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ABSTRACT 

 

Climate-induced ecological replacement of P. m. gracilis by P. leucopus has been documented 

with long-term studies in the Great Lakes Region.  Gradually warming winters over the last 30-

40 years in this area have facilitated northward range expansion of P. leucopus, and communities 

in which P. leucopus and P. m. gracilis co-occur have become characterized by strong numerical 

dominance of P. leucopus.  I conducted a three year field study of syntopic P. leucopus and P. m. 

gracilis in northern Michigan to identify niche differences and investigate the mechanisms by 

which these differences facilitate ecological replacement. 

P. leucopus consistently experienced a longer breeding season than P. m. gracilis. P. leucopus 

and P. m. gracilis also differed in the survivorship of overwintered mice.  This results in 

differences in the relative contributions of overwintered and young-of-year females to annual 

reproductive output, and may be a previously unreported niche difference between species. 

Ecological replacement of P. m. gracilis by P. leucopus results from the interaction between 

environmental conditions, niche differences, and species interactions. 

Abundance differed strongly in two out of three years, with P. leucopus outnumbering P. m. 

gracilis in 2011 and 2012.  Increases in abundance of P. leucopus are well explained by 

enhanced survival conferred by increasingly warming conditions.  Reproductive output in P. 

leucopus is highly dependent upon reproduction by overwintered females.  Mild winters allow 

for increased abundance of breeding females in the spring and more favorable breeding 

conditions which facilitate successful early reproduction and lower mortality.   

The role of interspecific competition in ecological replacement in this species pair has not been 

previously investigated, and the role of competition in regulation of population growth remains 

unclear.  Nevertheless, there was evidence that interspecific competition may influence 



xix 
 

replacement.  Declining abundance of P. m. gracilis was caused by reduced reproduction by 

young-of-year females rather than by changes in survival, and these phenomena may be better 

explained by interspecific social interactions than by environmental conditions alone.  

Increasingly warm winters may shift the competitive balance in this community to favor P. 

leucopus by allowing this species to establish territories earlier than P. m. gracilis.  
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CHAPTER 1.    

WHY ARE SOUTHERN PEROMYSCUS  REPLACING THEIR NORTHERN COUNTERPARTS? 

 

 

1.1 CLIMATE-INDUCED RANGE SHIFTS 

Predicting the effect of environmental fluctuations on the abundance and distribution of species 

has long been a major challenge for ecologists (Ives 1995), and its importance has become even 

more pressing in light of global climate change (Gilman et al. 2010).  Environmental conditions 

are undergoing rapid and directional change; average land temperatures, for example, are 

predicted to increase 1.2-4°C by the year 2100 (IPCC 2007).  Significant ecological 

consequences are expected.  Climate-induced range shifts are already taxonomically widespread 

(Parmesan and Yohe 2003; Araujo et al. 2006; Parmesan 2006; Kelly and Goulden 2008; Moritz 

et al. 2008) and appear to have accelerated in recent years (Chen et al. 2011).  Range shifts are 

often accompanied by more subtle changes in population abundance, community structure and 

composition, and organismal physiology (Sala et al. 2000; Parmesan and Yohe 2003; Williams 

and Jackson 2007).   

Environmental change can differentially affect species in a community because each has its own 

physiological optimum (Huey et al. 2009) and may experience abiotic conditions differently 

(Helmuth et al. 2005).  Changes in temperature can alter an organism’s energetic requirements, 

which affect survival, reproductive rates, individual growth, and activity patterns (Gilchrist 
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1995).  Changes to the abiotic environment can cause simultaneous and differing responses of 

species within a community and lead to faunal turnover (Blois and Hadly 2009). 

 

1.2 ECOLOGICAL REPLACEMENT IN MICHIGAN PEROMYSCUS 

In Michigan, range shifts and subsequent ecological replacement of ‘northern’ species by their 

‘southern’ counterparts has been observed in several species of small mammals (Myers et al. 

2009).  One of these species pairs is the ‘southern’ white-footed mouse, Peromyscus leucopus, 

and the ‘northern’ woodland deer mouse, P. maniculatus gracilis, which occur together in 

northern Michigan forests.  Much of the range of P. m. gracilis lies to the north of Michigan, in 

Ontario and Quebec.  Peromyscus leucopus, in contrast, is at the northern limits of its range in 

this region. 

Expansion of the northern limit of the range of P. leucopus has been observed at least since the 

early 20th century.   Reports from New York and Massachusetts from the early 1900s indicate 

that while the ranges of P. leucopus and P. m. gracilis did not yet overlap, the northern limit of 

the range of P. leucopus was quickly approaching the southern limit of the range of P. m. gracilis 

(Miller Jr. and Rehn 1901).  In the more recent past, ecological replacement of P. m. gracilis by 

northward-expanding populations of P. leucopus has been observed in Minnesota (Long 1996). 

In Michigan, Hooper (1942) noted the dispersion of P. leucopus northward up the entire Lower 

Peninsula and restriction of P. m. gracilis to northern counties in the Lower Peninsula and the 

Upper Peninsula.  Over the last 30 years, abundance of P. leucopus has increased in the northern 

Lower Peninsula, and the northern boundary of the range of this species has expanded to include 

much of the Upper Peninsula.  These changes have coincided with an overall decline in 

abundance of P. m. gracilis, including local extirpation from many areas that it formerly 

inhabited (Myers et al. 2005).  In the northern Lower Peninsula, communities in which P. 

leucopus and P. m. gracilis co-occur have become characterized by strong numerical dominance 

of P. leucopus (Myers et al. 2009). 

Early range shifts in P. leucopus and P. m. gracilis have been hypothesized to be due to human 

modification and land use (Klein 1960); the ability to colonize disturbed sites quickly may be a 
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general attribute of the genus (Zwolak and Foresman 2007).  More recently, however, long-term 

studies indicate that both range shifts and ecological replacement are likely due to warming 

climates (Myers et al. 2005).  Abundance of P. leucopus, in particular, appears to be extremely 

sensitive to winter conditions such that mild winters are associated with high spring abundance 

and increased population growth rate of this species (Myers et al. 2005). 

 

1.3 DIFFERENTIAL ADAPTATIONS IN A DIRECTIONALLY CHANGING ENVIRONMENT 

The earliest ecological models seeking to predict the consequences of climate change utilized the 

‘climate envelope’ approach, which correlates species’ occurrences with climatic and 

environmental variables (Zarnetske et al. 2012).  The limits of the geographic distributions of 

many species are set primarily by environmental parameters (Brown et al. 1996).  Species ranges 

are generally predicted to track the shifting boundaries of suitable environmental conditions 

(Graham et al. 1996; Williams and Jackson 2007; Zarnetske et al. 2012).  Niche differences can 

facilitate coexistence when regular environmental fluctuations favor different species at different 

times (Adler et al. 2007; Caceres 1997) but can lead to rapid changes in abundance when 

environmental fluctuations are directional (Ernest et al. 2008).  Independently shifting ranges of 

species tracking their environmental optima can thus result in ecological replacement at range 

edges. 

Studies investigating faunal turnover often reference established differences between species 

such as differing thermal optima (Davis et al. 1998a, 1998b; Huey et al. 2009), habitat 

specialization (Badgley et al. 2008; Blois and Hadly 2010), diet breadth (Attum et al. 2006), 

resource requirements (Tilman and Lehman 2001; Zavaleta et al. 2003), specialist predators or 

pathogens (Rand and Tscharntke 2007), and dispersal abilities (Angert et al. 2011).  P. leucopus 

and P. maniculatus exhibit extreme morphological and ecological similarity (Horner 1954; Wolff 

and Hurlbutt 1982; Feldhamer et al. 1983; Wolff 1985; Long and Long 1993).  Both species 

have been generally described as habitat generalists within deciduous forests (Barry and Francq 

1980), have wide diet breadths (Wolff et al. 1985; Lackey et al. 1985), and are able to quickly 

colonize disturbed habitats (Zwolak and Foresman 2007).  Both species serve as a prey base for a 

variety of generalist mammalian predators (King 1968), and are infested by the same range of 
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parasites (Levine et al. 1985; Rand et al. 1993; King 1968).  Because P. leucopus and P. m. 

gracilis are so similar, differences between species where they co-occur, if they exist, are subtle. 

There is evidence that P. leucopus and P. maniculatus are adapted to differing environmental 

conditions and may thus have differing environmental optima.  P. maniculatus more regularly 

uses torpor, builds more insulated nests, stores more food, and consumes less food during the 

winter (Wolff and Durr 1986; Tannenbaum and Pivorun 1988; Pierce and Vogt 1993) than P. 

leucopus, suggesting that P. maniculatus is better adapted to harsh winters.  P. leucopus, on the 

other hand, is vulnerable to cold winters (Howard 1951), particularly to low temperatures and 

deep frosts (Madison et al. 1984; Long 1973).  Abundance of P. leucopus where it occurs 

without P. m. gracilis in northern Michigan is higher and increases faster in years following mild 

winters than years following harsh winters, suggesting enhanced overwinter survival and more 

successful reproduction when winters are short (Myers et al. 2005).   

Over the last several decades, winters have become shorter and milder in the Great Lakes Region 

(Myers et al. 2005).  It has been suggested that fluctuations in abundance of these species are 

more likely due to differing environmental optima than to interspecific interactions (Wolff 

1996).  Increasingly warm conditions to which P. leucopus is well adapted are occurring more 

often, resulting in increases in abundance.  Conditions to which P. m. gracilis is well adapted, 

however, are occurring less frequently.  This can result in slowed population growth and lower 

abundance, or, if conditions are outside the tolerable range of P. m. gracilis, local extinction.  In 

the latter case, ecological replacement could result without species interactions playing a role.   

 

1.4 THE ROLE OF BIOTIC INTERACTIONS IN CLIMATE-INDUCED FAUNAL TURNOVER 

In the last several years, studies have increasingly emphasized the importance of biotic 

interactions in shaping species responses to directional environmental change (Tylianakis et al. 

2008; Gilman et al 2010; Urban et al. 2012; Zarnetske et al. 2012).  Interactions between species 

can play a dominant role in structuring abundance and distribution (Connell 1983; Schoener 

1983).  Long-term studies indicate that interactions are complex and can affect the structure of 

communities and the dynamics of ecosystems (Brown et al. 2001; Ernest et al. 2008).  
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Interspecific interactions thus have the potential to affect how species and communities respond 

to environmental change (Ives 1995; Fox and Morin 2001; Poloczanska et al. 2008).  Predictive 

models utilizing the climate envelope approach have largely excluded the effect of species 

interactions and have yielded results of inconsistent accuracy, but often improve when 

interactions are incorporated (Guisan and Thuiller 2005; Araujo and Luoto 2007; Heikkinen et 

al. 2007).   

Climate change frequently alters the strength and direction of interspecific interactions, including 

strengthening competitive effects that influence abundance of multiple species in a community 

(Zarnetske et al. 2012).  Recent empirical studies suggest that competition can facilitate climate-

induced extinctions (Sinervo et al. 2010; Jankowski et al. 2010) by lowering fitness and 

population abundances (Urban et al. 2012). Competition at range boundaries may explain 

observations that species adapted to warmer climates generally colonize warming areas faster 

than resident species disappear (Kelly and Goulden 2008). 

 Within communities undergoing turnover, variation in the responses of species to climate 

change may shift competitive balances to favor some species over others (reviewed in Tylianakis 

et al. 2008).  Differences between co-occurring species in a community can become novel 

sources of competitive advantages (Brown et al. 2001; Tilman and Lehman 2001; Zavaleta et al. 

2003).  Changes in climate can either ameliorate or magnify differences in competitive ability 

(Gilman et al. 2010) but can also alter the nature of the interactions, for example by changing 

competitive dominance to dependence (Pennings et al. 2003; Suttle et al. 2007). 

Empirical studies evaluating the role of biotic interactions in the responses of species to climate 

change typically focus on communities in which niche differences between species have been 

well-established and interspecific interactions have been shown to regulate population growth 

through manipulative experiments and other approaches (Davis et al. 1998a, 1998b; Tilman and 

Lehman 2001; Zavaleta et al. 2003).  Climate-induced shifts in competitive balances within these 

communities can then be inferred by correlating changes in relative abundance to changes in 

environmental conditions (Attum et al. 2005).  Other studies assess the performance and/or 

fitness of single species under a range of varied environmental conditions to predict performance 
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under more extreme conditions, then compare relative performance between species to predict 

outcomes of interspecific interactions (Huey et al. 2009). 

However, in many systems, the role of biotic interactions in population regulation or the 

structuring of current species distributions is unknown and difficult to establish, and alternative 

approaches are needed.  Jankowski et al. (2010) demonstrated that interspecific aggression was 

more intense at range boundaries than centers for birds distributed along an elevational gradient, 

and indirectly implicated interspecific competition as a mechanism for maintaining range 

boundaries. If interspecific interactions structure current range limits, then it is likely that these 

interactions will influence how ranges will shift in response to climate change.  Additional 

studies of social behaviors and population demographics at range boundaries or in regions where 

species’ ranges overlap may be fruitful in systems where manipulative experiments to establish 

the presence of interspecific interactions are difficult.   

 

1.5 INTERSPECIFIC COMPETITION IN CO-OCCURRING P. LEUCOPUS AND P. M. GRACILIS 

Regular variations in climate may promote stability within communities by ameliorating effects 

by superior competitors (Post 2012).  In the absence of competition, many cold-adapted species 

can persist in environments even after their optimal habitat disappears because their absolute 

rates of population growth remain positive; with competition, these species become extinct once 

better adapted competitors arrive (Urban et al. 2012).  Coexistence of P. leucopus and P. m. 

gracilis close to the northern range boundary of P. leucopus may have been maintained by 

differential winter adaptations and the frequency of mild versus harsh winters (Wolff 1996).  

This balance, however, has been upset by recent climatic warming in the northern Great Lakes 

region (Myers et al. 2005).  It is possible that P. m. gracilis is able to persist in areas that are 

becoming increasingly warm if P. leucopus were not also increasing in abundance; the 

combination of sub-optimal environmental conditions and increased density of P. leucopus may 

lead to ecological replacement. 

The role of interspecific interactions in the replacement of P. m. gracilis by P. leucopus has not 

previously been investigated, perhaps due to uncertainty regarding the importance of such 
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interactions to population dynamics in communities where these species co-occur.  Though there 

is some evidence of interspecific territoriality (Dooley Jr. and Dueser 1996) and microhabitat 

partitioning (Wilson 1968; Geluso 1971; Master 1977; Holbrook 1978), it has also been 

hypothesized that co-occurring P. leucopus and P. maniculatus interact ecologically as a single 

species with neutral population dynamics (Wolff 1996). 

Do co-occurring P. leucopus and P. m. gracilis compete in northern Michigan?  The exclusion of 

one species from the niche of another is difficult to demonstrate (Connell 1983; Schoener 1983).  

Direct field tests for competition typically involve removal experiments, in which enclosures are 

built around study plots and species densities within are manipulated and monitored (e.g. Brown 

and Munger 1985; reviewed in Connell 1983).  For P. leucopus and P. m. gracilis, enclosures are 

impractical because of their required size and because Peromyscus are adept at climbing 

(M'Closkey 1975).  This approach is thus seldom used to detect competition in co-occurring 

Peromyscus. 

Peromyscus populations are characterized by relatively low density and relatively small annual 

fluctuations in numbers (Terman 1968), suggesting that population growth is controlled (Harland 

et al. 1979).  Density-dependent regulation of population growth is often reported in single 

species populations.  Reproductive output has been found to be inversely proportional to 

population density in P. leucopus (Burt 1940; Manville 1949), and high densities can cause P. 

maniculatus to cease breeding earlier than normal (Canham 1969; Sadleir 1974).  Reproductive 

inhibition of young-of-year (YOY) P. maniculatus has been experimentally demonstrated in 

natural populations and may be mediated by density of breeding adults (Lusk and Millar 1989; 

Terman 1993).  Mortality within a season may also be density dependent, with peaks in density 

associated with reduced survival (Beer and MacLeod 1966; Goundie and Vessey 1986; Schug et 

al. 1991). 

Regulation of annual population growth in P. leucopus and P. maniculatus is hypothesized to be 

mediated by behavior (Harland et al. 1979).  Adult males may display aggressive behavior 

towards juveniles and impact their survival (Sadleir 1965). Available territories in which to breed 

may be a sex- and season-specific limiting resource (Bujalska 1973; Harland et al. 1979), and 

resident females actively exclude other females from their home ranges during the breeding 
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season (Nicholson 1941; Metzgar 1971, Harland et al. 1979).  Social interactions, particularly 

among breeding females, may thus play a role in population regulation and contribute to 

fluctuations in abundance.  The victor in aggressive contests tends to depend on residency status 

(resident or intruder) rather than species identity (Wolff et al. 1983), suggesting equality in 

competitive ability.  These observations suggest that population growth in communities where P. 

leucopus and P. maniculatus co-occur could depend on both intra- and inter-specific social 

interactions. 

It may be possible to indirectly test for the existence of interspecific competition in this system 

by investigating the spacing of individuals across the study grid.  This approach has so far only 

been used to gain evidence of intraspecific competition within Peromyscus populations.  

Investigations of the spatial distribution of individuals in Peromyscus populations have largely 

focused on females, probably because of their role in reproduction (Burt 1940; Lackey et al. 

1985).  It has been hypothesized that in polygynous mating systems, in which males invest more 

energy in competition for resources than in paternal care (Wolff 1989), females may be more 

strongly influenced than males by seasonal changes in population dynamics and environmental 

conditions (Trivers 1972).  Studies indicate that spacing between adult female mice is 

approximately regular during the breeding season (Metzgar 1971; Fairbairn 1977; Harland et al. 

1979), but aggregated during the rest of the year (Metzgar 1979; Mihok 1979).  The maintenance 

of spatial relationships necessitates social interaction such as mutual avoidance (reported in 

Clethrionomys; Viitala and Hoffmeyer 1985) or overt aggression (Dooley Jr. and Dueser 1996). 

The presence of these aggressive contests suggests a potential mechanism involving interspecific 

interactions governing range boundary dynamics and species replacement among Peromyscus.  

Even if P. leucopus and P. m. gracilis interact with neutral dynamics where they co-occur (Wolff 

1996) and neither species is more likely than the other to win aggressive contests (Wolff et al. 

1983), differences in overwinter survival or timing of the start of the breeding season in these 

two species could translate into competitive dominance of one species over another due to 

differences in residency status. Replacement of P. maniculatus by P. leucopus could for example 

occur if shifting climate regimes allow P. leucopus to establish territories before P. maniculatus 

each year. 



9 
 

 

1.6 DISSERTATION GOALS AND DESCRIPTION 

Understanding the mechanisms by which directionally changing climate regimes alter 

community structure is critical to accurately predict how global climate change will continue to 

impact natural communities.  What are the biological mechanisms that drive the replacement of 

P. m. gracilis by P. leucopus in northern Michigan?  Though there is evidence that faunal 

turnover in this species pair is driven by long-term changes in climate, the mechanisms by which 

increasingly warm conditions result in increased abundance of P. leucopus and decreased 

abundance of P. m. gracilis are not well understood.   

In this dissertation, I present results from a three year field study of syntopic P. leucopus and P. 

m. gracilis that seeks to fill existing gaps in knowledge regarding the mechanisms of faunal 

turnover by providing a detailed examination of population dynamics in a community of co-

occurring ‘northern’ and ‘southern’ species.  Investigation of short-term population dynamics in 

communities undergoing replacement can be useful in informing predictions on long-term 

changes in community structure in P. leucopus and P. m. gracilis and in other assemblages that 

might be governed by similar mechanisms.   

This study was located in the Pigeon River State Forest, one of the few remaining areas in 

Michigan’s Lower Peninsula where P. m. gracilis is regularly found and where it occurs 

syntopically with P. leucopus.  The site is close to the northern range boundary of P. leucopus.  

This provides a unique opportunity to examine the differing responses of P. leucopus and P. m. 

gracilis to the same changes in abiotic environmental conditions.  This research combines a 

unique location (a community in which climate-induced replacement is occurring in close 

proximity to range boundaries) with a detailed examination of the mechanisms by which 

differences between species lead to differences in reproductive success in a directionally shifting 

environment; such a study has not been done before. 

In Chapter 2, I describe changes in abundance of P. leucopus and P. m. gracilis over the course 

of the study, broadly compare patterns of population growth, and discuss annual variation in the 

winter conditions experienced by mice.  Community structure shifted from roughly equal 



10 
 

abundance in 2010 to strong numerical dominance of P. leucopus in 2011 and 2012.  This 

change coincided with differences in the length and severity of winter; the winter preceding 2012 

was the shortest and mildest observed, while winters preceding 2010 and 2011 were associated 

with lower average temperatures which extended longer into the spring. 

In Chapters 3 and 4, I identify and describe broad species differences in traits including 

survivorship, reproductive patterns, and breeding season length.  Shifts in relative abundance and 

community structure are ultimately caused by differences in reproductive success.  Changes in 

reproductive success result from changes in the survival and reproductive rates of individuals 

(Millar et al. 1992), yet the specific patterns of changes in survivorship at juvenile and adult 

stages, and of reproductive rates of different age classes occurring in these populations as one 

species replaces the other is unknown.  Here I describe the population demography occurring in 

this site over a set of years which involved trends both in warming and species’ relative 

abundances. I consider how differences between species facilitate replacement by investigating 

the relative contributions of survivorship and reproductive patterns to differences in reproductive 

success. 

I specifically consider the importance of interspecific interactions to replacement in this system 

using several different methods.  In Chapter 5, I assess temporal variation in the spatial 

distribution of P. leucopus and P. m. gracilis to determine if this spacing is related to the 

abundance of these two species and hence the likelihood of competitive or other interspecific 

encounters.  In addition, I use several analyses to indirectly assess the influence of species 

interactions in replacement.  In Chapter 4, I present and test a hypothesis by which successful 

early breeding by P. leucopus could result in a competitive advantage mediated by interspecific 

social aggressive encounters, which might explain how gradually warming winters shift the 

competitive balance within this community.   

Finally, in Chapter 6, I provide a summary and synthesis of results from the entire study.  The 

connections between species differences, fluctuations in reproductive success, changes in 

environmental conditions, and interspecific social interactions are discussed.  I ask whether 

changes in the abundance of P. leucopus and P. m. gracilis be explained solely by differences in 

the responses of each species to warming climates.  I describe how some patterns of abundance 
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can be directly explained by warming climatic conditions.  I then identify patterns that are not 

well explained by warming alone, and discuss plausible species interaction mechanisms that 

could cause them.   
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CHAPTER 2.  

TEMPORAL FLUCTUATIONS IN RELATIVE ABUNDANCE OF SYNTOPIC PEROMYSCUS 

LEUCOPUS  AND PEROMYSCUS MANICULATUS GRACILIS 

 

 

2.1 SUMMARY 

Climate-induced ecological replacement of the ‘northern’ P. maniculatus gracilis by the 

‘southern’ P. leucopus has been documented with long-term studies in the Great Lakes Region 

(Long 1996; Myers et al. 2005).  Gradually warming winters over the last 30-40 years in this 

area have facilitated northward range expansion of P. leucopus, and communities in which P. 

leucopus and P. m. gracilis co-occur have become characterized by strong numerical dominance 

of P. leucopus (Myers et al. 2009).  I conducted a three year study of co-occurring P. leucopus 

and P. m. gracilis to investigate changes in mouse abundance, compare rates of reproduction and 

survival, and assess the mechanisms by which niche differences facilitate ecological 

replacement.   

In this chapter, I compare patterns of population growth of P. leucopus and P. m. gracilis over 

the three years of the study by investigating seasonal variation in trap success (the proportion of 

traps set that captured mice) and mouse abundance.  Mouse abundance data were analyzed using 

a Poisson regression model with distinct mean structures for each species and year and basis-

splines to account for time dynamics.  Trap success and estimates of abundance were compared 

between species to identify differing trends in population growth.  I also describe annual trends 
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in temperature and precipitation to identify fluctuations in environmental conditions experienced 

by mice during this study. 

Trap success and estimated abundance for P. leucopus were significantly greater than for P. m. 

gracilis in two out of three years in this study.  P. leucopus and P. m. gracilis occurred at similar 

frequencies in 2010 and early 2011; however, after July 2011 community composition shifted to 

favor P. leucopus, and relative abundance of P. leucopus remained high for the remainder of the 

study.  This shift in relative abundance is consistent with the pattern of faunal turnover that has 

been observed in the Great Lakes Region (Long 1996; Myers et al. 2005).  Disparities in 

abundance between species appear to result from both increases in the P. leucopus population 

and decreases in the P. m. gracilis population, and the relative contributions of these two factors 

differ in 2011 and 2012. 

Abundance of P. leucopus was significantly greater in 2011 and 2012 than in 2010, and this 

pattern may have been affected by the severity and length of the preceding winters.  For P. 

leucopus, the highest trap success, overall abundance, and spring abundance all occurred in 

2012, which was preceded by the mildest and shortest winter during this study.  Abundance and 

trap success of P. m. gracilis, on the other hand, was not associated with winter conditions in the 

same manner.  Overall numbers of of P. m. gracilis were lowest in 2012 despite high spring 

abundance, and this was due to noticeably reduced numbers between June and September. 

 

 

2.2 INTRODUCTION 

Environmental conditions are undergoing rapid and directional change; average land 

temperatures, for example, are predicted to increase 1.2-4°C by the year 2100 (IPCC 2007).  

Climate-induced range shifts are already taxonomically widespread (Parmesan and Yohe 2003; 

Araujo et al. 2006; Parmesan 2006; Kelly and Goulden 2008; Moritz et al. 2008) and appear to 

have accelerated in recent years (Chen et al. 2011).  Range shifts are often accompanied by 

changes in population abundance, community structure and composition, and organismal 

physiology (Sala et al. 2000; Parmesan and Yohe 2003; Williams and Jackson 2007).  At range 
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boundaries, species with distributions that lie primarily in lower latitudes are apparently 

replacing their higher latitude counterparts (Myers et al. 2009). 

In Michigan, range shifts and subsequent ecological replacement of ‘northern’ species by their 

‘southern’ counterparts has been observed in several species of small mammals (Myers et al. 

2009).  One of these species pairs is the ‘southern’ white-footed mouse, Peromyscus leucopus, 

and the ‘northern’ woodland deer mouse, P. maniculatus gracilis, which occur together in 

northern Michigan forests.  Peromyscus leucopus is broadly distributed in the eastern and central 

United States, from southernmost Canada to the Yucatan peninsula and from the Atlantic coast 

to the western Great Plains.  P. m. gracilis is the Michigan forest-dwelling subspecies of P. 

maniculatus; much of the range of P. m. gracilis lies to the north of Michigan, in Ontario and 

Quebec. P. leucopus and P. maniculatus are sympatric throughout much of their geographic 

ranges, and they are regarded as sister species (Bradley et al. 2007). 

Expansion of the northern limit of the range of P. leucopus has been observed at least since the 

early 20th century.   Reports from New York and Massachusetts from the early 1900s indicate 

that while the ranges of P. leucopus and P. m. gracilis did not yet overlap, the northern limit of 

the range of P. leucopus was quickly approaching the southern limit of the range of P. m. gracilis 

(Miller Jr. and Rehn 1901).  In the more recent past, ecological replacement of P. m. gracilis by 

northward-expanding populations of P. leucopus has been observed in Minnesota (Long 1996). 
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Figure 2-1: Pre-1990 distribution maps of (A) P. maniculatus gracilis and (B) P. leucopus. Figure reproduced from 
Myers et al. (2005). 

 

Peromyscus leucopus is at the northern limits of its range in northern Michigan.  Hooper (1942) 

noted the dispersion of P. leucopus northward up the entire Lower Peninsula and restriction of P. 

m. gracilis to northern counties in the Lower Peninsula and the Upper Peninsula (Figure 2-1).  

Over the last 30 years, abundance of P. leucopus has increased in the northern Lower Peninsula, 

and the northern boundary of the range of this species has expanded to include much of the 

Upper Peninsula (Figure 2-2).  These changes have coincided with an overall decline in 

abundance of P. m. gracilis, including local extirpation from many areas that it formerly 

inhabited (Myers et al. 2005).  In the northern Lower Peninsula, communities in which P. 

leucopus and P. m. gracilis co-occur have become characterized by strong numerical dominance 

of P. leucopus (Myers et al. 2009). 
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Figure 2-2: Trapping records of P. leucopus (top) and P. m. gracilis (bottom) in northern Michigan.  Records from 
1883-1980 (left) and 1981-2006 (right) document expansion of P. leucopus into Michigan’s Upper Peninsula and 
concurrent decline of P. m. gracilis.  Figure modified from Myers et al. (2009). 

 

Early range shifts in P. leucopus and P. m. gracilis were hypothesized to be due to human 

modification and land use (Klein 1960); the ability to colonize disturbed sites quickly may be a 

general attribute of the genus (Zwolak and Foresman 2007).  More recently, however, long-term 

studies indicate that both range shifts and ecological replacement are likely due to warming 

climates (Myers et al. 2005).   

In this chapter, I use trapping records from a three year field study of syntopic Peromyscus 

leucopus and P. m. gracilis in northern Michigan to investigate fluctuations in abundance in an 

area where ecological replacement is occurring.  While a general pattern of faunal replacement 

of ‘northern’ species by their ‘southern’ counterparts has been established for several species of 

rodents in Michigan (Myers et al. 2009), this study provides a more detailed look at population 

dynamics in a community of co-occurring ‘northern’ and ‘southern’ species.  I conclude that a 

combination of increases in P. leucopus abundance and decreases in P. m. gracilis abundance 

leads to long-term regional trends of replacement.  A targeted and specific assessment of 

population trends such as this will lead to a better understanding of the factors driving species 

turnover in a directionally changing environment. 
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2.3 METHODS 

2.3.1 PIGEON RIVER TRAPPING PROTOCOL 

I monitored a community of syntopic populations of P. leucopus (PL) and P. m. gracilis (PMG) 

in the Pigeon River State Forest (Figure 2-3) for three consecutive years from April to October.  

This area is unique because it is located in one of the few remaining areas in Michigan’s Lower 

Peninsula where PMG is regularly found and where it occurs syntopically with PL.  The trapping 

grid is located in a large plot of continuous forest.  The size of the large trees and the condition 

of the forest floor suggest that it has not been logged for >50 years, and it is protected from 

future logging.  The habitat consists of mature northern hardwoods with an open understory; the 

dominant tree species on the grid include sugar and red maple (Acer saccharum and A. rubrum), 

red oak (Quercus rubra), American beech (Fagus grandifolia) and white ash (Fraxinus 

americana). 

 

 

Figure 2-3: Map depicting the location of the trapping grid, in the Pigeon River State Forest near Vanderbilt, MI. 

 

The trapping grid is a square aligned with cardinal directions.  Sides are of length 400 meters, 

with 400 total trap stations distributed evenly across the area and permanently marked with 

unique identifiers (a letter and number combination).  The distance between trap stations in any 

cardinal direction is 20 meters.  The grid was trapped for 1-2 sessions per month, during which 
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trapping occurred on 3-5 consecutive days.  There was an interval of 2-5 weeks between 

sessions, except in May 2011 and 2012 when trapping was more frequent in order to document 

the first emergence of young-of-year. 

Due to the large number of trap stations and the high capture rate at some times of year, the grid 

was never trapped in its entirety on any one night.  Between 40 and 280 traps, or 2-12 rows, were 

set each day.  From May through August in 2011 and 2012, alternating north-south rows 

(denoted by letters) were trapped on consecutive nights so that all trap stations were open at least 

once during each session.  In April, September, and October of all years, summer 2010, and 

2013, only every other row was trapped.  This results in uneven sampling intensity across the 

rows of the grid (Table 2-1).  
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TABLE 2-1: SAMPLING INTENSITY ACROSS NORTH-SOUTH ROWS OF THE GRID 

 
MONTH DD CC BB AA A B C D E F G H I J K L M N O P 

 
APRIL 0 0 1 1 1 0 2 0 2 0 2 0 2 0 1 0 0 0 0 0 

MAY 3 1 3 1 3 1 3 1 2 1 2 1 2 1 2 1 1 1 1 1 

JUNE 0 9 0 9 6 8 0 8 6 5 0 5 5 8 0 8 6 8 0 8 

JULY 0 8 0 8 2 8 0 8 0 8 0 8 0 8 0 8 2 8 0 8 

AUGUST 0 6 0 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 

OCTOBER 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

  
2010 TOTAL 3 25 4 26 13 23 6 23 11 20 5 20 10 23 4 23 10 23 2 23 

 
MAY 3 6 3 6 3 6 3 7 2 3 2 3 3 3 4 6 3 5 3 2 

JUNE 4 4 4 4 4 4 4 4 4 3 4 3 3 3 3 4 3 4 3 3 

JULY 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

AUGUST 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 

OCTOBER 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 

  
2011 TOTAL 12 17 12 17 12 17 12 18 11 13 11 13 11 13 12 17 11 16 11 12 

 
APRIL 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 

MAY 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

JUNE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

JULY 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

AUGUST 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 

SEPTEMBER 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 

OCTOBER 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 

  
 2012 TOTAL 15 21 15 21 15 21 15 21 15 21 15 21 15 20 15 20 15 20 15 20 

 
JUNE 2013 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 

 
GRAND TOTAL 30 65 31 66 40 63 33 64 37 56 31 56 36 58 31 62 36 61 28 57 

 
Table 2-1: Sampling intensity across north-south rows of the grid.  The number of times traps were set out along each 
row is reported; each time a row was trapped, traps were set at all 20 trap sites along the row. 
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2.3.2 PIGEON RIVER CENSUS - MOUSE HANDLING 

I led a team of between one and four undergraduate students to conduct live-trapping during each 

sampling session.  Roughly equal numbers of large (3 x 3.5 x 9”) and small (2 x 2.5 x 6.5”) 

folding aluminum Sherman live-traps were baited with rolled oats and opened each afternoon.  

Adjacent traps were of different sizes to diffuse any effect of trap size on mouse captures.  Traps 

were set in the afternoon and checked the following morning, and mice were returned to the 

locations where they were trapped after processing. 

Individual mice were tagged with stainless steel ear tags (National Band and Tag Co., Newport, 

KY) stamped with unique identification numbers for re-identification.  PL and PMG are similar 

in appearance and difficult to distinguish (Smith and Speller 1970; Feldhamer et al. 1983; 

Bruseo et al. 1999).  Identification to species was determined in the field using ear length and 

appraisal of pelage and later verified by protein electrophoresis of salivary amylase (Aquadro 

and Patton 1980).   

For each capture, the location of the trap station, and the sex, weight, age, and reproductive 

condition of the mouse were recorded.  Mice were weighed to the nearest 0.5 gram using a 

Pesola spring scale.  Mice were categorized into 3 age classes, which are associated with distinct 

pelage characteristics (Collins 1923).  Juveniles leave the nest shortly after weaning, at 

approximately 21 days after birth (King et al. 1963); their pelage is uniformly gray.  At around 

40-45 days of age (Nicholson 1941), mice enter into the post-juvenal molt, during which gray 

pelage is replaced with brown fur typical of adults (King 1968). The duration of the molt from 

the first appearance of new pelage averages about 25 days (Storer et al. 1944; Gottschang 1956); 

during this time individuals are classified as sub-adults and are recognized by the presence of 

two distinct fur types.  Molting is complete roughly 65 to 70 days after birth (Gottschang 1956; 

Nicholson 1941; Baker 1983), after which individuals are considered adults. 

Females were categorized in the field as either non-reproductive (NT, nipples not visible) or 

reproductive (NE, nipples visible).  Additionally, female mice were recorded as either visibly 

pregnant (swollen abdomen and abnormally high weight) or not pregnant.  Reproductive 

condition of male mice was assessed by visibility of the testes and recorded as ‘testes abdominal’ 

(scrotal sac not enlarged, non-reproductive) or ‘testes scrotal’ (scrotal sac well developed, 
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reproductive).  Because reproductive condition of males was often difficult to classify decisively 

and can change on a relatively short time scale (i.e., hours), only information from female mice 

was used to draw conclusions regarding reproductive traits. 

 

2.3.3 DATA ANALYSIS 

Abundance of PL and PMG was documented by trap success, the number of mice caught per trap 

set (#mice/#traps), rather than the number of mice captured due to variation in trapping effort.  

To assess variation in mouse population size within years, trap success was calculated for the 

first half (before July 15) and second half (after July 15) of each year.  For each time period, 

records were combined to calculate an overall trap success. Trap success was compared between 

species and time periods using chi-squared analysis.   

Records of mean temperature, precipitation, and snowfall were obtained for the months of 

December-February from the NOAA weather station in Gaylord, MI, located approximately 25 

miles SSW of the Pigeon River grid.  In addition to these weather data, I obtained the dates when 

ice melts over Douglas Lake, located approximately 35 miles NNW of the grid, from the 

University of Michigan Biological Station. The date of ice break up on lakes in the spring has 

been used as an integrative indicator of the length of the preceding winter, with later ice-out 

dates associated with longer winters (Myers et al. 2005).  Mean winter temperature and snowfall 

were compared between years using two-sample t-tests or ANOVA (analysis of variance) to 

assess the relative harshness of winter conditions experienced by mice.  To account for inherent 

monthly variation, differences between years were assessed by comparing deviations of recorded 

means from historical averages rather than the means themselves. 

 

2.3.4 A FUNCTIONAL POISSON REGRESSION MODEL OF PL AND PMG ABUNDANCE 

To model the expected abundance of mice (measured as the number of mice per trap) over time, 

I used a Functional Poisson Regression model with a distinct mean structure for each species by 

year combination, combined with basis-splines to parameterize the effect of time.  Further, I 
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offset the daily count by the number of traps set to account for inconsistencies in trapping effort.  

The model chose a linear combination of several piecewise polynomial functions (basis 

functions, or splines) that provided the best fit to the observed data.  Using maximum likelihood, 

the regression selected the best values for the coefficients of that linear combination, and then 

predicted how many mice should be caught on a given day.  The model smooths the raw data, 

interpolates from existing data points to predict abundance between trapping sessions, and allows 

for assessment of annual and seasonal changes in abundance. 

A functional regression is a technique for analyzing data whose mean varies non-linearly with 

respect to quantitative factors.  In this case, the response variable (the mean) was the expected 

number of mice caught per trap on each day.  This number was related non-linearly to time (both 

annually and seasonally) and species.  The data were modeled with a Poisson distribution, which 

are commonly used when the data are counts.  Poisson regression may provide a poor fit to count 

data that are overdispersed; however, overdispersion was not observed in this case because trap 

success was consistently low overall (less than 40% at maximum). 

In this model, the seasonal effect of time was parameterized by basis-splines, which are 

commonly used when the goal is to estimate a quantity that varies smoothly with respect to time.  

The use of basis-splines increased the power of the model (by pooling data from multiple days to 

predict a single value), allowed for bridging of gaps when no data were available, and allowed 

the pattern of mouse abundance over time to be informed by the data.   

The model utilized distinct mean structures for each species and year, so that each predicted 

seasonal pattern of abundance was independent from the others.  No fixed relationships were 

assumed, so that peaks in abundance were not constrained to occur at the same time, and the 

rates of increase and decrease in abundance depended only on the raw data. 
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2.4 RESULTS 

2.4.1 CENSUS RESULTS 

108 nights of trapping were conducted in 2010, 2011, 2012, and 2013 (Table 2-2). The grid was 

trapped the most regularly and intensely during the middle of the breeding season, from May 

through August of each year. Because only one sampling trip was conducted in 2013, all 

analyses only include records from 2010-2012 unless otherwise noted.   

 
TABLE 2-2: NUMBER OF TRAPPING DAYS 

 
YEAR FIRST LAST DAYS APRIL MAY JUNE JULY AUG. SEPT. OCT. 

 
2010 4 Apr. 2 Oct. 30 2 4 9 8 6 0 1 
2011 3 May 10 Oct. 32 0 8 8 7 3 0 4 
2012 7 Apr. 21 Oct. 42 6 12 4 6 5 5 4 
2013 1 Jun. 4 Jun. 4 0 0 4 0 0 0 0 

  
TOTAL   108 8 20 25 21 14 5 9 

 
Table 2-2: Number of days on which trapping was conducted. Dates of the first, last, and number of days (total 
and per month) trapped per month are reported for each year of the study. 

 

 

The census resulted in a total of 19,820 trap-nights (the total number of traps set) and 2510 

captures of identified PL and PMG (Table 2-3).  Sampling intensity was similar in 2010 and 

2011, during which 5940 and 5840 traps were set over 30 and 32 days, respectively.  Sampling 

intensity was greater in 2012, in particular because of increased trapping in April and May.  7640 

traps were set over 42 days in 2012.  
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TABLE 2-3:  NUMBER OF CAPTURES OF PL AND PMG 

 
YEAR DAYS SAMPLED TRAP-NIGHTS PL PMG TOTAL CAPTURES 

 
2010 30 5940 168 208 376 
2011 32 5840 564 241 805 
2012 42 7640 1207 106 1313 

  
TOTAL (2010-2012) 104 19420 1939 555 2494 

 
2013 4 400 11 5 16 

 
GRAND TOTAL 108 19820 1950 560 2510 

 
Table 2-3: Number of captures of PL and PMG.  The number of days sampled, the number of trap-nights 
(traps set multiplied by number of days), and the number of captures (PL, PMG, and total captures) are 
reported for each year of the study. 

 

 

A total of 753 individual mice, 591 PL and 162 PMG, were tagged and successfully identified to 

species using salivary amalyse (Table 2-4).  The average number of captures per tagged 

individual ranged from 2.5 in 2011 to 3.9 in 2010 to 4 in 2012.  Of the 753 tagged mice, 151 of 

them were known to have survived a winter, either because they were trapped both in the fall 

prior to and spring following a winter (23 mice), or because they were first trapped as adults 

early in the spring before annual breeding began (128 mice).  
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TABLE 2-4: NUMBER OF TAGGED MICE 

 

 DISAPPEARED DURING WINTER

 
OVERWINTERED

 
 PL

 
PMG

 
TOT.

 
PL

 
PMG

 
TOT.

 
 F M TOT. F M TOT.  F M TOT. F M TOT.  

 
2010 12 20 32 21 26 47 79 3 6 9 1 7 8 17 
2011 92 121 213 27 21 48 261 11 25 36 13 9 22 58 
2012 116 119 235 14 12 26 261 27 30 57 4 3 7 64 
2013 1  1    1 2 6 8 1 3 4 12 

  
TOT. 221 260 481 62 59 121 602 43 67 110 19 22 41 151 

 
Table 2-4: The number of mice that were individually tagged and identified to species.  Mice are categorized as 
either overwintered (known to survive a winter) or disappeared (were trapped in the fall prior to but not the spring 
after a winter).  Numbers of PL, PMG, males (M), and females (F) are also reported. 

 

 

The general seasonal population growth pattern is similar for both species.  Mouse numbers start 

out low, increase to a maximum, and then decline (Figure 2-4).  There are, however, clear 

differences in abundance between years and species as well as in the shapes of seasonal trends. 

 

Figure 2-4: Raw trapping data from 2010, 2011, and 2012.  For each day on which trapping occurred, the number of 
PL (red) and PMG (blue) are plotted. 
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2.4.2 TEMPORAL VARIATION IN TRAP SUCCESS 

The raw data were used to calculate and compare trap success (#mice/#traps) between species 

and time periods.  Overall trap success was the lowest in 2010 and the highest in 2012 (χ2=358.5, 

P<.0001), ranging from 6.3% to 17.2% per year.  These patterns appear to be due to a marked 

increase in PL numbers in 2011 and 2012 (Figure 2-4). 

Trap success was generally higher in the latter half of each year (overall, Early: 9.2%; Late: 

22.7%; χ2=622.2, P<0.0001); however the species differ (Figure 2-5).  Trap success of PL is 

significantly greater in the second half of the year in 2011 (χ2=521.9, P<0.0001) and 2012 

(χ2=361.7, P<0.0001), and there was a non-significant trend for the same in 2010 (P=0.1).  Trap 

success of PMG is significantly greater in the second half of the year in 2010 (χ2=17.3, 

P<0.0001), 2011 (χ2=13.8, P=0.0002), and 2012 (χ2=56.4, P<0.0001). 

 

Figure 2-5: Trap success of (A) PL and (B) PMG.  Trap success is measured as the number of mice per trap, in 
2010, 2011, and 2012.  Trap success in the first half (Early, all records before July 15) and second half (Late, all 
records after July 15) are reported separately.  Chi-squared analysis was used to compare trap success within species 
between Early and Late time periods.  Significance of differences in trap success between time periods is marked (+: 
0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

In 2010, PMG were more likely to be caught than PL (Table 2-5), but this difference came about 

only after July 15.  Trap success of PL was always higher than that of PMG in 2011; however, 

this difference was not as pronounced before July 15 as it was after July 15.  In 2012, trap 

success of PL was higher than that of PMG throughout the year. 
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Trap success of PL was greatest in 2012 and lowest in 2010 (χ2=626.5, P=<0.0001). Trap success 

of PMG did not differ between 2010 and 2011 (χ2=3.0, P=0.085).  In 2012, however, trap 

success of PMG was lower than in 2010 (χ2=65.2, P<0.0001) or 2011 (χ2=97.9, P<0.0001).   

 
TABLE 2-5: COMPARISON OF TRAP SUCCESS OF PL AND PMG 

 
 TRAPS SET #PL %PL #PMG %PMG Χ2 P 

 
EARLY 3740 95 0.025 102 0.027 0.19 0.664 
LATE 2200 73 0.033 106 0.048 5.96 0.015* 

  
2010 TOTAL 5940 168 0.028 208 0.035 4.18 0.041* 

 
EARLY 4760 259 0.054 174 0.037 17.07 3.6E-05** 
LATE 1080 305 0.282 67 0.062 182.41 1.5E-41*** 

  
2011 TOTAL 5840 564 0.097 241 0.041 138.33 6.2E-32*** 

 
EARLY 5640 624 0.111 44 0.008 533.45 5.0E-118*** 
LATE 2000 583 0.292 62 0.031 499.82 1.0E-110*** 

  
2012 TOTAL 7640 1207 0.158 106 0.014 1008.19 3.0E-221*** 

 
Table 2-5: Comparison of trap success of PL and PMG in 2010, 2011, and 2012 using Chi-squared analysis.  Trap 
success is calculated as #mice caught/#traps set, and is calculated for the first half (Early, all records before July 15 
combined) and the second half (Late, all records after July 15 combined) of each year.  Significance of differences 
between species in trap success is marked (*: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

 

2.4.3 POISSON REGRESSION – GOODNESS OF FIT 

The Poisson regression model interpolated from irregularly spaced observed data to produce a 

curve estimating the expected number of mice per trap between the first and last trapping days of 

the year.  The accuracy of model predictions was reduced when there were long gaps between 

trapping sessions because no data were present to inform abundance trajectories.  Typical times 

between trapping sessions were roughly two weeks, but there were two longer gaps.  No trapping 

was conducted between August 28 and October 1 in 2010; however, mouse abundance had 

reached maxima prior to August 28, so the gap did not greatly affect model predictions.  No 

trapping was conducted between August 5 and October 7 in 2011, and maximum abundance for 
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both species had not yet been reached.  The model yielded unrealistic predictions for mouse 

abundance during that time.  For this reason, model predictions during the gap in 2011 are not 

reported. 

Goodness of fit of the model to the data was assessed using three graphical procedures.  Figure 

2-6 compares model results (the predicted number of mice per trap for PL and PMG with 95% 

confidence intervals) with observed trap success.  Due to low capture rates, 95% confidence 

intervals are widest at the beginning and end of the season, particularly in 2010 when very few 

mice were caught through mid-June. 

 

 

Figure 2-6: Comparison of the observed number of mice per trap to model predictions of abundance of PL (A-C) 
and PMG (D-F) in 2010, 2011, and 2012.  The Poisson regression model interpolated from irregularly spaced 
observed data to produce a curve estimating the expected number of mice per trap between the first and last trapping 
days of the year.  Mean predicted abundance (solid lines), 95% confidence intervals (dashed lines), and trap success 
(points) are plotted.  
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A second diagnostic test (Figure 2-7) plots the observed number of mice per trap versus expected 

values, utilizing a square root transformation which is variance stabilizing for the Poisson 

distribution.  The points follow a roughly 1:1 ratio; high observed values lead to correspondingly 

high predicted values.  Exceptions occur when observed values are 0, and at very high observed 

values.  When no mice are caught, the model will sometimes predict that a small number of mice 

are present.  Similarly, when many mice are caught, the model will predict that fewer are present.  

This is because predictions are shifted up or down based on the value of surrounding points.  

When values are fluctuating over consecutive days, more points are likely to be shifted. 

 

 

Figure 2-7: First diagnostic test of goodness of fit of the poisson model to observed data.  Observed number of mice 
per trap (x-axis) are plotted against model expectations (y-axis), utilizing a square root transformation.  A 1:1 ratio, 
such as observed here, indicates that abundances of PL (red) and PMG (blue) predicted by the model are a good fit 
to the data. 

 

Lastly, I plotted the standardized residuals of each estimate against the fitted values.  The 

standardized residuals are a measure of how much the fitted value differ from the observed value 

at each point (day of trapping).  If the Poisson model is a good fit, the standardized residuals 

should be homogeneous.  This appears to be the case for both species (Figure 2-8). 
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Figure 2-8: A second diagnostic test of the goodness of fit of the poisson model to observed data.  Fitted values (x-
axis) are plotted against the standardized residuals of each estimate (y-axis).  A homogenous distribution of points 
above and below a y-value of 0 is indicative of a satisfactory fit. 

 

 

2.4.4 POISSON REGRESSION - CHANGES IN MOUSE ABUNDANCE OVER TIME 

Estimates of PL and PMG abundance obtained from the Poisson regression model were used to 

visualize changes in mouse abundance over time and are consistent with analyses performed on 

the observed data.  No statistical analyses were conducted using abundances predicted by the 

model.  Rather, model results are reported as figures that illustrate changes in species abundance; 

statistical tests are based on raw data. 

In 2010, abundances of PL and PMG were the most similar of any year (Figure 2-9).  Abundance 

of PMG was greater than abundance of PL in the second half of the year, and over a small period 

of time from mid-July to August the 95% confidence intervals did not overlap (Figure 2-9A), 

suggesting that PMG abundance was significantly greater than PL abundance in the latter half of 

the year. 
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In the first half of 2011 (Figure 2-9B), PL abundance was greater than PMG abundance, but 

confidence intervals overlapped until approximately the beginning of July.  This is consistent 

with analysis of the raw data, which indicated that the difference between PL and PMG in trap 

success was greater in late 2011 than it was in early 2011.  Abundance of PL and PMG diverged 

after July 2011, and PL abundance remained significantly higher than PMG abundance for the 

rest of the study (Figure 2-9C). 

 

 

Figure 2-9: Predicted abundance of PL and PMG in (A) 2010, (B) 2011, and (C) 2012.  The expected number of 
mice per trap (solid line) and 95% confidence intervals (dotted lines) are shown.  Due to low overall abundance, a 
different scale is used in 2010 (A).  Model predictions of mouse abundance between August 5 and October 7, 2011 
(B) are not reported due to a long gap in trapping. 

 

 

PL abundance increased in each year, and PL abundance in 2011 and 2012 was much greater 

than in 2010 (Figure 2-10A).  Abundance of PL in spring 2010 and 2011 was similar; however, 

in 2011 PL abundance increased through late August, whereas in 2010 it reached a maximum in 

July.  In 2012, spring numbers of PL were the highest of any spring, and overall PL numbers 

were the highest out of all years.   

Abundances of PMG in 2010 and 2011 were not significantly different, even though maximum 

abundance in 2011 was greater than that in 2010 (Figure 2-10B).  Overall abundance of PMG in 
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2012 was lower than in 2010 and 2011, even though maximum abundance was comparable.  

This difference was due to reduced abundance from June through September. 

 

 

Figure 2-10: Abundance of (A) PL and (B) PMG, compared between years.  Estimates of abundance (middle lines) 
and 95% confidence intervals (outer lines) are shown. 

 

Relative abundance of PL was calculated as #PL/(#PL+#PMG) from model estimates of mouse 

abundance and is plotted in Figure 2-11.  Patterns of relative abundance may be especially 

sensitive to overall abundance.  In spring 2010, overall trap success was low (less than 5 mice 

were captured per day) and no PMG were trapped at all until the beginning of May, resulting in 

an apparent high relative abundance of PL even though actual numbers were very low.  For most 

of 2011 and during 2012, however, mouse numbers were always higher than they were in 2010, 

so high values of PL relative abundance reflect real differences in the abundance of PL and 

PMG.  PL and PMG occurred at roughly equal frequencies in 2010 and the first half of 2011 

(Figure 2-11).  After mid-July 2011, abundance of PL increased while that of PMG did not, 

resulting in a community that consisted mainly of PL.  While both PL and PMG were present on 

the grid and trapped in spring 2012, PL abundance was much higher than PMG abundance.  This 

trend continued throughout the summer and into the fall.   
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Figure 2-11: Relative abundance of PL in 2010, 2011, and 2012, measured as (#PL)/(#PL + #PMG).  Values were 
calculated from model estimates of the expected number of mice per trap.  A relative abundance of 0.5 is marked on 
the plots with a coarse dashed gray line, while relative abundance values of 0.4 and 0.6 are marked with fine dashed 
gray lines.  High relative abundance of PL in the beginning of 2010 is probably an artifact of low total abundance.   

 

 

 

2.4.5 SEVERITY OF WINTER CONDITIONS 

All three winters relevant to this study were characterized by less than normal snowfall (Table 

2-6).  Snowfall was highest in the winter of 2010-2011 and the least in 2011-2012; however, no 

significant differences were found between winters in the mean deviation from historical 

averages in snowfall (F=0.029, P=0.87).    
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TABLE 2-6: WINTER CONDITIONS ON THE PIGEON RIVER GRID 

 
WINTER YEAR

 
TEMPERATURE (°F) 

 
SNOWFALL (IN) 

 
ICE BREAK UP

 
 MEAN DEVIATION MEAN DEVIATION  

 
2009-2010 19.93 0 24.07 -7.43 March 30 
2010-2011 17.93 -2.06 28.03 -4.57 April 11 
2011-2012 24.5 4.97** 22.83 -9.13 March 20 

HISTORICAL 
AVERAGE 19.82  32.02  April 15 

 
Table 2-6: Climatic data from the winters preceding each year of the study, obtained from a weather station in 
Gaylord, MI, 25 miles SSW of the Pigeon River Grid.  Long-term historical averages of winter (December-
February) temperature and snowfall are compared to yearly means for each winter prior to census sampling.  Dates 
of ice break-up over Douglas Lake, 35 miles NNW of the grid, are also reported as an estimate of the length of 
winter. Significance of differences between winters in the deviation from historical averages is marked with 
asterisks (*: P<0.05; **: P<0.01). 

 

 

The winter of 2011-2012 was the mildest and shortest experienced by mice during this study.  

Mean winter temperature was the highest in 2011-2012, when it averaged approximately 5 

degrees warmer than normal.  Mean winter temperature was significantly higher in 2011-2012 

than in either 2009-2010 (t=-7.9, df=3, P=0.004) or 2010-2011 (t=-5, df=2, P=0.032).  Ice break-

up also occurred the earliest in the winter of 2011-2012. 

Mean winter temperature was the lowest in 2010-2011 and was 2 degrees colder than the 

historical average; however, mean temperature in the winters of 2009-2010 and 2010-2011 were 

not significantly different (t=1.4, df=2.6, P=0.27).  Ice persisted on Douglas Lake the longest in 

the winter of 2010-2011, when ice break up did not occur until April 11.  The date of ice break-

up was 12 days later in the winter of 2010-2011 than 2009-2010.  This suggests that the winters 

of 2009-2010 and 2010-2011 were of comparable severity, but the winter of 2010-2011 may 

have been longer.   
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2.5 DISCUSSION 

I conducted a three year study documenting abundance of PL and PMG at a site where both 

occur syntopically in northern Michigan.  Abundance differed strongly in two out of three years, 

with PL outnumbering PMG in 2011 and 2012 (Figure 2-12).  Changes in the pattern of relative 

abundance (excluding early 2010) suggest that community structure shifts from an equal 

composition of PL and PMG in late 2010 and early 2011 to a community composed of mainly 

PL (Figure 2-11).  What caused the disparities in abundance of each species observed in 2011 

and 2012?  The winter conditions experienced by mice may provide a partial explanation. 

 

 

Figure 2-12: Predicted abundance of PL and PMG in (A) 2010, (B) 2011, and (C) 2012.  Mean predictions (number 
of mice per trap) are plotted without 95% confidence intervals for ease of between-species comparison. 

 

In a long term study in northern Michigan, Myers et al. (2005) found that PL abundance is 

higher in springs following short and mild winters, and that high spring abundance of that 

species is often correlated with higher rates of seasonal population growth and thus with high fall 

abundance.  They found that a good predictor of spring PL abundance was the date of ice break-

up on nearby lakes, an estimate of the length of winter.   

In this study, abundance of PL increased significantly from each year to the next and was highest 

in 2012 (Figure 2-13).  The preceding winter (2011-2012) was the mildest and shortest 
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experienced by mice during this study, consisting of higher than normal winter temperatures, 

lower than average snowfall, and an unusually early date of ice break up on Douglas Lake (Table 

2-6).  Spring abundance of PL was higher in 2012 than in any other year, and PL abundance both 

increased quickly during the breeding season and remained high through the fall.  This is 

consistent with the expectation of higher abundance in years following short winters. 

Winter conditions in 2009-2010 and 2010-2011, while harsher than those in 2011-2012, did not 

differ significantly from each other in either temperature or snowfall (Table 2-6).  PL abundance 

in spring 2010 and 2011 was lower than in 2012, and abundance in fall 2010 was the lowest of 

any year.  These observations are consistent with expectations of lower spring abundance (and 

consequently lower fall abundance) following long and harsh winters.  In 2011, however, the PL 

population grew at a faster rate and to a greater maximum than in 2010 despite similarly low 

spring numbers and comparable severity of the preceding winter. This suggests that some factor 

unrelated to winter weather allowed more successful reproduction of PL in 2011. 

 

Figure 2-13: Abundance of PL (left) and PMG (right) in 2010, 2011, and 2012.  

 

In contrast to PL abundance, PMG abundance was less variable and did not increase significantly 

during the study, nor was it related to winter conditions in the same way that PL abundance was.  

One possible explanation for the decline of PMG is that this species, because its distribution lies 
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mainly to the north of Michigan, is not adapted to the increasingly warmer conditions. 

Laboratory experiments suggest that there is an optimal temperature range between which 

reproduction is maximized, and that the optimal range may differ for ‘northern’ and ‘southern’ 

populations (Bronson and Pryor 1983).  If PMG is declining due to physiological limitations, 

then abundance of PMG is expected to be higher in years following harsh winters but lower in 

years following mild winters.  Patterns in this study seem to support this hypothesis - PMG 

abundance is higher in 2010 and 2011, but much reduced in 2012. 

Nonetheless, there is some evidence that reduced PMG abundance in 2012 was not caused by 

warming winters.  Neither spring abundance nor maximum abundance of PMG were reduced in 

2012 relative to the other years; rather, the rate of increase was slow for much of the year, and 

unusually low numbers were observed between June and September (Figure 2-13).  2010 and 

2011 were preceded by relatively harsh winters, but spring abundance of PMG was low in 2010 

but not 2011.  Further, PMG abundance increased at a faster rate and to a greater maximum in 

2011 than in 2010.  These patterns in spring abundance and rate of population increase suggest 

that population growth was influenced by other factors in addition to winter conditions. 

Is abundance of PL and PMG influenced by interspecific competition? While it is unknown 

whether PL and PMG are competitors where they co-occur in northern Michigan, their 

ecological similarity suggests that this is a possibility.  Chapters 4-6 discuss the possible role of 

competition in replacement in more detail.  Nonetheless, some patterns of PMG abundance 

described in this chapter suggest that competition may be occurring. In 2011, when PL 

populations were increasing rapidly, PMG abundance declined more quickly from its maximum, 

while abundance in 2010 (when PL numbers were low) exhibited a slower decline and remained 

fairly high for several months after maximum abundance was reached.  It is possible that PMG 

suffered reductions in population growth after mid-July when PL abundance began to increase 

significantly.  In 2012, when PL populations were very high, PMG abundance was reduced 

between June and September.  PMG abundance in 2012 did not change until it began to increase 

in September, coinciding with a decrease in PL abundance.  
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CHAPTER 3.  

DIFFERENCES IN SURVIVAL AND REPRODUCTION INFLUENCE REPLACEMENT IN 

MICHIGAN PEROMYSCUS 

 

 

3.1 SUMMARY 

I documented abundance of syntopic P. leucopus and P. m. gracilis in northern Michigan during 

a three year study.  Abundance differed strongly in two out of three years, with P. leucopus 

outnumbering P. m. gracilis in 2011 and 2012 (Chapter 2).  In this chapter, I compared survival 

and reproduction of co-occurring P. leucopus and P. m. gracilis in order to investigate the 

biological mechanisms that result in increased relative abundance of P. leucopus.  Available 

evidence suggests that these species share similar life histories and reproductive rates; however, 

little information is available regarding populations where the two species occur in sympatry in 

the northern Great Lakes region.  I estimated and assessed the per-capita number of litters 

produced by breeding females, the frequency with which litters are born, and the proportion of 

young-of-year (YOY) that breed in their natal year.  I compared survival (estimated as 

persistence on the trapping grid) of overwintered (OW) and YOY mice. 

Overwintered (OW) P. leucopus females consistently persisted longer and had more litters than 

OW P. m. gracilis females, and OW P. leucopus females contributed more to overall 

reproduction than OW P. m. gracilis females.  No other consistent differences between species 

were found; however, survival, rate of reproduction, and the proportion of breeding YOY all 

varied substantially.  Unique combinations of small differences between species in these traits 

may explain the patterns of abundance observed in this study.  Variation in reproductive output 

of P. leucopus was found to be well explained by survival of OW and YOY females.  Decreases 
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in P. m. gracilis abundance were caused by reduced reproduction by YOY females, which were 

observed in each successive year. 

 

 

3.2 INTRODUCTION 

Species differences can facilitate coexistence when regular environmental fluctuations favor 

different species at different times (Adler et al. 2007; Caceres 1997) but can lead to rapid changes 

in abundance when environmental fluctuations are directional (Ernest et al. 2008).  Wolff (1996) 

suggested that the coexistence of P. leucopus and P. maniculatus may depend on differences in 

their winter adaptations, which cause one species to predominate when winters are short and mild 

and the other when winters are long and harsh. 

There is some evidence that P. leucopus has an advantage in mild winter weather conditions while 

P. m. gracilis has an advantage in harsh conditions.  In a long term study in northern Michigan, 

Myers et al. (2005) suggested that the decline in P. m. gracilis populations and concurrent rise in 

P. leucopus was attributable to long term climatic trends, particularly the overall decrease in the 

length of winter in this area.  Abundance of P. leucopus is higher and increases faster in years 

following short winters than those following long ones, suggesting both enhanced survival and 

more successful reproduction when winters are short.   

While both species experience high winter mortality (Myers et al. 2005), P. m. gracilis may be less 

negatively affected by severe and long winters, perhaps because it stores a greater quantity of food 

and builds more insulated nests (Wolff and Durr 1986; Pierce and Vogt 1993; Long 1996).  On the 

other hand, P. leucopus may be especially vulnerable to cold winters (Howard 1951).  At the 

northern edge of its range, P. leucopus suffers significant declines in abundance in severe winter 

conditions, such as cold temperatures and deep frost (Long 1973).  Coexistence of these two 

species may have been maintained by differential winter adaptations and the frequency of mild 

versus harsh winters (Wolff 1996); however, this balance has been upset by recent climatic 

warming in the northern Great Lakes region. 
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I documented abundance of syntopic P. leucopus and P. m. gracilis in northern Michigan during 

a three year study.  The changes in relative abundance observed in this community lend support 

to observations that P. leucopus is replacing P. m. gracilis in this region (Chapter 2).  Abundance 

of these two species differed strongly in two out of three years, with P. leucopus outnumbering 

P. m. gracilis in 2011 and 2012.  In 2012, following the mildest winter of the study, disparities in 

abundance between P. leucopus and P. m. gracilis were the largest observed.  P. leucopus 

abundance was higher in the spring and increased to a greater maximum than in any other year, 

consistent with the findings of Myers et al. (2005).  Overall abundance of P. m. gracilis was 

lowest in 2012 due to noticeably reduced numbers between June and September. 

The biological mechanisms that result in increased relative abundance of P. leucopus in 2011 

and 2012 are unclear and are the subject of this investigation. Ultimately, in order for P. 

leucopus to gain a numerical advantage in years following short and mild winters, it must have a 

greater annual reproductive output (i.e., produce more offspring that survive and reproduce) than 

P. m. gracilis.  Annual reproductive output of a population depends on the reproductive success 

of its constituent individuals, and individual reproductive success is highly variable (Harland et 

al. 1979; Millar et al. 1992).  Individual variation in survival and reproduction could thus result 

in significant differences between these species in overall population growth.  

In this chapter, I compare survival and reproduction of co-occurring P. leucopus and P. m. 

gracilis.  Is there any evidence that life-history traits of P. leucopus make it better adapted to 

mild winters, while P. m. gracilis is better suited for long winters?  Temporal variation of 

survival and reproductive rates are investigated as possible sources of disparities in relative 

abundance. 

 

3.2.1 BREEDING BIOLOGY OF P. LEUCOPUS AND P. MANICULATUS GRACILIS 

The life cycle and breeding biology are similar for many species of Peromyscus, including P. 

leucopus and P. m. gracilis (King 1968; Gyug and Millar 1981; Baker 1983; Lackey et al. 1985).  

The normal gestation period of Peromyscus ranges from 21 to 27 days, with an overall average 

of 23 days (King 1968).  P. leucopus and P. m. gracilis experience post-partum estrus and can 
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become pregnant shortly after giving birth (King 1968).  They exhibit prolonged gestation 

periods as a result of delayed implantation when nursing a previous litter; the extent to which the 

gestation period is extended for lactating females averages 2 to 7 days (Svihla 1932; Baker 

1983). 

Changes in body weight of pregnant females have been well documented, primarily in laboratory 

mice (Millar 1982; Millar and Innes 1985; Millar 1985); weights observed during this study were 

consistent with these reports.  Typical weight of non-breeding adult P. leucopus and P. m. gracilis 

is approximately 19-21 grams (Svihla 1932; King 1968; Millar 1985). Body weight remains 

relatively low for much of pregnancy, then increases dramatically a few days before parturition; a 

pregnant female 1-2 days prepartum may be approximately 79% heavier than non-breeding 

females (Millar 1975).  Visual signs of pregnancy have been reported to be detectable as early as 5 

days into gestation, and pregnancy becomes increasingly obvious as parturition approaches (Millar 

et al. 1979).  Body weight is reduced immediately after parturition, but remains approximately 

20% greater than non-breeding weight throughout lactation (Millar 1975). 

Weight of newborn young averages approximately 9% of adult weight (King 1968), or about 1.8 

grams, for both P. leucopus and P. maniculatus (Svihla 1932).  Postnatal growth in Peromyscus 

has been studied extensively (King 1968).  Body weight is tightly associated with age in juveniles 

(King 1958, 1968; King and Eleftheriou 1959).  At three weeks old, approximately the age at 

which weaning is complete and mice leave the nest on their own, body weight is about 11 grams 

and roughly 50% of mature weight (Dice and Bradley 1942; King 1958, 1968).  At four weeks 

after birth, mice weigh about 60% of mature weight, or about 13 grams (King 1968).  Growth rates 

of young from weaning to 40 days of age are not significantly different between P. leucopus and P. 

maniculatus (Gyug and Millar 1981). 

Age classes are associated with distinctive pelage characteristics, and developmental molts occur 

with known chronology during the developmental process (Collins 1923).  Weaning of young is 

usually complete by the time young are 21 days old (King et al. 1963), after which they are able 

to leave the nest and enter into the trappable population.  Mice reach sexual maturity and are 

ready to mate approximately 44 to 48 days after birth (Clark 1938; King 1968), and as early as 

34-35 days (Clark 1938; Millar 1985).  This overlaps with the onset of the post-juvenal molt, 

which begins at 40 to 45 days of age (Nicholson 1941), during which the gray pelage 
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characteristic of juveniles is replaced with brown fur typical of adults (King 1968).  The duration 

of the molt from the first appearance of new pelage averages about 25 days (Storer et al. 1944; 

Gottschang 1956), and is complete roughly 65 to 70 days after birth (Gottschang 1956; 

Nicholson 1941; Baker 1983). 

 

3.2.2 TRAITS INFLUENCING REPRODUCTIVE OUTPUT 

Reproductive output is influenced by both survival and reproduction.  Factors such as litter size, 

the number and frequency of litters, age at first reproduction, longevity, and survival all 

contribute to an individual’s reproductive success.  Though broad differences between species in 

vital rates have not been reported (Millar et al. 1979), variability among individuals in 

reproductive success (Millar et al. 1992) suggests the opportunity for small differences in 

survival and reproduction to result in significant differences in annual reproductive output. 

Mean litter size for P. leucopus and P. maniculatus is 3-6 neonates (Svihla 1932; King 1968; 

Baker 1983; Millar 1985); however there is much variation. Variation in litter size in 

Peromyscus has been studied intensely and has been correlated with both environmental and 

intrinsic factors (Myers et al. 1985; Millar 1984).  Litter size is influenced by environmental 

factors such as latitude (Millar et al. 1979) and season (Millar 1978; Morris 1996), and by 

maternal variables such as mass (Myers and Master 1983; Goundie and Vessey 1986), parity 

(Lackey 1978; Millar 1982; Myers and Master 1983), and age (Havelka and Millar 2004).  The 

age at which mice reach sexual maturity does not differ between P. leucopus and P. maniculatus 

(King 1968; Millar et al. 1979).  Nonetheless, there is individual variation in the timing of first 

reproduction (Lusk and Millar 1989), which could contribute to differences in reproductive 

output because mice that start breeding while young may have more opportunities reproduce.   

Similarly, longevity can have a large impact on reproductive success because longer-lived 

individuals have more lifetime opportunities to breed (reviewed in Clutton-Brock 1988); 

however, long life does not necessarily correlate to higher fitness.  The frequency with which 

breeding females have litters is also an important contributor to differences in reproductive 

output.  Individuals that reproduce quickly during a short life may be equally as successful as 
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those that live a long time and reproduce at a slower rate, depending on the survival and 

reproduction of offspring (Stearns 1976).  It is usually assumed that there is a tradeoff between 

reproductive effort and lifespan, with high reproductive effort correlated with short lifespan 

(Stearns 1976).   

Reports based on laboratory animals suggest that P. maniculatus have a maximum life span of 

five to eight years, with a mean of just over three years (Dice 1933; Davis 1990).  Laboratory 

reared P. leucopus have been reported to live from 4 (Sacher and Hart 1978) to 6 years (Burger 

and Gochfeld 1992).  In the wild, mice rarely reach their potential maximum lifespans (Phelan 

and Austad 1989).  Studies of survivorship demonstrate that few individuals in natural 

populations survive to maturity and produce surviving offspring (Clutton-Brock 1988, Schug et 

al. 1991), and even fewer live long enough to die of old age (Banfield 1974).  Studies in 

Michigan (Burt 1940) and Pennsylvania (Pearson 1953) report that less than 4% of all P. 

leucopus live more than 1 year.  Howard (1949) found less than 1% survival of P. maniculatus 

after 17 months.  For Michigan P. leucopus, 90% mortality at 174 days with a median of 62 days 

has been reported (Snyder 1956); however, Adler and Wilson (1987) note that a small number of 

P. leucopus were known to be alive on their trapping grid in southeastern Massachusetts for up 

to 2 years. 

Seasonal population increases are also often less than the potential for the population (Harland et 

al. 1979).  Females are capable of producing litters at a rate of one per month (King 1968, 

Harland et al. 1979).  In the wild, however, breeding females average 1-3 litters per year 

(Harland et al. 1979; Lackey et al. 1985; Schug et al. 1991; Kurta 1995), and overwintered 

females produce more litters on average than young-of-year females in the season of their birth 

(Harland et al. 1979).  Reproductive success among individuals in natural populations is highly 

variable (Millar et al. 1992), and much of this variation is attributable to survival (Schug et al. 

1991).  Females that survive longer have proportionally more litters than short-lived females 

(Millar et al. 1992). 

The correlation of parity and maternal age with litter size (Lackey  1978; Millar 1982 ; Myers 

and Master 1983; Havelka and Millar 2004) indicates that the relationship between persistence 

and reproductive output may not be strictly linear.  This suggests that overwintered females 
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contribute more to overall reproduction than do young-of-year females, if they survive for a 

similar amount of time.  In Michigan, overwintered females could produce up to 4 litters during 

the breeding season (Baker 1983; Kurta 1995); however, field studies from this area indicate that 

few overwintered individuals survive the entire length of the summer (this study; Myers, 

personal communication).  Instead, late-summer litters are typically produced by mice that were 

born earlier in the summer (Millar et al. 1979; Havelka and Millar 2004).  Differences between 

species in the survival of overwintered females could thus be a key contributor to differences in 

population growth. 

Winter survival is another factor that contributes to reproductive success.  Higher abundance in 

the spring means more opportunities for reproduction, and increased numbers of overwintered 

females could result in more rapid population growth.  Even though both species experience high 

winter mortality, P. m. gracilis may be less negatively affected by severe and long winters (Long 

1996; Myers et al. 2005), possibly due to increased investment in winter survival.  A biological 

basis for these expectations is provided by the observations that P. m. gracilis from New York 

store a greater quantity of food and build relatively more insulated nests than P. leucopus from 

North Carolina (Pierce and Vogt 1993), and P. m. nubiterrare (a montane subspecies of P. 

maniculatus that is morphologically similar to P. m. gracilis) from North Carolina undergo 

torpor to survive difficult conditions more regularly than P. leucopus from South (Tannenbaum 

and Pivorun 1988). 

Lastly, reproductive success may also be influenced by social interactions.  The social 

organization of P. maniculatus and P. leucopus is such that home ranges of males and females 

overlap, but females tend to have exclusive territories and exclude immigrating females from 

those territories (Nicholson 1941; Metzgar 1971; Millar et al. 1992).  Several studies have 

reported a negative correlation between population density and reproductive activity and output 

in P. leucopus (Burt 1940; Manville 1949).  Socially induced reproductive inhibition of young-

of-year females by overwintered females has been demonstrated in natural populations of P. 

maniculatus (Lusk and Millar 1989), and may cease altogether in highly dense populations 

(Canham 1969). Survival may be density dependent, in that the number of young weaned is 

inversely proportional to the number of adults in the population (Rintamaa et al. 1976).  It is thus 

possible that social interactions may in part determine how beneficial it is to breed early and 
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rapidly, and that this trade-off between survival and reproduction could be reflected in variation 

in the frequency of litters and the age at first reproduction. 

 

 

3.3 METHODS 

3.3.1 CATEGORIZATION OF MICE 

I monitored sympatric populations of P. leucopus (PL) and P. m. gracilis (PMG) in the Pigeon 

River State Forest from April to October for three consecutive years.  Please refer to Chapter 2 

for trapping protocol and reports on trapping frequency and intensity.  Individual mice were 

tagged with unique identification numbers and categorized according to their sex, age, 

reproductive status, and cohort for further analysis.  These categorizations are summarized in 

Table 3-1.  They fall into 4 main groupings based on the frequency of determination: 

1.  Age, reproductive status, and weight were recorded during each capture.  Three age 

classes were recognized based on pelage characteristics – juvenile (J, uniformly gray 

pelage), sub-adult (SA, presence of molt lines), and adult (A, brown dorsal pelage and 

white ventral fur).   

2.  Reproductive condition of females was assessed as either non-reproductive (NT, 

nipples not visible) or reproductive (NE, nipples visible).  Mice were weighed to the 

nearest 0.5 grams. 

3.  Residency status, overwintered status, and age at first appearance (AF) were 

determined once for each individual.  An individual was considered to be a resident if it 

was known to have remained on the trapping grid for more than 14 days (Harland et al. 

1979), and thus present for at least 2 trapping sessions.  Categorization of mice as 

residents (R) or non-residents (NR) was necessary so that transient individuals could be 

excluded from comparisons of persistence.   
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4.  Each mouse either did not overwinter (NOW) or did overwinter (OW).  Mice were 

known to overwinter if they were caught both in the year preceding a winter and in the 

year after (OW-R, overwinter-recaptured), but also if they were first caught as adults in 

the early spring before breeding had begun (OW-NR, overwinter-not recaptured).  OW-

NR mice are known to have been alive the previous fall, but because they were not 

trapped at that time, the age at first appearance (AF) is unknown.  AF for all other mice 

was recorded as their age (A, SA, J) at first capture. 

5.  Individuals were classified as either OW (overwintered) or YOY (young-of-year) in 

each year that they were trapped on the grid.  This classification is referred to as “annual 

age.” Mice that were captured in two consecutive years were considered to be OW in the 

second year.  Annual age of mice in their first year (for many, the first year was also the 

only year) on the grid was determined by the age at first appearance (AF).  All mice first 

caught as juveniles and sub-adults were YOY during that year.  Mice first trapped in the 

spring or early summer as adults were considered OW if they were trapped before 

breeding began.  The age of adult mice that first appeared on the grid after the beginning 

of June could not be determined.  Only mice of known annual age were used to assess 

differences between OW and YOY mice.  
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TABLE 3-1: CATEGORIZATIONS OF MICE 

 
VARIABLE DEFINITION DESCRIPTION 

 
FEMALE REPRODUCTIVE STATUS 

 
AT EACH CAPTURE

 
NE NIPPLES EXPOSED • Visible nipples indicate that a female mouse is in 

reproductive condition 

NT NIPPLES TINY • Nipples that are not visible indicate that a female is 
not in reproductive condition 

 
AGE – EACH CAPTURE

 
AT EACH CAPTURE 

 
A ADULT • Adult mice have brown dorsal fur and white 

ventral fur 

SA SUB-ADULT • Sub-Adult mice are identified by visible molt lines 
on the sides of the body 

J JUVENILE • Juvenile mice are uniformly gray 
 

AGE - AT FIRST CAPTURE (AF)
 

ONCE PER INDIVIDUAL

 
A ADULT • Unknown for OW-NR mice. 

• For all others, AF is the age of the individual at its 
first capture. 

SA SUB-ADULT 
J JUVENILE 

 
AGE - ANNUAL

 
ONCE PER MOUSE PER YEAR

 

YOY YOUNG-OF-YEAR • Mice that were born in a given year. 
• All mice SA or J at first capture are YOY. 

OW OVERWINTERED • Mice that were known to survive a winter 
 

OVERWINTERED STATUS

 
ONE STATUS PER INDIVIDUAL

 
NOW DID NOT OVERWINTER • Mice that were not known to survive a winter 

OW-R OVERWINTERED - 
RECAPTURED 

• Captured in the fall prior to and spring after the 
winter 

OW-NR OVERWINTERED – NOT 
RECAPTURED 

• Captured only in the spring after the winter 
• FD, AF are unknown 

 
RESIDENCY STATUS

 
ONE STATUS PER INDIVIDUAL

 
R RESIDENT • Mice that remain on the grid for more than 14 days 

NR NON-RESIDENT • Mice that remain on the grid for less than 14 days 
 

Table 3-1: List of categorizations of mice that are referenced in this chapter.  Frequency of categorization and 
methods of determination are listed. 
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3.3.2 ESTIMATING PERSISTENCE AND REPRODUCTIVE RATES 

Longitudinal trapping records of females were used to estimate seasonal per-capita reproductive 

output and the frequency of litters (or time between litters).  Trapping records of all mice were 

also used to calculate total (TTG) and annual persistence (ATG).  Table 3-2 describes the traits 

and their method of estimation. 

 
TABLE 3-2: ESTIMATES OF PERSISTENCE AND REPRODUCTIVE RATES 

 
VARIABLE DEFINITION DESCRIPTION 

 
FIRST AND LAST APPEARANCE  

FD AN ESTIMATE OF DATE OF 
FIRST APPEARANCE 

• OW-NR mice: last trapping day of the fall prior to 
the date of first capture (used to calculate TTG) 

• All others: actual date of first capture 
LD DATE OF LAST CAPTURE • The date of disappearance from the grid. 

 
PERSISTENCE  

TTG TOTAL TIME SPENT ON THE 
GRID 

• Estimate of overall persistence. 
• Number of days between FD and LD. 

ATG TIME SPENT ON THE GRID IN A 
SINGLE YEAR 

• Number of days present in each year 
• Used to estimate annual persistence. 

 
REPRODUCTIVE TRAITS  

#LIT PER-CAPITA REPRODUCTION 
• Number of known pregnancies per female 
• Estimated using changes in weight and 

reproductive status 

FREQ FREQUENCY OF LITTERS • Average time between litters 
• Estimated as #Lit/ATG 

 
Table 3-2: Methods of estimation of reproductive rates and survival of PL and PMG. 

 

 

For each individual, the first (FD) and last (LD) date of capture were obtained from trapping 

records.  For most mice, the date of first capture is an estimate of the date of their first 

appearance on the grid (i.e., when they first immigrated to the area or emerged from natal nest 

sites).  This is not the case for OW-NR mice, which appeared on the grid at some unknown time 

before their date of first capture, so both the timing of their first appearance on the grid and their 

age at the time is unknown.  For this reason, OW-NR mice have been removed from many of the 

analyses that follow. 
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An individual is known to be alive for the duration between its first and last capture, and 

individuals are assumed to have remained in the area for this duration.  The total amount of time 

an individual spent on the grid (TTG) was calculated as the number of days between its first and 

last captures.  To calculate TTG for OW-NR mice, FD was estimated as the last trapping day in 

the fall prior to the date of their first capture.  For all mice that survived a winter, annual 

persistence (ATG) was calculated for each year they were found on the grid. 

Pregnancies were detected in the field using visual cues (swollen abdomen) and supplemented 

with longitudinal data documenting fluctuations in body weight.  Changes in body weight of 

pregnant females have been well documented, primarily in laboratory mice (Millar 1982; Millar 

and Innes 1985; Millar 1985); weights observed during this study were consistent with these 

reports.   

Pregnancies could also be detected by changes in female reproductive status. A female’s nipples 

enlarge in preparation for lactation shortly before she gives birth to her first litter.  In this study, 

the exact date of parturition is known for 3 females that gave birth while inside a Sherman trap.  

The nipples of these 3 females become exposed about 3-4 days before parturition, around the 

19th day of pregnancy assuming 23 days for gestation.  Due to continual breeding (Sharpe and 

Millar 1991), nipples remain visible throughout the breeding season.   

Because there is no winter breeding in Michigan Peromyscus (Myers et al. 2005), over-wintered 

females captured in the spring have small nipples.  Thus, when overwintered females were found 

with enlarged nipples early in the year, they were likely to be pregnant.  Similarly, if a female 

was found with enlarged nipples at first capture, it was inferred that this individual was or had 

been pregnant at least once during the season. For each female for which data were available, the 

number of known pregnancies was recorded.  Each known pregnancy was assumed to result in a 

successful litter. 

 

3.3.3 ESTIMATES OF REPRODUCTION AND SURVIVAL 

I investigated three reproductive characteristics and three measures of survival of PL and PMG 

to assess differences between species that might contribute to total population growth.  Shifts in 
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community structure are ultimately caused by differences in reproductive success of the species 

that make up the community.  Total annual reproductive output of a species consists of 

reproduction of OW and YOY females.  Reproductive output is influenced by reproductive traits 

such as the rate at which breeding individuals have litters and the age of an individual at first 

reproduction.  Reproductive success also depends on winter survival and the length of time that 

an individual persists during the breeding season (Figure 3-1).  

 

 

Figure 3-1: Conceptual model of species traits investigated in this study that influence population growth due to 
reproduction.  Traits influencing reproduction are represented in boxes, and the effect of each factor (either directly 
on another factor or indirectly on another effect) is indicated with directional arrows. 

 

Reproductive output of OW and YOY females was estimated as the per-capita number of known 

pregnancies and compared between species and cohorts using two-sample t-tests.  The frequency 
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with which breeding females have litters is an important contributor to overall population growth 

because individuals that reproduce quickly during a short life may be equally successful as those 

that live longer and reproduce at a slower rate (Stearns 1976).  The frequency of litters for each 

breeding female was estimated as the number of known pregnancies divided by annual 

persistence (ATG) on the grid.  I compared the frequency of litters between species and between 

OW and YOY females to determine whether there was variation in the length of time between 

litters. 

The age at which reproduction begins significantly impacts population growth via reproduction, 

effectively shortening generation time (Cole 1954). The age at which female mice reach sexual 

maturity is not reported to differ between PL and PMG (King 1968; Millar et al. 1979); however, 

there may be individual variation in the timing of first reproduction (Lusk and Millar 1989).  

While I was not able to determine the exact age of individuals in this study, I investigated the 

proportion of YOY mice that were known to breed in the year of their birth to make broad 

comparisons between PL and PMG. 

Enhanced winter survival increases the abundance of breeding OW females in the spring and 

thus has direct influence on reproduction by this cohort. Winter survival was estimated as the 

proportion of mice that were trapped in both the fall prior to and the spring after a winter.  

Fisher’s Exact test was used in lieu of Chi-squared analysis due to small sample sizes. 

Much of the difference between potential and observed reproductive output in some Peromyscus 

populations is attributable to survival (Schug et al. 1991), so that females that survive longer 

have proportionally more litters than short-lived females (Millar et al. 1992).  No direct measures 

of longevity were possible; however I used the total time that an individual was known to spend 

on the grid (TTG) as a rough estimate.  Average TTG was compared between groups (species, 

gender, age at first appearance, reproductive status) and years using two-sample t-tests.   

Persistence within a single season was assessed using three methods – the proportions of mice 

that became residents on the grid, annual persistence (ATG), and the probability of loss of an 

individual between one trapping session and the next.  Differences in the proportion of mice that 

established residency on the grid was investigated using either Chi-squared analysis or Fisher’s 

Exact test when sample sizes were low.  Annual persistence (ATG, the length of time an 



69 
 

individual was known to be present during a single year) was compared between species and 

cohorts using two-sampled t-tests. 

The probability of loss of an individual from the marked population was calculated for each two 

week period during the study.  Because mortality and emigration may depend on factors such as 

predation pressure and population density, it is likely that the proportion of the population lost 

changes within a season.  A time interval of two weeks was chosen to coincide with the average 

length of gaps between trapping sessions.  Individuals were assumed to have been present on the 

grid for the entire duration between their first and last capture, and an individual was considered 

lost only when it disappeared permanently from the marked population. To detect more general 

seasonal differences in the probability of loss, time periods were grouped into two categories: 

early season, or before July 15; and late season, or after July 15.  The proportion of mice lost 

from the population was compared between species, genders, years, and seasonal categories 

using chi-squared analysis. 

I additionally investigated two factors that could influence survival.  The average weight of mice 

in the fall was compared between overwintered and non-overwintered mice with two-sample t-

tests.  Average dates of first appearance on the grid (FD) were compared among residents and 

between residents and non-residents to investigate possible density dependent effects that could 

affect persistence and disappearance. 

Table 3-3 provides a summary of the traits investigated, how characteristics were estimated, the 

statistical tests used, and restrictions on the datasets used in analyses.  Datasets were often 

restricted to certain subgroups for analysis; the most common was exclusion of OW-NR mice.  

Because OW-NR mice were known to have been alive in the fall prior to their first capture, the 

timing of their first appearance on the grid (FD) and their age at the time (AF) were unknown.  It 

is likely that there were other mice present in the fall that escaped detection altogether, so the 

inclusion of OW-NR mice may bias analyses in which proportions of mice are compared (i.e., 

out of all known incoming immigrants or new births, how many became residents or 

overwintered).  Comparisons of reproductive characteristics were restricted to residents because 

longitudinal records were required.  Some analyses of survivorship were also restricted to 

resident mice in order to better distinguish the effects of mortality from emigration. 
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3.4 RESULTS – REPRODUCTION 

3.4.1 NUMBER OF LITTERS (KNOWN PREGNANCIES) 

The number of pregnancies was estimated for each resident female; each pregnancy was 

assumed to result in a successful litter.  The per-capita number of litters (total litters/number of 

resident females) was calculated for OW and YOY PL and PMG. 

 
TABLE 3-3: COMPARISONS OF SURVIVAL AND REPRODUCTION OF PL AND PMG 

 
TRAIT ESTIMATE STATISTICAL TEST RESTRICTIONS 

 
NUMBER OF LITTERS Number of known pregnancies Welch’s 2-sample t-test Resident females 

FREQUENCY OF LITTERS Time between pregnancies Welch’s 2-sample t-test Resident breeding 
females 

AGE AT FIRST 
REPRODUCTION Proportion of breeding YOY Fisher’s Exact Test Resident YOY 

 
LONGEVITY Overall persistence (TTG) Welch’s 2-sample t-test All mice 

 
WINTER SURVIVAL Proportion of mice that 

overwinter Fisher’s Exact Test Exclude OW-NR 

 
ANNUAL SURVIVAL Probability of loss Chi-squared Test 

 
All mice 

 Proportion that became residents Chi-squared or 
Fisher’s Exact Test 

Exclude OW-NR 

 Annual persistence (ATG) – 
YOY in natal year Welch’s 2-sample t-test 

Resident YOY; All 
known OW (include 

OW-NR) 
 

FACTORS AFFECTING 
SURVIVAL 

Effect of weight on 
overwintering Welch’s 2-sample t-test OW-R 

 Effect of FD on residency Welch’s 2-sample t-test Exclude OW-NR 

 
Table 3-3:  Description of analyses comparing survival and reproduction between PL and PMG.   
Three reproductive traits (number of litters, frequency of litters, and age at first reproduction) and three measures of 
survival (winter survival, overall survival, and annual survival) were investigated.  Trait, method of estimation, the 
statistical test used to compare between groups, and restrictions on the datasets used for analyses are listed.  
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Differences between species: Overall, breeding female PL produced more litters per-capita than 

breeding female PMG (t=3.9, df=103, P=0.0002).  This was particularly noticeable in 2011 and 

2012 (Figure 3-2). YOY PMG females produced more litters than YOY PL females in 2010 (t=-

2.8, df=6, P=0.03), however YOY PL females produced more litters than YOY PMG females in 

both 2011 (t=2.4, df=11, P=0.039) and 2012 (t=6.4, df=31, P<0.0001; Figure 3-3A).  OW PL 

females produced significantly more litters than OW PMG females (t=3.6, df=49, P=0.0007) in 

all years (Figure 3-3B). 

 

Figure 3-2: Per-capita number of litters produced by female PL and PMG in 2010, 2011, and 2012.  Mean number of 
litters per female and standard errors of the means are reported.  Significance of differences between species in the 
number of litters is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001).  

 

Within-species variation: PL YOY females produced the most litters in 2012 and the least in 

2010 (t=-2.1, df=29, P=0.049).  This pattern is reversed for PMG YOY females (df=8, P=0.002).  

The number of litters produced by known OW females did not differ between years for either PL 

(P=0.62) or PMG (P=0.5). PL OW females averaged more litters than PL YOY females in all 
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years (t=-2.3, df=53, P=0.025), but OW and YOY PMG females did not differ in this respect 

(P=0.66).  

 

 

Figure 3-3: Per-capita number of litters produced by female (A) YOY and (B) OW mice in 2010, 2011, and 2012. 
Mean number of litters per female and standard errors of the means are reported.  Significance of differences 
between species in the number of litters is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

3.4.2 FREQUENCY OF LITTERS 

For each resident female that was known to have at least one litter, the frequency of litters was 

calculated as annual persistence (ATG) divided by the number of known pregnancies. I 

compared the frequency of litters between species and mice of different age classes to determine 

whether length of time between litters differed among groups.    
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TABLE 3-4: AVERAGE TIME BETWEEN LITTERS (DAYS) 

 
 PL

 
PMG

 
 N #LIT ATG FREQ SE N #LIT ATG FREQ SE 

 
2010 7 1.43 55.14 38.12 6.00 8 1.50 46.75 36.50 12.03 
2011 22 1.32 59.86 50.27 6.86 18 1.06 45.83 43.89 7.20 
2012 59 1.88 79.17 44.01 3.24 7 1.29 67.86 56.33 9.55 

  
ALL 88 1.70 72.43 45.11 2.81 33 1.21 50.73 44.74 5.27 

 
YOY 38 1.53 59.84 41.58 3.96 15 1.27 44.00 38.53 7.36 

 
OW 35 2.03 93.09 49.11 4.66 16 1.19 52.31 45.08 7.37 

 
Table 3-4: Comparison of the average time between litters, calculated for each female as annual persistence (ATG) 
divided by the number of known pregnancies.  Means and standard errors are reported for the number of litters 
(#LIT), ATG, and frequency of litters (FREQ).  Significance of differences between species in the frequency of 
litters is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001).  

 

 

 

Differences between species: No differences were found between species in the frequency of 

litters (Table 3-4).   

Within-species variation: No differences in the frequency of litters were found between years for 

OW females of either species or for PL YOY (Figure 3-4), though variation was high.  For PMG 

YOY, the average time between litters was shorter in 2010 than in 2011 (t=-1.98, P=0.05). 
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Figure 3-4: Boxplots of the frequency of litters, measured as the average time between litters (#Lit/ATG), for known 
OW and YOY (A) PL and (B) PMG.  Medians and inter-quartile ranges are reported.  Significance of differences 
between years is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001).   

 

 

3.4.3 AGE AT FIRST REPRODUCTION (PROPORTION OF BREEDING YOUNG-OF-YEAR) 

The age at which reproduction begins significantly impacts population growth via reproduction, 

effectively shortening generation time (Cole 1954).  I was not able to assess age directly in this 

study; I thus calculated the proportions of YOY PL and PMG that bred in their natal year to 

make broad comparisons between species. 

Differences between species: There was no difference between species in the proportion of 

known YOY females that bred in the year of their birth in 2010 or 2011 (Table 3-5).  In 2012, 

however, a greater proportion of PL YOY bred than PMG (P=0.023) 

Within-species variation: There was a significant reduction in the proportion of breeding PMG 

YOY in 2012 compared to the other years (P=0.021).  There was no difference in the proportion 

of breeding PL YOY among years (P=0.55).  
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TABLE 3-5: BREEDING STATUS OF YOY IN THEIR YEAR OF BIRTH 

 
 PL

 
PMG

 
P-VALUE

 
 YES NO %BREED YES NO %BREED  

 
2010 5 2 0.71 7 2 0.81 1 
2011 12 4 0.75 8 4 0.67 0.691 
2012 21 11 0.66 0 4 0 0.023* 

 
Table 3-5: Proportion of YOY PL and PMG that bred in the summer of their birth.  The number of YOY that were 
known to breed (Yes) and were not known to breed (No) are also reported.  Fisher’s Exact Test was used to test for 
equality between species in the proportion of breeding YOY, and the P-values for between-species comparisons are 
reported.  Significance of differences between species are marked (*: P<0.05). 

 

 

 

3.5 RESULTS – LONGEVITY AND SURVIVAL 

Much variation in individual reproductive success is attributable to longevity and survival 

(Schug et al. 1991; Millar et al. 1992).  Females that survive longer have proportionally more 

litters than short-lived females (Millar et al. 1992).  In this section, I assess individual variation 

in longevity (estimated as TTG), overwinter survival, and survivorship during a season 

(estimated as ATG). 

 

3.5.1 LONGEVITY - OVERALL PERSISTENCE (TTG) 

I compared total persistence (TTG, the number of days between an individual’s FD and LD) 

between species, between males and females, and among years, as a proxy for longevity. Out of 

740 tagged mice trapped from 2010-2012, only 12 (1.62%) were known to have persisted on the 

grid for one year or more.  10 of these were PL (8 male, 2 female), and 2 were PMG (1 male, 1 

female).  For both species, there was a period of rapid loss of individuals before TTG reaches 

100 days, followed by a plateau leading into another period of more rapid loss (Figure 3-5).   
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Figure 3-5: Cumulative losses of PL and PMG with respect to total persistence time (TTG).  Dates on which 50% 
and 90% of individuals are lost are marked on the curves with points, and dotted lines indicate associated TTG 
values. 

 

Differences between species: No significant differences in TTG were found between species, 

though there was a non-significant trend for PL males to remain on the grid longer than PMG 

males (t=1.1, df=83, P=0.29, Table 3-6).   

Within-species variation: There was a non-significant trend for males of both species to persist 

longer than females (t=-1.8, df=321, P=0.079). The oldest known PL male and female remained 

on the trapping grid for 484 and 377 days, respectively.  The oldest known PMG male and 

female remained for 377 and 372 days.    
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TABLE 3-6: TOTAL PERSISTENCE OF PL AND PMG 

 
 FEMALES

 
MALES

 
ALL

 
 N TTG SE N TTG SE N TTG SE 

 
2010 9 122.78 42.89 13 169.31 39.29 22 150.27 28.86 
2011 30 145.17 24.10 43 190.58 20.49 73 171.92 15.72 
2012 70 134.77 12.33 68 147.02 12.91 138 130.80 8.90 

  
PL TOTAL 109 136.64 10.81 124 164.46 10.89 233 151.45 7.73 

 
2010 10 61.80 27.05 20 116.45 26.30 30 98.23 20.02 
2011 24 167.21 23.88 16 175.44 33.41 40 170.50 19.34 
2012 11 122.09 26.99 9 138.56 38.88 20 129.50 22.38 

  
PMG 

TOTAL 
45 132.76 16.53 45 141.84 18.40 90 137.30 12.31 

 
Table 3-6: Average total persistence (TTG), the number of days between the date of first capture (FD) and the date 
of last capture (LD), of resident mice.  

 

 

 

3.5.2 WINTER SURVIVAL 

The proportion of mice that overwintered (excluding OW-NR mice) was compared between 

species, genders, and age at first capture for the winters of 2010 and 2011.  Winter survival was 

not assessed for the winter of 2012-2013 because no mice that were trapped in fall 2012 were 

trapped again in spring 2013.  Fisher’s Exact Test was used rather than Chi-squared analysis due 

to low numbers in some groups.  
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TABLE 3-7: WINTER SURVIVAL 

 
 PL

 
PMG

 
 NOW OW-R %OW-R NOW OW-R %OW-R P 

 
2010 32 2 0.063 47 0 0 0.173 
2011 193 19 0.098 48 2 0.042 0.385 

  
TOTAL 225 21 0.093 95 2 0.021 0.031* 

 
Table 3-7: Winter survival – the number of mice that were trapped in the fall that either were not trapped again 
(NOW) or were trapped again the following spring (OW-R).  The proportion of mice known to overwinter (%OW-
R) was compared between species using Fisher’s Exact Test; P-values are reported. 

 

 

Of mice trapped in the falls of 2010 and 2011, less than 10% were trapped again the following 

spring.  When data from both winters were combined, a greater proportion of PL overwintered 

than PMG (Table 3-7).  When both species were combined, a greater proportion of mice tended 

to overwinter in 2011, but this result is not significant (P=0.12).  Low numbers of overwintering 

mice of both species in 2010 and PMG overall may preclude accurate assessment of differences 

in the probability of overwintering.   

 

 

3.5.3 ANNUAL SURVIVAL 

3.5.3.1   PROBABILITY OF LOSS 

The probability of loss of an individual from the marked population over two week time periods 

(approximately from one trapping period to the next) was averaged for the first half (before July 

15) and second half (after July 15) of each year (Table 3-8). 

Differences between species – Females:  A greater proportion of PMG females, both 

reproductive (χ2=3.78, P=0.049) and non-reproductive (χ2=4.23, P=0.039), were lost from the 

population early in the season than were PL females.   
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Differences between species – Males:  During the second half of 2012, a greater proportion of 

PL were lost than PMG (χ2=9.41, P=0.002).  This difference was significant for males (χ2=9.28, 

P=0.002), but not females (χ2=0.3, P=0.238). 

 
TABLE 3-8: PROBABILITY OF LOSS OVER 2-WEEK PERIODS 

 
 MALES (M) 

 
FEMALES (F) 

 
REPRODUCTIVE FEMALES (NE) 

 
 PL

 
PMG

 
PL

 
PMG

 
PL

 
PMG

 
 L %L L %L L %L L %L L %L L %L 

 
EARLY 7 0.22 7 0.28 5 0.24 6 0.20 1 0.09 2 0.13 
LATE 14 0.45 21 0.57 5 0.63 15 0.83 5 0.83 9 0.90 

  
2010 21 0.33 28 0.45 10 0.34 21 044 6 0.35 11 0.43 

 
EARLY 36 0.44 14 0.30 15 0.30** 21 0.54** 11 0.32** 14 0.61** 
LATE 44 0.49 15 0.71 23 0.43 12 0.41 13 0.43 7 0.51 

  
2011 80 0.47 29 0.43 38 0.37 33 0.49 24 0.38 21 0.57 

 
EARLY 61 0.31 5 0.45 53 0.30 7 0.32 30 0.28* 5 0.56* 
LATE 72 0.61** 2 0.14** 83 0.70 8 0.53 46 0.88 3 1.00 

  
2012 133 0.42 7 0.28 136 0.46 15 0.41 76 0.48 8 0.67 

 
Table 3-8: Probability of loss of an individual over 2-week periods (approximately from one trapping session to the 
next).  The ratio of losses to all losses plus retentions was summed for the first half (before July 15) and second half 
(after July 15) of each year.  Significance of differences between species is marked (+: 0.05<P<0.1; *: P<0.05; **: 
P<0.01; ***: P<0.001).  

 

 

3.5.3.2   PROBABILITY OF ESTABLISHING RESIDENCY 

Residents were mice that were captured multiple times and were known to persist on the grid for 

at least 14 days.  They were likely to have established territories on the grid.  Non-residents, on 

the other hand, were more likely to be transient or dispersing individuals.  Because both PL and 

PMG establish core home ranges and the victor in aggressive contests is typically the resident 

rather than intruder (Dooley Jr. and Dueser 1996), the proportion of mice that become residents 

may reflect the difficulty of establishing territories.  Out of 740 mice tagged from 2010-2012, 
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207 (152 PL and 55 PMG) were known to be alive on the grid for more than 14 days and were 

therefore categorized as residents (Table 3-9). 

 
TABLE 3-9: NUMBER OF MICE ESTABLISHING RESIDENCY 

 
 NON-RESIDENTS (NR) RESIDENTS (R) 
   
 FEMALES

 
MALES

 
FEMALES

 
MALES

 
 A SA J T A SA J T A SA J T A SA J T 

 
2010 2 1 3 6 0 3 10 19 0 2 5 7 2 4 2 8 
2011 42 18 13 73 63 18 22 176 11 6 10 27 17 7 5 29 
2012 21 19 33 73 36 10 35 154 11 13 19 43 21 6 11 38 

  
PL 65 38 49 152 99 31 67 349 22 21 34 77 40 17 18 75 

 
2010 3 2 7 12 2 7 4 25 0 2 7 9 1 4 8 13 
2011 2 5 9 16 6 2 6 30 1 2 10 13 0 4 3 7 
2011 5 1 1 7 3 0 3 13 3 0 4 7 4 0 2 6 

  
PMG 10 8 17 35 11 9 13 68 4 4 21 29 5 8 13 26 

 
Table 3-9: The number of mice that either became residents (R) or did not become residents (NR).  Mice are 
categorized by gender and age at first capture.  OW-NR mice are excluded because AF is unknown.  

 

 

Differences between species: Overall, a greater proportion of PMG became residents in their first 

year of capture than PL (χ2=8.57, P=0.003), but this varied by gender, age at first capture, and 

year.  PMG were more likely to become residents than PL when establishing residency in 2011 

(χ2=4.48, P=0.034), but not in 2010 (P=0.99) or 2012 (P=0.13; Figure 3-6A).  PMG juveniles 

were more likely to become residents than PL juveniles (χ2=8.84, P=0.003).  A greater 

proportion of PMG males became residents than PL males (χ2=5.47, P=0.019), especially those 

first caught as juveniles (χ2=6.85, P=0.009). The proportion of PMG females that became 

residents was greater than that of PL females (χ2=2.47, P=0.12); however, this result was not 

significant. 
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Figure 3-6: The proportion of mice that became residents, compared between (A) PL and PMG, and (B) mice of 
different ages at first appearance.  Significance of differences in the proportion of residents are marked (+: 
0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

Within-species variation: The proportion of PMG that became residents did not differ among 

years (χ2=0.19, P=0.73; Figure 3-6A).  PL, however, were less likely to become residents in 2011 

than in either 2010 (χ2=5.07, P=0.024) or 2012 (χ2=5.52, P=0.019).  Of mice first captured as 

juveniles, more females became residents in their first year of capture than males for PL (χ2=6.8, 

P=0.009), but not for PMG (P=0.87).  Taken together, results suggest that juvenile PL males 

were the least likely of all groups to become residents. 

Female mice were more likely to become residents if they appeared on the grid as juveniles 

rather than adults (χ2=8.4, P=0.004; Figure 3-6B), and this pattern is seen for both PL (χ2=4, 

P=0.044) and PMG (χ2=3.5, P=0.046).  The proportion of males that became residents did not 

differ between ages at first capture (P=0.46). 
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3.5.3.3  PERSISTENCE OF YOY RESIDENTS IN THEIR NATAL YEAR 

This analysis compared the average annual persistence (ATG) of YOY residents in the year of 

their birth.  Enhanced persistence of female YOY has the potential to lead to increased per-capita 

reproductive output if it leads to additional opportunities to breed.  Only residents that were 

known to be YOY (i.e., first captured as juveniles or sub-adults) were included in these analyses. 

Differences between species: Overall, PL YOY residents tended to persist longer on the grid in 

the year of their birth than YOY PMG residents (t=1.8, df=108, P=0.08), but this result was not 

significant.  YOY female PL and PMG residents did not differ in ATG in any year (Figure 3-7).  

YOY male PL and PMG residents did not differ in ATG except in 2011, when there was a non-

significant trend for YOY PL males to persist longer than YOY PMG males (t=1.7, df=16, 

P=0.1). 

 

 

Figure 3-7: Annual persistence (ATG) of resident mice in the year that residency is established for (A) females and 
(B) males.  Significance of differences in ATG between species is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; 
***: P<0.001). 

 

Within-species variation: Within species, there was no difference in persistence between male 

and female YOY, except in 2011 when YOY PMG females persisted longer than YOY PMG 
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males (t=2.3, df=16, P=0.037).  Female YOY PL and male YOY PMG persisted longer in 2012 

than in any other year (Figure 3-8).  Male YOY PL did not differ in ATG in any year.  Female 

YOY PMG persisted longest in 2011 (t=-1.8, df=15, P=0.09), though this result was not 

significant. 

 

 

Figure 3-8: Annual persistence (ATG) of YOY resident mice in the year of their birth for (A) PL and (B) PMG.  
Significance of differences between years in ATG is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

3.5.3.4   PERSISTENCE OF OVERWINTERED RESIDENTS 

Reproductive output by overwintered females is often a large contributor to overall reproduction 

(Lusk and Millar 1989), probably because of increased litter sizes relative to younger mice 

(Havelka and Millar 2004).  Enhanced persistence of OW females could thus lead to greater 

overall reproduction.  I compared annual persistence (ATG) among OW mice in their second 

year on the grid (i.e., in the year after overwintering). 

Differences between species: OW PL females persisted longer in their second year of residency 

than OW PMG females (t=2.5, df=53, P=0.015).  OW PL and PMG males, on the other hand, did 

not differ in ATG in the second year of residency (P=0.77).  ATG of OW PMG was less variable 
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than for PL, so that more OW PMG were lost in a shorter amount of time, while losses of OW 

PL occurred at a more steady rate (Figure 3-9). 

 

Figure 3-9: Probability density function of the distribution of annual persistence (ATG), shown for OW (A) females 
and (B) males in the second year of residency.  Mean ATG is marked with vertical dashed lines.  Significance of 
differences between species in ATG is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

Within-species variation: OW PL males and females did not differ in annual persistence in the 

second year of their residency (P=0.84; Table 3-10).  For PMG, in contrast, OW males persisted 

longer than OW females (t=-2.8, df=35, P=0.008).  
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TABLE 3-10: ANNUAL PERSISTENCE (ATG) OF OW MICE 

 
 N MIN 25% MEDIAN MEAN 75% MAX SD 

 
PL F 41 2.00 35.00 91.00 80.85 121.00 196.00 57.84 
PL M 61 1.00 39.00 72.00 78.62 117.00 197.00 52.58 

  
PMG F 18 14.00 27.00 38.00 50.72** 67.75 121.00 33.29 
PMG M 19 36.00 63.50 70.00 81.68** 90.00 196.00 34.58 

 
Table 3-10: Annual persistence (ATG) of overwintered (OW) mice in the second year of residency.  Minimum, 
maximum, median, and mean ATG are reported, as well as 25% and 75% percentiles and standard deviation.  
Significance of differences between OW male and female residents is marked (+: 0.05<P<0.1; *: P<0.05; **: 
P<0.01; ***: P<0.001).  

 

 

 

3.5.3.5   COMPARISON OF PERSISTENCE OF OVERWINTERED AND NEW RESIDENTS 

To assess whether either survival of new residents (either immigrants or individuals born on the 

grid) was affected by the presence of OW mice, I compared annual persistence (ATG) of all 

known OW mice present on the grid in the spring to that of YOY mice that first appeared on the 

grid in the spring and early summer. 

Within-species variation – PL:  In 2012, there was no difference in ATG of OW and new 

residents for either female (P=0.37) or male (P=0.6) PL.  OW PL females persisted longer than 

new PL female residents in 2010 (t=9, df=4, P=0.0007) and 2011 (t=3.6, df=5, P=0.018), but not 

2012 (P=0.37).  OW PL males persisted longer than new PL male residents in 2010 (t=2.4, df=7, 

P=0.044), but in 2011 there was a non-significant trend for new PL male residents to persist 

longer than OW PL males (t=-1.5, df=15, P=0.1).  
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Figure 3-10: Comparison of annual persistence (ATG) of OW mice in the second year of residency and residents 
that appeared on the grid in spring/early summer for (A) PL females and (B) PL males.  Significance of differences 
between annual age (OW or new) is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

Within-species variation – PMG:  OW and new resident PMG females did not significantly differ 

in persistence time in 2011 (P=0.44) or 2012 (P=0.64).  The one OW PMG female in 2010 

persisted longer than new resident females; however, a statistical comparison was not possible.  

OW PMG males persisted longer than new PMG male residents in 2010 (t=2.5, df=11, P=0.032) 

and 2011 (t=7.5, df=12, P=8.69E-06), but not in 2012 (P=0.92). 

 

 

Figure 3-11: Comparison of annual persistence (ATG) of OW mice in the second year of residency and new 
incoming residents for (A) PMG females and (B) PMG males.  Significance of differences between annual age (OW 
or new) is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 
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3.6 FACTORS THAT AFFECT SURVIVAL 

3.6.1 IMPACT OF FALL WEIGHT ON WINTER SURVIVAL 

Size may affect an individual’s likelihood of winter survival, if larger mice have a greater 

amount of energy stored in fat.  I compared the average weight of mice that overwintered (OW) 

and mice that were captured in the fall but did not overwinter (NOW) to assess whether heavier 

mice were more likely to overwinter than lighter ones.  These analyses included only mice whose 

last recorded weight was measured after the end of August.  For PL that overwintered, fall 

weight was available for 4 mice, 2 female PL and 2 male PL (Table 3-11).  These mice were 

significantly heavier than PL that did not overwinter (t=3.7, df=24, P=0.001). 

 

 
TABLE 3-11: FALL WEIGHT OF OW AND NOW MICE – PL 2011 

 
 FEMALES

 
MALES

 
TOTAL

 
 N WT. (G) SE N WT. (G) SE N WT. (G) SE 

 
OW 2 22.5 2 2 21.75 0.25 4 22.13*** 0.85 

NOW 57 15.48 0.38 55 17.92 2.37 112 16.68*** 1.18 
 

Table 3-11: Mean fall weight in grams of OW and NOW mice for PL in 2011.  The number of mice (N), mean fall 
weight, and the standard errors of the means are reported for females, males, and all PL.  Significance of differences 
in weight between OW and NOW mice is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001).  

 

 

 

3.6.2 IMPACT OF DATE OF FIRST APPEARANCE (FD) ON ANNUAL PERSISTENCE 

3.6.2.1   FD OF RESIDENTS AND NON-RESIDENTS 

Do mice that appear on the grid early tend to become residents, while ones that appear later tend 

to disappear?  The date when mice first appear on the grid (FD) may influence social interactions 

because mice with established territories have an advantage in interference contests over new 

arrivals (Dooley Jr. and Dueser 1996).  In order to assess whether the timing of an individual’s 
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arrival on the grid could influence the probability of establishing residency, I compared the dates 

of first appearance (FD) of residents and non-residents.  OW-NR mice were excluded from these 

analyses because their FD and AF are unknown.  Mice that became residents appeared on the 

grid significantly earlier than those that did not (PL: t=-8.1, df=322, P<0.0001; PMG: t=-2.9, 

df=121, P=0.005; Figure 3-12). 

 

Figure 3-12: Probability density function of the distribution of dates of first appearance (FD) of residents (R) and 
non-residents (NR) for (A) PL and (B) PMG.  Means are marked with dashed lines.  Significance of differences 
between mean FD are marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

3.6.2.2   COMPARISON OF FD AMONG RESIDENT MICE 

FD was compared among resident PL and PMG to determine if there were differences between 

species in the timing of arrival of mice that were able to establish territories.   
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Differences between species:  PMG residents appeared on the grid earlier than PL residents in 

2011 (t=3.3, df=68, P=0.002; Figure 3-13), but PL residents tended to appear on the grid earlier 

than PMG residents in 2012 (t=-1.7, df=16, P=0.1).  In 2010, female PL residents tended to 

appear on the grid later than female PMG residents (t=1.8, df=7, P=0.1), but male PL residents 

appeared on the grid earlier than male PMG residents (t=-2.1, df=12, P=0.05), resulting in no 

overall difference between species in FD (P=0.99). 

 

 

Figure 3-13: Probability density function of the distribution of dates of first appearance (FD) of PL and PMG 
residents in (A) 2010, (B) 2011, and (C) 2012.  Mean FD is marked with dashed vertical lines.  Significance of 
differences between species in FD is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 
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Within-species variation - PL:  PL females that became residents appeared on the grid earlier 

than PL males that became residents, but this result is marginally insignificant (t=-1.83; df=150; 

P=0.069; Table 3-12).  PL female residents appeared on the grid the latest in 2011, and 

significantly later in 2011 than in 2012 (t=2.4, df=42, P=0.023).  PL male residents appeared 

earlier in 2010 than in either 2011 (t=-2.4, df=19, P=0.03) or 2012 (t=-2.1, df=14, P=0.05). 

PL residents that were first caught as juveniles appeared the earliest of any age class, those first 

caught as adults appeared the latest, and those first caught as sub-adults had FD intermediate 

between juveniles and adults (t=3.4, df=79, P=0.027; Figure 3-14A). 

 
TABLE 3-12: AVERAGE DATES OF FIRST APPEARANCE OF RESIDENT MICE - GENDER 

 
 FEMALES

 
MALES

 
 N FD MEAN SE N FD MEAN SE 

 
2010 7 Jul. 15 105.71 15.56 8 Jul. 1 91.88 8.63 
2011 27 Jul. 26 116.48 8.97 29 Jul. 28 118.83 7.64 
2012 43 Jul. 1** 92.28 4.93 38 Jul. 23** 113.84 5.75 

  
PL 77 Jul. 11+ 101.99 4.53 75 Jul. 22+ 113.43 4.30 

 
2010 9 Jun. 16*** 76.56 5.23 13 Jul. 22*** 113.23 5.04 
2011 13 Jul. 9+ 99.46 5.51 7 Jun. 21+ 81.86 6.82 
2012 7 Jul. 20 111.00 14.60 6 Aug. 11 133.17 13.93 

  
PMG 29 Jul. 4+ 95.14 5.06 26 Jul. 18+ 109.38 5.63 

 
Table 3-12: Average dates of first appearance (FD) of PL and PMG male and female residents in 2010, 2011, and 
2012.  The number of mice (N), mean FD, and the standard error of the mean (SE) are reported.  Mean FD is 
reported as the number of days from April 1 of each year and the corresponding date.  Significance of differences 
between male and female residents in FD is marked (+: 0.05<P<0.1; *:P<0.05; **:P<0.01; ***:P<0.001).  

 

 

Within-species variation – PMG:  PMG females that became residents appeared on the grid 

earlier than PMG males that became residents, but this result is marginally insignificant (t=-1.88, 

df=52, P=0.065).  Male and female PMG residents appeared on the grid the latest in 2012 (t=-

2.5, df=17, P=0.024).  PMG female residents appeared earlier in 2010 than in 2011 (t=-3, df=20, 

P=0.007), however PMG male residents appeared earlier in 2011 than in 2010 (t=3.7, df=12, 

P=0.003).   
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PMG residents that were first caught as adults appeared on the grid significantly later than those 

first caught as sub-adults (t=2.4, df=15, P=0.032) or juveniles (t=3.4, df=10, P=0.007; Figure 

3-14B). 

 

 

Figure 3-14: Probability density function of the distribution of the dates of first appearance (FD) of resident (A) PL 
and (B) PMG, compared between residents of different ages at first appearance (AF).  Mean FD is marked with 
dashed vertical lines.  Significance of differences between mice of different AF is marked (+: 0.05<P<0.1; *: 
P<0.05; **: P<0.01; ***: P<0.001). 
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3.7 DISCUSSION 

3.7.1 VARIATION IN SURVIVAL AND REPRODUCTION 

Shifts in community structure are ultimately caused by differences in reproductive success of the 

species that make up the community, which is determined by the survival and reproduction of 

individuals.  Extreme morphological and ecological similarities between these two species have 

been noted by many authors (Horner 1954; Wolff and Hurlbutt 1982; Feldhamer et al. 1983; 

Wolff 1985; Long and Long 1993); however, few studies have provided a detailed examination 

of population dynamics from communities in which climate-induced replacement is occurring.  

How do PL and PMG differ in traits relating to survival and reproduction, and how does 

variation in these traits result in differences in reproductive success? 

 

3.7.1.1 REPRODUCTIVE OUTPUT 

The per-capita number of litters is, along with litter size, a direct determinant of the total 

reproductive output of an individual.  I found a maximum of 5 known pregnancies for a single 

resident female in this study, with an average of 1.7 and 1.2 pregnancies for PL and PMG, 

respectively.  These numbers fall within ranges reported in the literature (Harland et al. 1979; 

Baker 1983; Millar et al. 1992).  Disparities in PL and PMG abundance were reflected in the per-

capita number of litters.  PL females had significantly more litters than PMG females on average, 

and significantly more in 2011 and 2012 (Figure 3-2). 

 

3.7.1.2 LONGEVITY 

Studies of laboratory animals suggest that PMG may have a greater maximum lifespan than PL 

(Dice 1933; Sacher and Hart 1978; Davis 1990; Burger and Gochfeld 1992), which if true, might 

compensate for differences in long-term reproductive output and slow the rate of faunal turnover.  

In this study, however, no significant differences between species were found in overall 

persistence (Table 3-6; TTG, used as a proxy for longevity).  TTG values observed in this study 

fall within the range reported for Peromyscus in natural populations (Howard 1949; Snyder 
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1956; King 1968; Adler and Wilson 1987).  In the wild, mortality may be related largely to 

extrinsic factors and may be independent of age in older mice (Clutton-Brock 1988).  Because so 

few mice approach the physiological limits of longevity (King 1968; Schug et al. 1991), 

differences between species in maximum lifespan may not be relevant to reproductive success. 

 

3.7.1.3 WINTER SURVIVAL 

Differences have been noted between PL and PMG, particularly in traits dealing with winter 

survival. PL is be more vulnerable than PMG to cold winters (Howard 1951); populations of this 

species have been reported to be nearly extirpated by deep frosts during harsh winters (Long 

1973).  PMG may be superior to PL in winter adaptations including the use of torpor, nest 

building, food storage, and lower food consumption (Wolff and Durr 1986; Tannenbaum and 

Pivorun 1988; Pierce and Vogt 1993), and thus may have an advantage over PL in some years 

(Long 1996). 

There was a non-significant trend for a greater proportion of both species to overwinter in 2011 

than in the harsher winter of 2010, which could be explained by differences in winter conditions 

(Chapter 2).  A greater proportion of PL may have overwintered than PMG (Table 3-7). It is 

possible that current winter conditions in the Great Lakes Region are no longer harsh enough for 

PMG to have enhanced overwinter survival compared to PL, and that conditions now 

consistently favor PL.  Due to low numbers of overwintering mice of both species in 2010 and 

overwintering PMG overall, it was difficult to accurately assess differences between species in 

winter survival using data from this study.   

 

3.7.1.4 CONTRIBUTION OF OW FEMALES TO REPRODUCTION 

It has been suggested that much of the variation in individual reproductive success is attributable 

to longevity and survival (Schug et al. 1991; Millar et al. 1992).  Females that survive longer 

have more litters than short-lived females (Millar et al. 1992).  Further, maternal age and parity 

are correlated with litter size (Havelka and Millar 2004), so that the relationship between 
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survival and reproductive output may not be linear.  Reproductive output by overwintered 

females is often an important contributor to overall reproduction (Lusk and Millar 1989), in part 

because of increased litter sizes relative to younger mice (Havelka and Millar 2004).  The 

contribution of OW females to population growth may be constrained by their survivorship in the 

spring and summer (Millar et al. 1979).  Though capable of producing up to 4 litters during a 

single season (Baker 1983), few overwintered individuals survive the entire length of summer 

and realize their full reproductive potential (Havelka and Millar 2004).  Enhanced persistence of 

OW females could thus lead to greater overall reproduction.   

In this study, persistence of OW PL females was consistently longer than that of OW PMG 

females, and reproductive PMG females were more likely to disappear from the grid than 

reproductive PL females during the first half of the breeding season (Table 3-8).  Loss of OW 

PMG, both males and females, was concentrated over a period of approximately 60 days in the 

spring, while losses of OW PL were more evenly distributed throughout the spring and summer 

(Figure 3-9).  Differences in the pattern of persistence of OW females were responsible for 

differences between species in the per-capita number of litters by this cohort. OW PL females 

persisted in the population for 23 days longer and produced one more litter on average than OW 

PMG females. 

Differences between PL and PMG in the persistence of OW females also resulted in significant 

differences between species in the relative contribution of OW and YOY females to total 

reproduction.  Studies suggest that OW females produce more litters on average than YOY 

females (Harland et al. 1979).  This relationship was observed for PL in all years of this study, 

but PMG OW and YOY females did not differ in the per-capita number of litters produced, 

except in 2012 when no PMG YOY bred (Table 3-5). 

 

3.7.1.5 REPRODUCTIVE RATE (TIME BETWEEN SUCCESSIVE LITTERS) 

Longer-lived individuals have more lifetime opportunities to breed (reviewed in Clutton-Brock 

1988); however, long life does not necessarily correlate with greater reproductive success.  

Individuals that reproduce quickly during a short life may be equally as successful as those that 
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live a long time and reproduce at a slower rate, depending on the survival and reproduction of 

offspring (Stearns 1976).  In this study, I found no differences between species in the frequency 

with which breeding females produce litters (Table 3-4), which is consistent with reports from 

other studies suggesting that there may be less variation in the frequency of litters than in other 

reproductive traits (Millar et al. 1979; Schug et al. 1991). 

Nonetheless, some variation in the average time between litters was observed for PMG YOY 

females. Breeding YOY PMG had litters most often 2010 (approximately once per month) when 

total adult density was low, but produced litters less frequently in 2011 (once every 44 days) 

when total density of adults was high. High population density may cause the rate of 

reproduction to slow; several studies have reported a negative correlation between population 

density and reproductive activity and output in P. leucopus (Burt 1940; Manville 1949). 

At high densities, waiting longer between successive pregnancies may be beneficial to the survival 

of young. The number of young weaned may be inversely proportional to the number of adults in 

the population (Rintamaa et al. 1976).  Increased duration of maternal care enhances the survival 

and growth of neonates (Harland and Millar 1980), and growing to a larger size may allow newly-

emerging young to establish territories with greater ease (Garten 1976; Bowers and Smith 1979).  

In species that experience post-partum estrus, nursing of a litter may be terminated abruptly by 

parturition; young from the older litter are often forced out of the nest when a new litter is born 

(Svihla 1932). Thus, if the time between two successive litters is too short, young may be forced to 

leave the nest even though they would still benefit by continued maternal care. 

 

3.7.1.6 AGE AT FIRST REPRODUCTION 

The age at first reproduction may influence population growth more than either longevity or the 

number of litters produced (Cole 1954), and small changes in this trait have the potential to greatly 

impact population abundance.  Females of both species reach sexual maturity at approximately 44 

days after birth (King 1968), but not all YOY begin breeding at this age.  PL and PMG in northern 

Michigan typically breed in the summer of their birth (Myers et al. 2005); however, young that are 

born close to the end of the breeding season often delay the onset of reproduction until the 

following spring (Howard 1949).  One explanation for this is that delaying reproduction increases 
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survivorship of young.  In this study, late-appearing mice were significantly less likely than early 

appearing ones to remain on the grid (Figure 3-12), suggesting either increased mortality or 

emigration.  Late-born young may have a disadvantage finding and establishing territories 

necessary for breeding; they may also be smaller than early-born young at the onset of winter, 

decreasing their chances of surviving until the spring (Table 3-11). 

Further, though maternal age is correlated with litter size in both PL and PMG (Millar et al. 

1992; Havelka and Millar 2004), prior reproductive experience may not be necessary.  Litter size 

increases from the first to subsequent litters among females breeding in their natal year, but not 

among females that first bred as overwintered adults (Havelka and Millar 2004).  For those YOY 

that delay reproduction, some of the costs incurred by not breeding in their year of birth may be 

compensated by higher litter sizes when they do begin to breed. 

In this study, approximately 70% of YOY resident females bred in their natal year (Table 3-5).  

YOY residents of both species tended to first appear on the grid in early July (Figure 3-14), and 

the proportion of YOY residents that appeared after mid-August was not significantly different 

between species (PL: 11/90; PMG: 1/46; P=0.12).  Thus, comparisons of the proportion of 

breeding YOY between species should not be affected by differences in the number of late-

arriving YOY residents.  There was no difference between species in the proportion of known 

YOY females that bred in the year of their birth in 2010 or 2011, and this proportion did not vary 

between years.  There was, however, one notable exception.   

In 2012, there was a significant reduction in the proportion of breeding PMG YOY.  While 15 

out of 21 YOY PMG resident females bred in their natal year in 2010 and 2011, none (out of 4) 

bred in 2012 (Table 3-5).  Trap records for these individuals were regularly spaced, and three 

were trapped on the grid as non-breeding adults.  This suggests that the observed reduction in the 

proportion of breeding YOY PMG reflects a real difference in the population. 

One possible explanation for delayed onset of first reproduction in YOY PMG is the increased 

density of breeding adult PL, which caused increased total density of breeding adults even 

though PMG numbers were low.  Socially induced reproductive inhibition of YOY females by 

OW females has been demonstrated in natural populations of P. maniculatus where YOY do not 

typically breed in their natal year (Haigh 1983), such that the removal of OW females results in 
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sexual maturation and breeding of YOY (Lusk and Millar 1989).  The number of YOY that 

breed appears to be influenced by the density of mature females present (Lusk and Millar 1989).  

Little is known regarding reproductive inhibition in Michigan PL and PMG, possibly because 

YOY usually breed in their natal year. 

 

3.7.1.7 EASE OF ESTABLISHING TERRITORIES 

It has been suggested that PL and PMG are territorial and the victor in aggressive contests is 

usually the resident rather than the intruder (Dooley Jr. and Dueser 1996).  Thus, the high rates 

of loss of newly-appearing mice (those that did not become residents), while not a direct 

indicator of reproductive success per se, may reflect the difficulty with which mice establish 

territories.  Rates of loss of new mice (either those that immigrated or YOY born on the grid) 

were similar for female PL and PMG, and newly appearing females of both species were more 

likely to become residents if they first appeared on the grid as juveniles (Figure 3-6).  On the 

other hand, juvenile male PMG were more likely than juvenile male PL to become residents 

(Table 3-9).  The proportion of PMG that became residents did not change annually; however, 

PL were less likely to become residents in 2011 than in 2010 or 2012 (Table 3-9).  These results 

suggest that newly-appearing PL experienced either higher mortality or were more likely to 

emigrate in 2011, but that PMG were not affected in the same way.  I suggest in Chapter 4 that 

this may have been caused by a later onset of breeding of PL relative to PMG in 2011. 

Juvenile males were the least likely of all demographic categories to establish residency in this 

study, which is consistent with results from other studies (Harland et al. 1979).  It may be 

beneficial for younger females to quickly establish territories and find suitable nesting sites in 

preparation for reproduction.  Males, on the other hand, tend to have larger home ranges and 

explore more new areas (King 1968, Harland et al. 1979), and may experience higher mortality 

rates as juveniles than females (Harland et al. 1979).  Adult males may also be aggressive 

towards younger males and may negatively impact survival (Sadleir 1965; Petticrew and Sadleir 

1974). 
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3.7.1.8 SOCIAL INTERACTIONS AND SURVIVAL 

Social interactions, including the effect of OW females on YOY females, may also be reflected 

in survivorship.  Females maintain exclusive home ranges during the breeding season (Metzgar 

1971; Harland et al. 1979) and may be limited by the availability of nest sites rather than food 

resources (Lusk and Millar 1989).  When density is high, reduced availability of territories may 

result in increased aggressive social interactions, with negative impacts on survivorship and 

reproduction.  Further, OW females are more likely to win aggressive contests over YOY, both 

because of their potentially larger size and because they have already established residency 

(Dooley Jr. and Dueser 1996).  If this is true, then mice that appear on the grid early should be 

less likely to disappear from the grid than those that appear later, and persistence of immigrating 

YOY should be negatively correlated with persistence of OW residents. 

Results from this study are consistent with these predictions.  A mouse that appeared on the 

earlier grid was more likely to establish residency than one that arrived later (Figure 3-12).  For 

both species, persistence of new YOY females was negatively correlated with persistence of OW 

females (Figure 3-10A; Figure 3-11A).  Though the cause of this relationship is unknown, this 

result suggests that social interactions can have an effect on survival and reproduction. 

 

3.7.2 EXPLAINING PATTERNS OF PL AND PMG ABUNDANCE 

Changes in the pattern of relative abundance of PL during this study indicate that community 

structure shifts from an equal composition of PL and PMG in late 2010 and early 2011 to a 

community composed of mainly PL (Chapter 2).  What caused the disparities in relative 

abundance observed in 2011 and 2012, and why did the same not occur in 2010? 

PL and PMG were found in approximately equal abundance in 2010 (Chapter 2).  YOY PMG 

averaged more litters in 2010 than in any other year, and significantly more litters than YOY PL 

(Figure 3-3).  OW PMG females, however, averaged fewer litters than OW PL females due to 

reduced spring/summer persistence.  This suggests that in 2010, increased reproduction by YOY 

females compensated for reduced reproduction by OW females, resulting in approximately equal 

population growth due to reproduction (Figure 3-15). 
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Figure 3-15: Comparison of survival and reproduction of PL and PMG in 2010.  Gray boxes and arrows indicate 
traits in which PL and PMG did not differ.  Colored boxes and arrows indicate observed differences between 
species.  Color of boxes represents advantages of PL (red) and PMG (blue). 

 

In 2011, abundance of PL and PMG was similar until mid-July, but PL outnumbered PMG 

thereafter (Chapter 2).  Enhanced persistence of OW PL females may explain increased PL 

abundance.  On average, OW PL females persisted about 23 days longer than OW PMG females, 

but this difference was roughly double that in 2011.  OW PL females also survived longer in 

2011 than in any other year. Based on comparisons of PMG abundance in 2010 and 2011, I 

suggested in Chapter 2 that PMG may have suffered reductions in population growth after mid-

July 2011. There is some evidence to support that claim.  PMG YOY produced fewer litters but 

persisted longer on the grid in 2011 than in 2010.  A combination of enhanced persistence of PL 

OW females and reduced reproductive rates in PMG YOY resulted in numerical dominance of 

PL in 2011 (Figure 3-16). 
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Figure 3-16: Comparison of survival and reproduction of PL and PMG in 2011.  Gray boxes and arrows indicate 
traits in which PL and PMG did not differ.  Colored boxes and arrows indicate observed differences between 
species.  Color of boxes represents advantages of PL (red) and PMG (blue). 

 

In 2012, spring abundance of both PL and PMG were higher than in previous years, probably 

due to the relatively mild and short preceding winter.  Abundance of PL grew at a higher rate and 

to a greater maximum than PMG, and relative abundance of PL remained above 80% for much 

of the year.  Abundance of PMG was significantly lower in 2012 than the previous years due to 

reduced abundance between July and September (Chapter 2).  YOY PL females both produced 

more litters and persisted longer in 2012 than in any other year, suggesting that enhanced 

survival allowed for proportionally more reproduction.  In contrast, no YOY PMG bred in 2012, 

significantly reducing population growth in this species.  These factors led to numerical 

dominance of PL throughout the year (Figure 3-17). 
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Figure 3-17: Comparison of survival and reproduction of PL and PMG in 2012.  Gray boxes and arrows indicate 
traits in which PL and PMG did not differ.  Colored boxes and arrows indicate observed differences between 
species.  Color of boxes represents advantages of PL (red) and PMG (blue). 

 

Survival and reproductive rates measured in this study exhibited high individual variation, which 

is consistent with the literature (Millar et al. 1992).  Nonetheless, PL and PMG may inherently 

differ in the pattern of spring/summer persistence of OW females, resulting in significant 

differences between species in the relative contribution of OW and YOY females to total 

reproduction.  No other consistent differences in survival and reproduction were found; however, 

in each year PL and PMG differed in other aspects of survival and reproduction, and unique 

combinations of these differences led to the observed patterns of abundance (summarized in 

Table 3-13).    
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TABLE 3-13: DIFFERENCES IN SURVIVAL AND REPRODUCTION 

 
 PATTERN PL PMG 

 
2010 Equal Abundance Enhanced survival of OW Reduced survival of OW 

Increased reproduction by YOY 
  

2011 More PL, especially after July Enhanced survival of OW* Reduced survival of OW 
Reduced reproduction by YOY 

  
2012 More PL Enhanced survival of OW 

Enhanced survival of YOY 
Reduced survival of OW 
No reproduction by YOY 

 
Table 3-13: Summary of differences between PL and PMG in survival and reproduction that contribute to patterns of 
abundance observed during this study.  

 

 

Results suggest that increases in abundance of PL are well explained by survival (persistence of 

OW and YOY females leads to more reproduction).  Decreases in abundance of PMG, on the 

other hand, are associated with reduced reproductive rates (in 2011) and delayed onset of first 

reproduction (in 2012) of YOY females.  In each successive year, reproduction by PMG YOY 

was reduced, and this coincided with increasingly large disparities in PL and PMG abundance. 
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CHAPTER 4.  

BREEDING SEASON LENGTH OF SYNTOPIC PEROMYSCUS LEUCOPUS  AND 

PEROMYSCUS MANICULATUS GRACILIS  IN NORTHERN MICHIGAN 

 

 

4.1 SUMMARY 

Climate-induced ecological replacement of the ‘northern’ P. m. gracilis by the ‘southern’ P. 

leucopus has been documented with long-term studies in the Great Lakes Region (Long 1996; 

Myers et al. 2005).  Gradually warming winters over the last 30-40 years in this area have 

facilitated northward range expansion of P. leucopus, and communities in which P. leucopus and 

P. m. gracilis co-occur have become characterized by strong numerical dominance of P. 

leucopus (Myers et al. 2009).  I monitored syntopic populations of P. leucopus and P. m. gracilis 

at a site in northern Michigan from 2010-2012.  Abundance of P. leucopus was significantly 

greater than that of P. m. gracilis in two out of three years, and disparities in abundance resulted 

from both increases of P. leucopus and decreases of P. m. gracilis (Chapter 2).  In Chapter 3, I 

found that differences between species in survival of overwintered (OW) and young-of-year 

(YOY) females led to increased reproductive output of P. leucopus.  Slowed population growth 

rate of P. m. gracilis were due to slowed reproductive rate of YOY females (in 2011) and 

delayed onset of first reproduction (in 2012). 

In this chapter, I investigated the seasonal breeding patterns of syntopic P. leucopus and P. m. 

gracilis and assessed the dates of onset and cessation of breeding and the length of the breeding 

season.  I found that P. leucopus experiences a breeding season that is 24 days longer than P. m. 

gracilis.  Patterns observed during this study were consistent with the hypothesis that early 

breeding is advantageous in years following mild winters and disadvantageous when winters are 
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more harsh.  I propose that an earlier onset and later cessation of breeding in mild conditions 

confers both a numerical and competitive advantage to P. leucopus.  Patterns in reproductive 

rates, particularly in the decrease in the proportion of breeding young-of-year P. m. gracilis, 

suggest that the disadvantages of a later onset of breeding may manifest in a density-dependent 

manner.   

I also investigated rates of botfly infestation and the effect of infestation on reproductive patterns 

and the distribution of births across the year.  I found that bot fly infestation was highest in 2012, 

consistent with reports that rates of infestation are highest following years of high mouse 

abundance (Burns et al. 2005).  The seasonal distribution of P. leucopus births in 2012 also 

suggests that the reproductive output of this species was less than its potential in July and 

August, and bot fly infestation is a potential cause. Differential prevalence of bot fly infestation 

may thus have the potential to slow the rate of faunal turnover.   

 

 

4.2 INTRODUCTION 

As winters in the northern Great Lakes region have become shorter and milder over the last 30 

years, the range of the ‘southern’ white-footed mouse, Peromyscus leucopus, has expanded by 

several hundred kilometers, coinciding with a decline in abundance of residents in sympatrically-

occurring populations of the ‘northern’ woodland deer mouse, P. maniculatus gracilis (Myers et 

al. 2005).  Myers et al. (2005) suggested that the decline in P. m. gracilis populations and 

concurrent rise in P. leucopus were attributable to long term climatic trends, particularly the 

overall decrease in the length of winter in this area. 

I documented abundance of P. leucopus and P. m. gracilis in northern Michigan for 3 years, and 

I found that changes in relative abundance were consistent with faunal turnover, and at least 

some of this pattern may be influenced by winter conditions (Chapter 2).  For example, in 2012, 

following the mildest and shortest winter encompassed by this study, P. leucopus had a greater 

reproductive output than P. m. gracilis. While increase in abundance of P. leucopus has been 
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well documented in this area, both the biological mechanisms that allow increased reproduction 

and the nature of the advantage conferred to this species under mild conditions are unclear. 

In Chapter 3, I investigated differences between species in survival and reproduction, and I found 

that differences in survival, especially of overwintered (OW) females, led to increased 

reproductive output of P. leucopus.  While no other consistent differences were found, small 

differences in the rate of reproduction and the proportion of young-of-year (YOY) that bred in 

their natal year were observed.  Unique combinations of small differences between species in 

survival and reproduction may explain the observed changes in annual reproductive output. 

In addition to the survival and rate of reproduction (i.e., the time between successive litters) of 

individuals within a population, breeding season length can greatly influence total annual 

reproductive output.  It has been suggested that Peromyscus with short breeding seasons have a 

lower annual reproductive output than Peromyscus with longer breeding seasons (Millar et al. 

1979).  The length of the breeding season varies geographically among Peromyscus populations, 

from 2-3 months in Wyoming (Brown 1966) and Canada (Fuller 1969) to 10-12 months in the 

central United States (Brown 1964).  Not surprisingly, the general trend is that individuals in 

colder, northern, or alpine environments have the shortest breeding seasons (Millar et al. 1979; 

Millar and Innes 1985). 

Variation between years in the onset and cessation of breeding at a locality has long been 

suggested to be related to environmental factors for many small mammals (Jewell 1966; Sadleir  

1970), including P. leucopus and P. maniculatus (Jameson 1953; Sheppe 1963; Brown 1964; 

Sadleir 1974).  The seasonal cycle of changes in day length (photoperiod) is one cue that many 

temperate-zone mammals use to regulate reproductive timing (Heideman et al. 1999), and it has 

been suggested that photoperiod may be a primary cue for the initiation of spring breeding by P. 

maniculatus (Price 1966; Millar and Herdman 2004) and P. leucopus (Whitaker 1940; Heideman 

et al. 1999).  Spring breeding is stimulated by increasing photoperiod and is mediated by 

temperature such that breeding begins following sudden rises in temperature that coincide with 

increasing day length (Sadleir 1974).   

An influence of temperature on both the onset and cessation of breeding is expected given the 

known effects of temperature on metabolic processes (Hayward 1965a; Sadleir et al. 1973).  
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Newborn mice suffer decreased growth rates at low temperatures and require greater maternal 

care in the nest (King 1968; Harland and Millar 1980).  Breeding females must balance this need 

with longer bouts of foraging outside the nest to meet the energetic requirements of lactation 

(Millar and Innes 1985; Millar et al. 1990).  Reproduction in harsh conditions can thus result in 

both reduced maternal survival and reproductive success. 

The cessation of breeding in higher latitude populations is thought to be closely tied to declining 

temperature.  Winter breeding in these populations is reported to be rare (Linduska 1942; 

Jameson 1953; Brown 1945; Millar et al. 1979), probably because low winter temperatures 

increase maintenance costs (Sadleir et al. 1973) and energy requirements of lactation (Harland 

and Millar 1980) cannot be met.  It is thus advantageous for mice to cease breeding from mid-

summer onwards when temperatures decline so that subsequent lactations will not occur (Sadleir 

1974). 

Individuals in syntopic populations of P. leucopus and P. m. gracilis experience the same 

climatic conditions; thus, if they differ in breeding season length, the explanation must lie in 

species-specific responses to environmental cues such as temperature or photoperiod.  Because 

P. m. gracilis prefers cooler, more boreal microclimates (Long 1996), and because there is often 

a positive correlation between temperature and initiation of breeding (Hayward 1965b; Millar 

and Gyug 1981), P. m. gracilis may begin reproducing later than P. leucopus due to its 

microhabitat associations. 

Bot fly (Cuterebra sp.) parasitism of P. leucopus and P. maniculatus is widespread in natural 

populations (Wecker 1962; King 1968; Burns et al. 2005), and infestation has the potential to 

alter both individual reproductive output and population-wide breeding patterns. Mounting 

evidence indicates that bot fly infestation enhances survival (Wecker 1962; Goertz 1966; Hunter 

et al. 1972; Munger and Karasov 1991; Clark and Kaufman 1990; Burns et al. 2005), but 

negatively impacts reproduction.  Infested females have fewer litters and fewer total offspring 

than uninfested females (Burns et al. 2005), and parasitized males have considerably 

compromised gonadal development (Wecker 1962; Timm and Cook 1979), suggesting a 

diversion of resources from reproduction to body maintenance (Burns et al. 2005).  Population 

growth rates may also be negatively correlated with infestation prevalence (Burns et al. 2005). 
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In this chapter, I investigate the seasonal breeding patterns of syntopic P. leucopus and P. m. 

gracilis.  I assess the dates of onset and cessation of breeding, the length of the breeding season 

and the distribution of births across the year.  I also investigate rates of botfly infestation and the 

effect of infestation on reproductive patterns.  The advantage conferred by a longer breeding 

season could lead to the differences in survival and reproduction observed in Chapter 3. 

 

 

4.3 METHODS 

I monitored syntopic populations of P. leucopus and P. m. gracilis in the Pigeon River State 

Forest in northern Michigan from April to October for three consecutive years.  Individual mice 

were tagged with unique identification numbers.  Age, reproductive status, and mass were 

recorded during each capture.  Three age classes were recognized based on pelage characteristics 

– juvenile (J, uniformly gray pelage), sub-adult (SA, presence of molt lines), and adult (A, brown 

dorsal pelage and white ventral fur).  Reproductive condition of females was assessed as either 

non-reproductive (NT, nipples not visible) or reproductive (NE, nipples visible).  Mice were 

weighed to the nearest 0.5 grams.  Please refer to Chapter 2 for a complete trapping protocol. 

The first trapping sessions in all years were timed to occur at least two weeks before the first 

emergence of young-of-year mice.  In 2010 and 2012, trapping sessions began in early April to 

document numbers and survival of overwintered adults; juveniles were not present in trapping 

records until mid- to late May.  No trapping was done during April 2011; trapping in May began 

2 weeks before either reproductive females or juveniles appeared.  Differences found in in the 

timing of the onset of breeding in 2011 thus reflect actual differences in breeding patterns rather 

than an artifact of sampling. 

 

4.3.1 DETECTING PREGNANCIES 

Pregnancies were detected in the field using visual cues and supplemented with longitudinal data 

documenting fluctuations in body weight.  Changes in body weight of pregnant females have 
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been well documented, primarily in laboratory mice (Millar 1982; Millar and Innes 1985; Millar 

1985); weights observed during this study were consistent with these reports.  Typical weight of 

non-breeding adult P. leucopus and P. m. gracilis is approximately 19-21 grams (King 1968; 

Millar 1982; Millar and Innes 1985; Millar 1985). Body weight remains relatively low for much 

of pregnancy, then increases dramatically a few days before parturition; a pregnant female 1-2 

days prepartum may be approximately 79% heavier than non-breeding females (Millar 1975).  

Visual signs of pregnancy have been reported to be detectable as early as 5 days into gestation, 

and pregnancy becomes increasingly obvious as parturition approaches (Millar et al. 1979).  

Body weight is reduced immediately after parturition, but remains approximately 20% greater 

than non-breeding weight throughout lactation (Millar 1975). 

A female’s nipples enlarge in preparation for lactation shortly before she gives birth to her first 

litter.  In this study, the exact date of parturition is known for 3 females that gave birth while 

inside a Sherman trap.  The nipples of these 3 females become exposed about 3-4 days before 

parturition, around the 19th day of pregnancy assuming 23 days for gestation.  Due to continual 

breeding (Sharpe and Millar 1991), nipples remain visible throughout the breeding season.  They 

recede after a female weans her last litter of the season.  Based on longitudinal records for 10 

mice from 2012, the minimum length of time it takes for nipples to recede after the birth of a 

litter is about 54 days.  Because there is no winter breeding in Michigan Peromyscus (Myers et 

al. 2005), overwintered females captured in the spring have small nipples.  Thus, when 

overwintered females are found with enlarged nipples, they are likely to be pregnant.  In some 

cases, records of changes in reproductive status in the spring could be used to estimate a date of 

parturition when records were not frequent enough to document changes in weight.  For each 

female for which data were available, the number of known pregnancies and estimated dates of 

parturition were recorded.   

 



115 
 

4.3.2 ESTIMATES OF THE NUMBER OF MICE BORN 

4.3.2.1 ESTIMATING DATES OF BIRTH FROM PREGNANCIES 

To estimate the number of mice born from known pregnancies, each pregnancy was assigned a 

litter size that was randomly drawn from possible values of between 3 and 6, based on reports of 

mean litter size of P. leucopus and P. maniculatus (Svihla 1932; King 1968; Baker 1983; Millar 

1985).  Each known pregnancy was assumed to result in a successful litter, and no losses were 

assumed to occur prior to weaning. 

Because of gaps in longitudinal trapping records, it is likely that some pregnancies that occurred 

on the grid escaped detection.  Nonetheless, analyses that compare P. leucopus and P. m. gracilis 

should not be biased unless there are differences between species in nestling mortality or 

trappability.  Longitudinal records were used to assess trappability (i.e., the likelihood that a 

mouse is captured after it encounters a trap).  I compared the number of times an individual was 

caught to the number of times that it could have potentially been caught, then compared the 

proportion of captures between species using either Chi-squared analysis or Fisher’s Exact test. 

Data from this study were insufficient to investigate nestling mortality.  Nestling mortality is 

variable (estimates of 12-50% mortality have been reported) but does not appear to differ 

significantly between P. leucopus and P. maniculatus (Howard 1949; Fairbairn 1977; Sullivan 

1977; Harland et al. 1979).   

 

4.3.2.2 ESTIMATING DATES OF BIRTH BASED ON PELAGE AND JUVENILE WEIGHT 

I estimated a date of birth for all individual mice based on the age at which they first entered the 

population, which is an estimate of the latest possible date of birth.  The life cycle is similar for 

many species of Peromyscus, including P. leucopus and P. m. gracilis (King 1968; Baker 1983; 

Lackey et al. 1985).  Age classes are associated with distinct pelage characteristics, and 

developmental molts occur with known chronology during the developmental process (Collins 

1923).  Weaning of young is usually complete by the time young are 21 days old (King et al. 

1963), after which they are able to leave the nest and enter into the trappable population.  The 

post-juvenal molt, during which gray pelage characteristic of juveniles is replaced with brown 



116 
 

fur typical of adults (King 1968), begins at 40 to 45 days of age (Nicholson 1941).  The duration 

of the molt from the first appearance of new pelage averages about 25 days (Storer et al. 1944; 

Gottschang 1956), and is complete roughly 65 to 70 days after birth (Gottschang 1956; 

Nicholson 1941; Baker 1983). 

Body weight is tightly associated with age in juveniles (King 1958, 1968; King and Eleftheriou 

1959).  At three weeks old, approximately the age at which weaning is complete and mice leave 

the nest on their own, body weight is about 11 grams and roughly 50% of mature weight (Dice 

and Bradley 1942; King 1958, 1968).  At four weeks after birth, mice weigh about 60% of 

mature weight, or about 13 grams (King 1968).  Due to the close association between age and 

postnatal growth, I estimated date of birth for ‘small’ (under 11 grams) and ‘large’ (11 or more 

grams) juveniles as 21 or 28 days before the date of first capture.  Trends in body weight in older 

mice tend to be less regular than in juveniles (Dice and Bradley 1942; King 1968), and I made no 

attempt to more precisely determine age for older mice.  Date of birth for mice that entered the 

grid as sub-adults or adults was estimated as 45 or 70 days prior to the date of first capture, 

respectively.   

 

4.3.3 LENGTH OF BREEDING SEASON 

All estimated dates of birth were combined into a single dataset, from which dates of onset and 

cessation of breeding, as well as the length of the breeding season, were calculated for P. 

leucopus (PL) and P. m. gracilis (PMG) for each year of the study.  Because the total number of 

births was estimated by combining estimates from these two methods, some mice were counted 

twice – once when it first appeared on the grid, and once because the individual’s mother was 

trapped while pregnant. 

The breeding season is considered to be the period of time during which reproduction is 

occurring in a population, and is sometimes calculated as the time between the first and last 

recorded births of the season (Millar et al. 1979; Tkadlec 2000).  Evidence suggests that the 

onset of breeding among overwintered females is synchronized (Sadleir 1974); however, 

variation in the responsiveness of mice to cues regulating the onset of breeding (Heideman et al. 
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1999) could result in abnormally early or late breeders that are not representative of the 

population as a whole.   

I thus estimated the length of the breeding season as the interval between 10th and 90th 

percentiles of all estimated births within each year.  This estimate was chosen because it is 

routinely used to assess breeding season length in birds (Evans et al. 2005; Moller et al. 2010; 

Gullett et al. 2013).  The beginning/onset and end/cessation of breeding were defined as the date 

on which 10% and 90% of all births had occurred, respectively.  Mean breeding season length, 

dates of onset and cessation, and dates of first and last birth were compared between PL and 

PMG using analysis of variance (ANOVA).  The dates of the first and last known births were 

compared to estimates of population-wide dates of onset and cessation in order to assess 

individual variation.  All statistical analyses were conducted in R, version 3.02 (R Development 

Core Team 2013). 

 

4.3.4 SPRING GROUND TEMPERATURE 

To investigate the possible effect of microhabitat associations on the initiation of breeding, I 

measured below-ground temperature of randomly selected and evenly spaced trap locations. 

Temperature was measured at 51 total trap sites (33 in 2011 and 18 in 2012) with Thermochron 

iButton temperature data loggers from Maxim Integrated Products (San Jose, CA, U.S.).  

iButtons were buried 5 inches deep at each site and logged temperature 6 times a day from 

November through May.   

Mean spring temperature was calculated for each trap site as the average of all temperatures 

logged between March 1 and April 30.  Because there appeared to be a clear transition from the 

colder and less variable temperatures of winter to warmer spring conditions, I calculated an 

additional summary measure for each site.  This measure, the ‘date of warming’, was determined 

for each site as the date when logged temperatures exceeded the average spring temperature for 

that site. 

Because only a small fraction of sites were sampled with iButtons, I recorded the number of PL 

and PMG captures in a 40m radius around each site.  Trap records prior to June 22 were used in 
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order to restrict analysis to spring captures.  I assessed trends in the number of female PL and 

PMG captures using analysis of variance (ANOVA) with mean spring temperature and date of 

warming of capture sites as predictors.  I then assessed differences between species in the effect 

of mean spring temperature and date of warming on the number of captures using analysis of 

covariance (ANCOVA). 

 

4.3.5 PREVALENCE OF BOT FLY INFESTATION 

Infestation prevalence was calculated as the percentage of mice observed to have at least one bot 

fly infestation, out of all mice captured.  Mice were considered to be infested if a botfly larvae or 

scar was visible.  Infestation prevalence was compared between species, males and females, 

breeding condition of females, and age at infestation.  Because incidence of bot flies was 

sometimes low, Fisher’s Exact test was used to test for equal proportions of infested and 

uninfested mice.    
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4.4 RESULTS 

4.4.1 TOTAL NUMBER OF BIRTHS 

A date of birth was estimated for a total 583 PL and 154 PMG (Table 4-1).  191 PL pregnancies 

and 47 PMG pregnancies were detected, leading to an estimated 966 PL births and 239 PMG 

births.  The estimated number of births for PL and PMG was similar in 2010; however, PL births 

outnumbered PMG births in both 2011 and 2012.  This result reflects the observed differences in 

PL and PMG abundance observed in those years (Chapter 2). 

 
TABLE 4-1: NUMBER OF ESTIMATED BIRTHS 

 
 PL

 
PMG

 
 AGE PREG. BIRTHS - 

PREG 
TOTAL 
BIRTHS 

AGE PREG. BIRTHS - 
PREG 

TOTAL 
BIRTHS 

 
2010 51 10 53 104 67 12 56 123 
2011 289 54 274 563 57 25 136 193 
2012 243 127 639 882 30 10 47 77 

  
TOTAL 583 191 966 1549 154 47 239 393 

 
Table 4-1: Total numbers of estimated births occurring on the Pigeon River Grid in 2010, 2011, and 2012.  The 
number of births estimated from age at first capture (Age) and from pregnant females (Female Births) sum to the 
total number of births.  The number of pregnancies detected (Preg) is also listed.  

 

 

PL produced the fewest births in 2010, and the most in 2012 (Figure 4-1A).  While the maximum 

number of births produced in 2012 is about the same as in 2011, over 300 more PL were born in 

2012 due to increased reproductive output between April and July in 2012.  PMG produced the 

fewest births in 2012, and the most in 2010 (Figure 4-1B).   
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Figure 4-1: Histograms of the number of estimated births occurring on the grid for (A) PL and (B) PMG in 2010, 
2011, and 2012.  Bars represent the number of births estimated to occur in each 14 day interval from March through 
October. 
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4.4.2 THE SEASONAL DISTRIBUTION OF BIRTHS 

 

 

Figure 4-2: Probability density function of the seasonal distribution of the number of estimated births for (A) PL and 
(B) PMG. 

 

Patterns in the seasonal distribution of births (Figure 4-2) suggest that there were two general 

patterns of population growth during this study.  For PL in 2010 and 2011 and PMG in 2010, the 

number of births remained roughly constant until about July, when there was a peak in 

reproductive output (Figure 4-2).  A different pattern was observed for PL in 2012 and PMG in 

2011 and 2012; the number of births is bimodal, with one bout of reproduction occurring soon 

after the onset of breeding and another occurring later in the season.  These patterns are reflected 

in the estimated abundance of juveniles modeled using Poisson regression (Figure 4-3; refer to 

Chapter 2 for methods). 
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Figure 4-3: Abundance of juvenile (A) PL and (B) PMG over time in 2010, 2011, and 2012.   Predicted abundances 
were modeled from trap success of juvenile mice using Poisson regression.  Missing data in 2011 are due to a gap 
between trapping sessions of approximately 1.5 months, leading to inaccurate model predictions. 

 

 

4.4.3 LENGTH OF THE BREEDING SEASON 

Table 4-2 lists the estimated dates of the onset and cessation of breeding, as well as an estimate 

of the length of the breeding season for PL and PMG in 2010, 2011, and 2012.  On average, PL 

experienced a breeding season that was 135 days (4.5 months) in length, while for PMG the 

breeding season averaged 111 days (3.6 months).  This difference is statistically significant 

(F=6.8, P=0.05).  
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TABLE 4-2: LENGTH OF THE BREEDING SEASON 

 
 FIRST BIRTH 

(FB) 
LAST BIRTH 

(LB) 
DAYS BETWEEN 

FB AND LB 
ONSET 
(10%) 

CESSATION 
(90%) LBS  

 
PL       

2010 Mar. 28 Sep. 12 167 Apr. 18 Aug. 28 132 
2011 Apr. 22 Oct. 9 170 May 9 Sept. 16 130 
2012 Mar. 23 Sept. 27 187 Apr. 17 Sept. 9 145 

  
PMG       
2010 Apr. 19 Aug. 31 134 May 2 Aug. 21 111 
2011 Apr. 6 Sept. 9 156 Apr. 21 Aug. 24 125 
2012 Apr. 9 Aug. 12 125 Apr. 26 Jul. 31 96 

 
Table 4-2:  Dates of the onset and cessation of breeding and the length of the breeding season (LBS) for PL and 
PMG in 2010, 2011, and 2012.   Breeding season length (LBS) was calculated as the number of days between the 
10th and 90th percentiles of estimated births.  The number of days between the first and last recorded births (Days 
Between) is also reported. 

 

 

In all years, the first recorded birth occurred around the end of March or early April, and 

population-wide breeding began in late April or early May.  Overall, there was no significant 

difference between species in either the date of onset of breeding (P=0.84) or the date of the first 

birth (P=0.51); however, species-level differences may be masked by annual variation.  PL began 

breeding in mid-April in both 2010 and 2012, but not until early May in 2011 (Figure 4-4A).  A 

similar pattern was found for PMG, which began breeding in early May in 2010, but late April in 

the other years (Figure 4-4B). 
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Figure 4-4: Seasonal distribution of the number of estimated births of (A) PL and (B) PMG.  The dates of onset and 
cessation of breeding are marked with vertical dashed lines. 

 

On average, cessation of breeding occurred in early September for PL and late August for PMG, 

a difference of 23 days which was not statistically significant (P=0.067).  The date of the last PL 

birth tended to be later than the date of the last PMG birth, but this difference was also not 

statistically significant (P=0.061).  There was again annual variation in the cessation of breeding 

within each species.  PL stopped breeding in early September in 2010 and 2012, but continued to 

breed until mid-September in 2011.  PMG stopped breeding in late August in 2010 and 2011, but 

breeding ceased nearly a month earlier in 2012. 

PL experienced its longest breeding season in 2012, when it bred for about 10 days longer than 

the other years.  While breeding season length was similar in 2010 and 2011, both onset and 

cessation of breeding occurred later in 2011.  PMG, on the other hand, experienced a shortened 

breeding season in 2012 due to an earlier cessation.  In 2011, PMG began breeding 5 days earlier 
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than in 2012 and 11 days earlier than in 2010, leading to a longer breeding season in 2011 than in 

any other year. 

I assessed the variation in the timing of onset and cessation of breeding by comparing the 

number of days between the first (or last) known birth and the date on which 10% (or 90%) of 

births had occurred. Early- and late- breeding PMG had litters approximately 2 weeks before (or 

after) the norm for the population.  For early- and late- breeding PL, this number is almost 3 

weeks (Table 4-3).   

 
TABLE 4-3: INDIVIDUAL VARIATION IN ONSET AND CESSATION OF BREEDING 

 
 PL

 
PMG

 
 FB - ONSET LB - CESSATION DIFFERENCE 

IN LBS FB - ONSET LB - 
CESSATION 

DIFFERENCE 
IN LBS 

 
2010 20 15 35 13 10 23 
2011 17 23 40 15 16 31 
2012 24 18 42 15 12 29 

  
MEAN 20.33* 18.67+ 39.00* 14.33* 12.67+ 27.67* 

SE 2.03 2.33 2.08 0.67 1.76 2.40 
 

Table 4-3: Individual variation in the dates of onset and cessation of breeding for PL and PMG.   In each year, the 
number of days between the first known birth and the date of onset (the date when 10% of all births had occurred), 
the number of days between the date of cessation of breeding (the date when 90% of all births had occurred) and the 
last known birth, and the sum of these intervals is reported.  Mean differences and standard errors are also reported.  
Significance of differences between species is marked (+: 0.05<P<0.1; *: P<0.05).  

 

 

Overall, there was less variation in the duration of the breeding season for PMG than for PL 

(F=12.7, P=0.024); that is, there were not as many PMG as PL that either bred very early or very 

late.  The number of days between the first birth and the onset of breeding was, on average, 

significantly greater for PL than PMG (F=7.9, P=0.048).  The number of days between the 

cessation of breeding and the last birth also tended to be greater for PL than PMG (F=4.2, 

P=0.1), but this result was not significant.  This suggests that there were fewer PMG than PL that 

bred very early or very late. 
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4.4.4 TRAPPABILITY 

Trappability was estimated as the number of actual captures divided by the number of 

opportunities for capture.  Differences between species in trappability of females have the 

potential to bias the number of births estimated from trapping records because pregnancies of 

mice trapped less often would be overlooked more often. There was no significant difference 

between PL and PMG females in trappability in any year during this study (Table 4-4).  PMG 

males, however, were trapped with greater efficiency than PL males in all years. 

 
TABLE 4-4: TRAPPABILITY OF PL AND PMG 

 
 PL

 
PMG

 
STATISTICS

 
 POSSIBLE TRAPPED %TRAP POSSIBLE TRAPPED %TRAP Χ2 P 

 
2010         

FEMALES 117 69 0.59 108 75 0.69 2.24 0.135 
MALES 187 85 0.45 90 153 0.68 14.59 0.0001*** 

  
2011         

FEMALES 458 225 0.49 207 113 0.55 1.49 0.222 
MALES 241 599 0.40 95 179 0.53 8.74 0.003** 

  
2012         

FEMALES 764 404 0.53 35 78 0.45 1.41 0.219 
MALES 348 800 0.44 32 102 0.31 4.97 0.026* 

 
Table 4-4: Trappability of PL and PMG.  Trappability was calculated as #actual captures/#possible captures.  
Significance of differences between species is marked (+: 0.1<P<0.05; *: P<0.05; **: P<0.01; ***: P<0.001).  

 

 

 

4.4.5 GROUND TEMPERATURE 

Below-ground temperature at 33 trap stations in 2011 and 18 trap stations in 2012 was logged 

between March 1 and April 30.  At all sites, ground temperature was low (around 0°C) and 

displayed little fluctuation at the beginning of March.  This pattern was typical of temperatures 

during the winter, which in both years remained within 1° of freezing (data not shown).  In both 

years, when conditions began to warm, temperature began to fluctuate and in many cases 
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displayed a regular cycle due to differences between daytime and nighttime temperatures.  This 

pattern of warming began earlier in 2012 than it did in 2011 (Figure 4-5), suggesting that the 

winter preceding 2012 was shorter than the one preceding 2011.  This result is consistent with 

climatic data suggesting that the winter preceding 2012 was shorter and milder than the winter 

preceding 2011 (Chapter 2).   

 

Figure 4-5: Below-ground temperature logged by iButtons at 51 trap stations in 2011 and 2012 from March 1 
through April 30 of each year. 

 

It is unclear whether the clear outlier in 2011 (the first blue line that deviates from the rest; 

Figure 4-5) was due to actual temperature differences.  The high maximum temperature (over 

30°C) and that the iButton at this location ceased to log temperature around April 7 suggests that 

these readings may have been due to a hardware malfunction.  Nevertheless, variation in 

temperature did exist, especially towards the end of April in 2011. 

Mean spring temperature of a site was strongly correlated with the date of warming at that site 

(F=548.3, P<0.0001). There was little variability in both mean ground temperature and dates of 



128 
 

warming among sampled sites (Table 4-5).  Ground temperature at most sites was within 0.1 °C 

of the mean of all sites in 2011 and 0.25 °C in 2012.  Similarly, the date of warming for most 

sites was within 1 day of the average date of warming in both years. 

 
TABLE 4-5: IBUTTON TEMPERATURE MEASUREMENTS 

 
 2011 (33 SITES)

 
2012 (18 SITES)

 
 MEAN TEMP (°C) WARM DATE MEAN TEMP (°C) WARM DATE 

 
MIN 0.73 30.33 Mar. 30 4.99 0.83 Mar. 1 
MAX 3.69 41.00 Apr. 9 8.60 16.83 Mar. 17 
MEAN 1.81 38.54 Apr. 7 6.11 13.89 Mar. 14 

SE 0.10 0.38  0.19 0.84  
 

Table 4-5: Spring temperature logged by ibuttons in 2011 and 2012.   For each ibutton (site), mean temperature 
(average of all temperatures logged between March 1 and April 30) and date of warming (date when logged 
temperature first rises above the average spring temperature for that site) were calculated.  Summary statistics 
(minimum, maximum, mean, and standard error of the mean) for all sites in 2011 and 2012 are reported.  Dates of 
warming are reported both as the number of days from March 1 and as a corresponding date.  

 

 

 

4.4.6 MOUSE CAPTURES AND GROUND TEMPERATURE 

If PL and PMG are associated with different microhabitats, and if these microhabitats are 

associated with differences in microclimate, then differences in the onset of breeding may be a 

result of differences in microclimate experienced by females of each species.  For each site at 

which temperature was logged, the number of captures of female PL and PMG from April 

through mid-June in a 40m radius was counted.  Trends in the number of captures were assessed 

using mean spring (March and April) temperature and date of warming of capture sites as 

predictors. 
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Figure 4-6: The number of captures of female (A) PL and (B) PMG in relation to mean spring temperature at sites 
which captures were made.   Each point represents one site; spring captures of all female mice within a 40m radius 
were counted (y-axis), and plotted against the mean of all temperatures logged at that site between March 1 and 
April 30 (x-axis). 

 

In 2012, PL females tended to be captured at sites with warmer spring temperature (F=3, P=0.1; 

Figure 4-6A), but this result was not significant.  Female PL captures were not correlated with 

the date of warming of capture sites in 2012 (F=1.3, P=0.27).  The number of female PMG 

captures, on the other hand, was highly correlated with both spring site temperature (F=22.91, 

P=0.0002) and the date of site warming (F=125.4, P=6E-09).  This trend is due to the large 

number of captures (52) near one site in 2012 (Figure 4-6B), which was associated with both 

high mean temperature and early date of warming.  

These data suggest that there may be differences in the effect of microclimate on the number of 

PL and PMG captures, especially in 2012.  Because spring PMG captures were low in the 

vicinity of all sites with one exception, it is unclear whether this result is an artifact of low 

sample size, or whether PL captures were not associated with temperature in the same manner.  I 

thus investigated the differences between trends in PL and PMG captures using analysis of 
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covariance (ANCOVA).  No significant effect of species was detected in the relationship 

between spring site temperature and captures in either 2011 (F=0.04, P=0.83) or 2012 (F=0.7, 

P=0.41).  Similarly, the relationship between the date of warming at capture sites and the number 

of captures was not different for PL and PMG in either 2011 (F=1.38, P=0.25) or 2012 (F=0.03, 

P=0.87). 

 

4.4.7 PREVALENCE OF BOT FLY INFESTATION 

Bot fly prevalence was calculated as the proportion of mice out of all tagged mice that hosted at 

least one bot fly larva.  Overall, prevalence of bot fly infestation was the highest in 2012 

(P<0.0001). A greater proportion of PL were infested with bot flies in 2012 than in either 2010 

(P<0.0001) or 2011 (P<0.0001), but infestation prevalence did not differ between 2010 and 2011 

(P=0.24).  Overall infestation prevalence of PMG was low, and no infested PMG were caught in 

2011.  The most infested PMG were caught in 2012, and this was significantly greater than 

infestation prevalence in 2011 (P=0.011).   

 
TABLE 4-6: PREVALENCE OF BOT FLY INFESTATION OF PL AND PMG 

 
 PL

 
PMG

 
STATISTICS

 
 UNINFESTED INFESTED %INFESTED UNINFESTED INFESTED %INFESTED P (FET) 

 
MALES 39 1 0.025 40 2 0.048 1 

FEMALES 17 1 0.056 33 0 0 0.353 
  

2010 56 2 0.034 73 2 0.027 1 
 

MALES 175 2 0.011 33 0 0 1 
FEMALES 129 2 0.015 44 0 0 1 

  
2011 304 4 0.013 77 0 0 0.588 

 
MALES 111 55 0.331 17 1 0.056 0.014* 

FEMALES 97 56 0.366 18 3 0.143 0.049* 
  

2012 208 111 0.348 35 4 0.103 0.002** 
 

Table 4-6: Prevalence of bot fly infestation of PL and PMG in 2010, 2011, and 2012.  Infestation prevalence of bot 
flies was calculated as the number of mice that had at least one bot fly divided by the total number of mice.  
Significance of differences between species are marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001).  
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The genders did not differ in infestation rate in either PL (P=0.15) or PMG (P=1).  Reproductive 

condition of females also did not affect the incidence of bot flies for PL (P=0.88) or PMG (0.28). 

Adult and younger PMG were infested at approximately equal rates (P=0.43; Figure 4-7).  PL 

adults, however, were more likely to be infested than younger PL; this was found for both males 

(P=0.002) and females (P=0.033). 

PL had a higher incidence of botfly infection than PMG in 2012, and this was true of both males 

and females (Table 4-6).  Prevalence of bot flies in adult PL was significantly greater than in 

PMG adults (P<0.0001), but this difference was not significant for sub-adult and juvenile mice 

(P=0.13).   

 

Figure 4-7: Prevalence of bot fly infestation of male and female PL and PMG.   Significance of differences between 
adults and younger mice is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 
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4.5 DISCUSSION 

4.5.1 THE LENGTH OF THE BREEDING SEASON 

Abundance of PL was significantly greater than that of PMG in two out of three years in this 

study (Chapter 2), and these differences are reflected in the number of estimated births.  A 

bimodal distribution of births was often observed during this study (Figure 3-2); this lends 

support to the hypothesis that there is a mid-summer lull in breeding in these species (Wolff 

1996), which may be caused in part by the loss of overwintered females from the population.  

Though it is likely that some pregnancies were overlooked due to inconsistencies in longitudinal 

trapping records, there was no difference between species in trappability (Table 4-4); thus, the 

number of pregnancies should be underestimated for PL and PMG in the same way.  Can 

differences in the length of their breeding seasons explain the changes in abundance of each 

species observed during this study? 

Photoperiod is a primary cue for the initiation of spring breeding for P. maniculatus (Price 1966; 

Millar and Herdman 2004) and P. leucopus (Whitaker 1940; Heideman et al. 1999).  Spring 

breeding is stimulated by increasing photoperiod and is mediated by temperature such that 

breeding begins following sudden rises in temperature that coincide with increasing day length 

(Sadleir 1974).  Similarly, the cessation of breeding in higher latitude populations is thought to 

be closely tied to declining temperature, perhaps due to the increased cost of maintenance at 

lower temperatures (Sadleir et al. 1973) and energy requirements of lactation (Harland and 

Millar 1980). 

Individuals in syntopic populations of PL and PMG experience the same climatic conditions; 

thus, if they differ in breeding season length, the explanation must lie in species-specific 

responses to environmental cues such as temperature or photoperiod.  There is some evidence 

that responsiveness to photoperiod is under genetic control for PL (Heideman and Bronson 

1991).  Myers et al. (2005) proposed that the onset of breeding of PL in northern Michigan may 

be influenced by gene flow from southern populations, where this species typically begins 

breeding in March (Brown 1964; Baker 1983).  Similarly, the onset of breeding for PMG may be 

influenced by gene flow from northern populations, which begin breeding in April or May 

(Millar et al. 1979).   
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In this study, PL began breeding earlier and ceased breeding later than PMG in all years except 

2011, when PMG began breeding earlier.  Analysis of ground temperature and capture records 

suggests that differences between species in the date of onset of breeding were not due to 

differences in temperature.  The number of captures was not correlated with spring temperature 

at capture sites (Figure 4-6), but temperature varied little between sites (Figure 4-5). These 

observations support the hypothesis that breeding season length may be a species-specific niche 

difference where PL and PMG co-occur. 

There is phenotypic variation in the responsiveness of individuals to photoperiod (Heideman et 

al. 1999), and natural populations of PL consist of a mixture of genetically determined 

phenotypes that are intermediate between absolutely photoresponsive and absolutely non-

responsive (Heideman and Bronson 1991).  Comparisons of the length of interval between the 

first and last recorded births and estimates of population-wide dates of onset and cessation of 

breeding suggest that there were fewer PMG than PL that bred either very early or very late.  A 

possible explanation for this is that there is less phenotypic plasticity in the responses to 

environmental cues regulating breeding in PMG than there is in PL.  

Peromyscus with longer breeding seasons have a greater annual reproductive growth than those 

with short breeding seasons (Millar et al. 1979); it is thus possible that differences in population 

growth between PL and PMG are influenced by breeding season length.  Over the course of this 

study, PL bred for 24 days longer than PMG on average. PMG experienced the shortest breeding 

season and lowest abundance in 2012, at the same time that PL experienced the longest breeding 

season and greatest abundance.  Further, PL bred for nearly 50 days longer than PMG in 2012, 

which was the largest difference in breeding season length between species – this coincided with 

the largest difference in abundance observed in this study. 

A longer breeding season was not always associated with greater abundance, however.  PL bred 

for the same amount of time in 2010 and 2011 (approximately 130 days), but its abundance was 

greater in 2011 than 2010.  PL bred for 21 days longer than PMG in 2010, but no differences in 

abundance were observed that year.  In contrast, PL and PMG differed in breeding season length 

by only 5 days in 2011, yet their abundance differed strongly.  The overall length of the breeding 

season is thus not a consistent predictor of patterns of abundance, suggesting that the effect of 
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breeding season length on population growth is mediated by other factors.  What could cause a 

longer breeding season to result in increased population growth in some years but not others? 

For populations in which YOY breed in their natal year, an early onset of the breeding season 

maximizes total reproduction because mature YOY tend to dominate breeding in late summer 

(Havelka and Millar 2004) and early-born YOY are more likely than those born later to have 

litters of their own (Sharpe and Millar 1991).  Myers et al. (2005) observed that PL increases 

faster and to a greater maximum in years following short and mild winters than in years 

following long and harsh ones.  In this study, spring and overall PL abundance were highest in 

2012, which was preceded by the mildest and shortest winter experienced by mice (Chapter 2). 

Reproductive output of PL YOY females was the highest in 2012 (Chapter 3), perhaps the result 

of successful early reproduction by their overwintered parents. 

Early onset of breeding, however, is not always advantageous. Newborn mice suffer decreased 

growth rates at low temperatures and require greater maternal care in the nest (King 1968; 

Harland and Millar 1980).  Breeding females must balance this need with longer bouts of 

foraging outside the nest to meet the energetic requirements of lactation (Millar and Innes 1985; 

Millar et al. 1990). Spring breeding begins following sudden rises in temperature that coincide 

with increasing photoperiod (Jameson 1953; Sheppe 1963; Brown 1964); however, once 

breeding has begun, further declines in temperature in the early spring may not cause cessation 

of reproduction (Sadleir 1974).  An increase in temperature in the early spring may thus cause 

breeding to begin too early, resulting in reduced maternal survival and reproductive success. 

I was not able to assess failed early reproduction; however, some trends observed during this 

study indirectly suggest that this occurred in 2010.  The breeding season of 2010 was preceded 

by a relatively harsh and long winter (Chapter 2), and, consistent with the predictions of Myers et 

al. (2005), both spring and overall PL abundance were low.  Based on the timing of the first 

known birth, I estimated that PL began breeding on April 18, 2010.  This was nearly identical to 

the onset of breeding in 2012 (Table 3-2); however, spring conditions in 2012 were mild whereas 

conditions in early 2010 were colder.  In 2010, female PL that established residency appeared on 

the grid later than female PMG, but the opposite trend was found for males (Chapter 3), 

suggesting that a sex-specific process was responsible.  These observations suggest that PL may 
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have begun breeding in 2010 under harsher conditions, resulting in both failed reproduction and 

increased mortality of overwintered females.  This might explain the absence of a numerical 

advantage for PL even though it bred for 21 days longer than PMG. 

 

4.5.2 SUCCESSFUL EARLY BREEDING MAY CONFER A COMPETITIVE ADVANTAGE 

I proposed in Chapter 3 that the high density of adult PL may have led to reproductive inhibition 

of YOY PMG.  Here, I suggest that the density of breeding adult female PL could have 

negatively impacted YOY PMG in 2012.  PMG stopped breeding on July 31 in 2012, nearly one 

month earlier than in previous years.  The short breeding season for PMG in 2012 may have been 

caused by the lack of reproduction by PMG YOY females (Chapter 3).  Because no PMG YOY 

females on the study grid bred in 2012, after OW females disappeared from the grid in early 

August, it is possible that no further reproduction occurred.  These patterns suggest that some 

factor caused reduced reproductive rates and may have suppressed reproduction in PMG YOY 

females, which led to a shortened breeding season.   

Both species occurred at high spring abundance in 2012, possibly due to enhanced overwinter 

survival conferred by a mild winter.  The first recorded PL birth occurred on March 23, more 

than two weeks before the first recorded PMG birth (Table 3-2); similarly, population-wide onset 

of breeding for PL was more than a week before PMG.  Early breeding in mild conditions may 

give YOY PL a competitive advantage over YOY PMG.  When early breeding is successful, 

early-born young can become independent and establish territories when densities are low 

(Sharpe and Millar 1991), and may then be able to exclude later-born young from establishing 

territories in preferred habitats.  These two species are known to be territorial and defend a core 

home range (Dooley Jr. and Dueser 1996).  The victor in aggressive contests is often the resident 

rather than the intruder (Wolff et al. 1983); however, larger size is also advantageous (Garten 

1976; Bowers and Smith 1979).  Early-born young may have an advantage over late-born young 

in aggressive contests because they are the residents, and because they have more time to grow 

to a larger size.  A later onset of breeding may thus confer a disadvantage when winters are mild 

and early breeding is successful.   
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Figure 4-8: Seasonal distribution of the date of first appearance of resident and non-resident YOY female PL and 
PMG. Mean dates of first appearance of residents (R; purple) and non-residents (NR; green) are marked with 
vertical dashed lines.  Significance of differences between R and NR YOY females is marked (+: 0.05<P<0.1; *: 
P<0.05; **: P<0.01; ***: P<0.001). 

 

There is some evidence from this study that supports this hypothesis.  First, YOY females that 

appeared early on the grid were more likely to become residents (persist longer than 14 days) and 

thus to establish territories than YOY females that appeared later (Figure 4-8).  This was found 

for both PL (t=-5.27, P=5.9E-07) and PMG (t=-2.85, P=0.006).  A second line of evidence 

suggests that the species that begins breeding (successfully) earlier tends to establish territories 

before the species that begins breeding later (Figure 4-9).  PMG began breeding earlier than PL 

in 2011, and PMG residents appeared on the grid earlier than PL residents (P=0.002).  PL began 

breeding earlier than PMG in 2012, and PL residents tended to appear on the grid earlier than 

PMG residents (P=0.1). 
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Figure 4-9: Probability density function of the distribution dates of first appearance of resident PL and PMG in (A) 
2010, (B) 2011, and (C) 2012. Mean FD is marked with dashed vertical lines.  Significance of differences between 
species in FD is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

I compared mean non-adult body weights of female YOY PL and PMG (Table 4-7) to assess 

whether size differences were present between early- and late-breeding YOY.  In 2012, PL began 

breeding earlier than PMG, and female YOY PL were significantly heavier than female YOY 

PMG (P=0.02).  In 2011, on the other hand, PMG began breeding earlier than PL, and female 

YOY PMG tended to be heavier than female YOY PL (P=0.06).  Taken together, these three 

lines of evidence suggest that (1) YOY are more likely to establish territories if they are born 

early and thus appear on the grid early, (2) successful early breeding may be associated with 
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establishing territories early, and (3) successful early breeding may allow early-born YOY to 

grow larger than those that are born later, which could confer a competitive advantage. 

 
TABLE 4-7: WEIGHT OF FEMALE YOY 

 
 PL

 
PMG

 
STATISTICS

 
 MICE WEIGHT SE MICE WEIGHT SE DF T P 

 
2010 11 13.30 0.54 18 13.41 0.65 26.85 -0.13 0.894 
2011 47 13.45 0.27 24 14.73 0.61 32.06 -1.93 0.062+ 
2012 81 14.83 0.40 6 11.44 1.04 6.59 3.06 0.020* 

 
Table 4-7: Comparison of non-adult weights of female YOY PL and PMG.   An average non-adult weight was 
calculated for each individual; mean non-adult weights were compared between species.  Significance of differences 
in mean non-adult weight between PL and PMG is marked (+: 0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

 

4.5.3 THE IMPACT OF BOT FLY INFESTATION ON REPRODUCTIVE OUTPUT 

Evidence indicates that bot fly infestation enhances survival of white-footed mice (Wecker 1962; 

Goertz 1966; Hunter et al. 1972; Burns et al. 2005), possibly at the cost of reproductive success.  

Parasitized males have considerably compromised gonadal development, reflecting a diversion 

of energy from reproduction into survival (Wecker 1962; Timm and Cook 1979; Burns et al. 

2005).  Infested females have fewer litters and fewer total offspring than uninfested females 

(Burns et al. 2005).  During this study, bot fly infestation was low in 2010 and 2011 (1-3% of 

mice were infested), but was significantly higher in 2012 (10-35% infestation; Table 4-6). 

The seasonal distribution of PL births in 2012 differs from patterns in other years and from 

patterns in PMG (Figure 3-2). While there was a general pattern of two seasonal groupings of 

births (early and late summer), the late summer grouping exhibits two peaks in births (Figure 

4-4), suggesting that reproductive output may have been somewhat reduced in late July and 

August.  The prevalence of bot fly infestation was significantly greater in 2012, particularly for 

PL (Table 3-6).  Further, the timing of the apparent reduction in PL births coincided with the 
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interval of time over which infested individuals were trapped, which lasted from July 10 – 

September 18. 

Population fluctuations of mice may have a time-lagged effect on the infestation prevalence of 

bot flies.  Burns et al. (2005) noted that the rate of infestation was higher in years following 

years of peak mouse density, and lower following years of low mouse abundance.  This 

hypothesis is supported by results from this study, though a more long-term study is required for 

verification.    I found that bot fly infestation was the highest in 2012 (Table 4-6), which was the 

only year in this study that followed a year of high abundance. 

Infested mice may employ life history strategies that decrease current reproduction to promote 

future reproduction (Forbes 1993; Perrin et al. 1996; Richner 1998; Richner and Tripet 1999). 

Infested juveniles may delay the date of first reproduction (Agnew et al. 2000), and infested 

adults may shift the order of litter sizes within their life cycle (Cole 1954). These life history 

shifts can have negative impacts on population dynamics by lengthening generation time (Cole 

1954).  In this study, I found that the prevalence of bot fly infestation was significantly higher in 

PL than in PMG (Table 4-6).  Following years of high PL abundance, unequal rates of parasitism 

could cause reduced reproduction in PL, and may possibly slow the process of faunal turnover. 
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CHAPTER 5.  

SPATIAL RELATIONSHIPS AND SOCIAL INTERACTIONS IN A COMMUNITY OF 

PEROMYSCUS  IN NORTHERN MICHIGAN 

 

 

5.1 SUMMARY 

Climate-induced ecological replacement of the ‘northern’ P. maniculatus gracilis by the 

‘southern’ P. leucopus has been documented with long-term studies in the Great Lakes Region 

(Long 1996; Myers et al. 2005).  The importance of biotic interactions in shaping species 

responses to climate change (Tylianakis et al. 2008; Gilman et al. 2010; Urban et al. 2012; 

Zarnetske et al. 2012) suggest that if P. leucopus and P. m. gracilis are competitors where they 

co-occur, ecological replacement may also be affected by interspecific competition.  Few studies 

have investigated interspecific interactions of these two species in communities where they are 

syntopic in the Great Lakes Region. 

It is possible that social interactions (both within and between species) are reflected in the spatial 

distribution of individuals.  In this chapter, I characterize the distribution of P. leucopus and P. 

m. gracilis across the study grid, then use modified versions of the nearest neighbor method 

(Skellam 1952) to analyze temporal patterns in spatial relationships.  I assess (1) within-species 

variation in the spacing of males and females to assess the effect of social interactions on spatial 

relationships, and (2) differences in the spacing between P. leucopus and P. m. gracilis captures 

to investigate whether spatial relationships are consistent with a hypothesis of interspecific 

competition.  Differences between species in habitat associations are also investigated as a 

possible cause of spatial relationships. 
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Identification of ‘preferred’ and ‘avoided’ sites revealed substantial non-overlap in usage of the 

grid.  These differences, however, could be due to differences between species in habitat 

preferences; P. leucopus tended to be found more often than expected at sites with large trees, 

while P. m. gracilis was most often captured at more densely vegetated sites.  Analysis of nearest 

interspecific neighbor distances (NIN) suggests that spacing patterns of P. leucopus and P. m. 

gracilis may be influenced by overall density.  The association of greater NIN with periods of 

high total mouse density (but not with lower densities) raises the possibility that competition may 

be occurring in this community, even in light of differences in habitat associations. 

The distributions of male and female mice observed here are consistent with observations that 

the spacing between female mice is approximately regular during the breeding season (Metzgar 

1971; Fairbairn 1977; Harland et al. 1979), but aggregated during the rest of the year (Metzgar 

1979; Mihok 1979).  The temporal variation in the spatial distribution of female mice, the 

stronger effect observed for breeding females, and the relatively weaker effect observed for 

males suggest that females (of both species) in this community maintain breeding territories 

through social interactions. 

 

 

5.2 INTRODUCTION 

Climate-induced ecological replacement of the ‘northern’ P. maniculatus gracilis by the 

‘southern’ P. leucopus has been documented with long-term studies in the Great Lakes Region 

(Long 1996; Myers et al. 2005).  Gradually warming winters over the last 30-40 years in this 

area have facilitated northward range expansion of P. leucopus, and communities in which P. 

leucopus and P. m. gracilis co-occur have become characterized by strong numerical dominance 

of P. leucopus (Myers et al. 2009). 

Regular variation in climate may promote stability within communities by ameliorating effects 

by superior competitors (Post 2012).  In the absence of competition, many cold-adapted species 

can persist in environments even after their optimal habitat disappears because their absolute 

rates of population growth remain positive; with competition, these species become extinct once 
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better adapted competitors arrive (Urban et al. 2012).  Coexistence of P. leucopus and P. m. 

gracilis close to the northern range boundary of P. leucopus may have been maintained by their 

different winter adaptations and the frequency of mild versus harsh winters (Wolff 1996).  This 

balance, however, has been upset by recent climatic warming in the northern Great Lakes region 

(Myers et al. 2005).   

Recent empirical studies suggest that competition can facilitate climate-induced extinctions 

(Sinervo et al. 2010; Jankowski et al. 2010) by lowering fitness and population abundances 

(Urban et al. 2012). Competition at range boundaries may explain observations that species 

adapted to warmer climates generally colonize warming areas faster than resident species 

disappear (Kelly and Goulden 2008).  It is possible that P. m. gracilis would be able to persist in 

areas that are becoming increasingly warm if P. leucopus were not also increasing in abundance; 

the combination of sub-optimal environmental conditions and increased density of P. leucopus 

may lead to ecological replacement. 

The role of interspecific interactions in the replacement of P. m. gracilis by P. leucopus has not 

previously been investigated, perhaps due to uncertainty regarding the importance of such 

interactions to population dynamics in communities where these species co-occur.  If 

interspecific competition affects population growth, then it is likely that competition will 

influence how population abundances respond to climate change.  Do co-occurring P. leucopus 

and P. m. gracilis compete in northern Michigan? 

Despite the difficulties of detecting competition with field experiments (Connell 1983; Schoener 

1983), indirect tests for density dependent effects are possible. Regulation of annual population 

growth is hypothesized to be mediated by social interactions, particularly among breeding 

females (Harland et al. 1979).  Available territories in which to breed may be a sex- and season-

specific limiting resource for Peromyscus (Harland et al. 1979; Lusk and Millar 1989).  Resident 

females exclude other females from their home ranges during the breeding season (Nicholson 

1941; Metzgar 1971, Harland et al. 1979), resulting in a spatial distribution that is approximately 

regular during the breeding season (Metzgar 1971; Fairbairn 1977; Harland et al. 1979) but 

aggregated during the rest of the year (Metzgar 1979; Mihok 1979).   
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The maintenance of spatial relationships necessitates social interaction such as mutual avoidance 

(reported in Clethrionomys; Viitala and Hoffmeyer 1985) or overt aggression (Dooley Jr. and 

Dueser 1996).  P. leucopus is reported to be more aggressive than P. m. gracilis (Stah 1978; 

Long 1996); it is thus possible that P. m. gracilis actively avoids P. leucopus rather than 

engaging in aggressive contests.  If this is true, the spatial patterns that arise from avoidance 

should be detectable in the capture locations of mice.   

In this chapter, I use location information from trapping records and assess temporal patterns in 

the spatial distribution of male and female P. leucopus and P. m. gracilis to find evidence of sex- 

and season- specific social interactions.  I compare the distributions of capture locations and 

assess the degree to which locations of high trap success were shared between species, and 

investigate the distances between interspecific captures to assess whether P. leucopus and P. m. 

gracilis were further apart or closer together than expected by chance.  Possible differences in 

habitat associations are also investigated as a cause of non-overlapping use of the grid. 

 

 

5.3 METHODS 

I monitored a syntopic population of P. leucopus (PL) and P. m. gracilis (PMG) in the Pigeon 

River State Forest in northern Michigan from April to October for three consecutive years.  

Individual mice were tagged with unique identification numbers.  The location of each capture 

was recorded, and mice were released at their capture locations after processing.  Please refer to 

Chapter 2 for a complete trapping protocol.  To detect seasonal changes in the distribution of 

mice, I divided trap records into three temporal groups - spring (SP, April 1-June 20), summer 

(SU, June 21-August 15), and fall (FA, August 16-November 1).  These groups were used in all 

analyses in this chapter. 

Because the number of traps set and the sites at which traps were set varied, simulations were 

used to generate null expectations of the proportion of captures (number of captures divided by 

number of times a trap was set) and nearest interspecific distances under the assumptions that 

mice were equally likely to be trapped at every location and that capture locations were 
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randomly spaced.  All statistical analyses and simulations were run in R, version 3.02 (R 

Development Core Team 2013). 

 

5.3.1 SPATIAL DISTRIBUTION OF PL AND PMG 

How are PL and PMG distributed across the grid, and do these patterns change over time?  I 

constructed heat maps of the locations at which mice were trapped to better visualize and assess 

temporal changes in the centers of activity.  At each location, trap success was calculated as the 

number of captures divided by the total number a trap was set at that location.  To smooth the 

data and make visual comparison of spatial distribution easier, I used a locally weighted 

polynomial regression (LOESS) to extrapolate over areas that were not trapped. 

Sites at which mice were trapped more (‘preferred’ sites) or less often (‘avoided’ sites) than 

expected by chance were identified by comparing the observed trap success at a site to a null 

distribution. Null expectations of the proportion of captures were generated by simulation.  

Simulations referenced the number of mice that were caught; locations of ‘captures’ were then 

randomly chosen from the traps that were set.  Each day in a temporal grouping was simulated 

1000 times, and the number of successes (mice caught) and failures (no mice caught) at each trap 

were recorded. 

Chi-squared analysis was used to compare observed trap success to null expectations and to 

compare the proportion of ‘preferred’ sites that were common to both species.  Fisher’s Exact 

test was used in lieu of Chi-squared analysis when the number of observed captures was low. 

 

5.3.2 HABITAT ASSOCIATIONS 

While I found no difference between species in the relationship between the number of captures 

and spring ground temperature at capture sites (Chapter 4), non-overlapping use of the grid could 

be the result of different habitat preferences rather than competition alone.  To test this 

hypothesis, vegetation and habitat sampling was conducted in summer 2012 at 110 sites (Figure 

5-1).   
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Figure 5-1: Sites at which vegetation and habitat sampling were conducted in summer 2012.  A total of 110 out of 
400 sites were sampled. 

 

Both PL and PMG are known to prefer habitats where downed woody debris (Barry and Francq 

1980; Planz and Kirkland 1992) and herbaceous ground cover (M’Closkey and Lajoi 1975; 

Dueser and Shugart 1978) are abundant.  Habitat selection is probably influenced by the 

availability of food resources and predator avoidance strategies (Bowers and Smith 1979; 

Kaufman et al. 1983).  Habitat measurements were thus chosen to characterize the density of 

vegetation (Vis, Saplings, Open/Shrub/Grass), the structure of ground cover (DWDA, DWDT), 

and the availability of resources including food and nest sites (DBHA, DBHT).  At each sampled 

site, 9 measures of habitat characteristics were recorded (Table 5-1).   
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TABLE 5-1: HABITAT CHARACTERISTICS MEASURED AT 110 SITES 

 
NAME DEFINITION DESCRIPTION 

 

VIS VISIBILITY 
• Distance at which half of a pre-defined object (a 4’x4’ 

posterboard painted with colored squares) held at chest height 
becomes obscured 

GRASS GRASS COVERAGE • Percent of the ground in a 1m radius covered by grass 

SHRUB SHRUB COVERAGE • Percent of the ground in a 1m radius covered by herbaceous 
plants 

OPEN LEAF LITTER • Percent of the ground in a 1m radius that was covered only 
with leaf litter 

DWDT TOTAL DOWNED 
WOODY DEBRIS 

• Total diameter (cm) of downed woody debris (DWD) within a 
1m radius of the center of a site; all pieces of DWD greater 
than 5cm in diameter were counted. 

DWDA SIZE OF DOWNED 
WOODY DEBRIS 

• Average diameter (cm) of downed woody debris (DWD) within 
a 1m radius; all pieces of DWD greater than 5cm in diameter 
were counted. 

SAPLINGS NUMBER OF SAPLINGS • Number of saplings (trees of DBH<10cm and height <2m) 
present within a 5m radius of the center of a site 

DBHT TOTAL AMOUNT OF 
TREE MATERIAL 

• Total DBH (diameter at breast height, measured in centimeters) 
of trees in a 5m radius. 

DBHA SIZE OF TREES • Average DBH (diameter at breast height, measured in 
centimeters) of trees in a 5m radius. 

 
Table 5-1: 9 habitat characteristics were measured at each of 110 sampled sites in summer 2012. 

 

 

Habitat associations of PL and PMG were calculated as the average value of each measured 

habitat characteristic at sites at which mice were trapped more than expected by chance 

(‘preferred’ sites).  If a preferred site was not among the sampled sites, the habitat measures of 

the closest sampled trap or traps were used.  Two-sample t-tests were used to compare mean 

habitat measures of preferred sites of PL and PMG to each other and to mean measures at all 

other sampled sites (the ‘grid mean’). 

 

5.3.3 NEAREST NEIGHBOR DISTANCE 

One commonly used method in the statistical determination of distribution patterns is the nearest 

neighbor method (Skellam 1952; Clark and Evans 1954), in which the distance from each 

individual to its nearest neighbors is compared to an expected distance to quantify the degree that 
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individuals are clumped in space.  I used a modified version of the nearest neighbor method to 

assess patterns in the spacing of PL and PMG and of males and females within species. 

Is the observed average minimum distance between a PL and PMG capture different than 

expected by chance?  The distance to the nearest interspecific neighbor (NIN) was calculated for 

each day as the mean of the distances from each capture to its nearest neighboring capture of the 

other species.  To assess patterns on a broader temporal scale, I averaged data from multiple days 

into a seasonal NIN.  Seasonal NIN was then compared to a null distribution, which was 

simulated as described below under the assumption that mice are neither closer together nor 

further apart than expected by chance. 

Simulations referenced the number of mice that were caught; locations of ‘captures’ were then 

randomly chosen from the traps that were set, and each ‘capture’ was assigned a species identity.  

The distance between each capture and the closest capture of the other species was determined.  

For each season, the mean of simulated minimum distances (one for each day falling within the 

season) was taken.  This process was repeated 1000 times.  PL and PMG were considered to be 

further apart than expected if the observed average minimum distance between a PL and PMG 

capture was greater than the simulated value more than 95% of the time. 

 

 

5.4 RESULTS 

5.4.1 SPATIAL DISTRIBUTION OF PL AND PMG 

Trap success was localized in some areas rather than spread evenly throughout the grid (Figure 

5-2).  Usage of the grid changed both seasonally within years and between years. Areas in which 

trap success of PL was high were often not the same areas in which trap success of PMG was 

high, suggesting some degree of non-overlapping usage of the grid. 
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Figure 5-2: Heat maps of LOESS estimations of trap success at individual trap sites for PL (top) and PMG (bottom) 
in the summers of 2010 (left), 2011 (middle) and 2012 (right).  Darker colors indicate areas of higher trap success. 

 

 

Overall, PL was found more often than expected (‘preferred’) a total of 293 sites, while PMG 

was found more often than expected at 174 locations.  Preferred sites rarely overlapped; during 

the same season, PL and PMG were both found more often than expected at only 4 sites (Table 

5-2).   

PL was found less often than expected (‘avoided’) 35 sites.  Perhaps owing to low PMG 

numbers, I was not able to identify sites that PMG avoided.  The proportion of sites that were 

avoided by PL and also preferred by PMG (7 out of 35 sites) was significantly greater than the 

proportion of sites that were preferred by PL and also preferred by PMG (χ2=28, P<0.0001). 
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TABLE 5-2: NUMBER OF PREFERRED SITES 

 
  FEMALES

 
MALES

 
REPRODUCTIVE FEMALES 

 
SEASON TOTAL 

TRAPS PL PMG SHARED PL PMG SHARED PL PMG SHARED 

 
SP2010 400 8 3 0 6 8 0 6 5 0 
SU2010 360 10 12 1 13 12 1 8 9 0 
FA2010 200 5 1 0 5 2 0 2 0 0 

  
SP2011 400 8 3 0 5 7 0 5 0 0 
SU2011 400 14 20 0 10 15 0 19 10 1 
FA2011 200 10 6 0 5 1 0 0 3 0 

  
SP2012 400 24 10 1 21 5 0 19 5 0 
SU2012 400 21 9 0 25 8 0 14 9 0 
FA2012 200 7 3 0 10 3 0 4 0 0 

  
SP2013 200 3 1 0 4 1 0 2 1 0 

 
Table 5-2: Number of preferred sites (sites at which more captures were made than expected) for PL and PMG.  
During each season, the number of sites preferred by PL and PMG females, males, and reproductive females are 
listed.  The number of individual sites that were preferred by both species in the same season (Shared) is also listed. 

 

 

5.4.2 NEAREST NEIGHBOR DISTANCES 

I used modified versions of the nearest neighbor method (Skellam 1952) to analyze temporal 

patterns in the spatial distribution of mice.  I assessed (1) within-species variation in the spacing 

of males and females to assess the effect of social interactions on spatial relationships, and (2) 

variation in the spacing between PL and PMG captures to investigate whether spatial 

relationships were consistent with a hypothesis of interspecific competition. Null expectations 

were simulated as described above.   

 

5.4.2.1 WITHIN-SPECIES VARIATION IN THE SPACING OF MALES AND FEMALES  

For both species, I tested the hypothesis that mice were neither further apart nor closer together 

than expected at random.  Differences between males and females in spatial relationships may 

reflect the effect of social interactions between individuals.  I therefore investigated the spatial 
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relationships among males, females, and reproductive females.  Mice were considered to be 

significantly further apart than expected if the observed distance to the nearest capture of the 

same gender (or reproductive status) was greater than the simulated value more than 95% of the 

time, and closer together than expected if the observed value was less than the simulated value 

more than 95% of the time.   

PL:  Female PL were either randomly spaced or closer together than expected during the spring, 

and were further apart than expected in the summer (Table 5-3).  The spatial distribution of 

female PL in the fall varied among years; distribution was clumped in fall 2010, random in fall 

2011, and regularly spaced in fall 2012.  Reproductive PL females were further away from each 

other than expected in all seasons except for fall 2010 (random spacing) and spring 2011 (closer 

together than expected).  Spatial relationships between PL males were more often random than 

for females; PL males were only further apart than expected in summer 2010. 

 

 
TABLE 5-3: SPATIAL DISTRIBUTION OF FEMALES AND MALES - PL 

 
 FEMALES

 
REPRODUCTIVE FEMALES

 
MALES

 
SEASON COMPARISON P-VAL COMPARISON P-VAL COMPARISON P-VAL 

  
SP2010 RANDOM 0.128 FURTHER APART 0.034 RANDOM 0.289 
SU2010 FURTHER APART 0 FURTHER APART 0 FURTHER APART 0 
FA2010 CLOSER TOGETHER 0.027 RANDOM 0.204 CLOSER TOGETHER 0.003 

  
SP2011 CLOSER TOGETHER 0 CLOSER TOGETHER 0.007 RANDOM 0.155 
SU2011 FURTHER APART 0.057 FURTHER APART 0 RANDOM 0.129 
FA2011 RANDOM 0.331 FURTHER APART 0.012 CLOSER TOGETHER 0.002 

  
SP2012 RANDOM 0.453 FURTHER APART 0.013 RANDOM 0.462 
SU2012 FURTHER APART 0 FURTHER APART 0 CLOSER TOGETHER 0.054 
FA2012 FURTHER APART 0 FURTHER APART 0.008 RANDOM 0.285 

 
Table 5-3: Spatial distribution of PL females, reproductive females, and males.  For each gender, comparisons are 
made between the observed distance to the nearest capture of the same gender and simulated distances under null 
expectations.  The proportion of simulations that were more extreme than the observed value (P-VAL) are reported. 
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PMG:  PMG females were further apart from each other than expected in 2010 (spring and 

summer) and randomly spaced in 2011 (summer and fall; (Table 5-4).  PMG females were 

further apart than expected in summer 2012 but closer together than expected in fall 2012.  In all 

seasons for which data were available, reproductive PMG females were further apart from each 

other than expected.  Spatial distribution of PMG males was more often random than that of 

females.  PMG males were further apart from each other than expected in summer 2010 and 

summer 2012, but were clustered in summer 2011 and fall 2012. 

 

 
TABLE 5-4: SPATIAL DISTRIBUTION OF FEMALES AND MALES - PMG 

 
 FEMALES

 
REPRODUCTIVE FEMALES

 
MALES

 
SEASON COMPARISON P-VAL COMPARISON P-VAL COMPARISON P-VAL 

  
SP2010 FURTHER APART 0.003 FURTHER APART 0.050 RANDOM 0.410 
SU2010 FURTHER APART 0 FURTHER APART 0 FURTHER APART 0.003 
FA2010 NA NA NA NA RANDOM 0.452 

  
SP2011 NA NA NA NA RANDOM 0.298 
SU2011 RANDOM 0.188 FURTHER APART 0.001 CLOSER TOGETHER 0.006 
FA2011 RANDOM 0.245 FURTHER APART 0 NA NA 

  
SP2012 NA NA NA NA NA NA 
SU2012 FURTHER APART 0 FURTHER APART 0.012 FURTHER APART 0.085 
FA2012 CLOSER TOGETHER 0.003 NA NA CLOSER TOGETHER 0.002 

 
Table 5-4: Spatial distribution of PMG females, reproductive females, and males.  For each gender, comparisons are 
made between the observed distance to the nearest capture of the same gender and simulated distances under null 
expectations.  The proportion of simulations that were more extreme than the observed value (P-VAL) is reported. 
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5.4.2.2 DISTANCE TO NEAREST INTERSPECIFIC NEIGHBOR (NIN) 

I tested the null hypothesis that PL and PMG captures are neither further apart nor closer 

together than expected at random.  PL and PMG were considered to be significantly further apart 

than expected if the observed distance to nearest interspecific neighbor (NIN) was greater than 

the simulated value for at least 950 out of 1000 trials.  Similarly, the species were considered to 

be clustered if observed NIN was less than the simulated value at least 95% of the time. 

 
TABLE 5-5: DISTANCE TO NEAREST INTERSPECIFIC NEIGHBOR  

 
SEASON NIN - OBSERVED NIN – SIMULATED 

(MEAN OF 1000) 
COMPARISON % < OBS % > OBS 

 
SP2010 100.35 116.22 RANDOM 0.87 0.13 
SU2010 41.55 86.71 CLOSER TOGETHER 1*** 0*** 
FA2010 81.03 71.27 RANDOM 0.23 0.77 

  
SP2011 119.38 108.39 RANDOM 0.21 0.79 
SU2011 48.49 48.65 RANDOM 0.50 0.50 
FA2011 117.24 30.31 FURTHER APART 0*** 1*** 

  
SP2012 167.25 63.66 FURTHER APART 0*** 1*** 
SU2012 95.55 31.54 FURTHER APART 0*** 1*** 
FA2012 88.45 36.46 FURTHER APART 0*** 1*** 

  
SP2013 151.87 100.52 FURTHER APART 0.06+ 0.94+ 

 
Table 5-5:  Distance to nearest interspecific neighbor (NIN) for 10 seasons.  For each season, comparisons are made 
between observed NIN and simulated NIN, and the proportion of simulated values that are greater or less than 
observed values are noted.  Significance of differences between observed NIN and simulated NIN is marked (+: 
0.05<P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 

 

 

Results are summarized in Table 5-5.  There was considerable variation among years in the 

spacing of PL and PMG.  PL and PMG were significantly further apart than expected at random 

in all seasons during 2012, fall 2011, and spring 2013.  In summer 2010, in contrast, the spatial 

distribution of PL and PMG was clumped.  Random spacing between PL and PMG was observed 

in spring and fall 2010, and spring and summer 2011. 
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5.4.3 HABITAT ASSOCIATIONS 

It is possible that different habitat preferences explain why PMG was found more often than 

expected at some sites that PL was found to avoid.  Sites at which mice were found more often 

than expected (‘preferred’ sites) differed from sites for which no preference was shown in all 10 

habitat measures (Table 5-1), but to varying degrees.  Little variation was found in the habitat 

associations of either species among years; however, habitat use varied seasonally within years. 

PL:  Sites preferred by PL most often differed in the amount (DWDT) and size (DWDA) of 

downed woody debris and in the amount (DBHT) and size (DBHA) of trees (Table 5-6).   

PL males preferred sites with smaller pieces of downed woody debris, fewer trees and saplings, 

and sites that had less coverage of leaf litter than the grid-wide mean.  Sites preferred by PL 

males in summer tended to have greater visibility than in either spring or fall (df=113, t=2.2, 

P=0.029).   

PL females preferred sites with larger trees and smaller pieces of downed woody debris than the 

grid-wide mean.  Sites preferred by PL females in the summer tended to have more (df=18, 

t=2.2, P=0.037) and larger pieces (df=26, t=2.4, P=0.023) of downed woody debris than sites 

preferred during spring or fall; sites preferred in spring tended to have fewer saplings than in 

summer or fall (df=46, t=2.2, P=0.034). 

Sites at which reproductive PL females were found most often differed from the grid-wide mean 

in most habitat characteristics measured, and most of these differences were observed in the 

spring.  Reproductive PL females were found at sites with less total and smaller pieces of 

downed woody debris, more and larger trees, less grass coverage, and fewer saplings than the 

grid-wide mean.  Sites preferred in summer had larger trees than sites preferred in the spring or 

fall (df=40, t=2.1, P=0.046).  
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TABLE 5-6: HABITAT ASSOCIATIONS OF PL 

 
 PREFERRED

 
ALL OTHER SITES

 
STATISTICS

 
 SEASON MEAN SE MEAN SE DF T P 

 
FEMALES

 
        

DBHA (CM) Summer 20.23 2.98 12.52 1.20 13.46 2.4 0.031 
DWDA (CM) Spring, Fall 4.76 0.80 7.31 0.61 62.73 -2.54 0.013 

 
NE FEMALES

 
 

DWDT (CM) Spring 15.88 3.82 33.97 4.78 93.45 -2.96 0.004 
DWDA (CM) Spring 4.18 0.75 7.40 0.59 54.92 -3.38 0.001 
SAPLINGS (#) Spring 7 1.28 10.36 0.91 15.61 -2.13 0.049 
DBHT (CM) Spring, Summer 66.17 14.12 25.39 2.67 7.51 2.84 0.023 
DBHA (CM) Spring, Summer 26.42 4.18 12.23 1.13 8.06 3.27 0.011 
GRASS (%) Fall 1.67 1.67 14.62 1.90 105 -7.70 7.9E-12 

 
MALES

 
 

DWDA (CM) Spring, Summer 5.14 0.74 7.26 0.64 73.75 -2.17 0.033 
DBHT (CM) Spring 13.80 2.99 29.39 3.01 23.16 -3.66 0.001 
SAPLINGS (#) Summer 4.90 1.40 11.32 0.97 39.56 -3.77 0.0005 

OPEN (%) Summer 49.33 5.47 64.35 2.79 45.01 -2.45 0.018 
 

Table 5-6: Habitat associations of PL females, reproductive females, and males.  The season during which associations 
were found is reported.  Mean habitat characteristics of sites at which PL were found more often than expected were 
compared to mean characteristics of all other sites (for which no preference was shown).  Only significant differences 
between preferred and all other sites are reported (P<0.05). 

 

 

PMG:  Sites at which PMG was found more often than expected differed from the grid-wide 

mean in the amount of trees (DBHT), the degree of visibility (Vis), the proportion of ground 

coverage by shrubbery (Shrub), and the number of saplings (Saplings; Table 5-7). 

PMG males were found most often at sites with fewer saplings and trees, less shrub coverage, 

and more coverage by leaf litter; sites preferred in the fall had fewer trees than in either spring 

(df=26, t=3.3, P=0.003) or summer (df=29, t=2.7, P=0.011).   

PMG females preferred sites with fewer saplings, less grass coverage, more shrub coverage, and 

lower visibility than the grid-wide mean.  Sites at which PMG females were found most often in 
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summer and fall tended to have lower visibility (df=30, t=-2.5, P=0.017) and more saplings 

(df=16, t=-4.2, P=0.0007) than in the spring.   

Reproductive PMG females preferred sites with fewer trees, fewer but larger pieces of downed 

woody debris, and lower visibility than the grid-wide mean; sites preferred in summer were 

associated with the lowest visibility (df=12, t=2.4, P=0.036). 

 

 
TABLE 5-7: HABITAT ASSOCIATIONS OF PMG 

 
 PREFERRED

 
ALL OTHER SITES

 
STATISTICS

 
 SEASON MEAN SE MEAN SE DF T P 

 
FEMALES

 
 

SAPLINGS (#) Spring 2.40 1.60 10.51 0.89 6.85 -4.43 0.003 
GRASS (%) Summer 7.96 2.71 15.17 2.13 61.24 -2.09 0.041 
SHRUB (%) Summer, Fall 36.48 5.34 23.37 2.41 37.23 2.24 0.031 

VIS (M) Summer, Fall 4.54 0.72 7.76 0.50 27.43 -3.69 0.001 
 

NE FEMALES

 
 

DBHT (CM) Spring, Summer 10.91 3.72 29.77 3.02 18.77 -3.92 0.0009 
DWDT (CM) Summer 19.59 4.86 32.51 4.51 40.92 -1.95 0.050 

VIS (M) Summer 5.04 0.97 7.63 0.49 20.43 -2.38 0.027 
DWDA (CM) Fall 10.37 0.56 6.82 0.53 7.18 4.58 0.002 

 
MALES

 
 

SAPLINGS (#) Spring 4.25 1.66 10.61 0.91 11.84 -3.36 0.006 
SHRUB (%) Summer 15.56 4.24 26.84 2.51 30.38 -2.29 0.029 
OPEN (%) Summer 73.89 5.67 57.95 2.82 26.20 2.52 0.018 

DBHT (CM) Fall 8.49 4.90 28.92 2.91 5.49 -3.58 0.014 
 

Table 5-7: Habitat associations of PMG females, reproductive females, and males.  The season during which associations 
were found is reported.  Mean habitat characteristics of sites at which PL were found more often than expected were 
compared to mean characteristics of all other sites (for which no preference was shown).  Only significant differences 
between preferred and all other sites are reported (P<0.05). 
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Differences between species (Table 5-8):  Sites preferred by PL females did not differ from sites 

preferred by PMG females except in summer 2012, when sites preferred by PL females were 

associated with a greater quantity of downed woody debris, more trees, and greater visibility.  

The strongest differences between reproductive PL and PMG females also occurred in 2012.  

Reproductive PL females were associated with sites with more trees, smaller pieces of downed 

woody debris, and greater visibility than reproductive PMG females.   

In comparison with sites at which PMG males were found most often, sites preferred by PL 

males were associated with smaller pieces of downed woody debris, more trees, more saplings, 

and greater visibility. 

 

 
TABLE 5-8: DIFFERENCES BETWEEN PL AND PMG IN HABITAT PREFERENCES 

 
 PL

 
PMG

 
STATISTICS

 
 MEAN SE MEAN SE DF T P 

 
FEMALES

 
       

DWDT (CM) 36.36 5.35 19.69 5.58 36.20 2.16 0.038 
DBHT (CM) 36.38 5.07 19.12 5.13 37.25 2.39 0.022 

VIS (M) 8.39 0.90 4.54 0.72 44.06 3.35 0.002 
 

NE FEMALES

 
       

DWDA (CM) 5.15 0.53 7.73 0.85 34.40 -2.59 0.014 
DBHT (CM) 36.09 3.48 19.81 2.93 155.2 3.58 0.0005 

VIS (M) 8.08 1.11 5.04 0.97 30.98 2.07 0.047 
 

MALES

 
       

DWDA (CM) 5.35 0.41 7.18 0.72 34.14 -2.23 0.032 
DBHT (CM) 22.23 4.12 9.76 3.06 26.53 2.43 0.022 
SAPLINGS (#) 11.81 1.26 6.85 1.73 51.63 2.32 0.024 

VIS (M) 9.43 1.25 5.32 0.91 32.14 2.66 0.012 
 

Table 5-8: Differences in habitat preferences between PL and PMG females, reproductive females, and males.  
Mean and standard errors of habitat characteristics of preferred sites are reported.  Means were compared using two-
sample t-tests; statistics are listed.  Only significant differences between species are reported (P<0.05). 
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Comparison of sites preferred and avoided by PL (Table 5-9):  When compared to sites at which 

PL was found more often than expected, sites avoided by PL had less grass coverage, less 

downed woody debris, and a greater proportion of open ground covered only by leaf litter.   

 
TABLE 5-9: COMPARISON OF PREFERRED AND AVOIDED SITES - PL 

 
 PREFERRED

 
AVOIDED

 
STATISTICS

 
HABITAT MEAN SE MEAN SE DF T P 

 
DWDT (CM) 36.60 3.80 24.24 3.93 -2.26 109.76 0.026 
GRASS (%) 15.09 1.62 8.47 1.92 -2.64 52.84 0.009 
OPEN (%) 48.28 5.27 72.92 9.42 2.28 18.24 0.035 

 
Table 5-9: Differences in habitat characteristics between sites ‘preferred’ and sites ‘avoided’ by PL.Mean and 
standard errors of habitat characteristics of preferred and avoided sites are reported.  Means were compared using 
two-sample t-tests; statistics are listed.  Only significant differences between preferred and avoided sites are reported 
(P<0.05). 

 

 

Comparison of sites avoided by PL and sites preferred by PMG:  Sites avoided by PL did not 

differ significantly in any habitat measure from sites preferred by PMG (data not shown). 

 

 

5.5 DISCUSSION 

5.5.1 SPATIAL DISTRIBUTION OF MALES AND FEMALES 

Peromyscus populations are characterized by relatively low density and relatively small annual 

fluctuations in numbers (Terman 1968), suggesting that population growth is controlled (Harland 

et al. 1979).  Although weather (Fuller 1969; Myers et al. 2005) and food resources (Bendell 

1959; Fordham 1971) influence abundance, controls on annual population growth are often 

hypothesized to be mediated by behavior (Harland et al. 1979).  Resident females may exclude 

other females from their home ranges (Nicholson 1941; Metzgar 1971; Harland et al. 1979), and 
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males may display aggressive behavior towards juveniles and impact their survival (Sadleir 

1965).  Social interactions may be reflected in the spatial distribution of individuals, because the 

maintenance of spatial relationships (such as a core home range) necessitates behaviors such as 

mutual avoidance (Lusk and Millar 1989) or overt aggression (Dooley Jr. and Deuser 1996). 

Investigations of the spacing of individuals in Peromyscus populations have largely focused on 

females, probably because of their role in reproduction. Results from this study (Table 5-3; Table 

5-4) are consistent with observations that the spacing between female mice is approximately 

regular during the breeding season (Metzgar 1971; Fairbairn 1977; Harland et al. 1979), but 

aggregated during the rest of the year (Metzgar 1979; Mihok 1979).  For both species, females 

were further apart from each other than expected in all summers during this study.  In the spring 

and fall, in contrast, clumped or random distributions of females were sometimes observed.   

The distribution of males, both PL and PMG, tended to be more random than that of females.  

This may be due to the role of females in reproduction (Lackey et al. 1985; Burt 1940).  In 

polygynous mating systems, in which males invest more energy in competition for resources 

than in paternal care (Wolff 1989), males may be less strongly influenced than females by 

seasonal changes in population dynamics and environmental conditions (Trivers 1972).  

Available territories in which to breed may be a sex- and season-specific limiting resource for 

Peromyscus and other rodents (Bujalska 1973; Harland et al. 1979); breeding females tend to 

maintain small exclusive home ranges (Metzgar 1971), but males have a higher propensity to 

explore new areas (Schug et al. 1991). 

The distribution of breeding females was more often regularly spaced than the distribution of all 

females (non-breeding and breeding), suggesting that the maintenance of regular spacing had a 

greater influence on breeding females.  The temporal variation in the spatial distribution of 

female mice, the stronger effect observed for breeding females, and the relatively weaker effect 

observed for males suggest that females in this community maintain breeding territories through 

social interactions. 
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5.5.2 SPATIAL RELATIONSHIPS BETWEEN PL AND PMG 

PL and PMG are extremely similar morphologically and ecologically (Horner 1954; Wolff 1985; 

Long and Long 1993).  They are often difficult to distinguish in the field (Feldhamer et al. 1983; 

Myers et al. 2005).  They exhibit broad niche overlap (Wolff and Hurlbutt 1982), both in 

allopatry and sympatry.  Due to these similarities in morphology, diet, and habitat use, PL and 

PMG have been the subject of numerous investigations and it possible that they are competitors 

where they co-occur. 

There is conflicting evidence in the literature regarding the role of interspecific competition in 

communities of Peromyscus from different geographic areas and amongst different sub-species.  

Master (1977), using a combination of field and laboratory experiments, found that interspecific 

competition played a dominant role in habitat selection of PL and P. maniculatus bairdii (a 

short-tailed grassland subspecies) in southeastern Michigan.  Interspecific territoriality has been 

reported in a community of co-occurring PL and P. maniculatus nubiterrae (a long-tailed forest-

dwelling subspecies similar to PMG) in Virginia, in which individuals competed for nest sites 

and defended core home ranges (Dooley Jr. and Dueser 1996).  It has been hypothesized, 

however, that co-occurring PL and PMG interact ecologically as a single species with neutral 

population dynamics (Wolff 1985), and the victor in aggressive contests is often based on 

residency (i.e. resident or intruder) rather than on species identity (Wolff et al. 1983).  It is 

unknown whether co-occurring PL and PMG compete in the Great Lakes Region. 

The exclusion of one species from the niche of another is difficult to demonstrate (Connell 1983; 

Schoener 1983).  Direct tests for competition typically involve removal experiments, in which 

enclosures are built around study plots and species densities within are manipulated and 

monitored (e.g. Brown and Munger 1985; reviewed in Connell 1983).  In this case, enclosures 

were impractical because of their required size, because Peromyscus are adept at climbing 

(M'Closkey 1975), and because the populations under study are on public land where the 

construction of such structures would not be permitted.  Another approach is to decrease 

populations of one species on experimental plots through continuous trapping and removal.  I 

tested this approach during the summer of 2009 and found it to be impractical due to the speed at 

which new immigrants re-colonized plots. 
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If interspecific competition occurs in this community, it is possible that interspecific territoriality 

or avoidance is reflected in the spatial relationships between individuals.  The distribution of PL 

and PMG across the grid varied seasonally and between years (Figure 5-2).  Identification of 

‘preferred’ and ‘avoided’ sites (sites at which captures were more or less numerous than 

expected by chance, respectively) revealed substantial non-overlap in usage of the grid. 

Analysis of nearest interspecific neighbor distances (NIN) suggests that spacing of PL and PMG 

varied seasonally, and most variation occurred between years rather than within years (Table 

5-5).  Spacing patterns of PL and PMG may be influenced by overall density – in the latter part 

of 2011 and all of 2012, when mice were the most abundant, interspecific captures were further 

apart than expected.  In 2010 and early 2011, on the other hand, spacing of PL and PMG was 

random, except for summer 2010 when PL and PMG were clumped.  The association of greater 

NIN with periods of high total mouse density (but not with lower densities) raises the possibility 

that competition may be occurring in this community, even in light of differences in habitat 

associations (discussed below). 

 

5.5.3 HABITAT ASSOCIATIONS OF PL AND PMG 

Both PL and PMG are found in deciduous woodland areas, especially where herbaceous cover is 

moderate and logs and branches are abundant (Long 1996).  Typical habitat attributes includes a 

canopy (if only of brush) and woody debris (Barry and Francq 1980).  Both species are 

omnivorous (Wolff et al. 1985; Lackey et al. 1985), and both are nocturnal foragers (Madison 

1977).  Despite these similarities, there is some evidence that PL and PMG prefer different 

microhabitats.  Reports from single species populations suggest that PL may show a greater 

preference for habitats with diverse ground cover than PMG (Drickamer 1990).  PMG is 

associated with dense hardwood forests and also bogs and swamps (Dice 1925; Hooper 1942).  

PL in Michigan is reported to prefer oak-hickory woods with a diverse understory (Allen 1938; 

Burt 1940; Getz 1961), and may also be more likely than PMG to inhabit less forested areas, 

such as brushy prairies and wooded ravines (Long 1968, 1973).   
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I compared habitat characteristics of sites preferred by PL, sites avoided by PL, and sites 

preferred by PMG (analyses were unable to identify sites that PMG avoided).  Sites that PL 

avoided had less DWD and consisted of greater ground coverage by leaf litter (and consequently 

had less grass and herbaceous cover) than preferred sites (Table 5-9).  Sites avoided by PL did 

not differ significantly in any habitat measure from sites preferred by PMG.  These results 

support the observation (Drickamer 1990) that PL prefer habitats with an abundance of diverse 

ground cover. 

Forest-dwelling PL and PMG both preferentially use protected rather than exposed microhabitats 

(Kaufman et al. 1983; Travers et al. 1988; Drickamer 1990).  In this study, both species were 

found more often than expected at sites that had fewer saplings (very small trees with 

DBH<10cm and height >2m) than the grid-wide average.  Saplings on the grid often grew close 

together, had very few lateral branches, and had leaves only on their topmost branches.  Because 

of these characteristics, sites at which there were many saplings were often sparsely vegetated 

with herbaceous cover.  Visibility at these sites was generally high because there were no leaves 

between the ground and the tops of the saplings.  The number of saplings found at a site was 

positively correlated with the visibility at the site (F=10.76, P=0.001); thus, the preference for 

sites with fewer saplings may indicate a preference for densely vegetated and protected habitats. 

Similarly, large trees provide both nest sites and food resources (Long 1996), and they are 

included in the preferred habitat dimensions of both PL and PMG (Kaufman et al. 1983; 

Drickamer 1990).  In this study, average tree size (DBHA) and vegetation density (Vis) were 

highly and inversely correlated (P=0.007; Table 5-10), indicating that large trees were often not 

surrounded by dense vegetation.  This suggests that mice may have to choose between 

microhabitats containing large trees and those that are densely vegetated. 
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TABLE 5-10: CORRELATIONS BETWEEN HABITAT CHARACTERISTICS 

 
HABITAT CHARACTERISTIC

 
HABITAT CHARACTERISTIC

 
STATISTICS

 
NAME DESCRIPTION NAME DESCRIPTION F P 

 
DBHA LARGER TREES VIS GREATER VISIBILITY 7.52 0.007 
SHRUB MORE SHRUB COVERAGE DWDT LESS TOTAL DWD 2.98 0.087 
SHRUB MORE SHRUB COVERAGE OPEN LESS LEAF LITTER 113.20 1.6E-18 
SHRUB MORE SHRUB COVERAGE GRASS LESS GRASS COVERAGE 6.59 0.012 

SAPLINGS MORE SAPLINGS VIS GREATER VISIBILITY 10.76 0.001 
 

Table 5-10: Correlations between habitat characteristics measured in this study. 
 

 

Sites preferred by PL contained significantly larger trees than those preferred by PMG (Table 

5-8).  PMG, on the other hand, was captured more often than expected at sites with lower 

visibility but fewer trees (Table 5-7).  Further, while both species were found more often than 

expected at sites with fewer saplings, sites preferred by PL contained significantly more saplings 

(and consequently less foliage) than sites preferred by PMG.  These results suggest that PL and 

PMG may select habitats based on different criteria.  PL may prefer sites with large trees over 

those that are densely vegetated but without trees, while PMG may prefer densely vegetated sites 

over those with trees.  Habitat selection is hypothesized to be related to the suitability of different 

combinations of microhabitat features in providing resources such as food and nest sites, or 

protection from predators (Kaufman et al. 1983; Travers et al. 1988).  It is thus possible that 

differences in microhabitat associations reflect differences in food selection, nest site 

requirements, or predator avoidance strategies.  It is also possible that habitat preferences are the 

same, but one species is restricted to sub-optimal habitat by the other.  

It has been hypothesized that the partitioning of microhabitats between males and females is a 

strategy that maximizes reproductive success (Bowers and Smith 1979).  In this study, 

differences in habitat associations were observed between males and reproductive females within 

species (Table 5-6; Table 5-7).  Habitat associations found in this study suggest that reproductive 

females may select sites that are characterized by dense vegetation at a height of at least several 

inches above ground.  This may come at the expense of having less DWD available (Table 5-10).  
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Males, in contrast, were found more often than females at sites where above-ground cover was 

less abundant.   

 

 

5.6 CONCLUSION 

The importance of biotic interactions in shaping species responses to climate change (Tylianakis 

et al. 2008; Gilman et al. 2010; Urban et al. 2012; Zarnetske et al. 2012) suggest that if P. 

leucopus and P. m. gracilis are competitors where they co-occur, ecological replacement may 

also be affected by interspecific competition.  Though there is some evidence of interspecific 

territoriality (Dooley Jr. and Dueser 1996) and microhabitat partitioning (Wilson 1968; Geluso 

1971; Master 1977; Holbrook 1978), it has also been hypothesized that co-occurring P. leucopus 

and P. maniculatus interact ecologically as a single species with neutral population dynamics 

(Wolff 1985).  Few studies have investigated interspecific interactions in communities where 

these species are syntopic in the Great Lakes Region. 

It is possible that social interactions (both within and between species) are reflected in the spatial 

distribution of individuals across the study grid.  Results from this study (Table 5-3; Table 5-4) 

are consistent with observations that the spacing between female mice is approximately regular 

during the breeding season (Metzgar 1971; Fairbairn 1977; Harland et al. 1979), but aggregated 

during the rest of the year (Metzgar 1979; Mihok 1979).  The temporal variation in the spatial 

distribution of female mice, the stronger effect observed for breeding females, and the relatively 

weaker effect observed for males suggest that females (of both species) in this community 

maintain breeding territories through social interactions. 

The distribution of P. leucopus and P. m. gracilis across the grid varied seasonally and between 

years (Figure 5-2).  Identification of ‘preferred’ and ‘avoided’ sites revealed substantial non-

overlap in usage of the grid.  These differences, however, could be due to differences between 

species in habitat preferences; P. leucopus tended to be found more often than expected at sites 

with large trees, while P. m. gracilis was most often captured at more densely vegetated sites.  

Analysis of nearest interspecific neighbor distances (NIN) suggests that spacing patterns of P. 
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leucopus and P. m. gracilis may be influenced by overall density.  The association of greater 

NIN with periods of high total mouse density (but not with lower densities) raises the possibility 

that competition may be occurring in this community, even in light of differences in habitat 

associations. 
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CHAPTER 6.  

ENVIRONMENTAL CONDITIONS AND SOCIAL INTERACTIONS MAY MEDIATE 

ECOLOGICAL REPLACEMENT OF PEROMYSCUS MANICULATUS GRACILIS BY 

PEROMYSCUS LEUCOPUS IN NORTHERN MICHIGAN 

 

 

6.1 INTRODUCTION 

One of the major challenges in ecology is to predict how environmental change affects 

fluctuations in abundance of species in a community (Ives 1995; Kareiva et al. 1993; Gilman et 

al. 2010).  Changes in abundance, however, depend not only on the direct effects of 

environmental conditions on reproductive success, but also the indirect effects of interspecific 

interactions that can serve as biotic multipliers of climate change (Tylianakis et al. 2008; Urban 

et al. 2012; Zarnetske et al. 2012).  Under directional environmental change, niche or life history 

differences between species can become sources of competitive advantages (Brown et al. 2001; 

Tilman and Lehman 2001; Zavaleta et al. 2003) and can lead to rapid changes in community 

structure (Ernest et al. 2008).  Variation in the responses of species to shifting climate regimes is 

ubiquitous in nature and can often shift competitive balances within communities to favor some 

species over others (Tylianakis et al. 2008). 

Climate-induced ecological replacement of the ‘northern’ P. m. gracilis by the ‘southern’ P. 

leucopus has been documented with long-term studies in the Great Lakes Region (Long 1996; 

Myers et al. 2005).  Gradually warming winters over the last 30-40 years in this area have 

facilitated northward range expansion of P. leucopus, and communities in which P. leucopus and 

P. m. gracilis co-occur have become characterized by strong numerical dominance of P. 

leucopus (Myers et al. 2009).  I conducted a three year field study of syntopic P. leucopus and P. 
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m. gracilis in northern Michigan.  I documented abundance, survival, and reproductive traits to 

provide a detailed examination of population dynamics in a community undergoing faunal 

turnover.  Abundance of P. leucopus and P. m. gracilis differed strongly in two out of three 

years; community structure shifted from roughly equal abundance in 2010 to strong numerical 

dominance of P. leucopus in 2011 and 2012 (Chapter 2).  Data on short-term population 

fluctuations, such as those observed in this study, may be useful in predicting long-term 

responses of population densities to directional environmental changes (Ives 1995). 

Niche or life history differences can facilitate coexistence when the environment is temporally 

heterogeneous (Caceres 1997; Adler et al. 2006), but can lead to rapid changes in community 

structure when environmental change is directional (Ernest et al. 2008).  In order to cause 

changes to abundance and community structure, differences between species must result in 

differential reproductive success.  It is thus necessary to determine how species differences 

interact with environmental conditions to cause temporal fluctuations in reproductive success 

that ultimately facilitate replacement.  If these trait differences are responsible for replacement, 

the mechanisms by which they lead to changes in abundance should be reflected in within-

species variation in reproductive success. 

In this chapter, I provide a summary and synthesis of results from my three year field study.  P. 

leucopus and P. m. gracilis have been the subject of numerous investigations, and the ecological 

replacement of P. m. gracilis by P. leucopus has been established with long-term studies in the 

Great Lakes Region (Long 1996; Myers et al. 2005).  Differences between species in traits, the 

processes that result in changes in reproductive success, and the role of interspecific interactions 

in replacement in communities where these species co-occur, are not well understood.  I first 

identify traits in which P. leucopus and P. m. gracilis differ, then discuss the mechanisms by 

which these differences might facilitate ecological replacement by assessing short-term 

fluctuations in survivorship and reproductive patterns.  Lastly, I indirectly assess the role of 

interspecific interactions in replacement by discussing whether observed patterns in P. leucopus 

and P. m. gracilis abundance are likely to be caused by environmental fluctuations alone. 
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6.2 DIFFERENCES BETWEEN SPECIES 

How do P. leucopus and P. m. gracilis differ in niche or life history traits?  Extreme 

morphological and ecological similarities between these two species have been noted by many 

authors (Horner 1954; Wolff and Hurlbutt 1982; Feldhamer et al. 1983; Wolff 1985; Long and 

Long 1993); however, few studies have provided a detailed examination of population dynamics 

from communities in which climate-induced replacement is occurring.  Below, I discuss different 

aspects of their ecology and life histories that might influence replacement. 

 

6.2.1 WINTER ADAPTATIONS 

There is evidence that P. leucopus and P. maniculatus are adapted to different environmental 

conditions.  P. maniculatus may be superior to P. leucopus in winter adaptations including the 

use of torpor, nest building, food storage, and lower food consumption (Wolff and Durr 1986; 

Tannenbaum and Pivorun 1988; Pierce and Vogt 1993), and thus may have an ecological 

advantage in boreal areas (Long 1996).  P. leucopus may be more vulnerable than P. maniculatus 

to cold winters (Howard 1951), particularly to low temperatures and deep frosts (Madison et al. 

1984; Long 1973).  Direct comparisons of winter adaptations were beyond the scope of this 

study.  Nonetheless, if P. leucopus and P. m. gracilis differ in winter adaptations, differences 

between species in winter survival are expected under harsh and mild conditions. 

When winters are harsh, a greater proportion of P. m. gracilis should survive to the following 

spring than P. leucopus.  In Michigan, winter survival of P. leucopus is enhanced when winters 

are mild and survival reduced when winters are harsh (Myers et al. 2005).  The winter of 2011-

2012 was the mildest experienced by mice during this study (Chapter 2); it was thus expected 

that a greater proportion of P. leucopus would overwinter in 2011-2012 than in 2010-2011.  

Nevertheless, the proportion of P. leucopus that overwintered did not differ significantly between 

years, and the proportion of P. leucopus and P. m. gracilis that survived the winter of 2010-2011 

or 2011-2012 also did not differ (Chapter 3).  There was, however, a non-significant trend for a 

greater proportion of mice to survive the winter of 2011-2012 than the previous winter; this 

raises the possibility that winter survival of both species is enhanced when conditions are mild. 
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Analyses comparing winter survival, however, were inconclusive due to the low numbers of 

overwintering mice, especially of P. m. gracilis.  Further, all three winters during this study were 

characterized by lower than average snowfall and earlier than average dates of ice break-up 

(Chapter 2).  It is thus possible that the winter conditions experienced by mice during this study 

were not harsh enough to cause enhanced survival of P. m. gracilis over P. leucopus.  If this is 

the case, environmental conditions in this area may have already warmed sufficiently so that 

conditions under which P. m. gracilis is favored have become rare. 

 

6.2.2 LENGTH OF BREEDING SEASON 

Photoperiod is a primary cue for the initiation of spring breeding for P. maniculatus (Price 1966; 

Millar and Herdman 2004) and P. leucopus (Whitaker 1940; Heideman et al. 1999).  Spring 

breeding is stimulated by increasing photoperiod and is mediated by temperature such that 

breeding begins following sudden rises in temperature that coincide with increasing day length 

(Sadleir 1974).  Similarly, the cessation of breeding in higher latitude populations is thought to 

be closely tied to declining temperature, perhaps due to the increased cost of maintenance at 

lower temperatures (Sadleir et al. 1973) and energy requirements of lactation (Harland and 

Millar 1980). 

Though the onset and cessation of breeding may be regulated by the same types of 

environmental cues, responsiveness to these cues may be under partial genetic control 

(Heideman and Bronson 1991).  Myers et al. (2005) proposed that the onset of breeding of P. 

leucopus in northern Michigan may be influenced by gene flow from southern populations, 

where this species typically begins breeding in March (Brown 1964; Baker 1983).  Similarly, the 

onset of breeding for P. maniculatus gracilis may be influenced by gene flow from northern 

populations, which begin breeding in April or May (Millar et al. 1979).   

In this study, P. leucopus began breeding earlier and ceased breeding later than P. m. gracilis in 

all years except 2011, when P. m. gracilis began breeding earlier (Chapter 4).  These 

observations support the hypothesis that breeding season length may be a species-specific niche 

difference where P. leucopus and P. m. gracilis co-occur.   
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6.2.3 OVERWINTERED FEMALES 

Differing patterns of survival of overwintered (OW) P. leucopus and P. m. gracilis were 

observed in all three years of this study (Chapter 3).  Mean persistence time of OW P. leucopus 

females was significantly longer than that of OW P. m. gracilis females. OW P. leucopus and P. 

m. gracilis males, in contrast, did not differ in this respect.  Further, losses of OW P. m. gracilis, 

both males and females, were concentrated over a period of approximately 60 days in the spring, 

while losses of OW P. leucopus were more evenly distributed throughout the spring and summer. 

Reproductive output by overwintered females is often a large contributor to overall reproduction 

for both P. leucopus and P. m. gracilis (Lusk and Millar 1989), in part due to increased litter size 

relative to young-of-year mice (Lackey  1978; Millar 1982; Myers and Master 1983; Havelka 

and Millar 2004).  OW females produce more litters on average than young-of-year (YOY) 

females in some populations (Harland et al. 1979); however, the contribution of OW females to 

population growth may be constrained by their survivorship in the spring and summer (Millar et 

al. 1979).  Though capable of producing up to 4 litters during a single season (Baker 1983), few 

overwintered individuals survive the entire length of summer and realize their full reproductive 

potential (Havelka and Millar 2004). 

Differences between P. leucopus and P. m. gracilis in the persistence of OW females resulted in 

significant differences between species in the relative contribution of OW and YOY females to 

total reproduction.  OW P. leucopus females produced more litters and thus contributed more to 

population growth than YOY P. leucopus females in all years of this study.  Population increases 

in P. m. gracilis, on the other hand, appeared to depend equally on reproductive output of OW 

and YOY females, and reproduction by YOY may compensate for the relatively early loss of 

OW females from the population.  P. m. gracilis OW and YOY females did not differ in the per-

capita number of litters in any year except in 2012, when no P. m. gracilis YOY bred. 

Differences between P. leucopus and P. m. gracilis in the patterns of survival (and consequently 

in the potential reproductive output) of overwintered mice may constitute a life history difference 

between these species that has not been previously reported. 
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6.3 MECHANISMS OF REPLACEMENT  

Shifts in community structure are ultimately caused by differences in reproductive success of the 

species that make up the community.  Total annual reproductive output of a species consists of 

reproduction of OW and YOY females.  For each of these cohorts, reproductive output is 

influenced by traits such as the abundance of breeding individuals, the rate at which they 

reproduce, their length of persistence on the grid, winter survival, and the age at first 

reproduction; reproduction is additionally influenced by abiotic conditions such as the length of 

winter, and by the length of the breeding season (Figure 6-1). 

 

 

Figure 6-1: Conceptual model of the factors that influence population growth due to reproduction.  Factors 
influencing reproduction are represented in boxes, and the effect of each factor (either directly on another factor or 
indirectly on another effect) is indicated with directional arrows. 
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There was some evidence that mild winter conditions enhance winter survival of both P. 

leucopus and P. m. gracilis (Chapter 3).  Enhanced winter survival increases the abundance of 

breeding OW females in the spring, indirectly affecting the abundance of YOY females later in 

the season.  While OW females dominate reproduction in spring and early summer, late-summer 

litters are typically produced by YOY females (Millar et al. 1979; Havelka and Millar 2004).  

Much of the difference between potential and observed reproductive output in some Peromyscus 

populations is attributable to survival (Schug et al. 1991), so that females that survive longer 

have proportionally more litters than short-lived females (Millar et al. 1992).   

The age at which reproduction begins significantly impacts population growth via reproduction, 

effectively shortening generation time (Cole 1954). The frequency with which breeding females 

have litters is also an important contributor to differences in reproductive output.  Individuals 

that reproduce quickly during a short life may be equally as successful as those that live a long 

time and reproduce at a slower rate, depending on the survival and reproduction of offspring 

(Stearns 1976). 

Breeding season length can influence total annual reproductive output by modifying the length of 

time during which reproduction occurs.  Comparisons of allopatric populations of P. leucopus 

and P. maniculatus that experience different breeding season lengths suggest that basic 

reproductive characteristics such as frequency of litters, litter size, and age at first reproduction 

are not significantly different (Millar et al. 1979).  Consequently, it has been suggested that 

Peromyscus with short breeding seasons have a lower annual reproductive output than 

Peromyscus with longer breeding seasons (Millar et al. 1979).   

 

6.3.1 DIFFERENCES IN SURVIVAL AND REPRODUCTION 

Examination of within-species fluctuations in survival and reproduction may shed light on the 

mechanisms by which species differences result in changes in abundance.  For both species, 

neither the persistence of OW mice nor the reproductive output of OW females differed between 

years (Chapter 3).  Year-to-year within-species variation in survival and reproduction of YOY, 
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however, was observed:  female YOY P. leucopus persisted longer in 2012 than in any other 

year; nevertheless, the rate of reproduction (estimated as the time between litters) by this cohort 

did not differ between years.  In contrast, persistence of YOY P. m. gracilis females was similar 

each year, but reproductive output (estimated as the number of litters per female) of YOY P. m. 

gracilis females was reduced in each successive year, with P. m. gracilis YOY females 

reproducing at a slower rate in 2011 than in 2010 and not at all in 2012. 

Taken together, results suggest that the relative importance of survival and reproductive rate to 

population growth is different for P. leucopus and P. m. gracilis.  Increases in abundance of P. 

leucopus during this study appear to be explained by changes in winter survival and persistence 

of breeding females.  For P. m. gracilis, in contrast, year-to-year variation in population growth 

may occur mainly due to changes in the reproductive patterns of YOY females. 

 

 

6.3.2 HOW DO SPECIES DIFFERENCES AFFECT REPLACEMENT? 

Analyses from this field study indicate that co-occurring P. leucopus and P. m. gracilis differ 

consistently in breeding season length and in the survivorship of OW mice after the start of the 

breeding season.  Differences between species in the age at first reproduction, and reproductive 

rate and persistence of YOY females, were additionally observed in some years (Table 6-1).  

Though I found no significant differences in winter survival of the two species, comparisons of 

physiology and winter adaptations indicate that P. m. gracilis may have an advantage over P. 

leucopus in surviving harsh winters (Wolff and Durr 1986; Tannenbaum and Pivorun 1988; 

Pierce and Vogt 1993; Howard 1951; Madison et al. 1984; Long 1973), and that P. leucopus has 

enhanced survival when winters are mild (Long 1996; Myers et al. 2005).  How do differences 

between species lead to changes in reproductive output under conditions of increasing warming?  
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TABLE 6-1: DIFFERENCES BETWEEN P. LEUCOPUS AND P. M. GRACILIS IN SURVIVAL AND REPRODUCTION 

 
TRAIT P. LEUCOPUS P. M. GRACILIS 

 
 DIFFERENCES BETWEEN SPECIES

 
 

PERSISTENCE OF OW FEMALES Longer average persistence 
Losses spread evenly in spring and 

summer 

Shorter average persistence 
Losses concentrated in spring 

CONTRIBUTION OF OW AND YOY TO 
REPRODUCTION 

Greater contribution of OW Equal contribution of OW and YOY 

BREEDING SEASON LENGTH Begins breeding earlier (2010, 2012) 
Ends breeding later (all years) 

Longer breeding season (all years) 

Begins breeding later (2010, 2012) 
Ends breeding later (all years) 

Shorter breeding season (all years) 
 

 VARIATION WITHIN SPECIES

 
 

PERSISTENCE OF YOY FEMALES Persisted longest in 2012  
TIME BETWEEN LITTERS - YOY  Most frequent litters in 2010 
AGE AT FIRST REPRODUCTION  No YOY bred in 2012 

 
Table 6-1: Differences observed between P. leucopus and P. m. gracilis in survival and reproduction. 

 

 

 

6.3.2.1 INCREASES IN P. LEUCOPUS ABUNDANCE 

Increases in the population growth rate of P. leucopus may be explained by the effect of 

environmental conditions on overwinter survival and spring/summer persistence (Figure 6-2).  

Many of the increases in P. leucopus abundance observed during this study may be due to 

changes in survivorship.  Average persistence time of YOY females was the greatest in 2012 and 

led to increased reproductive output of this cohort.  A longer breeding season lengthens the time 

for potential reproduction.  In this study, the breeding season of P. leucopus extended for 24 days 

longer than that of P. m. gracilis on average; P. leucopus began breeding earlier than P. m. 

gracilis in two out of three years and ceased breeding later than P. m. gracilis in all years 

(Chapter 4).  Because most late-season reproduction is attributed to YOY females (Harland et al. 

1979), a later cessation of breeding could contribute to the differences between species in YOY 

reproductive output observed in 2011 and 2012.  A longer breeding season, however, was not 

consistently associated with greater reproductive output in P. leucopus (Chapter 4), suggesting 
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that the degree to which population growth is affected by breeding season length is mediated by 

other factors. 

 

 

Figure 6-2: Factors influencing reproductive output for P. leucopus.  Green boxes indicate traits in which P. 
leucopus differed from P. m. gracilis.  Green arrows indicate observed effects (e.g., increased persistence of 
breeding YOY females was observed to contribute to reproductive output of YOY females, and reproduction of OW 
females contributes more to total reproduction than reproduction by YOY). Solid boxes and arrows represent traits 
or effects that were observed in all years, while dotted lines indicate that differences were observed in some (but not 
all) years.  Gray boxes and text indicate traits that did not differ between species; gray arrows represent effects that 
were not directly observed by this study. 

 

Reproduction by OW females should be most sensitive to the timing of the onset of breeding 

because their abundance is highest in the spring. The severity and length of winter could be an 

important factor in determining whether an earlier onset of the breeding season results in 

enhanced population growth.  If breeding begins too early in the spring, e.g. if conditions are 
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harsh due to a long winter, both failed reproduction and increased mortality of OW females may 

result (Hayward 1965; Sadleir et al. 1973; Harland and Millar 1980).  There was some indirect 

evidence that P. leucopus began breeding too early in 2010, and mortality of overwintered 

females could explain the relatively low numbers of P. leucopus in that year (Chapter 4).  In 

2011, P. leucopus began breeding later than in 2010, and because the winters preceding these 

years were similar in length and harshness (Chapter 2), a later onset of breeding by P. leucopus 

in 2011 may have resulted in fewer failed reproductive events and lower spring mortality of 

breeding OW females.  Similarly, in 2012, mild spring conditions may have facilitated successful 

early breeding.  This resulted in increased P. leucopus abundance in 2011 and 2012. 

Due to the greater contribution of OW females to reproduction than YOY, any factors that 

influence the abundance, persistence, or rate of reproduction of OW females may result in 

disproportionately large changes in reproductive output in P. leucopus.  The advantages 

conferred to P. leucopus when winters are mild are thus twofold, leading to both increased 

abundance of breeding females in the spring and early reproduction and lower spring mortality of 

breeding females.  The relative contribution of OW females to reproduction and the effect of 

winter conditions on survival and persistence of OW females may explain why abundance of P. 

leucopus is so sensitive to winter conditions (Myers et al. 2005).   

 

6.3.2.2 DECREASES IN POPULATION GROWTH RATE OF P. M. GRACILIS 

Decreases in abundance of P. m. gracilis may be explained by slowed reproductive rate of YOY 

and delays in the age at first reproduction (Figure 6-3); this species may not be as heavily 

influenced by changes in reproduction by OW females.  Though the evidence is inconclusive, it 

is possible that winter survival in both species is enhanced when conditions are mild, leading to a 

greater abundance of breeding females in the spring.  Because of the relatively smaller 

contribution of OW females to reproduction in P. m. gracilis, however, the effect of 

environmental conditions on winter survival may have a smaller impact on population growth in 

this species than on P. leucopus.  P. m. gracilis OW females produced fewer litters on average 

than P. leucopus OW females in all years during this study, and this was due to differences in 

their patterns of spring and summer survival.  Losses of P. m. gracilis OW females were 
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concentrated in the spring and few survived to late summer; these individuals had less time for 

potential reproduction.   

 

 

Figure 6-3: Factors influencing reproductive output for P. m. gracilis.  Red boxes indicate traits in which P. m. 
gracilis differed from P. leucopus.  Red arrows indicate observed effects (e.g., reduced persistence of OW females 
relative to P. leucopus resulted in decreased reproductive output of OW females).  Solid boxes and arrows represent 
traits or effects that were observed in all years, while dotted lines indicate that differences were observed in some 
(but not all) years.  Gray boxes and text indicate traits that did not differ between species.  Gray arrows represent 
effects that were not directly observed by this study; dotted gray arrows indicate that no effect was observed – 
neither the timing of the onset of the breeding season nor the length of winter affected persistence of OW P. m. 
gracilis females in this study. 

 

The relationship between environmental conditions, the timing of the onset of breeding, and 

reproductive output of OW females is not clear for P. m. gracilis.  Though there was some 

variation in the timing of the onset of the breeding season, average persistence of OW P. m. 

gracilis females was not different across years, nor was their reproductive output.  The onset of 
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breeding by P. m. gracilis in northern Michigan may be influenced by gene flow from more 

northern populations (Heideman et al. 2009; Myers et al. 2005) which begin breeding in April or 

May (Millar et al. 1979).  It is possible that a later onset of breeding in this species reduces the 

chances of breeding too early, so that spring survival of OW P. m. gracilis females is not as 

sensitive as OW P. leucopus females to environmental conditions. 

The breeding season of P. m. gracilis was consistently shorter than that of P. leucopus, 

suggesting that potential population growth is lower for P. m. gracilis because there is less time 

for reproduction.  Cessation of breeding is typically regulated by responses to photoperiod and 

temperature (Sadleir 1974; Heideman et al. 1999), but can sometimes occur earlier than expected 

for other reasons (Canham 1969).  In 2012, P. m. gracilis experienced the shortest breeding 

season of any year during this study, and this coincided with slowed population growth and 

reduced reproduction.  No P. m. gracilis YOY females in the study grid bred in 2012 and OW 

females disappeared from the grid by early August (Chapter 3); this suggests that the breeding 

season was shortened due to the lack of reproduction in YOY females. 

Year-to-year variation in population growth of P. m. gracilis may occur mainly due to changes in 

the reproductive patterns of YOY females (Chapter 3). Disparities in population growth of P. 

leucopus and P. m. gracilis were observed during this study in 2011 and 2012, and each of these 

years was characterized by reduced reproduction by P. m. gracilis YOY.  Both slowed 

reproduction (in 2011) and delayed onset of first reproduction (in 2012) were observed.  The age 

at first reproduction may influence population growth more than either longevity or the number 

of litters produced (Cole 1954), and small changes in this trait have the potential to greatly 

impact population abundance.  Approximately 70% of YOY females bred in their natal year 

during this study, except in 2012 when no P. m. gracilis YOY females bred.   

The relatively larger contribution of YOY females to reproduction may make P. m. gracilis more 

sensitive than P. leucopus to fluctuations in reproduction by YOY in their natal year.  Breeding 

by YOY may typically compensate for the relatively early loss of OW females.  The lack of 

reproduction by YOY females in 2012 resulted in a shortened breeding season, reduced annual 

reproductive output, slowed population growth, and contributed to the large disparity in 

abundance observed in that year. 
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6.3.3 ROLE OF INTERSPECIFIC COMPETITION IN REPLACEMENT 

The role of interspecific competition in the replacement of P. m. gracilis by P. leucopus has not 

previously been investigated, probably due to uncertainty regarding the importance of such 

interactions to population dynamics in communities where these species co-occur (Master 1977; 

Wolff et al. 1983; Wolff 1985; Dooley Jr. and Dueser 1996).  It is possible that replacement 

results as both species independently respond to changes in the environment (Wolff 1996; Myers 

et al. 2005).  Recent empirical studies, however, suggest that competition can facilitate climate-

induced extinctions (Sinervo et al. 2010; Jankowski et al. 2010; Urban et al. 2012), and 

competition at range boundaries may explain the disappearance of cold-adapted species from 

sub-optimal environments where they would typically be able to persist at low abundance (Kelly 

and Goulden 2008).  It is possible that P. m. gracilis is able to persist in areas that are becoming 

increasingly warm if P. leucopus were not also increasing in abundance; the combination of sub-

optimal environmental conditions and increased density of P. leucopus may lead to ecological 

replacement. 

Elucidating the role of interspecific interactions in the replacement of P. m. gracilis by P. 

leucopus is difficult.  The duration of this field study was not long enough for an accurate 

assessment of the effect of environment on abundance or reproductive success, and it is unknown 

whether these two species compete in this area. 

 

6.3.3.1 DO CO-OCCURRING P. LEUCOPUS AND P. M. GRACILIS COMPETE? 

The importance of biotic interactions in shaping species responses to climate change (Tylianakis 

et al. 2008; Gilman et al. 2010; Urban et al. 2012; Zarnetske et al. 2012) suggest that if P. 

leucopus and P. m. gracilis are competitors where they co-occur, ecological replacement may 

also be affected by interspecific competition.  There is some evidence of interspecific 

territoriality (Dooley Jr. and Dueser 1996) and microhabitat partitioning (Wilson 1968; Geluso 

1971; Master 1977; Holbrook 1978) in syntopic communities of P. leucopus and PM.  Are P. 

leucopus and P. m. gracilis competitors in northern Michigan?   
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Analyses presented in Chapter 5 suggest that some patterns observed in the spatial distribution of 

mice are consistent with the existence of interspecific competition.  Analysis of nearest 

interspecific neighbor distances (NIN) suggests that spacing patterns of P. leucopus and P. m. 

gracilis may be influenced by overall density – in the latter part of 2011 and all of 2012, when 

mice were the most abundant, interspecific captures were further apart than expected.  In 2010 

and early 2011, on the other hand, spacing of P. leucopus and P. m. gracilis was random, except 

for summer 2010 when P. leucopus and P. m. gracilis were clumped.  The association of greater 

NIN with periods of high total mouse density (but not with lower densities) raises the possibility 

that competition may be occurring in this community. 

Identification of sites at which P. leucopus and P. m. gracilis were found more or less often than 

expected by chance revealed substantial non-overlap in usage of the study grid.  Differences in 

the use of space, however, could be due to differences between P. leucopus and P. m. gracilis in 

their habitat preferences; and indeed, P. leucopus was found more often than expected at sites 

with large trees, while P. m. gracilis was most often associated with sites with more dense 

foliage.  Results from this study were thus inconclusive regarding the existence of interspecific 

competition in this community. 

 

6.3.3.2 CAN ENVIRONMENTAL CONDITIONS EXPLAIN POPULATION GROWTH 
PATTERNS? 

It has been hypothesized that co-occurring P. leucopus and P. maniculatus interact ecologically 

as a single species with neutral population dynamics (Wolff 1985) and that fluctuations in 

abundance within these communities may be due to differing environmental optima rather than 

to interspecific interactions (Wolff 1996).  Can increases in abundance of P. leucopus and 

decreases in abundance of P. m. gracilis that are characteristic of faunal turnover be explained 

without invoking interspecific interactions?   

Environmental conditions could explain much of the fluctuations in P. leucopus abundance.  Due 

to the relatively large contribution of OW females to reproduction than YOY females in P. 

leucopus, mild conditions that allow for enhanced winter survival of OW females may result in 

disproportionately large increases in reproductive output in this species.  P. leucopus may 
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consistently begin breeding earlier in the spring than P. m. gracilis; short winters may result in 

more favorable breeding conditions which facilitate successful early reproduction and lower 

mortality of breeding females.  An additional source of increases in P. leucopus population 

growth in 2012 was the enhanced persistence of YOY females, which led to increased 

reproductive output by this cohort; the connection between this phenomenon and environmental 

conditions is unclear. 

Reproduction by YOY mice was responsible for much of the year-to-year variation in population 

growth of P. m. gracilis.  P. m. gracilis YOY females reproduced at a slower rate in 2011 than in 

2010, and did not reproduce at all in 2012.  OW P. m. gracilis females, however, did not differ in 

reproductive output between years (Chapter 3), suggesting that a cohort-specific process was 

responsible.   What might cause P. m. gracilis YOY females to be unsuccessful, but have little 

effect on the breeding of OW females?  OW females begin breeding in the spring when densities 

are low, and few (of either species) survive until fall.  In contrast, P. m. gracilis YOY females do 

not begin breeding until June, when abundance of both species is higher; and reproduction in the 

late summer and fall, when abundance typically peaks, is dominated by YOY females.  

Differences in the timing of breeding events between OW and YOY females suggest that these 

cohorts may experience different abiotic (spring vs. summer/fall climate) and biotic (low vs. high 

abundance) breeding conditions. 

One explanation for reduced reproduction of P. m. gracilis YOY is that this species suffers 

reduced reproduction when temperatures are too warm.  Laboratory experiments suggest that 

there is an optimal temperature range between which the number and frequency of litters is 

maximized, and that the optimal range may differ for ‘northern’ and ‘southern’ populations 

(Bronson and Pryor 1983).  All three summers of this study were characterized by temperatures 

that were warmer than the historical average (Table 6-2).  It is possible that environmental 

conditions in summer 2011 and 2012 were outside of the optimal range of P. m. gracilis and 

resulted in reduced reproduction by YOY.  Because I was not able to examine weather 

conditions at a finer temporal scale, and because sample sizes of P. m. gracilis tended to be low 

in all years, I was unfortunately unable to more thoroughly test this hypothesis.  
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TABLE 6-2: SUMMER TEMPERATURE AND PRECIPITATION 

 
YEAR

 
TEMPERATURE (°F) 

 
PRECIPITATION (IN) 

 
 MEAN DEVIATION MEAN DEVIATION 

 
2010 67.77 1.37 3.38 0.12 
2011 66.3 0.97 3.46 0.27 
2012 67.17 3.1 3.14 -0.04 

  
HISTORICAL 64.93  3.21  

 
Table 6-2: Average summer temperature and precipitation obtained from a weather station in Gaylord, MI, 25 miles 
SSW of the Pigeon River Grid.  Long-term historical averages of summer (June-August) temperature and 
precipitation are compared to yearly means for each summer. 

 

 

Though the effect of climate cannot be ruled out, density-mediated interspecific social 

interactions provide a plausible mechanism that could result in reduced reproduction by YOY P. 

m. gracilis females, enhanced persistence of YOY P. leucopus females, and have little effect on 

the breeding of OW females. Reproductive output has been found to be inversely proportional to 

population density in P. leucopus (Burt 1940; Manville 1949), and high densities can cause P. 

maniculatus to cease breeding earlier than normal (Canham 1969; Sadleir 1974).  Reduced 

reproduction by YOY P. m. gracilis females was observed during years of high P. leucopus 

abundance (2011 and 2012), but not when P. leucopus abundance was lower (2010). 

Social interaction among breeding females is thought to be an important regulator of population 

growth in P. leucopus and P. maniculatus (Harland et al. 1979; Lusk and Millar 1989).  Resident 

females actively exclude other females from their home ranges during the breeding season, 

resulting in season-specific spatial distributions of individuals (Nicholson 1941; Metzgar 1971, 

Harland et al. 1979).  Spacing between adult female mice is approximately regular during the 

breeding season (Metzgar 1971; Fairbairn 1977; Harland et al. 1979), but aggregated during the 

rest of the year (Metzgar 1979; Mihok 1979).   

Results from this study are consistent with reported patterns of the spatial distribution of 

individuals – for both P. leucopus and P. m. gracilis, the average minimum distance between 

females was greater than expected in the summer and fall, but was not different from random in 
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the spring; the same pattern was not observed for males (Chapter 5).  The maintenance of spatial 

relationships is associated with social interactions such as overt aggression (Lusk and Millar 

1989; Dooley Jr. and Dueser 1996).  Social interactions among females may thus play an 

important role in population regulation and lie at the root of the low success of P. m. gracilis 

YOY.  Reproductive inhibition of YOY females of both P. leucopus and P. maniculatus has been 

experimentally demonstrated in natural populations and may be mediated by density of breeding 

adults (Lusk and Millar 1989; Terman 1993).  

 

6.3.3.3 SHIFTS IN COMPETITIVE DOMINANCE 

Variation in the responses of species to climate change (Gilman et al. 2010) may shift 

competitive balances to favor some species over others (reviewed in Tylianakis et al. 2008).  

Changes in climate can also alter the nature of the interactions between species (Suttle et al. 

2007; Pennings et al. 2003).  It has been suggested that co-occurring P. leucopus and P. m. 

gracilis exhibit neutral dynamics with stochastic changes in abundance, and that they interact as 

a single species (Wolff 1996).  Although climate-induced shifts from neutral interactions to 

competitive dominance have not been previously reported, it is possible that this phenomenon 

facilitates the replacement of P. m. gracilis by P. leucopus. 

Available territories in which to breed may be a sex- and season-specific limiting resource for 

which females compete (Bujalska 1973; Harland et al. 1979).  The identity of the victor in 

aggressive contests tends to depend on residency status (resident or intruder) rather than species 

identity (Wolff et al. 1983), and larger size is also advantageous (Garten 1976; Bowers and 

Smith 1979).  This suggests that neither species is inherently a better competitor, but rather that 

competitive advantages are conferred to individuals that are able to establish territories early. 

P. leucopus and P. m. gracilis may differ in their responses to environmental cues that regulate 

the onset of breeding, and results from this study indicate that P. leucopus may consistently 

begin breeding earlier than P. m. gracilis in the spring.  The effect of an earlier onset of the 

breeding season on population growth may be mediated by environmental conditions such that 

the rate of population growth is inversely related to the length and severity of winter.  Successful 

early breeding in mild conditions can lead to a numerical advantage by lengthening the time for 
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potential reproduction, but may also confer a competitive advantage by allowing young to 

establish territories early.  Both the lack of reproduction by P. m. gracilis YOY females and 

increased persistence of P. leucopus YOY females may result from this competitive advantage.  

Breeding by OW females, on the other hand, would not be affected because these individuals 

have already established territories before the breeding season began. 

Early-born young can become independent and establish territories when densities are low 

(Sharpe and Millar 1991) and have more time to grow to a larger size than late-born young, thus 

giving them a further advantage in aggressive contests.  Results from this study support the 

hypothesis that successful early breeding leads to a competitive advantage (Chapter 4).  For both 

species, YOY females that appeared early on the grid were more likely to establish territories 

than those that appeared later.  The species that began breeding earlier tended to establish 

territories earlier than the species that began breeding later.  YOY females of the early breeding 

species were also significantly heavier than YOY females of the later breeding species.  Taken 

together, these results suggest that increasingly warm winters may shift the competitive balance 

within the community to favor P. leucopus by allowing this species to consistently establish 

territories before P. m. gracilis. 

 

 

6.4 CONCLUSION 

Understanding the mechanisms by which directionally changing climate regimes alter 

community structure is critical to accurately predict how global climate change will continue to 

impact natural communities.  The biological mechanisms by which P. leucopus increases in 

abundance while P. m. gracilis declines are not well known, and the influence of interspecific 

interactions on replacement in communities of co-occurring P. leucopus and P. m. gracilis has 

not previously been investigated.  I conducted a three year field study of syntopic P. leucopus 

and P. m. gracilis in Michigan’s northern Lower Peninsula, an area in which climate-induced 

ecological replacement is occurring. Analyses of data collected during this field study have 
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sought to identify differences between species and examine the mechanisms by which warming 

climatic conditions facilitate ecological replacement of P. m. gracilis by P. leucopus. 

P. leucopus and P. m. gracilis differ consistently in breeding season length (Chapter 4) and in the 

survivorship of overwintered mice (Chapter 3).  Losses of OW P. m. gracilis were concentrated 

over a shorter period of time than OW P. leucopus; this resulted in differences between species 

in the relative contributions of OW and YOY females to annual reproductive output.  Due to the 

greater contribution of OW females to total reproduction in P. leucopus, processes that affect the 

survival of OW females have a more important effect on population growth in this species than is 

the case for P. m. gracilis. Environmental conditions can explain much of the observed increases 

in abundance of P. leucopus via effects on winter survival and spring/summer persistence of OW 

females. 

Results from this study suggest that interspecific social interactions might mediate the decline of 

P. m. gracilis in northern Michigan.  Slowed population growth of P. m. gracilis during this 

study was associated with reduced reproductive rates in YOY females and delayed onset of first 

reproduction, while reproduction by OW females did not differ between years (Chapter 3).  

Density-mediated interspecific social interactions provide a plausible mechanism that could 

result in this pattern.  Evidence for the existence of social interactions between females was 

found in the pattern of temporal variation in the spacing of females (Chapter 5).  Social 

interactions between females at high densities can cause both reduced reproductive output and 

delayed onset of first reproduction (Canham 1969; Sadleir 1974; Lusk and Millar 1989).  YOY 

females may be more likely than OW females to experience negative density-dependent effects 

on reproduction because population density is higher in the late summer than in the spring, and 

because by that time few OW females remain alive. 

The effect of social interactions on reproduction may be mediated by changes in climate. Several 

analyses support the hypothesis that increasingly warm winters shift the competitive balance in 

this community by facilitating successful early breeding and allowing YOY P. leucopus to 

establish territories earlier than P. m. gracilis (Chapter 4).  Early-born young were more likely to 

establish territories and were heavier on average than those born later; both larger size and 

residency status make an individual better able to win aggressive contests.  Because P. leucopus 



195 
 

tends to begin breeding earlier in the spring than P. leucopus, and early spring reproduction is 

more successful in years following mild winters, YOY P. m. gracilis may be at a significant 

disadvantage when winters are mild due to the difficulty of establishing territories.  OW females, 

on the other hand, were not similarly affected because their reproduction was concentrated 

during periods of low density (i.e., the spring) and because their territories were already 

established. 
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