.02

0.46

1.02

0.72

1.13

0.33

0.90

0.55

0.96

1.14

1.05

-0.49

0.65

0.60

0.01

0.03

0.00

0.00

0.09

B

0.00

0.69

0.59

0.00

0.00

1.00

0.00

0.66

0.00

0.79

0.59

0.65

0.65

0.67

0.65

0.79

1.08

0.31

0.85

0.53

0.74

1.09

1.01

-0.46

0.62

0.60

0.04

2.10

0.00

0.00

5.60

V

1.00

0.00

0.00

0.00

0.00

0.00

-0.91

4.07

-0.71

2.06

3.65

4.05

3.14

0.14

3.37

2.06

-0.03

-0.01

-0.03

-0.02

1.73

-0.07

-0.07

0.48

0.40

1.70

1.33

0.00

0.00

0.00

0.00

8 Steel Mass
9 Outfit Mass
10 a
11 b
12 ∆
13 Sea Days
14 P
15 Aco
16 Ship Costs
17 Machinery Mass
18 Daily Consumption
19 Fuel Cost
20 Light Ship Mass
21 Fuel Carried
22 Capital Charges
23 ∆DW

24 Running Costs
25 Port Costs
26 Stores&Water
27 Voyage Costs
28 ∆Cargo

29 Port Days
30 RTPA
31 Annual Cargo
32 Annual Costs
33 Transportation Costs
34 BM
35 KG
36 KB
37 GM

Legend

Maximum Zero Minimum
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Table 5.4: Transposed Interpolated Derivative P Matrix - Constraints

# Node L T D Cb B V

47 g1 -7.08

3.75

18.00

-7.38

0.00

-0.91

0.10

0.00

0.00

0.00

0.00

-0.46

0.00

0.00

0.00

-16.36

17.05

8.33

-1.31

0.14

0.00

0.00

0.00

0.00

0.00

-1.47

0.00

-3.41

0.00

0.75

-8.87

0.09

-0.01

0.00

0.00

0.00

0.00

0.00

33.20

0.00

0.00

0.00

-9.71

0.00

-1.20

0.13

-13.60

9.71

0.00

0.00

0.00

-0.75

6.43

0.00

0.00

-9.26

0.00

-1.15

0.12

0.00

0.00

0.00

0.00

0.00

-40.46

0.00

0.00

0.00

0.29

0.00

0.04

0.00

0.00

0.00

-29.00

4.14

0.98

0.00

48 g2
49 g3
50 g4
51 g5
52 g6
53 g7
54 g8
55 g9
56 g10
57 g11
58 g12
59 g13

Legend

Maximum Zero Minimum

Fig. 5.4 shows histograms of deviation for both path weighting schemes. The abscissa

displays the magnitude and direction of deviation normalized by 10%. A deviation

value of one means the path influence matrix predicted response is 10% higher than

the exact DOE response relative to the baseline function value. Nodes which are not

connected by any path were not included in the calculations, as neither a DOE or path

influence evaluate the influence of disconnected nodes. In this case partial derivative

path influence is +/-0.005 (+/-.05%) accurate 22.7% of the time, while interpolated

derivative path influence is 34.8% accurate. More data on the distributions is shown

in Table 5.5, and statistics can be found in Table 5.6, where µ and σ are the mean

and standard deviation respectively.

Trend accuracy is defined as the percentage of occurrences that path influence

correctly identified the sign of influence. Path influence predictions are 99.0% and

97.4% trend accurate over all 64 variable combinations of the DOE for partial deriva-

tive and interpolated derivative weighting schemes respectively. When only single

variable changes occur, trend accuracy is 98.9% and 99.6% respectively.
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(b) Interpolated Derivative Path Weighting

Figure 5.4: Path Influence Deviation Histograms
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Table 5.5: Path Influence Error Distributions

Error Bounds Percentage within Error Bounds
+/- Partial Derivative Interpolated Derivative

0.05% 22.9% 34.8%
1% 57.5% 60.1%
5% 84.8% 79.4%
10% 93.0% 87.3%
20% 95.7% 95.9%
30% 98.8% 98.0%
40% 100.0% 99.3%
50% 100.0% 100.0%

5.2.4.2 Accuracy as a Function of Path Length

A further question regarding path influence accuracy is whether it is path length

dependent. Deviation box plots for the maximum and geodesic path lengths between

nodes (nodes can be connected by self avoiding paths of multiple lengths) are shown

in Figs. 5.5 and 5.6. The shape of the error distributions varies somewhat visually,

but the mean, median and mode do not correlate with path length as evidenced by

the distribution statistics for the maximum path lengths, Fig. 5.5 and Table 5.6.

However, three of the four box plots show a rough decrease of standard deviation

as path length increases. The narrowing is likely due to the fact that there are many

fewer paths of higher length, and they all point toward a smaller set of nodes. For

example, there only 28 paths 11 arcs long and all point toward Transportation Cost,

out of 1838 total paths in the network. The inverted triangular structure of the

network visually shows the narrowing, Fig. 3.4. For path lengths 10 and 11 using the

interpolated derivative weighting, the standard deviation and median increase. Paths

of length 10 and 11 all go through the same node, RTPA. If RTPA is off, then every

path of length 10 and 11 will be affected.

84



−5

−4

−3

−2

−1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11
Maximum Path Length

E
rr

or
 p

er
 1

0%
 U

ni
t C

ha
ng

e

(a) Partial Derivative Path Weighting Box Plot
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(b) Interpolated Derivative Path Weighting Box Plot

Figure 5.5: Path Influence Error Parsed by Maximum Path Length
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(a) Partial Derivative Path Weighting Box Plot
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(b) Interpolated Derivative Path Weighting Box Plot

Figure 5.6: Path Influence Error Parsed by Geodesic Path Length
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Table 5.6: Deviation Distribution Statistics Parsed by Maximum Path Length

Partial Derivative Weighting Interpolated Derivative Weighting
Max Length µ Median Mode σ µ Median Mode σ

All Non-Zero -0.19 -0.03 -0.01 0.63 -0.11 0.00 -0.01 0.80
1 -0.06 0.00 -0.01 0.27 0.01 0.00 -0.01 0.27
2 -0.32 0.00 -0.01 0.85 -0.23 0.00 0.00 1.02
3 -0.34 -0.15 -0.01 1.31 -0.68 -0.06 -0.01 1.60
4 -0.56 -0.24 -0.02 0.77 -0.33 -0.06 -0.01 1.16
5 -0.16 -0.10 0.00 0.19 -0.16 -0.10 0.00 0.19
6 -0.04 0.00 0.01 0.19 0.06 -0.01 0.00 0.26
7 -0.36 -0.27 0.00 0.44 -0.39 -0.11 0.00 0.51
8 -0.14 -0.08 0.01 0.18 -0.14 -0.09 0.00 0.18
9 0.01 0.01 -0.05 0.06 0.01 0.00 -0.01 0.04
10 -0.06 0.02 0.07 0.17 0.29 0.13 0.08 0.34
11 -0.23 -0.18 -0.23 0.16 0.59 0.73 0.14 0.45

5.2.4.3 Accuracy Conclusions

The low deviation and more importantly high trend accuracy of both weighting

methods renders reasonable confidence in the lead indicators drawn from path influ-

ence. This accuracy is no doubt partially due to the relatively simple behavior of the

Sen Bulker problem, but it is representative in complexity of preliminary design tools

which are used when predictive metrics can provide the most value. For networks

that represent the context of process, organizations, etc., the weightings are likely

to be less complex, and similar or higher accuracy should be expected. Chapter VII

demonstrates examples of this.

For the Sen Bulker problem specifically, it is not surprising that the interpolated

derivative weighting scheme would be slightly more accurate within the +/- 0.05%

error bounds because the DOE used the same 10% multiplicative factor that was used

to create the interpolated derivative weights. However, as shown in Table 5.5, over

the remainder of the error bounds the partial derivative weighting scheme was on par

or more accurate than the interpolated derivative weighting scheme. Furthermore,

the partial derivative weighting scheme systematically under predicted the results,
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and with much less standard deviation. This is evident from the box plots and

deviation distribution plot. Consistent, rather than more exact, predictions and a

higher overall trend accuracy give the partial derivative weighting scheme an edge.

Though the overall accuracy of the two weighting methods is similar, where error

does occur can be very important.

5.2.5 Path Influence vs. DOE Computation

Path influence has a decided advantage over full factorial DOEs where function call

count is concerned. Either the partial derivative or interpolated derivative weighting

scheme requires a value for each node at the baseline and another for each input to

that node, totaling n +
∑

kin function calls for an entire network if every node is

a function. The Sen Bulker problem has 44 functions with a total in-degree of 95,

summing to 44 + 95 = 139 function calls. By comparison, the full factorial DOE

consists of six variables with two states, 26 = 64 total combinations, each requiring

44 function calls. This makes the total number of function calls 44 × 64 = 2816

for the DOE. This means that path influence requires less than 5% of the DOE

function call count for the Sen Bulker problem, demonstrating that from a function

standpoint path influence is much less computationally intensive. The 5% assumes

that the DOE is computing the intermediate functions, trying to replicate (though

not fully) the volume of information available from path influence. Even if only the

three objectives are evaluated the DOE still requires 64×3 = 192 function calls which

is more than path influence.

A fair comparison of actual run time would have to account for the matrix ma-

nipulation inherent with generating P and determining the partial derivatives if that

weighting scheme is used. The Sen Bulker problem is too simple for such a compar-

ison, computing in less than 1/10th of a second for both cases. Faster path length

algorithms were discussed briefly in Section 5.1.2, but these and time studies are a
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matter for future research when the size of the networks demand it.

5.3 Capturing Optimization Behavior with Path Influence

It was originally envisioned that metrics like path influence could give insight

into “optimization behavior” without having to exhaustively explore the objective

space. The results of the previous sections show that this is achievable when the

behavior of the formulation is under investigation. However, this is distinctly different

from predicting the behavior of an optimization tool using that formulation. The

static structural analysis results of the Sen Bulker network varied significantly when

arcs representing constraint feedback were added, as shown in Section 4.2.2. From

an optimization standpoint, constraints really only affect a problem when they are

active, or nearly active. If an optimization is unconstrained, path influence results

can already show how variables affect objectives and by how much. This means that

predicting constraint activity is the area requiring focus if path influence is to be used

for determining overall optimization behavior.

5.3.1 Optimization Verification

To determine overall constraint activity, it was necessary to run and verify the op-

timization problem, namely by comparing it with the published optimization results

of Sen and Yang (1998). The formulation was encoded into MATLAB, each equation

verified using an optimal point from the published results. Interestingly, Sen and Yang

(1998)’s published formulation contains dimensional errors, specifically in Eq. B.11,

where V should be in m/s but was left in kts while Fn remained non-dimensional.

These errors were corrected for the analysis in all other sections, but not here because

the purpose was to verify with known optimization behavior. A minimization prob-

lem was solved for each objective individually with a MATLAB standard Sequential

Quadratic Programming implementation to identify the bounds of the Pareto front,
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f o1 , f o2 , and f o3 respectively. The front itself was resolved using a min max optimiza-

tion scheme as outlined in Eqs. 5.17 to 5.19, consistent with Sen and Yang (1998)’s

approach. If it is assumed that the objective scaling in Eq. 5.19 is perfect, then the

optimizer should seek each objective’s optimum with equal vigor, resulting in a bal-

anced single solution. By varying the weighting on each objective, wk of Eq. 5.18,

different solutions are created which can be culled to form a non-dominated set. This

set becomes the Pareto front for the problem. It was discovered that f o2 and f o3 match

with Sen and Yang (1998), while f o1 was slightly better. Each two-dimensional Pareto

front was verified as shown in Figs. 5.7 and 5.8, where the solid line is Sen and Yang

(1998)’s results and the asterisks are the bounds of the front. The minor discrepancies

are due to the coarse nature of Sen and Yang (1998)’s printed results, evident from

the fact that f o2 and f o3 are not always the endpoints of their respective fronts.

min
x

max
k

[wkzk(x)]

s.t. g(x) ≤ 0

(5.17)

zk(x) =
|fk(x)− f ok |
|f ok |

and wk = [0, 1] (5.18)

f1(x) = Transportation Cost

[
£

tonne

]
f2(x) =

Light Ship Mass

10000

[
103 tonnes

]
f3(x) = −Annual Cargo

1000000

[
106 tonnes

]
(5.19)

5.3.2 Method for Predicting Constraint Activity with Path Influence

There is no single optimum for the Sen Bulker problem, but a three-dimensional

Pareto front between the three objective optimums. Along this front there is no

single set of active constraints, meaning to determine constraint activity a single

solution point is required. This research used the three separate objective optimums

(f o1 , f
o
2 , f

o
3 ) as points to determine constraint activity. This was thought a simpler
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Figure 5.7: Pareto Front Verification Part One
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scenario to test the concept than a multi-objective problem. To predict the constraint

activity resulting from a single objective optimization, a sign adjusted column of P

corresponding to the variable inputs of an objective was multiplied element by element

to a corresponding constraint column of P. The resulting vector was summed to

form a single number. The logic is that what is “good” for an objective in the

path influence matrix is a positive value for maximization, while what is “bad” for

a constraint is also a positive value (inactive constraints are less than zero). If the

two are multiplied then a positive result indicates an active constraint, as what is

driving a better objective is pushing toward a constraint boundary, or the opposite.

Similarly, a negative value means that either the objective is being decreased, or the

constraint is being decreased, either one of which would logically lead to an inactive

constraint. See Table 5.7. This method is simply a selective extension of what was

done to form the path influence matrix in the first place, which was demonstrated to

be very effective at predicting trends.

Table 5.7: Constraint Trending for a Maximization Problem

Objective P Entry Constraint P Entry Result

Good + × Good − = − Inactive
Good + × Bad + = + Active
Bad − × Good + = − Inactive
Bad − × Bad − = + Active

5.3.3 Constraint Activity Results & Conclusions

The results of predicting constraint activity for both weighting methods is shown

in Table 5.8. The results are not promising for either method. Unfortunately, know-

ing that a constraint is likely to trend toward a boundary cannot predict activity, as

there is no indication in the network for the proximity to the boundary. The excep-

tion is when the expansion point is very near a boundary, resulting in very high P

matrix values as described in Section 5.2.2. However, high constraint P values are not
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necessarily linked to boundary proximity. Future work in this area should investigate

alternative methods which may include representing the constraint constant in the

network to locate the constraint boundary.

Table 5.8: Constraint Activity Prediction Results

Objective Partial Derivative Weighting Interpolated Derivative Weighting

f 0
1 69% 92%
f o2 69% 69%
f o3 38% 38%
Average 59% 67%

5.4 Comparing Static and Dynamic Analysis Methods

Rather than one network formulation or metric being better than another, they

complement each other. The static network structural metrics provide a simpler and

designer intent focused view, while the dynamic metrics provide a quantitative view

of the implementation of that designer intent. Park centrality results were used to

describe “impact” in Chapter IV, which was never defined. In this chapter, influence

has been defined using the weighting schemes of Eqs. 5.14 and 5.15. In both cases,

effects received by a node and transmitted by a node are measured. This makes Park

centrality and path influence comparable, albeit with some manipulation and caveats.

5.4.1 Method

To compare path influence with Park centrality, a new metric termed Winston

centrality was developed, Eq. 5.20. The sum of entries in the ith column of the

absolute value P matrix is subtracted from the sum of entries in the ith row of the

absolute value P matrix. The absolute values are necessary because influence can be
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positive or negative, equally analogous to impact.

pi =
n∑
j=1

|Pij| −
n∑
j=1

|Pji| (5.20)

Winston centrality is similar to Park centrality in that overall “losses” are subtracted

from overall “wins,” bearing in mind that that each entry in the P matrix already

takes into account the indirect “wins” and “losses” accounted for in Park centrality.

In form Winston centrality is also similar to in-degree subtracted from out-degree for

a node in an unweighted network, Eq. 5.21.

kiout − kiin =
∑

Ai −
∑

A|i| (5.21)

5.4.2 Results

Park centrality and Winston centrality rankings are shown in Tables 5.9 and 5.10,

where one and dark green is the highest ranked node, on a continuum to 59 and dark

red for the lowest ranked node. Two major interpretations are that Park and Win-

ston centrality rankings are quite similar, and that the two path influence weighting

schemes show nearly identical results. The conclusion is that static network struc-

tural analysis is indicative of dynamic analysis, and can be used as a lead indicator

of problem behavior.

There are three discrepancies between Park and Winston centrality rankings worth

mentioning due to an interesting correlation with betweenness centrality. Power (P )

is ranked near the top for Park centrality, but near the bottom for Winston cen-

trality. This indicates that Power is not as influential as its place in the network

structure would suggest, implying that its contributions to other functions, though

structurally significant or numerous, are not nearly as important as the contributions

it receives. What is interesting is that Power has the highest betweenness centrality
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in the network. Machinery Mass also has a ranking discrepancy, probably because

its sole input is Power. However, Machinery Mass has the fourth highest between-

ness in the network. Finally, deadweight (∆DW ) has another discrepancy, mid range

for Park centrality but near the top for Winston centrality. Deadweight has nearly

balanced in-degree and out-degree, helping to explain the mid range Park Ranking.

However, Deadweight has the second highest betweenness centrality. In summary,

three major discrepancies between the two rankings are attached to three of the top

four betweenness values in the network. As both path influence and betweenness rely

on path calculations, this is a subject worthy of future investigation.
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Table 5.9: Park and Path Influence Ranking Comparison Part One

Park Centrality Partial Interpolated
# Node → Derivative Derivative

1 L 1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

7 6 33 32

3 4 37 37

6 5 43 45

5 7 47 48

1 1 12 12

4 2 9 9

19 18 11 11

22 22 44 41

25 25 16 16

21 20 14 14

28 26 15 15

13 13 10 10

23 23 2 3

51 50 8 8

50 51 18 19

36 44 24 24

53 52 20 21

54 53 46 42

56 56 38 36

27 28 57 57

55 55 58 58

41 47 48 46

17 17 40 39

29 29 26 27

35 35 45 43

31 31 42 40

49 49 52 54

34 34 32 33

39 38 30 30

59 59

7 6 33 32

3 4 37 37

6 5 43 45

5 7 47 48

1 1 12 12

4 2 9 9

19 18 11 11

22 22 44 41

25 25 16 16

21 20 14 14

28 26 15 15

13 13 10 10

23 23 2 3

51 50 8 8

50 51 18 19

36 44 24 24

53 52 20 21

54 53 46 42

56 56 38 36

27 28 57 57

55 55 58 58

41 47 48 46

17 17 40 39

29 29 26 27

35 35 45 43

31 31 42 40

49 49 52 54

34 34 32 33

39 38 30 30

59 59

2 T
3 D
4 Cb
5 B
6 V
7 Fn
8 Steel Mass
9 Outfit Mass
10 a
11 b
12 Delta
13 Sea Days
14 P
15 Aco
16 Ship Costs
17 Machinery Mass
18 Daily Consumption
19 Fuel Cost
20 Light Ship Mass
21 Fuel Carried
22 Capital Charges
23 ∆DW

24 Running Costs
25 Port Costs
26 Stores&Water
27 Voyage Costs
28 ∆Cargo

29 Port Days

Legend

Maximum Minimum
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Table 5.10: Park and Path Influence Ranking Comparison Part Two

Park Centrality Partial Interpolated
# Node → Derivative Derivative

30 RTPA1 2 8 34 54 25

2 5 1 52 57 31

6 6 2 53 58 30

9 1 7 51 59 46

8 3 4 47 31 20

14 4 6 29 25 3

41 8 21 38 26 5

48 17 14 44 40 37

49 18 13 17 9 44

24 15 12 18 10 33

25 16 26 19 11 18

46 7 9 20 12 39

26 20 17 21 13 27

50 21 19 22 14 11

35 43 45 23 19 15

58 49 23 28 23 28

30 24 43 27 22 40

36 39 22 5 32 47

32 44 34 4 33 48

37 38 10 3 34 49

31 42 42 12 52 50

42 47 29 7 35 51

57 37 16 40 50 52

56 48 32 39 51 53

55 46 35 10 27 54

54 45 36 11 28 55

43 53 41 15 29 56

59 56 24 16 30 57

45 55 38 33 36 58

13 41 59

7 6 33 32

3 4 37 37

6 5 43 45

5 7 47 48

1 1 12 12

4 2 9 9

19 18 11 11

22 22 44 41

25 25 16 16

21 20 14 14

28 26 15 15

13 13 10 10

23 23 2 3

51 50 8 8

50 51 18 19

36 44 24 24

53 52 20 21

54 53 46 42

56 56 38 36

27 28 57 57

55 55 58 58

41 47 48 46

17 17 40 39

29 29 26 27

35 35 45 43

31 31 42 40

49 49 52 54

34 34 32 33

39 38 30 30

59 59

7 6 33 32

3 4 37 37

6 5 43 45

5 7 47 48

1 1 12 12

4 2 9 9

19 18 11 11

22 22 44 41

25 25 16 16

21 20 14 14

28 26 15 15

13 13 10 10

23 23 2 3

51 50 8 8

50 51 18 19

36 44 24 24

53 52 20 21

54 53 46 42

56 56 38 36

27 28 57 57

55 55 58 58

41 47 48 46

17 17 40 39

29 29 26 27

35 35 45 43

31 31 42 40

49 49 52 54

34 34 32 33

39 38 30 30

59 59

31 Annual Cargo
32 Annual Costs
33 Transportation Costs
34 BM
35 KG
36 KB
37 GM
38 ζ1
39 ζ2
40 ζ3
41 η1
42 η2
43 η3
44 Round Trip Miles
45 Fuel Price
46 Cargo Handling Rate
47 g1
48 g2
49 g3
50 g4
51 g5
52 g6
53 g7
54 g8
55 g9
56 g10
57 g11
58 g12
59 g13

Legend

Maximum Minimum
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5.5 Further Applications of Winston Centrality

Winston centrality was used in the previous section to compare path influence

with Park centrality, but this is by no means its only possible use. Pasqual and

de Weck (2012) introduced several metrics derived from a design activity network to

quantify change propagation characteristics for individual engineers. Their method

has major drawbacks as discussed previously, but it does have parallels to influence

propagation and possible interpretations for Winston centrality. Winston centrality

results for the Sen Bulker problem are shown in Tables 5.11 and 5.12.

Zero Winston centrality indicates that a node is a receiver and transmitter of

no influence, or it transmits exactly the same amount of influence as it receives. In

either case it adds no new influence to the network, but might serve as an influence

sorter. Outfit Mass is an example of an influence sorter, in that it has near zero

Winston centrality but both receives and transmits influence. A node with negative

Winston centrality receives more than it distributes, making it a damper or dead

end for influence propagation through the network. The Admiralty coefficient (Aco)

already identified as a dead end with other methods confirms this interpretation. A

node with positive Winston centrality may be seen as a multiplier of influence, or

highly influential alone. As would be expected, each of the variables has very high

Winston centrality. Also of interest, the parameters η2 and η3 have very high Winston

centrality, especially when compared with other constants and parameters such as the

ζ values or Cargo Handling Rate. This indicates the sensitivity of the Sen Bulker

problem to parameter changes.

Analyzing Winston centrality from an optimization viewpoint, the variables should

be sources of influence and the objectives sinks of influence. This is unquestionably

verified for the variables, and each of the the three objectives do have negative influ-

ence, though not by much for Light Ship Mass. Similar results were seen with Park

centrality, and the Sen Bulker problem is unusual in that two of the three objectives
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Table 5.11: Winston Centrality Results Part One

Partial Interpolated
# Node Derivative Derivative

1 L 53.50 53.38
2 T 60.01 59.90
3 D 53.96 53.49
4 Cb 56.77 53.14
5 B 78.13 80.20
6 V 58.69 65.50
7 Fn 4.74 5.95
8 Steel Mass 1.98 1.88
9 Outfit Mass 0.03 0.05
10 a 2.09 2.25
11 b -1.49 -0.47
12 ∆ 20.27 20.21
13 Sea Days 1.89 1.87
14 P -26.73 -23.11
15 Aco -26.51 -26.06
16 Ship Costs -5.95 -15.79
17 Machinery Mass -29.63 -27.22
18 Daily Consumption -30.11 -27.58
19 Fuel Cost -35.15 -32.72
20 Light Ship Mass -1.17 -1.18
21 Fuel Carried -34.62 -32.16
22 Capital Charges -7.95 -17.79
23 ∆DW 9.20 8.87
24 Running Costs -1.82 -1.74
25 Port Costs -5.26 -5.19
26 Stores

Water -3.64 -3.54
27 Voyage Costs -23.02 -21.65
28 ∆Cargo -5.16 -5.16
29 Port Days -7.63 -7.62
30 RTPA -4.41 -4.10
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Table 5.12: Winston Centrality Results Part Two

Partial Interpolated
# Node Derivative Derivative

31 Annual Cargo -7.27 -7.31
32 Annual Costs -10.32 -16.13
33 Transportation Costs -16.09 -20.45
34 BM 22.51 22.50
35 KG 39.92 39.92
36 KB 23.86 23.86
37 GM -10.33 -10.69
38 ζ1 9.63 11.44
39 ζ2 16.73 19.87
40 ζ3 13.36 15.87
41 η1 25.23 25.19
42 η2 60.43 60.33
43 η3 48.86 48.78
44 Round Trip Miles 4.89 4.77
45 Fuel Price 1.77 1.77
46 Cargo Handling Rate 2.27 1.97
47 g1 -14.15 -13.51
48 g2 -7.50 -7.16
49 g3 -36.00 -34.36
50 g4 -70.98 -69.39
51 g5 -17.20 -17.20
52 g6 -7.81 -7.78
53 g7 -0.83 -0.83
54 g8 -13.60 -13.60
55 g9 -9.71 -9.71
56 g10 -29.00 -29.00
57 g11 -4.14 -4.14
58 g12 -2.46 -2.43
59 g13 -163.09 -166.16
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are actually used in the computation of other functions.
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5.6 Conclusion & Contributions

Network representations of design formulations have been created and analyzed in

previous chapters, providing static insight into designer intent. This chapter utilized

the same network structure and a new network metric, termed path influence, to

analyze the dynamic behavior of a representative preliminary design formulation, the

Sen Bulker problem. This chapter comprises the third major contribution of this

thesis:

• Recognition that algorithms for finding path lengths can be used to quantita-

tively capture all node to node influences across multipartite design networks

– Formulation of path influence algorithms and network weighting schemes,

showing equivalency with first order Taylor series expansions

– Introduction of interpretations for path influence results, comparable with

a full factorial design of experiments

– Development of a new metric, Winston centrality, enabling comparisons

between path influence and other metrics and the identification of potential

influence multiplying, sorting and damping nodes

Specifically, path influence was used to measure the impact of variable changes

on the entire formulation using two path weighting schemes, partial derivative and

interpolated derivative. The partial derivative weighting scheme was demonstrated

to be equivalent to a first order Taylor series expansion, while the interpolated deriva-

tive was developed for non-differentiable problems. Path influence results from each

scheme were compared with a full factorial design of experiments, yielding acceptable

levels of accuracy in magnitude prediction and high accuracy in predicting trends.

These results indicate that path influence can confidently be used to:

• Determine the existence of interactions within design formulations
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• Determine the local magnitude and sign of interactions

• Determine the relative importance of one interaction versus another

• Determine the cumulative effect of multiple interactions

Using path influence to generate such insight is advantageous due to the inherent

network representation, allowing the intermediate functions used in formulations to

be adequately represented and understood. Variable to objective influence can be

traced through these intermediate functions, providing an intuitive understanding not

necessarily possible from standard methods. Path influence can also require many

fewer function calls than a DOE producing comparable results, though additional

matrix manipulation is required.

A new metric, Winston centrality, was also introduced which is capable of com-

paring path influence results with Park or Katz centrality, making dynamic and static

network structural analysis comparable. These two types of results for the Sen Bulker

problem show general agreement, helping to verify the static analysis results and the

overall network approach. Winston centrality is applicable beyond static and dynamic

comparisons, specifically to the propagation of influence within a design formulation,

and was discussed in this context.
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CHAPTER VI

Network Diffusion of Design Information

Design can be defined as the act of generating information used for decision mak-

ing. Generating information takes time, requiring that design and acquisition be

viewed from a time-domain perspective. This chapter is the first step in extending

network methods to account for the temporal nature of naval design, which remains

a major research gap. Evidence of this gap can be found in research on Set-Based

Design. The main theme of Set-Based Design is to delay critical decisions until the

latest possible moment, a practice based on the relationship between cost, informa-

tion, and influence. The claim is that one can improve a design by delaying the

commitment of cost until later in the design process when investments can be backed

by better information. By delaying cost commitment the time in which constituents

can influence a design is also increased (Parker and Singer, 2012; Singer et al., 2009).

The veracity of these claims has been demonstrated in practice, but researchers have

been hard pressed to attach a mathematical underpinning to them (Bernstein, 1998;

Liker, 2004; Mebane et al., 2011). The notable exceptions are those that have tried to

account for the influence of time, using real options, Markov decision processes, etc.

(Ford and Sobek, 2005; Knight and Singer, 2014; McKenney, 2013). The takeaway is

that capturing temporal effects is critical to accurately modeling design or acquisition

as a whole.
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The previous chapters have shown that multipartite networks provide a generic

structure that can produce lead indicators for design, but lead indicators that account

for the temporal nature of design are still required. Design’s temporal nature can

be modeled using networks in several ways, this chapter approaches the problem by

modeling the flow of information across a design network using an abstraction of Fick’s

second law of diffusion. Network diffusion uses the same common basis developed in

Chapter III, meaning diffusion and the methods of Chapters IV and V can work in

parallel. The simplicity of diffusion analysis means it can produce lead indicators for

the early stages of design, but the continuous flow assumption is a limiting factor as

design actually progresses discretely. Methods to capture discrete temporal effects

are discussed in Chapter VII.

Section 6.1 introduces network diffusion and provides examples of how diffusion

analysis can identify common problems designers encounter when working within

processes or organizations. A diffusion model of a design organization based on the

Sen Bulker problem is presented and analyzed in Section 6.2. Watson & Gilfillan

network diffusion results are briefly presented in Section 6.3 to demonstrate that the

Sen Bulker results are not atypical. Section 6.6 concludes the chapter.

6.1 Diffusion Modeling of Design Information Flow

The term diffusion has a variety of meanings, even within network science. Net-

work models of diffusion have covered the fields of epidemiology, geography, eco-

nomics, collective behavior, decay processes, interactive communication, etc., but

primarily with empirical data analysis or static methods similar to those presented

in Chapter IV (Valente, 1995). Some of these fields have strong dynamic models

that do not rely on networks. In the case of epidemiology, these dynamic models can

provide the time progression of a disease outbreak from a population standpoint, but

they lack information about individuals (aka nodes) within the population (Strogatz,
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1994). However, the status of individual nodes is necessary to realistically capture the

spread of disease, as transmission often relies on individual contact (Newman, 2003).

The complicating factor for epidemiological networks is that contact between indi-

viduals does not necessitate the transfer of a disease, i.e. an edge between two nodes

does not guarantee transmission. Newman (2003) surveyed some methods which map

between network and dynamic models, capturing the individual node characteristics

necessary to determine the size of outbreaks based on the initial carrier, but what

they lack “...is the time progression of a disease outbreak.”

Capturing the temporal nature of a design network requires a different type of

diffusion, because both a time progression and individual node characteristics are

required. In the case of design networks such as Watson & Gilfillan or the Sen

Bulker problem, arcs between nodes represent the transmission of information, not

just the possibility of transmission. This makes design networks simpler than their

epidemiological counterparts and a diffusion model based on Fick’s second law is

possible.

6.1.1 Fick’s Second Law of Diffusion in Network Terms

Fick’s first law of diffusion essentially states that a substance will flow between

two locations at a rate proportional to the difference in the amount of the substance

at each location, while Fick’s second law expresses the amount of a substance at a

location as a function of time. Fick’s second law can be written as Eq. 6.1, where

Ψ is the amount of substance at a location, C is a diffusion constant, and ∇2 is the

Laplace operator.

dΨ

dt
= C∇2Ψ (6.1)
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Fick’s second law can be expressed in network terms as shown in Newman (2010) and

restated here in Eqs. 6.2 to 6.5. Nodes can be envisioned as locations that a substance

might occupy, while the edges or arcs that connect nodes are the paths across which a

substance can move. Using the adjacency matrix, Fick’s second law can be rewritten

as Eq. 6.2, where Ψi is the quantity of a substance at node i, and Ψj the quantity at

node j. This form is valid for both directed and undirected networks.

dΨi

dt
= C

∑
j

Aij(Ψj −Ψi) (6.2)

Algebraic manipulation and the key assumptions that the network is undirected, has

at most a single edge between nodes, and no self edges yields Eq. 6.3. D is the

diagonal matrix of the degree of each node as shown in Eq. 6.4.

dΨ

dt
= C(A−D)Ψ (6.3)

D =



k1 0 0 . . .

0 k2 0 . . .

0 0 k3 . . .

...
...

...
. . .


(6.4)

The matrix D−A is known as the graph Laplacian (L), with many other uses in

network mathematics. Eq. 6.5 is the network form of Fick’s second law, a sign change

and substitution of L for ∇2 being the only differences.

dΨ

dt
= −CLΨ (6.5)
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Eq. 6.5 is a first order differential equation with a solution of the form shown in

Eq. 6.6. λi is the ith Eigen value of L and vi is the ith Eigen vector of L.

Ψ(t) =
∑
i

cie
−Cλitvi (6.6)

6.1.2 The Analogy Between Design Information and Diffusion

Solving Eq. 6.5 provides an individual time series for the amount of a substance

at every node in an undirected and simple network (no self-edges or multiedges). If

information is the substance, then any question based around how much and when

information is available at a given node can be answered.

A logical model of the flow of design information can be created using initial

conditions. Any design process starts with assumptions or guesses about the values

variables might take, and thus variables are logical nodes for positive initial informa-

tion. At the same time, an organizational unit or discipline might have relevant design

experience at the outset, also signified by a positive initial condition. The direction

of information flow is governed by Fick’s first law, i.e. flow rate is proportional to the

difference in the information level between nodes. Information will flow from nodes

that have it to nodes that don’t until a steady state is reached assuming a closed

system with conservation of information. Negative initial conditions are possible,

thus creating a draw for information from one part of the network to another. This

type of analysis is useful because the structure of the network can be evaluated for

more efficient flows using only a set of initial conditions and provides a closed form

solution. This is ideal for identifying classic problems within a design structure prior

to implementation, when there is still time to modify it.

Fig. 6.1 is representative of an information level curve generated by diffusion

analysis for a single node. Steady state is represented by the dashed line. When

the information level is above steady state, information lead is present and the node
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possesses information to diffuse to other nodes. When below steady state, information

lag is present and the node requires more information. A metric for lead and lag is

the first moment of area above steady state or below steady state respectively. Steady

state is determined by summing the initial conditions and dividing by the number

of nodes, i.e. each node ends up with an equal amount of information (assuming a

one component network). A high first moment of area below steady state indicates

either a large amount of lag, lag whose centroid is late in the process, or both. These

situations are undesirable. Separately, if (nearly) reaching steady state is used as a

proxy for process completion, then the time to completion can be estimated for every

node in the network. Relative completion between nodes at any given time can also

be compared. It is important to distinguish between process completion and design

completion, as one does not necessitate the other. The process will end when time or

resources have run out, while there is never a guarantee of design completion.

Time
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Information Lag

Information Lead
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Completion

Figure 6.1: Information Levels as a Function of Time

Fig. 6.1 is a time history for a single node, but the diffusion properties of an entire

network can be evaluated in a similar fashion. Summing the absolute lead and lag
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over all nodes is a measure of how far (not in time but in information gap) a network is

from steady state. This measure termed Absolute Information Gap varies with time,

differentiating it from the total information level of the network which is constant.

The absolute summation is necessary because information lead on one node does not

necessarily counter lag at another node.

6.1.3 Canonical Design Problems in terms of Diffusion

One example of a problem within a design process is the bottleneck, information

is available but reaches its destination slowly due to constrictions in the path it must

take, creating information lead. Information lag is created when a node requires

information but does not receive it in a timely manner. Curves such as Fig. 6.1 and

first moment metrics can be used to identify bottlenecks and information lags, but the

network structures that generate such conditions are not arbitrary. Fig. 6.2a displays

a network that produces a bottleneck, while Fig. 6.2b produces excessive information

lag. In both cases yellow or blue nodes represent variables and are initialized with a

positive initial condition while other nodes start with zero or negative information as

shown in Table 6.1. Dashed edges are modified for different cases.
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(b) Design Lag

Figure 6.2: Canonical Design Networks

The shape of Fig. 6.2a obviously represents a bottleneck. In a design environment a
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Table 6.1: Nominal Case Initial Conditions

Node # 1 2 3 4 5 6 7 8 Steady State C

Design Bottleneck 1 1 1 1 0 -4 N/A N/A 0 0.1
Design Lag 4 0 0 0 0 0 0 4 1 0.1

bottleneck is created when information is inputted to a node faster than it can process

it, creating a backup. This phenomenon is well enough documented in manufacturing

to inspire fictional works (Goldratt and Cox, 2004). A commonly observed visible

symptom of the design bottleneck is the collection of paperwork (or e-mails) on a

design manager’s desk, much of which must be sent on to oversight. The design

manager in Fig. 6.2a is Node 5, while oversight is Node 6. The information level at

Nodes 1 and 5 are shown for three different cases in Fig. 6.3. The first case is the

nominal condition of Fig. 6.2a and initial conditions of Table 6.1. The second case

removes the edge from Node 5 to Node 6, and puts a -4 initial condition on Node 5.

The third case doubles the capacity of the edge between Node 5 and 6, changing the

values of A56 and A65 from 1 to 2.

In the nominal case, Nodes 1-4 have information that must eventually diffuse to

Node 6, but that information must pass through the single edge connecting Nodes

5 and 6 (aka a bottleneck), thus the information level at Nodes 1-4 is above steady

state for a prolonged period. The steady state of the network in the all cases is zero,

and nominally Node 5 never varies from this because any incoming information is

immediately diffused to Node 6. If the edge connecting Node 6 is removed from the

network and Node 5 assumes the -4 initial condition, then the information level of

Nodes 1-4 reaches steady state much faster. Removing the oversight removes the

bottleneck, as the information received by Node 5 need not be passed any further.

Oversight is usually not negotiable, so another solution is to provide the design man-

ager with greater capacity to process information. Doubling the capacity of the edge

between Node 5 and 6 with nominal initial conditions also decreases the effects of
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Figure 6.3: Bottleneck Network Information Levels
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Figure 6.4: Bottleneck Network Absolute Information Gap Comparison

the bottleneck, though Node 5 experiences information lag not associated with its

own initial condition. Taken as a whole, Fig. 6.3 demonstrates a nominal case that

is analogous to an actual design problem, and two potential remedies.

Calculating the Absolute Information Gap for the three bottleneck cases provides

a comparison of the total diffusion properties of the networks, as shown in Fig. 6.4.

The conclusion is that removing Node 6 is the most effective option for reducing

information lead and lag, but adjusting the capacity is also effective with the added

advantage of not altering the fundamental structure of the network.

The lag condition of interest in Fig. 6.2b is harder to visually identify, but actually

occurs at Node 1. Node 1 and 8 have equal amounts of information at t = 0, but the

information at Node 1 diffuses faster than information from Node 8 in the nominal

case because of the degree difference of the nodes. As a result, the information level

of Node 1 drops below steady state before returning despite the fact that it started
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with an information level well above steady state. This situation is analogous to

the assumptions made during design. Many variables have an assumed value at the

beginning of a design process, which is later updated when more information becomes

available. The updating information comes from nodes downstream in the process

and must eventually flow back to reach the variable nodes. The variable in the lag

network is Node 1, while the downstream information source is Node 8. Essentially

Node 1 primes the early design nodes with an assumption which is then corrected later

with information from Node 8. Disconnecting Node 8 drops the steady state level of

the smaller connected network to ≈ 0.57 and eliminates the lag at Node 1, analogous

to trusting the initial assumption. An alternative that keeps the steady state at 1 is

to add an edge from Node 8 directly to Node 1, creating a direct feedback pathway.

The added edge means information diffuses from Node 8 to Node 1, which has the

added benefit of reducing Node 8’s information lead. The information levels of Node

1 for the three cases are shown in Fig. 6.5a, and Node 8’s two cases in Fig. 6.5b. The

Absolute Information Gap plot for the three cases is shown in Fig. 6.6. Which solution

is better is dependent on what the nodes represent, removing the edges results in a

lower Absolute Information Gap overall, but the time to completion is about the same

as direct feedback. Direct feedback maintains the existing steady state and eliminates

the lag, but has a higher overall Absolute Information Gap.
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Figure 6.5: Lag Network Information Levels
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Figure 6.6: Lag Network Absolute Information Gap Comparison

6.2 Diffusion Analysis of the Sen Bulker Problem

The Sen Bulker network is a representation of a design problem formulation, but its

basic structure could also represent a design process, organization, or combination. As

an organization, the structure could represent the people who receive information from

multiple sources upstream, combine it and then pass it on downstream. Removing the

redundant (Aco) and optimizer specific portions of the formulation yields a structure

that could easily be derived from an inverted organization chart, Fig. 6.7. This

network, the Sen Bulker Organization, will be used for the remainder of the section.

6.2.1 Baseline Results

A baseline diffusion analysis was conducted on the Sen Bulker Organization net-

work, with the six variable and nine parameter nodes having equal initial conditions

such that the steady state is one. Eq. 6.5 was solved and plotted out to time t = 100.
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Figure 6.7: Sen Bulker Organization Network

The lead and lag first moments of area were numerically evaluated and are shown

in Tables 6.2 and 6.3. Composite plots of the variable, parameter and objective

information levels are shown in Figs. 6.8 and 6.9.

The hierarchical structure of the Sen Bulker Organization is clearly apparent in

Fig. 6.7, and the diffusion plots and first moments of area confirm this. Generally,

variables and parameters have lead with little to no lag, while the lag of functions

increases with their level, i.e. functions furthest from the variables have more lag.

Fig. 6.9a shows that Light Ship Mass experiences much less lag than Annual Cargo

and Transportation Cost. Light Ship Mass is a fourth level function while the other

two objectives are on levels ten and eleven. The benefit of diffusion is that intuition

about the visual structure can be quantified for each node, and outlier behavior can

be identified and potentially diagnosed. As an example, there are several notable

exceptions to the general hierarchical trend. V , Round Trip Miles, Fuel Price and

Cargo Handling Rate are variables/parameters that have a larger lag moment than

lead, while the η’s and ζ’s have an exceptionally high lead moment.
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Figure 6.8: Baseline Sen Bulker Organization Information Levels Part One
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Figure 6.9: Baseline Sen Bulker Organization Information Levels Part Two
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Table 6.2: Sen Bulker First Moments of Area Baseline Part One

Node # Node Lead First Moment Lag First Moment

1 L 226 0
2 T 406 0
3 D 283 0
4 Cb 592 0
5 B 250 0
6 V 8 -11
7 Fn 176 -3
8 Steel Mass 232 0
9 Outfit Mass 232 0
10 a 1078 0
11 b 1078 0
12 ∆ 209 0
13 Sea Days 0 -510
14 P 298 -4
15 Aco – –
16 Ship Costs 79 -38
17 Machinery Mass 152 -58
18 Daily Consumption 0 -333
19 Fuel Cost 0 -566
20 Light Ship Mass 48 -66
21 Fuel Carried 0 -610
22 Capital Charges 0 -529
23 ∆DW 0 -548
24 Running Costs 0 -852
25 Port Costs 0 -817
26 Stores & Water 0 -805
27 Voyage Costs 0 -836
28 ∆Cargo 0 -820
29 Port Days 0 -893
30 RTPA 0 -882
31 Annual Cargo 0 -1026
32 Annual Costs 0 -893
33 Transportation Costs 0 -1109
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Table 6.3: Sen Bulker First Moments of Area Baseline Part Two

Node # Node Lead First Moment Lag First Moment

38 ζ1 1429 0
39 ζ2 1429 0
40 ζ3 1429 0
41 η1 1429 0
42 η2 1429 0
43 η3 1429 0
44 Round Trip Miles 73 -475
45 Fuel Price 58 -538
46 Cargo Handling Rate 50 -882

The time plot in Fig. 6.8a of V mimics the same phenomenon found for Node 1

in the classic lag example, i.e. V supplies information to downstream nodes faster

(due to the networks structure) than the other variables, thus its information level

is below steady state (slightly) for a prolonged period. The effect is magnified for

Round Trip Miles, Fuel Price and Cargo Handling rate as seen in Fig. 6.8b, as the

nodes they input to are much further downstream in the organization.

The case of the ζ’s and η’s is a dramatic bottleneck. Recalling structural simi-

larity from Sections 3.1.3 and 4.1.2, it is apparent that η1, η2 and η3 are structurally

equivalent, the same for the ζ’s. This means that the three η’s are all inputting to

the same node, a, which itself only has one output. This single edge leaving a is

one bottleneck. The identical situation exists for the ζ’s and b. Compounding the

bottleneck is that a and b only input to P , which has an in-degree of five but an

out-degree of three, and the lead first moment for P also indicates a bottleneck.

6.2.2 Modified Network Results

The previous chapters have not recommended “improvements” to network struc-

ture based on analysis results, but modifying the edge weights can provide for in-

creased understanding when using diffusion. The obvious modification for the Sen

Bulker Organization is to alleviate the bottleneck for the η’s and ζ’s. The edges link-
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ing a and b with P cannot be removed while preserving the basic formulation, but

the capacity can be increased as done for the canonical bottleneck in Section 6.1.3. A

second modification is to further alleviate the bottleneck by increasing the capacity

of P ’s outgoing edges. The capacity of these edges was quadrupled, and the relevant

plots are shown in Figs. 6.10 and 6.11.

Fig. 6.11a is the Absolute Information Gap plot for the three cases. It is clear

that each modification reduces the gap slightly, but the curves’ exponential shape

hides the effect of the modifications. The curves never reach zero gap in real time

because they are exponential, so a threshold value for process completion is necessary.

This was set to five, and the time to completion and percent decrease relative to the

baseline is shown in Table 6.4.

Table 6.4: Sen Bulker Time to Process Completion, Threshold=5

Time to Completion % Difference Capacity % Difference

Baseline 65 0 65 0
Modification 1 55 -15 71 9
Modification 1+2 47 -28 80 23
Modification 3 64 -2 80 23

The Sen Bulker Organization network has 65 arcs (edges for diffusion). These

arcs define the capacity of the network to diffuse information. Capacity in a de-

sign network could signify personnel, computing resources etc. Weighting the edges

increases the capacity, and diffusion allows this to be compared with reductions in

process time. No arcs were added to the Sen Bulker Organization, but the weights

were increased for the modified cases. It is apparent from Table 6.4 that intelligent

additions of capacity can reduce time to completion significantly. To demonstrate the

opposite, a third modification increased the weight of the arcs inputting to Trans-

portation cost to 8.5, thereby matching the total capacity of Modification 1+2. As

expected, this had minimal impact on time to threshold because those arcs are not

involved in a bottleneck. The only noticeable difference was on the information level
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Figure 6.10: Modified Sen Bulker Organization Information Levels
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Figure 6.11: Modified Sen Bulker Organization Absolute Information Gap
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plot of Transportation Cost, outperforming the other modifications early but under

performing them as time to completion approached as shown in Fig. 6.10b. The third

modification is not shown on the other plots because it is indistinguishable from the

baseline.

6.3 Diffusion Analysis of the Watson & Gilfillan Method

The Watson & Gilfillan network is suited for diffusion analysis without modifi-

cation. The paper it is based on is titled “Some Ship Design Methods,” and was

published prior to the rise of the personal computer (Watson and Gilfillan, 1977). As

a result the method is logically arranged as a workable process for an individual or

team, and the network structure mirrors that process. From the organization stand-

point, the disciplines that were added represent the collecting points for information

prior to decision making, much like the objectives of the Sen Bulker network.

6.3.1 Baseline Results

A baseline diffusion analysis was conducted, with independent variable node (zero

in-degree) initial conditions equally set so that the steady state is one. The relevant

plots and first moment tables are shown in Fig. 6.12 and Tables 6.5 and 6.6.

Comparing Fig. 6.12 for the Watson & Gilfillan method with Figs. 6.8 and 6.9

for Sen Bulker Organization shows the same shapes of information level curves. This

suggests that the diffusion results are not atypical, and the analysis of Section 6.2

is reasonable. There are several unique results from the Watson & Gilfillan network

worth discussing. The first is the large lag first moment of area for Length (L),

and the significant lead first moment of area for the Weights discipline. These are

opposite of the expected trends. The lag of L can be explained by recalling that L

has the highest out-degree and Park centrality of the network. This means that the

information initially at L can disperse more quickly than its counterparts, dropping
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Figure 6.12: Baseline Watson & Gilfillan Information Levels
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Table 6.5: Watson & Gilfillan First Moments of Area Part One

Node # Node Lead First Moment Lag First Moment

1 L 2 -128
2 B 0 -43
3 T 1 -48
4 D 5 -78
5 V 143 -15
6 Ct 648 0
7 s 265 -76
8 l1 991 0
9 h1 991 0
10 l2 991 0
11 h2 991 0
12 RPM 509 0
13 ∆ 0 -274
14 Cb 0 -245
15 LCB 0 -714
16 S 58 -33
17 E 467 -8
18 C

′

b 26 -224
19 K 812 0
20 Ws7 175 -77
21 Ws 0 -326
22 Pe 178 -17
23 η 513 -2
24 MCR 0 -169
25 Wme 117 -71
26 Structural Cost 0 -623
27 Machinery Cost 0 -807
28 Total Cost 0 -569
29 f(L) 0 -112
30 f(D) 0 -280
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Table 6.6: Watson & Gilfillan First Moments of Area Part Two

Node # Node Lead First Moment Lag First Moment

31 f(B,L) 0 -269
32 f(L, V ) 0 -141
33 f(Cb) 0 -425
34 f(Cb, L,B, T, s) 0 -131
35 f(Cb, L,B, T ) 0 -100
36 f(L,B, T,D, l1, h1, l2, h2) 448 0
37 f(T,D,Cb) 11 -117
38 f(E,K) 399 -2
39 f(Ws7, C

′

b) 49 -155
40 f(V,Ct, S) 198 -5
41 f(Pe, η) 123 -10
42 f(RPM,MCR) 140 -3
43 f(L,Cb,Ws) 0 -362
44 f(MCR) 0 -504
45 f(L,Cb,Ws,MCR) 0 -319
46 Powering 0 -89
47 Weights 164 -14
48 Ship Type 0 -321
49 Stability/Seakeeping 0 -456
50 Rules/Safety 0 -547
51 Structures 0 -505
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it below steady state. The Weights discipline is in the opposite situation, having

the third highest in-degree and the lowest Park centrality. This means that Weights

can draw information more quickly than its counterparts, raising it above steady

state. The Watson & Gilfillan network is multipartite, so the information lag at L

cannot be countered directly with information from another variable, it must flow

from a function. The same can be said for the information lead at Weights, it cannot

flow directly to another discipline. The fact that the information lead persists for

so long at Weights is indicative that the disciplines are not tightly coupled. This is

untrue of the Transportation Cost and Annual Cargo objectives of the Sen Bulker

Organization. Those nodes are on different levels of the multipartite network, and

are directly connected. As a result, their information level curves are nearly identical

as seen in Fig. 6.9a.

The other interesting result worth mentioning can be seen in the lag first moments

for Nodes 33-36 shown in Table 6.6. Node 33, f(Cb), has a larger lag first moment

than nodes 34 and 35 which are partly dependent on it. Nodes 34 and 35 have

smaller moments because they are simultaneously receiving information from other

nodes. That information arrives sooner than that for f(Cb), reducing the lag. Node

36 is an extreme example of the same concept, though half of its inputs (L,B, T,D)

have lag of their own, the other half (l1, h1, l2, h2) have enough lead to yield zero lag

for Node 36.

6.3.2 Modified Network Results

Regarding bottlenecks, the situation of l1, h1, l2 and h2 in the Watson & Gilfillan

network is the same as that of the η’s and ζ’s in the Sen Bulker organization. Both

sets have the highest lead first moment as part of a classic bottleneck. The Watson

& Gilfillan variables were identified as structurally equivalent in Section 4.1.2 and are

used redundantly. Two modifications were tried to reduce the effect of the bottleneck.
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First, the two outgoing arc weights of the function they feed were quadrupled, the

same approach taken for the Sen Bulker Organization bottleneck. The second modifi-

cation was to delete the nodes entirely and place an initial condition on the function,

Equipment Number (E), that they feed. The results are compared in Figs. 6.13

and 6.14.

The first modification did not have a noticeable impact on the Absolute Informa-

tion Gap, as apparent in Fig. 6.14a. The lead of l1, h1, l2 and h2 was reduced, but

this resulted in an increased lead for the Weights discipline. An explanation for this

is that the variables in question have three directed paths to the Weights discipline,

two to the Ship Type discipline but none to the remaining four disciplines. In other

words, the modified arc weights increased the flow rate to the Weights discipline more

than any other, trading lead at one location for lead at another. Diffusion operates

on the undirected version of the network so there are paths connecting the variables

to all disciplines, but comparing the first moments shows that lead was increased

and lag reduced for Weights at the expense of the other disciplines. This is shown

in Table 6.7. Static network analysis results already indicated that the Watson &

Gilfillan method was weight based, and diffusion analysis indicates that a process or

organization implementing it will be skewed towards weights as well.

Table 6.7: Watson & Gilfillan Discipline Lead and Lag Comparison

Baseline Modification 1
Lead Lag Lead Lag

Node First Moment First Moment First Moment First Moment

Powering 0 -89 0 -113
Weights 164 -14 287 -3
Ship Type 0 -321 0 -325
Stability/Seakeeping 0 -456 0 -496
Rules/Safety 0 -547 0 -606
Structures 0 -505 0 -561

The second modification eliminates the redundant variables entirely, but places

an information lead and different initial condition on E. This changes the structure
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Figure 6.13: Modified Watson & Gilfillan Information Levels
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of the network, but results in a lower first moment of area for both the node(s)

with the initial condition and the Weights discipline than the first modification. The

effect on the Absolute Information Gap remains minimal though, implying side effects

elsewhere in the network. The implication of both modifications is that seemingly

simple changes to a design process or organization can easily result in unintended

consequences for information flow. Diffusion analysis provides a means to test changes

and identify consequences in advance.

6.4 Comparing Diffusion and Static Analysis Methods

Betweenness centrality, introduced in Section 3.1, might seem to be a static net-

work indicator for the first moments of lead or lag. Betweenness centrality is the

ratio of geodesic paths that pass through a node (or arc) relative to the total number

of geodesic paths in the network. A node with high betweenness lies on many such

paths, and may be a candidate for a bottleneck or lag. However, there are a variety

of conditions that can cause a node or arc to have high betweenness, whereas Sec-

tion 6.1.3 and this section have shown that bottleneck and lag conditions come from

particular circumstances. Furthermore, the nodes exhibiting the most lead and lag

in the Sen Bulker Organization have zero betweenness as defined because their total

degree is one, meaning no paths pass through them. The betweenness values of the

Sen Bulker Organization network were checked against the diffusion results anyway,

but no clear correlation was found.

Similarly, an anecdotal correlation between Park centrality and first moments of

lead and lag area were discussed for nodes in the Watson & Gilfillan Network. The

theme is that there are potential links between static network analysis metrics and

diffusion. This is a promising area of future research, starting with the correlations

between the metrics already outlined here and then moving to unexplored ones such

as arc or edge betweenness.
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6.5 Advantages & Limitations of the Diffusion Analogy

Diffusion introduces a new dimension, time, to the analysis of naval design net-

works. Diffusion is an analogy to the flow of information across a design network,

answering questions about when and how much information is available at given

node. Diffusion analysis is especially useful because it operates on the same type of

network used for analysis in the previous chapters. This means that one network

can be constructed and then evaluated in a variety of complimentary ways, maximiz-

ing the return on investment for network construction. The only requirements for

diffusion analysis beyond the network are a set of initial conditions and selection of

C. Diffusion requires many assumptions about the behavior of design processes and

organizations identified in the next paragraph, but provides meaningful results in a

closed form solution. These are good properties for producing lead indicators in a

timely fashion.

Diffusion assumes that information flows across a network rather than taking dis-

crete jumps. Implicit within this assumption is that design information is homogenous

in content and source, when in fact design requires specific information from specific

sources. In other words, diffusion can say that Node A received X amount of informa-

tion from all other nodes by time t, but in reality Node A receives specification Q, R,

and Z from Nodes B, C and D at times t1, t2, and t3. The form of diffusion presented

in Eq. 6.5 also requires an undirected network. Directed networks can easily be con-

verted to undirected as was done for structural similarity analysis in Section 4.1.2,

but this is in effect decreasing the fidelity of the network representation. The correct

flow directions can be partially recreated with appropriate initial conditions, but their

location and magnitude are also assumptions. Finally, time itself is only a relative

quantity for diffusion analysis because the diffusion constant C is arbitrary and every

edge in the network has equal capacity to carry information unless weighted edges are

employed. The final limitation of Eq. 6.5 is that not all L matrices allow a solution,
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which must be checked on a network by network basis.

The assumptions listed above are for the specific interpretation of design informa-

tion flow discussed in this chapter. Many other interpretations of diffusion on design

networks are possible, meaning those methods outlined here open a set of possibil-

ities rather than close one. Methods for capturing the discrete behavior of design

information flow are discussed in the next chapter.

6.6 Conclusions & Contributions

The strength of analyzing design structures with network theory is that networks

can represent design as it actually exists and the representations can be analyzed in

a multitude of ways. Though the networks themselves are not models, the methods

and metrics to analyze them are models or analogies. Diffusion is one such analogy,

introducing time to the network study of naval design. This chapter comprises the

fourth major contribution of this thesis:

• Application of network diffusion to model continuous information flow across

a multipartite design network, effectively capturing classic flow problems in a

closed form solution

– Development of metrics to quantify and interpret continuous information

flow across multipartite design networks

Specifically, the mathematical basis of Fick’s second law of diffusion was presented

and discussed in terms of design information flow. The analogy is formulated so

that the primary input is a contextual multipartite design network, making it an

easy extension to the methods and metrics of previous chapters. Representative

bottleneck and lag networks were formulated as canonical design problems along

with their diffusion analysis and potential solutions. The Watson & Gilfillan and Sen

Bulker Organization networks were also analyzed. The results of all four examples
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were interpreted in accordance with the diffusion analogy, and shown to be insightful

and congruent with the analysis methods presented in previous chapters. Absolute

Information Gap, Information Level, and First Moments of Area for Lead and Lag

were introduced as measures and metrics for continuous information flow.

The major limitation of diffusion in the present context is that it assumes infor-

mation flows across a network rather than taking discrete jumps. Implicit within this

assumption is that design information is homogenous in content and source, when in

fact design requires specific information from specific sources. However, the work to

develop diffusion for design networks did yield the idea for quantifying information

level, gap and lag. The concept behind these metrics is of immense value well beyond

the narrow application of diffusion. The next chapter develops a method to bring

information level, gap and lag to the discrete case, overcoming the major limitations

of diffusion.
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CHAPTER VII

Discrete Information Flow & Verification

Chapter VI introduced a continuous design information flow analogy that is useful

for identifying capacity issues that cause information bottlenecks and lag. The draw-

back of the analogy is that it treats information as continuous and uniform, when in

fact design information is not the same and it moves along directed paths in a dis-

crete fashion. As discussed in Section 2.3.1, extensive and broad ranging research has

addressed this problem, the most complete and comprehensive solutions using Dis-

crete Event Simulation (DES). Simulation requires a significant investment of time to

collect data and construct models, and these high fidelity inputs make simulation less

useful for predictive metrics unless the structure being evaluated is very similar to

those of the past. Design methods, processes and approaches vary significantly from

program to program in the naval field, not to mention a constantly changing orga-

nizational structure (Johnson, 1980). This chapter introduces a discrete information

flow variant of the path influence algorithm, not displacing the comprehensive results

from a simulation, but producing valuable lead indicators from only a low fidelity

multipartite network structure.

The second purpose of this chapter is to compare the network metrics developed

in this thesis with the results from a DES on the same network. Full scale testing of

warships is not usually tractable, and neither is testing on their design structures. A
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tow tank is used as a substitute for reality in hydrodynamics, and simulation is the

tow tank equivalent for temporal design research. The logic behind the path influence

algorithm can be coded as a DES, and this has been done to verify the algorithm.

As shown in Section 5.4, path influence can be compared with Park centrality. This

makes DES results comparable across the board, allowing the efficacy of static metrics

to be tested under the influence of time.

Section 7.1 introduces the information flow variant of path influence, Section 7.2

applies it to the Sen Bulker Organization network, and Section 7.3 verifies the results

with a simulation. Section 7.4 introduces more realistic simulation models of design

to further test path influence. Section 7.5 discusses the importance of network struc-

ture to the temporal results using comparisons with Park and Winston centrality.

Section 7.6 concludes the chapter.

7.1 Path Influence for Information Flow

Information is built upon and transformed as it flows through a design network,

context is provided with each level of the network it passes through. In Chapter VI

the concept of the information level of a node was developed, but that definition only

provided node to node or steady state comparisons. Another way to think about

design information is in terms of completeness. Information completeness (IC) is the

fraction of required information available at a given node, optionally as a function of

time. IC of one means that a node has access to all its required information, IC of zero

means the node has no information. Viewed in this way, information completeness

is the inverse of uncertainty, where uncertainty is the lack of information (Daft and

Lengel, 1986).
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7.1.1 Information Completeness with Equal Weightings

Two path influence weighting schemes were developed in Chapter V for networks

that represent design methods with evaluable functions, but it was noted that path

influence could accept any weighting scheme irrespective of what a multipartite net-

work represents. Just as influence is built up along paths, so is information. All that

is required is a weighting scheme for information, and the path influence algorithm

can be used.

A node is information complete when it has received information from all of its

inputs, so the information contribution of an arc can be computed using Eq. 7.1,

Bij =
1

kjin
(7.1)

where B is a weighted adjacency matrix. This assumes that each input to a node

contributes an equal amount of information and kjin is computed from the unweighted

adjacency matrix. Computing the path influence matrix, P, using Eq. 5.11 then

provides an n×n matrix of the information contribution of every node to every other

node. If the time it takes information to flow over an arc is equal across the network,

then the information completeness of every node can be plotted as a function of

discrete time using Eq. 7.2,

IC(t) = vTo

t∑
t=0

Bt (7.2)

where vo is a n× 1 vector of the information completeness of the independent inputs

at t = 0 with all other entries equal to 0. If the non-zero entries of vo are equal to one,

then the information content of every node at t = n− 1 will be one, meaning after all

paths are accounted for every node will be information complete (input nodes’ IC does

not change from t = 0 because they have zero in-degree). This formulation is also
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Figure 7.1: Information Completeness Weighted Network Example

subject to the no loops condition discussed in Section 5.1.3, meaning iterations must

be handled differently. Smith and Eppinger (1997a) use a form of Eq. 7.2 operating

on a different matrix for a different purpose; handling the dynamics of iterations using

an abstraction of DSMs. With some modification their method may prove promising

if extended to multipartite networks.

To demonstrate Eqs. 7.1 and 7.2 a modified version of the example network from

path influence and its IC results are shown in Fig. 7.1 and Table 7.1. A sixth node

and four arcs are added such that paths of length one, two and three connect the

other nodes to Node 5. At t = 1, Nodes 1, 2, and 6 are information complete as

the longest path to them is one arc long, while Node 5 has received a quarter of its

information. At t = 2, Nodes 3 and 4 become information complete, while Node 5

receives another quarter of its information from a path two arcs long. At t = 3 all

nodes are information complete because the longest paths in the network are three

arcs long.

Table 7.1: Information Completeness in Discrete Time Example

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

t = 0 0 0 0 0 0 1
t = 1 1 1 0 0 0.25 1
t = 2 1 1 1 1 0.5 1
t = 3 1 1 1 1 1 1
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7.1.2 Information Completeness with Influence Weightings

Risk can be defined as probability×consequence, and there is an analogy to making

decisions under uncertainty. The weightings of path influence can be thought of as

consequences as well. More risk is accrued if an influential piece of information

is missing versus an inconsequential one, greatly affecting subsequent design stages

(GAO, 2002). To enact this concept, the adjacency matrix B is computed using the

weighting scheme of Eq. 7.3,

Bij =
|Aij|∑
|A|j||

(7.3)

noting that A has already been weighted for influence. Normalizing by the sum of the

jth column of A keeps the notation that information complete is signified by IC = 1 .

The absolute values are used because negative influence does not counteract positive

influence in this context.

7.1.3 Independent Flow Assumption

Path influence assumes that each path flows independently, when realistically

information is held at a node until all inputs are received, context is added and then

the information is released as a whole. Under this scenario, information completeness

computed with the path influence algorithm is an upper bound, and its inverse is a

lower bound on uncertainty. A pictorial example of this is shown in Fig. 7.2. At t = 2

the IC of Node 6 would be 1/2, coming from input Node 2. But that information

flows through Node 5, which is missing the contextual information provided by Node

1 which is four arcs away from Node 6. However, as shown in Section 7.4, the

effect of this assumption on the relative completeness of nodes is minimal for largely

hierarchical networks like the Sen Bulker Organization.
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Figure 7.2: Information Completeness as an Upper Bound

7.2 Information Completeness Applied to the Sen Bulker Or-

ganization Network

Information completeness was computed for the Sen Bulker Organization network

(described in Chapter VI) with both B weighting schemes using the path influence

algorithm. The weightings for Eq. 7.3 are from the partial derivative weighting scheme

of Chapter V, unchanged from the full network because the nodes that were removed

do not influence any other nodes. However, the results do not directly correlate with

those of Chapter V because of the absolute values used in Eq. 7.3.

7.2.1 Information Completeness with Equal Weighting Results

Table 7.2 and Figs. 7.3 and 7.4 show the IC results of Node 33 (the Transportation

Cost objective) from using the equal weightings of Eq. 7.1. Node 33 is at the end

of the longest paths in the network, 11 arcs long, and therefore is not information

complete until t = 11. Bar charts are used because information completeness changes

in discrete jumps, not as a continuous function of time. The stacked bar charts in

Figs. 7.3a and 7.3b show the contribution of each variable and parameter to the

total information completeness respectively, highly informative figures. Engineers

evaluating data at any point in time on the network structure have an indication of

how much information they could have, and which inputs are driving that information.

As described in Section 7.1.3, the path influence algorithm provides a best case

scenario for information completeness. For example, at time t = 5 the most informa-
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tion Node 33 could have is 56% of its total, meaning at a minimum the uncertainty

at Node 33 is 44%. The inputs that contribute to the 56% IC could be missing the

context provided by inputs on paths more than four arcs long.

Table 7.2: Transportation Cost IC with Equal Weightings Data

Discrete Time
Variable/Parameter 4 5 6 7 8 9 10 11

L 0 0.047 0.089 0.114 0.126 0.134 0.135 0.136
T 0 0.026 0.046 0.053 0.059 0.061 0.061 0.062
D 0 0.021 0.038 0.050 0.053 0.056 0.056 0.056
Cb 0 0.047 0.089 0.114 0.126 0.134 0.135 0.136
B 0 0.047 0.085 0.104 0.112 0.117 0.117 0.117
V 0.094 0.133 0.150 0.171 0.182 0.188 0.189 0.190
ζ1 0 0 0.002 0.005 0.007 0.009 0.009 0.009
ζ2 0 0 0.002 0.005 0.007 0.009 0.009 0.009
ζ3 0 0 0.002 0.005 0.007 0.009 0.009 0.009
η1 0 0 0.002 0.005 0.007 0.009 0.009 0.009
η2 0 0 0.002 0.005 0.007 0.009 0.009 0.009
η3 0 0 0.002 0.005 0.007 0.009 0.009 0.009

Round Trip Miles 0.094 0.125 0.125 0.133 0.133 0.133 0.133 0.133
Fuel Price 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021

Cargo Handling Rate 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094
Total 0.302 0.560 0.749 0.885 0.947 0.991 0.996 1.000

7.2.2 Information Completeness with Influence Weighting Results

The method and results described in Section 7.2.1 are based on the assumption

that all information arriving at a node has the same value. This is definitely not

the case in a design environment, some information is much more important. This

is readily apparent by comparing Table 7.2 and Figs. 7.3 and 7.4 against Table 7.3

and Figs. 7.5 and 7.6 where influence is accounted for using the weighting scheme

of Eq. 7.3. IC approaches unity much faster and the variables contribute a greater

portion to the total IC .

The first result is expected because the vast majority of the partial derivative

weights used to create B are less than one, meaning the more arcs traversed the
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Figure 7.3: Transportation Cost IC with Equal Weightings Part One
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Figure 7.4: Transportation Cost IC with Equal Weightings Part Two

Table 7.3: Transportation Cost IC with Influence Weightings Data

Discrete Time
Variable/Parameter 4 5 6 7 8 9 10 11

L 0 0.168 0.205 0.225 0.232 0.232 0.232 0.232
T 0 0.068 0.077 0.094 0.094 0.094 0.094 0.094
D 0 0.031 0.037 0.038 0.039 0.039 0.039 0.039
Cb 0 0.089 0.107 0.125 0.127 0.127 0.127 0.127
B 0 0.126 0.147 0.165 0.168 0.168 0.168 0.168
V 0.085 0.115 0.126 0.128 0.128 0.129 0.129 0.129
ζ1 0 0 0.001 0.002 0.002 0.002 0.002 0.002
ζ2 0 0 0.002 0.003 0.003 0.003 0.003 0.003
ζ3 0 0 0.002 0.002 0.002 0.002 0.002 0.002
η1 0 0 0.002 0.003 0.003 0.003 0.003 0.003
η2 0 0 0.005 0.007 0.007 0.007 0.007 0.007
η3 0 0 0.004 0.006 0.006 0.006 0.006 0.006

Round Trip Miles 0.085 0.093 0.093 0.094 0.094 0.094 0.094 0.094
Fuel Price 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

Cargo Handling Rate 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080
Total 0.265 0.786 0.903 0.985 0.999 1.000 1.000 1.000
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Figure 7.5: Transportation Cost IC with Influence Weightings Part One
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Figure 7.6: Transportation Cost IC with Influence Weightings Part Two
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less the influence. As mentioned, the longest path in the network is 11 arcs long.

Even if all the weights along such a path were 0.95, the contribution to Node 33

is 0.9511 = 0.57, keeping in mind that number must also be normalized by the total

contribution of all 459 other paths leading to Node 33. The IC change of Node 33 from

t = 8 to t = 11 is only 0.00068 to put things in perspective. If the weighting scheme

accurately reflects influence, then the fact that variables contribute more to the total

IC than parameters is a good indication of a well formulated model. The objects

under investigation are generally of most import. A case could be made for making

Cargo Handling Rate and Round Trip Miles variables to quantify the sensitivity of

the formulation to environmental factors beyond technical control.

7.3 Verification Using Discrete Event Simulation

The underlying mathematics of the path influence algorithm used in Eq. 5.11 and

Information Completeness of Eq. 7.2 are the same. It is possible to verify both the

mathematics and the code used to generate the results using a DES of an identical

network structure and with the same assumptions. The two major assumptions are

that information flow is independent, and the time to traverse each arc is equal. This

section describes such a simulation using the Sen Bulker Organization network.

7.3.1 Simulation Logic for Information Completeness

Two basic components of a simulation are entities and locations (Banks et al.,

2010). Entities move from location to location according to prescribed logic and

timing. For a network, entities are individual pieces of information or influence while

locations are the nodes and arcs. The assumption of path influence for discrete time

is that it takes one unit of time to traverse any arc, and this was recreated in the

simulation by having each piece of information wait for one unit of time at each

node. Entities at a node are copied such that an identical version leaves along every
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Figure 7.7: ProModel Interface for the Sen Bulker Organization

arc leaving the node. As entities move over an arc their contribution (influence or

information) is multiplied by the weight that corresponds to the arc’s entry in the

B matrix. When an entity reaches a node, the node’s IC is incremented by the

contribution of the entity. The simulation is initialized by having an entity enter each

input node at time t = 0 with their contribution set to one, and letting the simulation

run until all entities have exited the system. An exit occurs when the entity reaches

a terminal node, in this case only Node 33 is a terminal node.

Simulation software is primarily written for manufacturing and supply chain man-

agement, ProModel was used in this case, requiring creative thinking to apply it to

design network problems. It has a graphical interface, meaning a significant invest-

ment of time to construct the model, and can take even more time to debug. A

screen shot of the basic interface with the Sen Bulker Organization network loaded

is shown in Fig. 7.7, and the text version of the simulation described above is shown

in Section B.4.
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7.3.2 Verification Results

Figs. 7.8a, 7.9a and 7.10a plot the DES, equally weighted path influence and

diffusion results for the three objectives of the Sen Bulker Organization network.

Immediately apparent, and this is true of all nodes, is that the DES and path in-

fluence results are exactly the same. This verifies that the path influence algorithm

of Eqs. 5.11 and 7.2 are correctly formulated and implemented. The purpose of in-

cluding the diffusion results is to show that they can correlate with the more realistic

discrete results. The diffusion results were calculated with three different parameter

combinations as shown in the figures, and the total diffusion time was scaled to the

discrete time. Information lead is a metric specific to diffusion, but the highest in-

formation lead nodes from Chapter VI are input nodes, yielding an IC of one from

time t = 0. As formulated IC cannot exceed one. No scaling, parameters or initial

conditions are required to use the path influence algorithm, it operates solely on the

network’s directed structure. Figs. 7.8b, 7.9b and 7.10b plot the DES and path in-

fluence results for the objectives when the influence weighting of Eq. 7.3 was used.

Again, the results between simulation and path influence are exactly the same, fur-

ther verifying the formulation and implementation. Overall the results demonstrate

that path influence’s precision is weighting scheme independent. Networks represent-

ing other types of design structures can use the path influence algorithm with equal

confidence.

The lag first moment of area, developed in Chapter VI for information level curves,

is a concise single number for each node that compares their overall behavior over

the course of time. Hereafter it is referred to as the lag first moment, or lag FM. If

anything the metric is more suitable for information completeness because it never

decreases with time. In a single run information can only become more complete.

Lag plots are normalized by the highest moment, such that the relative lag between

nodes is easily distinguished. Absolute information gap curves are equally applicable,
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Figure 7.8: Light Ship Mass IC Verification
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Figure 7.9: Annual Cargo IC Verification
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Figure 7.10: Transportation Cost IC Verification
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Figure 7.11: All Functions Lag First Moments

but require no absolute value as IC only ranges between zero and one.

Fig. 7.11 shows the normalized lag first moments for all the functions in the Sen

Bulker Organization network using both equal and influence weightings. Variables

and parameters are not plotted because they have zero lag. Fig. 7.12 shows the

information gap curves for the same cases. The path influence and DES results are

again shown to be identical, expected as Figs. 7.11 and 7.12 are merely different views

of the same results. Of note, Fig. 7.11 shows that the lag for both weighting schemes

trends upward in the same manner with increasing node number. This is a product of

the network’s hierarchy, discussed further in Section 7.5. Also, the faster convergence

for influence weighting mentioned in Section 7.2.2 is easily visible in Fig. 7.12.
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Figure 7.12: All Functions Information Gap

7.4 More Realistic Design Scenarios

A more realistic model of discrete design information flow is that information is

held at a node until all inputs are received, context is added and then the information

is released as a whole. IC computed with the path influence algorithm is not capable

of representing this scenario directly. However, as mentioned in Section 7.1.3 it does

provide an upper bound on information completeness and thus lower bound on uncer-

tainty for each node at each point in time. These bounds can be compared relative to

one another, and a legitimate question is whether actual information flow trends in

the same way as the bounds, or in a different fashion well below them. If information

trends in a similar way, then IC computed with the path influence algorithm remains

a legitimate indicator of discrete design information flow.

Two different simulation scenarios of this more realistic model of information flow

were tested against the path influence results using the Sen Bulker Organization
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network. The first simulation collates all required information at every node before

releasing it to downstream nodes, but the time of travel on arcs is still set to one

and is not stochastic. For real structures that are actually capable of adhering to

rigid delivery schedules this may be a suitable model. The second simulation is more

complicated, as the travel time over every arc is pulled from a triangular distribution.

The minimum value of the distribution is the same as the mode, making a right

triangle. This conforms to common experience that design will take up all the time

allowed to it, never early, but often late. The minimum and mode are set to one

time unit, while the maximum is set to five. In this scenario a perfectly on schedule

(probabilistically impossible) simulation run would have identical results to the non-

stochastic first scenario.

7.4.1 Non-Stochastic Move Time Results

Fig. 7.13a displays the first moments of lag of the non-stochastic move time sim-

ulation vs. those of the baseline DES and equally weighted path influence. The

moments for the variables and parameters are not shown because they are zero. Of

major importance is that with two exceptions, one minor, the trend of the nodes

relative to one another between the non-stochastic move time simulation and path

influence are the same. Though the magnitudes of the moments do not scale, the

ranking of the magnitudes is the same.

The major exception to this is Node 30. The explanation is that Node 30 is a 9th

level function yet is only two arcs away from Cargo Handling Rate, an input node.

With path influence, after two time steps Node 30’s information completeness goes up,

as shown in Fig. 7.13b. With grouped information movement, the Cargo Handling

Rate information must wait at an intermediate node until it becomes information

complete before moving on. In this case, at least until time t = 4. This points to

the importance of hierarchy in the network’s structure. If the network is perfectly
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hierarchical, meaning information must pass through every level of the network, then

independent and dependent information flow results would be the same. The Sen

Bulker Organization network is mostly hierarchical, so the results match up fairly

well. Where the hierarchy is broken, i.e. Node 30, is where the trends do not match.

Fig. 7.13a shows that the non-stochastic move time simulation has lower normal-

ized first moments. The explanation for this is similar to that for Node 30’s situation,

but deals with the normalization. Fig. 7.4a of Node 33’s IC computed with the path

influence algorithm shows that Node 33 starts receiving information at t = 4. With

grouped information flow, Node 33 receives all of its information at one time, t = 11,

making its lag moment comparatively astronomical. The longest paths from input

nodes to the majority of other nodes in the network are much shorter, visibly evi-

dent from the networks shape. This skews the moment normalization because their

moments are comparatively low. The correlation between the distribution of path

lengths and properties of information completeness is an area for future research.

7.4.2 Stochastic Move Time Results

Fig. 7.14a shows a box plot of the lag first moments for the stochastic move time

simulation. The simulation was run for 999 replications, the maximum allowable

within ProModel. It is interesting that there are virtually no outliers below the

median values, while there are very many above the median value for any particular

node. This is likely a combination of the grouped information structure, all inputs

must be early to proceed early versus only one input must be late to proceed late,

and the right triangular distribution where the mean is much closer to the minimum

value. Though not shown, the mean and medians for each lag distribution are nearly

identical.

Fig. 7.14b shows the normalized lag first moment distribution extremes, forming

a corridor, and the equally weighted path influence results for the functions nodes. It
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Figure 7.13: Non-Stochastic Move Time Lag First Moment Comparison
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is apparent that all three trend quite similarly, meaning that even in the stochastic

case the network’s hierarchy is rather important. The means of each distribution are

plotted along with the non-stochastic move time simulation and equally weighted path

influence results in Fig. 7.15a, making the effect of hierarchy even more clear. Despite

the large discrepancies in information gap, shown in Fig. 7.15b, the normalized lag

first moment plots are nearly identical for the non-stochastic and stochastic move

time simulations. Again, the exceptions are Node’s 29 and 30. The implication is

that if the network is sufficiently hierarchical the relative lag first moments may be

move time independent, and the path influence algorithm can capture the trend.

Fig. 7.15b is an information gap plot comparing the mean gap of the stochastic

simulation with the deterministic non-stochastic and path influence results. The plot

verifies that the path influence algorithm provides an upper bound on information

completeness (meaning lower bound on information gap) for the non-stochastic case.

This is also true for the stochastic case because the minimum value of the triangular

distribution was set to one. Despite this, path influence does not realistically indicate

flow times for the stochastic case.
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Figure 7.14: Stochastic Move Time Lag Distribution
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Figure 7.15: Stochastic Move Time Lag First Moment and Information Gap
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7.5 Multipartite Significance to Temporal Results

The previous sections have demonstrated that the path influence algorithm can

correctly identify the trending of discrete information flow across a largely hierarchical

design network. This is an indication that fundamental structure, not the details

of discrete information flow, is the deterministic factor in the overall behavior of

a network. The fundamental structure of the Sen Bulker Organization network is

hierarchical, but the ordering and inclusion of nodes was determined by the contextual

multipartite definition. It is possible to create one mode projections of multipartite

networks, and even to map them to each other, but neither of these approaches

captures the information flow which is primarily governed by the full context of all

nodes acting together.

Because the Sen Bulker Organization is largely hierarchical, Park centrality and

Winston centrality, which are node centric measures of impact and influence respec-

tively, should correlate with the simulation results as shown in Fig. 7.16. All metrics

displayed in Fig. 7.16 have been normalized by their highest value, occurring at Node

33 in all cases. The Park centrality results are multiplied by negative one such that

highly impacted nodes reflect a high value, consistent with the idea of lag. The plots

show that the trending of the higher level nodes is well accounted for with all metrics.

Across all function nodes, Park centrality better mirrors the trend than Winston cen-

trality. This is expected, as Park centrality is a purely structural measure. Simply

the function level provides a very accurate trend approximation with the exception

of Nodes 29 and 30. The function level defines the hierarchy, increasing with path

length from the input nodes, thus higher lag. As explained in Section 7.4.1, Nodes

29 and 30 are one and two arcs away from the input Cargo Handling Rate, thus their

lag is much reduced. Both Park and Winston centrality capture this. The conclusion

is that for sufficiently hierarchical structures, network methods can provide effective

lead indicators for discrete temporal behavior.
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Table 7.4 compares the equally weighted path influence lag first moments with

several other network metrics, using a color scale based on their absolute maximum

value. The table reinforces the observations made about Fig. 7.16.

Table 7.4: Network Metric Comparisons

Path Influence Winston Park Diffusion
# Node FM Lag Centrality Centrality FM Lag

7 Fn

IC

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.60

N/A

3.80

5.40

5.40

4.40

5.07

6.10

7.07

5.83

9.63

9.63

9.63

11.05

11.36

8.76

7.92

14.24

13.45

19.42

ICDave

0.36

1.28

1.28

0.36

0.36

3.82

1.59

4.00

N/A

-0.89

-1.31

-1.27

-1.58

0.86

-1.97

-2.89

3.12

-3.43

-3.11

-2.87

-3.66

-2.39

-2.02

-1.92

-4.10

-4.04

-5.57

Park

20.33

13.84

13.84

18.33

18.33

34.63

11.50

8.63

N/A

-21.25

-0.38

-5.67

-14.80

-6.08

-10.07

-19.15

-5.94

-19.46

-18.75

-15.03

-32.62

-48.64

-44.04

-40.43

-84.18

-104.52

-162.19

Diffusion

2.96

0.36

0.36

0.20

0.20

0.28

509.57

4.46

N/A

37.74

58.46

333.25

566.35

66.41

610.14

528.91

548.27

851.81

816.90

805.32

835.90

819.91

892.87

882.15

1025.75

892.98

1108.87

8 Steel Mass
9 Outfit Mass
10 a
11 b
12 ∆
13 Sea Days
14 P
15 Aco
16 Ship Costs
17 Machinery Mass
18 Daily Consumption
19 Fuel Cost
20 Light Ship Mass
21 Fuel Carried
22 Capital Charges
23 ∆DW

24 Running Costs
25 Port Costs
26 Stores&Water
27 Voyage Costs
28 ∆Cargo

29 Port Days
30 RTPA
31 Annual Cargo
32 Annual Costs
33 Transportation Costs

Legend

Absolute Maximum Absolute Minimum
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Figure 7.16: Network Metric Comparisons
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7.6 Conclusions and Contributions

The purpose of this chapter was to extend the path influence algorithm to temporal

problems, and verify it with discrete event simulation, comprising the fourth major

contribution of this thesis:

• Introduction of a discrete information flow equivalent of the path influence al-

gorithm, with requisite network weighting schemes

– Verification of the path influence algorithm using discrete event simulation

– Extension of diffusion metrics for discrete information flows

– Testing of path influence and other metrics against more realistic discrete

event simulations

Specifically, the discrete event simulation was formulated using the same assump-

tions of path influence, and the results were an exact match. To test the algorithm

against more realistic design scenarios two simulations of increasing complexity were

run. Both with grouped information, differing by non-stochastic and stochastic in-

formation flow times. Common trends were revealed, indicating that the discrete

behavior of information flow is primarily driven by a network’s hierarchical structure,

and thus the contextual multipartite definition. Given the importance of structure,

the static metrics of previous chapters were compared with the simulation results,

and also predicted the general trend. It has been said that “the truth is a function of

time,” and this chapter has demonstrated that contextual multipartite network struc-

tural indicators can capture the influence of time in certain circumstances (Winter,

2014). In the face of changing design structures, the simplicity of network methods

makes refreshing results quick, a claim unmatched by high fidelity alternatives.
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CHAPTER VIII

Conclusion

Acquisitions fail due to complex interactions between many domains, including

social and technical. Typical research focuses on one domain or another, e.g. process,

product or organization. Systems Engineering is responsible for the bigger picture,

but lacks early stage predictive methods to comprehend the complete problem. The

structure and challenges of design are a microcosm of acquisition; through multiple

levels of context and increasing scale, fundamental relationships affect the outcome

of a design, and thus acquisition as a whole. This thesis broadens the application of

network theory for naval design from the analysis of physical systems to the general

structure of design. This chapter restates the major novel contributions of the thesis

outlined in Chapter I, and provides a detailed list of all contributions and the work

to support them.

8.1 Major Novel Contributions

Three research questions were posed in Chapter I:

1. Can the structure of design (approach, process, methods, tools and organiza-

tion) be accounted for?

2. Can a design be understood without designing anything?
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3. Can the impact and timing of information be understood in advance?

The first major novel contribution addresses the first question, and was the intro-

duction of a contextual multipartite network approach to represent the structure of

naval design, first outlined in Chapter III. A single network with multiple node types

is used based on a hypothesis that in complex product design, elements of a domain

do not directly influence one another, they must have context provided by another

domain. This insight leads one toward the multipartite network structure. The mul-

tipartite networks presented in Sections 3.3 and 3.4 accurately represent ship design

methods, and reveal designer intent. As used in other chapters they also represent

processes and organizations, in hierarchy, context and fidelity. The author argues

that the multipartite representation is an accurate reflection of how designers think.

Thus, a multipartite representation is a way of increasing a designer’s understanding

of the methods they use and the processes and organizations of which they are a part.

The second major novel contribution addresses the first question, and was the ap-

plication and extension of existing network mathematics used on multipartite design

networks, providing meaningful predictive insight. The majority of the supporting

work is found in Chapter IV. It was demonstrated that the structure of engineering

formulations alone provides information through static network structural analysis to

be useful in a new way. Analysis of the Watson & Gilfillan and Sen Bulker prob-

lem multipartite networks proved that multipartite network representations of ship

design formulations are feasible, and are accurate. Analyzing the networks correctly

identified what naval architects intuitively understand the formulations, correctly

identifying design drivers, constraints and other features of structure. The multipar-

tite network structure now has a demonstrated ability to represent naval design, with

corresponding analysis methods to better comprehend it. The successful construction

and analysis of multipartite design networks also contradicts the common practice of

separating node types into separate homogenous networks or matrices.
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The third major novel contribution addresses the second question, and was the

recognition that existing algorithms for finding path lengths in networks can be used

to capture all node to node influences across multipartite design networks. An algo-

rithm for this purpose termed path influence, and its supporting network weighting

schemes were developed in Chapter V. When the network is weighted using partial

derivatives, the path influence algorithm can be used to produce first order Taylor

series expansions. Path influence was implemented on the Sen Bulker network, and

results were compared with a full factorial design of experiments. Path influence pro-

duced highly accurate predictive metrics with a small fraction of the total function

count required for the design of experiments. The output of path influence is an n×n

matrix, so a new metric termed Winston centrality was developed that ranks nodes

based on their total incoming and outgoing influence. Winston centrality allowed for

comparisons with the static metrics of Chapter IV, the results were consistent verify-

ing the earlier methods. Using path influence to generate insight is advantageous due

to the inherent network representation, allowing the intermediate contextual nodes

of a network to be adequately represented and understood. Input to output influence

can be traced through these intermediate nodes, providing an intuitive understanding

not necessarily possible from standard methods.

The fourth novel contribution addresses the third question, and was the applica-

tion of network diffusion, based on Fick’s second law, to model continuous information

flow across design networks. This was described in Chapter VI. The diffusion analogy

is formulated so that the primary input is a contextual multipartite design network,

making it an easy extension to the methods and metrics of previous chapters. The

primary advantages of the continuous information flow analogy are that it requires

very few inputs and provides a closed form solution. Representative bottleneck and

lag networks were formulated as canonical design problems along with their diffusion

analysis and potential solutions. The Watson & Gilfillan and Sen Bulker Organiza-

169



tion networks were also analyzed. The results of all four examples were interpreted

in accordance with the diffusion analogy, and shown to be insightful and congruent

with the analysis methods presented in previous chapters. Absolute Information Gap,

Information Level, and First Moments of Area for Lead and Lag were introduced as

measures and metrics for continuous information flow.

The fifth novel contribution addresses the third question, and was the introduc-

tion and verification of a discrete information flow equivalent of the path influence

algorithm, Chapter VII. Verification was achieved by constructing a discrete event

simulation of the Sen Bulker Organization network using the same assumptions as

path influence. The results were an exact match, demonstrating that the algorithm

and other results presented in this thesis are valid. In the process, many of the met-

rics and ideas generated from diffusion analysis were adapted to interpret discrete

information flows. Two additional design scenarios of increased realism were sim-

ulated, where requisite information was grouped at each node before proceeding to

the next node. The first simulation maintained a non-stochastic and equal travel

time over all arcs, while the second simulation used stochastic travel times. The path

influence algorithm still compared well, reaffirming its validity but also indicating

that the hierarchical and multipartite network structure was the primary driver of

discrete temporal flow behavior. This was a powerful conclusion because networks

and methods that lack intermediate contextual nodes will not produce similar results,

further supporting the multipartite approach. It also allowed the static network met-

rics of previous chapters to be compared, as they also reflect structural properties.

Both Park and Winston centrality showed general agreement with path influence and

simulation results, strengthening the conclusion on the importance of structure.
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8.2 All Contributions in Detail

1. Can the structure of design (approach, process, methods, tools and organiza-

tion) be accounted for?

• Developed the contextual multipartite network approach to represent the

structure of naval design

– Constructed the Watson & Gilfillan tripartite network

– Constructed the Sen Bulker formulation, optimization and organiza-

tion multipartite networks

• Applied and interpreted out-degree, in-degree, Park centrality, between-

ness centrality and cosine similarity for multipartite design networks

– Computed and interpreted out-degree, in-degree, Park centrality, be-

tweenness centrality and cosine similarity for the Watson & Gilfillan

network revealing design intent

– Computed and interpreted out-degree, in-degree, Park centrality, and

betweenness centrality for the Sen Bulker networks revealing design

intent

– Introduced perturbation analysis using arc addition and Park central-

ity for multipartite design networks

∗ Conducted perturbation analysis of the Watson & Gilfillan net-

work

2. Can a design be understood without designing anything?

• Recognized that algorithms for finding path lengths can be adapted to

quantitatively capture all node to node influences across multipartite de-

sign networks

• Formulated the path influence algorithm
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– Introduced the partial derivative weighting scheme

– Introduced the interpolated derivative weighting scheme

– Demonstrated path influence equivalency with a first order Taylor se-

ries expansion

– Applied path influence to the Sen Bulker formulation network

• Introduced interpretations for path influence results

– Demonstrated trends and trend magnitudes using the P matrix

– Developed logic for potential constraint activity prediction using P

matrix trends

– Generated and verified the Sen Bulker Pareto Front and constraint

activity against published results

– Tested path influence constraint prediction accuracy

– Conducted a full factorial DOE using six variables and two states of

the Sen Bulker formulation

– Compared path influence results using the partial derivative weight-

ing scheme with the DOE, including magnitude deviation and trend

accuracy

– Compared path influence results using the interpolated derivative

weighting scheme with the DOE, including magnitude deviation and

trend accuracy

– Determined function call count upper bounds for path influence and

computed them for the Sen Bulker formulation

– Compared actual function call counts of path influence and the DOE

for the Sen Bulker problem

• Developed a new metric, Winston centrality, to enable comparison between

path influence and existing centrality metrics
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– Computed Winston centrality for the Sen Bulker formulation network

and both path influence weighting schemes

– Compared Winston and Park centrality results for the Sen Bulker

formulation

– Discussed other potential applications of Winston centrality, including

the identification of influence multipliers, sorters and dampers

3. Can the impact and timing of information be understood in advance?

• Introduced network diffusion to model continuous design information flow

– Interpreted Ficks second law of diffusion for design information flow,

including the meaning of initial conditions, the diffusion constant and

arc weightings

– Developed the information level curve, first moment of lag, first mo-

ment of lead and steady state concepts for diffusion based design in-

formation flow

– Identified and discussed the limitations of the diffusion analogy

– Demonstrated how design bottlenecks and lag are identified using dif-

fusion

– Applied and interpreted the results of diffusion on Watson & Gilfillan

and Sen Bulker networks

– Modified the Watson & Gilfillan and Sen Bulker networks to show

different diffusion properties

• Introduced a discrete information flow equivalent of the path influence

algorithm

– Developed the idea of information completeness using the path influ-

ence algorithm
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– Developed two weighting schemes for computing information com-

pleteness with the path influence algorithm

– Reinterpreted the first moment of information lag for the discrete case

– Demonstrated information completeness computed with path influence

using the Sen Bulker network and interpreted the results

• Verified the mathematics of the path influence algorithm using a discrete

event simulation of the Sen Bulker network with identical assumptions

• Ran a discrete event simulation with dependent information flow of the

Sen Bulker network and compared the results with those of path influence

– Identified network hierarchy as the cause of similar results

• Ran a discrete event simulation with dependent information flow and

stochastic move times of the Sen Bulker network and compared the re-

sults with those of path influence

– Discussed the difference between time and normalized first moment

results

– Further discussed the connection between hierarchy and the similar

results

• Compared Park centrality, function level, and information completeness in

terms of the Sen Bulker networks hierarchy
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CHAPTER IX

Future Work

The contextual multipartite network approach, and the method and metrics to

analyze it described in this thesis, are available both for extension to totally new

directions and further in depth analysis for those directions already identified. This

chapter is divided into several sections, the first describe the author’s ideas concerning

expanding existing directions, and the last some ideas for new directions entirely.

9.1 Extending to Acquisition

The contextual multipartite network approach was originally envisioned as a way

to comprehend the structure of naval acquisition, but that problem is of a scale

beyond the scope of a single thesis. However, design is a microcosm of acquisition, and

the methods introduced in this thesis apply to both problems. Acquisition program

failures usually result in restructuring. Major restructuring usually comes in one of

two extremes, heavy government design involvement or near autonomy for private

industry (Leopold, 1975). This constantly and widely swinging pendulum makes the

predictive capability of network methods all the more valuable. A future research

area with massive potential impact is to extend the multipartite structure to include

the social and political domains of acquisition. After all, the undeniable yet often

unaccounted for fact is that politics can be the conclusive factor in program failure
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or success (Brown, 1993a; Work, 2013; Scovel, 1975).

9.2 Statistical Network Analysis

Most of the research described in the literature, and the direction of temporal

network research, deals with the statistical properties of large networks. The networks

in this thesis were necessarily limited such that their known behavior and properties

could be used as validation for the multipartite approach and metrics. However,

future efforts like that of Cooper et al. (2011)’s to document the ship design process

are an excellent opportunity to construct large and reality representative multipartite

networks for statistical analysis. Networks on such a scale could be broken into smaller

clusters or components for analysis on a smaller scale if necessary. If networks of scale

cannot be captured, then new research should at least seek to use different networks as

test cases, providing a broader pool on on which metrics can be tested and validated.

9.3 Continuation of Chapter IV

Section 4.1 presented perturbation analysis results from the addition of single arcs

to the Watson & Gilfillan network. It would be of great value to test both the addition

and removal of multiple arcs, as well as nodes as further tests of structural stability.

No statistical analysis was done on the Watson & Gilfillan network because of its

small size, but larger networks are commonly analyzed for their degree distribution

and other properties which provide an indication of their robustness. This is currently

being done by affiliated researchers for networks representing physical systems, but

the statistical properties of multipartite design networks remain an area of curiosity.
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9.4 Continuation of Chapter V

Three different weighting schemes were developed for path influence, the first two

for the Sen Bulker problem and the third a combination of the first two and infor-

mation completeness. It was noted several times that the path influence algorithm

is independent of the weighting scheme used on the arcs, but the weightings for the

Sen Bulker problem were based on its evaluable functions. For networks that are

not based on design tools, or are a mix of technical and social nodes, new weighting

methods are required to quantify influence.

Due to the small size of the Sen Bulker problem, time studies of path influence vs.

comparable DOE methods were not of value, though one was tried. A much larger

multipartite network(s) could be used to generate real time studies, but more efficient

coding of path influence and the DOE would be required for a fair comparison. In

the absence of real data, it is also likely possible to derive the order of magnitude of

the number of operations required for path influence, based on the number of nodes

and arcs on a network. This could then be compared with other network algorithms

and existing results from DOEs.

Predicting constraint activity using path influence and resolving the link between

betweenness centrality and the anomalous results from Winston centrality are two

harder problems to solve, though both are potentially very valuable.

During the trial runs of path influence for the Sen Bulker problem, a mistake

was made in the MATLAB code such that the maximum power A was raised to

was the longest geodesic path length, 7, versus the 11 required before the matrix

zeros out. This error was corrected, but it was noted that both the values in the

P matrix and the overall accuracy were negligibly affected, and in some cases the

higher level function nodes were more accurate in the erroneous run. As described

in Chapter VII, the influence of nodes that are 11 arcs away can be quite negligible.

A great expansion of path influence would be to quantify the relationship between
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accuracy and the longest accounted for path length.

Both Chapters V and VII rely on multipartite networks that contain no loops.

This was not a problem, as both the Watson & Gilfillan and Sen Bulker networks

naturally contained no cycles. However, full scale design networks will almost be

guaranteed to contain loops, and a loop capable path influence algorithm is of high

value. Smith and Eppinger (1997b) provided an equation that is very similar to

Eq. 7.2 for identifying the controlling features of design iteration, but they rely more

on the Eigen values and Eigen vectors, like dynamical system analysis, for their

insights. More general graph theory algorithms are also available (Ponstein, 1966).

With minor modification these approaches may be directly applicable to multipartite

design networks. However, it is the current author’s hypothesis that if the magnitude

of all the arc weights in a loop are less than one, or even enough of them, then

eventually the values of the path influence matrix will converge. The maximum

exponent required will have little or no relation to n, but will likely have a strong

correlation with the length of the loop and the weight of the arcs on it, and could also

be an indicator for the length of time spent iterating. A final thought on Chapter V is

another metric or influence implementation, a cross between Katz centrality and path

influence. Something of the form
∑
αnAn. The idea is essentially to discount the

influence of longer paths. If applied it may speed the convergence rate for networks

containing loops.

9.5 Continuation of Chapter VII

Simulation of design networks, especially large ones, is a very time consuming

operation. The obvious extension of Chapter VII is simulating larger networks under a

wider variety of scenarios, to further explore and validate static metrics. However, the

area of particular interest is the strong apparent link between the geodesic length from

input to output (i.e. function level), hierarchy and the first moment of information
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lag. The fact that there is a link is intuitive, but it should be investigated under a

wider variety of network structures. The Sen Bulker Organization network is almost

perfectly hierarchical, the major exceptions occur at the nodes where the link between

function level and information lag break down.

9.6 New Directions

Almost completely unexplored in the present research are concepts for partition-

ing networks, either in clusters, components, communities, etc. Classifying nodes as

a type is necessary to build multipartite networks. There are algorithms such as that

for social agony that automate this process (Gupte et al., 2011). The Sen Bulker

and Watson & Gilfillan networks contain no social agony, and naturally fell into a

multipartite structure. Though the structure is intuitive, larger networks will likely

require some automation. Social agony is a concept that has been explored by affili-

ated researchers looking at physical systems, but it is a promising area for application

to multipartite design networks.

Social agony may also be a network equivalent of the clustering and tearing al-

gorithms used in DSMs. If this is the case, then the computational efficiency of one

method over another should be investigated. One research field may be missing out

on the improvements of another.
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APPENDIX A

Watson & Gilfillan

Figure A.1: Watson & Gilfillan One Mode Projection of Variables
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APPENDIX B

Sen Bulker Problem

B.1 Model Definition from Sen and Yang (1998)

Table B.1: Sen Bulker Variables

Variable Units Symbol

Length m L
Draft m T
Depth m D
Block Coefficient non-dimensional Cb
Beam m B
Speed kts V

Table B.2: Sen Bulker Parameters

Parameter Value Parameter Value

η1 -10847.2 ζ1 4977.06
η2 12817 ζ2 -8105.61
η3 -6960.32 ζ3 4456.51

Table B.3: Sen Bulker Constants

Parameter Value Units

Round Trip Miles 5000 nm
Fuel Cost 100 £/tonne
Cargo Handling Rate 8000 tonnes/day
g 9.8065 m/s2
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First Level Functions

Fn =
V√
gL

(B.1)

∆ = 1.025× L×B × T × Cb (B.2)

Steel Mass = 0.034× L1.7 ×B0.7 ×D0.4 × C0.5
b (B.3)

Outfit Mass = 1.0× L0.8 ×B0.6 ×D0.3 × C0.1
b (B.4)

a(Cb) = η1C
2
b + η2Cb + η3 (B.5)

b(Cb) = ζ1C
2
b + ζ2Cb + ζ3 (B.6)

Sea Days =
Round Trip Miles

24× V
(B.7)

BM =
(0.85× Cb − 0.002)×B2

T × Cb
(B.8)

KG = 1.0 + 0.52×D (B.9)

KB = 0.53× T (B.10)

Second Level Functions

P =
∆2/3 × V 3

b(Cb)× Fn + a(Cb)
(B.11)

GM = KB +BM −KG (B.12)

Third Level Functions

Ship Cost =1.3× (2000× Steel Mass0.85 + 3500 (B.13)

×Outfit Mass + 2400× P 0.8)

Machinery Mass = 0.17× P 0.9 (B.14)

Daily Consumption = P × 0.19× 24

1000
+ 0.2 (B.15)
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Fourth Level Functions

Fuel Cost =1.05×Daily Consumption (B.16)

× Sea Days× Fuel Price

Light Ship Mass = Steel Mass (B.17)

+ Machinery Mass + Outfit Mass

Capital Charges = 0.2× Ship Cost (B.18)

Fuel Carried = Daily Consumption (B.19)

× (Sea Days + 5)

Fifth Level Functions

∆DW = ∆− Light Ship Mass (B.20)

Sixth Level Functions

Running Costs = 40000×∆DW
0.3 (B.21)

Port Costs = 6.3×∆DW
0.8 (B.22)

Stores&Water = 2.0×∆DW
0.5 (B.23)

Seventh Level Functions

Voyage Costs = Fuel Costs + Port Costs (B.24)

∆Cargo = ∆DW − Fuel Carried− Stores&Water (B.25)
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Eighth Level Functions

Port Days = 2×
(

∆Cargo

Cargo Handling Rate
+ 0.5

)
(B.26)

Ninth Level Functions

RTPA =
350

Sea Days + Port Days
(B.27)

Tenth Level Functions

Annual Cargo = ∆Cargo ×RTPA (B.28)

Annual Costs = Capital Charges + Running Costs (B.29)

+ Voyage Costs×RTPA

Eleventh Level Functions

Transportation Cost =
Annual Costs

Annual Cargo
(B.30)
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Constraints

g1 = 6− L/B (B.31)

g2 =
L

D
− 15 (B.32)

g3 =
L

T
− 19 (B.33)

g4 = T − (0.45×∆0.31
DW ) (B.34)

g5 = T − (0.7×D + 0.7) (B.35)

g6 = 3000−∆DW (B.36)

g7 = ∆DW − 500000 (B.37)

g8 = 0.63− Cb (B.38)

g9 = Cb − 0.75 (B.39)

g10 = 14− V (B.40)

g11 = V − 18 (B.41)

g12 = Fn − 0.32 (B.42)

g13 = 0.07×B −GM (B.43)
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B.2 Sen Bulker Network Arc List

Table B.4: Sen Bulker Multipartite Network Arc List Part One

# Node Incoming Arcs

1 L
2 T
3 D
4 Cb
5 B
6 V
7 Fn 1, 6
8 Steel Mass 1, 5, 3, 4
9 Outfit Mass 1, 5, 3, 4
10 a 4, 41, 42, 43
11 b 4, 38, 39, 40
12 ∆ 1, 5, 2, 4
13 Sea Days 6, 44
14 P 12, 6, 10, 11, 7
15 Aco 10, 11, 7
16 Ship Costs 8, 9, 14
17 Machinery Mass 14
18 Daily Consumption 14
19 Fuel Cost 18, 13, 45
20 Light Ship Mass 8, 9, 17
21 Fuel Carried 18, 13
22 Capital Charges 16
23 ∆DW 12, 20
24 Running Costs 23
25 Port Costs 23
26 Stores&Water 23
27 Voyage Costs 19, 25
28 ∆Cargo 23, 21, 26
29 Port Days 28, 46
30 RTPA 13, 29
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Table B.5: Sen Bulker Multipartite Network Arc List Part Two

# Node Incoming Arcs

31 Annual Cargo 28, 30
32 Annual Costs 24, 27, 30, 22
33 Transportation Costs 32, 31
34 BM 4, 5, 2
35 KG 3
36 KB 2
37 GM 34, 35, 36
38 ζ1
39 ζ2
40 ζ3
41 η1
42 η2
43 η3
44 Round Trip Miles
45 Fuel Price
46 Cargo Handling Rate
47 g1 1, 5
48 g2 1, 3
49 g3 1, 2
50 g4 2, 23
51 g5 2, 3
52 g6 23
53 g7 23
54 g8 4
55 g9 4
56 g10 6
57 g11 6
58 g12 7
59 g13 5, 37
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B.3 Sen Bulker Centrality Results

Table B.6: Sen Bulker Centrality Results Part One

# Node In-degree Out-degree Park Betweenness

1 L 0 7 98.04 0.00
2 T 0 6 44.92 0.00
3 D 0 5 40.07 0.00
4 Cb 0 8 120.59 0.00
5 B 0 6 76.89 0.00
6 V 0 5 60.85 0.00
7 Fn 2 3 23.82 0.03
8 Steel Mass 4 2 15.95 0.06
9 Outfit Mass 4 2 15.95 0.06
10 a 4 2 20.82 0.31
11 b 4 2 20.82 0.31
12 ∆ 4 2 38.65 0.30
13 Sea Days 2 3 11.50 0.08
14 P 5 3 10.41 1.00
15 Aco 3 0 -11.40 0.00
16 Ship Costs 3 1 -21.25 0.21
17 Machinery Mass 1 1 1.74 0.40
18 Daily Consumption 1 2 -5.67 0.35
19 Fuel Cost 3 1 -14.80 0.08
20 Light Ship Mass 3 1 -3.56 0.56
21 Fuel Carried 2 1 -10.07 0.22
22 Capital Charges 1 1 -19.15 0.14
23 ∆DW 2 7 -2.94 0.82
24 Running Costs 1 1 -19.46 0.04
25 Port Costs 1 1 -18.75 0.05
26 Stores & Water 1 1 -15.03 0.00
27 Voyage Costs 2 1 -32.62 0.03
28 ∆Cargo 3 2 -48.64 0.36
29 Port Days 2 1 -44.04 0.14
30 RTPA 2 2 -40.43 0.08
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Table B.7: Sen Bulker Centrality Results Part Two

# Node In-degree Out-degree Park Betweenness

31 Annual Cargo 2 1 -84.18 0.04
32 Annual Costs 4 1 -104.52 0.12
33 Transportation Costs 2 0 -162.19 0.00
34 BM 3 1 -1.16 0.02
35 KG 1 1 0.84 0.01
36 KB 1 1 0.84 0.00
37 GM 3 1 -6.20 0.03
38 ζ1 0 1 21.85 0.00
39 ζ2 0 1 21.85 0.00
40 ζ3 0 1 21.85 0.00
41 η1 0 1 21.85 0.00
42 η2 0 1 21.85 0.00
43 η3 0 1 21.85 0.00
44 Round Trip Miles 0 1 12.34 0.00
45 Fuel Price 0 1 3.14 0.00
46 Cargo Handling Rate 0 1 4.44 0.00
47 g1 2 0 -2.00 0.00
48 g2 2 0 -2.00 0.00
49 g3 2 0 -2.00 0.00
50 g4 2 0 -22.30 0.00
51 g5 2 0 -2.00 0.00
52 g6 1 0 -21.30 0.00
53 g7 1 0 -21.30 0.00
54 g8 1 0 -1.00 0.00
55 g9 1 0 -1.00 0.00
56 g10 1 0 -1.00 0.00
57 g11 1 0 -1.00 0.00
58 g12 1 0 -2.68 0.00
59 g13 2 0 -8.05 0.00
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********************************************************************************
*                                                                              *
*                         Formatted Listing of Model:                          *
* C:\Users\mcparker\Documents\Research\PhD\Network Visualizations\ProModel\Simulation Cases\SenBulkerSt
*                                                                              *
********************************************************************************

  Time Units:                        Minutes
  Distance Units:                    Meters

********************************************************************************
*                                  Locations                                   *
********************************************************************************

  Name       Cap Units Stats       Rules      Cost        
  ---------- --- ----- ----------- ---------- ------------
  Node_1     INF 1     Time Series Oldest, ,              
  Node_2     INF 1     Time Series Oldest, ,              
  Node_3     INF 1     Time Series Oldest, ,              
  Node_4     INF 1     Time Series Oldest, ,              
  Node_5     INF 1     Time Series Oldest, ,              
  Node_6     INF 1     Time Series Oldest, ,              
  Node_7     INF 1     Time Series Oldest, ,              
  Node_8     INF 1     Time Series Oldest, ,              
  Node_9     INF 1     Time Series Oldest, ,              
  Node_10    INF 1     Time Series Oldest, ,              
  Node_11    INF 1     Time Series Oldest, ,              
  Node_12    INF 1     Time Series Oldest, ,              
  Node_13    INF 1     Time Series Oldest, ,              
  Node_14    INF 1     Time Series Oldest, ,              
  Node_16    INF 1     Time Series Oldest, ,              
  Node_17    INF 1     Time Series Oldest, ,              
  Node_18    INF 1     Time Series Oldest, ,              
  Node_19    INF 1     Time Series Oldest, ,              
  Node_20    INF 1     Time Series Oldest, ,              
  Node_21    INF 1     Time Series Oldest, ,              
  Node_22    INF 1     Time Series Oldest, ,              
  Node_23    INF 1     Time Series Oldest, ,              
  Node_24    INF 1     Time Series Oldest, ,              
  Node_25    INF 1     Time Series Oldest, ,              
  Node_26    INF 1     Time Series Oldest, ,              
  Node_27    INF 1     Time Series Oldest, ,              
  Node_28    INF 1     Time Series Oldest, ,              
  Node_29    INF 1     Time Series Oldest, ,              
  Node_30    INF 1     Time Series Oldest, ,              
  Node_31    INF 1     Time Series Oldest, ,              
  Node_32    INF 1     Time Series Oldest, ,              
  Node_33    INF 1     Time Series Oldest, ,              
  Node_38    INF 1     Time Series Oldest, ,              
  Node_39    INF 1     Time Series Oldest, ,              
  Node_40    INF 1     Time Series Oldest, ,              
  Node_41    INF 1     Time Series Oldest, ,              
  Node_42    INF 1     Time Series Oldest, ,              
  Node_43    INF 1     Time Series Oldest, ,              
  Node_44    INF 1     Time Series Oldest, ,              
  Node_45    INF 1     Time Series Oldest, ,              
  Node_46    INF 1     Time Series Oldest, ,              
  Arc_0107   INF 1     Time Series Oldest, ,              
  Arc_0108   INF 1     Time Series Oldest, ,              
  Arc_0109   INF 1     Time Series Oldest, ,              
  Arc_0112   INF 1     Time Series Oldest, ,              
  Arc_0212   INF 1     Time Series Oldest, ,              
  Arc_0308   INF 1     Time Series Oldest, ,              
  Arc_0309   INF 1     Time Series Oldest, ,              
  Arc_0408   INF 1     Time Series Oldest, ,              
  Arc_0409   INF 1     Time Series Oldest, ,              
  Arc_0410   INF 1     Time Series Oldest, ,              
  Arc_0411   INF 1     Time Series Oldest, ,              
  Arc_0412   INF 1     Time Series Oldest, ,              
  Arc_0508   INF 1     Time Series Oldest, ,              
  Arc_0509   INF 1     Time Series Oldest, ,              
  Arc_0512   INf 1     Time Series Oldest, ,              
  Arc_0607   INF 1     Time Series Oldest, ,              
  Arc_0613   INF 1     Time Series Oldest, ,              
  Arc_0614   INF 1     Time Series Oldest, ,              
  Arc_0714   INF 1     Time Series Oldest, ,              
  Arc_0816   INF 1     Time Series Oldest, ,              
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  Arc_0820   INF 1     Time Series Oldest, ,              
  Arc_0916   INF 1     Time Series Oldest, ,              
  Arc_0920   INF 1     Time Series Oldest, ,              
  Arc_1014   INF 1     Time Series Oldest, ,              
  Arc_1114   INF 1     Time Series Oldest, ,              
  Arc_1214   INF 1     Time Series Oldest, ,              
  Arc_1223   INF 1     Time Series Oldest, ,              
  Arc_1319   INF 1     Time Series Oldest, ,              
  Arc_1321   INF 1     Time Series Oldest, ,              
  Arc_1330   INF 1     Time Series Oldest, ,              
  Arc_1416   INF 1     Time Series Oldest, ,              
  Arc_1417   INF 1     Time Series Oldest, ,              
  Arc_1418   INF 1     Time Series Oldest, ,              
  Arc_1622   INF 1     Time Series Oldest, ,              
  Arc_1720   INF 1     Time Series Oldest, ,              
  Arc_1819   INF 1     Time Series Oldest, ,              
  Arc_1821   INF 1     Time Series Oldest, ,              
  Arc_1927   INF 1     Time Series Oldest, ,              
  Arc_2023   INF 1     Time Series Oldest, ,              
  Arc_2128   INF 1     Time Series Oldest, ,              
  Arc_2232   INF 1     Time Series Oldest, ,              
  Arc_2324   INF 1     Time Series Oldest, ,              
  Arc_2325   INF 1     Time Series Oldest, ,              
  Arc_2326   INF 1     Time Series Oldest, ,              
  Arc_2328   INF 1     Time Series Oldest, ,              
  Arc_2432   INF 1     Time Series Oldest, ,              
  Arc_2527   INF 1     Time Series Oldest, ,              
  Arc_2628   INF 1     Time Series Oldest, ,              
  Arc_2732   INF 1     Time Series Oldest, ,              
  Arc_2829   INF 1     Time Series Oldest, ,              
  Arc_2831   INF 1     Time Series Oldest, ,              
  Arc_2930   INF 1     Time Series Oldest, ,              
  Arc_3031   INF 1     Time Series Oldest, ,              
  Arc_3032   INF 1     Time Series Oldest, ,              
  Arc_3133   INF 1     Time Series Oldest, ,              
  Arc_3233   INF 1     Time Series Oldest, ,              
  Arc_3811   INF 1     Time Series Oldest, ,              
  Arc_3911   INF 1     Time Series Oldest, ,              
  Arc_4011   INF 1     Time Series Oldest, ,              
  Arc_4110   INF 1     Time Series Oldest, ,              
  Arc_4210   INF 1     Time Series Oldest, ,              
  Arc_4310   INF 1     Time Series Oldest, ,              
  Arc_4413   INF 1     Time Series Oldest, ,              
  Arc_4519   INF 1     Time Series Oldest, ,              
  Arc_4629   INF 1     Time Series Oldest, ,              

********************************************************************************
*                                   Entities                                   *
********************************************************************************

  Name       Speed (mpm)  Stats       Cost        
  ---------- ------------ ----------- ------------
  Length     50           Time Series             
  Draft      50           Time Series             
  Depth      50           Time Series             
  Cb         50           Time Series             
  Beam       50           Time Series             
  V          50           Time Series             
  Zeta_1     50           Time Series             
  Zeta_2     50           Time Series             
  Zeta_3     50           Time Series             
  Eta_1      50           Time Series             
  Eta_2      50           Time Series             
  Eta_3      50           Time Series             
  RTM        50           Time Series             
  FP         50           Time Series             
  CHR        50           Time Series             
  F          50           Time Series             
  F7         50           Time Series             
  F8         50           Time Series             
  F9         50           Time Series             
  F10        50           Time Series             
  F11        50           Time Series             
  F12        50           Time Series             
  F13        50           Time Series             
  F14        50           Time Series             
  F16        50           Time Series             
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  F17        50           Time Series             
  F18        50           Time Series             
  F19        50           Time Series             
  F20        50           Time Series             
  F21        50           Time Series             
  F22        50           Time Series             
  F23        50           Time Series             
  F24        50           Time Series             
  F25        50           Time Series             
  F26        50           Time Series             
  F27        50           Time Series             
  F28        50           Time Series             
  F29        50           Time Series             
  F30        50           Time Series             
  F31        50           Time Series             
  F32        50           Time Series             
  F33        50           Time Series             

********************************************************************************
*                                  Processing                                  *
********************************************************************************

                             Process                    Routing

 Entity   Location Operation            Blk  Output   Destination Rule     Move Logic
 -------- -------- ------------------   ---- -------- ----------- -------  ------------
 Length   Node_1   node_1_ic=ic
                   ic=ic*NodeWeight[1]*M1
                   WAIT Vwait
                   
                   
                   node_1_mt=N(mt[1,1],mt[1,2])
                                        1    Length   Arc_0107    FIRST 1  
                                        2*   Length   Arc_0108    FIRST 1  
                                        3*   Length   Arc_0109    FIRST 1  
                                        4*   Length   Arc_0112    FIRST 1  
 Draft    Node_2   node_2_ic=ic
                   ic=ic*NodeWeight[2]*M2
                   WAIT Vwait           1    Draft    Arc_0212    FIRST 1  
 Depth    Node_3   node_3_ic=ic
                   ic=ic*NodeWeight[3]*M3
                   WAIT Vwait           1    Depth    Arc_0308    FIRST 1  
                                        2*   Depth    Arc_0309    FIRST 1  
 Cb       Node_4   node_4_ic=ic
                   ic=ic*NodeWeight[4]*M4
                   WAIT Vwait           1    Cb       Arc_0408    FIRST 1  
                                        2*   Cb       Arc_0409    FIRST 1  
                                        3*   Cb       Arc_0410    FIRST 1  
                                        4*   Cb       Arc_0411    FIRST 1  
                                        5*   Cb       Arc_0412    FIRST 1  
 Beam     Node_5   node_5_ic=ic
                   ic=ic*NodeWeight[5]*M5
                   WAIT Vwait           1    Beam     Arc_0508    FIRST 1  
                                        2*   Beam     Arc_0509    FIRST 1  
                                        3*   Beam     Arc_0512    FIRST 1  
 V        Node_6   node_6_ic=ic
                   ic=ic*NodeWeight[6]*M6
                   WAIT Vwait           1    V        Arc_0607    FIRST 1  
                                        2*   V        Arc_0613    FIRST 1  
                                        3*   V        Arc_0614    FIRST 1  
 Zeta_1   Node_38  node_38_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[38]*M38
                                        1    Zeta_1   Arc_3811    FIRST 1  
 Zeta_2   Node_39  node_39_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[39]*M39
                                        1    Zeta_2   Arc_3911    FIRST 1  
 Zeta_3   Node_40  node_40_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[40]*M40
                                        1    Zeta_3   Arc_4011    FIRST 1  
 Eta_1    Node_41  node_41_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[41]*M41
                                        1    Eta_1    Arc_4110    FIRST 1  
 Eta_2    Node_42  node_42_ic=ic
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                   Wait Vwait
                   ic=ic*NodeWeight[42]*M42
                                        1    Eta_2    Arc_4210    FIRST 1  
 Eta_3    Node_43  node_43_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[43]*M43
                                        1    Eta_3    Arc_4310    FIRST 1  
 RTM      Node_44  node_44_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[44]*M44
                                        1    RTM      Arc_4413    FIRST 1  
 FP       Node_45  node_45_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[45]*M45
                                        1    FP       Arc_4519    FIRST 1  
 CHR      Node_46  node_46_ic=ic
                   Wait Vwait
                   ic=ic*NodeWeight[46]*M46
                                        1    CHR      Arc_4629    FIRST 1  
 Length   Arc_0107 ic=ic*A[1,7]         1    Length   Node_7      FIRST 1  INC node_7_ic, ic
 Length   Arc_0108 ic=ic*A[1,8]         1    Length   Node_8      FIRST 1  INC node_8_ic, ic
 Length   Arc_0109 ic=ic*A[1,9]         1    Length   Node_9      FIRST 1  INC node_9_ic, ic
 Length   Arc_0112 ic=ic*A[1,12]        1    Length   Node_12     FIRST 1  INC node_12_ic, ic
 Draft    Arc_0212 ic=ic*A[2,12]        1    Draft    Node_12     FIRST 1  INC node_12_ic, ic
 Depth    Arc_0308 ic=ic*A[3,8]         1    Depth    Node_8      FIRST 1  INC node_8_ic, ic
 Depth    Arc_0309 ic=ic*A[3,9]         1    Depth    Node_9      FIRST 1  INC node_9_ic, ic
 Cb       Arc_0408 ic=ic*A[4,8]         1    Cb       Node_8      FIRST 1  INC node_8_ic, ic
 Cb       Arc_0409 ic=ic*A[4,9]         1    Cb       Node_9      FIRST 1  INC node_9_ic, ic
 Cb       Arc_0410 ic=ic*A[4,10]        1    Cb       Node_10     FIRST 1  INC node_10_ic, ic
 Cb       Arc_0411 ic=ic*A[4,11]        1    Cb       Node_11     FIRST 1  INC node_11_ic, ic
 Cb       Arc_0412 ic=ic*A[4,12]        1    Cb       Node_12     FIRST 1  INC node_12_ic, ic
 Beam     Arc_0508 ic=ic*A[5,8]         1    Beam     Node_8      FIRST 1  INC node_8_ic, ic
 Beam     Arc_0509 ic=ic*A[5,9]         1    Beam     Node_9      FIRST 1  INC node_9_ic, ic
 Beam     Arc_0512 ic=ic*A[5,12]        1    Beam     Node_12     FIRST 1  INC node_12_ic, ic
 V        Arc_0607 ic=ic*A[6,7]         1    V        Node_7      FIRST 1  INC node_7_ic, ic
 V        Arc_0613 ic=ic*A[6,13]        1    V        Node_13     FIRST 1  INC node_13_ic, ic
 V        Arc_0614 ic=ic*A[6,14]        1    V        Node_14     FIRST 1  INC node_14_ic, ic
 Zeta_1   Arc_3811 ic=ic*A[38,11]       1    Zeta_1   Node_11     FIRST 1  INC node_11_ic, ic
 Zeta_2   Arc_3911 ic=ic*A[39,11]       1    Zeta_2   Node_11     FIRST 1  INC node_11_ic, ic
 Zeta_3   Arc_4011 ic=ic*A[40,11]       1    Zeta_3   Node_11     FIRST 1  INC node_11_ic, ic
 Eta_1    Arc_4110 ic=ic*A[41,10]       1    Eta_1    Node_10     FIRST 1  INC node_10_ic, ic
 Eta_2    Arc_4210 ic=ic*A[42,10]       1    Eta_2    Node_10     FIRST 1  INC node_10_ic, ic
 Eta_3    Arc_4310 ic=ic*A[43,10]       1    Eta_3    Node_10     FIRST 1  INC node_10_ic, ic
 RTM      Arc_4413 ic=ic*A[44,13]       1    RTM      Node_13     FIRST 1  INC node_13_ic, ic
 FP       Arc_4519 ic=ic*A[45,19]       1    FP       Node_19     FIRST 1  INC node_19_ic, ic
 CHR      Arc_4629 ic=ic*A[46,29]       1    CHR      Node_29     FIRST 1  INC node_29_ic, ic
 F7       Arc_0714 ic=ic*A[7,14]        1    F7       Node_14     FIRST 1  INC node_14_ic, ic
 F8       Arc_0816 ic=ic*A[8,16]        1    F8       Node_16     FIRST 1  INC node_16_ic, ic
 F8       Arc_0820 ic=ic*A[8,20]        1    F8       Node_20     FIRST 1  INC node_20_ic, ic
 F9       Arc_0916 ic=ic*A[9,16]
                                        1    F9       Node_16     FIRST 1  INC node_16_ic, ic
 F9       Arc_0920 ic=ic*A[9,20]        1    F9       Node_20     FIRST 1  INC node_20_ic, ic
 F10      Arc_1014 ic=ic*A[10,14]       1    F10      Node_14     FIRST 1  INC node_14_ic, ic
 F11      Arc_1114 ic=ic*A[11,14]       1    F11      Node_14     FIRST 1  INC node_14_ic, ic
 F12      Arc_1214 ic=ic*A[12,14]       1    F12      Node_14     FIRST 1  INC node_14_ic, ic
 F12      Arc_1223 ic=ic*A[12,23]
                                        1    F12      Node_23     FIRST 1  INC node_23_ic, ic
 F13      Arc_1319 ic=ic*A[13,19]       1    F13      Node_19     FIRST 1  INC node_19_ic, ic
 F13      Arc_1321 ic=ic*A[13,21]       1    F13      Node_21     FIRST 1  INC node_21_ic, ic
 F13      Arc_1330 ic=ic*A[13,30]       1    F13      Node_30     FIRST 1  INC node_30_ic, ic
 F14      Arc_1416 ic=ic*A[14,16]       1             Node_16     FIRST 1  INC node_16_ic, ic
 F14      Arc_1417 ic=ic*A[14,17]       1             Node_17     FIRST 1  INC node_17_ic, ic
 F14      Arc_1418 ic=ic*A[14,18]       1             Node_18     FIRST 1  INC node_18_ic, ic
 F16      Arc_1622 ic=ic*A[16,22]       1             Node_22     FIRST 1  INC node_22_ic, ic
 F17      Arc_1720 ic=ic*A[17,20]       1             Node_20     FIRST 1  INC node_20_ic, ic
 F18      Arc_1819 ic=ic*A[18,19]       1             Node_19     FIRST 1  INC node_19_ic, ic
 F18      Arc_1821 ic=ic*A[18,21]       1             Node_21     FIRST 1  INC node_21_ic, ic
 F19      Arc_1927 ic=ic*A[19,27]       1             Node_27     FIRST 1  INC node_27_ic, ic
 F20      Arc_2023 ic=ic*A[20,23]       1             Node_23     FIRST 1  INC node_23_ic, ic
 F21      Arc_2128 ic=ic*A[21,28]       1             Node_28     FIRST 1  INC node_28_ic,ic
 F22      Arc_2232 ic=ic*A[22,32]       1             Node_32     FIRST 1  INC node_32_ic, ic
 F23      Arc_2324 ic=ic*A[23,24]       1             Node_24     FIRST 1  INC node_24_ic, ic
 F23      Arc_2325 ic=ic*A[23,25]       1             Node_25     FIRST 1  INC node_25_ic, ic
 F23      Arc_2326 ic=ic*A[23,26]       1             Node_26     FIRST 1  INC node_26_ic, ic
 F23      Arc_2328 ic=ic*A[23,28]       1             Node_28     FIRST 1  INC node_28_ic, ic
 F24      Arc_2432 ic=ic*A[24,32]       1             Node_32     FIRST 1  INC node_32_ic, ic
 F25      Arc_2527 ic=ic*A[25,27]       1             Node_27     FIRST 1  INC node_27_ic, ic
 F26      Arc_2628 ic=ic*A[26,28]       1             Node_28     FIRST 1  INC node_28_ic, ic
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 F27      Arc_2732 ic=ic*A[27,32]       1             Node_32     FIRST 1  INC node_32_ic, ic
 F28      Arc_2829 ic=ic*A[28,29]       1             Node_29     FIRST 1  INC node_29_ic, ic
 F28      Arc_2831 ic=ic*A[28,31]       1             Node_31     FIRST 1  INC node_31_ic, ic
 F29      Arc_2930 ic=ic*A[29,30]       1             Node_30     FIRST 1  INC node_30_ic, ic
 F30      Arc_3031 ic=ic*A[30,31]       1             Node_31     FIRST 1  INC node_31_ic, ic
 F30      Arc_3032 ic=ic*A[30,32]       1             Node_32     FIRST 1  INC node_32_ic, ic
 F31      Arc_3133 ic=ic*A[31,33]       1             Node_33     FIRST 1  INC node_33_ic, ic
 F32      Arc_3233 ic=ic*A[32,33]       1             Node_33     FIRST 1  INC node_33_ic, ic
 Length   Node_7   WAIT FLw[1]
                   
                   ic=ic*NodeWeight[7]*M7
                                        1    F7       Arc_0714    FIRST 1  
 V        Node_7   WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[7]*M7
                                        1    F7       Arc_0714    FIRST 1  
 Length   Node_8   WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[8]*M8
                                        1    F8       Arc_0816    FIRST 1  
                                        2*   F8       Arc_0820    FIRST 1  
 Depth    Node_8   WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[8]*M8
                                        1    F8       Arc_0816    FIRST 1  
                                        2*   F8       Arc_0820    FIRST 1  
 Cb       Node_8   WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[8]*M8
                                        1    F8       Arc_0816    FIRST 1  
                                        2*   F8       Arc_0820    FIRST 1  
 Beam     Node_8   WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[8]*M8
                                        1    F8       Arc_0816    FIRST 1  
                                        2*   F8       Arc_0820    FIRST 1  
 Length   Node_9   WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[9]*M9
                   
                   
                                        1    F9       Arc_0916    FIRST 1  
                                        2*   F9       Arc_0920    FIRST 1  
 Depth    Node_9   WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[9]*M9
                   
                   
                                        1    F9       Arc_0916    FIRST 1  
                                        2*   F9       Arc_0920    FIRST 1  
 Cb       Node_9   WAIT FLw[1]
                   
                   
                   
                   
                   ic=ic*NodeWeight[9]*M9
                   
                   
                                        1    F9       Arc_0916    FIRST 1  
                                        2*   F9       Arc_0920    FIRST 1  
 Beam     Node_9   WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[9]*M9
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                                        1    F9       Arc_0916    FIRST 1  
                                        2*   F9       Arc_0920    FIRST 1  
 Cb       Node_10  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[10]*M10
                                        1    F10      Arc_1014    FIRST 1  
 Eta_1    Node_10  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[10]*M10
                                        1    F10      Arc_1014    FIRST 1  
 Eta_2    Node_10  WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[10]*M10
                                        1    F10      Arc_1014    FIRST 1  
 Eta_3    Node_10  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[10]*M10
                                        1    F10      Arc_1014    FIRST 1  
 Cb       Node_11  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[11]*M11
                                        1    F11      Arc_1114    FIRST 1  
 Zeta_1   Node_11  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[11]*M11
                                        1    F11      Arc_1114    FIRST 1  
 Zeta_2   Node_11  WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[11]*M11
                                        1    F11      Arc_1114    FIRST 1  
 Zeta_3   Node_11  WAIT FLw[1]
                   
                   ic=ic*NodeWeight[11]*M11
                                        1    F11      Arc_1114    FIRST 1  
 Length   Node_12  WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[12]*M12
                                        1    F12      Arc_1214    FIRST 1  
                                        2*   F12      Arc_1223    FIRST 1  
 Draft    Node_12  WAIT FLw[1]
                   
                   ic=ic*NodeWeight[12]*M12
                                        1    F12      Arc_1214    FIRST 1  
                                        2*   F12      Arc_1223    FIRST 1  
 Cb       Node_12  WAIT FLw[1]
                   
                   
                   ic=ic*NodeWeight[12]*M12
                                        1    F12      Arc_1214    FIRST 1  
                                        2*   F12      Arc_1223    FIRST 1  
 Beam     Node_12  WAIT FLw[1]
                   
                   
                   
                   ic=ic*NodeWeight[12]*M12
                                        1    F12      Arc_1214    FIRST 1  
                                        2*   F12      Arc_1223    FIRST 1  
 V        Node_13  WAIT FLw[1]
                   ic=ic*NodeWeight[13]*M13
                                        1    F13      Arc_1319    FIRST 1  
                                        2*   F13      Arc_1321    FIRST 1  
                                        3*   F13      Arc_1330    FIRST 1  
 RTM      Node_13  WAIT FLw[1]
                   
                   ic=ic*NodeWeight[13]*M13
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                                        1    F13      Arc_1319    FIRST 1  
                                        2*   F13      Arc_1321    FIRST 1  
                                        3*   F13      Arc_1330    FIRST 1  
 V        Node_14  WAIT FLw[2]
                   
                   
                   
                   ic=ic*NodeWeight[14]*M14
                                        1    F14      Arc_1416    FIRST 1  
                                        2*   F14      Arc_1417    FIRST 1  
                                        3*   F14      Arc_1418    FIRST 1  
 F7       Node_14  WAIT FLw[2]
                   
                   
                   ic=ic*NodeWeight[14]*M14
                                        1    F14      Arc_1416    FIRST 1  
                                        2*   F14      Arc_1417    FIRST 1  
                                        3*   F14      Arc_1418    FIRST 1  
 F10      Node_14  WAIT FLw[2]
                   
                   ic=ic*NodeWeight[14]*M14
                                        1    F14      Arc_1416    FIRST 1  
                                        2*   F14      Arc_1417    FIRST 1  
                                        3*   F14      Arc_1418    FIRST 1  
 F11      Node_14  WAIT FLw[2]
                   
                   ic=ic*NodeWeight[14]*M14
                                        1    F14      Arc_1416    FIRST 1  
                                        2*   F14      Arc_1417    FIRST 1  
                                        3*   F14      Arc_1418    FIRST 1  
 F12      Node_14  WAIT FLw[2]
                   
                   
                   
                   ic=ic*NodeWeight[14]*M14
                                        1    F14      Arc_1416    FIRST 1  
                                        2*   F14      Arc_1417    FIRST 1  
                                        3*   F14      Arc_1418    FIRST 1  
 F8       Node_16  WAIT FLw[3]
                   
                   
                   ic=ic*NodeWeight[16]*M16
                                        1    F16      Arc_1622    FIRST 1  
 F9       Node_16  WAIT FLw[3]
                   
                   
                   
                   ic=ic*NodeWeight[16]*M16
                                        1    F16      Arc_1622    FIRST 1  
 F14      Node_16  WAIT FLw[3]
                   
                   
                   
                   ic=ic*NodeWeight[16]*M16
                                        1    F16      Arc_1622    FIRST 1  
 F14      Node_17  WAIT FLw[3]
                   
                   ic=ic*NodeWeight[17]*M17
                                        1    F17      Arc_1720    FIRST 1  
 F14      Node_18  WAIT FLw[3]
                   
                   
                   
                   ic=ic*NodeWeight[18]*M18
                                        1    F18      Arc_1819    FIRST 1  
                                        2*   F18      Arc_1821    FIRST 1  
 FP       Node_19  WAIT FLw[4]
                   
                   
                   
                   ic=ic*NodeWeight[19]*M19
                                        1    F19      Arc_1927    FIRST 1  
 F13      Node_19  WAIT FLw[4]
                   
                   ic=ic*NodeWeight[19]*M19
                                        1    F19      Arc_1927    FIRST 1  
 F18      Node_19  WAIT FLw[4]
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                   ic=ic*NodeWeight[19]*M19
                                        1    F19      Arc_1927    FIRST 1  
 F8       Node_20  WAIT FLw[4]
                   
                   
                   
                   ic=ic*NodeWeight[20]*M20
                                        1    F20      Arc_2023    FIRST 1  
 F9       Node_20  WAIT FLw[4]
                   
                   
                   
                   ic=ic*NodeWeight[20]*M20
                                        1    F20      Arc_2023    FIRST 1  
 F17      Node_20  WAIT FLw[4]
                   
                   
                   
                   ic=ic*NodeWeight[20]*M20
                                        1    F20      Arc_2023    FIRST 1  
 F13      Node_21  WAIT FLw[4]
                   
                   
                   
                   ic=ic*NodeWeight[21]*M21
                                        1    F21      Arc_2128    FIRST 1  
 F18      Node_21  WAIT FLw[4]
                   
                   ic=ic*NodeWeight[21]*M21
                                        1    F21      Arc_2128    FIRST 1  
 F16      Node_22  WAIT FLw[4]
                   
                   
                   ic=ic*NodeWeight[22]*M22
                                        1    F22      Arc_2232    FIRST 1  
 F12      Node_23  WAIT FLw[5]
                   
                   
                   ic=ic*NodeWeight[23]*M23
                                        1    F23      Arc_2324    FIRST 1  
                                        2*   F23      Arc_2325    FIRST 1  
                                        3*   F23      Arc_2326    FIRST 1  
                                        4*   F23      Arc_2328    FIRST 1  
 F20      Node_23  WAIT FLw[5]
                   
                   
                   ic=ic*NodeWeight[23]*M23
                                        1    F23      Arc_2324    FIRST 1  
                                        2*   F23      Arc_2325    FIRST 1  
                                        3*   F23      Arc_2326    FIRST 1  
                                        4*   F23      Arc_2328    FIRST 1  
 F23      Node_24  WAIT FLw[6]
                   
                   
                   
                   ic=ic*NodeWeight[24]*M24
                                        1    F24      Arc_2432    FIRST 1  
 F23      Node_25  WAIT FLw[6]
                   
                   
                   
                   ic=ic*NodeWeight[25]*M25
                                        1    F25      Arc_2527    FIRST 1  
 F23      Node_26  WAIT FLw[6]
                   
                   
                   
                   ic=ic*NodeWeight[26]*M26
                                        1    F26      Arc_2628    FIRST 1  
 F19      Node_27  WAIT FLw[7]
                   
                   
                   
                   ic=ic*NodeWeight[27]*M27
                                        1    F27      Arc_2732    FIRST 1  
 F25      Node_27  WAIT FLw[7]
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                   ic=ic*NodeWeight[27]*M27
                                        1    F27      Arc_2732    FIRST 1  
 F21      Node_28  WAIT FLw[7]
                   
                   
                   
                   ic=ic*NodeWeight[28]*M28
                                        1    F28      Arc_2829    FIRST 1  
                                        2*   F28      Arc_2831    FIRST 1  
 F23      Node_28  WAIT FLw[7]
                   
                   
                   ic=ic*NodeWeight[28]*M28
                                        1    F28      Arc_2829    FIRST 1  
                                        2*   F28      Arc_2831    FIRST 1  
 F26      Node_28  WAIT FLw[7]
                   
                   
                   
                   ic=ic*NodeWeight[28]*M28
                                        1    F28      Arc_2829    FIRST 1  
                                        2*   F28      Arc_2831    FIRST 1  
 F28      Node_29  WAIT FLw[8]
                   
                   
                   
                   ic=ic*NodeWeight[29]*M29
                                        1    F29      Arc_2930    FIRST 1  
 CHR      Node_29  WAIT FLw[8]
                   
                   
                   
                   ic=ic*NodeWeight[29]*M29
                                        1    F29      Arc_2930    FIRST 1  
 F13      Node_30  WAIT FLw[9]
                   
                   
                   
                   ic=ic*NodeWeight[30]*M30
                                        1    F30      Arc_3031    FIRST 1  
                                        2*   F30      Arc_3032    FIRST 1  
 F29      Node_30  WAIT FLw[9]
                   
                   
                   
                   ic=ic*NodeWeight[30]*M30
                                        1    F30      Arc_3031    FIRST 1  
                                        2*   F30      Arc_3032    FIRST 1  
 F28      Node_31  WAIT FLw[10]
                   
                   
                   
                   ic=ic*NodeWeight[31]*M31
                                        1    F31      Arc_3133    FIRST 1  
 F30      Node_31  WAIT FLw[10]
                   
                   
                   ic=ic*NodeWeight[31]*M31
                                        1    F31      Arc_3133    FIRST 1  
 F22      Node_32  WAIT FLw[10]
                   
                   
                   ic=ic*NodeWeight[32]*M32
                                        1    F32      Arc_3233    FIRST 1  
 F24      Node_32  WAIT FLw[10]
                   
                   
                   ic=ic*NodeWeight[32]*M32
                                        1    F32      Arc_3233    FIRST 1  
 F27      Node_32  WAIT FLw[10]
                   
                   
                   ic=ic*NodeWeight[32]*M32
                                        1    F32      Arc_3233    FIRST 1  
 F30      Node_32  WAIT FLw[10]
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                   ic=ic*NodeWeight[32]*M32
                                        1    F32      Arc_3233    FIRST 1  
 F31      Node_33  WAIT FLw[11]
                   
                   
                   ic=ic*NodeWeight[33]*M33
                                        1    F33      EXIT        FIRST 1  
 F32      Node_33  WAIT FLw[11]
                   
                   
                   
                   ic=ic*NodeWeight[33]*M33
                                        1    F33      EXIT        FIRST 1  

********************************************************************************
*                                   Arrivals                                   *
********************************************************************************

  Entity   Location Qty Each   First Time Occurrences Frequency  Logic
  -------- -------- ---------- ---------- ----------- ---------- ------------
  Length   Node_1   1                     1                      ic=1
  Draft    Node_2   01                    1                      ic=1
  Depth    Node_3   1                     1                      ic=1
  Cb       Node_4   01                    1                      ic=1
  Beam     Node_5   01                    1                      ic=1
  V        Node_6   01                    1                      ic=1
  Zeta_1   Node_38  1          0          1                      ic=1
  Zeta_2   Node_39  01         0          1                      ic=1
  Zeta_3   Node_40  1          0          1                      ic=1
  Eta_1    Node_41  01         0          1                      ic=1
  Eta_2    Node_42  01         0          1                      ic=1
  Eta_3    Node_43  01         0          1                      ic=1
  RTM      Node_44  01         0          1                      ic=1
  FP       Node_45  01         0          1                      ic=1
  CHR      Node_46  01         0          1                      ic=1

********************************************************************************
*                                  Attributes                                  *
********************************************************************************

  ID         Type         Classification
  ---------- ------------ --------------
  ic         Real         Entity        

********************************************************************************
*                              Variables (global)                              *
********************************************************************************

  ID         Type         Initial value Stats      
  ---------- ------------ ------------- -----------
  node_1_ic  Real         0             Time Series
  node_1_mt  Real         0             Time Series
  node_2_ic  Real         0             Time Series
  node_3_ic  Real         0             Time Series
  node_4_ic  Real         0             Time Series
  node_5_ic  Real         0             Time Series
  node_6_ic  Real         0             Time Series
  node_7_ic  Real         0             Time Series
  node_8_ic  Real         0             Time Series
  node_9_ic  Real         0             Time Series
  node_10_ic Real         0             Time Series
  node_11_ic Real         0             Time Series
  node_12_ic Real         0             Time Series
  node_13_ic Real         0             Time Series
  node_14_ic Real         0             Time Series
  node_16_ic Real         0             Time Series
  node_17_ic Real         0             Time Series
  node_18_ic Real         0             Time Series
  node_19_ic Real         0             Time Series
  node_20_ic Real         0             Time Series
  node_21_ic Real         0             Time Series
  node_22_ic Real         0             Time Series
  node_23_ic Real         0             Time Series
  node_24_ic Real         0             Time Series
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  node_25_ic Real         0             Time Series
  node_26_ic Real         0             Time Series
  node_27_ic Real         0             Time Series
  node_28_ic Real         0             Time Series
  node_29_ic Real         0             Time Series
  node_30_ic Real         0             Time Series
  node_31_ic Real         0             Time Series
  node_32_ic Real         0             Time Series
  node_33_ic Real         0             Time Series
  node_38_ic Real         0             Time Series
  node_39_ic Real         0             Time Series
  node_40_ic Real         0             Time Series
  node_41_ic Real         0             Time Series
  node_42_ic Real         0             Time Series
  node_43_ic Real         0             Time Series
  node_44_ic Real         0             Time Series
  node_45_ic Real         0             Time Series
  node_46_ic Real         0             Time Series
  Vwait      Real         1             Time Series

********************************************************************************
*                                    Arrays                                    *
********************************************************************************

  ID         Dimensions   Type         Import File                   Export File Disable        Persist                        
  ---------- ------------ ------------ ----------------------------- ----------- -------------- -------------------------------
  mt         11,2         Real         SenBulkerStdIni_Rev_01.xls                None           Yes                            
  FLw        11           Real         SenBulkerStdIni_Rev_01.xls                None           Yes                            
  NodeWeight 59           Real         SenBulkerStdNodeINI_Rev01.xls             None           Yes                            
  A          46,46        Real         SenBulkerStd_A_Rev01.xls                  None           Yes                            
  vp         46           Real         SenBulkerStdIni_Rev_01.xls                None           No                             

********************************************************************************
*                                    Macros                                    *
********************************************************************************

  ID              Text
  --------------- ------------
  M1              1
  M2              1
  M3              1
  M4              1
  M5              1
  M6              1
  M7              1
  M8              1
  M9              1
  M10             1
  M11             1
  M12             1
  M13             1
  M14             1
  M15             1
  M16             1
  M17             1
  M18             1
  M19             1
  M20             1
  M21             1
  M22             1
  M23             1
  M24             1
  M25             1
  M26             1
  M27             1
  M28             1
  M29             1
  M30             1
  M31             1
  M32             1
  M33             1
  M38             1
  M39             1
  M40             1
  M41             1
  M42             1
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  M43             1
  M44             1
  M45             1
  M46             1

********************************************************************************
*                                External Files                                *
********************************************************************************

  ID         Type              File Name                     Prompt    
  ---------- ----------------- ----------------------------- ----------
  (null)                       SenBulkerStd_Rev_02.xls                 
  (null)                       SenBulkerStdIni_Rev_01.xls              
  (null)                       SenBulkerStdNodeINI_Rev01.xls           
  (null)                       SenBulkerStd_A_Rev01.xls                
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