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Abstract 

Graphs are pervasive in our daily lives (e.g., newspapers, textbooks, scientific journals, 

classrooms), and there is an implicit assumption that, although they are not explicitly 

taught graphical literacy, people are capable readers of graphs. However, interpreting 

multivariate data presented graphically is extremely challenging and few, if any, 

instructional tools or guidelines exist for teaching complex graph interpretation.  

Furthermore, designing graphs of multivariate data to make them more interpretable and 

instructing individuals to interpret graphs are both complicated by the fact that numerous 

factors likely influence the graph interpretation process: the type of display, individuals’ 

initial graphical literacy skills, their working memory (WM) capacity, and their attitudes 

or dispositions towards thinking and avoiding belief bias. The goals of the current 

research were to determine: (1) how well people comprehend main effects and 

interactions in complex multivariate data presented graphically and the extent to which 

some graph format characteristics influence the process; (2) whether students can be 

taught to interpret main effects and interactions in complex graphs and what might 

comprise such an instructional tutorial; and (3) the role of individual differences in 

complex graph comprehension. To address these questions, five experiments were 

conducted.  Experiment 1 examined how much people attend to graphs, and whether the 

existence of a graph to summarize data already described in a text help them remember or 

understand the data.  Experiments 2 and 3 examined students’ interpretation of 

multivariate graphs in a self-paced, open-ended task and in immediate and long-term 

memory tasks, and the effect of graph format in these various contexts.  Finally, 

Experiments 4 and 5 examined whether a tutorial could be an effective instructional tool 

for improving graph skills, and how instruction is differentially impacted by individual 

differences.  In general, individual differences emerged as extremely influential factors in 

graph comprehension and the training of graph skills, whereas graph format did not play 

a key role in the current research.  Additional research is suggested for further 

development of the tutorial as an educational resource, and educators should promote 

enjoyment of cognitive work in the classroom to increase benefit of instruction. 
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CHAPTER 1: 

INTRODUCTION  

Why Are Graphs Important? 

     In the current "Information Age", when a lot of complex data is readily accessible at 

the press of a button, people are increasingly facing the task of analyzing and 

communicating such information.  Diagrams, graphs, and pictures are frequently used to 

communicate information to learners in textbooks, research journals, power point 

presentations, web pages, and educational software.  Moreover, visualizations are 

common in news sources such as USA Today and the New York Times and are used to 

convey different types of data from which readers may make decisions such as who to 

vote for or whether or not to consume red wine.  Certainly, the use of graphs to depict 

quantitative data has increased over the years, especially for academic journals and 

newspapers (Zacks, Levy, Tversky, & Schiano, 2002).  

      The current research focuses specifically on graphs, especially those of complex data, 

due to the following reasons.  Although there has been an increase in research relating to 

graph comprehension over the years, much of this research has corresponded to simpler 

data sets that contain two-variable data or a small number of data points, and conclusions 

from these studies do not usually generalize to graph comprehension of more complex 

multivariate data (Canham & Hegarty, 2010; Ratwani & Trafton, 2008; Shah, Freedman, 

& Vekiri, 2005; Trafton et al., 2000).  Science standards (NSTA; NRC) emphasize the 

importance for students to conceptually understand complex models in which two or 

more variables interact to create outcomes.  Additionally, psychologists and other social 

scientists commonly use factorial designs in their experiments, which necessitates that 

students be able to read and interpret complex data.  Such data sets may contain 

complicated relationships between variables, or main effects and interactions.  Main 

effects are the effects of one independent variable (a variable that was manipulated) on 
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the dependent variable (the variable being measured) while ignoring the effects of all 

other independent variables.  Interactions occur when the effect of one independent 

variable on the dependent variable changes depending on the level of another 

independent variable.   

       Furthermore, there seems to be an expectation that readers or students are capable of 

understanding such complex graphs even when not explicitly taught to do so.  For 

example, I recently analyzed the contents of 30 psychology textbooks, written primarily 

for undergraduate students ranging in publication dates from 1997 to 2013.  These 

textbooks included nine General or Introductory Psychology books, eight Cognitive 

Psychology books, eight Research Methods books, two Cognitive Neuroscience books, 

two Social Psychology books, and one Abnormal Psychology book.  I found 1,345 graphs 

depicting quantitative data.  That is, approximately 45 graphs were present per 

textbook.  Of these graphs, at least 540 of them could be considered relatively complex as 

they contained factorial designs of 2x2 or greater, and only a very small number of these 

(less than 5) were extremely complex with three independent variables.  However, some 

of the graphs that would normally be considered extremely complex with three 

independent variables are not included in this count, as they were shown side-by-side in 

separate panels, possibly in the attempt to simplify the graph complexity or highlight 

different aspects of the data.  Additionally, at least 700 of the graphs contained labels, at 

least 170 of them contained legends, and at least 370 of them contained both labels and 

legends.  Moreover, at least 630 of them were line graphs and at least 710 of them were 

bar graphs.  Thus, even in perusing a relatively small sample of textbooks, it is clear that 

graphs are prevalent and that students are expected to understand them.  A table 

describing the information from this analysis is presented in Table 1.1. 

 
 Graph Characteristics and Difficulty 

      Given the underlying assumption that college students are capable of interpreting and 

understanding such graphs in textbooks and other contexts, it is important to determine 

whether this is a fair expectation.  One reason why graphs are used so extensively is a 

belief (often misguided) that they make quantitative data easier to understand (Linn, 

Chang, Chiu, Zhang, & McElhaney, 2010; MacDonald-Ross, 1977; Tversky, 2001; 
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Winn, 1987).  This is mostly true when concepts or important quantitative information 

are explicitly depicted in graphs or other visualizations so that minimal cognitive 

processing is required (Larkin & Simon, 1987; Pinker, 1990).  However, most graphs are 

actually not so easy to understand and require mental transformations and other cognitive 

processes to comprehend them.  How difficult is graph comprehension really?   

       Graph comprehension is generally thought to include three main components (Bertin, 

1983; Carpenter & Shah, 1998; Pinker, 1990; Shah & Carpenter, 1995).  Viewers first 

encode and identify the important visual features of the graph. This first process can be 

affected by inherent perceptual biases and limitations that influence the accuracy (e.g., 

Cleveland & McGill, 1984, 1985; Legge, Gui, & Luebker, 1989; Spence, 1990) and 

grouping of the information encoded (e.g., Carpenter & Shah, 1998; Shah, Mayer, & 

Hegarty, 1999). Then these features are mapped onto the corresponding quantitative or 

conceptual relationships in the second component. This process is influenced by what 

was encoded in the first process, how easy it is to map visual features to their referents, 

and individuals’ graph schemas, or general knowledge about graphs (Pinker, 1990).  

Finally, these quantitative or conceptual relationships are associated with the referents or 

the variables of the graph, and this association can be influenced by expectations (Shah, 

1995; Shah & Shellhammer, 1999).  These three processes are both incremental and 

interactive, in that viewers may complete these three processes for different parts of the 

graph, and the more complex the graph, the longer it will take to interpret as these 

processes will occur for each conceptual relationship (Carpenter & Shah, 1998).   

      Graph comprehension is unlike object recognition in that it is harder, it can take a 

long time, and is limited with regards to how much viewers can process at a 

time.  Individuals can only keep track of so many variables at a time, and it seems that the 

upper limit for processing load is four variables given that performance with five 

variables is at chance levels (Halford, Baker, McCredden, & Bain, 2005).  Halford et al. 

(2005) manipulated processing load while keeping memory load constant, in order to 

examine performance on 2, 3, or 4-way interactions in bar graphs.  Accuracy and speed 

decrease with increasing order of interaction, such as moving from a 2-way interaction to 

a 3-way interaction or from a 3-way interaction to a 4-way interaction. Processing load 
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difficulties were not apparent until four variables were introduced, and persisted to 

graphs that included five variables.   

      Indeed, interpreting multivariate data presented graphically is very challenging 

(Halford et al., 2005; Shah & Carpenter, 1995; Shah & Freedman, 2011), even for those 

who may be considered experts, such as graduate students with extensive research 

experience (Shah & Carpenter, 1995).  Comprehending moderately complex graphs may 

take as long as, or even longer than, comprehending similar information presented 

textually (Carpenter & Shah, 1998; Ratwani, Trafton, & Boehm-Davis, 2008).  In one 

study, for example, it took viewers from 30 seconds to a minute to interpret a graph; that 

is about the time it takes to read a short paragraph and much longer than the time needed 

to view an object (Carpenter & Shah, 1998).  Even simple graphs can be difficult to 

interpret (Culbertson & Powers, 1959; Guthrie, Weber, & Kimmerly, 1993; Romberg, 

Fennema, & Carpenter, 1993; Vernon, 1946, 1950), particularly when important 

information is less obviously depicted, thus leading to more errors and requiring more 

effort (Bell & Janvier, 1981; Culbertson & Powers, 1959; Gattis & Holyoak, 1996; 

Guthrie et al., 1993; Leinhardt, Zaslavsky, & Stein, 1996; Maichle, 1994; Shah et al., 

1999; Shah & Carpenter, 1995; Vernon, 1946, 1950). Graphs found in textbooks are not 

excused either, as some studies have found that readers often misinterpret or fail to 

determine the author’s intended message (e.g., Shah et al., 1999).  Moreover, statistics 

and research methods teachers frequently report that students have difficulty with such 

graphs and that interpretation of such data is difficult to teach.  Additionally, graph 

comprehension can be difficult in that it is influenced by a variety of bottom-up and top-

down factors, including perceptual organization (Shah et al., 1999), graph format 

(Ainsworth, 2006; Canham & Hegarty, 2010; Cheng, 1999; Shah et al., 1999; Shah & 

Freedman, 2011; Simkin & Hastie, 1987), domain knowledge (Freedman & Shah, 2002; 

Lowe, 1993; Shah & Freedman, 2011), and experience with graph conventions (Korner, 

2005; Shah et al., 2005).  

Graph Comprehension as a Construct and its Relation to Instruction 

       Graph comprehension has been defined by Friel, Curcio, & Bright (2001) as a 

reader’s “ability to derive meaning from graphs created by others or by themselves” (p. 
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132), and is thought to develop gradually through practice in building and using multiple 

types of graphs in contexts that require the learner to make sense of the data.  Graph 

comprehension has also been broken up into multiple competence levels (Curcio, 1989; 

Friel et al., 2001): (1) the basic skill of reading the data or finding specific information in 

a graph; (2) the intermediate skill of reading between the data, or finding relationships in 

the data presented in a graph; and (3) the advanced skill of reading beyond the data, or 

making inferences and predictions based on the data.  

       Although a considerable amount of research has been conducted on graph 

comprehension across multiple domains, including mathematics, statistics, decision-

making, information visualization, and cognitive psychology, insufficient crosstalk has 

occurred between fields communicating findings, and I have yet to find an evidence-

based consensus or guide for how to teach comprehension of complex multivariate 

graphs.  Most guides for teaching graphs seem to impart how to use specific software 

packages to create graphs of different types or focus solely on graph display and design 

(e.g., Kosslyn, 1994; Tufte, 1983), but do not directly address instruction of graph 

comprehension.  Fry (1981) and colleagues (e.g., Singer & Donlan, 1980) have suggested 

that reading comprehension and graph comprehension are analogous, and thus reading 

instructors should apply a similar approach to graph comprehension that they would use 

for reading lessons.  Still others have suggested direct and indirect implications of graph 

comprehension research for teaching graphical literacy (e.g., Shah & Hoeffner, 2002), but 

do not provide very explicit guidelines for how these implications would manifest in 

instruction within the classroom.  Some guidelines have been suggested regarding when 

and what kinds of graphs (i.e., complexity) should be introduced to students (e.g., Friel et 

al., 2001), but these were intended for students in grades K-8 and do not approach the 

level of complexity inherent in multivariate data containing main effects and interactions.  

Some researchers have also noted that until a better understanding of how the visual 

system extracts relations from “chunked” information in graphs has been reached, 

instructors will be unable to teach students how to parse graphical relationships 

(Franconeri, Uttal, & Shah, 2011). The current models and frameworks posited in relation 

to these perceptual processes have either been too specific to one type of graph (Ratwani 
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et al., 2008) or unsupported by direct evidence (e.g., Gillan & Lewis, 1994; Simkin & 

Hastie, 1987).   

       Perhaps one reason why students find graph comprehension relatively hard is 

because graphical literacy had not previously been a dedicated part of the school 

curriculum, but rather was covered piecemeal as parts of other curricula or study skills 

(Fry, 1981).  Graph instruction is made even more difficult by some teachers’ limited 

graph skills or low competence in building and interpreting graphs (Batanero, Arteaga, & 

Ruiz, 2010; Bruno & Espinel, 2009; Gonzalez, Espinel, & Ainley, 2011; Monteiro & 

Ainley, 2007).  More specifically, some teachers fail to read between the data or read 

beyond the data (Arteaga & Batenero, 2011).  Although these studies were primarily 

conducted with prospective primary school teachers, they highlight the issue of instructor 

knowledge and how critical it is for teachers to receive the necessary training to increase 

their knowledge of and competence with graphs in order to provide students with 

effective instruction.  Students cannot be expected to learn graph comprehension skills if 

their instructors do not have the requisite knowledge or competence to teach them.  Friel 

et al. (2001) also make brief note of this important point, but make no recommendations 

for how this would be accomplished other than to suggest the use of a manual for 

elementary teachers to help them learn about statistics (Friel & Joyner, 1997).  Therefore, 

a guide or tutorial that provides instruction for complex graph comprehension would be a 

valuable resource or tool for both teachers and students, especially as prior focus has 

been K-8 teachers as opposed to high school and college instructors.   

What Makes a “Good” Visualization or Graph? 

      Because of the increasing importance of visualizations like graphs, there has been an 

increasing amount of research on the psychological processes involved in visualization 

comprehension as well as the factors that make visualizations easy or difficult to 

understand and remember.  A major guideline developed based on this research is that 

visualizations should simplify cognitive processes while emphasizing perceptual 

processes in an attempt to reduce cognitive load on the part of the learner.  According to 

the Cognitive Efficiency View, visualizations such as graphs should present data as 

clearly as possible by reducing distracting or irrelevant visual elements or information 
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(e.g. Bertin, 1983; Kosslyn, 1989; Pinker, 1990; Tufte, 1983).  This commonly held 

belief espouses that graphs should include no “chart junk” (i.e., embellishments 

unessential to understanding the data), reduce cognitive processing, and rely on 

perceptual processing rather than conceptual.  Similarly, Canham & Hegarty (2010) 

suggest that graphs should provide only task-relevant information (i.e., information 

needed for the current task), especially when graphs are intended for those with limited 

domain knowledge, as extraneous task-irrelevant information can impair task 

performance.  This could be because viewers are distracted and have to suppress 

irrelevant information in a graph, particularly if the superfluous information is salient or 

interesting (Sanchez & Wiley, 2006). Such additional processing may tax cognitive load 

(Sweller & Chandler, 1994), especially for students with limited domain knowledge to 

help them ascertain relevant from irrelevant information in the graph. 

      Yet, as more recent evidence suggests, these claims may not be uniformly true (see 

Hullman, Adar, & Shah, 2011 for a review).  For example, in one study (Bateman, 

Mandryk, Gutwin, Genest, McDine, & Brooks, 2010) participants were asked to view 

and remember data from one of two graph types, “Holmes” graphs (embellished graphs) 

or plain graphs.  Participants not only preferred the embellished graphs, but also 

remembered the data from the “Holmes” graphs just as well as plain graphs at immediate 

recall and better than plain graphs at long-term recall two to three weeks later.  This 

prompts the question of why sometimes deviating from the Cognitive Efficiency View 

can actually be better for learning.  Hullman and colleagues (2011) proposed the idea 

that, in some cases, visualizations that require more difficult cognitive processing rather 

than relying primarily on perceptual inferences may have some advantages.  Thus, the 

notion of desirable difficulties may be appropriate with regards to visualizations (see 

Linn et al., 2010 for a similar argument).  

Relating the Notion of “Desirable Difficulties” to Graphs 

      Desirable difficulties are learning activities that generally slow learning and often 

increase errors in the short-term, but improve learning over the long-term (Bjork, 1994; 

Bjork & Bjork, 2011).  The term “desirable difficulties” is an umbrella term as there is a 

rather broad range of activities or effects that fall into this category, including generation 
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(e.g., Hirshman & Bjork, 1988; Jacoby, 1978; Slamecka & Graf, 1978), testing or 

retrieval practice (e.g., Roediger & Karpicke, 2006), spacing (e.g., Kornell, 2009, 

Rawson & Dunlosky, 2011), interleaving (e.g., Kornell & Bjork, 2008; Rohrer & Taylor, 

2007; Shea & Morgan, 1979), and varying learning conditions or contexts (e.g., Kerr & 

Booth, 1978; Smith, Glenberg, & Bjork, 1978).  Following from the research in this 

domain, perhaps adding difficulties to processing can be beneficial or “desirable” to 

visualization or graph users for at least three reasons.  First, fluency or ease of reading a 

graph can give viewers a strong but false sense of understanding (Linn et al., 

2010).  Second, “easy” displays are processed passively rather than actively (e.g., Mayer, 

Hegarty, Mayer, & Campbell, 2005).  Because “easy” displays require less cognitive 

effort, reading such displays is an automatic perceptual process that may lead to shallow 

rather than deep processing of the data presented in the graph.  Third, learners may spend 

more time on harder to process material, perhaps in part because the more “difficult” 

display is more aesthetically appealing than an “easier” to process, simplified display. 

      One specific challenge to graph interpretation stems from a large variety of design 

choices, such as the use of labels or legends.  Labels are favored in the graph literature 

(e.g., Carpenter & Shah, 1998; Gillan, Wickens, Hollands, & Carswell, 1998; Kosslyn, 

1994; Vaiana & McGlynn, 2002) because they fit with the Cognitive Efficiency View in 

that they simplify the presented information (i.e., are easy to read and comprehend) and 

reduce cognitive demand (i.e., labels are thought to “offload” cognitive demand as they 

are less working memory demanding).  Additionally, the use of labels has generally 

resulted in improved accuracy and increased speed of graph comprehension (e.g., 

Culbertson & Powers, 1959; Lohse, 1993; Milroy & Poulton, 1978). However, legends 

may function as a “desirable difficulty” in some contexts given that they require 

additional search processes to identify different parts of the graphs (i.e., mapping lines or 

bars with referents).  Legends also slow down the learning process, increase the working 

memory load (i.e., are more cognitively demanding), and change the sequential 

processing or the order in which people look at different parts of a graph (legends can 

provide key grouping principles or organization). 
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The Role of Individual Differences 

      Another challenge in graph comprehension is that of individual differences.  

Individual differences relating to cognitive skills, such as graphical literacy and working 

memory capacity, can be important influential factors in graph comprehension.  For 

example, college students unfamiliar with graphs take a long time, rely on general 

knowledge, and make progressively more mistakes with increasing graph complexity 

(Carpenter & Shah, 1998).  Students, especially those with little graph interpretation 

experience, tend to rely more on prior knowledge and will therefore make more mistakes 

if a graph depicts relationships contrary to their expectations (Shah, 1995; Gattis & 

Holyoak, 1996).  Findings such as these further suggest the need for explicit training of 

graph interpretation skills, especially for such complex data sets.  Those with high graph 

literacy likely know what to do with more difficult graph formats or can more easily learn 

how to approach them with additional instruction (e.g., a graph tutorial).  In contrast, 

those with low graph literacy would likely require additional instruction or training to 

improve their graph comprehension skills in order to avoid making more errors due to 

unfamiliarity with complex graphs or reliance on expectations based on prior knowledge.  

Thus, in the current research I included the Graph Literacy Scale (Galesic & Garcia-

Retamero, 2011; see Appendix A) as a measure of individuals’ familiarity wit h various 

graphs.  Although this measure does not include extremely complex multivariate graphs, 

it does cover a variety of frequently used graph types, including line graphs, bar graphs, 

pie charts, and icon arrays.  The scale also measures the three main graphical 

comprehension skills (Curcio, 1987; Friel et al., 2001) of reading the data, reading 

between the data, and reading beyond the data.   

       Working memory (WM) span is also expected to play a large role in multivariate 

graph comprehension.  Individuals with low WM span may be overwhelmed when 

confronted with complex multivariate graphs, as there are many variables to keep track 

of, and thus might give up because interpretation is too daunting.  Additionally, 

demanding difficulties may only benefit those who have the WM capacity to deal with 

them.  For example, the benefit of introducing difficulties such as legends into a graph 

could be constrained by the viewer’s cognitive skills (Hullman et al., 2011).  Thus, added 

visual difficulties such as legends may be detrimental for low WM span individuals who 
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find complex graphs without such added difficulties already hard to comprehend.  The 

current research therefore included the automated Symmetry Span (SSPAN) task 

(Unsworth, Heitz, Schrock, & Engle, 2005; see Figure 1.1) as a measure of working 

memory capacity, with the goal of investigating whether WM capacity mediates 

performance on graph comprehension tasks, particularly for those graphs with added 

visual difficulty (i.e., graphs with legends).  This working memory span measure requires 

participants to judge whether pictures are symmetrical, while they are also trying to recall 

the location of squares on the screen in the correct sequential order.  The automated 

SSPAN task is strongly correlated with the traditional SSPAN task (Unsworth et al., 

2005), as well as with other WM measures (e.g., Broadway & Engle, 2010; Shelton, 

Elliott, Hill, Calamia, & Gouvier, 2009). 

      Cognitive skills such as graphical literacy and WM capacity have been previously 

documented as influential for graph comprehension.  However, to my knowledge, more 

dispositional individual differences have not been examined in the context of graph 

comprehension.  For the purposes of the current research these include open-mindedness, 

need for cognition, and cognitive reflection.  It is possible that these factors also mediate 

graph comprehension, especially in the context of relatively little experience with graphs.   

       Baron (1985, 1993, 2008) was one of the first to describe actively open-minded 

thinking (AOT) as a reasoning style.  AOT was defined as the tendency to consider new 

evidence contradictory to a favored belief, to spend sufficient time on a problem rather 

than give up prematurely, and to carefully reflect on others’ opinions when forming one’s 

own.  Increased open-mindedness has been associated with better critical thinking skills, 

as unbiased or objective reasoning about data is widely considered one crucial 

characteristic of good critical thinking (Stanovich & West, 1997).  Furthermore, a 

decreased susceptibility to belief bias, or an increased ability to divorce prior knowledge 

from analytical processes, has been associated with increased AOT (e.g., Macpherson & 

Stanovich, 2007; Sa, West, & Stanovich, 1999; Stanovich & West, 1998).  For example, 

one study exploring the relationship between gaming and critical thinking found that 

gamers who play strategy related games tend to rate higher on actively open-minded 

thinking than gamers who play other genres of games (Gerber & Scott, 2011).  Given that 

graph comprehension consists of evaluating data and the relationships present in the data, 
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one might expect open-mindedness to similarly be important for graph comprehension as 

it is for critical thinking.  Individuals with increased open-mindedness, or increased 

tendency for open-minded thinking and cognitive flexibility, would likely be more 

willing to try to interpret multivariate graphs, even if they have not encountered such 

complex graphs before.  These individuals may also be more willing to consider data that 

is inconsistent with their own domain knowledge, rather than misinterpret data due to a 

reliance on expectations based on prior knowledge.  Comparatively, less open-minded 

individuals may rely on prior beliefs instead of interpreting the data, especially if they 

have limited experience with graphs and the graphs are more difficult.  Furthermore, 

open-mindedness may impact the effectiveness of instruction, as less open-minded 

individuals might not appreciate or benefit from graph comprehension training.  In the 

current research I measured open-mindedness with the Actively Open-minded Thinking 

(AOT) scale (Stanovich & West, 1997, 2007; see Appendix B), in which higher scores 

indicate a greater tendency for open-minded thinking and cognitive flexibility, while 

lower scores indicate cognitive rigidity and resistance to belief change. 	
  

       Need for cognition (NFC), or how likely one is to engage in and enjoy effortful 

thinking (Cacioppo, Petty, & Kao, 1984), is another attitude that could critically impact 

graph comprehension.  High NFC was thought to reflect a greater likelihood to organize, 

elaborate on, and evaluate information (Cohen, 1957). This dispositional measure has 

been reliably associated with better achievement and deliberate or effortful information 

processing (see Cacioppo, Petty, Feinstein, & Jarvis, 1996).  High NFC individuals are 

less likely to jump to conclusions unsupported by evidence (Kardash & Scholes, 1996), 

more likely to make accurate judgments (Blais, Thompson, & Baranski, 2005), and are 

more likely to persist in seeking out or acquiring information helpful to making accurate 

judgments on estimation or forecasting tasks (Haran, Ritov, & Mellers, 2013). Some 

research indicates that NFC may be related to self-control capacity in high-school 

students (Bertrams & Dickhauser, 2009) and that NFC is associated with critical thinking 

in college undergraduates (e.g., Stedman, Irani, Friedel, Rhoades, & Ricketts, 2009).  

Some have defined NFC as a measure of intrinsic motivation for engaging in challenging 

intellectual activity, while also pointing out the possibility that NFC reflects extrinsic 

motivation such as success or avoidance of failure in an academic context (e.g., Steinhart 
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& Wyer, 2009).  Taken together, NFC could be considered a proxy for cognitive effort or 

attitude towards completing difficult work, which could be an incredibly informative 

measure given the established difficulty of graph comprehension.  Thus, the current 

research included the NFC scale (Cacioppo et al., 1996; see Appendix C), in which 

higher scores indicate a greater tendency to engage in and enjoy thinking.  One might 

expect that high NFC would be associated with better graph comprehension, as 

understanding complex data may require more cognitive effort.  Additionally, those with 

low NFC may be less likely to seek external help or more likely to give up, while those 

with high NFC may be more likely to meet and benefit from challenges.  Moreover, those 

who enjoy cognitive challenge would perhaps be more amenable to instruction or training 

of graph comprehension skills, while those individuals with low NFC would benefit less, 

or not at all.   

       Finally, cognitive reflection may also predict performance on graph comprehension 

tasks.  Cognitive reflection is the ability to suppress an intuitive, automatic, or 

spontaneous incorrect response in order to come up with a more reflective and 

deliberative correct answer, as measured by the Cognitive Reflection Test (CRT; 

Frederick, 2005; see Appendix D) in the current research.  Cognitive reflection has been 

associated with avoiding biases (Oechssler, Roider, & Schmitz, 2009) and may be related 

to the characteristic of searching out potential possibilities prior to making an inference 

that was one component of Baron’s (1985, 1993, 2008) concept of AOT.  Individuals 

demonstrating increased cognitive reflection might make fewer errors in graph 

comprehension because they are more likely to interpret the actual data presented in 

multivariate graphs rather than rely on shortcuts or heuristics based on domain 

knowledge or prior expectations.  This measure may also reflect a willingness to work 

hard interpreting complex graphs, especially when graph comprehension is made more 

difficult with legends, which could potentially translate to greater benefit or improvement 

from additional graph instruction or training. 

Goals of the Current Research 

      In sum, it is important to gain a more thorough understanding of graph 

comprehension for complex multivariate data, both in relation to people’s ability to do it 

and to training or teaching people how to do it better, especially given the frequency with 
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which graphs are encountered in daily life and the implicit expectation that people should 

be capable readers of such visualizations.  Therefore, the current line of research aims to 

address the following questions: (1) How well do people comprehend main effects and 

interactions in complex multivariate data presented in graphs, and does graph format play 

a role (i.e., do legends function as a desirable difficulty)? (2) Can students be trained or 

taught to better identify and understand main effects and interactions inherent in graphs 

of complex data sets, and what would comprise such an effective tutorial? (3) What role 

do individual differences play in complex graph comprehension and the training of these 

skills?   

      In order to address these questions, I completed five experiments.  In Experiment 1, I 

determined whether readers benefit from graphs presented alongside textual explanations 

of data, and if such graphs provide an advantage in comparison to reading the text alone 

or viewing an irrelevant picture with the text.   In Experiments 2 and 3, I examined 

whether students are able to identify main effects and interactions presented in graphs, 

and whether this differs with graph format (i.e., labels versus legends), with tasks that 

involve interpreting or describing presented data in an open-ended context and 

remembering important aspects of a data set.  In Experiments 4 and 5, I investigated 

whether students understand main effects and interactions in graphs, whether graph 

comprehension differs by graph format (labels versus legends), and whether students can 

be trained to better identify and interpret such data using a graph tutorial that I 

created.  In all of these experiments I investigated the role of individual differences, as 

one interest in the current research is in determining whether certain individual 

differences mediate people’s graph comprehension, their ability to benefit from training, 

or the potential for difficulties such as legends to be beneficial.  
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Figure 1.1.  Automated Symmetry Span Task Sample Trial Sequence. This 
figure was modified from the one found in Redick et al. (2012). 
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Table 1.1 

Analysis of Graphs in Psychology Textbooks 

Book 
Subject 

Number 
of 

Textbooks 

Total 
Graphs 

Line 
Graphs 

Bar 
Graphs 

Graphs 
with 

Labels 

Graphs 
with 

Legends 

Graphs 
with 

Labels & 
Legends 

General or 
Introductory 
Psychology 

9 409 146 263 241 23 137 

Cognitive 
Psychology 8 333 168 165 169 83 37 

Research 
Methods 8 206 139 67 144 16 33 

Social 
Psychology 2 170 43 127 67 10 91 

Cognitive 
Neuroscience 2 205 123 82 75 45 68 

Abnormal 
Psychology 1 22 12 10 8 2 12 

Totals 30 1345 631 714 704 179 378 

Note.  These values are approximations collected from actual psychology textbooks.  Not 
shown are the total number of graphs for each category that contained neither labels nor 
legends. 
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CHAPTER 2: 

GRAPHS IN TEXTBOOK EXCERPTS 

Introduction 

       Given the widespread usage of graphs across many media (e.g., newspapers, 

television, textbooks, scientific journals, and even classrooms) and the apparent 

assumption made by publishers of these media that people are capable readers of 

graphical information, a critical first question is whether people or students actually 

benefit from the inclusion of graphs in order to remember the information presented 

within the text.  Thus, it is important to determine whether individuals use information 

presented in graphs when reading textual information such as an article or textbook that 

already contains a summary of the data, and, if they do use these graphs, whether the 

graph is helpful.  How does the addition of a graph compare to the inclusion of seductive 

details such as irrelevant pictures?   

      According to the seductive details hypothesis, presenting interesting but irrelevant 

information with a text can be detrimental in remembering the main points of the text, or 

at best is no better than presenting the text by itself (e.g., Garner, Brown, Sanders, & 

Menke, 1992; Garner, Gillingham, & White, 1989; Hidi & Baird, 1988; Mohr, Glover, & 

Ronning, 1984; Shirey, 1992; Shirey & Reynolds, 1988; Wade, 1992; Wade & Adams, 

1990).  For example, including an irrelevant picture with a text (i.e., a seductive 

illustration) is more harmful than providing no visualization with the text (e.g., Harp & 

Mayer, 1997).  Furthermore, people are more likely to remember these seductive details 

than structurally critical information in the text (Garner, Alexander, Gillingham, 

Kulikowich, & Brown, 1991; Garner et al., 1992; Hidi & Anderson, 1992; Hidi & Baird, 

1986).  Thus, when the goal of a textbook is centered on students learning and 

remembering the main points within the text, presenting “interesting” pictures that offer  
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no relevant support to the cognitive structure of the concept can actually be 

counterproductive.    

      By contrast, adding explanative summaries (i.e., material or illustrations that help the 

reader understand the structure of the explanation in the text) to scientific texts can help 

readers remember information and perform better on problem solving transfer tasks that 

require understanding of the material (Mayer, 1989; Mayer, Bove, Bryman, Mars, & 

Tapangco, 1996; Mayer, Steinhoff, Bower, & Mars, 1995).  The aim of the current study 

was to expand on this research by examining whether relevant graphs that depict data 

already described in the text can be considered a type of explanative summary.  If so, I 

would expect participants to demonstrate a benefit from this added visualization with 

regards to comprehension or memory of the text.   

       To evaluate the potential benefits of graphs, I conducted an experiment comparing 

comprehension of the pattern of data presented in a text when there was no visualization 

present, when there was an irrelevant “seductive” visualization present, and when there 

was a bar graph summarizing the data present.  I selected and slightly modified an 

excerpt of text (and graph) from an actual psychology textbook (Goldstein, 2008), in 

which the data or findings for a scientific study about experience-dependent plasticity 

were explained (see Appendix E).  Specifically, the text described data from a study by 

Gauthier, Tarr, Anderson, Skudlarski, and Gore (1999), in which participants were 

trained to view imaginary figures called “Greebles.”  Prior to the training, they were 

shown pictures of “Greebles” and faces, and only the faces activated the fusiform face 

area (FFA).  Following training, both “Greebles” and faces activated the FFA.  To 

understand the study and its conclusions, therefore, the participants would have to 

understand a complex 2-way interaction.  In the current experiment (Experiment 1), 

participants first read the material and viewed the visualization, if present.  As the focus 

of Experiment 1 was on the comprehension of complex data presented in textbook 

excerpts, participants then immediately answered questions about the data that was 

described.   

       A second goal of the present study was to investigate the effect of need for cognition 

(NFC; Cacioppo & Petty, 1982) on both understanding the data described in the text in 
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general, as well as to investigate whether NFC interacted with the inclusion of graphs or 

seductive pictures in comprehending the information.  In general, individuals higher on 

NFC comprehend text better (Dai & Wang, 2006).  But how does NFC interact with the 

use of graphs in texts?  It is possible that individuals with high NFC read the text with 

more attention or care and thus do not require a summary graph.  Therefore, individuals 

with low NFC may benefit more from the inclusion of a graph than those with high NFC.  

In contrast, it is possible that individuals with high NFC are interested in learning from 

both the graph and the text and thus benefit more from a graph than those with low NFC. 

       Though seductive visualizations served primarily as a control condition in this study, 

it is also possible to consider how NFC interacts with susceptibility to seductive 

visualizations.  Previous research on individual susceptibility to seductive details has 

found that individuals with low working memory capacity are more affected by the 

inclusion of seductive details than high working memory capacity individuals (Sanchez 

& Wiley, 2006).  Likewise, individuals high in NFC may exert relatively more effort to 

comprehending text and ignoring irrelevant information. 

Experiment 1 

Method 

Participants.  Seventeen students (M = 18.41 years old; 14 women) from the University 

of Michigan Psychology Subject Pool completed the study in the laboratory, and received 

course credit for their participation.  An additional 150 adult individuals (M = 34.77 years 

old; 67 women) participated in the study online via Amazon Mechanical Turk 

(MTurk).   MTurk participants were compensated with $1.00 per approximately ten 

minutes of participation, as is standard procedure in our lab for studies using this online 

system.  Most studies pay a much lower rate, so this higher rate of compensation was 

meant to further motivate participants.  Although MTurk participants tend to be more 

diverse than typical American university samples, there is evidence to suggest that data 

collected with MTurk are at least as reliable as those collected in the lab (e.g., 

Buhrmester, Kwang, & Gosling, 2011).   In addition, there were no significant 

differences in average performance in the laboratory and on MTurk.  Therefore, the data 
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from these two populations were combined for analyses.  Three participants were 

excluded due to incorrect answers on questions intended to assess whether or not 

participants were attending to the questions, one participant was excluded due to 

incomplete or missing data, and three participants were excluded on the basis of having a 

task completion time of less than four minutes, or less than two standard deviations from 

the mean task completion time.  This resulted in a final total of 160 participants (M = 

33.51 years old; 80 women).  The research protocol was approved by the University of 

Michigan Institutional Review Board, and all participants provided written informed 

consent. 

Materials.  The current experiment was conducted using Qualtrics (Qualtrics, Provo, UT) 

for easy online testing both in the laboratory and on Amazon MTurk.  As it involved 

reading and comprehension questions, the experiment was self-paced such that 

participants progressed through the online task without any timing restrictions other than 

an automatic timing out of the webpage if not completed in less than one hour.   

       I chose to use a slightly modified excerpt of text (and graph) from an actual 

psychology textbook (Goldstein, 2008), in which the data or findings for a scientific 

study about experience-dependent plasticity were described (see Appendix E). This was a 

between-subjects design, such that participants were randomly assigned to one of three 

conditions.  The excerpt was modified both in an attempt to slightly simplify the data set 

(to allow for a somewhat simpler graph) and to correspond to the three different 

conditions.  In one condition, the text describing the study findings was presented by 

itself, with no visualization.  In a second condition, participants read the same brief text 

presented with an irrelevant picture of a girl working at a computer.  In a third condition, 

participants read the same brief text presented with a relevant bar graph that 

corresponded to the data described in the text.    

        Participants were tested on their comprehension immediately, such that there was no 

delay between the reading and the comprehension questions for that reading.   The 

comprehension test included a single free-response question in which subjects were asked 

to briefly describe the main findings of the study in their own words, a multiple-choice 

question asking subjects to identify which bar graph correctly depicted the study findings, 
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and a multiple-choice question asking subjects to identify which line graph correctly 

depicted the study findings.  The inclusion of the line graph question was intended to 

examine comprehension differences as a function of graph format and to capture potential 

transfer of understanding of the data to a graph type that even those in the text with graph 

condition would not have previously viewed.  Those who completed the study in the 

laboratory also completed a fourth question, an open-ended question in which they were 

asked to draw a graph that represented the expected results for a different variable based 

on what they knew of the study findings they read about.  This question was intended as 

an additional transfer test of participants’ comprehension of the findings, as they were 

asked to extrapolate based on the information presented in the textbook excerpt.  

However, this question was not included in the analyses as there were too few 

participants who completed this additional question. 

       All participants also completed the Need for Cognition (NFC; Cacioppo et al., 1996) 

scale.  The NFC scale is an 18-item measure for which higher scores indicate a greater 

tendency to engage in and enjoy thinking (see Appendix C).  Participants decided how 

characteristic of themselves each statement was, using a Likert scale ranging from 1 

(“Does not describe me at all”) to 5 (“Describes me perfectly”).  Some items were reverse 

scored, and overall scores were obtained by summing responses to all of the items. 

Procedure.  All participants, including those who participated in the laboratory, 

completed the study online, via Qualtrics.  Participants were instructed to carefully read a 

textbook excerpt about a scientific study, as they would be asked to answer some 

questions about the reading later.  All participants first read a short textbook excerpt 

introducing the research study about experience-dependent plasticity.  Following this 

brief excerpt, participants were presented with a second page of the text that described 

the study data, and this second page contained only the text, the text with an irrelevant 

picture, or the text with a relevant graph.  After participants read the two pages of 

textbook material, they were asked to complete some comprehension questions about the 

data set discussed in the text, the NFC scale, and some demographic questions.  

 



	
  

	
   21 

Results 

       The free response question was coded by three independent raters according to the 

coding scheme listed in Appendix F, such that responses were categorized according to 

what participants described about the textbook excerpt they read (e.g., study methods, 

study data or findings, general conclusions from the study).  To assess the inter-rater 

reliability between the three raters, Fleiss’ kappa was calculated with the use of an online 

kappa calculator (Geertzen, 2012).  Inter-rater agreement for the data set following 

exclusions was moderate, with a kappa of .603.  Select cases of disagreement were 

resolved either by using the code agreed upon by two of the three raters or, in select cases 

of no agreement among all three raters, by using the finalized coding of an independent, 

more experienced fourth rater.  Because I was most interested in comparing correct 

descriptions of the excerpt’s study data to all other response types, and because not all 

response categories occurred for all conditions, for the sake of analyses I combined the 

codes for correct descriptions of methods, correct descriptions of general conclusions, 

incorrect descriptions of the study data, and responses unrelated to the excerpt into a 

single response category.   

       There was no statistically significant association between condition and response 

type, X2(2, N = 160) =1.47, p = .480.  Thus, format of the textbook excerpt does not seem 

to significantly affect the likelihood of a participant responding with a correct description 

of the study data or findings as opposed to a description of another kind.  It is interesting 

to note that in general (i.e., across conditions) there were proportionately less correct 

descriptions of the study data (n = 62) than responses of some other type (n = 98), most 

of which were descriptions of the study’s general conclusions (n = 78).  This would 

perhaps suggest that most participants understood the main conclusions drawn based on 

the study findings even if they did not fully comprehend what these findings or data 

actually were, although it is possible that participants explained the conclusions rather 

than the actual data themselves due to misunderstanding the wording of the free response 

question. 

       Means of recognition accuracy for each condition (i.e., text only, text with irrelevant 

picture, text with graph) and question type (i.e., multiple choice line graph or bar graph 
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question) are presented in Table 2.1.  Based on the literature, I expected that presenting 

an irrelevant picture with the text would lead to worse performance than presenting the 

text by itself.  I also expected that presenting a relevant graph with the text would be 

better in comparison to no visualization.  Furthermore, I expected that, if participants 

were actually looking at the included visualization, a relevant graph presented with the 

text would result in much improved comprehension or memory for the text compared to 

an irrelevant picture.  To look at these effects of condition, as well as the influence of 

individual differences (i.e., NFC) on comprehension, a between-subjects ANOVA was 

conducted with NFC as a covariate (see Table 2.2).  However, contrary to expectations, 

there was no significant effect of condition (i.e., text only, text with irrelevant picture, 

text with graph) on overall accuracy for the multiple-choice questions, F(4,310) = .910, p 

= .459, Wilks’∧= .977.  Interestingly, accuracy was lowest for the text only condition 

and highest for the text with irrelevant picture condition, with accuracy for the text with 

graph condition falling in-between, though these differences were not significant.  There 

was also no significant effect of condition on accuracy for the individual multiple-choice 

questions, as F(2,154) =.07, p = .933 for the bar graph multiple-choice question and 

F(2,154) = .73, p = .485 for the line graph multiple-choice question.   

       Need for cognition was significantly associated with overall accuracy for the 

multiple-choice comprehension questions, F(2,153) = 7.88, p = .001, such that 

individuals who enjoy more difficult thinking were more accurate in their responses to 

the multiple-choice questions.  This was also true for each of the multiple-choice 

questions individually, as F(1,154) = 12.14, p = .001 for accuracy on the bar graph 

multiple-choice question and F(1,154) = 7.64, p = .006 for accuracy on the line graph 

multiple-choice question.  These results indicate that although condition may not 

influence immediate comprehension for textbook reading, dispositional factors such as 

NFC certainly are influential for comprehension of complex data in textbook readings.  

There was no significant interaction between NFC and condition for overall multiple-

choice accuracy (F(4,306) = .44, p = .780, Wilks’∧= .989), nor was there a significant 

interaction between NFC and condition for either the bar graph multiple-choice question 

(F(2,154) = .17, p = .843) or the line graph multiple-choice question (F(2,154) = .67, p = 
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.512) individually.  These findings suggest that although NFC mediates comprehension 

of textbook readings, higher or lower NFC does not benefit performance in this 

experiment for one particular condition more than another condition. 

       Accuracy on the two multiple-choice questions, bar and line graph, were 

significantly correlated with each other (r = .31, p < .001), which suggests that 

participants who understood the data well enough to recognize the correct graphical 

depiction of the data comprehended the excerpt well enough to do so regardless of graph 

type.  Higher accuracy on the two multiple-choice questions combined was associated 

with a greater likelihood of correctly describing the excerpt’s study data (r = -.25, p = 

.002), as was higher accuracy on the bar graph question (r = -.20, p = .013) alone and the 

line graph question (r = -.20, p = .010) alone.  This makes sense given that those who did 

not understand the study data well enough to describe them in their own words would 

likely have a difficult time coming up with a correct graphical representation of the study 

data.  Moreover, NFC was significantly correlated with accuracy on the bar graph 

multiple-choice question (r = .28, p < .001), the line graph multiple-choice question (r = 

.23, p = .004), and both of the multiple-choice questions combined (r = .31, p < .001).  

Thus, the more participants enjoy difficult thinking, the more accurate they were on the 

multiple-choice questions.  These findings indicate that attitude towards effort, or 

dispositional factors such as enjoyment of difficult thinking, plays an important role in 

comprehension of textbook reading.   

Discussion 

       Format of the textbook excerpt did not influence the likelihood of a participant to 

respond with a correct description of the study data or findings as opposed to a 

description of another kind.  Most participants understood the main conclusions drawn 

based on the study findings, even if they did not fully comprehend what these findings or 

data actually were.  Although no significant differences in accuracy were found between 

textbook excerpt formats, a clear impact of individual differences was found.  Individuals 

with a higher need for cognition, or greater enjoyment of difficult thinking, were more 

accurate in identifying the bar and line graphs that correctly depicted the study’s data in 

the excerpt.  However, there was no evidence to support the interaction of NFC with the 
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inclusion of graphs or seductive pictures in comprehending the information presented.  

One possible alternative explanation is that differences in cognitive capacity may 

underlie the relationship between NFC and performance.  Future research should 

differentiate between dispositional factors and cognitive factors. 

 
       The statistically non-significant differences in accuracy between conditions are 

perhaps not so surprising, as some of the findings regarding seductive details indicate that 

seductive details such as irrelevant pictures at best afford no advantage over text alone 

and at worst are detrimental for performance compared to text alone.  Although there was 

no clear detriment observed from presenting an irrelevant picture with the textbook 

excerpt in the current experiment, there was also no advantage from the inclusion of such 

a seductive detail.  These results are therefore still consistent with the seductive details 

literature.  With regards to the inclusion of a relevant graph, perhaps improved 

comprehension did not occur for this condition in comparison to the others because 

participants either did not use the graph or participants did try to use the graph but did not 

understand the graph or find it helpful.  Additional research would be necessary to 

determine why the inclusion of relevant graphs are no better than reading the text alone 

or reading the text with irrelevant pictures.  Maybe the relevant graph does not act as an 

explanative summary, as misunderstanding the graph would not help readers understand 

the structure or relationships within the data described in the text.  If readers are bad at 

graph comprehension and thus graphs are not useful as explanative summaries, then 

perhaps in this case a relevant graph actually serves as more of a seductive detail or 

irrelevant and disruptive information for the reader. 

       Another potential explanation of the results is that the expected differences in 

accuracy between conditions, particularly for the inclusion of a relevant graph, are not 

clearly observable with an immediate test, but rather would be more apparent with a 

longer delay period between the reading of the excerpt and the comprehension test items.  

This would be consistent with findings in the learning and desirable difficulties literature.  

Perhaps varying conditions of the textbook excerpt do not matter for an immediate test, 

as the information read in the text is still active within memory, whereas a 

comprehension test based on long-term memory may be more susceptible to differences 
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in processing of the reading due to the excerpt format.  Thus, I would predict that the 

advantage of a graph, if it serves as an explanatory summary, may be greater after a one-

week delay since conditions that affect learning, like the testing effect, have bigger 

impact at delay than with immediate testing.  In fact, with the testing effect, at immediate 

test performance is better for the study condition, but with the delayed test performance is 

better for those with repeated testing (Roediger & Karpicke, 2006). Although the effects 

of seductive details and explanative summaries or illustrations have certainly been found 

within tasks that immediately follow the reading of an excerpt, perhaps such differences 

would be more pronounced in long-term memory.  Therefore, additional research should 

determine whether this is the reason for the findings in Experiment 1. 
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Table 2.1 

Means for Recognition Accuracy by Condition and Question Type 

Condition Question Type  
 Line Graph Bar Graph Overall N 

Text Only .740 (.054) .599 (.060) .670 (.045) 57 
Text with 

Irrelevant Picture .843 (.059) .733 (.066) .788 (.050) 48 

Text with Graph .766 (.055)  .699 (.061) .733 (.046) 55 
Overall .783 (.032) .677 (.036) .730 (.027) 160 

Note.  Values enclosed in parentheses represent standard errors. “Overall” values indicate 
values collapsed across condition or question type.  
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Table 2.2 

Between-Subjects ANOVA of Recognition Accuracy by Condition with Need for 

Cognition (NFC) as a Covariate 

Source Accuracy df F Partial η2 p 
NFC Bar Graph 1 12.14** .073 .001 

 Line Graph 1 7.64** .047 .006 
Condition Bar Graph 2 .070 .001 .933 

 Line Graph 2 .726 .009 .485 
Condition x NFC Bar Graph 2 .171 .002 .843 

 Line Graph 2 .673 .009 .512 
Error Bar Graph 154 (.207)   

 Line Graph 154 (.165)   
Note. ANOVA = analysis of variance. Values enclosed in parentheses represent mean 
square errors. *p < .05. **p < .01. 
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CHAPTER 3: 

GRAPH COMPREHENSION IN IMMEDIATE AND  

LONG-TERM MEMORY TASKS 

Introduction 

     Often, students are presented with graphs representing complex data with the 

expectation that they are able to comprehend the main points of the data set such that they 

could explain the data in their own words, and that they will be able to remember this 

information to draw from it later.  This is evidenced by the frequent inclusion of graphs 

in textbooks, which clearly highlights the assumption that students comprehend and use 

such information.  However, students are not particularly good at interpreting graphs, as 

seen both in the graph comprehension literature and in Experiment 1.  As seen in 

Experiment 1, students may not fully understand complex data presented textually, even 

with the addition of a relevant graphical representation of the data.  This leads to the 

question of what people are actually doing when interpreting multivariate graphs, which 

was the aim of Experiment 2.  Do students come away from a graph with a clear 

understanding of the data set, such that they can explain the relationships within the 

graph? 

       Another question is whether students are able to identify the important information 

or relationships in a complex graph and understand them well enough to remember this 

information later from memory.  If the goal of presenting data in graphs is to 

communicate critical concepts or research findings or to provide supporting scaffolding 

for textually presented information, then determining whether students grasp and 

remember the conclusions to be drawn from these graphs is extremely important.  This 

question was the goal of Experiment 3.  Additionally, there is some reason to believe that 

legends may add visual difficulty to graphs that would be beneficial or advantageous for 

task performance, particularly for long-term memory.
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       Therefore, in the next several experiments, I aimed to determine how well students 

identify main effects presented in line graphs in realistic tasks that involve describing and 

interpreting presented data in an open-ended context or remembering important aspects 

of a data set.  I was also interested in potential differences between graph formats (i.e., 

labels versus legends) on these various graph comprehension tasks.  Once again, in each 

of these experiments I also examined the role of individual differences on task 

performance and whether certain individual characteristics lend themselves to greater 

benefit from certain graph formats. 

Experiment 2 

Introduction 

       The goal of the current experiment was to examine what students actually identify as 

important information when presented with complex multivariate graphs.  An open-ended 

graph description task would perhaps provide a better idea for what graphical 

relationships students identify and report as important compared to the more commonly 

used fact-retrieval task, in which students are asked a pointed question about a particular 

relationship presented in the graph.  Because students are not directed to attend to one 

specific relationship in the graph in an open-ended task, and because each graph in the 

task contains a total of seven potential relationships (i.e., three main effects, three 2-way 

interactions, and one 3-way interaction) that could be described, this task may allow 

students to better indicate the different types of information that they are attending to in 

complex multivariate graphs.   

       Thus, in Experiment 2, I addressed students’ ability to identify main effects and 

interactions in multivariate graphs within an open-ended context.  I also investigated the 

influence of graph format and individual differences on task performance.  I predicted 

that students would report a relatively fair proportion of the relationships in the data (i.e., 

at least 50%) given the open-ended and self-paced format of the task.  I also hypothesized 

that students would report more main effects than interactions.  However, I expected that 

students would report more complex relationships or interactions for graphs containing 

legends than graphs containing labels, because I thought that students may be more likely 
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to identify such relationships in the data due to the built-in organization of the legend and 

additional processing required by these graphs.  Students with increased graph skills and 

WM capacity were expected to correctly report more relationships in the data than 

students with low graph skills and WM capacity, and increased WM span was predicted 

to be especially important for graphs with legends compared to graphs with labels.  

Increased NFC, open-mindedness, and cognitive reflection were hypothesized to relate to 

correct identification of proportionately more relationships, particularly for graphs 

containing legends, compared to lower scores on these dispositional measures.   

Method 

Participants.  Sixty-three individuals volunteered to participate in this experiment for 

course credit or for payment at the rate of $10 per hour.  Two of these subjects were 

excluded from the data set for not completing the study (n = 1) or for leaving some of the 

test materials blank (n = 1), resulting in a total of 61 participants (M = 19.61 years; 19 

women).  Participants consisted of University of Michigan undergraduates from both the 

University of Michigan Psychology Subject Pool and the Ann Arbor community.  

Research protocols were approved by the University of Michigan Institutional Review 

Board, and all participants provided written informed consent. 

Materials.   

Graph Tutorial.  Participants first completed a graph tutorial program run online using 

Qualtrics (Qualtrics, Provo, UT), which walked them through progressively more 

difficult graphs and open-ended questions relating to these graphs.  For some example 

screenshots of the tutorial, see Figure 3.1.  The concepts of main effects and interactions 

were defined in the tutorial. The tutorial also explained how to use a mental averaging 

procedure to answer questions about main effects relating to 2x2x2 line graphs (graphs 

containing 3 independent variables) via “static builds.”  Static builds in the context of this 

tutorial are simply still frames that lay out the steps of the mental averaging process, one 

at a time, and highlight important or relevant pieces of the graph at each step (e.g. using 

color to highlight relevant lines or stars to mark averages).  Finally, the tutorial provided 
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participants with several practice questions. This tutorial was set up such that participants 

could type in their open-ended responses to each example.   

Open-ended Graph Description Task.  The open-ended graph description task was a 

paper task consisting of six graphs, three with labels and three with legends (see Figure 

3.2 for examples).  Graphs with labels in one version of the task had legends in a second 

version of the task, and vice versa.  Graphs were black and white with some visual cues 

to differentiate between the lines (i.e., solid and dotted lines, circle and square end-

points).  Graph order was randomized for each participant.  All graphs contained three 

independent variables (2x2x2 graphs), such that any description of the data could 

potentially include three main effects, three 2-way interactions, and one 3-way 

interaction.  Participants were instructed to respond to information about various 

scenarios that depict information about a psychological study and data from the study 

presented graphically.  They were told to imagine that they were trying to convey the 

information presented to them to someone who has little knowledge about the topic, and 

that their goal was to convey the main points from the scenario and the graph in a way 

that the person would fully understand without having to see the graph.  Participants were 

also instructed that the scenarios and graphs presented would be fairly complex and that 

different people might highlight different information; thus, there are no right or wrong 

answers, and we are interested in what they think is important information to 

communicate about the data.  Participants were requested to write about 2-5 sentences per 

graph, and it was estimated that the task would take them approximately 25 

minutes.  Participants were also provided with three examples of scenarios with 

corresponding graphs, along with sample answers for each data set that would be 

considered reasonable potential responses. 

Individual difference measures.  Participants completed a battery of individual difference 

measures, including the Edinburgh Handedness Inventory (Oldfield, 1971), Unusual Uses 

Task (Guilford, 1967), Cognitive Reflection Test (CRT; Frederick, 2005), Actively 

Open-minded Thinking Scale (AOT; Stanovich & West, 1997, 2007), Need for Cognition 

Scale (NFC; Cacioppo, Petty, Feinstein, & Jarvis, 1996), automated Symmetry Span task 
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(SSPAN; Unsworth, Heitz, Schrock, & Engle, 2005), and Graph Literacy Scale (Galesic 

& Garcia-Retamero, 2011). 

Edinburgh Handedness Inventory.  In this measure, participants indicated which hand(s) 

they would use for each task listed (Oldfield, 1971).  As this task was used as a filler task 

and was not included in the analyses, it will not be discussed further with regards to 

scoring or analyses. 

Unusual Uses Task.  This task is a creativity measure in which participants are asked to 

generate as many possible uses for a common item (e.g. brick, bucket) as they can within 

two minutes (Guilford, 1967).  As this task was used as a filler task and was not included 

in the analyses, it will not be discussed further with regards to scoring or analyses. 

Cognitive Reflection Test.  The CRT (Frederick, 2005) is a 3-item measure of an 

individual’s ability to suppress an intuitive, automatic, or spontaneous incorrect response 

in order to come up with a more reflective and deliberative correct answer (see Appendix 

D). Scores were calculated by summing the total number of correct responses.  

Actively Open-minded Thinking Scale.  The AOT scale (Stanovich & West, 1997, 2007) 

consisted of 41 items (see Appendix B).  Participants were instructed to select a response 

that best indicated their opinion for each item, using a Likert scale ranging from 1 

(“strongly disagree”) to 6 (“strongly agree”).  Scores were computed by summing the 

responses to the questions.  Some items were reverse scored, such that higher scores on 

the AOT indicate a greater tendency for open-minded thinking and cognitive flexibility, 

while lower scores indicate cognitive rigidity and resistance to belief change.   

Need for Cognition Scale.  This was the same measure as was used in Experiment 1.  The 

NFC scale (Cacioppo et al., 1996) is an 18-item measure for which higher scores indicate 

a greater tendency to engage in and enjoy thinking (see Appendix C).  Participants 

decided how characteristic of themselves each statement was, using a Likert scale 

ranging from 1 (“Does not describe me at all”) to 5 (“Describes me perfectly”).  Some 

items were reverse scored, and overall scores were obtained by summing responses to all 

of the items. 
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Symmetry Span Task.  Participants also completed a computerized automated SSPAN 

task (Unsworth et al., 2005), a working memory span measure in which participants 

judged whether pictures were symmetrical while also trying to recall the location of 

squares on the screen in the correct sequential order (see Figure 3.3). This program was 

run using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA).  There were three 

practice sections prior to the actual trials: (1) practice on the storage task only (i.e., 

participants were presented with sequences of red squares that appeared within a 4x4 

matrix and recalled and clicked on the locations of squares in the correct order on the 

grid); (2) practice on only the processing task (i.e., determining whether pictures made by 

filling in squares on an 8x8 matrix were symmetrical about the vertical axis); and (3) 

interleaved processing and storage tasks (i.e., each symmetry question was followed by a 

650 ms presentation of a square, and participants indicated the locations of the squares in 

the correct sequential order at the end of a set).  There were a total of 12 experimental 

trials, as there were three trials of each set-size with list length ranging from two to 

five.  There was an individualized time limit for both the practice and actual trials of the 

interleaved task that was based on an individual’s performance in the processing task 

only practice portion (i.e., individual’s mean plus 2.5 standard deviations).  Because the 

task is automated, a random combination of trials and list lengths was generated for each 

participant, and items to be recalled were distinct from the processing task.  Feedback on 

accuracy for both the storage and processing tasks was presented at the end of each trial.   

      The program automatically calculates five scores: (1) the absolute load score, or the 

sum of all trials in which all items were recalled in the correct serial order; (2) the partial 

load score, or the sum of items recalled in the correct serial position regardless of whether 

the entire trial was recalled correctly; (3) processing errors, or the total number of errors 

made on the processing task; (4) speed errors, or the number of processing problems that 

were unanswered within the time limit; and (5) accuracy errors, or the number of 

processing problems answered incorrectly.  I used the partial load score for all of the 

analyses as research indicates that partial-credit scoring is better than absolute scoring for 

complex span tasks (i.e., operation span, reading span, symmetry span) with regards to 

psychometric properties such as test-retest reliability, internal consistencies, and 
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convergent validity (Redick et al., 2012). Furthermore, partial scoring captures additional 

variance that would not be captured with absolute scoring. 

Graph Literacy Scale.  This graph test (Galesic & Garcia-Retamero, 2011; see Appendix 

A) is a 13-item measure that assesses the three main graphical comprehension skills 

described by Friel et al. (2001): (1) the basic skill of reading the data or finding specific 

information in a graph; (2) the intermediate skill of finding relationships in the data 

presented in a graph; and (3) the advanced skill of making inferences and predictions 

based on the data.  This scale also covers some of the most frequently used types of 

graphs, including line graphs, bar graphs, pie charts, and icon arrays. Scores were 

calculated by summing the total number of correct responses. 

Demographic Questionnaire.  The Demographic Questionnaire (see Appendix G) 

contains questions about gender, age, handedness, race, ethnicity, highest level of 

completed education, and their major in school.   Participants are also asked about their 

familiarity with different types of graphs, how frequently they use graphs or tables, 

whether they prefer graphs or tables, how many math and statistics courses they have 

taken, their ACT or math SAT score, whether they consider themselves to be a math or 

science person, how confident they are in their scientific reasoning skills, and whether 

they are comfortable with numbers and graphs. 

Exit Survey.  Participants completed a brief Exit Survey at the end of the session (see 

Appendix H), consisting of five questions pertaining to potential strategies used in the 

study, what they thought was difficult in the study, their graph preferences, and what they 

thought was the purpose of the study. 

Procedure.  Participants first completed the online graph tutorial on the computer.  This 

was followed by the open-ended graph description task.  Next, participants completed a 

battery of individual difference measures, starting with the Edinburgh Handedness 

Inventory, followed by the Unusual Uses Task, the CRT, the AOT scale, the NFC 

questionnaire, the automated SSPAN, and the Graph Literacy Scale.  Finally, participants 

filled out a demographic questionnaire as well as an exit survey prior to debriefing at the 



	
  

	
   35 

conclusion of the experiment.  Participants completed the study in approximately 1.5 to 2 

hours. 

Results and Discussion 

Open-Ended Graph Description Task.  Participants’ responses on the open-ended graph 

description task were coded according to the scheme found in Appendix I for each 

individual graph.  First, responses were categorized by accuracy (correct or incorrect). 

Then responses were grouped into one of the following categories: description, or a 

description of the study related to the vignette or variables studied but that did not 

address any relationships in the data; main effect of X, or main effect of the variable on 

the x-axis; main effect of line, or main effect of the variable for which lines were 

differentiated by solid and dotted lines; main effect of circle/square, or main effect of the 

variable for which lines were differentiated by circle and square end-points; full 2-way 

interaction of X and line, or interaction between the variable on the x-axis and the 

variable for which lines were differentiated by solid and dotted lines; full 2-way 

interaction of X and circle/square, or interaction between the variable on the x-axis and 

the variable for which lines were differentiated by circle and square end-points; full 2-

way interaction of line and circle/square, or interaction between the variable for which 

lines were differentiated by solid and dotted lines and the variable for which lines were 

differentiated by circle and square end-points; partial 2-way interactions, or responses 

that attempted to describe the relationship between two variables in the graph but that 

only described one part of the relationship (e.g., mentioning what was happening with 

one variable in relation to another but not vice versa); 3-way interaction, or interaction 

between all three variables in the graph; and partial 3-way interaction, or responses that 

attempted to describe the relationship between all three variables but only described part 

of the relationship.  These partial 3-way interactions often tended to be descriptions of a 

single line in the graph.  For partial 2-way interactions, the number of partial interactions 

reported (i.e., 1 to 3 per graph) was recorded. 

      One trained individual coded all of the participants’ responses.  A second rater coded 

the responses of 20% of the sample (data from a randomly selected 12 participants).  The 

overall percent agreement between the two raters was 94.67%, with an “almost perfect” 
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Cohen’s kappa coefficient of .84.  Percent agreement for correct responses was 93% 

(with a substantial Cohen’s kappa of .83), while percent agreement for incorrect 

responses was 98.59%.  However, it is important to note that because there were very few 

cases of incorrect responses (only three), the kappa statistic would not be informative in 

this context (i.e., almost all of the agreement was that there were no incorrect responses) 

and was therefore not calculated for incorrect responses.  Percent agreement for correct 

responses about main effects was 90.14% (with a substantial Cohen’s kappa of 0.80), and 

the percent agreement for correct responses about interactions was 93.90% (with a 

substantial Cohen’s kappa of 0.71).  In the select cases of disagreement, the coding of the 

second more experienced individual was used for analyses. 

      Because there were very few incorrect responses made on the open-ended graph 

description task, the analyses focus on correct responses only.  Additionally, all analyses 

were computed using proportions calculated for each aforementioned category of answer 

type.  Thus, each proportion reflects the mean number of written statements provided by 

subjects divided by the total potential statements possible to provide for that particular 

category of answer type.  For example, each 2x2x2 graph contains three possible main 

effects, which multiplied by six graphs in the task yields 18 total possible main effects 

that participants could mention in their responses on the task.  A participant’s proportion 

of main effects would therefore be the number of main effects they correctly describe 

divided by 18.   

       The mean proportion for correct responses collapsed across main effects and 

interactions was 0.19 (SE = .007), which is extremely low.  Thus, overall, students report 

relatively very few main effects and interactions compared to what they could report 

given the amount and complexity of the relationships presented in the graphs.  Students 

did report significantly more main effects than interactions of any type (2-way or 3-way, 

full or partial; M = .09, SE = .006), t(60) = 10.50, p < .001. Yet, the mean proportion of 

total correct main effects reported was 0.46 (SE = .031), which is less than 50% of the 

total main effects that students could have reported from the presented graphs.  

Interestingly, there were no significant differences between the mean proportions of 

reported main effects for main effects of the variable on the x-axis (M = .46, SE = .032), 
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main effects of the variable indicated by solid or dotted lines (M = .46, SE = .036), and 

main effects of the variable indicated by circle or square end-points (M = .46, SE = .042), 

F(2, 59) = .003, p = .997, which suggests that the specific main effects reported by 

students were not attributable to the way in which those main effects were presented in 

the graphs.  In other words, students were just as likely to correctly report main effects 

for each of the three variables of the multivariate data. 

      A series of paired t-tests were conducted to check for differences between proportions 

for graphs with labels and graphs with legends for the various categories of possible 

responses, but none of them were statistically significant (see Table 3.1).  This suggests 

that, contrary to expectations, there was no effect of graph format (labels versus legends) 

in the open-ended graph description task.  This was somewhat surprising, although upon 

further review of the task there are a few potential explanations for this finding.  One 

explanation is that perhaps there is not a big enough difference between the stimuli in that 

the placement of the legends in these graphs is not very far removed from the location of 

the labels, and this may be why no effect of graph format was observed.  Another, and 

perhaps more likely, explanation is that maybe graph format matters less when the task is 

predominately self-paced as well as open-ended.  Additionally, it is possible that no 

differences in graph format were observed because the coding scheme was too fine-

grained.  Because there were many categories of responses, some categories had rather 

small proportions of responses compared to others.  Therefore, future research could use 

a broader coding scheme to try to capture differences between graph formats that were 

unobserved with the current coding scheme.  

Individual Differences.  For means for each of the individual difference measures, please 

refer to Table 3.2.  To determine the relationships between individual difference 

measures and task performance, I computed Pearson product-moment correlation 

coefficients (see Tables 3.3 and 3.4).  Please note that one additional subject was 

excluded from the correlational analyses due to not completing any of the individual 

difference measures.  Another four subjects were excluded from correlational analyses 

due to the individual difference measures being completed out of order.  Also, one 

subject was excluded from correlations regarding the Graph Literacy Scale due to 
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missing data on that one measure, and two subjects were excluded from correlations 

regarding the SSPAN task due to missing data on that measure.  All correlations reported 

were significant at the p < 0.05 level unless stated otherwise. 

      Higher graph literacy scores were significantly associated with more open-

mindedness and higher CRT scores.  Higher working memory span was also correlated 

with higher CRT scores, while greater need for cognition was associated with increased 

open-mindedness and higher CRT scores.  The overall proportion of correctly reported 

relationships increased with increasing graph literacy (r = .24, p = .078), as did the 

overall proportion of relationships described for graphs with labels (r = .25, p = .064).  

Higher WM span was significantly correlated with both the overall proportion of 

responses and the proportion of responses for graphs with legends, and was marginally 

correlated with the proportion of responses for graphs with labels (r = .26, p = .056). 

Increased CRT scores were significantly associated with a greater overall proportion of 

responses, and this was also true both for graphs with labels and graphs with legends. 

Correlations for Main Effects.  Students with higher graph literacy scores were 

marginally more likely to identify more main effects in general (r = .24, p = .082) and 

specifically more main effects for graphs with labels (r = .23, p = .090).  Those with 

higher graph literacy were also more likely to identify main effects that corresponded to 

variables differentiated by circle or square end-points (r = .26, p = .053), and this was 

true for graphs with labels (r = .25, p = .064) but not for graphs with legends.  Students 

with higher WM span tended to identify more main effects in general (r = .23, p = .098) 

and specifically more main effects for graphs with legends (r = .24, p = .082).  Those 

with high WM span were also more likely to identify main effects that corresponded to 

variables differentiated by solid or dotted lines (r = .27, p = .052), and this was true for 

graphs with legends (r = .24, p = .079) but not for graphs with labels.  More open-

mindedness was associated with correct identification of more main effects that 

corresponded to variables on the x-axis (r = .24, p = .076), and this was especially the 

case when these graphs contained labels (r = .32).   

Correlations for Interactions.  Students with higher WM span identified more full 2-way 

interactions for legend graphs, especially when these interactions involved the variable on 
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the x-axis and the variable shown using solid and dotted lines.  Higher graph literacy was 

associated with more reports of full 2-way interactions between variables on the x-axis 

and variables shown using solid and dotted lines.  Higher graph literacy was also 

associated with fewer reports of full 2-way interactions between variables on the x-axis 

and variables shown using circle and square end-points, especially when the graphs 

contained legends. Greater NFC was correlated with fewer descriptions about full 2-way 

interactions between variables shown using solid and dotted lines and variables shown 

using circle and square end-points in graphs with legends.  Increased cognitive reflection 

was associated with more reports of full 2-way interactions between variables on the x-

axis and variables shown using circle and square end-points, as well as with more reports 

of partial 3-way interactions and partial 3-way interactions for graphs with labels.  More 

open-mindedness was marginally associated with less identification of full 2-way 

interactions for legend graphs (r = .27, p = .094).  Higher WM span was marginally 

negatively correlated with identification of full 2-way interactions between variables 

shown using solid and dotted lines and variables shown using circle and square end-

points for graphs with labels (r = .23, p = .097).  Finally, more reports of full 2-way 

interactions between variables shown using solid and dotted lines and variables shown 

using circle and square end-points were correlated with lower CRT scores (r = -.24, p = 

.077).  

       In sum, graph literacy and WM span both predicted the mean proportion of correct 

main effects reported in the open-ended graph description task, but attitude (e.g., open-

mindedness) was also an important factor.  As expected, higher WM span appears 

especially important for reporting proportionately more main effects and interactions for 

graphs that contained legends.  Additional dispositional characteristics (e.g., NFC and 

cognitive reflection) were also relevant factors with regards to the proportion of 

interactions reported. 
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Experiment 3 

Introduction 

       Experiment 3 was intended to determine how well students identify main effects in 

the context of a task involving immediate and long-term memory of important aspects of 

data presented in graphs.  In the current experiment, students must identify main effects 

in an open-ended context before knowing what question may be asked.  This is perhaps 

more difficult than looking up information in a graph, as is the case in many fact-retrieval 

tasks in the graph literature, and is also a more realistic scenario as students may not 

know specifically which effects to look for in a graph prior to viewing it and would need 

to be able to identify what is important information in the data set on their own. 

       Furthermore, much of the graph literature favors labels over legends, but many of the 

studies upon which this recommendation is based consist of immediate fact-retrieval 

tasks.  According to the concept of desirable difficulties, introducing difficulties such as 

legends may not benefit individuals in the short-term, but could benefit them in the long-

term.  Thus, in Experiment 3, I also wanted to test whether graph format had a 

differential effect in a long-term memory task (i.e., whether legends may actually benefit 

graph comprehension in LTM, at least for some individuals).  Students were expected to 

be more accurate in responding to graphs containing legends than graphs containing 

labels in the LTM task, but this difference was not expected in the immediate task.  

Again, I also examined the role of individual differences in graph comprehension in the 

current experiment.  Greater familiarity with graphs and increased WM capacity were 

hypothesized to be associated with better task performance in both immediate and LTM 

tasks, as were increased NFC, open-mindedness, and cognitive reflection.  WM capacity 

was especially expected to influence accuracy for graphs with legends as compared to 

graphs with labels. 

Method 

Participants. Seventy-one individuals volunteered to participate in this experiment for 

course credit or for payment at the rate of $10 per hour.  Fifteen of these participants 

were excluded due to low task performance of less than 60% on the first task (n = 8), 
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equipment failure (n = 1), or failure to complete the study session (n= 6), resulting in a 

total of 56 participants (M = 19.13 years; 26 women).  Participants consisted of 

University of Michigan undergraduates from both the University of Michigan Psychology 

Subject Pool and the Ann Arbor community. Research protocols were approved by the 

University of Michigan Institutional Review Board, and all participants provided written 

informed consent. 

Materials.  Participants first completed a graph tutorial similar to the one used in 

Experiment 2.  However, this version of the graph tutorial only described main effects 

and the mental averaging process and excluded explanations of interactions in order to 

best correspond to the following experimental tasks.  In contrast to Experiment 2, the 

tutorial program was run on the computer using E-Prime 2.0 (Psychology Software 

Tools, Pittsburgh, PA) instead of Qualtrics, with only slight modifications to match the 

format of the tutorial with that of the Graph First Verification Task (e.g., graph was 

viewed prior to the true-false statement, responses were true-false rather than open-

ended).    

       Because in this experiment I was interested in the effect of added visual difficulty 

(i.e., legends) and individual differences on both immediate and long-term memory for 

graphically presented data, I used two different computerized tasks, one to test immediate 

memory (i.e., Graph First Verification Task) and one to test long-term memory 

(LTM).  The Graph First Verification Task (see Figure 3.4) included six 2x2x2 graphs 

per condition (i.e., labels and legends; see Figure 3.2 for examples) and involved true-

false statements about potential main effects presented in the graphs (see Appendix J for 

example statements).  Students first read a brief description of the data set, and then they 

viewed the graph for a fixed duration of one minute prior to viewing and responding to 

the true-false statement.  There was only one true-false question per graph in the Graph 

First Verification Task, totaling 12 questions. A group of 24 true-false statements was 

divided into two groups of 12.  Thus, half of the participants were presented with one 

group of 12 true-false statements in the Graph First Verification Task and the other half 

were presented with the second set of 12 true-false statements. Trial order was 
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randomized for each participant, and graphs that appeared with labels for some subjects 

appeared with legends for other subjects (and vice versa). 

      The LTM task (see Figure 3.5) was expected by the participants, as they had been 

instructed during the Graph First Verification Task that they would be asked questions 

about the graphs at a later time, and therefore the LTM task was not a surprise memory 

test. This task did not include any graphs, but rather prompted subjects to recall the graph 

or data set associated with each study description.  Subjects first read a description of the 

study (same description that appeared in the Graph First Verification Task) and then 

responded to a true-false statement.  They were then asked to indicate whether they had 

clearly remembered the data set associated with that statement or if they had guessed 

when responding to that statement.  There were two true-false statements per data set, one 

repeated from the Graph First Verification Task and one new (from the remaining set of 

12 true-false questions unused in the Graph First Verification Task), totaling 24 

questions.  Participants were allotted a maximum of one minute for each statement, and 

the screen advanced to the strategy question (i.e. remember or guess) upon 

response.  Trial order was randomized for each participant, both for the order of the 

graphs and the order of the true-false statements.  

      All individual difference measures were the same as those used in Experiment 2. 

      All computer programs were run using E-Prime 2.0.  True and false responses in the 

graph tutorial, Graph First Verification Task, and LTM task were made using the “c” and 

“m” keys on the keyboard, which were labeled “T” and “F” respectively.  “Remember” 

and “Guess” responses in the LTM task were also made using the “c” and “m” keys, 

respectively.  In the SSPAN task, all responses were made using the mouse. 

Procedure.  Participants first completed the graph tutorial program on the computer. Next 

they completed the Graph First Verification Task.  Students were instructed to pay close 

attention to the graphs, as they would be asked questions about them later. This was 

followed by approximately 20 minutes of individual difference measures (i.e., Edinburgh 

Handedness Inventory, Unusual Uses Task, CRT, AOT, NFC), after which participants 

completed the LTM task on the computer.  Then subjects completed the remainder of the 
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individual difference measures (i.e., SSPAN, Graph Literacy Scale), followed by the 

demographic questionnaire and exit survey.  All participants were debriefed at the 

conclusion of the experiment. Participants completed the study in approximately 1.5 

hours. 

Results and Discussion 

Graph First Verification Task.  Overall accuracy on this task was 84%.  To assess the 

effect of graph format (label or legend) on task accuracy and response time (RT), a 1x2 

within-subjects ANOVA was conducted (see Table 3.5).  All calculations of RT are 

based on median RTs that have been filtered for correct responses only.  There was no 

significant effect of graph format on task accuracy (F(1,55) = 0.21, p = 0.646) in this 

immediate task.  Accuracy for graphs with labels (M = .85, SE = .017) was very similar to 

accuracy for graphs with legends (M = .84, SE = .021).  This finding suggests that both 

graph formats, labels and legends, are effective for comprehension within the short-term.  

Although I checked for an effect of graph format on RT, it is important to note that RT in 

the current task is not an informative measure because the current task measures RT 

when participants are viewing the true-false statements after a fixed graph encoding time.  

Thus, in the current experiment a difference in RT was not predicted, and indeed no 

significant effect of graph type on RT was found (F(1,55) = 1.14, p = 0.290).  

Long-term Memory Task.  For this analysis I computed accuracy on LTM trials as a 

function of correct comprehension on the Graph First Verification Task trials.  The 

intuition was that these LTM trials would be the ones for which participants were more 

likely to have actually encoded the graph since they correctly responded to a question 

about the graph in the Graph First Verification Task.  Based on only these trials, overall 

accuracy in the LTM task was 79.6%.  To determine whether graph format (label or 

legend) had an effect on task accuracy and response time (RT), I conducted a repeated 

measures ANOVA (see Table 3.5).  Contrary to expectations, there was no significant 

difference in accuracy between graph with labels (M = .79, SE = .022) and graphs with 

legends (M = .80, SE = .019) in the LTM task, F(1, 55) = 0.25, p = .618.  In the LTM 

task, RT indicated how long it took participants to verify a true-false statement from 

memory (without viewing the graph again).  A difference in RT between graph formats 
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was not expected, and indeed no significant effect of graph format on RT was found (F(1, 

55) = 0.30, p = .587).   

       These results suggest that introducing difficulties into a graph (i.e., legends) does not 

benefit LTM more than other formats (i.e., labels).  However, perhaps these difficulties 

only benefit individuals who have the capacity to deal with the added difficulty and so 

these differences are not observed within the data set as a whole.  To address this 

question, I conducted a mixed repeated measures ANOVA to examine the effect of 

working memory ability (high versus low; between subjects) and graph format (label 

versus legends; within subjects) on performance in the Graph First Verification Task and 

the LTM task.  Working memory groups were calculated based on a median split of the 

data according to SSPAN partial load scores.  For this analysis, all LTM task trials were 

included as I was interested in accuracy change from immediate to LTM.  Results 

indicated a non-significant 3-way interaction (F(1, 54) = 1.43, p = .236), but results did 

indicate a trend in the predicted direction, such that only individuals with high WM were 

not disadvantaged from the inclusion of legends in the LTM task (see Figure 3.6).  Those 

with low WM span demonstrated an expected decline in performance from immediate to 

LTM, but this difference in accuracy was more pronounced for graphs with legends.  

These individuals had a relatively small decline in accuracy for graphs with labels from 

the immediate task (M = .81, SE = .023) to the LTM task (M = .74, SE = .029), in 

comparison to the greater decline in accuracy for graphs with legends from the immediate 

task (M = .82, SE = .031) to the LTM task (M = .72, SE = .029).  This is a different 

pattern of results than what is found in the high WM span group.  These individuals 

demonstrate a slightly larger decline in performance from the immediate task to the LTM 

task when graphs contained labels (M = .89, SE = .022 and M = .80, SE = .028, 

respectively), compared to the smaller decline in performance across tasks for graphs that 

contained legends (M = .85, SE = .030 and M = .80, SE = .028, respectively).   

       However, it is important to note that some items in the LTM task were repeated from 

the Graph First Verification Task.  Thus, it may be informative to examine repeated items 

(i.e., how well individuals remembered the answer to questions answered previously) 

separately from new items in the LTM task.  For repeated items, this 3-way interaction 



	
  

	
   45 

was marginally significant (F(1, 54) = 3.32, p = .074), with a similar pattern of results 

observed for low and high WM span groups, as individuals in the low WM span group 

were more detrimentally affected by legends from immediate to LTM than individuals in 

the high WM group.  This suggests that legends were more harmful for those who do not 

have the capacity to deal with the added visual difficulty, especially when tested on the 

same information again.  This 3-way interaction was not statistically significant for new 

items in the LTM task, and the pattern of results observed for the low and high WM span 

groups were a little different.  Although high WM individuals showed a similar pattern to 

that observed in the prior analyses, individuals with low WM showed an almost equal 

amount of decline from immediate to LTM in both graphs with labels and graphs with 

legends. Collectively, these interaction results suggest that although high WM span 

individuals may not benefit from difficulties such as legends in the long-term, they are 

generally not disadvantaged by them as are low WM span individuals. 

       Also of interest was the relationship between reported memory for the individual 

data sets in the LTM task and students’ actual performance on the LTM task.  To 

determine the effect of reported guessing or remembering as well as graph type on 

students’ accuracy in the LTM task, a within-subjects repeated measures ANOVA was 

conducted.  Overall, as was expected, students’ accuracy on the LTM task was much 

higher for questions for which they reported that they clearly remembered the data (M = 

.81, SE = .023) compared to their accuracy for questions for which they reported guessing 

(M = .62, SE = .029), F(1,46) = 35.66, p < .001.  However, there was no interaction of 

reported remembrance or guessing in the LTM task with graph type, F(1,46) = .001, p = 

.978.  Based on the desirable difficulties literature, I had predicted that LTM accuracy 

would be higher for graphs with legends than for graphs with labels for items that 

students reported clearly remembering, whereas I expected similar accuracy for both 

label and legend graphs for questions on which students reported guessing.  Yet, again 

consistent with the prior analyses, this finding suggests that graph type did not influence 

the effect of reported remembrance for LTM task questions on LTM task accuracy.  

Individual Difference Measures.  For means for each of the individual difference 

measures, please refer to Table 3.2.  To determine the relationships between individual 



	
  

	
   46 

difference measures and task performance, I computed Pearson product-moment 

correlation coefficients (see Table 3.6).  Please note that two subjects were missing graph 

literacy scores and thus were not included in the comparisons involving graph literacy.   

All correlations reported were significant at the p < 0.05 level unless stated otherwise.   

       Increased open-mindedness was correlated with increased NFC. Higher CRT scores 

were associated with higher graph literacy and increased WM span.  Graph literacy and 

WM span were correlated, such that higher graph literacy was associated with increased 

WM span.  

Individual Differences in the Graph Verification Task.  Higher graph literacy predicted 

overall accuracy on the Graph Verification Task and accuracy for graph with legends.  

Higher WM span was marginally correlated with accuracy for graphs with labels (r = .23, 

p = .096).  Increased open-mindedness was associated with better overall accuracy on the 

Graph Verification Task and was marginally associated with better accuracy for graphs 

with legends (r = .26, p = .051).  Decreased NFC was marginally associated with better 

overall task accuracy (r = -.24, p = .076). 

Individual Differences in the Long-term Memory Task.  Correlational analyses indicated 

that graph literacy (r = .39, p = .004) and WM span (r = .29, p = .032) measures both 

predicted overall performance on the LTM task.  Both higher graph literacy and higher 

WM span were also associated with increased accuracy on graphs with legends in the 

LTM task (r = .44, p = .001 and r = .33, p = .012, respectively).  More open-minded 

individuals generally performed better on the LTM task than less open-minded 

individuals (r = .27, p = .048).  Finally, higher scores on the CRT were marginally 

associated with better performance on the LTM task (r = .25, p = .069). 

General Discussion 

       Experiment 2 demonstrated that although students made very few errors in 

describing multivariate graphs, they also reported only a small fraction of the total 

possible relationships (main effects and interactions) existing in the data given the 

complexity of the graphs.  Although students did report primarily main effects rather than 

interactions of any type (2-way or 3-way, full or partial), even the mean proportion of 
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total correct main effects reported was less than 50% of the total main effects that 

students could have reported from the presented graphs.  Thus, even when students report 

main effects, they do not report all of them, although they are equally likely to report 

main effects for each of the three variable types in a graph (variables on the x-axis, 

variables indicated by solid or dotted lines, and variables indicated by circle or square 

end-points).  These results suggest that students may not grasp or understand all of the 

relationships presented in multivariate data, even after some brief explanation of what 

kinds of relationships are present in multivariate data and how to look for them in a 

graph.  Alternatively, perhaps students choose not to report more complex relationships 

like interactions either because they do not fully understand them or because they are 

unsure of their ability to correctly articulate them.  Another potential possibility is that 

students are simply not motivated to report such complex graphical relationships. 

       Additionally, results of Experiment 2 indicate that, contrary to expectations, there 

was no effect of graph format (labels versus legends) on identification of main effects and 

interactions in the open-ended graph description task.  One plausible explanation is that 

graph format matters less when the task is predominately self-paced as well as open-

ended.  Alternatively, it is possible that no differences in graph format were observed 

because the coding scheme was too fine-grained, and additional future analyses could use 

a broader coding scheme to try to capture differences between graph formats that were 

unobserved with the current coding scheme.   

       With regards to individual differences, results from Experiment 2 indicate that graph 

literacy and WM span were both highly predictive of the proportion of correct main 

effects and interactions students reported in an open-ended graph description task.  Once 

again, dispositional characteristics, such as open-mindedness and NFC, were also 

influential with regards to task performance, both for identification of main effects and 

interactions.   

       In Experiment 3, no effect of graph format on accuracy was found in either the 

Graph First Verification Task or the LTM task.  However, graph literacy and WM span 

were both generally predictive of accuracy in the Graph First Verification Task and LTM 

task.  Individuals more highly skilled with graphs were more accurate in both immediate 
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and LTM tasks, especially for graphs containing legends.  This is consistent with the 

prediction that those more familiar with graphs would better know how to approach 

complex graphs or more easily learn from the included graph comprehension instructions. 

In contrast, WM span was more relevant for accuracy in the LTM task, especially for 

graphs containing legends.  There are two potential explanations for this finding.  One is 

that higher span individuals were better able to mentally transform the graphically 

presented data once it had been retrieved from LTM, in order to re-identify important 

relationships in the graph. Another explanation is that higher WM span individuals were 

better able to encode the relationships between variables in the first place, in the 

immediate task, because they perhaps were better able to keep track of the many 

variables while first interpreting the graph than low WM span individuals.   

       Thinking dispositions such as open-mindedness, NFC, and cognitive reflection also 

played a role in Experiment 3 task performance.  Open-mindedness was influential for 

overall accuracy in both the immediate and LTM tasks.  Individuals with lower NFC 

performed better in the immediate task than those with high NFC, perhaps because less 

cognitive effort was involved in remembering within the short-term.  Meanwhile, higher 

cognitive reflection scores were associated with better overall accuracy in LTM, 

suggesting that perhaps individuals who take the time or put in the required effort to 

reach a more deliberate, correct answer better remember this information later.   

       Moreover, a trend in the data suggests that “desirable” difficulties may not be 

beneficial for all individuals.  Although perhaps not immediately apparent, individuals 

need to have the WM capacity to deal with such difficulties, or else added difficulty may 

actually be detrimental to task performance in the long-term.  Additionally, increased 

open-mindedness was associated more specifically with increased accuracy on graphs 

containing legends in the immediate task.  Thus, the potential benefits of desirable 

difficulties (e.g., legends) may be highly dependent both on an individual’s ability to deal 

with these demands and on an individual’s dispositions towards dealing with such 

demands. 
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 Figure 3.1.  Sample Screens of Graph Tutorial Explanations for Interactions and 
Main Effects 
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(a)   

Figure 3.2.  Example 2x2x2 Line Graphs. In this figure, (a) shows a 
sample graph with labels, while (b) shows a sample graph with a legend. 

(b)   
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Figure 3.3.  Automated Symmetry Span Task Sample Trial Sequence. This 
figure was modified from the one found in Redick et al. (2012). 
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Figure 3.4.  Experiment 3 Graph First Verification Task Sample Trial Sequence 
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Figure 3.5.  Experiment 3 Long-Term Memory Task Sample Trial Sequence 
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Figure 3.6. Three-way Interaction between Working Memory Span, Time 
of Test, and Graph Type for Experiment 3.  Each graph depicts graph 
format (label versus legend) by time of test (immediate versus long-term 
memory or LTM).  The top graph depicts the low working memory (WM) 
group, while the bottom graph depicts the high WM group.  WM groups were 
determined by a median split. 
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Table 3.1 

Paired Comparisons for Proportions of Correct Responses by Graph Type 

 Graphs with 
Labels 

Graphs with 
Legends 

  

 M SE M SE t p 
Overall .197 .008 .190 .007 1.15 .255 

All Main Effects .470 .034 .450 .034 .755 .453 
Main Effect of Variable on X-axis .454 .038 .470 .035 -.476 .636 
Main Effect of Single/Dotted Lines  .486 .042 .432 .044 1.18 .242 

Main Effect of Circle/Square End-Points .470 .048 .448 .048 .468 .641 
All Interactions .095 .007 .092 .008 .298 .767 

All Full Interactions .049 .007 .045 .006 .426 .672 
Full 2-way Interactions .060 .009 .058 .008 .148 .883 

X-axis by Single/Dotted Line 2-way 
Interaction .142 .021 .148 .021 -.173 .863 

X-axis by Circle/Square End-Points       
2-way Interaction .016 .009 .016 .009 .000 1.00 

Single/Dotted Line by Circle/Square 
End-Points 2-way Interaction .022 .011 .011 .008 1.00 .321 

All Partial Interactions .141 .014 .140 .014 .075 .940 
Partial 2-way Interactions .124 .013 .124 .013 -.001 .999 
Full 3-way Interactions .016 .009 .006 .005 1.43 .159 

Partial 3-way Interactions .191 .032 .186 .030 .155 .877 
Note. None of these comparisons are statistically significant.  Degrees of freedom (df) for 
all comparisons are 60. 
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Table 3.2 

 
Means of Individual Difference Measures for Experiments 2 and 3 
 

 Graph 
Literacy SSPAN AOT NFC CRT 

Experiment 2 11.73 (1.28) 28.56 (7.04) 176.23 (16.16) 60.59 (11.82) 1.45 (1.11) 
Experiment 3 11.52 (1.45) 30.48 (7.22) 177.14 (17.46) 62.82 (10.92) 1.30 (1.14) 
Note. Values in parentheses indicate standard deviations. For Experiment 2, N = 56 for 
all measures except for the Graph Literacy Scale (n = 55) and the SSPAN (n = 54).  For 
Experiment 3, N = 56 for all measures except for the Graph Literacy Scale (n = 54).  
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Table 3.3 

Correlations between Individual Difference Measures and Task Performance for Experiment 2 

 Graph 
Literacy SSPAN AOT NFC CRT 

Overall Proportion .240† .327* -.030 .082 .363** 

Overall Proportion for Graphs with Labels .251† .262† .124 .153 .337* 

Overall Proportion for Graphs with Legends .174 .329* -.191 -.014 .309* 

Proportion of Main Effects .236† .228† -.023 .010 .148 

Proportion of Main Effects for Graphs with Labels .231† .182  .035 .011 .119 

Proportion of Main Effects for Graphs with Legends .204 .239† -.078 .007 .154 

Proportion of All Interactions -.099 .033 -.001 .102 .254† 

Proportion of All Interactions for Graphs with Labels -.039 .028 .114 .195 .271* 

Proportion of All Interactions for Graphs with Legends -.118 .024 -.110 -.029 .135 

Proportion of Full Interactions .092 .151 -.174 -.105 .141 

Proportion of Full Interactions for Graphs with Labels .091 -.009 -.011 .034 .164 

Proportion of Full Interactions for Graphs with Legends .030 .243† -.249† -.198 .017 

Proportion of Full 2-way Interactions .047 .142 -.132 -.141 .116 
Proportion of Full 2-way Interactions for Graphs with 

Labels .035 -.065 .041 .015 .141 

Proportion of Full 2-way Interactions for Graphs with 
Legends .024 .270* -.226† -.209 .002 

Proportion of Partial Interactions -.143 -.027 .070 .153 .218 
Proportion of Partial Interactions for Graphs with Labels -.088 .036 .129 .193 .207 

Proportion of Partial Interactions for Graphs with Legends -.137 -.073 -.015 .051 .137 
Proportion of Partial 2-way Interactions -.188 -.089 .115 .097 .045 

Proportion of Partial 2-way Interactions for Graphs with 
Labels -.156 -.044 .148 .183 .026 

Proportion of Partial 2-way Interactions for Graphs with 
Legends -.129 -.088 .029 -.030 .041 

Full 3-way Interactions .137 .080 -.164 .041 .112 
Full 3-way Interactions for Graphs with Labels .177 .143 -.142 .062 .120 

Full 3-way Interactions for Graphs with Legends .029 -.050 -.153 -.007 .068 
Partial 3-way Interactions -.033 .054 -.011 .155 .330* 

Partial 3-way Interactions for Graphs with Labels .033 .113 .047 .117 .330* 
Partial 3-way Interactions for Graphs with Legends -.092 -.025 -.069 .140 .211 

Graph Literacy — .029 .297* .166 .276* 
SSPAN  — -.102 .048 .283* 

AOT   — .501* .181 
NFC    — .460* 
CRT     — 

Note. *p < .05. **p < .01. †marginally significant (p < .10). All proportions listed are for correct responses only.  
Individual difference measures include Graph Literacy Scale scores, Symmetry Span partial load scores 
(SSPAN), Actively Open-Minded Thinking Scale scores (AOT), Need for Cognition Scale scores (NFC), and 
Cognitive Reflection Test scores (CRT). 
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Table 3.4 

Additional Correlations between Individual Difference Measures and Task Performance 

for Experiment 2 

 Graph 
Literacy SSPAN AOT NFC CRT 

Proportion of Main Effects of Variable on X-axis .117 .150 .239† .085 .150 
Proportion of Main Effects of Variable on X-axis 

for Graphs with Labels .074 .130 .324* .164 .073 

Proportion of Main Effects of Variable on X-axis 
for Graphs with Legends .136 .135 .093 -.018 .197 

Proportion of Main Effects of Single/Dotted 
Lines .195 .266† -.108 -.130 .072 

Proportion of Main Effects of Single/Dotted 
Lines for Graphs with Labels .203 .218 -.128 -.202 .086 

Proportion of Main Effects of Single/Dotted 
Lines for Graphs with Legends .130 .241† -.057 -.020 .038 

Proportion of Main Effects of Circle/Square End-
Points .262† .157 -.143 .069 .146 

Proportion of Main Effects of Circle/Square End-
Points for Graphs with Labels .252† .088 -.070 .073 .116 

Proportion of Main Effects of Circle/Square End-
Points for Graphs with Legends .204 .185 -.180 .046 .138 

Proportion of Full 2-way Interactions for X by 
Line .270* .214 -.037 -.051 .161 

Proportion of Full 2-way Interactions for X by 
Line for Graphs with Labels .110 -.018 .148 .035 .093 

Proportion of Full 2-way Interactions for X by 
Line for Graphs with Legends .253† .313* -.199 -.103 .125 

Proportion of Full 2-way Interactions for X by 
Circle/Square -.475** .023 -.122 -.017 .122 

Proportion of Full 2-way Interactions for X by 
Circle/Square for Graphs with Labels -.200 .097 -.152 .062 .336* 

Proportion of Full 2-way Interactions for X by 
Circle/Square for Graphs with Legends -.452** -.066 -.016 -.086 -.169 

Proportion of Full 2-way Interactions for Line by 
Circle/Square .005 -.185 -.130 -.245 -.238† 

Proportion of Full 2-way Interactions for Line by 
Circle/Square for Graphs with Labels .052 -.228† -.068 -.100 -.169 

Proportion of Full 2-way Interactions for Line by 
Circle/Square for Graphs with Legends -.078 .028 -.137 -.306* -.177 

Note. *p < .05. **p < .01. †marginally significant (p < .10). All proportions listed are for 
correct responses only.  Individual difference measures include Graph Literacy Scale 
scores, Symmetry Span partial load scores (SSPAN), Actively Open-Minded Thinking 
Scale scores (AOT), Need for Cognition Scale scores (NFC), and Cognitive Reflection 
Test scores (CRT). 
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Table 3.5 

ANOVA of Task Accuracy and Response Time (RT) by Graph Type and Task  

 Source Measure df F Partial η2 p 

Immediate 
Task 

Graph 
Type 

Accuracy 1 .213 .004 .646 
RT 1 1.14 .020 .290 

Error Accuracy 55 (.019)   
RT 55 (3219775.40)   

Long-Term 
Memory Task 

Graph 
Type 

Accuracy 1 .252 .005 .618 
RT 1 .299 .005 .587 

Error Accuracy 55 (.015)   
RT 55 (1438250.75)   

Note. ANOVA = analysis of variance. Values enclosed in parentheses represent mean 
square errors. *p < .05. **p < .01. 
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Table 3.6 

Correlations between Individual Difference Measures and Graph First Verification Task 
Performance for Experiment 3 
 

 Graph Literacy SSPAN AOT NFC CRT 

Overall Immediate Graph Accuracy .289* .117 .280* -.239† .065 

Immediate Label Graph Accuracy .110 .225† .142 -.262† .010 

Immediate Legend Graph Accuracy .298* -.020 .262† -.114 .078 

Graph Literacy — .392** .155 -.097 .343* 

SSPAN  — .078 .032 .319* 

AOT   — .269* .094 

NFC    — .122 

CRT     — 

Note. *p < .05. **p < .01. †marginally significant (p < .10). Individual difference 
measures include Graph Literacy Scale scores, Symmetry Span partial load scores 
(SSPAN), Actively Open-Minded Thinking Scale scores (AOT), Need for Cognition 
Scale scores (NFC), and Cognitive Reflection Test scores (CRT). 
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CHAPTER 4:  

GRAPH COMPREHENSION INSTRUCTION 

Introduction 

      As mentioned previously, students are not especially good at comprehending 

multivariate graphs and no explicit guidelines on how to teach comprehension of 

complex multivariate graphs currently exist, which makes it difficult for instructors to 

create or find effective instructional tools for interpretation of such data. This suggests 

the need for an instructional resource, such as a tutorial, that teachers could use to help 

instruct their students.  Such a tutorial would explain how to identify and interpret 

important relationships within multivariate data presented graphically to help students 

learn and improve on their existing graph comprehension skills.   

       The prior two experiments indicated that, even with the completion of a graph 

tutorial prior to a graph comprehension task, students are not especially good at 

extracting main effects and interactions from complex multivariate data in an open-ended 

context, nor do they have excellent immediate or long-term memory for these important 

relationships depicted in graphs.  Therefore, the goal of the current experiment was to 

determine the effectiveness of the tutorial I created as an instructional tool for students.   

       A general task-analysis approach was taken to develop the tutorial.  Specifically, I 

identified the visual/cognitive transformations required to understand each main effect in 

a 2x2x2 graph.  For each variable, participants are required to mentally compute the 

average across the other two variables for each value of that target variable.  Thus, to 

compute the variable depicted by solid versus dotted lines, participants must first 

mentally compute the midpoint of each solid line and then mentally compute the average 

of these two midpoints. This average would be the overall value for the variable indicated 
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by solid lines.  Participants would then compute the overall value for the variable 

indicated by dotted lines using the same process, after which they would compare these 

two averages (overall mean for solid lines and overall mean for dotted lines) to determine 

the direction of the main effect, if one is present.  In the tutorial, this mental averaging 

process was laid out in steps, one at a time, with important or relevant pieces of the graph 

highlighted at each step (e.g., using color to highlight relevant lines and stars to mark 

averages).  This was accomplished using “static builds”, or still frames of each step, 

which can be seen in Figure 4.1.  For example, when highlighting which two lines would 

be mentally averaged to compute the overall average for boys (solid lines) and which two 

lines would be mentally averaged to compute the overall average for girls (dotted lines), 

the color orange was used to highlight the lines for girls and the color green was used to 

highlight the lines for boys.  The use of color was intended to provide an added visual cue 

for grouping of the relevant information being compared in the example in the attempt to 

make the information provided in the tutorial easier to follow and comprehend.  Stars 

were used to mark the estimated averages for boys (solid lines) and girls (dotted lines), to 

make the mental averaging concept more concrete and easily visible to participants.  

Color was also used for the stars, to help participants connect the appropriate averages to 

each level of the variable being compared (i.e., orange star for girls’ average and green 

star for boys’ average).  After completing this mental averaging example containing 

“static builds”, participants would then have to use the same mental averaging process to 

determine whether a main effect was present for each of the other two variables (i.e., the 

variable labeled on the x-axis and the variable indicated by circle and square end-points) 

in the graph.   

       Thus, in the tutorial students are walked through progressively more difficult graphs 

and questions relating to these graphs.  When they reach the most difficult 2x2x2 graph, 

“static builds” are used to demonstrate the mental averaging process required to identify 

main effects in the sample graph.  Finally, the tutorial provides participants with several 

practice questions. 

        Thus, in the next two experiments, I address the question of whether students are 

able to understand and interpret main effects presented in graphs in an immediate fact-
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retrieval task and whether they can be trained to identify and better comprehend such data 

using the tutorial I have created.  Furthermore, I investigate the role of individual 

differences in task performance to determine whether individual differences would play a 

role both in students’ existing skill in comprehending main effects and in the training of 

such complex data comprehension skills.   

Experiment 4 

Introduction 

       In Experiment 4, my aim was to determine how well students are able to identify 

main effects without explicit prior instruction or training on how to do so.  This 

experiment would therefore provide a baseline for student performance, with which I 

could later compare performance on the same task for students who received additional 

instruction from the computerized tutorial (Experiment 5).  Additionally, individual 

differences were evaluated as critical factors in graph comprehension. 

Method 

Participants.  Thirty-four individuals volunteered to participate in this experiment for 

course credit or for payment at the rate of $10 per hour.  Two of these participants were 

excluded due to low task performance of less than 60%, resulting in a total of 32 

participants (M = 19.63 years; 19 women).  Participants consisted of University of 

Michigan undergraduates from both the University of Michigan Psychology Subject Pool 

and the Ann Arbor community. Research protocols were approved by the University of 

Michigan Institutional Review Board, and all participants provided written informed 

consent. 

Materials.   

Question First Verification Task.   Participants were provided with two practice questions 

prior to beginning the experimental trials.  A trial began with a brief description about a 

scientific study, followed by a single true-false statement (see Appendix J for sample 

statements).  Then a graph was presented and participants judged whether the statement 

they had just read was true or false while viewing the graph.  A sample trial is illustrated 
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in Figure 4.2.  As in Experiment 3, each graph was a line graph depicting 2x2x2 data (see 

Figure 4.3 for examples).  Graphs were black and white with some visual cues to 

differentiate between the lines (i.e., solid and dotted lines, circle and square end-

points).  Half of the graphs contained labels and half of the graphs contained 

legends.  Participants were instructed to respond as quickly and as accurately as 

possible.  Graphs were presented for a maximum of one minute, and the graphs 

terminated upon response.  Then participants were given a second true-false statement 

corresponding to the same data set, followed by the presentation of the graph for a second 

time.  Once again, participants judged whether the statement they had just read was true 

or false while viewing the graph.  There were 12 such trials in the Question First 

Verification Task, totaling 24 true-false statements.  These true-false questions were the 

same as the ones used in Experiment 3.  Trial order was randomized for each participant, 

and graphs that appeared with labels for some subjects appeared with legends for other 

subjects (and vice versa).   

       It is important to note that the key difference between the immediate task in the 

current experiment and that of Experiment 3 is that in the Question First Verification 

Task in Experiment 3 students must identify main effects in an open-ended context 

before knowing what question may be asked, whereas in the current experimental task 

students receive the question prior to viewing the graph and thus can focus only on 

information pertaining to that individual question.   

       All individual difference measures were the same as the ones used in Experiments 2 

and 3.   

      All computer programs were run using E-Prime 2.0 (Psychology Software Tools, 

Pittsburgh, PA).  In the graph tutorial and Question First Verification Task, true and false 

responses were made using the “c” and “m” keys on the keyboard, which were labeled 

“T” and “F” respectively.  In the SSPAN task, all responses were made using the mouse. 

Procedure.  Participants first completed the Question First Verification Task on the 

computer.  Next, participants completed the same battery of individual measures as 

described in Experiment 2.  Finally, participants completed a demographic questionnaire 
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about themselves, as well as an exit survey about the study.  All subjects were debriefed 

at the end of the experiment.  The duration of the study was approximately one hour. 

Results and Discussion 

Question First Verification Task.  Overall, task accuracy was an above chance 0.77.  To 

assess the effect of graph format (label or legend) on task accuracy and response time 

(RT), a 1x2 within-subject ANOVA was conducted (see Table 4.1).  All calculations of 

RT are based on median RTs that have been filtered for correct responses only.  There 

was a significant main effect of graph type on both accuracy (F(1,31) = 5.87, p = .021) 

and RT (F(1,31) = 26.11, p < .001).  Participants were significantly more accurate in 

responding to graphs with labels (M = .81, SE = .023) than graphs with legends (M = .73, 

SE = .023).  This finding suggests that, as predicted, interpreting graphs with legends is 

more difficult than interpreting graphs with labels.  As expected based on prior data, 

participants were also faster to respond to graphs with labels (M = 8088.17 ms, SE = 

928.38) than to graphs with legends (M = 11658.73 ms, SE = 783.30). 

Individual Differences.  For means for each of the individual difference measures, please 

refer to Table 4.2.  To determine the relationships between individual difference 

measures and task performance, I computed Pearson product-moment correlation 

coefficients (see Table 4.3).  Please note that one additional subject was excluded from 

the correlational analyses due to prior familiarity with at least one of the individual 

difference measures and one subject was excluded from correlations regarding the AOT 

due to missing data for this measure.  All correlations reported were significant at the p < 

0.05 level unless stated otherwise. 

      Graph literacy was marginally correlated with overall task accuracy (r = .33, p = 

.068) and with accuracy on graphs with labels (r = .35, p = .057).  Interestingly, there was 

no correlation between graph literacy and accuracy on graphs with legends.  One possible 

explanation is that using legends requires specialized skills and even those with graph 

experience may not know how to approach interpretation of these kinds of graphs.  

Higher CRT scores were significantly correlated with higher WM span, higher graph 

literacy, and a greater NFC.   
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      I then conducted a median split based on participants’ SSPAN partial load scores to 

split the data into a low WM group (M = 22.36; n = 14) and a high WM group (M = 

35.41; n = 17 for all measures except for the AOT, for which n = 16), to see if WM span 

had a differential effect on whether individual differences would affect task 

performance.  For those with low WM capacity, open-mindedness was marginally 

correlated with overall task performance (r = .51, p = .064) and with accuracy for graphs 

with legends (r = .50, p = .070).  For those with high WM capacity, graph literacy was 

marginally predictive of overall task performance (r = .42, p = .090) and significantly 

predictive of accuracy on graphs with labels (r = .59).  Additionally, for the high WM 

group, higher scores on the CRT were marginally correlated with accuracy on graphs 

with labels (r = .45, p = .068).  Therefore, dispositional factors such as open-mindedness 

appear to play a larger role in graph comprehension when individuals have less capacity 

to deal with difficulty. 

Experiment 5 

Introduction 

       As seen in Experiment 4, students who received no specialized instruction (i.e., no 

graph tutorial) were capable of interpreting relatively complex graphs with above chance 

accuracy.  However, there was certainly room for improvement, as mean accuracy did not 

approach ceiling.  Therefore, the goal of Experiment 5 was to determine whether the 

graph tutorial that I created is an effective instructional tool for the purpose of improving 

students’ graph literacy skills.  In the current experiment, students completed a graph 

tutorial prior to completion of the same tasks used in Experiment 4.  Student performance 

in Experiment 5 is thus compared with student performance from Experiment 4 to 

determine the success of the current graph tutorial.  Additionally, I investigated the 

impact of individual differences on instruction of graphical literacy. 

Method 

Participants.  Sixty-six individuals volunteered to participate in this experiment for 

course credit or for payment at the rate of $10 per hour.  Four of these participants were 

excluded due to low task performance of less than 60% (n = 2), failure to follow task 



	
  

	
   67 

instructions (n = 1), or failure to complete the study session (n= 1), resulting in a total of 

62 participants (M = 19.24 years; 35 women).  Participants consisted of University of 

Michigan undergraduates from both the University of Michigan Psychology Subject Pool 

and the Ann Arbor community. Research protocols were approved by the University of 

Michigan Institutional Review Board, and all participants provided written informed 

consent. 

Materials.  Participants first completed the same graph tutorial program on the computer 

that was used in Experiment 3, with only slight modifications to match the format of the 

tutorial with that of the Question First Verification Task (e.g., the true-false statement 

was viewed prior to the graph).  For example screenshots of the tutorial see Figure 4.1.  

Thus, the tutorial walked students through progressively more difficult graphs and true-

false questions relating to these graphs.  The tutorial also explained how to use a mental 

averaging procedure to answer questions about main effects relating to 2x2x2 line graphs 

via “static builds.”  Static builds in the context of our tutorial are simply still frames that 

lay out the steps of the mental averaging process, one at a time, and highlight important 

or relevant pieces of the graph at each step (e.g. using color to highlight relevant lines or 

stars to mark averages).  Finally, the tutorial provided participants with several practice 

questions. 

      The same Question First Verification Task used in Experiment 4 and the same 

individual difference measures used in Experiments 2-4 were used in Experiment 5.  The 

instructions for the Question First Verification Task were very subtly changed to reflect 

the inclusion of the tutorial preceding it, but otherwise remained identical to the version 

used in Experiment 4. 

      All computer programs were run using E-Prime 2.0 (Psychology Software Tools, 

Pittsburgh, PA).  In the graph tutorial and Question First Verification Task, true and false 

responses were made using the “c” and “m” keys on the keyboard, which were labeled 

“T” and “F” respectively.  In the SSPAN task, all responses were made using the mouse. 

Procedure.  Participants first completed the graph tutorial program, followed by the 

Question First Verification Task on the computer.  Next, participants completed a battery 

of individual difference measures, starting with the Edinburgh Handedness Inventory, 
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followed by the Unusual Uses Task, the CRT, the AOT scale, the NFC scale, the 

automated SSPAN, and the Graph Literacy Scale.  Finally, participants completed the 

demographic questionnaire about themselves as well as an exit survey about the 

study.  All subjects were debriefed at the end of the experiment. 

Results and Discussion 

Question First Verification Task.  Overall, task accuracy was 0.83.  This is significantly 

higher than the task accuracy of 0.77 in Experiment 4 (F(1,92) = 7.38, p = .008), as 

determined by a mixed repeated measures 2x2 ANOVA of graph type (label or legend) 

and tutorial use (tutorial or no tutorial).  Thus, completing the Question First Verification 

Task after the tutorial resulted in a significantly higher overall task accuracy than 

completing the same task without the tutorial.  This suggests that my tutorial is an 

effective tool for teaching students how to identify main effects in these kinds of 2x2x2 

line graphs.  Alternatively, it is possible that the tutorial is increasing students’ 

motivation for completing the task or their attention to the task rather than, or in addition 

to, improving students’ graph comprehension skills. 

      To assess the effect of graph format (label or legend) on task accuracy and response 

time (RT) in the current experiment, a within-subjects ANOVA was conducted (see 

Table 4.1).  All calculations of RT are based on median RTs that have been filtered for 

correct responses only.  Consistent with prior research, participants were faster verifying 

a statement when viewing graphs with labels (M = 7558.83 ms, SE = 464.42 ms) than 

graphs with legends (M = 9777.08 ms, SE = 469.83 ms; F(1,61) = 32.17, p < 

0.001).  This also replicates the effect of graph type on RT found in Experiment 4.  

However, there was no difference in accuracy between graphs with labels (M = 0.84, SE 

= 0.014) and graphs with legends (M = 0.82, SE = 0.018; F(1,61) = 0.83, p = 0.365). This 

is in contrast to the significant difference in accuracy that occurred in Experiment 4, 

which would suggest that the inclusion of the tutorial in the current experiment might 

have somehow lessened the overall difficulty of the legend graphs. I conducted a mixed 

repeated measures 2x2 ANOVA of graph type (label or legend) and tutorial use (tutorial 

or no tutorial) to determine whether this interaction between graph type and tutorial use 

was significant.  Results indicated a marginally significant interaction (F(1,92) = 2.78, p 
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= .099) between graph type and tutorial use.  Thus, participants who did not complete the 

tutorial performed worse on both graph types in the task compared to those who did 

complete the tutorial, but this discrepancy in accuracy was especially notable for graphs 

with legends.  One potential explanation for this difference in results between 

Experiments 4 and 5 is that the primary example in the graph tutorial that demonstrates to 

participants how to identify main effects within a line graph contains a legend.   

       A regression analysis was conducted to ascertain which of the various individual 

differences (i.e., graph literacy, WM span, open-mindedness, NFC) most impacted task 

accuracy and whether this differed between those who received additional instruction 

from the graph tutorial and those who did not.  The CRT was not included in the model 

due to its limited range of scores and thus small amount of variance.  For regression 

results see Table 4.4.  However, because open-mindedness did not contribute to the 

regression model for either Experiment 4 or 5, a separate regression was run without the 

inclusion of open-mindedness in order to achieve the best possible fit of the model for the 

data (see Table 4.5).  Results of this regression analysis suggest that when students 

receive no additional instruction, graph literacy is the only significant predictor of their 

task performance, β = .389, t(26) = 2.10, p = .046.  Thus, those who are more 

knowledgeable about graphs will be more accurate in responding to true-false questions 

about main effects presented in the graphs.  This is consistent with the graphical literacy 

literature, and is a rather intuitive finding.  In contrast, for those students who do receive 

additional instruction from the graph tutorial, other individual differences emerge as 

significant predictors of task performance.  It is extremely interesting that in this case 

knowledge about graphs is a marginally significant predictor (β = .215, t(58) = 1.87, p = 

.066), whereas WM capacity (β = .256, t(58) = 2.20, p = .032) and attitude towards 

difficult thinking (β = .290, t(58) = 2.45, p = .017) matter more for performance.  This 

finding suggests that those with higher NFC or higher WM span will benefit more from 

instruction than those who do not enjoy difficult thinking or have lower WM capacity.  

Therefore, both WM capacity and attitude of the learner will impact the effectiveness of 

additional graph instruction.  Given that WM span and NFC are correlated such that 

higher WM span is associated with higher NFC (see Table 4.6 and the correlational 

analyses that follow), perhaps those with lower WM capacity do not enjoy difficult 
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thinking because it requires too much effort and they have less capacity to deal with 

overcoming challenges.  Therefore, maybe they do not benefit as much from instruction 

because they do not engage with the material, are unable to keep track of all the relevant 

information, or simply find the task of interpreting complex multivariate graphs too 

effortful, hard, or overwhelming. 

Individual Difference Measures.  For means for each of the individual difference 

measures, please refer to Table 4.2.  To determine the relationships between individual 

difference measures and task performance, I calculated Pearson product-moment 

correlation coefficients (see Table 4.6).  Please note that one subject was excluded from 

correlations regarding the AOT due to missing data on that one measure.  All correlations 

reported were significant at the p < 0.05 level unless stated otherwise.  

      Working memory capacity and graph literacy each predicted overall accuracy on the 

Question First Verification Task, as expected.  WM capacity was more highly correlated 

with accuracy for graphs with labels than for graphs with legends, although this was not a 

significant difference (t(59) = 0.62, p = 0.27).  Graph literacy was correlated with 

accuracy for graphs with legends, but not for graphs with labels.  NFC and the CRT also 

both predicted task performance.  Interestingly, NFC was more highly correlated with 

task accuracy in the legend condition than in the label condition, though this was not a 

significant difference (t(59) = -0.16, p = 0.57).  Additionally, the CRT was correlated 

with performance in the label condition, but not the legend condition.  WM capacity was 

also correlated with both the NFC and CRT measures.  Performance on the CRT was 

correlated both with graph literacy and open-mindedness.  Graph literacy was marginally 

correlated with open-mindedness (r = 0.24, p = .066) and NFC (r = 0.22, p = .089).  As in 

Experiment 4, these results suggest that dispositional factors such as need for cognition 

and cognitive reflection play a substantial role in task performance, in addition to factors 

more related to knowledge or skill (i.e., graph literacy and WM span). 

      I then conducted a median split based on participants’ WM partial load score to split 

the data into a low WM group (M = 22.30; n = 30) and a high WM group (M = 34.22; n = 

32), to see if WM had a differential effect on whether these other individual differences 

would affect task performance.  For those with low WM capacity, NFC was marginally 
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correlated with overall task accuracy (r = 0.35, p = .059).  Performance on the CRT was 

significantly correlated with graph literacy (r = 0.65) and with open-mindedness (r = 

0.48).  Graph literacy was only marginally correlated with open-mindedness (r = 0.35, p 

= .056).  Meanwhile, for those with high WM capacity, overall task accuracy was 

predicted by graph literacy (r = 0.45), NFC (r = 0.39), open-mindedness (r = 0.37), and 

CRT score (r = 0.45).  Accuracy on graphs with labels was correlated with WM capacity 

(r = 0.40), graph literacy (r = 0.35), and CRT score (r = 0.59), whereas accuracy on 

graphs with legends was correlated with graph literacy (r = 0.40), NFC (r = 0.38), and 

open-mindedness (r = 0.37).  Performance on the CRT was also correlated with WM 

capacity (r = 0.36) and graph literacy (r = 0.54).  In contrast to the pattern of results 

observed in Experiment 4, these results indicate that dispositional factors are important 

for both low and high WM span groups.  However, in this case it seems that more 

dispositional factors are predictive of task performance for those with high WM span 

rather than low WM span.   

General Discussion 

       Experiment 4 demonstrated that students who receive no specialized training are 

capable of interpreting relatively difficult graphs with above chance accuracy, although 

there is certainly room for improvement, as mean accuracy did not approach ceiling.  

Taken collectively, results from Experiments 4 and 5 indicate that students are faster to 

verify true-false statements in an immediate fact-retrieval task when graphs contain labels 

than when they contain legends, which is consistent with findings in the graph design 

literature.  Moreover, in comparing Experiments 4 and 5, although individuals who 

received no specialized instruction were more accurate in responding to graphs with 

labels than graphs with legends, this difference in accuracy between graph formats was 

diminished with the use of a graph tutorial.  This suggests that the graph tutorial was 

potentially an effective tool for teaching students how to deal with difficulties in graph 

comprehension.  This also suggests that any potential differences in accuracy due to 

varying graph format may have been unobserved in Experiments 2 and 3 because of the 

inclusion of the tutorial.  In other words, the tutorial may serve to negate possible 
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advantages of labels over legends by better familiarizing students with varying graph 

formats and providing them with opportunities to practice interpreting such graphs. 

       With regards to individual differences, the general conclusion derived from 

Experiments 4 and 5 is that dispositional factors (e.g., open-mindedness, NFC) play a 

substantial role in graph comprehension, in addition to factors more related to knowledge 

and skills (e.g., graph literacy, WM span).  It remains unclear as of yet whether 

dispositional factors play a larger role for low knowledge or lesser skilled individuals 

(i.e., low graph literacy or WM span) as compared to individuals with greater knowledge 

and skills (i.e., high graph literacy or WM span).  However, it is apparent from these 

experiments that although familiarity with graphs is important for graph comprehension, 

WM capacity and attitude towards thinking hard are key factors in the effectiveness of 

instruction of graph comprehension skills.  Specifically, students who do not enjoy 

effortful thinking are less likely to benefit from instruction, which suggests a need for 

educators to foster enjoyment of cognitive work in order for training of graphical skills to 

be effective.
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Figure 4.1.  Example of Graph Tutorial “Static Builds” for the Mental Averaging 
Process for Main Effects. This example demonstrates the mental averaging process for 
the variable “Girls”, indicated by the dotted lines (highlighted in orange), and “Boys”, 
indicated by the solid lines (highlighted in green). 
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Figure 4.2.  Experiments 4 and 5 Question First Verification Task Sample 
Trial Sequence 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.3.  Example 2x2x2 Line Graphs. In this figure, (a) shows a 
sample graph with labels, while (b) shows a sample graph with a legend. 
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Table 4.1 
 
ANOVA for Task Accuracy and RT by Graph Type (Label/Legend) and Experiment 
 
Experiment Source Measure df F Partial η2 p 

4 
Graph Type Accuracy 1 5.87* .159 .021 

RT 1 26.11** .457 .000 

Within-group Error Accuracy 31 (.016)   
RT 31 (7812742.51)   

5 
Graph Type Accuracy 1 .832 .013 .365 

RT 1 32.17** .345 .000 

Within-group Error Accuracy 61 (.011)   
RT 61 (4741584.73)   

Note. ANOVA = analysis of variance.  Values enclosed in parentheses represent mean 
square errors.  *p < .05. **p < .01.  
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Table 4.2 

 
Means of Individual Difference Measures for Experiments 2-5 
 

 Graph 
Literacy SSPAN AOT NFC CRT 

Experiment 2 11.73 (1.28) 28.56 (7.04) 176.23 (16.16) 60.59 (11.82) 1.45 (1.11) 
Experiment 3 11.52 (1.45) 30.48 (7.22) 177.14 (17.46) 62.82 (10.92) 1.30 (1.14) 
Experiment 4 11.77 (1.28) 29.52 (8.02) 180.93 (13.38) 65.42 (8.98) 1.52 (1.15) 
Experiment 5 11.21 (1.54) 28.45 (7.88) 179.54 (21.29) 63.90 (12.50) 1.23 (1.10) 
Note. Values enclosed in parentheses indicate standard deviations.  For Experiment 2, N 
= 56 for all measures except for the Graph Literacy Scale (n = 55) and the SSPAN (n = 
54).  For Experiment 3, N = 56 for all measures except for the Graph Literacy Scale (n = 
54).  For Experiment 4, N = 31 for all measures except for the AOT (n = 30).  For 
Experiment 5, N = 62 for all measures except for the AOT (n = 61).   
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Table 4.3 
 
Correlations between Individual Difference Measures and Task Performance for 
Experiment 4 
 

 Graph 
Literacy SSPAN AOT NFC CRT 

Overall 
Graph 

Accuracy 
.332† .189 .266 -.152 .243 

Label 
Graph 

Accuracy 
.346† .278 .280 -.138 .282 

Legend 
Graph 

Accuracy 
.155 .000 .123 -.094 .081 

Graph 
Literacy — .102 .079 .257 .510** 

SSPAN  — -.125 .137 .641** 

AOT   — -.058 .053 

NFC    — .466** 

CRT     — 

Note. *p < .05. **p < .01. †marginally significant (p < .10).  Individual difference 
measures include Graph Literacy Scale scores, Symmetry Span partial load scores 
(SSPAN), Actively Open-Minded Thinking Scale scores (AOT), Need for Cognition 
Scale scores (NFC), and Cognitive Reflection Test scores (CRT). 
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Table 4.4 
 
Regression Analyses for Experiment 4 versus Experiment 5 with All Individual Difference 
Measures 
 
 
 
 
 
 
 
 
 
 

Note. *p < .05. **p < .01. †marginally significant (p < .10). Factors included 
Working Memory (WM) span, Graph Literacy, Need for Cognition (NFC), and 
Actively Open-minded Thinking (AOT).  The Cognitive Reflection Test (CRT) 
was excluded from the regression analyses due to its limited range and small 
variance. 

 
 

 

 

 

 

 

 

 

 

 Experiment 4 Experiment 5 
B SE B β B SE B β 

WM Span .002 .002 .195 .004 .002 .293* 
Graph Literacy .036 .019 .356† .015 .008 .226† 

NFC -.003 .002 -.280 .002 .001 .268* 
AOT .002 .001 .246 .000 .001 -.019 

R2 .15 .24 
F 2.32† 5.60** 
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Table 4.5 
 
Regression Analyses for Experiment 4 versus Experiment 5 with Working Memory (WM) 
Span, Graph Literacy, and Need for Cognition (NFC) 
 
 
 
 
 
 
 
 
 

Note. *p < .05. **p < .01. †marginally significant (p < .10).   
 
 

 

 

 

 

 

 

 

 

 

 Experiment 4 Experiment 5 
B SE B β B SE B β 

WM Span .002 .002 .160 .003 .002 .256* 
Graph Literacy .040 .019 .389* .015 .008 .215† 

NFC -.003 .002 -.299 .002 .001 .290* 
R2 .12 .23 
F 2.33† 7.23** 
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Table 4.6 
 
Correlations between Individual Difference Measures and Task Performance for 
Experiment 5 
 

 Graph 
Literacy SSPAN AOT NFC CRT 

Overall 
Graph 

Accuracy 
.302* .351** .114 .404** .310* 

Label 
Graph 

Accuracy 
.161 .338**  .004 .314* .318* 

Legend 
Graph 

Accuracy 
.277* .250* .140 .337** .194 

Graph 
Literacy — .092 .237† .218† .594** 

SSPAN  — .076 .261* .297* 

AOT   — .212 .303* 

NFC    — .165 

CRT     — 

Note. *p < .05. **p < .01. †marginally significant (p < .10). Individual difference 
measures include Graph Literacy Scale scores, Symmetry Span partial load scores 
(SSPAN), Actively Open-Minded Thinking Scale scores (AOT), Need for Cognition 
Scale scores (NFC), and Cognitive Reflection Test scores (CRT). 
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CHAPTER 5: 

CONCLUSION 

Summary of Findings 

       The current research was comprised of three main goals: (1) to determine how well 

people comprehend main effects and interactions in complex multivariate data presented 

graphically, and whether graph format plays a role (i.e., whether legends function as a 

desirable difficulty); (2) to determine whether students can be taught to better identify 

and understand main effects and interactions inherent in graphs of complex data sets, and 

what would comprise such an effective tutorial; and (3) to examine the role of individual 

differences in complex graph comprehension, as well as in the training of these skills. 

       Given the widespread usage of graphs across many media and the apparent 

assumption made by publishers of these media that people are capable readers of 

graphical information, a critical first question is whether people use information 

presented in graphs when reading textual information such as an article or textbook that 

already contains a summary of the data, and, if they do use these graphs, whether the 

graph is helpful.  Results from Experiment 1 demonstrate that the format of textbook 

readings (i.e., text only, text with irrelevant seductive picture, text with relevant graph) 

does not affect immediate recognition accuracy for the presented study data, nor does it 

affect the likelihood of an individual to correctly describe the study data as opposed to 

describing something else from the textbook reading (e.g., study methods or general 

conclusions drawn from the study).  Most individuals seemed to understand the main 

conclusions drawn based on the study findings even if they did not fully comprehend 

what the findings of the study actually were.  These results were still consistent with the 

seductive details literature because although there was no clear detriment observed from 

presenting an irrelevant picture with the textbook excerpt, there was also no advantage 
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from the inclusion of such a seductive detail.  Future research would be necessary to 

determine why the inclusion of relevant graphs are no better than reading the text alone 

or reading the text with irrelevant pictures.  Perhaps the relevant graph did not act as an 

intended explanative summary because readers are bad at complex graph comprehension 

and therefore the inclusion of the graph disrupted the processing of the data rather than 

help readers understand the structure or relationships within the data described in the text.   

       This lack of differences between textbook reading formats could also be attributed to 

the type of test.  Perhaps these differences are not clearly observable with an immediate 

test, but would be more apparent with a longer delay period between the reading of the 

excerpt and the comprehension test items, which would be consistent with findings in the 

learning and desirable difficulties literature.  I would predict that the advantage of a 

graph, if it serves as an explanatory summary, may be greater after a one-week delay 

since conditions that affect learning, like the testing effect, have bigger impact at delay 

than with immediate testing.  In fact, with the testing effect, at immediate test 

performance is better for the study condition, but with the delayed test performance is 

better for those with repeated testing (Roediger & Karpicke, 2006).  

       In Experiment 2, students made very few errors in describing multivariate graphs, 

but they also reported only a small fraction of the total possible relationships (main 

effects and interactions) existing in the data given the graphs’ complexity.  Although 

students did report primarily main effects rather than interactions of any type, this mean 

proportion was still less than 50% of the total main effects that students could have 

reported from the presented graphs.  Thus, even when students report main effects, they 

do not report all of them, although they are equally likely to report main effects for each 

of the three variables in a graph.  This result contradicts the summarization by Shah and 

Hoeffner (2002) that line graphs are best for emphasizing x-y relationships, but perhaps 

this is because the tutorial included prior to the task and instructions for the task pointed 

out the existence of relationships in graphically presented data for variables not on the x-

axis.  Together, these results suggest that students may not understand all of the 

relationships presented in multivariate graphs, even after some brief explanation of what 

kinds of relationships are present in multivariate data and how to find them in graphs.  
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Alternatively, perhaps students choose not to report more complex relationships like 

interactions either because they do not fully understand them or because they are unsure 

of their ability to correctly articulate them. 

       Results from Experiment 4 demonstrated that although students who receive no 

specialized training are capable of interpreting relatively difficult graphs with above 

chance accuracy, their accuracy could still be much improved.  Consistent with findings 

in the graph design literature, results from Experiments 4 and 5 indicate that students are 

faster to verify true-false statements in an immediate fact-retrieval task when graphs 

contain labels than when they contain legends.  Moreover, a comparison of Experiments 

4 and 5 suggests that individuals who received no specialized instruction were more 

accurate in responding to graphs with labels than graphs with legends, but this accuracy 

difference is diminished with the use of the graph comprehension tutorial.  Thus, the 

graph tutorial is a potentially effective tool for teaching students how to deal with 

difficulties in graph comprehension.  Furthermore, the tutorial may serve to negate 

possible advantages of labels over legends by better familiarizing students with varying 

graph formats and providing them with opportunities to practice interpreting such graphs. 

The Notion of Desirable Difficulties in Graph Comprehension 

       Perhaps surprisingly, collective findings from Experiments 2-5 indicate that, in 

general, differences in graph format, at least for labels versus legends, do not critically 

affect task performance for complex multivariate data, whether the proportion of main 

effects and interactions described for a graph or the accuracy in responding to true-false 

questions about main effects of a graph in either immediate or long-term memory. The 

only exception was Experiment 4, wherein the graph tutorial was not completed prior to 

completion of the graph comprehension task and both RT and accuracy results reflected 

an advantage from labels.  However, this task was an immediate fact retrieval task in 

which labels are typically favored, and therefore results were consistent with 

expectations.  Thus, the idea of introducing legends into a graph as a potentially 

beneficial added visual difficulty did not bear out in these studies.  However, it is also 

important to note that any potential differences in accuracy due to varying graph format 

may have been unobserved in Experiments 2 and 3 because of the inclusion of the 



	
  

	
   85 

tutorial, which possibly negated potential advantages of graph format by better 

familiarizing students with these formats and providing them with opportunities to 

practice interpreting such graphs.   

       In Experiment 3, no effect of graph format on accuracy was found in either the 

immediate or LTM tasks.  Yet, when individual differences such as WM capacity are 

taken into consideration, there exists a trend in the data such that “desirable” difficulties 

may not be beneficial for all individuals.  Although perhaps not immediately apparent, 

individuals need to have the WM capacity to deal with such difficulties, or else added 

difficulty may actually be detrimental to task performance in the long-term.  Results from 

Experiment 3 suggest the potential that legends may actually harm some viewers (i.e., 

those with low WM span) some of the time (i.e., in the long-term).  Additionally, 

increased open-mindedness was associated more specifically with increased accuracy on 

graphs containing legends in the immediate task.  Thus, the potential benefits of desirable 

difficulties (e.g., legends) may be highly dependent both on an individual’s ability to deal 

with these demands and on an individual’s dispositions towards dealing with such 

demands.  

       However, there were some limitations in the current research that should be 

considered.  First, “desirable difficulties” may only be desirable for certain kinds of tasks.  

Immediate or short-term memory tasks, especially fact-retrieval tasks, were not expected 

to show differences between graphs with added visual difficulties and those without.  

After all, conditions that affect learning, like the testing effect, have bigger impact at 

delay than with immediate testing.  In fact, desirable difficulties such as retrieval practice 

only demonstrate a benefit for performance with delayed testing, whereas at immediate 

test performance is actually better for those conditions without added difficulty (e.g., 

Roediger & Karpicke, 2006).  One potential reason why no differences between graph 

formats was observed in the LTM task of Experiment 3 may be because the delay period 

of 20 minutes between encoding and test was not long enough for the impact of added 

visual difficulty to be noticeable.  For instance, in the prior example (Roediger & 

Karpicke, 2006), a longer delay period of one week elicited the beneficial testing effect. 
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       Additionally, a task may lend itself better to a particular graph format depending on 

its goals or demands.  It is possible that the goals or demands inherent in an immediate 

true-false verification task differ from the goals or demands inherent in an immediate or 

even delayed memory task.  Fact-retrieval tasks in which viewers are looking for a 

particular piece of information or one specific relationship in the graph likely do not lend 

themselves to the same level of processing and comprehension of the full data set that 

would be expected to occur for a more open-ended task in which there is no single target 

variable or relationship to identify.  This could be an additional reason why no effect of 

added difficulty was found in the LTM task of Experiment 3.  Although viewers encoded 

the graph prior to receiving a question about the graph, all questions were specific to 

main effects in both immediate and LTM tasks and, consequently, viewers may not have 

processed all possible relationships in the graph within the fixed study time.  

Furthermore, retrieval based memory tasks such as those in the current study may be 

inherently different than recognition-based memory tasks.  For example, pilot data from 

our lab showed that legends are more beneficial than labels for performance on a 

recognition-based memory task in which participants decided whether the presented 

graphs were the same or different than the ones they had viewed earlier.  However, this is 

a very different task compared to the ones used in the current research, and is arguably 

much easier.  Thus, desirable difficulties in graphs may be more beneficial in less 

difficult tasks, wherein there are fewer pre-existing challenges in the graph beyond that of 

the added difficulty, or in LTM tasks with much longer delays than in the current 

research. 

       Another possible limitation in the current research is that label and legend graphs 

may not have been different enough to elicit differential effects.  Visual cues such as 

dotted versus solid lines and circle versus square end-points were present in both label 

and legend versions of the graphs, which may have led to double-encoding of variable 

information from both the visual cues and labels or legends.  This may have limited the 

need to rely on either labels or legends, as it provided additional organizational or 

chunking information.  Thus, graphs with legends may not have been sufficiently more 

challenging than graphs with labels in the current research.  Additionally, the legend is 

organized differently than the labeled lines in a graph, which could lead to differences in 
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the mapping process of individual lines to their referents.  Future research could therefore 

include non-redundant visual cues or manipulate the order in which variables are listed in 

the legend compared to the order of labels on the graph. 

Individual Differences as Key Players in Graph Comprehension 

       A much more crucial factor that has emerged from these studies is that of individual 

differences.  General knowledge about graphs and WM span are clearly influential for 

task performance, as predicted by prior research relating to graph literacy and WM 

capacity.  For example, in Experiment 2 graph literacy and WM span were highly 

predictive of the proportion of correct main effects and interactions students reported in 

the open-ended graph description task.  In Experiment 3, individuals more highly skilled 

with graphs were more accurate in both immediate and LTM tasks, especially for graphs 

containing legends.  This is consistent with the prediction that those more familiar with 

graphs would better know how to approach complex graphs or more easily learn from the 

included graph comprehension instructions. In contrast, WM span was more relevant for 

accuracy in the LTM task, especially for graphs containing legends.  Two potential 

explanations for this finding were postulated: (1) Higher span individuals are perhaps 

better able to mentally transform the graphically presented data once it has been retrieved 

from LTM, in order to re-identify important relationships in the graph; or (2) Higher WM 

span individuals may be better able to encode the relationships between variables in the 

first place, because they perhaps are better able to keep track of the many variables while 

first interpreting the graph in the immediate task than low WM span individuals.  Finally, 

Experiments 4 and 5 demonstrated that familiarity with graphs is important for graph 

comprehension, and WM capacity can impact the effectiveness of graph comprehension 

instruction since low WM span individuals benefited less from the graph tutorial than 

those with high WM span. 

       It has also been consistently shown across all five experiments that attitude or 

disposition can have a very large impact on graph comprehension across varying tasks 

and within both immediate and long-term memory.  For example, Experiment 1 

demonstrates that although format of the textbook reading may not influence immediate 

comprehension for that reading, attitude towards effortful thinking certainly is influential 
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for comprehension of complex data in textbooks, such that individuals who enjoy more 

difficult thinking were more accurate in their immediate recognition responses.  In 

Experiment 2, dispositional characteristics such as open-mindedness and NFC were both 

highly predictive of the proportion of correct main effects and interactions students 

reported in the open-ended graph description task.  Experiment 3 demonstrated that open-

mindedness, NFC, and cognitive reflection can affect graph comprehension.  Open-

mindedness was influential for overall accuracy in both the immediate and LTM tasks.  

Individuals with lower NFC performed better in the immediate task than those with high 

NFC, perhaps because less cognitive effort was involved in remembering within the 

short-term, whereas high NFC individuals may have found the immediate true-false 

verification task less challenging or engaging.  Meanwhile, higher cognitive reflection 

scores were associated with better overall accuracy in LTM, suggesting that perhaps 

individuals who take the time or put in the required effort to reach a more deliberate, 

correct answer better remember this information later.  Moreover, as seen in Experiments 

4 and 5, attitude towards difficult thinking is a critical predictor of whether graph 

comprehension skills can be improved with instruction (i.e., some individuals may be 

more amenable to instruction or training than others).  Specifically, students who do not 

enjoy effortful thinking are less likely to benefit from instruction, which suggests a need 

for educators to foster enjoyment of cognitive work in order for training of graphical 

skills to be effective. 

       Given that WM span has been consistently demonstrated as a limiting factor for 

graph comprehension task performance, as well as for instruction of graph 

comprehension skills, one important consideration for future research would be to further 

explore interactions between WM span level and desirable difficulties.  Perhaps low WM 

capacity individuals could be trained to increase their WM span to help them avoid 

detrimental effects of added visual difficulties.  Future research should also further 

examine interactions between WM span level and dispositions such as open-mindedness 

and NFC.  Educators should consider ways in which to develop and encourage 

dispositions that are favorable for the improvement of much needed graph 

comprehension skills and, more generally, attitudes that are advantageous for work 

requiring cognitive effort.  Such encouragement could be especially important for 
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students who are already disadvantaged by low graphical literacy or low WM capacity, as 

positive dispositions may help close the gap between low and high skill students by 

providing low skill students with a helpful approach towards dealing with challenge.  

However, these suggestions raise the question of whether thinking dispositions such as 

AOT, NFC, and cognitive reflection can be taught or improved.  Although several studies 

have shown improved thinking skills and processes potentially related to AOT with 

training intended to reduce susceptibility to bias (Baron, Badgio, & Gaskins, 1986) or 

increase evaluation of all relevant arguments (Perkins, Bushey, and Faraday, 1986), it 

remains unclear whether these interventions have long-lasting positive effects.  

Additional research on the teaching or training of thinking dispositions would provide 

valuable insight for educators hoping to encourage advantageous attitudes towards 

difficult thinking. 

       The current research focused on individual differences relating to graph skills and 

WM capacity, as well as dispositional factors like open-mindedness and NFC.  However, 

future research could examine other individual differences that might play an influential 

role in graph comprehension, such as math or graph anxiety, more generalized test 

anxiety, and even susceptibility to stereotype threat.  These particular factors would be 

predicted to detrimentally affect performance on graph comprehension tasks, and further 

understanding the nature of such disadvantages could help lead to successful 

interventions for coping with or alleviating them. 

Building an Effective Tool for Instruction   

       Although the current research has demonstrated increased accuracy in questions 

relating to main effects with the use of a computerized graph tutorial, additional research 

is necessary to further develop this tutorial and to determine what aspects of the tutorial 

are most effective and what aspects should be changed or improved.  A more 

theoretically grounded tutorial based on errors and a process model of graph 

interpretation would be an ideal to strive for with future research.  One possibility would 

be to include both bar graphs and line graphs in the tutorial, with the idea that exposure to 

the same concepts in multiple graph formats would perhaps result in improved 

comprehension of main effects and interactions.  Another possibility is to include 
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demonstrations with only line graphs in the tutorial, for which transfer of the same 

concepts to a bar graph could then be checked (or vice versa).  The ideal instructional end 

product would thus be tested on both comprehension and transfer. 

       A separate line of questioning could further investigate the concept of “static builds” 

used in the tutorial.  Progressive animated builds are when graphs are progressively built 

up over time using some sort of animation, such as in power point or some other 

presentation software.  Static builds are similar to these, except that, rather than using 

animation, graphs are gradually built by laying them out as separate frames on a 

page.  These are more likely encountered in paper resources such as textbooks and 

handouts wherein it is not possible to include animations, and inclusions of static builds 

is a relatively frequent occurrence in some psychology textbooks.  This is also similar to 

the concept of storytelling in the information visualization literature, whereby a story is 

laid out in a series of steps and each step contains visualizations based on data (Kosara & 

Mackinlay, 2013).  In the graph tutorial of the current research, static builds are used to 

explain how to determine whether there are main effects present in 2x2x2 line graphs, 

although the effectiveness of static builds such as these have not yet been 

established.  Thus, future research should examine whether sequential processing based 

static builds specifically are an effective method of improving graph comprehension, as 

this would also help to further develop a useful and effective graph tutorial for 

experimental and classroom applications. 

      Another possibility would be to consider switching from static builds to complete 

animations.  Computer animations have been demonstrated as helpful for developing 

visualization skills, the ability to think about concepts or processes on a microscopic 

scale, and to build mental representations or models of concepts in a variety of fields, 

including chemistry (e.g., Dalton, 2003, as cited in Tasker & Dalton, 2006; Sanger, 

Phelps, & Fienhold, 2000; Williamson & Abraham, 1995), physics (e.g., Adams et al., 

2008, parts I and II; Finkelstein et al., 2005; Kohnle, Douglass, Edwards, Gillies, Hooley, 

& Sinclair, 2010),  and biology (e.g., Rotbain, Marbach-Ad, & Stavy, 2008).  The benefit 

of computer animations has also been demonstrated in a wide range of age groups, from 

middle school (e.g., Kombartzky, Ploetzner, Schlag, & Metz, 2010) to high school (e.g., 
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Rotbain et al., 2008) to college students (e.g., Kohnle et al., 2010; Williamson & 

Abraham, 1995).  Some studies have even demonstrated that animations are more 

beneficial than static diagrams or visualizations presented on the board or in 

transparencies in class (e.g., Sanger et al., 2000) or better than a series of static pictures 

taken from the same animation (Kombartzky & Ploetzner, 2007).  Animation could be 

useful in the context of simpler graphs, as it would allow for continuity of labels such that 

viewers would not need to re-identify them (Becker, Cleveland, & Wilks, 1988; Huber, 

1987; Mackinlay, Robertson, & Card, 1991; Stuetzle, 1987).   

      It is important to note, however, that there are also some studies that demonstrate no 

benefit or even worse learning outcomes with the use of animations as compared to other 

types of external representations (e.g., Betrancourt, Morrison, & Tversky, 2002; 

Betrancourt & Tversky, 2000; Boucheix & Schneider, 2009; Mayer et al., 2005), though 

this may be due to differences in students’ abilities to deal with the spatial and temporal 

demands inherent in many animations (Carpenter & Just, 1992; Lowe, 2003; Ploetzner, 

Bodemer, & Neudert, 2008).  Therefore, it is unclear whether the benefits of animations 

would expand to include concepts relating to graph comprehension, or if static builds as 

defined in the current research would provide such a benefit in this context.  It would be 

interesting to examine other types of static builds (e.g., bar graphs) and perhaps even 

move on to progressive animations to determine if progressive animations provide any 

benefit beyond that of static builds. 

      Finally, with the goal of further developing the current graph tutorial for application 

in experimental research and classroom education, additional research is needed to 

examine what types of graphs (e.g., line graphs, bar graphs, or both) are best for teaching 

main effects and interaction concepts.  Line graphs seem to be best for emphasizing x-y 

trends (Carswell, Emery, & Lonon, 1993; Carswell & Wickens, 1987; Shah et al., 1999; 

Zacks & Tversky, 1999), so much so that viewers sometimes fail to completely interpret 

the remaining data in a complex graph or to recognize the same data plotted differently 

(Shah & Carpenter, 1995).  Including only line graphs in a tutorial for graph 

comprehension may therefore be problematic for transfer of skills to other graph types.  

In contrast, bar graphs better emphasize discrete comparisons (Carswell & Wickens, 
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1987; Shah et al., 1999; Zacks & Tversky 1999) and are less biasing than line graphs with 

regards to what relationships in the data viewers will describe (Shah & Shellhammer, 

1999).   

       Furthermore, future research should examine within-subject improvement with the 

use of a graph comprehension tutorial, as the current research compared student 

performance between groups.  Improvement demonstrated in a pre- to post-tutorial graph 

comprehension measure would better demonstrate the tutorial as an effective instructional 

tool.  Another interesting consideration would be whether the use of an effective tutorial 

can help alleviate the potentially detrimental effect of dispositional factors like math and 

graph anxiety or stereotype threat on performance on graph comprehension tasks.  If so, 

such a tutorial would be a wonderful behavioral intervention that could potentially assist 

students in improving their academic performance for those subjects that rely heavily on 

graphical representations of data. 
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Appendix A 
 

Graph Literacy Scale 
 

Here is some information about cancer therapies. 

 
Q1. What percentage of patients recovered after chemotherapy? 

 
% 

 
 
Q2. What is the difference between the percentage of patients who recovered after a 

surgery and the percentage of patients who recovered after radiation therapy?  
 

  % 
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Here is some information about different forms of cancer. 
 

 
 
Q3. Of all the people who die from cancer, approximately what percentage dies from 

lung cancer? 
 
% 

 
 
Q4. Approximately what percentage of people who die from cancer die from colon 

cancer, breast cancer, and prostate cancer taken together?  
 

% 
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Here is some information about an imaginary disease called Adeolitis. 
Percentage of people with Adeolitis 

 
Q5. Approximately what percentage of people had Adeolitis in the year 2000?  
 

        % 
 
Q6. When was the increase in the percentage of people with Adeolitis higher? 

  From 1975 to 1980………………………………………..1 
  From 2000 to 2005………………………………………..2 
Increase was the same in both intervals…….......................3 
Don’t know………………………………………………..4 

 
Q7. According to your best guess, what will the percentage of people with Adeolitis be in 

the year 2010?   
       
       % 
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 The following figure shows the number of men and women among patients with disease 
X. The total number of circles is 100. 
 

 
 
Q8. Of 100 patients with disease X, how many are women?  
 
 
 
Q9. How many more men than women are there among 100 patients with disease X? 
             

men 
 
 

Q10. In a magazine you see two advertisements, one on page 5 and another on page 12.  
Each is for a different drug for treating heart disease, and each includes a graph showing 
the effectiveness of the drug compared to a placebo (sugar pill). 
 

 
 
Compared to the placebo, which treatment leads to a larger decrease in the percentage of 
patients who die?  

Crosicol………………………..1  
Hertinol………………………..2 
 They are equal…………………3 
Can’t say………………………4 
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Q11. In the newspaper you see two advertisements, one on page 15 and another on page 
17.  Each is for a different treatment of psoriasis, and each includes a graph showing the 
effectiveness of the treatment over time.  
 

 
 
 
Which of the treatments contributes to a larger decrease in the percentage of sick 
patients? 

Apsoriatin………………….1 
Nopsorian………………….2 
They are equal……………..3 
Can’t say…………………...4 
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Q12. Here is some information about the imaginary diseases Coliosis and Tiosis. 

 
Between 1980 and 1990, which disease had a higher increase in the percentage of people 
affected?  

Coliosis……………………………1 
Tiosis……………………………...2 
The increase was equal……………3 
Can’t say…………………………..4 

 
Q13. Here is some information about cancer therapies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is the percentage of cancer patients who die after chemotherapy?  
     

 % 
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Appendix B 
 

Actively Open-Minded Thinking Scale 
 

For each of the statements below, mark the alternative that best describes your 
opinion.  There are no right or wrong answers so do not spend too much time deciding on 
an answer. The first thing that comes to mind is probably the best response.  	
  
 
 

 
 

1. A person should always consider new possibilities. 
 

2. A group which tolerates too much difference of opinion among its members 
cannot exist for long.  
 

3. Abandoning a previous belief is a sign of strong character.  

	
  

4. Basically, I know everything I need to know about the important things in life.  

	
  

5. Beliefs should always be revised in response to new information or evidence.  
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6. Certain beliefs are just too important to abandon no matter how good a case can 
be made against them. 

 

7. Changing your mind is a sign of weakness.  

	
  

8. Coming to decisions quickly is a sign of wisdom.  

	
  

9. Considering too many different opinions often leads to bad decisions.  

	
  

10. Difficulties can usually be overcome by thinking about the problem, rather than 
through waiting for good fortune. 

	
  

11. Even though freedom of speech for all groups is a worthwhile goal, it is 
unfortunately necessary to restrict the freedom of certain political groups.  

	
  

12. Even if my environment (family, neighborhood, schools) had been different, I 
probably would have the same religious views.  
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13. I believe we should look to our religious authorities for decisions on moral issues.  
	
  

 
14. I tend to classify people as either for me or against me.  

 

15. I believe letting students hear controversial speakers can only confuse and 
mislead them.  

	
  

16. I believe that loyalty to one's ideals and principles is more important than "open-
mindedness."  

 

17. I believe that laws and social policies should change to reflect the needs of a 
changing world. 

	
  

18. I believe that the "new morality" of permissiveness is no morality at all.  

 

19. I believe that the different ideas of right and wrong that people in other societies 
have may be valid for them. 
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20. I consider myself broad-minded and tolerant of other people's lifestyles. 

 

21. I think that if people don't know what they believe in by the time they're 25, 
there's something wrong with them.  

 

22. I think there are many wrong ways, but only one right way, to almost anything.  

	
  

23. If I think longer about a problem I will be more likely to solve it. 

	
  

24. Intuition is the best guide in making decisions.  

	
  

25. It is a noble thing when someone holds the same beliefs as their parents.  
	
  

26. It is important to persevere in your beliefs even when evidence is brought to bear 
against them.  
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27. It makes me happy and proud when someone famous holds the same beliefs that I 
do.  

	
  

 

28. Most people just don't know what's good for them.  
	
  

29. My beliefs would not have been very different if I had been raised by a different 
set of parents.  

	
  

30. My blood boils over whenever a person stubbornly refuses to admit he's wrong.  

	
  

31. No one can talk me out of something I know is right.  

 

32. Of all the different philosophies which exist in the world there is probably only 
one which is correct.  

	
  

33. Often, when people criticize me, they don't have their facts straight.  
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34. One should disregard evidence that conflicts with your established beliefs.  

 

35. People should always take into consideration evidence that goes against their 
beliefs. 

	
  

36. Someone who attacks my beliefs is not insulting me personally. 

	
  

37. There are basically two kinds of people in this world, good and bad.  
 

38. There are two kinds of people in this world: those who are for the truth and those 
who are against the truth.  

	
  

39. There are a number of people I have come to hate because of the things they stand 
for.  

	
  

40. There is nothing wrong with being undecided about many issues. 
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41.  What beliefs you hold have more to do with your own personal character than the 
experiences that may have given. 
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Appendix C 
 

Need for Cognition Scale 
 

For each of the statements below, please indicate to what extent the statement is 
characteristic of you. If the statement is extremely uncharacteristic of you (not at all like 
you) please mark a “1”; if the statement is extremely characteristic of you (very much 
like you) please mark a “5”. There are no right or wrong answers so do not spend too 
much time deciding on an answer. The first thing that comes to mind is probably the best 
response. There is no time limit, but work as quickly as possible. 

1. I would prefer complex to simple problems.  

 

2. I like to have the responsibility of handling a situation that requires a lot of thinking.  

 

3. Thinking is not my idea of fun. 

  

4. I would rather do something that requires little thought than something that is sure to 
challenge my thinking abilities. 
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5. I try to anticipate and avoid situations where there is likely a chance I will have to 
think in depth about something. 

 

6. I find satisfaction in deliberating hard and for long hours.  

 

7. I only think as hard as I have to.   

 

8. I prefer to think about small, daily projects to long-term ones.   

 

9. I like tasks that require little thought once I’ve learned them.   

 

10. The idea of relying on thought to make my way to the top appeals to me.  
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11. I really enjoy a task that involves coming up with new solutions to problems.  

 

12. Learning new ways to think doesn’t excite me very much.  

 

13. I prefer my life to be filled with puzzles that I must solve.  

 

14. The notion of thinking abstractly is appealing to me.  

 

15. I would prefer a task that is intellectual, difficult and important to one that is 
somewhat important but does not require much thought.  

 

16. I feel relief rather than satisfaction after completing a task that required a lot of 
mental effort.   
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17. It’s enough for me that something gets the job done; I don’t care how or why it 
works.   

 

18. I usually end up deliberating about issues even when they do not affect me 
personally.  
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Appendix D 
 

Cognitive Reflection Test 
 
Below are three items that vary in difficulty.  Answer as many as you can. 
 
  

(1) A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball.   
How much does the ball cost? _____ cents 

 
 
 
 
 

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take  
100 machines to make 100 widgets? _____ minutes 

 
 
 
 
 
 

(3) In a lake, there is a patch of lily pads. Every day, the patch doubles in size. 
If it takes 48 days for the patch to cover the entire lake, how long would it 
take for the patch to cover half of the lake? _____ days 
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Appendix E 
 

Experiment 1 Modified Textbook Excerpt (Goldstein, 2008) 
 
Introductory page for all conditions: 
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Text Only Condition: 

 
Text with Irrelevant Picture Condition: 
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Text with Relevant Graph Condition: 

 
 
 

 
 
 
 
 
 
 
 
 
 



	
  

	
   114 

Appendix F 
 

Experiment 1 Free Response Question Coding Scheme  
 
0 = No response 
 
1 = Response completely unrelated to textbook excerpt or Greeble study data or findings 
 
2 = More general conclusion of textbook excerpt (not specific to actual Greeble study 
data or findings) 
 
3 = Correct description of Greeble study data or findings (e.g., overall, FFA response to 
faces was more than FFA response to Greebles; FFA response to faces was constant, 
while FFA response to Greebles increased from pre- to post-training)  
 
4 = Incorrect description of Greeble study data or findings 
 
5 = Describes study method, but not actual data or findings or more general conclusions 
based on findings 
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Appendix G 
 

Demographic Questionnaire 
 
Participant information is collected primarily for the purpose of reporting demographic 
data to funding institutions.  Your name and email will not be reported. 
 
 1. Gender _____ F  _____ M 
 
 2. Education (highest level attained or most recent year of school completed) 
                ____________________________________ 
 
 3.  Current Major ________________________   Minor ________________ 
 

4. Birthdate ____/_____/_______   5. Age  _______________ 
 

 6. Are you right or left handed?             7. Ethnicity (Please select only one) 
  __ Right     ___ Hispanic 
  __  Left     ___Not Hispanic 
 
 8. Race (Please select only one) 
  __ American Indian/Alaska Native 
  __ Asian 
  __ Native Hawaiian or Other Pacific Islander 
  __ Black or African American 
  __ White/Caucasian 
  __ More than one 
  __ Other/Unknown 
 

9.   Do you consider yourself familiar with (mark all that apply): 
  __ Line Graphs 
  __ Wireframe (3d) graphs 
  __ Bar Graphs 
  __ Pie Charts 
  __ Contour plots 
 
10.  Do you use graphs frequently in your occupation/courses?  _____________ 
 
11.  Do you prefer graphs or tables if you need to look at some numerical data?________ 
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12.  How many statistics classes have you taken in college?____________ 
Please list titles

 ________________________________________________________ 
 ________________________________________________________ 
 ________________________________________________________ 
 
13.  How many math classes have you taken in college?_____________ 
 Please list titles  
 ________________________________________________________ 
 ________________________________________________________ 
 ________________________________________________________ 
 
14.  What was your Math Section SAT Score (out of 800)/ACT Math Score?__________  
 
15.  Do you think of yourself as a math person?  Do you think of yourself as a scientific 
person?  How confident are you with your scientific reasoning skills? 
 
 
 
 
 
 
16.  Are you comfortable with looking at numbers and statistics? 
 
 
 
17.  Do you feel comfortable with looking at graphs and understanding graphs?   
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Appendix H 
 

Exit Survey 
Thank you for your participation!! 
As part of our research, we are interested in your input and impressions of the experiment you 
have just completed. Please answer the following questions to the best of your ability: 
 
1. Did you employ any strategies or “tricks” to help you in the experiment? 

 
 

 
2. Did you think that certain graphs were more difficult than others? If so, what made them 
more or less difficult? 
 

 
 

3. Did you have a preference for certain graphs over other graphs?  If so, what did you prefer 
and why? 

 
 

 
 

4. Which of the following type of graph did you prefer (circle one)? 
 
Graphs with Labels   OR    Graphs with Legends 
 
 

 
 
 
5.  What do you think the point of the experiment was? What kind of thinking or memory 
was it testing? 
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Appendix I 
 

Experiment 2 Sample Open-ended Graph Description Task Coding Scheme 
 

Graph 1: ____________________ 
Correct 

1. Description of Study (not data) Yes No 
2. Main Effect of __________________________________ Yes No 
3. Main Effect of __________________________________ Yes No 
4. Main Effect of __________________________________ Yes No 
5. 2-way Interaction of ______________________________________  Yes   No 
6. 2-way Interaction of ______________________________________  Yes   No 
7. 2-way Interaction of ______________________________________  Yes   No 
8. Partial 2-way Interaction Yes No How many?_________ 
9. Partial 3-way Interaction Yes No 

Incorrect 
1. Description of Study (not data) Yes No 
2. Main Effect of __________________________________ Yes No 
3. Main Effect of __________________________________ Yes No 
4. Main Effect of __________________________________ Yes No 
5. 2-way Interaction of _______________________________________  Yes    No 
6. 2-way Interaction of _______________________________________  Yes    No 
7. 2-way Interaction of _______________________________________  Yes    No 
8. Partial 2-way Interaction Yes No How many?_________ 
9. Partial 3-way Interaction Yes No 
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Appendix J 

Sample True-False Statements for Experiments 3-5 

 

1. On average, the mice that were in a simple learning environment took more time 
to reach the platform than those that were in a complex learning environment.  
(FALSE) 
 

2. On average, the mice that did not receive a transplant took less time to reach the 
platform than the mice that did receive a transplant. (FALSE)  
 

3. On average, students who had low levels of achievement performed better on the 
task than those students who had high levels of achievement.  (TRUE) 

 
4. On average, students who were motivated intrinsically scored lower than those 

students who were motivated extrinsically. (TRUE) 
	
  

5. On average, people who do not drink alcohol rate both themselves and others as 
being riskier than those people who do drink alcohol. (FALSE) 

	
  
6. On average, people rate themselves as being greater risk takers than their peers. 

(TRUE) 
 

7. On average, children engaged in play activities rated their partner as more 
creative than those children who were engaged in academic activities. (FALSE) 

 
8. On average, children who were correctly informed about their partner’s level of 

art instruction rated their partner as having a higher creativity rating than those 
who were misinformed.  (TRUE) 

 
9. On average, women had fewer domestic violence arrests than men.  (TRUE) 

 
10. On average, people who did not receive counseling had more domestic violence 

arrests than people who did receive counseling.  (FALSE) 
 

 

 



	
  

	
   120 

References 
 

Adams, W. K., Reid, S., LeMaster, R., McKagan, S. B., Perkins, K. K., Dubson, M., & 
Wieman, C. E. (2008). A study of educational simulations part I: Engagement and 
learning.  Journal of Interactive Learning Research, 19(3), 397-419. 

Adams, W. K., Reid, S., LeMaster, R., McKagan, S. B., Perkins, K. K., Dubson, M., & 
Wieman, C. E. (2008). A study of educational simulations part II: Interface design. 
Journal of Interactive Learning Research, 19(4), 551-577.     

Ainsworth, S. (2006). DeFT: a conceptual framework for considering learning with 
multiple representations. Learning and Instruction, 16, 183-198.     

Arteaga, P., & Batanero, C. (2011). Relating graph semiotic complexity to graph 
comprehension in statistical graphs produced by prospective teachers. In Proceedings 
of the Seventh Congress of the European Society for Research in Mathematics 
Education (in press). 

Baron, J. (1985). Rationality and intelligence. New York: Cambridge University Press. 

Baron, J. (1993). Why teach thinking? An essay. Applied Psychology: An International 
Review, 42, 191-214. 

Baron, J. (2008). Thinking and deciding. New York: Cambridge University Press. (4th 
edition). 

Baron, J., Badgio, P. C., & Gaskins, I. W. (1986). Cognitive style and its improvement: A 
normative approach. In R. J. Sternberg (Ed.), Advances in the Psychology of Human 
Intelligence (pp. 173-220). London: Lawrence Erlbaum Associates. 

Batanero, C., Arteaga, P., & Ruiz, B. (2010). Statistical graphs produced by prospective 
teachers in comparing two distributions. In V. Durand-Guerrier, S. Soury-Lavergne, 
& F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for 
Research in Mathematics Education. Lyon: ERME. 

Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., & Brooks, C. (2010). 
Useful junk? The effects of visual embellishment on comprehension and 
memorability of charts.  

Becker, R. A., Cleveland, W. S., & Wilks, A. R. (1988). Dynamic graphics for data 
analysis. In W. S. Cleveland & M. E. McGill (Eds.), Dynamic graphics for statistics 
(pp. 1-50). Belmont, CA: Wadsworth.   

Bell, A., & Janvier, C. (1981). The interpretation of graphs representing situations. For 
the Learning of Mathematics, 2(1), 34-42.      

Bertin, J. (1983). Semiology of graphics (W. Berg, Trans.). Madison, WI: University of 
Wisconsin Press. 



	
  

	
   121 

Bertrams, A., & Dickhauser, O. (2009). High-school students’ need for cognition, self-
control capacity, and school achievement: Testing a mediation hypothesis. Learning 
and Individual Differences, 19, 135-138. 

Bétrancourt, M., Morrison, J., & Tversky, B. (2002). Animation: Can it facilitate? 
International Journal of Human-Computer Studies, 57, 247-262.  

Bétrancourt, M., & Tversky, B. (2000). Effect of computer animation on users’ 
performance: A review. Le Travail Humain, 63(4), 311-329.     

Bjork, R. A. (1994). Memory and metamemory considerations in the training of human 
beings. In J. Metcalfe and A. Shimamura (Eds.), Metacognition: Knowing about 
knowing (pp. 185–205). Cambridge, MA: MIT Press.  

Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: 
Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W. Pew, 
L. M. Hough, & J. R. Pomerantz (Eds.), Psychology and the real world: Essays 
illustrating fundamental contributions to society (pp. 56-64). New York: Worth 
Publishers.  

Blais, A. R., Thompson, M. M., & Baranski, J. V. (2005). Individual differences in 
decision processing and confidence judgments in comparative judgment tasks: The 
role of cognitive styles. Personality and Individual Differences, 38, 1701-1713. 

Boucheix, J.-M., & Schneider, E. (2009). Static and animated presentations in learning 
dynamic mechanical systems. Learning and Instruction, 19, 112-127.  

Broadway, J. M., & Engle, R. W. (2010). Validating running memory span: Measurement 
of working memory capacity and links with fluid intelligence. Behavior Research 
Methods, 42, 563-570. 

Bruno, A., & Espinel, M. C. (2009). Construction and evaluation of histograms in teacher 
training. International Journal of Mathematical Education in Science and 
Technology, 40(4), 473-493. 

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A 
new source of inexpensive, yet high-quality, data? Perspectives on Psychological 
Science, 6(1), 3-5. 

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and 
Social Psychology, 42(1), 116-131. 

Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional 
differences in cognitive motivation: The life and times of individuals varying in need 
for cognition. Psychological Bulletin, 119, 197–253. 

Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for 
cognition. Journal of Personality Assessment, 48, 306-307. 



	
  

	
   122 

Canham, M. & Hegarty, M. (2010). Effects of knowledge and display design on 
comprehension of complex graphics. Learning and Instruction, 20, 155-166. 

Carpenter, P. A., & Just, M. A. (1992). Understanding mechanical systems through 
computer animation and kinematic imagery (Report No. ONR 92-1). Arlington, VA: 
Office of Naval Research. 

Carpenter, P. A., & Shah, P. (1998).  A model of the perceptual and conceptual processes 
in graph comprehension. Journal of Experimental Psychology: Applied, 4(2), 75-100.  

Carswell, C. M., Emery, C., & Lonon, A. M. (1993). Stimulus complexity and 
information integration in the spontaneous interpretation of line graphs. Applied 
Cognitive Psychology, 7(4), 341-357. 

Carswell, C. M., & Wickens, C. D. (1987). Information integration and the object 
display: An interaction of task demands and display superiority. Ergonomics, 30(3), 
511-527. 

Cheng, P. C.-H. (1999). Interactive law encoding diagrams for learning and instruction. 
Learning and Instruction, 9, 309-309. 

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, 
and application to the development of graphical methods. Journal of the American 
Statistical Association, 79(387), 531-554. 

Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for 
analyzing scientific data. Science, 229(4716), 828-833. 

Cohen, A. R. (1957). Need for cognition and order of communication as determinants of 
opinion change. In C. I. Hovland (Ed.), The Order of Presentation in Persuasion 
(pp.79-97). New Haven: Yale University Press. 

Culbertson, H. M., & Powers, R. D. (1959). A study of graph comprehension difficulties. 
Audio Visual Communication Review, 7, 97-100.  

Curcio, F. R. (1989). Developing graph comprehension. Reston, VA: National Council of 
Teachers of Mathematics. 

Dai, D. Y., & Wang, X. (2006). The role of need for cognition and reader beliefs in text 
comprehension and interest development. Contemporary Educational Psychology, 32, 
332-347. 

Dalton, R. M. (2003). The development of students’ mental models of chemical 
substances and processes at the molecular level, PhD Thesis, University of Western 
Sydney. 

Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, 
N. S., Reid, S., & LeMaster, R. (2005). When learning about the real world is better 



	
  

	
   123 

done virtually: a study of substituting computer simulations for laboratory equipment. 
Physical Review Special Topics Physics Education Research, 1. 

Franconeri, S., Uttal, D., & Shah, P. (2011). Teaching perceptual and conceptual 
processes in graph interpretation. Grant funded by the United States Institute for 
Educational Sciences. 

Frederick, S. (2005).  Cognitive reflection and decision making. Journal of Economic 
Perspectives, 19(4), 25-42.         

Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph 
comprehension. In M. Hegarty, B. Meyer, & N. H. Narayanan (Eds.), Diagrammatic 
representation and inference (pp. 8-31). Berlin: Springer.   

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001).  Making sense of graphs: Critical 
factors influencing comprehension and instructional implications. Journal for 
Research in Mathematics Education, 32(2), 124-158. 

Friel, S. N., & Joyner, J. M. (Eds.). (1997). Teach-stat for teachers: Professional 
development manual. Palo Alto, CA: Dale Seymour. 

Fry, E. (1981). Graphical literacy. Journal of Reading, 24(5), 383-389. 

Galesic, M., & Garcia-Retamero, R. (2011). Graph literacy: A cross-cultural comparison. 
Medical Decision Making, 31, 444-457.  

Garner, R., Alexander, P., Gillingham, M., Kulikowich, J., & Brown, R. (1991). Interest 
and learning from text. American Educational Research Journal, 28, 643-659.   

Garner, R., Brown, R., Sanders, S., & Menke, D. (1992). "Seductive details" and learning 
from text. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in 
learning and development (pp. 239-254). Hillsdale, NJ: Erlbaum.   

Garner, R., Gillingham, M., & White, C. (1989). Effects of "seductive details" on 
macroprocessing and microprocessing in adults and children. Cognition and 
Instruction, 6, 41-57.       

Gattis, M., & Holyoak, K. (1996). Mapping conceptual to spatial relations in visual 
reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
22, 1-9.  

Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). 
Activation of the middle fusiform “face area” increases with expertise in recognizing 
novel objects. Nature Neuroscience, 2, 568-573. 

Geertzen, J. (2012). Inter-rater agreement with multiple raters and variables. Available 
from https://mlnl.net/jg/software/ira/ 

Gillan, D. J., Wickens C. D., Hollands, J. G., & Carswell, C. M. (1998). Guidelines for 
presenting quantitative data in HFES publications. Human Factors, 40(1), 28-41. 



	
  

	
   124 

Goldstein, E. B. (2008). Cognitive psychology: Connecting mind, research, and everyday 
experience (2nd ed.). Belmont, CA: Cengage Learning. 

Gonzalez, T., Espinel, C., & Ainley, J. (2011). Teachers’ graphical competence. In C. 
Batanero, G. Burrill & C. Reading (Eds.), Teaching statistics in school mathematics-
Challenges for teaching and teacher education: A joint ICMI/IASE study. New York: 
Springer. 

Guthrie, J. T., Weber, S., & Kimmerly, N. (1993). Searching documents: Cognitive 
processes and deficits in understanding graphs, tables, and illustrations. 
Contemporary Educational Psychology, 18, 186-221.  

Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables 
can humans process? Psychological Science, 16(1), 70-76. 

Haran, U., Ritov, I., & Mellers, B. A. (2013). The role of actively open-minded thinking 
in information acquisition, accuracy, and calibration. Judgment and Decision Making, 
8(3), 188-201. 

Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text 
and illustrations: On the distinction between emotional and cognitive interest. Journal 
of Educational Psychology, 89, 92-102.  

Hidi, S., & Anderson, V. (1992). Situational interest and its impact on reading expository 
writing. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in 
learning and development (pp. 215-238). Hillsdale, NJ: Erlbaum.   

Hidi, S., & Baird, W. (1986). Interestingness: A neglected variable in discourse 
processing. Cognitive Science, 10, 179-194. 

Hidi, S., & Baird, W. (1988). Strategies for increasing text-based interest and students' 
recall of expository text. Reading Re- search Quarterly, 23, 465-483.   

Hirshman, E., & Bjork, R. A. (1988). The generation effect: Support for a two-factor 
theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
14(3), 484-494. 

Huber, P. J. (1987). Experiences with three-dimensional scatterplots. Journal of the 
American Statistical Association, 82, 448-453.     

Jacoby, L. (1978). On interpreting the effects of repetition: Solving a problem versus 
remembering a solution. Journal of Verbal Learning and Verbal Behavior, 17, 649-
667. 

Kardash, C. M., & Scholes, R. J. (1996). Effects of preexisting beliefs, epistemological 
beliefs, and need for cognition on interpretation of controversial issues. Journal of 
Educational Psychology, 88, 260-271. 

Kerr, R., & Booth, B. (1978). Specific and varied practice of a motor skill. Perceptual 
and Motor Skills, 46, 395–401.   



	
  

	
   125 

Kohnle, A., Douglass, M., Edwards, T. J., Gillies, A. D., Hooley, C. A., & Sinclair, B. D. 
(2010). Developing and evaluating animations for teaching quantum mechanics 
concepts. European Journal of Physics, 31, 1441-1455. 

Kombartzky, U., & Ploetzner, R. (2007).  Beneficial effects of learning from animations. 
In W. Chen, & H. Ogata (Eds.), Learning by effective utilization of technologies: 
Facilitating intercultural understanding. Supplementary Proceedings of the 15th 
International Conference of Computers in Education (pp. 3-4). Amsterdam: IOS 
Press.  

Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating 
a strategy for learning from animations. Learning and Instruction, 20, 424-433.  

Kornell, N. (2009). Optimizing learning using flashcards: Spacing is more effective than 
cramming. Applied Cognitive Psychology, 23, 1297–1317.  

Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the 
“enemy of induction”? Psychological Science, 19, 585–592.  

Körner, C. (2005). Concepts and misconceptions in comprehension of hierarchical 
graphs. Learning and Instruction, 15(4), 281-296. 

Kosara, R., & Mackinlay, J. (2013). Storytelling: The next step for visualization. 
Computer, 46(5), 44-50. 

Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 
3, 185–225.       

Kosslyn, S. M. (1994). Elements of graph design. New York: Freeman.  

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand 
words. Cognitive Science, 11(1), 65-100. 

Legge, G. E., Gu, Y., & Luebker, A. (1989). Efficiency of graphical perception. 
Perception and Psychophysics, 46(4), 365-374. 

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: 
Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64. 

Linn, M. C., Chang, H.-Y., Chiu, J., Zhang, H., & McElhaney, K. (2010). Can desirable 
difficulties overcome deceptive clarity in scientific visualizations? In A. Benjamin 
(Ed.), Successful remembering and successful forgetting: A Festschrift in honor of 
Robert A. Bjork (pp. 239–262). New York: Routledge.       

Lohse, G. L. (1993). A cognitive model for understanding graphical perception. Human-
Computer Interaction, 8, 313–334.  

Lowe, R. K. (1993). Constructing a mental representation from an abstract technical 
diagram. Learning and Instruction, 3, 157-179.  



	
  

	
   126 

Lowe, R. K. (2003). Animation and learning: selective processing of information in 
dynamic graphics. Learning and Instruction, 13, 157-176.      

MacDonald-Ross, M. (1977). Graphics in texts. Review of Research in Education, 5, 49-
85. 

Mackinlay, J. D., Robertson, G. G., & Card, S. K. (1991). The perspective wall: Detail 
and context smoothly integrated. Proceedings of the Association of Computing 
Machinery CHI'91 Conference on Human Factors in Computing Systems (pp. 173-
179). New York: ACM.  

Macpherson, R., & Stanovich, K. E. (2007). Cognitive ability, thinking dispositions, and 
instructional set as predictors of critical thinking. Learning and Individual 
Differences, 17, 115-127. 

Maichle, U. (1994). Cognitive processes in understanding line graphs. In W. Schnotz & 
R. W. Kulhavy (Eds.), Comprehension of graphics. Amsterdam: Elsevier. 

Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. 
Journal of Educational Psychology, 81, 240-246. 

Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is 
more: Meaningful learning from visual and verbal summaries of textbook lessons. 
Journal of Educational Psychology, 88, 64-73.   

Mayer, R. E., Hegarty, M., Mayer, M., & Campbell, J. (2005). When static media 
promote active learning: Annotated illustrations versus narrated animations in 
multimedia instruction. Journal of Experimental Psychology: Applied, 11(4), 256-
265. 

Mayer, R. E., Steinhoff, K., Bower, G., & Mars, R. (1995). A generative theory of 
textbook design: Using illustrations to foster meaningful learning of science text. 
Educational Technology Research and Development, 43, 31-43.    

Milroy, R., & Poulton, E. C. (1978). Labeling graphs for improved reading speed. 
Ergonomics, 21(1), 55-61. 

Mohr, P., Glover, J., & Ronning, R. R. (1984). The effect of related and unrelated details 
on the recall of major ideas in prose. Journal of Reading Behavior, 16, 97-109. 

Monteiro, C., & Ainley, J. (2007). Investigating the interpretation of media graphs among 
student teachers. International Electronic Journal of Mathematics Education, 2(3), 
188-207. 

Oechssler, J., Roider, A., & Schmitz, P. W. (2009). Cognitive abilities and behavioural 
biases. Journal of Economic Behavior & Organization, 72, 147-152. 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh 
inventory. Neuropsychologia, 9, 97-113.   



	
  

	
   127 

Perkins, D., Bushey, B., & Faraday, M. (1986). Learning to reason. Final report, Grant 
No. NIE-G-83-0028, Project No030717. Harvard Graduate School of Education. 

Pinker, S. (1990). A theory of graph comprehension. In R. Freedle (Ed.), Artificial 
intelligence and the future of testing (pp.73–126). Hillsdale, NJ: Erlbaum. 

Ploetzner, R., Bodemer, D., & Neudert, S. (2008). Successful and less successful use of 
dynamic visualisations in instructional texts. In R. K. Lowe, & W. Schnotz (Eds.), 
Learning with animation: Research implications for design (pp. 71-91). New York: 
Cambridge University Press.   

Ratwani, R. M., & Trafton, J. G. (2008). Shedding light on the graph schema: Perceptual 
features versus invariant structure. Psychonomic Bulletin & Review, 15, 757–762. 

Ratwani, R. M., Trafton, J. G., & Boehm-Davis, D. A. (2008). Thinking graphically: 
Connecting vision and cognition during graph comprehension. Journal of 
Experimental Psychology: Applied, 14(1), 36-49.    

Rawson, K. A., & Dunlosky, J. (2011). Optimizing schedules of retrieval practice for 
durable and efficient learning: How much is enough? Journal of Experimental 
Psychology: General, 140(3), 283–302. 

Redick, T. S., Broadway, J. M., Meier, M. E.,  Kuriakose, P. S., Unsworth, N., Kane, M. 
J., & Engle, R. W. (2012). Measuring working memory capacity with automated 
complex span tasks. European Journal of Psychological Assessment, 28(3), 164-171.  

Roediger, H.L., & Karpicke, J.D. (2006). Test-enhanced learning: Taking memory tests 
improves long-term retention. Psychological Science, 17, 249–255.  

Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics practice problems 
improves learning. Instructional Science, 35, 481–498.     

Romberg, T. A., Fennema, E., & Carpenter, T. P. (Eds.). (1993). Integrating research on 
the graphical representation of functions. Hillsdale, NJ: Erlbaum.  

Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2008). Using a computer animation to teach 
high school molecular biology. Journal of Science Education and Technology, 17(1), 
49-58.  

Sa, W. C., West, R. F., & Stanovich, K. E. (1999). The domain specificity and generality 
of belief bias: Searching for a generalizable critical thinking skill. Journal of 
Educational Psychology, 91, 497-510. 

Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in 
terms of working memory capacity. Memory and Cognition, 34, 344-355.    

Shah, P. (1995). Cognitive processes in graph comprehension. Unpublished doctoral 
dissertation. Carnegie Mellon University, Pittsburgh, PA.    



	
  

	
   128 

Shah, P., & Carpenter, P. A. (1995). Conceptual limitations in comprehending line 
graphs. Journal of Experimental Psychology: General, 124, 43-62.  

Shah, P., & Freedman, E. G. (2011). Bar and line graph comprehension: An interaction of 
top-down and bottom-up processes. Topics in Cognitive Science, 3, 560-578.   

Shah, P., Freedman, E. G., & Vekiri, I. (2005). The comprehension of quantitative 
information in graphical displays. In P. Shah, & A. Miyake (Eds.), The Cambridge 
handbook of visual spatial thinking (pp. 426-476). New York: Cambridge University 
Press. 

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications 
for instruction. Educational Psychology Review, 14(1), 47-69. 

Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: 
Signaling techniques for guiding the process of graph construction. Journal of 
Educational Psychology, 91(4), 690-702.   

Shah, P., & Shellhammer, D. (1999). The role of domain knowledge and graph reading 
skills in graph comprehension. Paper presented at the 1999 Meeting of the Society for 
Applied Research in Memory and Cognition, Boulder, CO.     

Shea, J.B., & Morgan, R.L. (1979). Contextual interference effects on the acquisition, 
retention, and transfer of a motor skill. Journal of Experimental Psychology: Human 
Learning and Memory, 5, 179–187.  

Shelton, J. T., Elliott, E. M., Hill, B. D., Calamia, M. R., & Gouvier, W. D. (2009). A 
comparison of laboratory and clinical working memory tests and their prediction of 
fluid intelligence. Intelligence, 37, 283-293. 

Shirey, L. (1992). Importance, interest, and selective attention. In K. A. Renninger, S. 
Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 281-
296). Hillsdale, NJ: Erlbaum.      

Shirey, L., & Reynolds, R. (1988). Effect of interest on attention and learning. Journal of 
Educational Psychology, 80, 159-166. Wade, S. (1992). How interest affects learning 
from text. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in 
learning and development (pp. 255-277). Hillsdale, NJ: Erlbaum.   

Simkin, D. K., & Hastie, R. (1987). An information-processing analysis of graph 
perception. Journal of the American Statistical Association, 82, 454-465.  

Singer, H., & Donlan, D. (1980). Reading and learning from text. Boston, Massachusetts: 
Little, Brown.  

Slamecka, N., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. 
Journal of Experimental Psychology: Human Learning and Memory, 14, 592-604.  

Smith, S. M., Glenberg, A. M., & Bjork, R. A. (1978). Environmental context and human 
memory. Memory & Cognition, 6, 342–353.  



	
  

	
   129 

Spence, I. (1990). Visual psychophysics of simple graphical elements. Journal of 
Experimental Psychology: Human Perception and Performance, 16(4), 683-692. 

Stanovich, K. E., & West, R. F. (1997). Reasoning independently of prior belief and 
individual differences in actively open-minded thinking. Journal of Educational 
Psychology, 89, 342–357. 

Stanovich, K. E., & West, R. F. (1998). Individual differences in rational thought. 
Journal of Experimental Psychology: General, 127, 161-188. 

Stanovich, K. E., & West, R. F. (2007). Natural myside bias is independent of cognitive 
ability. Thinking & Reasoning, 13, 225–247. 

Stedman, N. L. P., Irani, T. A., Friedal, C., Rhoades, E. B., & Ricketts, J. C. (2009). 
Relationships between critical thinking disposition and need for cognition among 
undergraduate students enrolled in leadership courses. North American Colleges and 
Teachers of Agriculture Journal, 62-70. 

Steinhart, Y., & Wyer, Jr., R. S. (2009). Motivational correlates of need for cognition. 
European Journal of Social Psychology, 39, 608-621. 

Stuetzle, W. (1987). Plot windows. Journal of the American Statistical Association, 82, 
466-475.  

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and 
Instruction, 12, 185-185.  

Tasker, R., & Dalton, R. M. (2006). Research into practice: Visualisation of the 
molecular world using animations. Chemistry Education Research and Practice, 7(2), 
141-159.   

Trafton, J. G., Kirschenbaum, S. S., Tsui, T. L., Miyamoto, R. T., Ballas, J. A., & 
Raymond, P. D. (2000). Turning pictures into numbers: Extracting and generating 
information from complex visualizations. International Journal of Human Computer 
Studies, 53, 827-850.  

Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: 
Graphics.  

Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis (Ed.), Spatial schemas 
and abstract thought (pp. 79-111).  Cambridge: MIT Press. 

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version 
of the operation span task. Behavior Research Methods, 37, 498-505. 

Vaiana, M. E., & McGlynn, E. A. (2002). What cognitive science tells us about the 
design of reports for consumers. Medical Care Research and Review, 59(1), 3-35. 



	
  

	
   130 

Vernon, M. D. (1946). Learning from graphical material. British Journal of Psychology, 
36, 145-158.  

Vernon, M. D. (1950). The visual presentation of factual information. British Journal of 
Educational Psychology, 20, 174-185. 

Wade, S., & Adams, R. (1990). Effects of importance and interest on recall of 
biographical text. Journal of Reading Behavior, 22, 331-353. 

Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the 
particulate mental models of college chemistry students. Journal of Research in 
Science Teaching, 32(5), 522-534. 

Winn, B. (1987). Charts, graphs, and diagrams in educational materials. In D. Willows & 
H. A. Houghton (Eds.), The psychology of illustration. New York: Springer. 

Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. 
Memory and Cognition, 27(6), 1073-1079. 

Zacks, J., Levy, E., Tversky, B., & Schiano, D. (2002). Graphs in print. In M. Anderson, 
B. Meyer, & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 187-
206). London: Springer-Verlag. 

 


