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Abstract 

The historical accumulation and improper disposal of radioactive waste from 

extensive extraction and processing activities have caused widespread uranium 

contamination of groundwater and soils in the United States. Because uranium is a toxic 

heavy metal and radiological hazard, its migration poses serious human health and ecological 

risk. While successful remediation has been practiced at selected uranium contaminated sites, 

recent concerns have been raised over maintaining the long-term immobilization of reduced 

uranium solids in the subsurface when oxidants re-enters the reducing zones. Previous 

studies reported that iron sulfide minerals formed during bioreduction may retard UO2 

reoxidation by consuming dissolved oxygen, yet limited mechanistic information is available 

detailing the thermodynamic and kinetic constraints that control UO2 oxidative dissolution in 

the presence of iron sulfide in groundwater.  

This research aims at understanding the abiotic role of iron sulfide in affecting the 

stability of uraninite (UO2(s)) under oxic groundwater conditions. Synthetic nano-particulate 

mackinawite (FeS) and uraninite solids were prepared to simulate reduced precipitates in 

groundwater systems dominated by sulfate reducing conditions. Completely mixed batch and 

flow-through reactor experiments were conducted to investigate UO2 oxidative dissolution 

rate in artificial groundwater as a function of pH, FeS content, and carbonate and oxygen 

concentrations. FeS and UO2 oxidation products were characterized by X-ray diffraction 

(XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and 

transmission electron microscopy (TEM) to examine reaction pathways and rate-controlling
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mechanisms during oxidation. FeS reaction products, i.e., Fe(III) hydroxides, aqueous Fe(II), 

and elemental sulfur, were also isolated and examined for their influence on UO2 oxidation. 

This research demonstrates that FeS serves as an effective oxygen scavenger and 

inhibits UO2 oxidative dissolution by keeping dissolved oxygen (DO) levels low. The 

dissolution rate of UO2 in the presence of FeS is over one order of magnitude lower than 

those in the absence of FeS under otherwise comparable oxic conditions. The preferential 

reaction of FeS with oxygen leads to surface-oxidation limited dissolution of UO2, which is 

facilitated by a fast detachment of ternary Ca-U(VI)-CO3 complexes. When FeS content 

significantly diminishes, increasing DO concentration may passivate UO2 surface by forming 

a less reactive U(VI) layer. However, dissolved calcium and carbonate species can limit the 

formation of passivation layer and enhance the overall UO2 dissolution rate by promoting 

U(VI) detachment rate from surface. When groundwater composition exceeds the solubility 

of uranyl minerals, a secondary phase may be generated to further limit the dissolution rate of 

UO2 after FeS depletion. 

By focusing on the mineral-water interfacial reactions, this dissertation has developed 

mechanistic models for illustrating uranium transformation during anoxic-oxic transitions in 

the presence of iron sulfide. The results of this research contribute to the understanding of 

uranium fate and transport during periods of persistent oxygen intrusion in heterogeneous 

groundwater systems. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Since the 20th century, the concerted effort to discover and exploit uranium (U) 

resources for the development and production of nuclear weaponry and nuclear energy has 

contributed to massive uranium mining activities (Abdelouas, 2006). Historically, abandoned 

waste accumulation and improper disposal of the radioactive materials from intensive 

uranium mining and milling have resulted in contamination to the local environment 

(Gavrilescu et al., 2009). Available research on DOE uranium research and production 

facilities indicates elevated uranium concentrations in subsurface environments and the 

migration of uranium to surrounding areas (Riley et al., 1992). Over 6.4×109 m3 of 

contaminated groundwater and 40×106 m3 of contaminated soils in the US alone requires 

more than $15 billion (in 1998 dollars) to clean up (DOE, 1997; DOE, 1998; National 

Research, 1999). The contamination of groundwater by uranium poses a direct threat to water 

supplies, while soil contamination poses an equally important threat on land use, food supply, 

and water quality.  

Uranium in drinking water is covered under the Safe Drinking Water Act. The EPA 

established the maximum contaminant level (MCL) for uranium of 30 µg∙L-1 in drinking 

water (EPA, 2000). California has already adopted an MCL of 20 pCi∙L-1 (~25 µg∙L-1) based
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on renal toxicity (OEHHA, 2001). Despite the huge cost and regulatory effort, the progress 

on groundwater and soil remediation has been slow, partly attributed to the technical 

limitations and poor understanding of the geochemical setting of the contaminated sites as 

well as the reaction kinetics and equilibrium.  

The environmental risks associated with U contamination are strongly governed by 

redox conditions and solid-phase U solubility. Uranium (VI) is the dominant oxidation state 

under oxic conditions. This form is soluble and forms stable complexes with carbonate and 

calcium in groundwater (Guillaumont et al., 2003; Dong and Brooks, 2006; Stewart et al., 

2010). Conversely, the reduction of U(VI) under anaerobic conditions leads to the formation 

of sparingly soluble U(IV) solid phases, such as uraninite (UO2), thus limiting dissolved U 

concentration and U mobility. Popular bioremediation strategies utilize respiratory 

microorganisms to immobilize U in the subsurface by enzymatically reducing U as the 

terminal electron acceptor (Lovley et al., 1991; Lovley and Phillips, 1992). The reduction of 

U can also occur abiotically by reduced species, such as surface adsorbed Fe(II) (Liger et al., 

1999) and sulfide minerals (Wersin et al., 1994; Hua et al., 2006). Recent studies further 

suggest that monomeric U(IV) species may form during microbial U(VI) reduction in 

association with phosphate or carbonate as sorbed complexes on soils and sediments 

(Bernier-Latmani et al., 2010; Fletcher et al., 2010; Boyanov et al., 2011), before converting 

to more stable U(IV) precipitates. However, the biostimulation strategy is not trouble free, 

with concerns raised over the long-term stability of bioreduced and immobilized uranium. 

The nanometer-sized uraninite produced during active bioreduction may be susceptible to 

reoxidation by various environmental agents such as oxygen (Zhou and Gu, 2005; Moon et 

al., 2007; Komlos et al., 2008; Moon et al., 2009), nitrate (Finneran et al., 2002; Senko et al., 
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2002), Fe(III) (hydr)oxides (Sani et al., 2005; Wan et al., 2005; Ginder-Vogel et al., 2010), 

and manganese oxide (Fredrickson et al., 2002; Wang et al., 2013). For example, dissolved 

oxygen (DO) is one of the strongest and most abundant oxidants of U(IV), and has been 

shown to oxidize UO2 within several hours to days in batch or sediment column experiments 

(Casas et al., 1994; Moon et al., 2007).  

The long-term stability of reduced U(IV) solids may be achieved when dissolution 

and/or reoxidation of UO2 are sufficiently slow in the subsurface. Maintaining the reducing 

conditions can be crucial to minimizing UO2 dissolution rates and limiting U mobility during 

occasional or low levels of oxidant intrusion. Naturally occurring aqueous sulfide and sulfide 

minerals formed under sulfate reducing conditions (SRCs) may serve as electron sources for 

maintaining reducing conditions and continued U immobilization (Wersin et al., 1994; 

Suzuki et al., 2005; Hua et al., 2006). Past field studies have attributed the resistance of 

U(IV) phases to oxidative dissolution to the presence of sulfide minerals, despite seasonal 

exposure to air in natural near-surface sediments (Suzuki et al., 2005; Qafoku et al., 2009). 

Under low temperature SRCs, a variety of iron sulfide minerals may form, including 

mackinawite (FeS), greigite (Fe3S4), or pyrite (FeS2) (Rickard, 1969b; Rickard and Morse, 

2005). In general, mackinawite is thought to be the first crystalline phase to form and most 

common iron sulfide in anoxic sediments (Rickard, 1995). Being thermodynamically 

unstable, mackinawite ultimately transforms into more stable phases, such as greigite and 

pyrite under suboxic conditions (Berner, 1981). Under reducing conditions, however, 

mackinawite may persist for significantly long periods of time (Abdelouas et al., 2000; 

Benning et al., 2000). 
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Mackinawite has attracted recent interest for contaminant attenuation due to its 

reactivity in the reductive transformation of pollutants (Elsner et al., 2004) and its retention 

of heavy metals via sorption and isomorphous substitution (Coles et al., 2000). Previous 

studies have demonstrated the impact of mackinawite in arsenic (Jeong et al., 2010a; Han et 

al., 2011) and mercury (Jeong et al., 2010b) immobilization, and in the degradation of 

organic pollutants (Butler and Hayes, 2001; Hyun and Hayes, 2009). Recent research further 

recognized mackinawite as an important component in radionuclide remediation systems 

(Abdelouas et al., 1999a). Laboratory studies have demonstrated that mackinawite (FeS) 

produced by sulfate reducing bacteria (SRB) can retard UO2 reoxidation and possibly provide 

long-term protection against oxygen intrusion (Abdelouas et al., 1998; Abdelouas et al., 

1999a; Moon et al., 2009). The abiotic reduction of U(VI) by mackinawite surfaces with the 

production of U(IV) solid phases has also been observed (Hua and Deng, 2008; Hyun et al., 

2012). Given the intimate association of mackinawite with U(IV) in bioreduced systems 

(Bargar et al., 2013), a reliable and comprehensive assessment of long-term stability of U 

should include the interactions of UO2 with iron sulfides under redox sensitive conditions. If 

mackinawite can effectively scavenge oxidants and counter the redox change while being 

readily generated by SRB, the success of U remediation for long-term stability may be 

possible, without the need for continuous chemical input and the associated energy 

requirements for maintaining an active system. In this dissertation, mackinawite is of major 

interest in its role of affecting the stability of reduced uranium under oxic groundwater 

conditions. 

While scavenging oxidants such oxygen, mackinawite undergoes oxidation-induced 

transformation, generating dissolved Fe(II) and various Fe(III) solid phases and sulfur 
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products, depending on geochemical conditions (Burton et al., 2009; Chirita, 2009; Jeong et 

al., 2010a; Bi et al., 2013). The exhaustion of mackinawite in an event of drastic oxidant 

intrusion can result in exposure of reduced U(IV) solids to various oxidants which are 

capable of remobilizing U. Even before mackinawite is completely depleted, the co-existence 

of mackinawite and its oxidation products may have implications for uranium stabilization. 

The oxidation products may interact with the uranium for as long as oxic condition persists 

and the oxidation reaction of mackinawite produces them. Therefore, the impact of FeS 

oxidation products on the fate and transport of U should be carefully investigated for better 

assessing the role of sulfide minerals in post-biostimulation scenarios. 

Evaluating the role of mackinawite on the long-term stability of reduced uranium 

presents challenges, requiring an examination of an assortment of redox reactions in a 

heterogeneous system at a molecular level, which are clearly under documented in the 

current literature. In addition, there is also an underlying complexity stemming from the 

diverse geochemical conditions (e.g., pH, pCO2, and pCa) found at U-contaminated sites, 

which influence chemical speciation and reaction pathways. Addressing these knowledge 

gaps requires further investigation of the reaction mechanisms as well as associated 

thermodynamic and kinetic constraints. By focusing this dissertation on redox processes 

occurring at solution-mineral interfaces, it is possible to identify key abiotic steps of 

oxidative mobilization processes controlling uranium retention in the subsurface where iron 

sulfide is produced and consumed during oscillation of redox conditions.  
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1.2 Research Scope and Objectives 

The main objectives of the research presented in this dissertation are: 

1. To identify and quantify dominant geochemical mechanisms that inhibit reduced 

uranium from oxidative mobilization in the presence of mackinawite under oxic 

conditions; 

2. To determine the influence of a range of groundwater conditions on the ability of 

mackinawite to inhibit reoxidation and remobilization of reduced uranium; 

3. To examine the impact of post oxidation products of mackinawite on reduced 

uranium stability and mobility.  

The central hypotheses of this work are (1) nanocrystalline mackinawite mineral 

scavenges dissolved oxygen in groundwater to inhibit the oxidative dissolution of uraninite; 

(2) the oxidation processes of mackinawite are controlled by geochemical conditions that 

also affect the dissolution rate of uraninite; and (3) oxidation products of mackinawite also 

influence uraninite oxidation when oxic condition prevails. 

The motivation and objectives of the study are described in this chapter (Introduction), 

followed by Chapter 2 (Background), which includes a synopsis of research and discusses the 

complexity of uranium speciation and transformation, and the behavior of mackinawite in the 

environment. Chapter 3 (Materials and Methods) provides the general experimental protocols 

used in this dissertation and the preparation methods of synthetic mackinawite, uraninite, and 

ferrihydrite particles. Chapters 4, 5, and 6 seek to quantify the impact of mackinawite on the 

stability and lability of reduced uranium solid phases under oxic groundwater conditions. 

Chapter 4 first identifies the dominant redox reactions and major oxidation products of UO2 

in the absence and presence of FeS at pH 7 in a continuously mixed batch reactor, and 
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proposes a mechanistic model for inhibited oxidative dissolution of UO2 by FeS. Chapter 5 

elucidates the kinetics of UO2 oxidative dissolution in the presence of FeS using CSTRs at 

various geochemical conditions, including pH, DO concentration, and FeS content. Chapter 6 

explores the impact of FeS oxidation products in promoting UO2 dissolution during the 

suboxic-oxic transition. Finally, Chapter 7 (Conclusions and Future Work) provides a 

summary of the major findings, contributions, and recommendations for future work. 

 

Chapter 3 – Materials and Methods 

Synthetic mackinawite and uraninite were selected as the model compounds in this 

dissertation for examining the role of iron sulfide in controlling uranium oxidation under oxic 

conditions. Chapter 3 introduces experimental methods for preparing these nanocrystalline 

materials as well as reactor systems for studying the reaction mechanisms and kinetics. The 

characterization of synthetic FeS and UO2 are also presented in this chapter to provide a basis 

for understanding the oxidation reactions that are reported in the following chapters. The 

chemical and physical properties of abiotic FeS and UO2 with respect to mineralogy, 

crystallography, particle size, and surface area are provided at the end of this chapter.  

 

Chapter 4 – Oxidative dissolution of UO2 in a simulated groundwater containing synthetic 

nanocrystalline mackinawite 

Although recent studies show that FeS produced in the subsurface by biostimulation 

of SRB can retard UO2 oxidation, the abiotic mechanism of U(IV) oxidation is not well 

understood and is often difficult to isolate in field studies or column studies where 

microorganisms are active and biogenic oxidation processes may be occurring 
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simultaneously. In Chapter 4, the oxidative dissolution of synthetic UO2 by dissolved oxygen 

was examined in absence and presence of FeS under abiotic simulated groundwater 

conditions. The solid and solution phase reaction products were characterized by microscopic 

and spectroscopic techniques. FeS inhibited UO2 dissolution by effectively scavenging 

oxygen and keeping DO levels low. During the inhibition period, oxidation of structural 

Fe(II) and S(-II) of FeS were found to control the DO levels, leading to the formation of iron 

oxyhydroxides and elemental sulfur, respectively, as verified by X-ray diffraction (XRD), 

Mössbauer, and X-ray absorption spectroscopy (XAS). After FeS depletion, UO2 oxidative 

dissolution occurred at a higher rate than in the control experiment where FeS was absent, 

presumably a result of higher DO concentration. XAS analysis confirmed that soluble U(VI)-

carbonato complexes were adsorbed by iron hydroxides (i.e., nanogoethite and lepidocrocite) 

formed from FeS oxidation, which provided a mechanism for U(VI) retention. 

 

Chapter  5 – Nano-FeS impedes UO2 dissolution rate under varied oxic conditions 

Long-term stability of reduced U(IV) solids may be achieved when dissolution and/or 

reoxidation of UO2 are sufficiently slow during occasional or low levels of oxidant intrusion. 

Although effective oxygen scavenging by FeS has been shown to slow UO2 oxidation, the 

kinetics of U(IV) dissolution in FeS-containing systems remain poorly understood. In 

Chapter 5, the impact of FeS on rate of UO2 oxidative dissolution in artificial oxic 

groundwater was examined using continuously stirred tank reactors (CSTRs). The 

dissolution kinetics of UO2 dissolution was examined in the presence and absence of FeS 

under various pH, DO and FeS concentrations. With spectroscopic characterization of solid 

phase reaction products, a conceptual mechanistic reaction model was developed for 
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inhibited oxidative dissolution of UO2 by FeS. The UO2 dissolution rates in the presence of 

FeS are over one order of magnitude lower than those in the absence of FeS under otherwise 

comparable oxic conditions due to effective scavenging of DO by FeS. Although the removal 

of DO was significant in the presence of sufficient FeS, low DO concentration remained 

during the inhibition period, resulting in a rate-limiting step of surface-oxidation. The 

duration for inhibiting UO2 from rapid reoxidation, and maintaining an oxygen-limited rate 

control, was found to be directly governed by the amount of FeS in the system. 

 

Chapter 6 – Surface passivation limited UO2 oxidative dissolution upon FeS depletion 

Once iron sulfides are depleted from subsurface, the stability of reduced uranium may 

be limited during the oxidative stage of redox cycles. When oxidized, remobilized U(VI) in 

the groundwater can again pose human/ecosystem health risks. The iron oxidation products 

of FeS, such as goethite and lepidocrocite, may also impact dissolution processes of UO2 as 

potential oxidants. In Chapter 6, the kinetics of UO2 oxidative dissolution by DO was 

investigated after oxygen breakthrough in CSTR systems. FeS and its reaction products, i.e., 

Fe(III) oxides and aqueous Fe(II), were carefully examined for their influence on UO2 

dissolution during the anoxic-oxic transition. The dynamics of UO2 surface reactions were 

investigated using XAS, transmission electron microscopy (TEM), and X-ray photoelectron 

spectroscopy (XPS). At low FeS concentration, until DO breakthrough, the UO2 surfaces 

remained reduced without passivation at pH = 7. The clean U(IV) surface then was rapidly 

oxidized by DO upon breakthrough through a rate-limiting surface detachment of Ca-CO3-

UO2 complexes. In comparison, passivation layers develop at pH 6 and pH 8 as a result of 

diminishing FeS reducing capacity, which contribute to slower dissolution rate relative to pH 



 9 

= 7 after oxygen breakthrough. This chapter illustrates the importance of passivation layer 

that forms at different pH with low concentration of FeS in controlling the relative uranium 

dissolution rate at anoxic-oxic transition.   

 

Chapter 7 - Conclusions and recommendations 

The final chapter in this dissertation summarizes the research presented in Chapters 4-6.  

This dissertation examines the potential of FeS to inhibit the reoxidation of solid phase U(IV) 

by identifying the reaction mechanisms with the aid of modern microscopic and 

spectroscopic characterization tools. These findings increase our understanding of the role of 

iron sulfides in U redox transformations and offer insights to enhance reduced U stability 

against reoxidation and remobilization at sites which have undergone biostimulation under 

sulfate reducing conditions. 
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Chapter 2  

Background 

 

Uranium reduction by reduced iron minerals is considered an important abiotic 

pathway for uranium immobilization under iron or sulfate reducing conditions. By reducing 

soluble U(VI) species to highly insoluble U(IV) solid phases like UO2(s), U may remain 

immobilized in the solid form as long as reducing conditions prevail. Under sulfate reducing 

conditions, reduced iron sulfide phases will form if iron is present. If present in significant 

quantities, these iron sulfides may provide enough buffering against U(IV) re-oxidation when 

periodic oxic conditions return. To date, limited mechanistic information is available 

detailing the role of iron sulfide minerals as oxidant scavengers in prolonging reduced U(IV) 

stability during anoxic-oxic transition. This chapter provides a literature review on iron 

sulfide and uranium aqueous chemistry, uranium groundwater contamination and 

bioremediation strategies, the interactions of reduced uranium with iron sulfides, adsorption 

of uranium by iron minerals, and the oxidation and reduction processes controlling U 

mobility in groundwater. The chapter concludes with a summary of knowledge gaps and 

research hypotheses that are investigated in the following chapters. The intention of this 

chapter is to offer a synopsis of the state of knowledge to date, which provides a general 

background for establishing the context of this dissertation research. 
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2.1 Formation of Iron Sulfides 

Iron sulfide minerals are common in anoxic sediments and saline environments. They 

primarily result from the microbial activities of sulfate-reducing bacteria (SRB), which can 

generate millimolar levels of aqueous sulfide as a metabolic by-product by utilizing sulfate as 

a terminal electron acceptor (Goldhaber and Kaplan, 1974). When aqueous sulfide reacts 

with aqueous Fe(II) and amorphous Fe solids, iron sulfide minerals can readily form (Berner, 

1970; Canfield and Berner, 1987; Canfield, 1989). Since Issatchenko (1912) first reported 

bacterially generated iron sulfides within the cells of SRB, many follow-on studies have 

shown SRB are commonly associated with iron sulfides (Rickard, 1969b; Lovley et al., 

1993). Although iron concentration usually is not a limiting factor in the formation of iron 

sulfides in many natural systems, Fe(III) reduction to soluble Fe(II) by iron reducing bacteria 

and archaea may be needed to facilitate the process in suboxic and anoxic environments. 

Typical sources of iron are condensed phases, including Fe(III) oxyhydroxides (ferrihydrite, 

goethite, lepidocrocite) and Fe oxides (hematite, magnetite). The production of iron sulfides, 

therefore, should be regarded as arising from a complex microbial community undergoing 

iron or sulfate reduction in close proximity. 

Depending on biogeochemical conditions, a variety of iron sulfide minerals may form 

such as mackinawite (FeS0.9; hereafter referred as FeS), greigite (Fe3S4), pyrrhotite (Fe1-xS), 

or pyrite (FeS2). Amorphous FeS is often thought to be the initial precipitate formed in 

anoxic sedimentary environments (Berner, 1967), which crystallizes to the more stable 

mackinawite within days (Rickard, 1995; Wilkin and Barnes, 1996). Due to thermodynamic 

instability, mackinawite is sensitive to oxidation and can transform into more stable phases, 

such as greigite and pyrite under suboxic conditions at low temperatures (Berner, 1981). In 
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some anoxic sediments, metastable mackinawite and greigite may comprise the major faction 

of acid-volatile sulfides (AVS) (Rickard and Morse, 2005). Both minerals may exist for 

geologically significant time periods (Abdelouas et al., 2000; Benning et al., 2000), even 

though the mechanism is incompletely understood. Canfield et al. (1998) implies that the 

local microbial ecology has a critical effect on the persistence of metastable minerals, such as 

mackinawite. 

In the laboratory, three synthesis methods have been commonly used to produce 

mackinawite model compounds for the investigation of chemical properties and reactivity. 

By reacting aqueous sulfide with either (1) metallic iron (Berner, 1964) or (2) ferrous iron 

solution (Rickard, 1969a; Butler and Hayes, 1998), black mackinawite readily precipitates in 

the solution. Biogenic mackinawite can be produced by (3) SRB, such as Desulfovibrio 

vulgaris, which respire sulfate and gain energy from organic and inorganic electron donors 

(Herbert et al., 1998). While crystalline mackinawite is usually generated by sulfide reacting 

with metallic iron (Lennie and Vaughan, 1996), poorly crystalline phases are typically 

observed using the other two methods (Herbert et al., 1998; Jeong et al., 2008). The 

amorphous mackinawite produced in the laboratory has been found to be similar to its natural 

counterpart in lake sediments (Spadini et al., 2003). 

 

2.2 Properties of Mackinawite 

Belonging to P4/nmm space group, mackinawite has a tetragonal layered structure. 

Each Fe atom is coordinated by four sulfur atoms, resulting in layers of edge-sharing 

tetrahedrons (Figure 2.1). Likely due to the short Fe-Fe distance (0.26 nm) within 

mackinawite layers, Fe d-orbital may be delocalized extensively in the basal plane, giving  
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rise to its metallic conducting property (Vaughan and Ridout, 1971). As a result, the 

delocalized d electrons in the conduction band contribute to the effectiveness of FeS-

mediated reductive transformation of contaminants found in many natural and engineered 

systems. 

Mackinawite is often present in disordered or nano-sized forms which are 

characterized by small particle size and large surface area (Wolthers et al., 2003). The 

reported particle size of nanocrystalline mackinawite ranges from 3 ~ 75 nm in diagonal 

length and 2 ~ 15 nm in thickness (Ohfuji and Rickard, 2006; Jeong et al., 2008).  The large 

variation in measured particles sizes may result from the different preparation methods and 

the inherent limit in the analytical techniques. For example, particle aggregation inevitably 

occurs during the drying of mackinawite suspension when preparing TEM specimen, causing 

overestimation of the particle size (Jeong et al., 2008). Therefore, the specific surface area 

(SSA) can vary by over two orders of magnitude, from 10 to 380 m2∙g-1 (Ohfuji and Rickard, 

2006). As an alternative method, crystallite size derived from X-ray powder diffraction 

(XRPD) and Scherrer equation may be used for estimating SSA of mackinawite particles. 

Jeong et al (2008) reported a SSA of ~220 m2∙g-1 for a synthetic nanocrystalline 

mackinawite, which was prepared using the same method as in this dissertation.  
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Figure 2.1 Schematic diagram of mackinawite structure viewed from above the (001) plane, 

(generated by CrystalMaker®). The distance between layers along 001 direction is ~0.5 nm. 

Brown: iron atoms; yellow: sulfur atoms. 

 

The reactive sites on the surfaces of nanocrystalline mackinawite determine the 

surface charge in aqueous solution. Hydrated FeS surface consists of hydroxyl and sulfhydryl 

functional groups as a result of hydrolysis of the partially coordinated surface iron and sulfur 

atoms on the edges of FeS crystals. Depending on solution pH, both functional groups exist 

in either protonated or deprotonated forms: ≡FeOH2
+ and ≡FeSH0 below pHpzc; ≡FeOH0 and 

≡FeS- above pHpzc (the pH of zero surface charge). Wolthers et al. (2005) proposed two 

reactive sulfur sites as mono-coordinated (≡FeSH0) and tri-coordinated (≡Fe3SH0) on FeS 

surface, which comprise a total site density of 4 sites∙nm-2. While the pHpzc of crystalline FeS 

was previously determined to be 2.9 by potentiometric titration (Widler and Seward, 2002), a 

more recent study on nanocrystalline FeS yielded a pHpzc of ~7.5 (Wolthers et al., 2005). 

Apparently the small particle size of nano-FeS causes significant changes in surface 

properties from its crystalline counterpart, which may further influence surface-mediated 

reactions in the environment.  
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2.3 Mackinawite as a Reductant and Sequestration Agent  

Mackinawite has attracted interest in contaminant attenuation due to its reactivity 

toward reductive transforming of pollutants (Elsner et al., 2004) and its retention of heavy 

metals via adsorption and isomorphous substitution (e.g., Pb and Cd) (Coles et al., 2000). 

Recent work demonstrated the influence of mackinawite in the immobilization of arsenic 

(Jeong et al., 2010a; Han et al., 2011) and mercury (Jeong et al., 2010b) and the degradation 

of chlorinated organic pollutants (Butler and Hayes, 2001; Hyun and Hayes, 2009). 

Mackinawite is also recognized as an important ingredient and source of sulfide in many 

toxic metal and radionuclide remediation systems including uranium-contaminated sites 

(Abdelouas et al., 1999a; Coles et al., 2000).  

Suzuki et al. (2005) attributed the stability of U(IV) to the presence of organic matter 

and sulfide minerals in the field despite seasonal exposure to air in natural near-surface 

sediments. In several studies, Abdelouas et al. (1998; 1999a; 2000) showed that mackinawite 

produced by biostimulation under sulfate reducing conditions retarded UO2 reoxidation. 

More than 90% of supplied oxygen in oxygen-saturated groundwater was consumed by 

mackinawite, accompanied by a constant, but low, uranium concentration in column effluent 

(Abdelouas et al., 2000), suggesting mackinawite may inhibit uranium oxidative 

mobilization. At a Rifle site amended by acetate (Colorado), Bargar et al. (2013) recently 

identified the close association of reduced uranium with an iron sulfide coating and indicated 

an abiotic reduction pathway for U(VI) in parallel to a biotic U reduction pathway by sulfate 

reducing bacteria. 

A few laboratory experiments have investigated the abiotic role of mackinawite in 

aqueous U(VI) reduction under sulfate reducing conditions. Adsorption of U(VI) by synthetic 
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nanocrystalline mackinawite particles subsequently generated U(IV) precipitates on FeS 

surfaces (Hua and Deng, 2008; Hyun et al., 2012). Sediment column studies conducted by 

Moon et al. (2009) demonstrated that the biogenic iron sulfide precipitates were able to 

buffer oxygen induced U(IV) oxidation. Under anoxic conditions, the interactions of U with 

reduced sulfide minerals in groundwater seemed to be particularly important in controlling 

the mobility and bioavailability of U (Gallegos et al., 2013). 

Because mackinawite is a metastable phase with high redox reactivity, it undergoes 

rapid oxidation-induced transformation when exposed to various oxidants, such as oxygen 

(Schippers and Jorgensen, 2002; Chirita et al., 2008; Bi et al., 2013), nitrate (Aller and Rude, 

1988), and manganese oxides (Schippers and Jorgensen, 2002; Rickard and Morse, 2005), 

with half-lives ranging from minutes to a few hours under atmospheric oxygen (Rickard and 

Morse, 2005; Burton et al., 2009; Jeong et al., 2010a). Oxidation of mackinawite by air leads 

to the formation of greigite, elemental sulfur, and iron (hydr)oxides after 7 days of exposure 

(Boursiquot et al., 2001). After 6 months, greigite itself is entirely converted into sulfur and 

iron hydroxides, which are the ultimate oxidation products. In aqueous solution, mackinawite 

oxidation by dissolved oxygen was observed to occur much faster with a half-life ranging 

from minutes to a few hours in an oxygen-saturated solution (Rickard and Morse, 2005; 

Burton et al., 2009; Jeong et al., 2010a). Various Fe(III) species can be produced during 

oxidation, including goethite, lepidocrocite, ferrihydrite, and green rust-like precipitates 

depending on pH and oxygen concentrations (Chirita et al., 2008; Jeong et al., 2010a). 
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2.4 Uranium Contamination in the Environment 

Uranium occurs naturally within the environment and is widespread in the earth’s 

crust, rocks, and soils while contributing to low levels of global background radiation. 

Uranium is most concentrated in sedimentary rocks, particularly organic shale, with a lesser 

presence in metamorphic and igneous rocks (Gascoyne, 1992). While the weathering of 

uranium-bearing rocks and minerals is the main source of dissolved uranium in groundwater, 

seawater is the largest reservoir of dissolved uranium with a highly uniform concentration of 

3.3 μg∙L-1. Variations in the levels of natural uranium contamination and exposure risks 

depend on uranium concentration in the bedrocks and weathering conditions (WHO, 1998).  

Since the 20th century, anthropogenic activities have introduced U contamination at 

unprecedented levels through extensive mining, milling, and refining processes. In the United 

States, the nuclear weapons program has left a substantial legacy of environmental 

contamination associated with the manufacturing of nuclear weapons in a network of 113 

installations around the country. For example, at the Hanford site in Washington, U 

contamination of soil and groundwater has resulted from storage and waste disposal 

practices. Uranium is present in groundwater plumes intersecting the Columbia River and 

was detected in the river at a concentration up to ~ 200 μg∙L-1 (Peterson et al., 2008).  

At waste disposal sites, uranium was reported to migrated to surrounding soils and 

groundwater in the forms of sorbed, complexed, precipitated, or reduced species (Gavrilescu 

et al., 2009) (Figure 2.2). The mobility and fate of uranium are often controlled by its 

oxidation state, which is primarily U(IV) and U(VI) in essentially all geological 

environments. In the oxidized form in groundwater, U(VI) usually exists as soluble uranyl 

ion (UO2
2+) complexes associated with carbonate and calcium, such as (UO2)2CO3(OH)3

-. 
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CaUO2(CO3)3
2-, and Ca2UO2(CO3)3

0 (Dong and Brooks, 2006). Although soluble and mobile, 

uranyl and related species may sorb to soils and sediments, lowering dissolved uranium 

concentration and, thus, their potential of migration. Many subsurface soils and sediments 

strongly react with U(VI) species via adsorption, resulting in a significant retardation of 

uranium transport under oxic conditions (Barnett et al., 2000; Hyun et al., 2009; Boland et 

al., 2011). For example, in studies of adsorption of uranium to various Fe (hydr)oxides, 

uranyl-carbonato complexes were thought to be the dominant surface species (Bargar et al., 

1999; Bargar et al., 2000). Increasing concentrations of carbonate and calcium in 

groundwater, however, can increase uranium solubility and limit its adsorption on mineral 

surfaces (Barnett et al., 2000; Wazne et al., 2003).  

 

Figure 2.2 Transformation between uranium species in the environment and the relative mobility. 

 

 

Although uranium speciation is controlled by site-specific geochemical conditions, 

uranium contamination is often dominated by U(VI) oxidation state at various DOE sites, 
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such as the Savannah River site and the Hanford site. Uranium was observed to be highly 

mobile when dissolved carbonate concentrations are high due to the formation of uranyl-

carbonate species. As a retention mechanism, the sorption of U(VI) species to aquifer 

materials is frequently dominated by their association with iron hydroxide minerals. In 

contrast, high phosphate concentration in groundwater system can lead to the precipitation of 

uranium in very insoluble uranyl phosphate minerals. 

 

2.5 Uranium Immobilization and Reoxidation 

Under anaerobic conditions, U(VI) species may be reduced through a number of 

abiotic (Wersin et al., 1994; Behrends and Van Cappellen, 2005) and microbially mediated 

processes (Lovley et al., 1991; Lovley and Phillips, 1992; Abdelouas et al., 2000). Many 

microorganisms have been shown to mediate the reduction of U(VI), including Fe(III)-

reducing bacteria (Lovley et al., 1991; Ganesh et al., 1997) and sulfate-reducing bacteria 

(Fredrickson et al., 2000; Holmes et al., 2002). Reduced U(IV) species are predominantly in 

the form of sparingly soluble U(IV) solid phases such as uraninite (UO2). Recent studies also 

suggest the presence of monomeric U(IV) species, which may initially form in association 

with phosphate as a sorbed complex on soils and sediments (Bernier-Latmani et al., 2010; 

Fletcher et al., 2010; Veeramani et al., 2011). The monomeric U(IV) may be important as a 

more mobile form of U(IV) under reducing conditions (Cerrato et al., 2013), but its reactivity 

(i.e., lifetime) and relative concentration in the field are still unknown (Veeramani et al., 

2011). 

Because solid-phase uraninite is relatively immobile and thermodynamically stable 

under reducing geological and sedimentary environments (Ulrich et al., 2008), biostimulation 
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of uranium reduction has been investigated for over a decade and seemed to be effective 

(Phillips et al., 1995; Kelly et al., 2008; Ulrich et al., 2009; Moon et al., 2010).  For example, 

a column study performed at the DOE Natural and Accelerated Bioremediation Research 

(NABIR) site in Oak Ridge, TN suggested that the bioreduction of U(VI) was feasible for U 

immobilization (Gu et al., 2005).  A pilot-scale study carried out at the same site was 

successful in reducing U concentrations in the groundwater by adding carbonate to raise the 

bioavailability of U(VI), with the subsequent addition of ethanol to stimulate microbial 

activity for the in situ precipitation of reduced U(IV) solids (Wu et al., 2006a; Wu et al., 

2006b). 

Biostimulation is not trouble free, with concerns raised over the long-term stability of 

bioreduced and immobilized uranium. The nanometer-size uraninite produced by 

microorganisms could be mobile in porous sediments and more susceptible to oxidation than 

bulk uraninite (Suzuki et al., 2002). Reoxidation of uraninite to soluble U(VI) may occur 

when subjected to oxidants such as oxygen (Zhou and Gu, 2005; Moon et al., 2007; Komlos 

et al., 2008; Moon et al., 2009), nitrate (Finneran et al., 2002; Senko et al., 2002), Fe(III) 

(hydr)oxides (Sani et al., 2005; Wan et al., 2005; Ginder-Vogel et al., 2010), and manganese 

oxide (Fredrickson et al., 2002). The processes can be enhanced by the presence of carbonate 

and calcium (Casas et al., 1994; Ulrich et al., 2008).  

Upon exposure to oxygen, UO2 is unstable and can be effectively oxidized and 

consequently dissolved (de Pablo et al., 1996; Pierce et al., 2005). Oxidative dissolution of 

UO2 by oxygen has been proposed to occur through a sequence of reaction steps, including 

oxygen adsorption, formation of activated surface complexes, electron transfer, and 

subsequent release of U(VI) products (Stumm, 1987; Torrero et al., 1997). While the 
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dissolution rates of UO2 increase with increasing oxygen partial pressure, the lowest 

dissolution rate occurs at circumneutral pH at a given oxygen level (Torrero et al., 1997; 

Pierce et al., 2005). In the presence of carbonate, dissolution rates of UO2 are enhanced 

through the formation of the predominant aqueous uranyl-carbonato complexes (Ginder-

Vogel and Fendorf, 2007; Bargar et al., 2008), which can facilitate the detachment of U(VI) 

passivating layers. Common cations in groundwater, such as Ca2+ and Mg2+, may further 

enhance UO2 oxidative dissolution by promoting the detachment of oxidized U(VI) surface 

species via the formation of ternary complexes (Ulrich et al., 2009; Stewart et al., 2010).  

The oxidation of UO2 by iron hydroxides has been investigated by several research 

groups under the assumptions that iron hydroxides are ubiquitous in the subsurface 

environments (Cornell and Schwertmann, 2003) and may serve as effective oxidants. Sani et 

al. (2005) and Ginder-Vogel et al. (2010) showed that iron oxides can accelerate the abiotic 

oxidative dissolution of reduced U(IV) solids under sulfate reducing conditions, but the 

relationship between the type and amount of Fe(III) and the rate of U(IV) reoxidation has not 

been fully examined. The thermodynamic favorability of UO2 oxidation by Fe(III) 

hydroxides depends on the geochemical conditions because of the close proximity of the 

electrochemical potential of the two redox couples (i.e., U(IV)/U(VI) and Fe(II)/Fe(III)) 

(Ginder-Vogel et al., 2006). As an evidence of this, Du et al. (2011) examined the 

thermodynamic constraints for the redox couples and claimed the possibility of U(VI) 

reduction by soluble Fe(II). These results suggest that further studies on UO2 oxidation by 

Fe(III) hydroxides should carefully choose the geochemical conditions and consider both 

thermodynamic and kinetic limitations.   
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The introduction of nitrate, a common co-contaminant with uranium (Riley et al., 

1992), may also result in reoxidation of UO2 as observed by Senko et al. (2002) in field and 

laboratory studies. Although kinetics does not favor UO2 abiotic oxidation by nitrate 

(Finneran et al., 2002; Senko et al., 2005b; Moon et al., 2007), the intermediates of 

dissimilatory nitrate (e.g., NO2
-, N2O, and NO) produced by denitrifiers may oxidize and 

mobilize U(IV) (Senko et al., 2002; Wu et al., 2007). The overall oxidation rates, however, 

are still significantly slower than those by oxygen and Fe(III) hydroxides (Senko et al., 

2005a). The remobilization of uranium by nitrate should therefore be understood as a 

combined effect of biotic and abiotic activities. In a strictly abiotic system, nitrate should 

have only minor, if any, influence on UO2 oxidation. 

 

2.6 Uranium Sorption on Iron Hydroxide Minerals 

The mobility of U(VI) is limited by its tendency to sorb on mineral surfaces, a 

reaction which  can strongly retard the transport of U in soil and groundwater. Iron 

hydroxides are believed to be of particular importance due to their high sorptive capacities 

for uranium, high surface areas, and common occurrence in natural systems. When 

mackinawite is oxidized by dissolved oxygen, goethite and lepidocrocite are identified as 

major oxidation products that may influence the transport of U(VI) in groundwater (Bi et al., 

2013). Therefore, an investigation of U(VI) adsorption behavior onto Fe(III) hydroxides is 

necessary for understanding the long-term stability of U in close association with iron sulfide 

minerals. 

The Sorption of U(VI) on goethite and lepidocrocite has been shown to follow a 

Langmuir isotherm (Moyes et al., 2000). Sorption increases from essentially none to a 



 23 

maximum value across a sharp sorption edge in the pH region of 4-6, with the maximum 

sorption occurring at circumneutral pH. In the atmosphere, however, the presence of CO2 

results in a desorption of U(VI) at pH > 8 due to the formation of stable uranyl-carbonato 

(e.g., UO2CO3) complexes in solution (Hsi and Langmuir, 1985; Sherman et al., 2008). In a 

groundwater system, stronger desorption of U(VI) from goethite may occur since dissolved 

carbonate is often present at a concentration 100 to 1000 times greater than that expected in 

equilibrium with air. 

A number of studies have been done to understand the mechanism of U sorption and 

to develop surface complexation models to predict U retention and mobility in the 

environment. While sorption is believed to occur by forming inner-sphere surface complexes, 

the specific composition and reaction stoichiometry are known with much less accuracy. 

Recent investigations of surface complexes are aided by synchrotron-based X-ray 

spectroscopic analysis and density functional theory (DFT) calculations in addition to batch 

sorption experiments. For example, Bargar et al. (1999; 2000) utilized EXAFS to measure 

U(VI) adsorption on hematite and suggested the existence of anionic U(VI)-carbonato 

ternary complexes with bidentate coordination to the hematite surface. The Fe-oxide-U(VI)-

carbonato complexes may be important transport limiting species in oxic aquifers within a 

wide range of pH values. 

Similar characterization techniques have been applied to other iron hydroxide systems 

to examine surface complexes. In the absence of dissolved carbonate, EXAFS data suggested 

a mononuclear inner-sphere, edge-sharing complex of U(VI) with ferrihydrite (Ulrich et al., 

2006). In the presence of dissolved carbonate and at pH similar to 8.0, a distal carbonate O-

atom at ~4.3 Å supports the formation of bidentate ternary U(VI)-carbonato surface 
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complexes. However, in slightly acidic conditions (pH 5-6), the type of complexes may 

change from ternary carbonato-uranyl-ferrihydrite to binary uranyl-ferrihydrite complexes, 

which are likely to influence the binding stability and retention of U(VI) at the macroscopic 

level.  

 

2.7 Knowledge Gaps and Hypotheses 

A review of literature reveals that iron sulfide minerals have the potential to serve as 

redox buffers to retard reduced U(IV) solids from rapid oxidation. However, the current 

literature lacks sufficient detail to assess the importance of abiotic redox processes in 

controlling the transport and transformation of uranium in the subsurface during anoxic-oxic 

transitions, when iron sulfides are also present. There are a number of questions that need to 

be addressed to evaluate the role of FeS for oxidant scavenging and the consequent impact on 

long-term sequestration of uranium, including: (i) what quantity of iron sulfide minerals must 

be present relative to various oxidants to maintain a low redox potential; (ii) is a large excess 

iron sulfides relative to reduced uranium needed to keep uranium reduced in event of reentry 

of oxidants; (iii) what impact do geochemical conditions such as pH, carbonate and calcium 

concentrations have on reduced uranium reoxidation; and (iv) will oxidation products of iron 

sulfides impact uranium remobilization, once the iron sulfides are exhausted by the oxidants.  

To better predict the fate of uranium under a scenario where active bioreduction 

ceases, an improved understanding in the thermodynamics and kinetics of heterogeneous 

redox reactions during anoxic-oxic transitions is necessary. By focusing this work on abiotic 

redox processes, this dissertation seeks to address the key steps of oxidative mobilization 
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processes controlling uranium retention in the subsurface. Several hypotheses provide the 

impetus for this work: 

1. Mackinawite will abiotically inhibit the rapid oxidation of reduced U(IV) solids by 

oxygen and Fe(III) (hydr)oxides by serving as an oxidant scavenger. 

2. Uranium will remain reduced as UO2 in the presence of excess FeS until the reduction 

capacity is depleted, after which the adsorption of U(VI) by FeS oxidation products 

will become the major removal mechanism from the aqueous phase. 

3. The inhibited rate of UO2 oxidative dissolution by mackinawite will depend on 

geochemical conditions, such as solution pH, DO levels, FeS content, and calcium 

concentrations. 

4. The efficiency of oxygen removal by FeS will depend on solution pH and DO 

concentration, as these parameters impact FeS oxidation processes. 

5. After the reduction capacity of FeS is depleted, the release rate of dissolved U(VI) 

will be enhanced, depending on solution pH, FeS content, and DO concentration. 

6. During the anoxic-oxic transition, the extent of the formation of a passivation layer on 

UO2 surface will depend on the initial concentration of FeS and solution pH. 

7. Under conditions that limit the formation of a passivation layer on UO2, a more rapid 

attack /oxidation by dissolved oxygen will occur. 
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Chapter 3  

Materials and Methods 

 

This chapter introduces the chemical synthesis methods, solid phase characterization 

techniques, and reactor system design and operations. Specifically, the methods of synthesis 

and characterization of abiotic mackinawite, uraninite, and two-line ferrihydrite solids are 

described, along with a description of the batch and flow-through systems used for 

conducting oxidation experiments in oxic groundwater solution. In addition, the suite of 

analytical techniques used for determining aqueous species concentration, as well as solid 

phase structure, morphology, chemical oxidation state, and local coordination environment of 

reactive solid phase surface species. Lastly, the physical and chemical properties of synthetic 

mackinawite and uraninite particles are characterized using the analytical tools introduced 

above. As described in subsequent chapters, the methods detailed in this chapter allow for 

determining the rate of oxidation reaction, characterization of the oxidation products from the 

reactions of oxygen with FeS and UO2, and the mechanisms of these reactions.  

 

3.1 Solid Material Preparation 

With a few exceptions, chemical preparation was conducted inside an anaerobic 

chamber (Coy Inc, Grass Lake, MI) with an atmospheric composition of ~5% H2 balanced 

with N2 gas. All chemicals were reagent grade unless otherwise specified. Aqueous solutions
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were prepared with deoxygenated MilliQ water (with a resistivity of 18.3 MΩ·cm) that was 

boiled and purged with ultra high purity N2 gas. 

 

3.1.1. Mackinawite Synthesis 

Mackinawite (FeS) was synthesized by mixing 1.1 M Na2S solution with 0.57 M 

FeCl2 solution (S:Fe ≈ 1.93) in a two liter flask in an O2-free atmosphere following the 

procedure described in Butler and Hayes (1998). Black precipitates immediately formed in 

the mixed solution, which was stirred constantly stirring for an additional three days to allow 

aging.    The glass flask was sealed tightly with a rubber stopper to prevent potential 

oxidation. The aged solid was then repeatedly washed (8 times) with deoxygenated MilliQ 

water and centrifuged at 10,000 rpm for 15 min. The final product was freeze-dried under 

vacuum and stored in capped glass vials inside the anaerobic chamber until use.  

 

3.1.2 Uraninite Synthesis 

Uraninite (UO2) was produced by the reductive precipitation of uranyl nitrate (500 

ppm, Antec Chemical) using a sodium sulfide solution in the anaerobic chamber following a 

procedure described by Beyenal et al. (2004). A sulfide solution (0.5 M) was added to a 

uranyl nitrate solution to achieve a molar ratio of 5:1 [S(-II): U(VI)] for complete reduction 

of U(VI). The mixture has a light orange color and a pH of ~10.8. The solution pH was then 

quickly adjusted to pH = 7 by adding 1 M hydrochloric acid. Within 30 min, brown 

precipitates started to form in the solution and accumulate over the next two days. After 3 

days of aging, the dark brown precipitate was washed six times with deoxygenated water and 

two times with 30 mM bicarbonate solution. The final solids were stored in a suspension of 
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~15 mL MilliQ water in anaerobic chamber until use (typically within two months). For each 

set of completely mixed batch reactor experiments, UO2 solid was freshly prepared, resulting 

in a slight variation in concentration. For the completely mixed flow-through reactor system, 

a batch of UO2 solids was prepared for conducting multiple experiments to ensure constant 

concentration between experiments.  

 

3.1.3 Two-line Ferrihydrite Synthesis 

Two-line ferrihydrite is a poorly crystalline iron(III) hydroxide that was prepared by 

mixing ferric nitrate solution (0.1 M) with 1 M potassium hydroxide following a modified 

method of Schwertmann and Cornell (2000). As a result of the rapid hydrolysis of Fe(III), a 

reddish brown precipitate formed immediately upon mixing the two solutions. A potassium 

hydroxide solution was slowly added afterwards to bring the final solution pH to 7.5 under 

vigorous stirring. The precipitate was then centrifuged and washed with deoxygenated MilliQ 

water for six times to remove electrolytes. The final suspension was then bubbled with O2-

free N2 gas for one hour to remove any O2 dissolved in solution or sorbed to mineral 

surfaces. The ferrihydrite solids were stored in a suspension in the anaerobic chamber, and 

used within one month of synthesis to prevent ferrihydrite transformation into goethite or 

hematite. 

 

3.2 Oxidation Experiment Design and Operation 

The synthetic solids were subject to oxidation reactions with dissolved oxygen in an 

artificial groundwater to simulate oxidizing conditions when active bioreduction is halted and 

oxygen intrusion occurs. The artificial groundwater contained NaHCO3, KCl, and CaCl2 and 
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was constantly sparged with O2/CO2/N2 gas mixture to achieve the desired solution pH and 

DO concentration. Although the solution did not represent a real groundwater with all 

constituents, it included the most important components affecting the oxidative dissolution of 

UO2 (see Chapters 4 and 5). To study the reaction mechanisms and kinetics, completely 

mixed batch and flow-through reactor systems were designed and used to retain FeS and UO2 

solids within the reactor as a function of time under various geochemical conditions.  

 

3.2.1 Batch System and Operation 

A glass one-liter completely mixed batch reactor (CMBR) (CG-1926-02, Chemglass 

Life Sciences) was utilized to conduct oxidation experiments with FeS and UO2 in pH = 7 

artificial groundwater solution (Figure 3.1). The batch reactor was equipped with a water 

jacket and a 5-port lid to accommodate various probes and a sampling port. This reactor 

allows for gas mixtures with fixed partial pressures (e.g., PCO2 = 0.05 atm) to be introduced 

and temperature maintained at 25 ºC by a circulating water bath. The reactor lid was sealed 

by silicone grease (ALCO) to prevent air diffusion into the reactor.  

An oxidation experiment was initiated upon the addition of FeS or UO2/FeS mixed 

suspensions into the reactor. Aliquots of suspension were periodically withdrawn through the 

sampling port and analyzed for both aqueous and solid products. Suspension pH, DO, and Eh 

were measured in situ by calibrated probes located on the ports of the lid, which remained in 

the solution over the entire reaction period. The suspensions were constantly and vigorously 

stirred to ensure immediate and complete mixing. 

The large volume batch reactor (1 L) was chosen mainly for accommodating enough 

solid suspension for aqueous and solid chemical analysis. Each suspension sample (~10 mL) 
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contained enough material so several complementary characterization techniques could be 

used to monitor the reaction as a function of time. For each experiment, less than 200 mL of 

total suspension was sampled, minimizing the volume changes that could affect the reaction 

kinetics. The detailed experimental conditions are provided in Chapter 4. 

 

Figure 3.1 Schematic of the batch reactor system used for the oxidation of FeS and UO2 

suspensions in pH-controlled oxic groundwater. 
 

3.2.2 CSTR System Design and Operation 

The flow-through experiments were conducted with 50 mL continuous-flow stirred 

tank reactors (CSTRs) (Millipore 8050), the core component in the reactor system. The 

complete flow-through system includes a  gas cylinder, feed solution container (1 gallon gas-

tight glass jug), peristaltic pump, magnetically stir plates, CSTR, and an effluent 

collection/measurement system (Figure 3.2). Influent solutions of artificial groundwater were 

purged and equilibrated with custom CO2/O2/N2 gas mixtures for at least two hours before 

experiment started. Suspensions of mixed iron and uranium solids were added to the CSTR 
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to obtain a total reactant volume of 50 mL. The reactor body was made of polysulfone, 

allowing for a clear view of the suspension retained in the reactor while replenishing the 

aqueous solution. The flow rates were controlled by a peristaltic pump (Watson-Marlow, 

205U/CA), maintained between 1.8-2.2 mL·min-1 and gravimetrically monitored during 

sampling. The flow rates were chosen to achieve steady-state dissolved U concentration 

([U]diss) far below saturation, resulting in a ~25 min hydraulic residence time (τ). Eh, pH, and 

DO concentrations were constantly monitored with probes installed at the end of the supply 

line. The effluent samples from the CSTR, passed through 0.1 µm (Millipore) filter 

membranes at the bottom of the CSTR, were periodically collected and preserved in 1% 

HNO3 for chemical analysis. All experiments were operated at room temperature (24 ± 1 °C) 

and covered by aluminum foil to avoid light. 

For experiments under anoxic conditions, artificial groundwater and FeS/UO2 

suspension were prepared in the anaerobic chamber using deoxygenated MilliQ water. The 

CSTR and pumping system were also transferred to an anaerobic chamber with an oxygen 

concentration of less than 10 ppm.  

 
Figure 3.2 Schematic of the flow-through reactor system. 
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During flow-through operation, steady-state dissolution of uraninite is desirable for 

determining reaction kinetics. When a steady-state rate of dissolution of uraninite is 

established, the total dissolved uranium concentration in the effluent is constant. In Chapter 

5, the rate analysis of UO2 oxidative dissolution in the presence and absence of FeS is 

discussed. The steady-state rate obtained from the experiment assumes a perfectly stirred 

reactor and the reaction kinetics are not limited by equilibrium or mass transfer. The 

dissolution rate in the CSTR was determined under different stirring rates and flow rates to 

optimize the experimental conditions and to minimize the effect of mass transfer.   

 

3.3 General Analytical and Characterization Methods 

The synthetic minerals prepared for oxidation experiments were subjected to a 

thorough characterization to confirm the mineral phase, and to determine the particle size and 

specific surface area. In the batch and flow-through reactor systems, oxidized FeS and UO2 

particles and their oxidation products were analyzed for assessing reaction mechanisms. Both 

aqueous species and solid phases were examined using a combination of analytical and 

characterization techniques which are briefly discussed in the following sections. 

 

3.3.1 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

ICP-MS is a multi-element technique that can be used to determine the concentrations 

of metals and non-metals at concentrations as low as one ppb in an aqueous solution. The 

high sensitivity and accuracy of ICP-MS measurements for total dissolved metals are 

achieved by ionizing the aqueous solution with inductively coupled plasma and using a mass 

spectrometer (quadrupole) to separate and quantify those ions.  
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In this dissertation research, total dissolved calcium, iron, and uranium concentrations 

in aqueous samples were regularly measured by a PerkinElmer ELAN DRC-e ICP-MS. 

Uranium calibration standards from 0 to 50 ppb were prepared in 1% nitric acid solution 

using a 1000 ppm uranium standard. Standards were also prepared for iron (0 - 5 ppm) and 

calcium (0 - 100 ppm) using the corresponding standards (1000 ppm). An internal line 

gallium standard (10 ppb) was used as a reference for monitoring instrument performance. 

The samples collected from batch and flow-through experiments were acidified by 

concentrated nitric acid to ensure an overall nitric acid content of ~1%. A dilution of samples 

was performed as needed to achieve concentrations within the working range of standard 

curves. The ICP-MS instrument has a detection limit for total dissolved calcium, iron, and 

uranium of approximately 1 ppm, 0.1 ppm and 0.5 ppb, respectively. For quality control, one 

standard solution was measured as a sample every five samples. The calculated percentage 

errors for uncertainty of the three elements were all less than 5%.   

 

3.3.2 Ultraviolet-Visible Spectrophotometry 

Colorimetric analysis is a common method of determining the concentration of 

chemical element or chemical compound in a solution. After reacting with a color reagent, 

the analyte exhibits characteristic absorption spectrum in the UV- visible range of light from 

about 200 nm to 780 nm. The light-absorbing analyte can then be quantitatively related to its 

concentration using Beer-Lambert law (Equation 3.1), which shows a linear relationship 

between absorbance and concentration of an absorbing species:  

                A lC                                                                (Equation 3.1) 
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where A is absorbance, l is path length, ε is absorption coefficient, and C is molar 

concentration of absorbing species. 

In this dissertation research, UV-visible spectroscopy was used to determine the 

concentration of dissolved Fe(II) species. Divalent Fe reacts with ferrozine reagent to form a 

stable magenta complex species at neutral pH (Stookey, 1970). The maximum absorbance 

occurs at 562 nm with a molar absorption coefficient close to 30,000 L∙mol-1∙cm-1 at pH = 7. 

Appropriate concentrations of standards ranging from 0- 20 µM were made to obtain a 

calibration range. 

For the measurement of Fe(II) in aqueous samples, a 1 mL sample solution was 

typically reacted with 1 - 4 mL ferrozine stock solution (1 g/L) at pH = 7 (buffered with 50 

mM HEPES). Within two hours of reaction, the absorbance of samples and standards were 

analyzed using a UV/Vis spectrophotometer (Varian) or FLx800 Fluorescence microplate 

reader (BioTek) at a wavelength of 562 nm. A quartz cuvette (0.5 cm path-length) or a 96 

well standard microplate (0.4 mL) was used. The Fe(II) concentration was calculated using 

predetermined molar extinction coefficient of nm  50 M1cm1. The 

Fe(II) concentration determined by this method was compared to that obtained by ICP-MS to 

confirm that all measurable Fe in aqueous solution was Fe(II) within error.  

 

3.3.3 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is one of the primary characterization techniques used in this 

dissertation to identify iron- and sulfur-bearing solid phases and crystal structure. Due to the 

periodic arrangement of atoms in a crystal, an incident X-ray wave with the wavelength λ is 
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reflected with maximum intensity when the Bragg condition is fulfilled (Figure 3.3). This 

condition for constructive interference is described by Bragg’s law: 

                         2 sind n                                                     (Equation 3.2) 

where d is the interplanar distance in a crystal, θ is the scattering angle, n is an integer 

determined by the order given, and λ is the wavelength of the incident X-ray beam. 

 
Figure 3.3 Bragg diffraction when two beams with identical wavelength and phase approach 

a crystalline solid and are scattered off two different atoms within it. Constructive 

interference occurs when the difference of travel distance is equal to an integer multiple of 

the X-ray wavelength. 

 

For XRD analysis, solid samples were prepared by mounting the wet paste onto glass 

slides using a spatula to produce a smooth thin layer. The slides were then dried in an 

anaerobic chamber to prevent sample oxidation. For powder samples of more than 0.5 g, 

solids were crushed with a mortar and pestle and pressed onto a glass plate with a shallow 

depression. Diffraction patterns were typically collected over the range of 10-70° 2θ using a 

Rigaku rotating anode diffractometer equipped with a monochromated Cu-Kα source (λ=1.54 

Å) and operated at at 40 kV and 100 mA. The diffraction pattern was recorded with a step 

mode, a step size of 0.05°, and counting times of 2.5 s per step (total pattern collection time 

of 50 min per sample).  
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The X-ray diffraction pattern contains characteristic sets of Bragg reflections for 

single or mixed crystalline materials present in the sample. A data processing software 

JADE9.5 (Materials Data Inc.) was used to determine peak position and widths of individual 

diffraction peak with an optimization routine of peak fitting and decomposition. By 

comparing the patterns with standard references in a crystallographic database (ICDD), the 

iron and sulfur solids produced from FeS and UO2 oxidation reactions were identified. Using 

the Scherrer equation, the crystallite size of solids was estimated in some cases based on the 

broadening of a peak in a diffraction pattern.  

 

3.3.4 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy uses a high energy electron beam which passes 

through a thin-section to image and analyze the microstructure of materials with nano- to 

atomic- scale resolution. The electrons are focused with electromagnetic lenses and the 

image is observed on a fluorescent screen and recorded on a digital camera. Information 

about the morphology, crystal structure and defects, and chemical composition can be 

obtained by a combination of electron-optical imaging, electron diffraction, and X-ray 

spectrometry. The X-ray produced by the incident beam after interacting with specimen is 

especially useful for determining chemical information, which is characteristic of the 

elements contained in a sample. In this dissertation research, TEM analyses were performed 

on synthetic FeS and UO2 particles and their oxidation products to observe crystal size and to 

identify phases to supplement other characterization techniques.  

All TEM samples were prepared by diluting solid suspensions with de-oxygenated DI 

water to achieve a solid concentration of ~ 0.5 g/L. One drop of suspension was dried on an 
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ultra thin lacey carbon film coated 300-mesh Au grid (Ted Pella, Inc) in an anaerobic 

chamber. The prepared specimens were transferred in the vacuum container to the TEM 

chamber to minimize possible oxygen exposure.  

A JEOL 2010F analytical electron microscope (AEM) operated at 200 kV was used 

for conventional bright-field (BF) TEM, high-resolution electron microscopy (HREM), 

selected area electron diffraction (SAED), and X-ray energy dispersive spectroscopy 

(XEDS).  Image processing, including the generation of diffraction patterns, was completed 

using Gatan Digital Micrograph 3.6.4.  

 

3.3.5 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy is a surface-sensitive chemical analysis technique 

that measures the elemental composition, oxidation state and electronic state of the elements 

that exist within a material. XPS uses monochromatic soft X-ray beam (e.g., Al-Kα or Mg-

Kα) to irradiate a sample while simultaneously ejecting electrons from core levels of atoms. 

The identification of the elements present on the sample surface (1-10 nm) can be directly 

determined from the kinetic energies (binding energies) of the ejected photoelectrons 

characteristic of a particular element. XPS also allows for the determination of the oxidation 

state of the elements present from small variations in the measured binding energies and 

other structural effects.  

Because of its sensitivity to surface-bound uranium, XPS analysis was primarily used 

for determining the oxidation state of uranium during oxidative dissolution in the presence 

and absence of FeS. Wet paste samples from selected flow-through experiments were 

collected on filter paper using a hand-operated vacuum pump inside an anaerobic chamber. 
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The dried powders were then mounted on double-sided Cu tape. The samples, kept inside 

airtight containers, were transferred to the XPS chamber with less than 1 min exposure time.  

XPS spectra were collected on a Kratos Axis Ultra XPS using a monochromated Al-

Kα X-ray source (1486 eV). The charge neutralizer filament was used for all samples to 

control charging of particles that were in poor contact with the stage. Surface charging 

effects were corrected using the adventitious carbon 1s spectral line at a binding energy of 

284.5 eV. Survey and narrow-scan XPS spectra were obtained using pass energies of 160 and 

20 eV, respectively. Survey scans were used to determine the average composition of the 

surface. The semiquantitative composition of the near-surface layer was calculated from the 

peak areas of the Fe(2p), S(2p), O(1s), and U(4f) peaks and normalized by their respective 

sensitivity factor. Narrow-scan spectra were collected for U (4f), C (1s), and Fe (2p) peaks to 

determine the speciation and oxidation states of these elements. 

Raw spectra, after smoothing and energy calibration, were fitted into a Shirley 

baseline and a Guassian-Lorentzian peak shape. Abiotic shoepite was used as a standard for 

U(VI) when fitting sample spectra. Best fits were acquired using the fitting routine in 

CasaXPS. Uranium-4f spectra were fitted with a doublet of U4f7/2 and 4f5/2 peaks with a spin-

orbit splitting of ~0.67 eV. The peak area of U4f5/2 was constrained to be three quarter (3/4) 

of the U4f7/2 peaks. The full width at half maximum (FWHM) of all the core peak 

components was constrained to be the same in the fits, within ranges reported in the 

literature. Using the binding energies determined from a U(VI) reference standard, the U(IV) 

peak position was further determined. The relative concentration of U(VI) and U(IV) were 

calculated from peak areas of fitting results and reported as percentages. 
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3.3.6 X-ray Absorption Spectroscopy (XAS) 

X-ray absorption spectroscopy uses synchrotron radiation as a photon source to 

produce extremely intense and tunable X-ray beams that interact with backscattering 

elements within a sample. The XAS signal comes from all of the atoms of a single element as 

selected by the X-ray energy. XAS includes both X-ray absorption near edge structure 

(XANES) and extended X-ray absorption fine structure (EXAFS) analyses. While XANES 

can be used to determine the valence state and coordination geometry, EXAFS is often used 

to determine the local molecular structure of a particular element within a sample. Because 

XAS probes the near coordination environment of the selected element, within about 6 Å, 

and its theory and interpretation does not rely on any assumptions of symmetry or 

periodicity, XAS can be used for the analysis of amorphous, liquid, molecular systems in 

addition to crystalline materials. 

In this research, selected solid samples from batch and flow-through experiments 

were collected as a function of reaction time for XAS analysis. For U and Fe analysis, 

samples of wet paste were diluted with boron nitride and placed into aluminum sample 

holders. For S analysis, a thin suspension was deposited in a recessed area of a polycarbonate 

sample holder and dried inside the anaerobic chamber to minimize oxidation. XAS data 

measurements were performed at the Stanford Synchrotron Radiation Lightsource (SSRL) 

from 2010 to 2013. Uranium LIII-edge and iron K-edge absorption spectra were collected in 

fluorescence mode at beamline 4-1 or 11-2 using a 13- or 100-element Ge detector at a low 

temperature (77 K). A liquid nitrogen cryostat (77 K) was used to reduce thermal disorder 

and improve the signal to noise ratio. The beam energy was calibrated to 17038 eV of Y K-

edge position for U and 7112 eV of Fe K-edge position for Fe. Sulfur K-edge spectra were 
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collected at beamline 4-3 in fluorescence mode using a passivated implanted planar silicon 

(PIPS) detector at room temperature under an inert (He) atmosphere. Prior to the data 

collection for each sample, the beam energy was calibrated to the maximum of the first edge 

feature of a Na2S2O3∙0.5H2O sample at 2472.02 eV. Multiple scans were collected for all 

XAS samples to improve the signal to noise ratios. 

XAS data were subjected to XANES and EXAFS analyses. Prior to analysis, XAS 

spectra were energy-calibrated and averaged. EXAFS were extracted and k3-weighted from 

averaged data files after background subtraction and spline fitting using SixPACK and 

IFEFFIT code (Newville, 2001; Webb, 2005). Backscattering phase and amplitude functions 

for EXAFS fitting were obtained using FEFF 6 code with crystallographic input files 

generated by ATOMS (Rehr et al., 1992). To obtain the optimal structural parameters, 

including coordination numbers (CNs) and interatomic distances (R), the mean-square 

2) and energy reference E0 parameters were allowed to float during the fitting. 

For linear combination fitting (LCF) of first-derivative U XANES, a uranyl(VI) nitrate 

solution and a crystalline UO2 solid sample were used as U(VI) and U(IV) reference 

standards, respectively. The uncertainty of valence state determinations from XANES data is 

generally ~10% (Boyanov et al., 2007). LCF of S XANES spectra were conducted using 

synthetic mackinawite and AR-grade S8
0 as standards of S(-II) and S(0), respectively. To 

address S8
0 particle-size effect on XANES absorbance in fluorescence mode (Pickering et al., 

2001), both finely ground (~1–10 µm) and dissolved (1% w/v in toluene) S8
0 were used as 

S(0) model compounds (Burton et al., 2009). The uncertainty of the LCF is generally about 

10% for sulfur XANES spectra (Prietzel et al., 2011). 
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Modeling of the U EXAFS data included two U-O single scattering (SS) paths, one 

U-U SS path, and the multiple scattering (MS) paths from two neighboring oxygen atoms. 

The many-body factor S0
2 was fixed at 0.9 to reduce the number of fitting parameters. 

Accuracies of interatomic distances and CNs were estimated to be ±0.02 Å and ±20%, 

respectively.   

 

3.3.7 Other Analytical Techniques 

Ion chromatography (IC) allows the separation and quantification of ions and polar 

molecules in aqueous solution based on their affinity to the ion exchanger (i.e., resin). In this 

dissertation research, a Dionex DX-100 was utilized to measure the concentrations of 

aqueous S2O3
2- and SO4

2- species with an IonPac® AS9 column (Dionex) and an eluent 

comprised of 3.5 mM NaHCO3 and 1.5 mM Na2CO3 solutions.  

To determine the concentration of elemental sulfur, an oxidation product of FeS, an 

oxidized suspension was first extracted by tetrachloroethylene (TCE) for 20 hours to allow 

adequate equilibration time. The dissolved S8
0 in TCE was then analyzed by liquid 

chromatography (LC, Agilent 1090) with an eluent of 95%:5% methanol: water (McGuire 

and Hamers, 2000). The analysis of S8
0 using the LC has a precision of about ± 7%. 

As a complementary technique to examine iron products, Mössbauer spectroscopy 

was utilized to characterize mackinawite and its oxidation products in addition to XRD and 

XAS. Mössbauer spectroscopy has been widely used to investigate Fe oxidation states, as 

well as structural and magnetic properties of Fe oxides. However, its application to the 

characterization of mackinawite and other iron sulfide minerals has been sparse. A general 

consensus on mackinawite Mössbauer spectral features is lacking in the literature, likely due 
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to the artifacts associated with the sample preparation and handling (Morice et al., 1969; 

Vaughan and Ridout, 1971; Mullet et al., 2002). In this study, selected Fe samples were 

shipped to Pacific Northwest National Laboratory (PNNL) after freeze drying. The prepared 

Mössbauer disks were stored in anoxic chamber until analysis using a WissEl Elektronik 

(Germany) instrument. Spectra were obtained at various temperatures, from room 

temperature to 77 K, and occasional spectra at liquid He (4.5 K). The structural and magnetic 

properties of Fe were obtained to differentiate Fe components as a function of oxidation time. 

Details of sample preparation, modeling procedures, and criteria can be found in Chapter 4 

and Kukkadapu et al. (2006). 

 

3.4 Properties of Synthetic Materials 

In this research, nanocrystalline mackinawite and uraninite were prepared and used as 

model compounds to investigate the potential of iron sulfide in inhibiting U(IV) solid from 

oxidation in artificial oxic groundwater. After chemical synthesis, the materials were 

characterized in terms of mineralogy, surface area, and particle size, which are essential 

properties of solids that strongly control their chemical reactivity in heterogeneous systems.  

 

3.4.1 Mackinawite Characterization 

The synthetic nanocrystalline mackinawite was characterized by XRD for phase 

identification and by TEM for morphology and particle size. Mackinawite was prepared with 

the same recipe previously studied by Hayes research group and it had similar structural 

properties to the material used in the past studies (Jeong et al., 2008). 
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The XRD pattern of the synthetic solid is shown in Figure 3.4, confirming a 

crystalline phase of mackinawite with no detectable impurities. The diffraction peaks are 

broad and weak, indicating a poor degree of crystallinity. The crystallite size of mackinawite 

determined from the full width at half maximum (FWHM) of diffraction peaks ranges from 

5.3 nm to 9.4 nm, depending on specific peak being used. This result indicates that the 

synthetic mackinawite is nanocrystalline with an average crystallite size of ~6 nm. The small 

crystallite size suggests a large surface area and, potentially, a high reactivity. 

 
Figure 3.4 XRD pattern of synthetic mackinawite. 
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Figure 3.5 Fe K-edge EXAFS data and fit for synthetic mackinawite. 

 

 

The Fe K-edge EXAFS analysis (Figure 3.5) indicates that Fe atoms are coordinated 

2 of 0.0034 and 2.2 Fe atoms 

2 of 0.0029. These structural parameters match reasonably well with 

previously reported values for mackinawite. For example, Lennie et al. (1995) have reported 

a coordination number of 4 S atoms with Fe at 2.256 Å from their XRD structure refinement. 

The Fe-S and Fe-Fe distances are also in good agreement with a previous EXAFS result for 

synthetic mackinawite of 2.24 Å and 2.60 Å, respectively (Jeong et al., 2008). 
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Figure 3.6 SEM (left, courtesy of Dr. Ellis) and TEM (right) images of synthetic 

mackinawite particles.  

 

Freeze-dried mackinawite particles observed under low magnification SEM are 

shown to form micrometer-sized irregular aggregates composed of a large number of flake-

like nanoparticles (Figure 3.6). In contrast, the TEM image of hydrated mackinawite particles 

shows that FeS is disordered aggregation of platelets with curvatures and irregular 

boundaries, similar to results of Ohfuji and Rickard (2006). The results are consistent with its 

tetragonal layered structure of stacked (001) planes. The layers within the nanostructure 

revealed by TEM impart mackinawite particles with additional interlayer surface area.  

 

3.4.2 Uraninite Characterization 

The synthetic uraninite solids were characterized by XRD, TEM, and XAS to 

determine their mineral phase, morphology, particle size, and local coordination 

environment. The synthetic UO2 solids were brown or blackish brown powders with a face-

centered cubic lattice (Figure 3.7). The XRD pattern of uraninite is shown in Figure 3.8, 

which was used to derive the average crystallite size of ~4 nm. Using the crystallite 

50 nm 
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dimension of the nanocrystalline uraninite, the specific surface area (SSA) was estimated to 

be ~170 m2/g at a density of 8.7 g/cm3.  

 

 

Figure 3.7 Crystal structure of crystalline uraninite. Red: uranium atom, blue: oxygen atom. 

 

 
Figure 3.8 X-ray diffraction pattern of synthetic UO2 precipitates.  
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TEM images (Figure 3.9) show loose, porous, nano-particulate U(IV) precipitates. 

Particles have diagonal lengths ranging from ~5 to ~ 20 nm, similar to the U(IV) precipitates 

synthesized by Beyenal et al (2004) using the same procedure. The SSA estimates based on 

TEM images range from ~50 to ~140 m2/g, smaller than those based on XRD. The SSA was 

not measured by multipoint N2-BET because BET analysis requires drying the UO2 solids 

which could result in particle aggregation and a decrease in surface area. Due to the wide 

range of SSA estimates for nano-scale synthetic UO2 by the various approaches, the 

dissolution rates in this dissertation were normalized by an estimated surface area of 80 m2/g.  

 

 

Figure 3.9 TEM images of synthetic UO2 precipitates. (a) BF image of uraninite 

nanoparticles (small, dark particles); (b) HREM lattice fringe image of the same material.  

 

 

EXAFS analyses on synthetic UO2 (Figure 3.10) indicated that the first shell of atoms 

surrounding the central U atom consisted of 6.2 O atoms at the interatomic distance of 2.26 

Å, and a second shell of 3.6 U neighbors at 3.83 Å. The results are summarized in Table 3.1. 

The low second-shell coordination number relative to a model uraninite (12 U(IV) neighbors) 

b. a. 
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suggests that the synthetic uraninite is a poorly-crystalline, nano-scale precipitate with 

structural defects. The structural parameters of synthetic UO2 are in agreement with low 

temperature abiotic (Hyun et al., 2012) and biogenic uraninite (Singer et al., 2009; 

Veeramani et al., 2009).  

In addition, XAS data of a uranyl nitrate solution were also collected and used as a 

U(VI) reference standard. The central uranium atom in the uranyl solution indicated 2.0 axial 

O atoms at 1.76(3) Å and 5.8 equatorial O atoms at 2.42(9) Å (Table 3.1). These values are 

consistent with values reported for U(VI) solutions (Bargar et al., 2000). 

 

 
Figure 3.10 U LIII -edge EXAFS spectra and fit of synthetic uraninite used in batch studies. 

The open circles are data; solid line is the fit. 

 

While XRD and EXAFS confirmed the structure of nano-sized uraninite, XANES and 

XPS spectra indicate a minor presence of U(VI) impurities associated with the reduced 

uranium particles. Linear combination fitting of the spectra (Table 3.2) shows that ~28% of 

total uranium is U(VI). The U(VI) component in synthetic uraninite agrees with XPS analysis 

(Figure 3.11), which indicates that the uraninite surface is comprised of ~20% of U(VI) 
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(Table 3.2). Assuming that U(VI) species are only present on the surface of uraninite 

particles and the average particle size is ~6 nm, the estimated thickness of the U(VI) surface 

coating is ~0.2 nm. This oxidized (passivated) surface layer may play an important role in 

controlling the rate of UO2 oxidation by dissolved oxygen. 

 

Table 3.1 Structural parameters extracted from EXAFS analysis. (CN: coordination number, 

R: interatomic distance, σ2: Debye-Waller factor). 

Sample Edge Path CN R( Å) σ2 

Uraninite 

precipitate 
U L3 edge U(IV)-O 6.2   2.25(8) 0.0155 

U(VI) 

solution 
U L3 edge 

U-Oax 2.0  1.76(3) 0.0023 

U-Oeq 5.8 2.42(9)  0.0099 

 

 

 

 

Figure 3.11 U 4f XPS spectra for synthetic UO2 particles prepared for oxidation 

experiments. Points are the experimental data and black solid line is the sum of fit. Orange 

and green lines are the results of quantitative Gaussian-Lorentzian curve fitting showing 

individual contributions from components. 
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Table 3.2 Determination of U oxidation state in synthetic uraninite by XANES LCF and 

XPS analyses. Error is provided in parenthesis.  

 
Element Oxidation State XANES XPS 

Uranium 

 

 

         U(IV) 72 (2) 80 (5) 

U(VI) 28 (2) 20 (5) 
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Chapter 4  

Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic 

Nanocrystalline Mackinawite  

 

 

 
 

4.1 Introduction 

The environmental risks posed by low-level U contamination are mainly associated 

with the degree of its mobility, which strongly depends on redox conditions and solid-phase 

U solubility. Under oxic conditions, U(VI) is soluble and forms stable complexes with 

carbonate and calcium in groundwater, increasing U solubility by several orders of 

magnitude and thus enhancing its mobility (Guillaumont et al., 2003; Dong and Brooks, 2006; 

Stewart et al., 2010). In contrast, reduced U(IV) species are often immobilized by biotic or 

abiotic redox processes as sparingly soluble U(IV) solid phases such as uraninite (UO2) 

(Langmuir, 1978). Recent studies further suggest that monomeric U(IV) species may form 

during microbial U(VI) reduction in association with phosphate or carbonate as sorbed 

complexes on soils and sediments (Bernier-Latmani et al., 2010; Fletcher et al., 2010; 

Boyanov et al., 2011), before converting to more stable U(IV) precipitates. 

 

 

_____________________ 

This chapter is adapted from: Bi, Y., Hyun, S. P., Kukkadapu, R. K., and Hayes, K. F., Geochimica et 

Cosmochimica Acta. 2013, 102, 175-190. 
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Given that UO2 is highly insoluble in reducing, low-temperature geological and 

sedimentary environments (Finch and Ewing, 1992; Ulrich et al., 2008), the reduction of 

mobile U(VI) to UO2 by sulfate reducing bacteria (SRB) has been under consideration as a 

strategy for uranium groundwater remediation. In situ biostimulation to reduce U(VI) to UO2 

has been conducted for more than a decade and has been proven to be effective (Senko et al., 

2002; Istok et al., 2004; N'Guessan et al., 2008). Recent work further indicates that non-

uraninite U(IV) forms, (i.e., monomeric U(IV) species), may also be produced after biotic 

reductive immobilization and influence the U mobility in the subsurface (Bernier-Latmani et 

al., 2010; Sharp et al., 2011). However, when subjected to oxidants such as oxygen, 

reoxidation of the immobilized U(IV) to soluble U(VI) may occur (Zhou and Gu, 2005; 

Moon et al., 2007; Komlos et al., 2008; Moon et al., 2009). Therefore maintaining reducing 

conditions or generating an abundant supply of reduced solids, such as FeS0.9 (mackinawite; 

hereafter referred as FeS), for redox buffering and oxidant scavenging during post-

stimulation periods may be needed for long-term in situ stabilization of U. 

Aqueous sulfide and sulfide minerals formed under sulfate reducing conditions were 

shown to maintain a low redox potential in groundwater and abiotically promote the 

reduction of U(VI) to UO2 (Wersin et al., 1994; Suzuki et al., 2005; Hua et al., 2006). FeS 

has been recognized as an important ingredient and source of sulfide in many toxic metal 

remediation systems including U bioremediation, although its role has not been fully 

understood (Abdelouas et al., 1999a; Coles et al., 2000). When exposed to oxygen, FeS 

undergoes oxidation-induced transformation with a reaction half-time ranging from minutes 

to a few hours (Burton et al., 2009; Jeong et al., 2010a). The iron solid-phase end products of 

FeS oxidation, usually goethite and lepidocrocite (Jeong et al., 2010a), may further impact 
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the reoxidation rates of UO2 (Sani et al., 2005; Ginder-Vogel et al., 2006; Nico et al., 2009; 

Spycher et al., 2011a). In addition, oxidized U(VI) may be incorporated into the goethite 

structure through phase transformation under anoxic conditions as indicated by Nico et al. 

(2009) and Boland et al. (2011). Structurally incorporated U(VI) could be more stable and 

resistant to oxidants such as oxygen (Stewart et al., 2009), providing a possible long-term 

sink for U and strategy for U remediation. It is unclear, however, whether the incorporation 

of U(VI) into iron oxides occurs in oxic groundwater.  

Relatively few studies have investigated the reactions of UO2 with FeS or the 

protective nature of FeS in inhibiting UO2 oxidation. The abiotic mechanism of U(IV) 

oxidation is also not well understood and often difficult to isolate in field or column studies 

where microorganisms are active and biogenic oxidants are prevalent. The observed 

inhibition of UO2 reoxidation by biogenic FeS in sediments (Abdelouas et al., 1999a; Moon 

et al., 2009) may actually be the combined effects of abiotic and biotic activities. Past column 

studies were not performed to specifically test the endurance of FeS protection of UO2 

against oxygen intrusion, in which all FeS was reacted to exhaustion (Abdelouas et al., 

1999b). Additional work is needed to establish the role of abiotic reoxidation processes of 

UO2 when sulfate reducing conditions are succeeded by oxic conditions.  

The objective of the study presented in this chapter was to investigate the oxidative 

dissolution of synthetic UO2 by dissolved oxygen in absence and presence of FeS under 

abiotic simulated groundwater conditions. Dissolution rates of UO2 are presented and 

compared to previous studies. Possible aqueous species and surface reactions supported by 

analytical and spectroscopic results are discussed for elucidating the influence of FeS on UO2 

oxidation by oxygen.  
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4.2 Experimental Methods 

4.2.1 Oxidative Dissolution Experiments 

For the oxidation experiments, 1 L of an artificial groundwater solution containing 

4.0 mM NaHCO3, 0.4 mM KCl, and 2.0 mM CaCl2 was prepared using deoxygenated water 

(Table 4.1). Five grams of freeze-dried FeS powder were suspended in an anoxic aliquot of 

the artificial groundwater solution (~200 mL) and continuously stirred for two days to allow 

sufficient time for solid phase hydration. The remainder of the solution was transferred to the 

1L batch reactor (Figure 3.1) and purged for up to 4 h with a 2% PO2, 5% PCO2, 93% PN2 gas 

mixture before the start of the experiment until stable DO and pH readings were achieved.  

 

Table 4.1 Comparison of groundwater compositions in equilibration with 2% PO2, 5% PCO2 

gas mixture. 

Experimental 

design 

FeS with UO2  

(mM) 

Control  

UO2 only 

(mM) 

Control 

FeS only 
(mM) 

Equilibrium 

concentration for all 

three experiments 

Na+ 4.0 4.0 4.0 4.0 

HCO3
- 4 9 4 11.3 (as DIC)* 

Cl- 4.4 4.4 4.4 4.4 

Ca2+ 2.0 2.0 2.0 2.0 

K+ 0.4 0.4 0.4 0.4 

* Total dissolved inorganic carbonate (DIC) concentration calculated from Visual MINTEQ at 

equilibrium with 0.02 atm O2 and 0.05 atm CO2 gas. 

 

The oxidation experiment was initiated upon the addition of FeS and UO2 

suspensions to the reactor. The suspensions were transferred from the anaerobic chamber 

with limited exposure time to air (< 30 s). This operation assumed immediate and complete 

mixing of the suspension in the reactor under vigorous stirring. The final suspension was 
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slightly more than 1 L due to the addition of a small volume of UO2 suspension (~15 mL). 

The resulting concentration was ~5.0 g/L and ~0.4 g/L of FeS and UO2, respectively. The 

solid phase UO2 concentration was determined by total digestion with concentrated nitric 

acid. Over the duration of the oxidation experiment, the system was continuously purged 

with the 2% PO2, 5% PCO2, 93% N2 gas mixture at a flow rate of 0.1 L/min to maintain a pH 

of ~7 in the suspension and a constant headspace composition. The pH, DO, and Eh of the 

suspension were measured in situ by calibrated probes located on the ports of the lid, which 

remained in the solution over the entire reaction period.  

Aliquots of suspension were periodically withdrawn through the sampling port using 

a 15 mL polypropylene syringe, and then immediately transferred to the anaerobic chamber. 

Subsamples of ~2mL of suspension (solid plus aqueous phase) were used for an elemental 

sulfur extraction analysis as described below. The remaining sample (~13 mL) was 

centrifuged and filtered through 0.1 µm syringe filters (Millipore). A remainder of the filtrate 

was used for IC analysis of S2O3
2- and SO4

2-. The remainder of the filtrate was acidified in ~1% 

nitric acid and stored in a refrigerator (4 ºC) until used for metal analyses with ICP-MS. Solid 

materials settled by centrifugation were transferred to a crimp-sealed vial and stored in an 

anaerobic chamber until characterized. A total of 14 sets of samples at different time points 

were obtained over the course of the experiment until the total dissolved uranium 

concentration reached steady state. The end solid phase products were rinsed using 30 mM 

NaHCO3 solution to extract surface-adsorbed U(VI). The batch experiments were performed 

in duplicate.  

Control experiments with either FeS or UO2 as a single phase in suspension were also 

conducted in duplicate following the same procedures as described above. In the batch 
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experiment with FeS alone, the concentration was 5 g/L, while the experiment with only UO2 

the concentration was 0.42 g/L. In the UO2 control experiments, the artificial groundwater 

was prepared with 9.0 mM NaHCO3, 0.4 mM KCl, and 2.0 mM CaCl2 to achieve a pH = 7. A 

slight variation in UO2 solid concentration existed for batch experiments involving U 

oxidative dissolution from the variation in the amount of UO2 delivered in 15 mL of a stock 

suspension (Table 4.2).   

 

4.2.2 Analyses 

Total dissolved iron, uranium, and calcium were determined by ICP-MS. Dissolved 

Fe(II) in the filtrate was determined photometrically by the ferrozine method (Stookey, 1970). 

Total dissolved iron was verified using the ferrozine method (Viollier et al., 2000) and 

compared with the total concentration measured by ICP-MS. Briefly, Fe(III) in the solution is 

reduced to Fe(II) by hydroxylamine under acidic pH and then measured by a 

spectrophotometer at 562 nm in the presence of ferrozine.  Aqueous S2O3
2- and SO4

2- were 

analyzed by IC (Dionex DX-100). Elemental sulfur in the solid phase was analyzed by liquid 

chromatography (Agilent 1090) with an eluent of 95%:5% methanol: water (McGuire and 

Hamers, 2000).  

Solid samples collected from batch experiments were analyzed by XRD, XAS, and 

Mössbauer spectroscopy. XAS data collection was carried out at Stanford Synchrotron 

Radiation Lightsource (SSRL) following the procedure described in Chapter 3. XAS data 

were subjected to X-ray absorption near edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS) analyses after energy calibration and data average. 

EXAFS spectra were extracted and k3-weighted from averaged data files after background 
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subtraction and spline fitting using SixPACK and IFEFFIT code (Newville, 2001; Webb, 

2005). Backscattering phase and amplitude functions for EXAFS fitting were obtained using 

FEFF 8 code with crystallographic input files generated by ATOMS (Rehr et al., 1992). To 

obtain the optimal structural parameters, including coordination numbers (CNs) and 

interatomic distances (R), the Debye- 2) and energy reference E0 parameters 

were allowed to float during the fitting. The many-body factor S0
2 was fixed at 0.9 to reduce 

the number of fitting parameters. For U modeling, a uranyl(VI) nitrate solution and synthetic 

UO2 solid sample were used as U(VI) and U(IV) reference standards, respectively. 

Accuracies of interatomic distances and CNs were estimated to be ±0.02 Å and ±20%, 

respectively. Linear combination fitting (LCF) of S XANES spectra was conducted using 

synthetic mackinawite and AR-grade S8
0 as standards for S(-II) and S(0), respectively. To 

address S8
0 particle-size effect on XANES absorbance in fluorescence mode (Pickering et al., 

2001), both finely ground (~1–10 µm) and dissolved (1% w/v in toluene) S8
0 were used as 

S(0) model compounds (Burton et al., 2009). The uncertainty of the LCF is generally about 

10% for sulfur XANES spectra (Prietzel et al., 2011).     

Mössbauer spectra of powder samples were collected using either a WissEl 

Elektronik (Germany) or Web Research Company (St. Paul, MN) instruments that included a 

closed-cycle cryostat SHI-850 (Janis Research Company, Inc), a Sumitomo CKW-21 He 

compressor unit, and an Ar-Kr proportional counter detector with WissEl setup or a Ritverc 

(St. Petersburg, Russia) NaI detection system. A 57Co/Rh source (50-mCi to 75-mCi, initial 

strength) was used as the gamma energy source. With the WissEl setups, the transmitted 

counts were stored in a multichannel scalar (MCS) as a function of energy (transducer 

velocity) using a 1024-channel analyzer.  The setups data were folded to 512 channels to 
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provide a flat background and a zero-velocity position corresponding to the center shift (CS) 

of a metal Fe foil at room temperature (RT). Calibration spectra were obtained with a 25-µm-

thick Fe foil (Amersham, England) placed in the same position as the samples to minimize 

any geometry errors. The Mössbauer data were modeled with Recoil software (University of 

Ottawa, Canada) using a Voigt-based structural fitting routine (Rancourt and Ping, 1991). 

The coefficient of the variation of the spectral areas from individual sites generally ranged 

between 1% and 2% of the fitted values. Details of sample preparation and modeling 

procedures and criteria are reported in Kukkadapu et al. (2006). 

 

4.2.3 UO2 Dissolution Rate Calculation 

UO2 oxidative dissolution occurred in the presence and absence of 5 g/L FeS. In these 

experiments, once oxidative dissolution began, [U]diss initially increased linearly but then 

reached a plateau at longer times. Dissolution rates for UO2 were obtained by subjecting the 

initial linear portion of the plots to regression analysis. For the rate analysis, typically more 

than four points were utilized, resulting in R2 values greater than 0.98 for all least-square fits. 

Regression analysis also yielded 95% confidence intervals for error estimates. The 

dissolution rates normalized to mass (rm) and surface area (rn) are compared to results of 

previous oxidation studies performed under similar conditions in Table 4.1. 
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Table 4.2 Comparisons of UO2 oxidative dissolution rates obtained from batch experiments in 1 L 

CMBR under different experimental conditions. U dissolution rates are based on mass (rm) and 

surface area (rn) of UO2 solids.   

Design 
[UO2] Reactor 

Design 
[FeS] 
g/L

 
 

PO2 

Bar
 

[DIC] 
mM 

pH 
rm (×109) 

mol·g-1·s-1 
rn (×1010) 

mol·m-2·s-1 
g/L mmol/L 

This work, moderately oxidizing conditions.  

Syn-UO2 0.42 1.56 Batch \ 0.02 ~10* 7.01 5.4 ± 0.2  1.08 § 

Syn-UO2 0.45 1.67 Batch \ 0.02 ~10* 6.71 5.0 ± 0.4  1.0 § 

Syn-UO2    

w/ FeS  
0.47 1.74 Batch 5.0 0.02 ~10* 6.98 12 ± 4  2.4 § 

Syn-UO2    

w/ FeS  
0.49 1.80 Batch 5.0 0.02 ~10* 6.97 13 ± 5  2.6 § 

Published data, similar moderately oxidizing conditions.  

Syn-UO2
a 0.79 2.9 

Flow-

through 
\ 0.01 1 8.0 3.94  6.62  

Syn-UO2
a 1.14 4.2 

Flow-

through 
\ 0.01 10 8.7 1.50  2.50  

Bio-UO2
a 1.59 5.9 

Flow-

through 
\ 0.01 1 8.5 4.67  0.93 

UO2 (cr)b 7.8 29 Batch \ 0.2 100 8.0 20 ± 2  170 

* calculated using Visual MINTEQ at equilibrium with 0.05 atm CO2 gas. 
§   calculated by using an estimated surface area of 50 m2/g for the synthetic nanocrystalline UO2.  
   References: a. Ulrich et al, (2009).  b. Pierce et al. (2005).  
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4.3 Results and Discussion 

4.3.1 Oxidative UO2 Dissolution 

4.3.1.1 Dissolution of UO2 at pH 7 

To study the effects of FeS on the oxidative dissolution of synthetic UO2, total 

dissolved U (Udiss) and Fe (Fediss) were monitored as a function of time in the artificial 

groundwater in equilibrium with the gas mixture (2% PO2, 5% PCO2, and 93% PN2) at pH = 7 

in the presence of FeS (Figure 4.1). Duplicate profiles were similar in the trend of dissolved 

U, both showing a lag phase of U dissolution for approximately 50 to 60 hr. Udiss remained 

below 0.05 mM during the lag phase, before an abrupt increase of Udiss occurred. From ~55 

to ~92 hour, Udiss increased almost linearly at a rate of 1.2 – 1.3 mol·g-1·s-1 (Table 4.2). The 

initial rate analysis showed good agreement with rates evaluated from previous studies on 

UO2 dissolution (Ulrich et al., 2009), despite the different pH conditions (pH 7 vs. 8.0–8.8) 

and reactor configuration (batch vs. flow-through reactor) (Table 4.2). As [U]diss leveled off 

near 160 hr, it reached a plateau concentration at ~1.0 mM (~63% of the initially added 

UO2), indicating that <40% of added U remained in association with solid phases. Figure 4.1 

also shows the profiles of total dissolved Fe in comparison to Udiss over ~180 hr reaction. 

During the lag phase of UO2 dissolution, dissolved Fe remained as Fe(II) in the reactor. The 

sharp spike of Fediss observed at ~4 hr was accompanied by the very low level of [Udiss] 

(Figure 4.1b). As Fediss dropped below 0.03 mM after ~10 hr, Udiss increased to a higher level 

of ≤0.06 mM for additional ~40 hr. As soon as dissolved Fe(II) became undetectable in the 

suspension, Udiss started to increase as a result of UO2 oxidative dissolution.  

To illustrate the difference in UO2 dissolution in the presence and absence of FeS, the 

results of control experiments are plotted together with an Udiss profile in Figure 4.1. Figure 
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4.2 shows that Udiss increased linearly at the initial reaction stage without delay in the control 

and remained higher than the experiment with FeS until ~60 hr reaction. Using the initial 

linear portion of the dissolution profile, the mass-normalized dissolution rate for UO2 in this 

study, was 5.0 – 5.4 mol·g-1·s-1 (Table 4.2). The rate is comparable to those reported by 

Ulrich et al. (2009) for synthetic and biogenic UO2 oxidation by dissolved oxygen, but is 

lower by a factor of two compared to experiments in the presence of FeS. Udiss concentration 

reached a plateau of ~0.80 mM after 200 hr, accounting for approximately 50% of the total 

uranium input. The final steady-state Udiss achieved a lower concentration in the control. In 

contrast to the experiments with FeS, a more significant portion of the U remained in solid 

phase after 200 hr reaction in the control.  

 

  
Figure 4.1 The kinetic profiles of (a) total dissolved U (▲) and Fe (●) as a function f time 

during UO2 oxidative dissolution in the presence of FeS under a pH = 7 groundwater 

condition equilibrated with 2% PO2, 5% PCO2 gas mixture. The inset plot (b) shows enlarged 

plot of Udiss for the initial 60 hr of reaction time in the presence of FeS. Replicates are 

represented by filled and empty markers. Error bars, reflecting one analytical standard 

deviation of analysis, are sometimes smaller than the symbol size. 
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The delayed dissolution of UO2 in the presence of FeS compared to the control is 

primarily attributed to the low concentration of DO, which stayed at an undetectable level for 

~60 hr (Figure 4.2b). The Fe(II) species, including soluble Fe(II) and FeS, may also 

contribute to the low levels of dissolved U by abiotic reduction of U(VI). Liger et al. (1999) 

reported abiotic surface-catalyzed U(VI) reduction by soluble Fe(II) in a near-neutral pH 

range. Reduction of U(VI) solely by soluble Fe(II) was observed by Du et al. (2011) when 

reactant and product concentrations were in the range for thermodynamically favorable 

reduction. Because dissolved Fe(II) was as high as ~1.1 mM over the initial ~10 hr, it appears 

that dissolved and surface-adsorbed Fe(II) prevented the oxidation of UO2. Any oxidized 

U(VI) species would have likely been recycled back to the reduced form of U(IV) in the 

suspension over the first 10 hr. In addition, solid phase Fe(II) (i.e., FeS) can delay UO2 

oxidation by reducing aqueous U(VI) to U(IV) and producing elemental sulfur and ferric iron 

(Hua and Deng, 2008; Hyun et al., 2012).  
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Figure 4.2 Comparison of kinetic profiles of (a) total dissolved U; and (b) DO in the 

presence (filled markers) and absence (empty markers) of FeS over the course of the 

oxidation experiment. Error bars reflecting one analytical standard deviation of analysis are 

sometimes smaller than the symbol size. 

 

As the oxidation reaction proceeded, the dissolved Fe(II) decreased to a level of 

~0.03 mM between 10–60 hr, while the dissolved U increased to submillimolar levels. Udiss 

remained relatively constant, accounting for less than 5% total U in the system. During this 

time frame, UO2 solids underwent moderate oxidative dissolution with Udiss considerably 

higher than the UO2 solubility at pH = 7 under anaerobic conditions (Casas et al., 1998; 

Guillaumont et al., 2003; Bargar et al., 2008; Spycher et al., 2011b). The consumption of 
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oxidized U(VI) to U(IV). However, as long as FeS was present, significant oxidative 

dissolution of UO2 did not occur.  

Beyond the lag phase, rapid UO2 dissolution was associated with the substantial 

increase in DO levels (Figure 4.2b) due to the depletion of FeS, as noted in the change in 

XRD patterns over time (Figure 4.3). After [U]diss reached a plateau in the batch system, the 

extraction of surface-adsorbed U(VI) from the solid products by 30 mM bicarbonate solution 

recovered additional ~0.4 mM U (~25 % of total U). At the end of the experiment with FeS, 

most UO2 was oxidized to U(VI) as soluble U(VI) species. Thermodynamic calculations by 

Visual MINTEQ (detailed in Appendix B) indicated that the dominant aqueous U(VI) species 

were Ca2UO2(CO3)3 (aq) and CaUO2(CO3)2
2- ternary complexes, which represented ~90% of 

soluble U(VI) (Figure 4.4). The U(VI) solution was under-saturated with respect to any 

known U(VI) solid phases, including schoepite (UO3∙2H2O), rutherfordine (UO2CO3), 

UO3(s), UO2(OH)2(s) and becquerelite (Ca(UO2)6O4(OH)6∙8(H2O)). The remaining non-

dissolved U was speculated to be either U(VI) incorporated into FeS oxidation products or 

partially oxidized U(IV) solid phase. To address these possibilities, the solid-associated U 

form was characterized by XAS as discussed in section 4.3.1.2.  
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Figure 4.3 Diffraction patterns of oxidized samples in the batch system. Oxidation times are 

indicated adjacent to the diffractograms. 

 

In the case of the control, an additional ~0.2 mM U(VI) (10% of total U) was 

extracted using a 30 mM bicarbonate solution at steady-state. Approximately 40% of total U 

still remained in the solid form, notably higher than the residual solid U in the experiment 

with FeS present. The XRD pattern of the sample collected at ~ 200 hr revealed the presence 

of a U(IV) oxide phase (Figure 4.5). Given the nearly identical XRD patterns of UO2.00 and 

partially oxidized U(IV) oxides (i.e., U3O7, U4O9), it is difficult to confirm the exact phase of 

UO2 oxidation product by XRD alone. Because UO2 solid was not completely oxidized to 

U(VI) in the presence of oxygen, a partially oxidized layer with a low solubility likely 
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protected the UO2 core from complete dissolution (Torrero et al., 1997; de Pablo et al., 2004; 

Ulrich et al., 2009). Pierce et al. (2005) showed that UO2 oxidative dissolution rates 

decreased as the solution concentration approached equilibrium with a passivation layer in 

the presence of oxygen, a similar trend observed in the present study. This idea is also 

supported by the fact that only 10% of the residual was carbonate extractable in the control 

(where U(IV) is extractable but UO2 is not). The steady-state dissolved U(VI) concentration 

thus is thought to be governed by the solubility of partially oxidized U(IV) layer surrounding 

the UO2 core.  

 

 
Figure 4.4 Dissolved U(VI) species distribution as a function of pH calculated by Visual 

MINTEQ. The arrows indicate the pH range where precipitation occurs: rutherfordine (pH = 

4.4–6.2) and calcite (pH >7.3). Simulation conditions: 1.1 mM UO2
2+, 4.0 mM NaHCO3, 0.4 

mM KCl, and 2.0 mM CaCl2, equilibrated with a 2% PO2, 5% PCO2 gas mixture. 
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Figure 4.5 X-ray diffraction pattern of residual UO2 collected at 260 hr reaction of oxidation 

by oxygen compared to stoichiometric UO2. 

 

4.3.1.2  X-ray Absorption Spectroscopy Results. 

To track the changes in solid phase U speciation during oxidation, U LIII-edge 

XANES and EXAFS spectra of selected oxidized samples were analyzed. The XANES 

results (Figure 4.6) were used to examine the change of U oxidation state in the bulk 

material. The 48-hr sample shows a lack of energy shift of absorption edge compared to the 

0.1-hr sample, indicating an unchanged oxidation state of U(IV). This result is consistent 

with the insignificant oxidative dissolution of UO2 during the lag phase up to ~60 hr. An 

inspection of the Fourier transformed U LIII-edge EXAFS data (Figure 4.7) also shows the 

unchanged coordination environment of U during this time period. The corresponding 

structural parameters extracted from the EXAFS data analyses (Table 4.3) resemble those of 

unreacted UO2 (Veeramani et al., 2009; Bernier-Latmani et al., 2010), notably a strong first 
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O shell at 2.34 Å (corresponding to the phase shift at 1.8 Å R+ dR) and a strong U shell at 

3.83 – 3.85 Å (corresponding to phase shift at 3.8 Å R+ dR) in the 0.1-hr and 48-hr solid 

samples. The XAS results, along with the macroscopic dissolution data, clearly confirm that 

DO was preferentially consumed by FeS, delaying UO2 oxidation during this lag period.   

 

  

Figure 4.6 Uranium LIII-edge XANES spectra of batch samples in the presence of FeS as a 

function of time. The dotted lines bracket the peak position of U(IV) in uraninite. An energy 

shift to higher eV indicates the oxidation of U to a higher valence state. 
 

The shift of the U LIII-edge to a higher energy occurred (Figure 4.6) when Udiss and 

DO rapidly increased after ~60 hr (Figure 4.2) due to the oxidation of UO2 by available DO. 

The XANES spectrum of the solid phase collected at 87 hr is different from the U(IV) or 

U(VI) standards, suggesting a mixed or an intermediate valance state. Modeling of the 

Fourier transforms (Table 4.3) shows that U has 2.1 nearest O neighbor atoms at 1.84 Å, the 
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signature feature of the axial O atoms bound to U(VI) as in uranyl ion (UO2
2+). The presence 

of axial O suggests that UO2 oxidation has resulted in oxidized uranyl ions bound to the solid 

phases. The EXAFS analysis also indicates the presence of solid phase U with structural 

characteristics of a reduced U(IV) phase, with 9.7 O neighbors at 2.28 Å and 3.0 U neighbors 

at 3.84 Å. These features are interpreted as arising from the remnant UO2, suggesting that a 

UO2 core remains intact at 87 hr. The Debye-Waller factors for the UIV-O and UIV-UIV bonds 

in the UO2 structure obtained from 0.1-hr, 48-hr, and 87-hr samples have a continuously 

increasing trend with reaction time, consistent with the increased disorder of the O and U 

backscatterer positions around the central U atom. The increased disorder in the UO2 

structure along with the mixed U structural parameters suggest the formation of a partially 

oxidized passivation layer during the oxidative dissolution of UO2. The oxidized surface 

layer and diminishing UO2 core relative to the surface layer are also supported by earlier 

studies on UO2 oxidation. De Pablo et al. (1996) reported an oxidized surface layer in the 

form of U3O7 in batch experiments at pH 8, while Torrero et al. (1997) reported a surface 

phase comprised of U4O9 using a continuous flow-through reactor at pH 8.2. Ulrich et al. 

(2009) also indicated a progressive surface layering surrounding both biogenic and synthetic 

UO2 as a function of PO2, pH, and dissolved inorganic carbon (DIC).  
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Figure 4.7 Fourier transform magnitudes of U LIII-edge EXAFS in the samples over the 

course of the oxidative dissolution experiment in the presence of FeS (line: data, dots: fits). 

 

At 218 hr, when [U]diss reached steady-state values, the XANES and EXAFS analyses 

indicated that U in the solid sample was substantially oxidized to U(VI) (Fig. 4.4, 4.5). The 

Fourier transforms clearly show dissimilar features compared to the samples at early 

oxidation stages and a lack of UIV-O and UIV-UIV bonds. The central U atom has 2.4 axial O 

atoms at 1.81 Å, 3.4 equatorial O atoms at 2.45 Å, 0.82 C atoms at 2.96 Å, 1.9 Fe atoms at 

3.31 Å, and 1.1 U atoms at 3.93 Å (Table 4.3). These structural parameters derived from the 

EXAFS modeling support the structural model of surface-adsorbed multinuclear U(VI) 

carbonato complexes on Fe oxyhydroxides, which are the major solid-associated U phases in 

the 218-hr sample. This U(VI) surface species is comparable to those reported in previous 

0 1 2 3 4 5 6

F
o
u

ri
er

 T
ra

n
sf

o
rm

 M
a

g
n

it
u

te

R (Å)

=O

-O

-C

-Fe -U

-O -U

0.1 hr 

48 hr 

87 hr 

218 hr 



 71 

studies by Bargar et al. (2000) and Ulrich et al. (2006) for U(VI) sorption on hematite and 

ferrihydrite, respectively. The presence of the strong backscattering from the axial oxygen 

atoms characteristic of uranyl ion and the lack of the O shell composed of 6 O atoms at 2.09 

Å expected from the U(VI) incorporated into the goethite structure (Nico et al., 2009) 

exclude the possibility of significant U(VI) incorporation into the octahedral sites of the 

nanogoethite structure. Thus, U(VI) retention through replacing Fe3+ in Fe oxides structure 

(Nico et al., 2009; Stewart et al., 2009; Boland et al., 2011) is not an apparent route under the 

current experimental conditions using oxic groundwater. Rather, an adsorption of 

multinuclear U(VI)-carbonato complexes by nanogoethite or lepidocrocite is the retention 

mechanism for dissolved U(VI) in the simulated groundwater. In addition, XAS analyses 

indicate the absence of a U(VI) solid (e.g., rutherfordine) in the 218-hr sample, consistent 

with thermodynamic calculations by Visual MINTEQ.  

 

Table 4.3  Structural parameters obtained from U LIII-edge EXAFS data analysis of solids 

collected from the batch reactor oxidative dissolution study as a function of time.  

 
 0.1 hr 48 hr 87 hr 218 hr 

NO1 6.6 (UIV-O) 6.8 (UIV-O) 2.1 (UVI-O) 2.4 (U- Oax) 

RO (Å) 2.34(2) 2.34(1) 1.83(6) 1.81(3) 
2

O 0.0091 0.0096 0.0113 0.0036 

NO2   9.7 (UIV-O) 3.4 (U-Oeq) 

RO (Å)   2.28(3) 2.45(2) 
2

O   0.0295 0.0058 

NC    0.82 

RC (Å)    2.96 
2

C    0.0039 

NFe    1.9 

RFe (Å)    3.31 
2

Fe    0.0101 

NU 4.7 (UIV-UIV) 5.8 (UIV-UIV) 3.0 (UIV-UIV) 1.1 (UIV-UIV) 

RU (Å) 3.85(5) 3.83(2) 3.84(3) 3.93 
2

U 0.0044 0.0057 0.0083 0.0037 

N: coordination number of the bond; R: interatomic distance of the bond;  
2: Debye-Waller factor of the bond. 
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4.3.2 Oxidation of FeS 

4.3.2.1 Iron in FeS Oxidation 

FeS inhibits UO2 oxidative dissolution by keeping DO levels low (Figure 4.2). To 

better understand the mechanism of this inhibition, the solution and solid phase FeS 

oxidation products were monitored. Given that previous work illustrated that Fe(II) and S(-II) 

within the FeS structure largely follow independent oxidation pathways (Jeong et al., 2010a), 

the tracking of each of their oxidation products is presented separately. The experimental 

results are compared with control experiments with FeS only (no UO2) and show identical 

trends for both Fe(II) and S(-II) (Figure A.1). We conclude that at an FeS:UO2 molar ratio of 

~30:1, UO2 solids do not notably influence the oxidation of FeS by DO. 

Starting with Fe results, Figure 4.1 shows the characteristic trend of Fediss as a 

function of reaction time. Immediately after exposure to oxygen, [Fe]diss increased rapidly to 

a peak concentration of ~1.1 mM at 4 hr, followed by a sharp decrease of [Fe]diss. Similar 

patterns of [Fe]diss were previously reported in the case of aerobic oxidation of mackinawite, 

although the maximum [Fe]diss occurred at shorter time (1 hr) for the higher PO2 of 0.2 atm 

(Jeong et al., 2010a). This behavior was attributed to incongruent Fe(II) dissolution from 

FeS. The preferential initial release of dissolved metal ions into the solution phase as the first 

step of oxidative decomposition has been observed for many other sulfide minerals, such as 

FeS2, PbS, and FeAsS (Buckley and Woods, 1985; Mikhlin et al., 2000; Belzile et al., 2004; 

Mikhlin, 2007). After the initial increase, the subsequent decrease in [Fe]diss resulted from the 

oxidation of Fe(II) and precipitation of Fe(III) oxyhydroxides. The consumption of DO by 

Fe(II) oxidation is thought to be one of the primary reasons for the low DO levels at < 51 h. 
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To identify the Fe oxidation products, solid phase samples were collected and 

characterized using XRD (Figure 4.3) and Mössbauer spectroscopy (Figure 4.8). The initial 

synthetic FeS is dominated by a singlet in 77K spectrum (Figure 4.8a) due to low spin (LS) 

Fe(II) in tetrahedral environment (labeled as Fe(II)-LS-Tet), a spectral component noted in 

several Mössbauer studies. The two minor sextets noted in the spectrum (Fe(II)-B and Fe(II)-

C), however, were not observed in the previous studies. Although the nature of the sextets is 

not clear, they are not due to greigite (Fe3S4) or any Fe(III)-oxyhydroxide (Murad and 

Cashion, 2004) given that identical spectra were obtained at both 4.2 K and 77 K. It is 

possible that these sextets represent Fe(II) sites within the FeS structure with slightly 

different coordination environment than the Fe(II)-LS-Tet (Mullet et al., 2002).  

The Mössbauer spectra obtained at 4.5 K shows that the 4-hr sample is evidently 

different from the initial FeS (Figure 4.8b). A good fit with the data was realized in four 

different Fe environments, including Fe(II)-LS-Tet singlet, Site B Fe(II) sextet, Site C Fe(III) 

sextet, and ferrihydrite Fe(III). Only a small amount of the initial FeS (9% of the total Fe) 

was comprised by the Fe(II)-LS-Tet singlet, indicating significant structural changes in FeS 

within 4 hr of reaction. Hyperfine fields of the two inner sextets, labeled Site B Fe(II) and 

Site C Fe(III), are similar to the sextets noted in the 11 K Mössbauer spectrum of an 

unoxidized synthetic mackinawite prepared by the reaction of sulfide with metallic Fe 

(Mullet et al., 2002). The Site C sextet is probably due to Fe(III) in the modified FeS 

structure as indicated by Mullet et al. (2002) because its features were virtually similar at 

both room temperature and 4.5 K. Mullet et al. (2002) further proposed that these two sextets 

are due to Fe(II)- and Fe(III)-Tet bound to monosulfide in a weathered thin layer covering 

the bulk material. Their premise was based on the EXAFS interpretation of Lennie and 
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Vaughan (1996), coupled to RT Mössbauer, Fe, S, and O X-ray photoelectron spectroscopy 

(XPS) analysis, and TEM observations of their sample. However, the inner sextets in the 4-hr 

sample may not be due to Fe(II) and Fe(III) in a thin weathered layer, given the large Site B 

Fe(II) contribution (75%) and the nearly complete transformation of the initial FeS to various 

species. Further studies, beyond the scope of this present study (e.g., TEM, XPS, surface 

Mössbauer, and dissolution studies), are needed to adequately address the nature of these two 

sextets. The unambiguous precipitation of ferrihydrite (9% of the total Fe) is identified by the 

comparison of the 77, 25, and 4.5 K spectra and model-derived Mössbauer spectral 

parameters of the outer sextet in the 4.5 K spectrum (Table 4.4). Based on a combination of 

Fe(III) in Site C and ferrihydrite, it appears that only ~15% Fe(II) of initial FeS was oxidized. 

The change of oxidized mackinawite is also reflected in the XRD pattern which shows a 

more prominent 001 peak (16.9º 2θ) and a diminished higher hkl peaks (Figure 4.3), a result 

of anisotropic dissolution of FeS. The presence of ferrihydrite is not evident in the XRD 

(Figure 4.3) due to low degree of crystallinity and concentration (9% of total Fe).  
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Figure 4.8 Mössbauer spectra (experimental and modeled) of initial and oxygen oxidized 

FeS samples: (a) initial synthetic FeS at 77 K (a singlet peak due to low spin Fe(II) in 

tetrahedral environments and two sextets due to Fe(II) in structurally different 

environments); (b) 4-hr sample at 4.5 K (Fe(II)-LS-Tet(a) and Fe(II)-LS-Tet(b), and Fe(III)-

LS-Tet are due to Fe associated with the weathered layer, while the outer sextet is due to 

ferrihydrite); (c) 45-hr sample at 4.5 K; and (d) 168-hr sample at 4.5 K. Circles are 

experimental data; black solid lines are fitted models; and colored lines are elementary 

components. The relative abundance of each component is calculated as percentage in the 

legend. 
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The Mössbauer spectrum shows a complete disappearance of Fe(II)-LS-Tet singlet 

features at 45 hr oxidation (Figure 4.8c). Additionally, the Site B Fe(II) contribution 

decreases (also minor systematic changes occurred in the Mössbauer parameters, as 

anticipated) (Table 4.4) with a concurrent precipitation and accumulation of goethite. The 

persistence of Site B Fe(II) in this sample is in agreement with the sustained oxygen 

scavenging capacity of FeS up to ~60 hr. Besides goethite, the sample contained minor 

amounts of lepidocrocite. The formation of goethite and lepidocrocite likely resulted from 

the transformation of ferrihydrite (Fig. 4.6b) catalyzed by aqueous Fe(II)  in the suspension 

(Pedersen et al., 2005; Yee et al., 2006).  A comparison of the 4.5 K spectrum to the room 

temperature and 77 K spectra (not shown) further indicate that the goethite is nanoparticulate. 

As oxidation continued, nanogoethite and lepidocrocite grew in abundance at the 

expense of Site B Fe(II) and Site C Fe(III) (Figure 4.8d). Nanogoethite and lepidocrocite 

made up the Fe mineralogy of the 120-hr sample (Figure 4.3), consistent with the results 

reported by Jeong et al. (2008) and Chirita et al. (2008). The Mössbauer spectroscopy study 

clearly demonstrates that the FeS oxidation to nanogoethite and lepidocrocite proceeded via 

an intermediate Fe(II)-dominant Fe(II)/Fe(III) state (Site B and Site C) that was not 

discernible from XRD. The various Fe(III) solid products, including nanoparticulate 

nanogoethite and lepidocrocite, are responsible for controlling the concentration of U(VI) in 

solution by adsorption and promoting UO2 oxidation. The role of specific Fe(III) 

oxyhydroxide products in UO2 oxidation, however, remains to be determined. 
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Table 4.4 Mössbauer parameters for initial mackinawite and selected oxidized samples at 77 K and 4.5 K. 1 

Sample 
Temp

. 
Mineral 

/Fe-species 

  Mössbauer parametersa     

HWH

M <CS>     Area 2 
(mm/se

c (mm/sec) (mm/sec) (mm/sec) Tesla Tesla (%) 
(reduce

d) 

Initial FeS 77 K 
Fe(II)-LS-Tet 

0.25 
0.53 0.11 0.09 na __ 72 

2 Fe(II)-B 0.56 0.037 __ 24.4 1.51 19 

Fe(II)-C 0.48 -0.05 __ 29.6 0.73 10 

4 hr 

oxidized 
4.5 K 

Fe(II)-LS-Tet 

0.32 

0.43 0.1 0.075 __ __ 9 

1.7 
Site B Fe(II) 0.45 -0.02 __ 15.8 5.4 75 

Site C Fe(III) 0.25 0.29 __ 31.3 1.8 6 

Ferrihydrite 0.41 0.01 
 

48.7 2.7 9 

45 hr 

oxidized 
4.5 K 

Site B Fe(II) 

0.21 

0.46 -0.02 __ 16.1 3.7 22 

1.2 Site C Fe(III) 0.32 0.29 __ 30.3 1.8 4 
Nanogoethite 0.48 -0.12 __ 49.7 0.8 71 

Lepidocrocite 0.47 -0.08 __ 45.8 1.0 3 

168 hr 

oxidized 
4.5 K 

Nanogoethite 
0.21 

0.48 -0.12 __ 49.9 0.6 84 
2.1 

Lepidocrocite 0.48 -0.03 __ 45.8 1.9 16 
HWHM = half- er;  

<H> = average hyperfine field;  

stdev = standard deviation; na = not applicable; χ2= reduced chi square (goodness of the fit). 

 2 

 3 
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4.3.2.2 Sulfur in FeS Oxidation 

Along with Fe(II) dissolution and oxidation, another mechanism for the effective 

scavenging of oxygen during the initial 51 hr is the redox reaction that occurs with S(-II) in 

the FeS structure. A variety of sulfur species may result from FeS oxidation, including 

polysulfides (Sn
2-), elemental sulfur (S8

0), thiosulfate (S2O3
2-), and sulfate (SO4

2-) (Schippers 

and Sand, 1999; Chirita, 2009; Jeong et al., 2010a). Due to the very rapid decomposition of 

polysulfides (Rickard and Morse, 2005), only S0
8, S2O3

2-, and SO4
2- were quantified in this 

study. The overall trends of S(-II) oxidation are tracked by measured Eh (Figure 4.9a).  

 

 
Figure 4.9 The kinetic profiles of (a) sulfur species, i.e., elemental sulfur, thiosulfate, and 

sulfate; and (b) Eh during the oxidation experiments. The arrow indicates the event of S8
0 

separation from the aqueous phase. Error bars reflecting one standard deviation of analysis 

are sometimes smaller than the symbol size. 
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As Figure 4.9b shows, S8
0

 was the primary intermediate S oxidation product 

throughout the experiment. Over the first 2 hr reaction, no oxidized S species were detected, 

indicating preferential Fe(II) oxidation was dominant in this time frame. Elemental sulfur 

began to appear at 4 hr of reaction with its concentration rapidly increasing to a maximum at 

~66 hr (0.036 M). The peak concentration of S8
0

 accounted for only ~65% of the total S input 

as FeS (0.056 M). The loss of H2S gas from the reactor or losses of S8
0

 to the air-water 

interface may have led to an incomplete recovery of sulfur. The transformation of structural 

sulfide into S8
0 is supported by XANES spectra (Figure 4.10). Sulfur K-edge XANES spectra 

clearly illustrate the evolution of the S(-II) moiety of FeS to S8
0 in the solid phase, although 

an intermediate polysulfide phase was not identified. The peak at 2470.4 eV gradually 

decreased over time, accompanied by the increase of S8
0 peak at 2472.4 eV until FeS was 

completely depleted. Consistent with the extraction results in Figure 4.9b, the more oxidized 

sulfur species were not detected in the XANES spectra, suggesting their minor existence in 

the system. A linear combination fitting of XANES spectra (Table 4.5) indicated that ~50% 

of mackinawite S(-II) was transformed to S8
0 by 24 hr reaction. The oxidation of S(-II) and 

polysulfide, together with Fe(II) oxidation, probably consumed almost all DO during the first 

51 hr of oxidation, until all FeS was depleted and the formation of S8
0 was complete. 
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Figure 4.10 Sulfur K-edge XANES spectra of batch samples over the course of the FeS 

oxidation experiment. 
 

Table 4.5 Sulfur speciation in samples of FeS as calculated by XANES linear combination 

fitting. The relative concentration of S components, i.e., mackinawite and elemental sulfur 

are presented as percentages.  Relative errors of fitting are given in parentheses. 

 4 hr 24 hr 50 hr 138 hr 

S(-II) (%) 

Mackinawite 
100 (0.5) 56.5 (1.8) 2.8 (1.4) 0 

S(0) (%) 

Elemental 

sulfur 

0 46.4 (2) 96.5 (2.5) 100 (5.4) 

 

 

The occurrence of S2O3
2- was first observed at 4 hr, but the concentration of S2O3

2- 

only slowly increased to ~0.18 mM at 75 hr and remained at this level. In contrast, SO4
2- 

remained at an even lower concentration throughout the experiment, and only slightly 
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increased over time. Both of the sulfur oxidation species were insignificant relative to the 

production of S8
0, indicating the dominance of S8

0 in this abiotic system. This result has been 

reported previously in FeS systems where microbial activity is absent (Burton et al., 2006; 

Burton et al., 2009). Assuming that the effective oxidative transformation of S8
0 requires 

sulfur-oxidizing bacteria (Burton et al., 2009),  the resistance of S8
0 to chemical oxidation by 

oxygen, as observed in the present study, is expected. The absence of pH change also 

confirms a lack of oxidative S8
0 conversion into S2O3

2- and SO4
2-. For example, if the 

0.036M amount of  S0
8 observed at 66 hr had been completely oxidized, a large number of 

protons would have been generated, along with a lower solution pH based on Eq. 4.1 and 4.2.  

0 2 +

8 2 2 4

1 3
S (s)+ O +H O = SO +2H

8 2

                                            (4.1) 

0 3 2- 2+ +

8 2 4

1
S (s)+6Fe +4H O = SO + 6Fe + 8H

8

                              (4.2) 

Considering the concurrent formation of iron oxyhydroxides (i.e., nanogoethite and 

lepidocrocite), the overall reaction for the FeS oxidation in this study is proposed as: 

0

2 2 8

3 1 1
FeS(s)+ O + H O= S (s)+FeOOH(s)

4 2 8
                              (4.3) 

The preferential reaction of oxygen with nano-sized FeS thus effectively inhibits UO2 

oxidation until FeS is depleted by oxidation. 
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4.4 Conclusions 

The long-term success of in situ reductive immobilization of U depends on the 

stability of U(IV) precipitates (e.g., uraninite) under redox fluctuating redox conditions. As 

this work shows, reoxidation and mobilization of uraninite may take place relatively rapidly, 

even in the presence of relatively low DO (~0.7 mg/L) when FeS is absent. When present, 

FeS can effectively inhibit the oxidation of UO2 by keeping DO low as long as it persists. 

Upon the depletion of FeS, a rapid oxidative dissolution of UO2 may result, leading to the 

complete oxidation of UO2 to U(VI) species. Fe oxyhydroxides formed during oxidation then 

provide an adsorptive sink for dissolved U(VI). In view of the results of this work, the 

following general conclusions may be drawn: 

1. Mackinawite can provide practical protection of UO2 precipitates when it is added or 

naturally formed as a result of biostimulation of SRB. The stability of U(IV) solid phases 

is maintained in the presence of FeS as a result of the preferential reaction of DO with 

FeS before reacting with U(IV). Given that bacteria capable of reducing U, Fe, and SO4
2- 

are ubiquitous in natural systems, reduced U(IV) solids and FeS can be simultaneously 

produced at U-contaminated sites where Fe(III) minerals and sulfate are frequently 

encountered.  In such cases, FeS may serve as an effective oxygen scavenger and redox 

buffer, and aid in keeping U(IV) stabilized in U contaminated environments undergoing 

redox cycling. 

2. The extent of FeS protection may be limited by its physical proximity and 

concentration relative to UO2. When in excess of DO concentrations, FeS persistence 

may significantly inhibit UO2 oxidative dissolution. Provided that sulfate reducing 

conditions are eventually restored before DO levels rise significantly, the concentration 
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of dissolved U(VI) may remain insignificant in the groundwater. However, when 

oxidants, such as oxygen, are in excess of the reducing capacity of FeS, the consumption 

and depletion of FeS by oxygen may ultimately facilitate UO2 oxidation. Therefore, the 

effectiveness of FeS and extent of its protection will vary depending on the molar ratio of 

FeS to UO2 (~30:1 in this study) and its proximity to U(IV) phases.     

3. Although the incorporation of U(VI) into the structure of iron oxyhydroxide was not 

apparent in this study, significant adsorption of U(VI) species onto the FeS oxidation 

products was observed. Further investigations are needed to evaluate of the impact of 

oxygen concentration, pH, and other solution conditions, to determine whether effective 

immobilization of U(VI) into the structure of iron oxyhydroxides is possible.  

Following these conclusions, the next study seeks to examine the impact of FeS on 

the kinetics of abiotic UO2 oxidative dissolution in artificial oxic groundwater under field-

relevant conditions. If the dissolution rate of UO2 can be inhibited by FeS to a significantly 

low level, the long-term stability of reduced U(IV) against reoxidation may be promising 

after effective biostimulation operations. 
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Chapter 5  

Nano-FeS Impedes UO2 Dissolution Rate under Varied Oxic Conditions 

 

 

 
 

5.1 Introduction 

As shown in Chapter 4, uraninite is thermodynamically unstable in the presence of 

oxygen and can be effectively oxidized and consequently dissolved within several hours to 

days in batch or sediment column experiments (Casas et al., 1994; de Pablo et al., 1996; 

Pierce et al., 2005). Oxidative dissolution of UO2 by oxygen has been proposed to occur 

through a sequence of reaction steps at the UO2 surface, including oxygen adsorption, 

formation of activated surface complexes, electron transfer, and subsequent release of U(VI) 

products (Torrero et al., 1997; Shoesmith, 2000). Oxidative dissolution rates determined by 

various authors range from 10-12 to 10-7 mol·m-2·s-1 based on batch and flow-through reactor 

studies (Casas et al., 1994; De Pablo et al., 1999; Pierce et al., 2005; Ulrich et al., 2009). Due 

to the complexity of the mechanism of oxidative UO2 dissolution, a variety of rate-limiting 

steps have been proposed. At neutral to alkaline pH, oxidative dissolution may proceed 

through intermediate U oxides (i.e., U3O7 or U4O9), which may form a surface layer 

 

 

 

 

_____________________ 

This chapter is adapted from: Bi, Y.; Hayes, K. F., Nano-FeS Inhibits UO2 Reoxidation under Varied 

Oxic Conditions. Environ. Sci. Technol. 2013, 48 (1), 632-640. 
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surrounding a core of UO2 (de Pablo et al., 1996; Torrero et al., 1997; Finch and Murakami, 

1999). Oxygen diffusion through the passivation layer to contact fresh UO2 surface and 

oxidize U(IV) may also be rate limiting, particularly when the oxygen concentration is low 

(Grambow, 1989; De Pablo et al., 1999). Alternatively, in the presence of carbonate, Ulrich 

et al. (2009) proposed the detachment of U(VI)-carbonato complexes as the rate-limiting step 

based on the observation of increased dissolution rate relative to the carbonate-free system. It 

is likely that the rate-limiting step for UO2 oxidative dissolution varies depending on the 

experimental conditions. The reaction rates can also be impacted if the reprecipitation of 

dissolved U forms secondary phases (Torrero et al., 1997; Finch and Murakami, 1999; Santos 

et al., 2006) or if reducing agents such as iron sulfides are simultaneously present, which can 

react with  dissolved or solid-phase U species.  

Long-term stability of reduced U(IV) solids may be achieved when the dissolution 

and/or reoxidation of UO2 are sufficiently slow during occasional low levels of oxidant 

intrusion. As shown in Chapter 4 and previously (Abdelouas et al., 1999b; Bi et al., 2013), 

oxygen scavenging by FeS retards UO2 reoxidation and provides redox buffering during 

oxygen intrusion. Yet, the kinetics and mechanisms of UO2 oxidative dissolution under oxic 

flowing conditions in the presence of FeS have not been addressed. The impact of 

geochemical variables, such as pH, DO concentration, and FeS concentration on the kinetics 

of UO2 dissolution also has not yet been systematically studied.  

The objective of the present study was to examine the impact of FeS on the rate of 

abiotic UO2 oxidative dissolution in artificial oxic groundwater under field-relevant 

conditions. Using continuously stirred tank reactors (CSTRs), the kinetics of UO2 dissolution 

was examined in the presence and absence of FeS. Dissolution rates were measured as a 
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function of pH, DO and FeS concentrations, and the solid phase reaction products were 

identified through spectroscopic techniques. A conceptual mechanistic reaction model was 

developed for the inhibition of UO2 dissolution by FeS. The results of this study contribute to 

the understanding of the long-term stability of reduced U(IV) against reoxidation in 

groundwater environments, where oxic conditions prevail for brief periods, following a 

prolonged anoxic bioreductive period. 

 

5.2 Experimental Methods 

5.2.1 Oxidative Dissolution Experiments 

The oxic flow-through experiments were conducted with 50 mL CSTRs (Millipore 

8050) under varied pH (6.1 – 8.1; common for groundwater), DO influent concentration (0 – 

7.8 mg/L to simulate oxygen intrusion into a reducing zone), and FeS concentration (Fe:U 

molar ratios of ~2.5 – 120 to simulate excess Fe ranges in a bioreduced zone). A detailed 

description of the setup is given in Chapter 3. Each reactor was loaded with ~0.48 mM UO2 

suspension and FeS of varied concentrations to provide the desired FeS:UO2 ratio. All feed 

solutions were constantly purged with custom CO2/O2/N2 gas mixtures and prepared with 

MilliQ water containing 0.4 mM KCl, 2.0 mM CaCl2, and different NaHCO3 concentrations 

to achieve a final pH of 6.1, 7.1, or 8.1 (Table 5.1). With a flow rate between 1.8-2.2 

mL·min-1, the CSTR has a hydraulic residence time (τ) of ~25 min. Experiments were 

operated until DO breakthrough occurred or the inhibited UO2 dissolution period ended, 

typically up to 200 residence times. The inhibition period is defined as the time over which 

[U]diss remains at average steady-state concentration before DO breakthrough, i.e., when 

[U]diss increased by more than twice the standard deviation from the average steady-state 
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value. At the completion of flow-through experiments, solid samples were collected on the 

membrane by draining the reactor. A time series of solid samples were collected at 5, 120, 

and 160 residence times from experiments of fixed pH 7.1, 1.8 mg·L-1 DO, and 18.7 mM 

FeS. Additional solid sample was taken from a control experiment of pH 7.1 and 1.8 mg·L-1 

DO in absence of FeS after reaction of 65 residence times. This flow-through system was 

also utilized to study the dissolution of UO2 under oxygen-free conditions in the presence and 

absence of FeS.  

 

Table 5.1 Groundwater compositions in equilibration with CO2/O2/N2 gas mixtures for pH 6, 

7, and 8 experiments. 

Gas mixture 

CO2/O2/N2 

(vol%) 

NaHCO3 

(mM) 

CaCl2 

(mM) 

KCl 

(mM) 

Influent 

pH 

Influent 

DO  

(mg/L) 

Influent 

DIC* 

(mM) 

5/4/91 0.8 2.0 0.4 6.1 1.8 2.5 

5/4/91 8.0 2.0 0.4 7.1 1.8 9.7 

0/4/96 1.0 2.0 0.4 8.1 1.8 1 

5/20/75 8.0 2.0 0.4 7.1 7.8 9.7 

5/0/95 8.0 2.0 0.4 7.1 <0.2 9.7 

* Concentration calculated from Visual MINTEQ at equilibrium with the gas mixtures 

The experimental conditions chosen for this study, such as pH and DO, reflect the typical geochemical 

conditions found in the field: U-contaminated groundwater typically has a pH of 6.5-8.5, which is 

similar to the pH range used in this study. The DO concentration in this study was selected to simulate 

groundwater with elevated DO levels in an unconfined aquifer from water table fluctuation and 

oxygen intrusion, allowing mildly-oxidizing to near DO saturation.  

 

5.2.2 Sample Analyses 

Total dissolved uranium and iron were determined in effluent samples by ICP-MS 

(PerkinElmer ELAN DRC-e). Dissolved Fe(II) was measured photometrically by the 
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ferrozine method at 562 nm using a UV/Vis spectrophotometer (Varian) (Stookey, 1970), 

which was compared with total Fe concentration measured by ICP-MS. The dissolved Fe(II) 

equaled the total dissolved Fe measured by ICP-MS within an error of 5%. Using numerical 

integration, released Fe(II) (µmol) during the inhibition period was estimated for each 

experiment. The dissolved sulfide in the effluent was determined by a silver-sulfide ion 

selective electrode (Fisher Scientific accumet) (Wilmot et al., 1988). Selected aqueous 

samples were also analyzed by IC (Dionex) for S2O3
2- and SO4

2-. 

Solid samples collected from flow-through reactors at pH 6.1, 7.1, and 8.1 were 

characterized by powder X-ray diffraction (XRD) using a Rigaku 12 kW rotating anode 

diffractometer at 40 kV and 100 mA with a monochromated Cu-Kα radiation from 10º to 70º 

range of 2-θ. 

In selected experiments, XAS analyses of wet solid pastes from the CSTR were 

performed at the Stanford Synchrotron Radiation Lightsource (SSRL) as previously 

described in Chapter 4. Uranium LIII-edge absorption spectra were collected in fluorescence 

mode at Beamline 4-1 or 11-2 using a 13- or 100-element Ge detector at a low temperature 

(77 K). Sulfur K-edge spectra were collected at Beamline 4-3 in fluorescence mode using a 

passivated implanted planar silicon detector at room temperature under an inert (He) 

atmosphere. XAS data were later subjected to X-ray absorption near edge structure (XANES) 

and extended X-ray absorption fine structure (EXAFS) analyses using SixPACK and 

IFEFFIT code (Newville, 2001; Webb, 2005).  
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5.2.3 Dissolution Rate Calculation 

After reaching a steady-state effluent uranium concentration, the oxidative dissolution 

rate of UO2 (Rm) (mol·g-1·s-1) by oxygen was obtained using the equation 5.1: 

               2

[ ]

[ ]

ss
m

U Q
R

V UO





                                                               (5.1) 

where Rm (mol·s-1·g-1) is a mass-normalized oxidative dissolution rate of UO2,  Q (L·s-1) the 

flow rate, V (L) the reactor volume, [U]ss (mol·L-1) the steady-state concentration of total 

dissolved uranium, and [UO2] (g·L-1) the mass concentration of uraninite in the reactor. Due 

to the unknown degree of aggregation and thus uncertainty in synthetic UO2 surface area, 

surface-area normalized rate (mol·m-2·s-1) were not estimated in this study.  

After an initial non-steady state period (related to start-up and reactor mixing), 

steady-state U effluent concentration was typically reached after ~50 residence times, and 

maintained until the end of the inhibition period prior to significant U(VI) concentration 

breakthrough. The reported steady-state effluent U concentrations are the average of 

measurements from at least 6 samples for all experiments. Error bars represent two standard 

deviations of the rate calculated from the reactor output at steady-state, reflecting the 95% 

confidence interval. During the inhibition period, less than 6% of the total UO2 dissolved and 

exited the CSTR. In comparison, control experiments in the absence of FeS released about 

50% of the total U at the end of steady-state dissolution, resulting in a decreased mass of 

UO2. The mass of UO2 during steady-state dissolution was adjusted in the rate calculations 

for all experiments. 
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5.3 Results 

5.3.1 Inhibited UO2 Dissolution Rate 

In the presence of FeS, the oxidative dissolution of UO2 was inhibited and resulted in 

low levels of U concentration (<1 µM) over a range of solution conditions (Table 5.2). 

Examples of UO2 dissolution profiles at pH 7.1 (experiment 2a and 2b in Table 5.2) are 

shown in Figure 5.1. After the initial start-up period, the steady-state [U]ss was less than 0.2 

µM. The low effluent U concentrations remained for a total of ~160 residence times over the 

inhibition period before rapidly increasing due to FeS depletion. Over the pH range of 6.1–

8.1, similar levels of effluent U concentration were observed in the presence of 18.7 mM 

FeS, while [U]ss in absence of FeS were significantly greater at ~4 µM (Figure 5.2).  

 

  
Figure 5.1 Uranium dissolution profiles in the flow-through experiments at pH 7.1 

(experiments 2a, 2b in Table 5.2) in the presence of 18.7 mM FeS. Influent solution contains 

1.8 mg·L-1 DO. Replicates are represented by the filled vs open symbols. The dotted line 

represents the steady-state U concentration used for rate calculation. The normalized time is 

calculated by dividing real reaction time (t) by the hydraulic residence time (τ) of the reactor. 
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Figure 5.2 Uranium dissolution profiles at various pH in the flow-through experiments in 

absence of FeS. Replicates are represented in filled or empty symbols. Experimental 

conditions: 1.8 mg/L DO and 0.48 mM UO2. 
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Table 5.2 Experimental UO2 dissolution rates normalized to solid mass (Rm) obtained under 

various combinations of oxidizing conditions and water compositions.   

Exp. ID 
Initial 

[UO2] 

(mM) 

Initial 

[FeS] 

(mM) 
pH 

DO 

(mg·L-1)
 

DIC* 

(mM) 

Flow rate 

(mL·min-1) 

[U]ss 

(µM) 

Rm×10-10 

mol·g-1·s-1 

Inhibition 

duration 

(t/τ) 

Variation of pH   

1a 0.48 18.7 6.1 1.8 2.5 1.83 0.124 5.81 ± 0.36 120 

1b 0.48 18.7 6.1 1.8 2.5 1.98 0.106 5.39 ± 0.65 115 

2a 0.48 18.7 7.1 1.8 10 1.88 0.162 7.80 ± 0.54 168 

2b 0.48 18.7 7.1 1.8 10 1.96 0.168 8.48 ± 0.47 158 

3a 0.48 18.7 8.1 1.8 1 1.82 0.182 8.50 ± 0.35 183 

3b 0.48 18.7 8.1 1.8 1 1.91 0.145 7.14 ± 0.43 195 
Control 0.48 \ 6.1 1.8 2.5 1.87 3.94 257 ± 4.8 n/a 
Control 0.48 \ 6.1 1.8 2.5 1.89 4.01 268 ± 6.8 n/a 
Control 0.48 \ 7.1 1.8 10 1.91 4.18 298 ± 4.2 n/a 
Control 0.48 \ 7.1 1.8 10 1.82 4.24 295 ± 3.9 n/a 
Control 0.48 \ 8.1 1.8 1 1.81 4.80 334 ± 16 n/a 
Control 0.48 \ 8.1 1.8 1 1.95 4.55 328 ± 8.2 n/a 

Variation of FeS   

4a 0.48 56.8 7.1 1.8 10 1.87 0.116 5.32 ± 0.28 490 

5a 0.48 4.8 7.1 1.8 10 1.87 0.503 23.2 ± 2.5 48 

5b 0.48 4.8 7.1 1.8 10 1.91 0.418 19.1 ± 1.4 49 

6a 0.48 1.2 7.1 1.8 10 1.85 0.936 42.7 ± 6.7 9 

Variation of DO   

7a 0.48 18.7 7.1 7.8 10 1.84 0.323 15.3 ± 0.65 53 

7b 0.48 18.7 7.1 7.8 10 2.15 0.247 13.6 ± 0.77 50 

8a 0.48 18.7 7.1 <0.2 10 1.88 0.111 5.38 ± 0.43 n/a 
Control 0.48 \ 7.1 7.8 10 2.24 7.02 554 ± 13 n/a 
Control 0.48 \ 7.1 7.8 10 2.19 6.44 505 ± 47 n/a 
Control 0.48 \ 7.1 <0.2 10 1.85 0.428 20.7 ± 0.65 n/a 

* Dissolved inorganic carbon calculated from Visual MINTEQ at equilibrium with CO2 gas mix used. 

 

For the three pH conditions studied, FeS reduced the rates of UO2 dissolution by more 

than an order of magnitude compared to the rates in its absence (Figure 5.3a). FeS inhibited 

UO2 oxidative dissolution by consuming the DO entering the CSTR. With an influent DO 

concentration of 1.8 mg·L-1, FeS reduced the DO level in the CSTR to <0.5 mg·L-1 as 

measured in the effluent solution by a DO probe, which has a detection limit of ~0.2 mg·L-1. 

Higher DO levels between 1.3–1.9 mg·L-1 were observed in the effluent for control 
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experiments in absence of FeS, consistent with the higher influent DO levels. With similar 

levels of DO, the UO2 dissolution rates were found to be independent of pH in this study. 

 

   

 
Figure 5.3 Steady-state UO2 dissolution rates (mol·g-1·s-1) determined in the presence (○) 

and absence (◊) of FeS as a function of (a) pH; (b) DO concentration (mg·L-1) at18.7 mM 

FeS and pH 7.1; and (c) FeS concentration (g/L) at pH 7.1. Error bars represent 95% 

confidence interval of 6 to 16 individual samples for the dissolution rates. 
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At pH 7.1 and FeS concentration of 18.7 mM, the inhibited UO2 dissolution rate 

increased with increasing influent DO concentration (Figure 5.3b), but remained significantly 

lower than the control without FeS. At 7.8 mg·L-1 DO, FeS inhibition resulted in a [U]diss of 

0.26–0.32 µM and dissolution rate of 13.6–15.3×10-10 mol·g-1·s-1, compared to the more than 

one order of magnitude higher rate for the control (~5.4×10-8 mol·g-1·s-1). During the 

inhibition period, DO was effectively reduced to well below 0.5 mg·L-1 by FeS in the CSTR. 

In contrast, the rate obtained under anoxic conditions was 5.4×10-10 mol·g-1·s-1, which 

resulted in the lowest UO2 dissolution rate in the presence of FeS. Interestingly, this rate was 

even lower than an “anoxic” control experiment (~20×10-10 mol·g-1·s-1), indicating the 

complete removal of O2 in the flow-through system with no FeS was not achieved (see 

section 5.4.1).  

At a fixed UO2 concentration of 0.48 mM, pH = 7.1, and DO = 1.8 mg·L-1, higher 

FeS concentrations resulted in lower [U]ss and UO2 dissolution rates (Table 5.2, Figure 5.3c). 

The lowest rate of 5.3×10-10 mol·g-1·s-1 was observed in the presence of 56.8 mM FeS, ~70% 

of the rate at 18.7 mM FeS. In the presence of 4.8 mM FeS, the dissolution rate increased to 

~20×10-10 mol·g-1·s-1. At the lower FeS concentration of 1.2 mM, a faster rate of 42.7×10-10 

mol·g-1·s-1 occurred. Although low DO levels occurred in the effluent in the presence of FeS, 

they increased slightly from ~0.3 to 0.9 mg·L-1 when the FeS loading decreased from 56.8 

mM to 1.2 mM. 

 

5.3.2 Fe(II) Release and Inhibition Duration 

The consumption of DO by FeS was accompanied by a pH-dependent Fe(II) release 

into the effluent solution. At pH 6.1, considerable FeS dissolution resulted in a higher 
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dissolved Fe(II) concentration compared to that at higher pH (Figure 5.4). The concentration 

of dissolved Fe(II) quickly peaked at ~0.15 mM after ~6 residence times; it then slowly 

dropped to ~0.11 mM and remained at this level for roughly 115 residence times. At pH 7.1, 

the concentrations of Fe(II) peaked at lower values and continuously decreased over the 

entire period of DO consumption. The smallest release of Fe(II) was found at pH 8.1, where 

detectable Fe(II) persisted for only the initial ~35 residence times. Approximately 81% of the 

total Fe was released as dissolved Fe(II) at pH 6.1, compared to 27% and 0.2% of total Fe 

released at pH 7.1 and 8.1, respectively. Notably, the duration of inhibited UO2 dissolution 

was closely related to the released amount of Fe(II) into effluent, which was estimated for 

each experiment during the inhibition period. A regression analysis on the inhibition duration 

vs. the percentage of Fe(II) release provides a good linear relationship between the two 

variables, with smaller total Fe(II) release leading to longer inhibition time. The slightly 

acidic pH 6.1, at which considerable Fe(II) dissolution occurred as noted above, resulted in a 

significantly reduced inhibition period as compared to that at higher pH. 

DO and FeS concentrations also influenced Fe(II) release and the inhibition period of 

UO2 dissolution. Higher DO concentrations resulted in a higher and sharper Fe(II) peak and a 

faster drop in Fe(II) concentration, while lower DO caused a lower and broader peak but a 

longer persistence of dissolved Fe(II) in the effluent (Figure 5.5). The amount of released 

Fe(II) decreased with increasing influent DO concentration, suggesting more FeS oxidized to 

Fe(III) precipitates in the CSTR at higher DO. With a DO concentration of 1.8 mg·L-1 and 

pH of 7.1, decreasing FeS concentration resulted in less Fe(II) release, which was 

proportional to the added FeS. The longer inhibition period is therefore linearly correlated 

with greater FeS concentration and Fe(II) release at a fixed pH and DO concentration.  
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Figure 5.4 The dissolved Fe(II) release profiles from FeS dissolution at different pH 

(experiments 1a, 1b, 2a, 2b, 3a, and 3b in Table 5.2) containing 1.8 mg·L-1 DO. Replicates 

are represented by the filled vs open symbols.  

 

 
Figure 5.5 The dissolved Fe(II) release profiles from FeS dissolution at different influent DO 

concentrations of pH 7 artificial groundwater.  Replicates are represented in filled or empty 

symbols.  
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5.3.3 Characterization of U Solid Phase with XAS. 

A time series of solid samples were collected from the CSTR at 5, 120, and 160 τ 

from the replicate experiments run at the conditions of pH 7.1, 1.8 mg·L-1 influent DO, and 

18.7 mM FeS. The first two samples were taken during the inhibition period of UO2 

dissolution, while the last sampling occurred immediately after oxygen breakthrough. These 

CSTR samples, along with an oxidized UO2 sample from a control experiment, were then 

characterized by XANES and EXAFS analyses of U LIII-edge spectra.  

XANES analysis showed that the solid U samples were predominantly made up of 

U(IV) (>90%) over the entire inhibition period (Figure 5.6 and Table 5.3). EXAFS spectra, 

fits, and associated Fourier transforms (FTs) (Figure 5.7) confirmed that nano-sized UO2 was 

the primary U(IV) solid phase retained in the CSTR throughout the reaction period, with no 

significant accumulation of U(VI) species within the solid phases. The fitted parameters from 

the EXAFS analyses are listed in Table 5.4. In contrast, the sample from UO2 control 

experiment showed a clear energy shift of the absorption edge from the U(IV) standard 

(Figure 5.6), suggesting mixed oxidation states of U after reacting with DO in the absence of 

FeS (~53% U(VI)). 

The FTs of all CSTR samples (Figure 5.7b) show a peak at ~1.9 Å, corresponding to 

a U-O interatomic distance (R) of ~2.33 Å. The first shell U-O coordination number (CN) of 

5.9 (less than the 8 O of a crystalline UO2.00) was determined from unreacted synthetic UO2 

and fixed during fitting for all reacted samples, allowing for the comparison of second shell 

U between samples. The second peak at ~3.6 Å of the FTs was fit with a shell of 3.8 – 4.4 U 

atoms at ~3.84 Å. In the 160 τ sample, the second-shell CN is not only lower than UO2.00 

with 12 U(IV) neighbors, but also less than the earlier samples in the time series (~4.4 U). 
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The decreased second-shell CN suggests that the dissolved UO2 had smaller particle size than 

its earlier counterparts, likely due to enhanced UO2 dissolution after oxygen breakthrough. 

The solid phase U, however, remained essentially as poorly crystalline, nano-sized UO2 

during the entire inhibition period. The solid phase U is comparable to biogenic uraninite 

samples reported in previous studies (Singer et al., 2009; Veeramani et al., 2009). 

 

 

Figure 5.6 Normalized uranium LIII-edge XANES spectra of CSTR samples as a function of 

oxidation residence time in the presence of FeS compared to U(VI) and U(IV) standards 

(dotted lines). An energy shift to higher eV indicates oxidation of U to higher valence state.  

An edge position at higher energy and a shoulder at 17190 eV indicates U(VI), whereas an 

edge position at lower energy and lack of the shoulder indicate U(IV). 
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Figure 5.7 U LIII-edge spectra for samples collected at 5, 120, and 160 residence times in 

flow-through experiments in the presence of 18.7 mM FeS at pH 7.1 in comparison with 

crystalline UO2.00. (a) EXAFS spectra (solid line) collected at 77 K with fit to data (open 

circles) (k range for modeling = 2.0–11 Å-1) and (b) corresponding Fourier transforms (solid 

lines) and fit to data (open circles) uncorrected for phase shifts.  
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Table 5.3 Uranium and sulfur speciation in selected CSTR samples as calculated by XANES 

LCF results. The relative concentration of U and S components, i.e., U(IV) and U(VI) are 

presented as percentages. Relative errors of fitting are given in parentheses. 

Element 
Species 

component 
5 τ 120 τ 160 τ control 

Uranium 

 

 

U(IV) (%)  

uraninite 
92 (2) 84 (4) 90 (2) 47 (5.4) 

U(VI) (%) 

Uranyl 
8 (2) 16 (4) 10 (2) 53 (5.4) 

Sulfur 

 

S(-II) (%)  

Mackinawite 
95 (4) 8 (3) 0 (5) n/a 

S(0)* (%) 

Elemental 

sulfur 

5 (4) 92 (3) 100 (5) n/a 

* In the fluorescence mode, self-absorption of S8
0 can cause the attenuation of the XANES 

absorbance, a phenomenon that has been described as a particle-size effect (Pickering et al., 

2001). To improve the fit of XANES LCF, both finely ground S8
0 (~1–10 µm) and dissolved 

(1% w/v in toluene) S8
0 were used as S(0) model compounds.  
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Table 5.4 Structural parameters extracted from U LIII-edge EXAFS data of samples collected 

from the CSTR. Paths denoted with O1, U1, and O2 stand for first oxygen shell, the first 

uranium shell, and a second oxygen shell, respectively. The path O=U=O is a multiple 

scattering path. Estimated errors are given in parentheses. 

 

 

5.3.4 Identification of FeS Oxidation Products 

To identify the sulfur products resulting from oxygen scavenging by FeS, dissolved 

sulfide, thiosulfate, and sulfate concentrations were measured in the effluent. The 

concentrations of these dissolved sulfur species, however, were found to be negligible in all 

experiments (section 4.3.2.2), suggesting that S(-II) was predominantly oxidized to solid-

phase products in the CSTR.  

To determine solid sulfur phases that may have formed by oxidation, K-edge XAS 

data were collected (Figure 5.8). Based on XANES analyses, for all three pH conditions 

Sample   /   Path U-O1 U-U1 U-O2 O=U=O 

UO2 

standard  

CN 8.0 12.0 24.0 8.0 

R (Å)* 2.37 (0.02) 3.87 (0.01) 4.53 (0.04) 4.74 (0.03) 

σ2
 (10-3 Å2) 5 (1) 2 (1) 8 (2) 9 (2) 

 CN 5.9 a 4.4 (2.2) 8.8 (4.3) 5.9 a 

5 τ  R (Å)* 2.33 (0.01) 3.84 (0.01) 4.31(0.1) 4.65 (0.02) 

 σ2
 (10-3 Å2) 6 (1) 2 (3) 22 (21) 13 (2) 

 CN 5.9 a 4.39 (2.2) 8.8 (4.4) 5.9 a 

120 τ R (Å)* 2.33 (0.01) 3.84 (0.01) 4.35 (0.09) 4.66 (0.02) 

 σ2
 (10-3 Å2) 9 (1) 2 (3) 13 (12) 19 (2) 

 CN 5.9 a 3.8 (2.0) 7.2 (4.1) 5.9 a 

160 τ R (Å)* 2.33 (0.01) 3.84 (0.01) 4.27 (0.1) 4.67 (0.02) 

 σ2
 (10-3 Å2) 8 (1) 2 (2) 18 (23) 16 (2) 

CN: coordination number; R: interatomic distance; σ2: mean-square disorder.  
a.U-O1 in the synthetic UO2 structure was best fit with 5.9 oxygen atoms. This number was fixed 

in all sample fits. 
*
R values are the actual bonding distances, which are phase-shifted from the FTs peak positions. 



 102 

tested, the primary solid phase sulfur species formed from FeS oxidation was elemental 

sulfur (Table 5.3). The relative production of S8
0 appeared to be independent of solution pH 

and contributed to the overall oxygen scavenging capacity of FeS. 

Solid-phase FeS oxidation products remaining in the CSTR were also characterized 

by XRD. The results indicated that Fe(III) hydroxide solids (i.e., goethite and lepidocrocite) 

and elemental sulfur formed after FeS was oxidized. Because substantial amounts of Fe(II) 

were released at lower pH, a lesser amount of Fe(III) products were produced from FeS 

oxidation by oxygen (< 20% total Fe as Fe(III) at pH 6.1), with lepidocrocite as the dominant 

Fe(III) phase. In contrast, the direct transformation of FeS to an Fe(III) solid phase at pH 8.1 

resulted in the nearly complete conversion of the Fe(II) in FeS to goethite and little loss of 

Fe(II) from the reactor.  

 

 
Figure 5.8 Sulfur K-edge XANES spectra of CSTR solid phase samples over the course of 

the FeS oxidation experiments. 
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5.4 Discussion 

5.4.1 Oxidation Limited UO2 Dissolution 

Among the geochemical factors tested in this study, influent DO had the strongest 

influence on the dissolution rate of UO2. Results from control experiments showed a 25-fold 

increase in the dissolution rate from 20×10-10 mol·g-1·s-1 when the influent DO level rose 

from <0.2 mg·L-1 to 7.8 mg·L-1 (Figure 5.3b), a clear response to the increasing oxidant 

concentration. The significant increase of UO2 dissolution rate, however, was not observed 

when 18.7 mM FeS was present. The corresponding rate only increased from 5.4×10-10 to 

15.3×10-10 mol·g-1·s-1. The distinction between the two scenarios points to the high reactivity 

of FeS for scavenging oxygen in aqueous solution, which left little oxygen to react with UO2. 

Indeed, the measured DO concentration (<0.5 mg·L-1) in the effluent was considerably lower 

than in the influent during the inhibition period. Considering the possible diffusion of a small 

amount of air along the effluent line, the actual DO concentration in the CSTR may have 

been even lower than the measured values. This high efficiency of oxygen scavenging by 

FeS was also reported previously in Chapter 4 when oxygen was supplied at a much faster 

rate (Bi et al., 2013). The results from the present study, however, indicate the incomplete 

removal of influent DO by FeS, given that UO2 dissolution rate linearly increased with 

influent DO concentration.  

The mechanism of oxidative dissolution of UO2 by oxygen has been proposed to 

occur through a sequence of reaction steps at the UO2 surface, including the oxidation of 

U(IV) surface by oxygen, the formation of activated surface complexes, and the subsequent 

detachment of U(VI) products (Torrero et al., 1997; Shoesmith, 2000). Under low DO and 

high carbonate and/or calcium concentrations, the formation of U(VI) complexes can result 
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in the fast detachment of surface U(VI) species (De Pablo et al., 1999; Stewart et al., 2010). 

Under such conditions, the surface oxidation of UO2 may be the rate-limiting step 

(Shoesmith, 2000; Campbell et al., 2011). Alternatively, when the DO concentration is 

relatively high and surface oxygen is replenished relatively rapidly, the build-up of a UO2+x 

surface layer is possible, making the detachment step rate-limiting (de Pablo et al., 1996; 

Torrero et al., 1997; Ulrich et al., 2009).  

 

 

Figure 5.9 The rate-controlling steps of UO2 oxidative dissolution by dissolved oxygen in 

the presence and absence of mackinawite. 
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The FeS concentration dictates the DO levels in the simulated groundwater solution, 

and therefore it influences the UO2 oxidative dissolution mechanism and the corresponding 

rate-limiting process. At a sufficiently high FeS concentration (18.7 mM), XAS analyses 

showed no evidence of a U(VI) surface coating on reacted UO2 samples. This finding is 

consistent with a rate-limiting UO2 surface-oxidation step which determines the overall 

dissolution rate. Under these conditions, the detachment of surface-bound complexes (as 

dissolved Ca-UO2-CO3
2- complexes) would occur faster than surface oxidation, preventing 

U(VI) accumulation (Figure 5.9). In contrast, partially oxidized UO2 was revealed by 

XANES spectrum in the control reactor when exposed to relatively high influent DO in the 

absence of FeS. Under these conditions, the detachment of surface-bound U(VI) into solution 

may become rate limiting, although facilitated by carbonate and calcium ions. Similarly, 

Ulrich et al. (2009) proposed the detachment of U(VI)-carbonato complexes as rate-limiting 

in the presence of carbonate, since the oxidation of surface U(VI) would be relatively fast 

under mildly oxidizing conditions (DO = ~0.6 mg·L-1). By using a strong oxygen scavenger 

such as FeS, the rate-limiting step of UO2 dissolution can be shifted from U(VI) detachment 

under high DO levels in absence of FeS, to surface-oxidation limited when DO is 

significantly removed.  

The oxidation-limited dissolution of UO2 also showed a pH-independent rate in the 

presence of FeS in this study. Similar results have been reported for UO2 dissolution at 

higher oxygen concentrations at pH >6, where proton-promoted UO2 dissolution is at the 

lowest rate (Torrero et al., 1997). In most groundwater conditions, pH is unlikely to influence 

UO2 dissolution rates, unless it substantially changes carbonate speciation under oxidizing 

conditions. In the present study, the total dissolved inorganic carbonate concentration ranged 
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from 1–10 mM depending on solution pH and PCO2. Bicarbonate is the predominant 

carbonate species from pH 6.1 to 8.1 with a concentration in great excess to dissolved U(VI). 

Therefore, the rate of surface U(VI) detachment is likely similar in the pH range studied, 

which is faster than surface oxidation in the presence of FeS. 

 

5.4.2 pH-Dependent FeS Dissolution 

Under the flow-through conditions of the present study, FeS is shown to be an 

excellent scavenger of DO, with FeS itself undergoing significant oxidation over time. At pH 

7.1, Fe(III) hydroxide solids and elemental sulfur are the final oxidation products, consistent 

with the results in Chapter 4 and previous studies (Burton et al., 2009; Jeong et al., 2010a; Bi 

et al., 2013). Among aqueous species, only Fe(II) was detectable as a result of FeS 

dissolution. Assuming FeS is the predominant reductant for oxygen during the inhibited UO2 

dissolution period, the time required for complete FeS oxidation can be estimated based on 

the influent DO concentration, flow rate, and the oxidation products. The estimated oxidation 

time for FeS agrees reasonably well with the observed time for complete FeS oxidation by 

tracking soluble Fe(II) (Table 5.5).  

The pH-dependent release of dissolved Fe(II) in oxic groundwater results in a loss of 

reducing capacity of FeS for DO, which consequently decreased the duration of the FeS 

inhibition of UO2 oxidation. For example, a considerably shorter inhibition period of UO2 

dissolution was observed at pH 6.1 (~120 τ) compared to that at pH 8.1 (~190 τ), in which 

81% and 0.2% of total Fe were released at the corresponding pH. Under acidic pH, FeS 

underwent significant dissolution followed by the slow precipitation of Fe(III) hydroxides. 

The aqueous Fe(II) species only slowly oxidized at pH < 6.5 (Morgan and Lahav, 2007), and 
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contributed little to the overall oxygen scavenging in the reactor. At basic pH, the structural 

Fe(II) of FeS oxidized directly to produce solid phase Fe(III) products. The complete solid-

phase conversion of Fe(II) to Fe(III) with little Fe(II) dissolution allowed for nearly complete 

utilization of the FeS reducing capacity, and thus extended the inhibition period of UO2 

dissolution. An oxidized hydrophobic sulfur-rich layer with nanosize pores likely forms on 

the FeS surface during oxidation, which may facilitate oxygen diffusion or electron transfer 

to enhance the rate of oxygen removal by FeS (Chirita, 2009). A similar pH-dependent 

oxidation mechanism has been reported in a batch study of FeS oxidation (Jeong et al., 

2010a). Given the longest inhibition of oxidative UO2 dissolution by FeS occurred at a basic 

pH, these conditions would be preferred over acidic conditions for prolonging the protective 

nature of FeS in groundwater.  
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Table 5.5 Groundwater compositions in equilibration with CO2/O2/N2 gas mixtures for pH 6, 

7, and 8 experiments. 

 

 

 

 

Experiment 

code 
pH 

FeS 
(mM)  

DO 

(mg·L-1)
 

Observed  

oxidation time  

for FeS (τ) 

Calculated 

time for FeS 

oxidation (τ) § 

Observed UO2 

inhibition time 

(τ) 

1a 6.1 18.7 1.8 163 166.5 120 

1b 6.1 18.7 1.8 158 165.8 115 

2a 7.1 18.7 1.8 185 207 168 

2b 7.1 18.7 1.8 190 208 158 

3a 8.1 18.7 1.8 \ * 228.3 183 

3b 8.1 18.7 1.8 \ * 228.5 195 

4a 7.1 56.8 1.8 610 686 490 

5a 7.1 4.8 1.8 63 59.5 48 

5b 7.1 4.8 1.8 60 60 49 

6a 7.1 1.2 1.8 12.4 13.7 9 

7a 7.1 18.7 7.8 59 56.8 53 

7b 7.1 18.7 7.8 55 56.6 50 
§ Calculation is based on the reaction:  

2+ 0

2 2 8

2 1
FeS(s)+ O + H O= FeOOH(s)+ (1- ) Fe + S (s)

4 2 8

x x
x x


 

where x is a value between 0 and 1, measured as a fraction of FeS undergoing dissolution to produce 

dissolved Fe(II) 

Assuming the effluent [Fe(II)] reflects the relative FeS concentration remaining in the CSTR, the 

disappearance of detectable Fe(II) should indicate the complete oxidation of FeS solids. Because the 

hydraulic residence time (τ) of Fe(II) in the reactor is relatively short (~25 min), the error in using this 

method for estimating FeS oxidation duration should be small.  

* the oxidation time for FeS cannot be estimated by tracking the effluent Fe(II) concentration due to lack of 

detectable Fe(II) at pH 8.  
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5.4.3 Limitation of Oxygen Scavenging 

In a flow-through system with a constant supply of oxidant, FeS eventually becomes 

completely oxidized. For a given pH and DO, the capacity of oxygen scavenging by FeS is 

directly determined by its concentration in the flow-through system. Higher FeS 

concentrations always leads to longer inhibition periods. However, the actual inhibition 

period for UO2 dissolution is notably shorter than the time observed for complete FeS 

oxidation under all experimental conditions (Table 5.5). For example, the observed inhibition 

period is ~160 τ for 18.7 mM FeS under 1.8 mg·L-1 DO and pH 7.1, while it takes ~190 τ to 

completely oxidize FeS. This disparity may indicate that when 10 – 20% of the total nano-

FeS particles remain, the kinetics of oxygen consumption by FeS become too slow to keep 

DO low enough for inhibiting UO2 dissolution.  

With increasing FeS concentration, UO2 dissolution rate begins to slow down 

asymptotically (Figure 5.3c) and reaches a minimum of 5.3 ×10-10 mol·g-1·s-1 at the highest 

FeS concentration (56.8 mM). This rate is only slightly lower than 8.0×10-10 mol·g-1·s-1 at 

18.7 mM FeS, and is comparable to the reported rates under similar anoxic conditions using 

nanoparticulate biogenic and synthetic UO2 (Ulrich et al., 2008; Wang et al., 2013). 

Therefore the inhibited UO2 dissolution rate may not decrease much below 5.3 ×10-10 mol·g-

1·s-1, even with higher FeS concentrations. It should be noted that the UO2 dissolution rate 

obtained from the anoxic control experiment (20×10-10 mol·g-1·s-1) was higher than that in the 

presence of FeS. This result may be attributed to residual oxygen (<1000 ppm) in the 

anaerobic glove bag surrounding the reactor, which may have diffused into the CSTR and 

reacted with UO2. When present, FeS would consume oxygen in the system until it is 

depleted. Therefore, the lower dissolution rate in the presence of FeS may simply be the 
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result of lowering the DO concentration in the CSTR, rather than a direct interaction of FeS 

with UO2 to keep UO2 surface reduced. Under such low DO conditions, surface U(IV) 

oxidation would be rate limiting.  

At low FeS concentrations, DO is not sufficiently removed by FeS and surface 

oxygen concentrations are high. The result from the 1.2 mM FeS experiment shows a much 

higher UO2 dissolution rate of 43×10-10 mol·g-1·s-1 and a shorter inhibition period (~9 

residence times). At the measured effluent DO concentration of ~0.9 mg·L-1, UO2 oxidation 

takes place more rapidly, with the rate-limiting step likely the detachment of surface 

complexes rather than surface oxidation as noted previously. To ensure the lower rates 

associated with surface oxidation-limited UO2 dissolution, low DO levels (<0.5 mg/L) must 

be maintained, which depends on having sufficient FeS present. The amount of FeS 

necessary to keep DO levels low depends on the oxygen supply rate, with higher FeS 

concentrations needed at higher DO concentrations and/or a faster flow rate. 

 

5.4 Conclusions  

This study demonstrates that a surface-oxidation step likely controls the overall UO2 

dissolution rate in the presence of synthetic nano-FeS when effective oxygen scavenging by 

FeS lowers the DO to rate-limiting levels. Because nanocrystalline FeS is readily formed 

under sulfate reducing conditions (Abdelouas et al., 1999b; Rickard and Morse, 2005), FeS 

may provide practical protection of UO2 in the field when oxic conditions are not prevalent. 

A sufficiently high concentration of FeS is, however, required to ensure low DO 

concentration when oxygen intrusion events occur. The capacity of FeS for removing DO 

from groundwater is directly governed by the amount of FeS exposed to an oxic flow under 
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oxygen-limited conditions. Geochemical factors, such as pH and DO levels, also affect the 

extent of the inhibition period. Alkaline pH promotes surface-mediated FeS oxidation, which 

provides greater oxygen scavenging capacity and a longer period of protection. In the 

absence of natural pH buffering, a change of pH conditions from slightly basic to acidic can 

induce significant FeS dissolution and decrease the inhibition period of low U release. In 

anoxic subsurface environments, diffusion-limited oxygen supply from oxic zones, in 

addition to oxygen scavenging by FeS, may substantially inhibit uraninite dissolution and 

prolong its stability. The transformation of FeS to more stable iron sulfide phases, such as 

pyrite, however, may limit the oxygen removal efficiency in the field.  

Recent investigations of U immobilization by bioremediation report a close 

association of reduced U(IV) with FeS in the field; however, the dominant initial U phase 

was monomeric U(IV) bound to biomass rather than UO2 (Fletcher et al., 2010; Bargar et al., 

2013). Given that biomass-complexed U(IV) may be more susceptible to oxygen oxidation 

than uraninite (Cerrato et al., 2013), it is unclear whether nano-FeS produced in situ would 

provide the same effectiveness in inhibiting monomeric U(IV) oxidative dissolution as for 

UO2. Future research should investigate the potential of FeS as a competitive oxidant 

scavenger in the presence of biologically reduced U(IV) species.  

After the inhibition period, the depletion of FeS may eventually expose reduced UO2 

solids to oxygen, causing the dissolution of UO2 and transport of U(VI). The following study 

seeks to understand the impact of FeS oxidation products on UO2 dissolution after oxygen 

breakthrough and the rate-limiting mechanism of UO2 dissolution during the suboxic-oxic 

transition. 
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Chapter 6  

Surface Passivation Limited UO2 Oxidative Dissolution  

upon FeS Depletion 

 

 

 

 

6.1 Introduction 

In situ treatment of uranium (U)-contaminated soils and groundwater often rely on the 

effective reduction of soluble U(VI) species to sparingly soluble U(IV) solid phases through 

chemical and biological processes (Lovley et al., 1991; Behrends and Van Cappellen, 2005; 

Hua et al., 2006). After active bioremediation is halted, naturally-occurring mackinawite 

(FeS) may provide an additional reservoir of reducing capacity for U(VI) immobilization and 

retard uraninite reoxidation upon oxygen intrusion (Abdelouas et al., 1999a; Bargar et al., 

2013; Bi and Hayes, 2013; Bi et al., 2013).  

While effectively scavenging oxygen, FeS undergoes significant oxidation-induced 

transformation, generating various iron and sulfur products depending on geochemical 

conditions, including dissolved Fe(II), goethite, lepidocrocite, elemental sulfur, and sulfate 

(Burton et al., 2009; Chirita, 2009; Jeong et al., 2010a; Bi et al., 2013). These oxidation 

products of mixed oxidation states are also redox reactive species, which may further impact 

the reoxidation of reduced U(IV) solids upon persistent oxygen intrusion.  



 113 

Dissolved Fe(II) species, produced as a result of FeS dissolution, may contribute to 

low levels of dissolved U by abiotic reduction of U(VI). Sorbed Fe(II) on synthetic Fe(III) 

oxides and natural sediments has been demonstrated to abiotically reduce U(VI) in a near-

neutral pH range (Liger et al., 1999; Fox et al., 2013). Reduction of U(VI) by soluble Fe(II) 

was reported to be thermodynamically favorable by Du et al. (2011) when reactant and 

product concentrations are in the proper range. Before complete FeS oxidation, sorbed Fe(II) 

by Fe(III) hydroxides may facilitate the removal of dissolved U(VI) species and prevent UO2 

surface passivation. 

In contrast, Fe(III) hydroxides, e.g., goethite and lepidocrocite, formed during 

mackinawite oxidation, may enhance the oxidative dissolution of UO2 by facilitating electron 

transfer at particle contact points between UO2 and Fe(III) particles. Sani et al. (2005; 2011b) 

and Ginder-Vogel et al. (2006) showed that iron hydroxides can oxidize U(IV) solids under 

reducing conditions, although the relationship between the type and amount of Fe(III) on the 

rate of U reoxidation has not been fully examined.  

Batch and flow-through experiments in Chapters 4 and 5 show that the oxidative 

dissolution rate of UO2 at pH 7 increased in response to elevated DO concentrations after the 

period of inhibited dissolution by FeS (Bi et al., 2013). The release rate of dissolved U(VI) 

after DO breakthrough was even faster than that observed in control experiments where FeS 

was absent. One hypothesis to explain the enhanced dissolution is oxidation of uraninite by 

Fe(III) oxidation products of FeS, which may either serve directly as an oxidant for U(IV) or 

facilitate electron transfer at particle contact points (Williams and Scherer, 2004; Kato et al., 

2010). Another possibility is that FeS remaining during inhibited oxidative dissolution may 
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reduce passivation or disrupt layers of U(VI) that form on UO2 surface, allowing for a rapid 

oxidative attack of U(IV) after oxygen breakthrough.  

It is still unclear however, which mechanism causes the enhanced dissolution of UO2 

after FeS depletion in an oxic groundwater system, and the extent to which the dissolution 

rate of UO2 may increase during this suboxic to oxic transition period. Given the common 

association of iron sulfides with reduced U(IV) phases in bioremediation sites (Bargar et al., 

2013), the abiotic interactions of uraninite and mackinawite may play important role in 

controlling the long-term stability of U(IV) upon oxygen intrusion. Unless sulfate reducing 

conditions are promptly restored after oxygen intrusion, the stability of U(IV) in the redox 

transition zones may be affected. Upon consumption of the FeS, the oxygen scavenger, U 

remobilization in the subsurface will increase, but the extent will likely be controlled by the 

stability of the passivation layer that forms prior to the DO breakthrough. Therefore, the 

environmental risks caused by subsequent U remobilization should be carefully evaluated.  

The objective of the present study was to examine the influence of FeS on UO2 

oxidative dissolution behavior after oxygen breakthrough during the suboxic-oxic transition 

and characterize the passivation layer that forms on UO2 during dissolution. Using flow-

through systems, the release rate of dissolved U(VI) was determined as a function of pH, DO 

and FeS concentrations. The surface passivation layer that may form as a function of these 

conditions was examined by XAS and XPS. Additionally, the FeS reaction products, i.e., 

Fe(III) hydroxides and aqueous Fe(II), were examined by XAS for their potential influence 

on UO2 oxidative dissolution. The results of this study contribute to the understanding of the 

role of passivation layers on the long-term stability of reduced U(IV) during periods of 

persistent oxygen intrusion in groundwater environments. 
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6.2 Experimental Methods 

6.2.1 UO2 Oxidative Dissolution with FeS 

The oxic flow-through experiments were conducted with 50 mL CSTRs (Millipore 

8050) under varied pH, DO influent concentration, and FeS content. At the beginning of the 

experiment, a CSTR reactor was loaded with ~0.48 mM UO2 suspension and FeS at various 

concentrations to provide the desired FeS:UO2 ratio. All feed solutions were constantly 

purged with custom CO2/O2/N2 gas mixtures and prepared with MilliQ water containing 0.4 

mM KCl, 2.0 mM CaCl2, and different NaHCO3 concentrations to achieve a final pH of 6.1, 

7.1, or 8.1. The DO of effluent solution was constantly monitored for tracking the stage of 

FeS oxidation. When DO breakthrough occurred, FeS had been substantially oxidized and 

transformed to Fe(III) oxides and elemental sulfur, depending on solution pH. The supply of 

oxic groundwater was then continued for an additional 100 residence times (τ ≈ 25 min) to 

allow for rapid oxidative dissolution of UO2. The effluent samples were collected frequently 

after DO breakthrough until steady-state dissolution of UO2 was re-established or more than 

> 50% of total UO2 had dissolved.  

 Flow-through experiments were also conducted to examine the influence of low FeS 

concentration on UO2 oxidative dissolution at pH 7. The CSTR reactors containing 4.8 mM 

FeS suspension were oxidized by artificial groundwater with an influent DO of 1.8 mg/L. At 

selected time points, UO2 solids were then added to the oxidized FeS suspension, resulting in 

UO2 interactions with different concentrations of remaining FeS. Effluent samples were 

collected after UO2 was added and measured for DO, total dissolved Fe and U concentrations 

using ICP-MS.  
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6.2.2 Oxidation of UO2 by Fe(III) Oxides.  

To study the potential of Fe(III) hydroxides for oxidizing UO2 under oxic conditions, 

flow-through experiments were conducted in the CSTR using a different matrix of Fe(III) 

solids. Mixed Fe(III) hydroxides were prepared by directly oxidizing FeS suspension at pH 7 

with a CO2/O2/N2 gas mixture in a 250 mL batch reactor. The FeS oxidation products were 

previously characterized to consist of goethite, lepidocrocite, and elemental sulfur (Bi et al., 

2013). The Fe(III) hydroxides were added to the CSTR at a total Fe concentration of 16 mM 

with 0.5 mM UO2 for a total volume of 50 mL. The influent solution was constantly sparged 

by the CO2/O2/N2 gas mixture to maintain the influent solution at pH 7 and DO of 1.8 mg/L. 

The effluent solution was periodically sampled and analyzed for total dissolved Fe(II) and U 

concentrations. Similar flow-through experiments were also conducted using ~15 mM 

synthetic two-line ferrihydrite as a potential oxidant. Anoxic control experiments were 

performed inside an anaerobic chamber to provide a baseline UO2 oxidation rate in the 

presence of Fe(III) solids under oxygen-free conditions.  

 

6.2.3 UO2 Reaction with Surface-Adsorbed Fe(II) 

To test the role of Fe(II) in affecting the formation of UO2 surface passivation layer, 

flow-through experiments were conducted by reacting UO2 with soluble and sorbed Fe(II) by 

Fe(III) oxides. A UO2 suspension (~0.5 mM) was added to the CSTR alone or in 

combination with 16 mM  Fe(III) oxidation products (described in section 6.2.2), which then 

reacted with an oxic groundwater solution containing ~0.1 mM FeCl2. The influent solution 

was prepared inside an anaerobic chamber and sparged with the CO2/O2/N2 gas mixture to 

achieve a DO concentration of 1.8 mg/L and pH 6. The solution pH was chosen to prevent Fe 
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oxidation and precipitation during the course of flow-through experiments. Anoxic 

experiments were conducted at both pH 6 and 7 using Fe(II)-containing groundwater solution 

in the presence and absence of Fe(III) solids to provide a baseline of UO2 dissolution in the 

absence of DO. 

 

6.2.4 Carbonate Extraction of FeS-Reacted U  

To quantify the U(VI) and labile U(IV) products generated during UO2 oxidative 

dissolution in the presence of FeS, suspension samples were taken during the course of pH 7 

oxidation experiments for carbonate extraction. To collect the solids and prevent oxidation 

during sampling, the solid suspension was briefly transferred to the anaerobic chamber and 

centrifuged. The solids were then collected and reacted with 10 mL 0.5 mM anoxic NaHCO3 

solution at pH = ~7.8 in 20 mL glass crimped vials. The U extraction was performed for 21 

hr on an end-over-end rotator in the anaerobic chamber. The extraction procedure ensured 

that all weakly bound U(VI) species were removed from the solid phase. After 21 h, the 

suspension pH was measured, and then the suspension was filtered using 0.1 μm nylon 

syringe filter (Watson). Subsequently, the filtered solution was measured for total dissolved 

U concentration by ICP-MS. Carbonate extractions were also conducted for solids collected 

in pH 6 and 8 flow-through experiments after DO breakthrough to assess the impact of pH on 

UO2 oxidation products.  

 

6.2.5 Dissolution Rate Calculation 

After DO breakthrough, the UO2 dissolution rate was calculated from the dissolved U 

concentration in effluent solution. When the U(VI) concentration reached steady-state, the 
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oxidative dissolution rate of UO2 (Rm) (mol·g-1·s-1) by oxygen was calculated using the 

following equation (Eq. 6.1): 

               2
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where Rm (mol·s-1·g-1) is mass-normalized oxidative dissolution rate of UO2,  Q (L·s-1) the 

flow rate, V(L) the reactor volume, [U]ss (mol·L-1) the steady-state concentration of total 

dissolved uranium, and [UO2] (g·L-1) the mass concentration of uraninite in the reactor. Due 

to the unknown degree of aggregation and thus the inherent uncertainty in the surface area of 

UO2, surface-area normalized rates (mol·m-2·s-1) were not estimated in this study. The 

steady-state effluent U concentrations were typically based on the average of at least 6 

effluent samples. Error bars represent two standard deviations of the rate calculated at steady-

state, reflecting the 95% confidence interval. The mass of UO2 at steady-state dissolution was 

adjusted for solid loss in the rate calculations. 

When experiments showed a peak of U concentration after DO breakthrough without 

reaching a steady-state, this indicated that UO2 dissolution was occurring at a fast rate, 

resulting in significant UO2 solid loss. In these cases, the UO2 oxidative dissolution rate 

could not be derived from Equation 6.1. Instead, the dissolution rate was estimated by the 

amount of total U released into the effluent within a given time. In these experiments, the 

cumulative total U release was calculated based on the measured U concentration and flow 

rate, and plotted against the reaction time. After DO breakthrough, total released U increased 

linearly until a substantial UO2 loss had occurred. The dissolution rates for UO2 were 

obtained by subjecting the linear portion of the plots to regression analysis. For the rate 

analysis, typically more than eight points were utilized, resulting in R2 values greater than 

0.98 for all least-square fits. Regression analysis also yielded 95% confidence intervals for 
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error estimates. This method of rate estimation was also used for experiments of steady-state 

UO2 dissolution and showed comparable values with that calculated by Equation 6.1. 

 

6.2.6 Solids Characterization 

Solid samples taken from flow-through experiments at pH 6, 7, and 8 were 

characterized by XAS and XPS to determine the redox state and stoichiometry of uranium in 

the bulk and near the surface of UO2 particles, respectively. UO2 particles were also 

examined by TEM to identify oxidation products and particle size.  

XAS analyses of wet pastes of the solids from the CSTR were performed at the 

Stanford Synchrotron Radiation Lightsource (SSRL) as previously described in Chapter 3. 

Uranium LIII-edge absorption spectra were collected in fluorescence mode at Beamline 4-1 or 

11-2 using a 13- or 100-element Ge detector at a low temperature (77 K). XAS data were 

later subjected to X-ray absorption near edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS) analyses using SixPACK and IFEFFIT code.  

Suspension samples dried in the anaerobic chamber were mounted on double-sided 

Cu tape for XPS analysis. XPS spectra were collected on a Kratos Axis Ultra XPS using a 

monochromated Al-Kα X-ray source (1486 eV). Region scans were obtained for U(4f), 

Fe(2p3/2), O(1s) peaks and analyzed using the procedures described in Chapter 3. 

TEM images were obtained using a JEOL 2010F analytical electron microscope 

(AEM) operated at 200 kV. TEM analysis included conventional bright-field (BF) imaging 

coupled with energy dispersive X-ray (EDX) with the spatial resolution of∼1.7 Å, high 

resolution-transmission electron microscopy (HR-TEM), and selected area electron 

diffraction (SAED). 
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6.3 Results 

6.3.1 UO2 Dissolution after DO Breakthrough 

In the presence of FeS, the oxidative dissolution of UO2 was initially inhibited, 

resulting in low concentrations of dissolved U until DO breakthrough. Immediately after the 

inhibition period, dissolved U concentration increased rapidly to peak values in response to 

increasing DO concentrations at pH 7 (Figure 6.1a). Because steady-state UO2 dissolution 

did not occur after DO breakthrough, the dissolution kinetics was estimated by plotting the 

cumulative U(VI) release as a function of time (Figure 6.1b). The slope of the linear region 

indicated that UO2 dissolution was faster in systems with FeS initially present compared to 

that in the absence of FeS at pH 7, and the rate increased with increasing initial FeS 

concentration (Figure 6.2a). In comparison, UO2 dissolution in the absence of FeS reached 

steady state at ~4.0 μM [U]diss under comparable conditions (Figure 5.2). The calculated rates 

of UO2 dissolution at pH 7 in the presence and absence of FeS are summarized in Table 6.1. 

Relative to the control without FeS, an enhancement in dissolution rate of UO2 was 

only observed for pH 7 experiments. At pH 6 and 8, steady-state dissolution of UO2 were 

slowly re-established after DO breakthrough without a U peak. The oxidative dissolution rate 

of UO2 was found to be similar to the control at pH 6 but slower than the control at pH 8 

after DO breakthrough (Figure 6.2b). The variation in rate implies complex and potentially 

changing mechanisms of UO2 dissolution with pH during the suboxic-oxic transition.  

At pH 7 and a FeS initial concentration of 18.7 mM, UO2 showed a similar 

dissolution rate at influent DO concentrations of 1.8 mg/L and 7.8 mg/L (within a factor of 

two). While the dissolution rate at a DO concentration of 1.8 mg/L was faster than in the 

control experiments under comparable conditions, the rate was similar to the control at DO of 
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7.8 mg/L. During the faster oxidative dissolution of UO2 after the inhibition period, the 

effluent DO concentration increased rapidly in response to the exhaustion of FeS. The 

measured effluent DO concentration after breakthrough increased faster at an influent DO of 

7.8 mg/L than for the system containing a DO of 1.8 mg/L (Figure 6.3). In comparison, the 

UO2 dissolution rate increased 25-fold from 0.2×10-8 mol·g-1·s-1 in the absence of FeS when 

the influent DO level went from < 0.2 mg·L-1 to 7.8 mg·L-1, indicating a clear response to the 

increasing oxidant concentration.  

 

 

 

 

 

 

 

 

 

 



 122 

 

 

Figure 6.1 (a) UO2 dissolution profiles in the flow-through experiments at various FeS 

concentrations. (b) The cumulative release of dissolved U in the flow-through experiments 

calculated based on the UO2 dissolution profiles in (a). Replicates are represented by the 

filled vs open symbols. Influent groundwater solution composition: 8.0 mM NaHCO3, 0.4 

mM KCl, and 2.0 mM CaCl2, 1.8 mg·L-1 DO, and pH 7. 
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Table 6.1 Experimental UO2 dissolution rates normalized to mass (Rm) obtained under 

various combinations of oxidizing conditions and water compositions§.   

Exp. ID 
 [UO2] 

(mM) 

[FeS] 

(mM) 
pH 

DO 

(mg·L-1)
 

DIC* 

(mM) 

Flow rate 

(mL·min-1) 

Rm×10-8 

mol·g-1·s-1 

Variation of pH   

1a 0.48 18.7 6 1.8 2.5 1.83 2.06 

1b 0.48 18.7 6 1.8 2.5 1.98 2.18 

2a 0.48 18.7 7 1.8 10 1.88 4.20 

2b 0.48 18.7 7 1.8 10 1.96 5.40 

3a 0.48 18.7 8 1.8 1 1.82 1.21 

3b 0.48 18.7 8 1.8 1 1.91 1.25 
Control 0.48 \ 6 1.8 2.5 1.87 1.89 
Control 0.48 \ 6 1.8 2.5 1.89 1.95 
Control 0.48 \ 7 1.8 10 1.91 2.06 
Control 0.48 \ 7 1.8 10 1.82 1.99 
Control 0.48 \ 8 1.8 1 1.81 2.23 
Control 0.48 \ 8 1.8 1 1.95 2.28 

Variation of FeS   

4a 0.48 4.8 7 1.8 10 1.87 2.92 

4b 0.48 4.8 7 1.8 10 1.85 2.95 

5a 0.48 1.2 7 1.8 10 1.85 2.39 

Variation of DO   

6a 0.48 18.7 7 7.8 10 1.84 2.91 

6b 0.48 18.7 7 7.8 10 2.15 5.58 
Control 0.48 \ 7 7.8 10 2.24 3.46 
Control 0.48 \ 7 7.8 10 2.19 3.60 
Control 0.48 \ 7 <0.1 10 1.85 0.2 

§ Groundwater compositions were previously provided in Table 5.1. 

* Dissolved inorganic carbon calculated using Visual MINTEQ at equilibrium with CO2/O2/N2 gas 

mixtures.  
 



 124 

 
Figure 6.2 UO2 dissolution rates (mol·g-1·s-1) estimated from cumulative dissolved U 

released in the presence (○) and absence (◊) of FeS as a function of (a) FeS concentration 

(g/L) at pH 7; (b) solution pH at 18.7 mM FeS and influent DO of 1.8 mg/L; and (c) influent 

DO concentration (mg·L-1) at 18.7 mM FeS and pH 7. 
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Figure 6.3 The DO concentration profiles as a function of time during the oxidative 

dissolution of UO2 in the presence of 18.7 mM FeS in pH 7 groundwater. Replicates are 

represented by the filled vs open symbols. 

 

 

 
Figure 6.4 UO2 dissolution profiles in the flow-through experiments when UO2 solids were 

added at different stages of FeS oxidation: 0 τ (◊); 46 τ (○); 52 τ (∆); and 75 τ (□). 

Experimental condition: initial FeS 4.8 mM, influent DO = 1.8 mg/L, pH = 7.1.  
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By adding UO2 to depleting FeS, the impact of low concentration FeS on UO2 

oxidative dissolution was examined. When UO2 was added at 46 τ, dissolved Fe(II) 

concentration decreased to 6 μM while effluent [DO] was 0.95 mg/L, indicating a diminished 

FeS content in the suspension. The dissolved U concentration first dipped to 1.1 μM and then 

quickly increased to a peak value of 6.5 μM, following a similar trend of previous 

experiments (Figure 6.4). In comparison, the dissolved U concentration quickly increased 

after the addition of UO2 at 52 residence times, while the Fe(II) concentration further 

dropped to 3 μM and the DO rose to 1.0 mg/L. Although the detectable Fe(II) showed traces 

of FeS solid in the suspension, its low quantity was unable to effectively scavenge DO, 

allowing for a rapid increase of DO in the CSTR. However, when UO2 was added after the 

complete FeS oxidation beyond 70 residence times, a completely different profile of UO2 

dissolution resulted. Dissolved U slowly increased to a steady-state concentration of 2.7 μM, 

similar to the systems containing Fe(III) hydroxides and UO2 solids (see section 6.3.2). In 

general, the results of this study show that before DO breakthrough, UO2 dissolution rate 

decreased with decreasing contact time with FeS (UO2 addition at a later time), and suggest 

that a low concentration of FeS contributes to the enhanced dissolution rate of UO2 when DO 

breakthrough occurs.  

 

6.3.2 UO2 Oxidation by Fe(III) Hydroxides 

The FeS oxidation products during oxidation experiments (as shown in Chapter 4), 

include mainly goethite, lepidocrocite, and elemental sulfur. The solid mixture was utilized 

to assess whether they could enhance the oxidation of UO2 under either oxic or anoxic 

conditions. At an influent DO of 1.8 mg/L in the presence of the FeS oxidation products, 
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dissolved U was immediately detected in the effluent solution and reached a steady-state 

dissolution rate after ~35 residence times. The rates calculated from [U]ss were comparable to 

those in control experiments in the absence Fe(III) hydroxides (Figure 6.5). Similarly, 

experiments conducted with synthetic two-line ferrihydrite at pH 7 showed a UO2 dissolution 

rate of 1.9 ×10-8 mol·g-1·s-1, almost the same as the control. These results suggest limited 

impact of Fe(III) hydroxides on UO2 oxidative dissolution under oxic conditions. Under 

oxygen-free conditions, UO2 dissolved at a significantly lower rate of 1.42 ×10-9 mol·g-1·s-1 

in the presence of Fe(III) hydroxides.  This rate was slightly lower than in the control (2.01 

×10-9 mol·g-1·s-1) in the absence of Fe(III) hydroxides.  

 

 
Figure 6.5 UO2 dissolution rates (mol·g-1·s-1) estimated from steady-state dissolved U 

concentration in the presence (□) and absence (◊) of Fe(III) hydroxides as a function of 

solution pH. 
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6.3.3 UO2 Interactions with Fe(II) Species 

Fe(II) species, adsorbed on FeS oxidation products or dissolved in solution, may 

reduce the surface U(VI) species that form as a passivation layer on the UO2 surface when 

oxygen is present. To test for this possibility, an Fe(II)-containing solution (~0.09 mM) was 

fed to the CSTR containing a suspension of Fe(III) hydroxide and UO2 solids at pH 6 and 

DO of 1.8 mg/L (Table 6.2). However, UO2 dissolution followed a similar pattern as in the 

control containing UO2 alone, and reached a steady U(VI) concentration after ~25 residence 

times. Because dissolved Fe(II) equilibrated with surface-adsorbed Fe(II) at steady-state, the 

results indicated that the passivation layer on UO2 was not reactive with surface-adsorbed 

Fe(II) on Fe(III) hydroxides under oxic conditions (Table 6.2). In the absence of Fe(III) 

hydroxides, dissolved Fe(II) also showed no influence on UO2 dissolution at pH 6, 

suggesting that soluble Fe(II) does not likely react and disrupt a passivation layer of U(VI) 

on UO2  under oxic conditions. 

Under anoxic conditions, surface-adsorbed Fe(II) by Fe(III) hydroxides appeared to 

further limit UO2 dissolution at pH 7. After 20 residence times, UO2 dissolution resulted in a 

dissolved U concentration of only ~0.04 μM at steady-state. The dissolution rate was 2.2 ×10-

10 mol·g-1·s-1, almost two orders of magnitude lower than in the absence of dissolved Fe(II) 

(Table 6.2). Dissolved Fe(II) may have scavenged trace oxygen under “anoxic” conditions, 

leading to less passivation and the lower U(VI) dissolution rate. Because Fe(II) quickly 

diminished at pH > 7 due to the reaction with dissolved oxygen, surface-adsorbed Fe(II) was 

not suspected to be important under oxic conditions at higher pH. 
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Table 6.2 Experimental UO2 dissolution rates normalized to mass (Rm) obtained in the 

presence and absence of dissolved Fe(II) under artificial groundwater conditions.   

 [UO2] 

(mM) 

[Fe(III)] 

(mM) 
pH 

Influent 

DO 

(mg·L-1)
 

Influent 

Fe(II) 

(mM) 

Flow rate 

(mL·min-1) 

Rm×10-8 

mol·g-1·s-1 

0.48 16.1 6.1 1.8 0.09 1.78 1.58 

0.48 16.1 6.1 1.8 0.03 1.75 1.62 

0.48 0 6.1 1.8  0.09 1.80 1.79 

0.48 16.1 7.1 < 0.2 0.09 1.96 0.022 

0.48 16.1 7.1 < 0.2 0 1.82 0.14 

 

6.3.4 XAS Spectroscopic Analyses of Oxidized UO2 

X-ray absorption spectroscopy was used to provide evidence for the possible 

formation of a passivation layer on the surface of UO2 that would control the dissolution rate 

before and after DO breakthrough. Solid samples were collected from pH 6, 7, and 8 

experiments in the presence of 1.8 mg·L-1 influent DO and 18.7 mM FeS after DO 

breakthrough (~200 residence times). The samples were analyzed for U LIII-edge XANES 

and EXAFS to detect changes in U speciation that would indicate an increasing presence of 

U(VI) associated with the passivation of UO2 particles as oxidation proceeded.  

The XANES results of U solids showed that the absorption edge positions for all 

samples shifted from U(IV) standard to higher energy, indicating oxidized UO2 particles after 

exposure to dissolved oxygen (Figure 6.6). While samples from the pH 6 and 7 experiments 

were slightly oxidized to almost an identical degree, greater oxidation occurred at pH = 8 as 

the edge position shifted substantially to those in the U(VI) reference spectra. A linear 

combination fitting (LCF) of the XANES revealed that ~60% of U in the bulk solid remained 

as U(IV) at pH 6 and 7 (Table 6.3). In contrast, the U(IV) component in the solid-bound U 

decreased to ~36% at pH 8 after reacting with oxygen. However, it should be noted that the 

LCF assumes the higher-valent U(VI) is present as UO2
2+ species, which may not correctly 



 130 

represent the actual U(VI) component in oxidized UO2 solids. The R-factor, a measure of 

mean square sum of the misfit at each data point, was ~0.005 for the pH 8 sample, 

significantly higher than that for the unoxidized UO2 sample (~0.0008). Fast surface 

oxidation may produce UO2+x phases, where the predominant U site’s local structure would 

be more similar to that in UO2.00 (Ulrich et al., 2009). Because no UO2+x (e.g., U4O9) XAS 

reference spectra were not collected, such as phase could not be verified in the pH 8 sample 

by XAS analysis.  

 

 

Figure 6.6 Normalized uranium LIII-edge XANES spectra of CSTR samples as a function of 

oxidation residence time in the presence of FeS compared to U(VI) and U(IV) standards 

(dotted lines).  
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Table 6.3 Uranium speciation in selected CSTR samples as calculated from XANES LCF results. 

The relative concentration of U components, i.e., U(IV) and U(VI) are presented as percentages. 

Relative errors of fitting are given in the parentheses. 

Element 
Species 

component 

Synthetic 

uraninite 
pH 6 pH 7 pH 8 

Uranium 

 

 

U(IV) (%)  

uraninite 
72 (2) 63 (3) 60 (2) 36 (5) 

U(VI) (%) 

Uranyl 
28 (2) 37 (3) 40 (2) 64 (5) 

R-factor 0.0008 0.003 0.003 0.005 

 

EXAFS and the associated Fourier transforms (FT) of the oxidized uraninite at pH 6, 

7, and 8 were compared to spectra for unoxidized UO2 during inhibition period and for 

crystalline UO2.00 (Figure 6.7). A qualitative comparison of the spectra shows that the 

amplitude of EXAFS spectra for all samples were significantly reduced from the crystalline 

UO2.00, suggesting a reduced number of backscatters relative to the central atom, especially at 

high wave numbers. However, the difference of EXAFS spectra between samples is not 

obvious, implying that the overall UO2 structure was qualitatively preserved during 

oxidation. Similar conclusions are obtained from the FT results where the ratio of the 

amplitude of the FT peak of the first U-U shell to the first U-O shell is greatly reduced for 

oxidized samples compared to crystalline UO2.00. The decreased U-O shell amplitude 

confirmed the nanoparticulate size of the synthetic UO2 used in this study. After DO 

breakthrough, the U-O shell remained after considerable dissolution, although the amplitude 

decreased compared to the unoxidized uraninite as a result of smaller particle size. The most 

notable changes in the FT occurred at the local and intermediate distances (e.g., 1 – 2.2 Å) of 

the U-O shell peak. For the pH 8 sample, the U-O FT peak appears to split into two subshells 

at ~1.8 and 2.1 Å, similar to the synthetic U4O9 previously reported by Schofield et al. 

(2008). The visually asymmetric U-O peak is believed to be characteristic of UO2+x solids, 
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which usually consist of multiple U-O subshells (Conradson et al., 2004). In contrast, 

oxidized uraninite at pH 6 and 7 exhibited only subtle changes in the shape of U-O shell 

except for the reduced amplitude.  

Combined, the XANES and EXAFS results indicate the oxidation of UO2 leads to a 

UO2+x–like phase at pH 8 with a local structural distortion in the U-O shell. Oxidized U(VI) 

was suspected to penetrate far enough into the particle to cause an apparent alteration in the 

overall oxidation state. In contrast, the oxidation of uraninite by dissolved oxygen at pH 6 

and 7 experiments generated solid phases more similar to the initial synthetic UO2 than to 

UO2+x. 

The EXAFS fitting of the structure of oxidized UO2 included two U-O single 

scattering (SS) paths, one U-U SS path, and the multiple scattering (MS) paths from two 

neighboring oxygen atoms. The fitting results confirm that the solid U phase at pH 6 and 7 

after oxidation was consistent with a nano-particulate uraninite (Table 6.4). The FTs of both 

samples showed a peak at ~1.9 Å, corresponding to a U-O1 interatomic distance (R) of ~2.37 

Å. At pH 6, the first shell U-O1 coordination number (CN) of 6.4 (less than the 8 O of a 

crystalline UO2.00) was similar to the unoxidized UO2 during the inhibition period (CN: 5.9) 

(Chapter 5). However, the higher σ2 for the peak fitting indicates an increased disorder in the 

UO2 structure when incorporating excess oxygen atoms during oxidation. The CN of the 

second peak at ~3.6 Å (corresponding to a U-U distance of 3.87 Å) remained at ~5 atoms 

after oxidation. In comparison, the coordination numbers of both U-O1 and U-U shells in pH 

7 samples are significantly reduced from an unoxidized UO2 (Table 6.4). This result supports 

the expectation of smaller uraninite particles as a result of substantial oxidative dissolution at 

the point of sampling. For the pH 8 data, fits using the same model as for previous samples 
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resulted in errors of delta E0. Similarly, adding a split oxygen shell for testing the presence of 

hyperstoichiometric U sites were attempted, but were not stable and collapsed into a single 

shell. Furthermore, adding the CN of U-O shell of uranyl cations at distances of < 1.9 Å did 

not improve the fits. 

 

 

 

Figure 6.7 U LIII-edge spectra for samples collected at ~200 residence times from pH 6.1, 

7.1, and 8.1 flow-through experiments. The results are compared with crystalline UO2.00. and 

unoxidized UO2 during inhibited period.  (a) EXAFS spectra (k range for modeling = 2.0–11 

Å-1) and (b) corresponding Fourier transforms. 
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Table 6.4 Structural parameters extracted from U LIII-edge EXAFS data of samples collected 

from the CSTR. Paths denoted with O1, U1, and O2 stand for first oxygen shell, the first 

uranium shell, and a second oxygen shell, respectively. The path O=U=O is a multiple 

scattering path. Estimated errors are given in parentheses. 

 

 

6.3.5 XPS Spectroscopic Analyses of Oxidized UO2 

While XANES analyses showed the average change of oxidation state of solid-bound 

U in the bulk sample, XPS allows a quantitative determination of U(IV) and U(VI) species 

present on the surface of oxidized uraninite. The XPS results of the original unreacted 

synthetic UO2 material indicated a small but measurable U(VI) component (~20%) on the 

surface (Chapter 3). Some portion of the oxidized U might be due to sorbed U(VI) that 

occurred during synthesis. This result is consistent with XANES analysis, which also showed 

detectable U(VI) in the synthetic uraninite solid (detection limit for U(VI) by XPS is ~5%). 

For the study of the potential change in the passivation layer during the exposure of 

UO2 to oxygen, solid samples were collected from pH 6, 7, and 8 suspensions in the presence 

Sample   /   Path U-O1 U-U1 U-O2 O=U=O 

UO2 

standard  

CN 8.0 12.0 24.0 8.0 

R (Å)* 2.37 (0.02) 
3.87 

(0.01) 

4.53 

(0.04) 
4.74 (0.03) 

 σ 2
 (10-3 

Å2) 
5 (1) 2 (1) 8 (2) 9 (2) 

 CN 6.44 (0.5) 5.1 (1.9) 10.2 (4.3) 6.44 

pH 6  R (Å)* 2.37 (0.01) 
3.87 

(0.01) 
4.53 (0.1) 4.74 (0.02) 

 
 σ 2

 (10-3 

Å2) 
12 (1) 6 (3) 20 (21) 25 (2) 

 CN 4.84 (0.6) 2.71 (2.2) 5.42 (4.4) 4.84 

pH 7 R (Å)* 2.37 (0.01) 
3.87 

(0.01) 

4.53 

(0.09) 
4.74 (0.02) 

 
 σ 2

 (10-3 

Å2) 
9 (2) 2 (3) 10 (20) 17 (4) 

CN: coordination number; R: interatomic distance; σ2: mean-square disorder.  
*
R values are the actual bonding distances, which are phase-shifted from the FT peak 

positions. 
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of 4.8 mM FeS before and after DO breakthrough and analyzed for the surface U oxidation 

state (Figure 6.8). During the inhibition period of UO2 dissolution in the presence of FeS at 

pH 7, the surface of UO2 exhibited about 95% of U(IV) and 5% U(VI) (Table 6.5). The solid-

bound U was reduced at 41τ during inhibited UO2 dissolution, consistent with the EXAFS 

results for pH 7 discussed in Chapter 5. Even after DO breakthrough at 56τ, surface U 

remained predominantly reduced as indicated by the XPS spectrum, with ~94% of the total U 

as U(IV).  These results indicated that the oxidized U(VI) species that form on the uraninite 

surface are effectively removed at pH 7 even after DO breakthrough.  

At pH 6, the XPS-detectable U(VI) fraction increased substantially to 29% at 31 τ 

while DO levels were still low in the CSTR (~0.8 mg/L). After DO breakthrough occurred, 

the U(VI) component rapidly increased further to 83% within ~35 residence times. This 

result was in contrast to the pH 7 experiments where the UO2 surface remained largely free 

of a passivation layer throughout the period of inhibited UO2 dissolution. Apparently at pH 6, 

the solution phase was less effective at removing U(VI) from the surface than at pH 7, and 

the residual FeS was incapable of preventing UO2 from surface oxidation. The proportion of 

surface U(VI) continued to increase until complete transformation to U(VI) at 82 τ (Figure 

C.1 of Appendix C). However, this trend of U oxidation was not observed by XANES 

results, which only showed a partially oxidized U solid after considerable UO2 dissolution 

(Figure 6.6). The corresponding EXAFS also did not support the presence of the short axial 

U=O bond (i.e., ~1.8 Å) typical of uranyl species. This disparity can be attributed to the 

enhanced surface sensitivity of XPS to the near-surface layers rather than the averaged 

coordination of the bulk solid by XAS.  
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Figure 6.8 Deconvolution of representative U 4f XPS spectra of CSTR samples collected 

from pH = 6, 7, and 8 experiments in the presence of 4.8 mM FeS solids. (a) 41 τ at pH 7; (b) 

56 τ at pH = 7;(c) 31 τ at pH 6; (d) 56 τ at pH 6; (e) 49 τ at pH 8; (f) 60 τ at pH 8. All 

experiments were carried out under DO of 1.8 mg/L artificial groundwater conditions. 
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Table 6.5 Mole percentage of U(IV) and U(VI) as determined by XPS on CSTR samples 

collected from flow-through experiments under varied pH conditions.   

Sample Treatment condition U(IV) (%) U(VI) (%) 

41 τ, pH = 7  Before DO breakthrough  95 5 

56 τ, pH = 7 

After DO breakthrough, 

during enhanced UO2 

dissolution 

94 6 

31 τ, pH = 6 Before DO breakthrough 71 29 

56 τ, pH = 6 

After DO breakthrough, 

almost complete FeS 

oxidation 

17 83 

49 τ, pH = 8 Before DO breakthrough 53 47 

59 τ, pH = 8 

After DO breakthrough, 

almost complete FeS 

oxidation 

6 94 

 

While FeS provided the longest period of inhibited UO2 dissolution at pH 8 (~54 τ), 

XPS analysis of sample at 49 τ indicated the production of a surface with a high U(VI) (47%) 

component even before DO breakthrough. Shortly after DO breakthrough, this proportion 

quickly increased to 94%, with an almost complete oxidation of UO2 surface. This result 

demonstrated that the continuous flushing and the presence of carbonate and calcium in 

solution were not able to remove U(VI) species generated on the surfaces at pH 8. Although 

FeS was able to scavenge most of the DO in the suspension, some oxygen still reacted with 

UO2 to oxidize the surface. The detachment of U(VI) from UO2 surface was slower than at 

pH 6 and 7, evidenced by the development of a thick U(VI) passivation layer during 

oxidation. The highly oxidized UO2 surface at pH = 8 is compatible with that obtained by 

XANES and EXAFS results. During oxidative dissolution in the CSTR at pH = 8, oxidized 

uraninite particles may eventually consist of a UO3-like outer layer and a UO2+x particle core. 
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6.3.6 Thermodynamic Calculation of Uranium Speciation 

Visual MINTEQ was used to predict equilibrium U speciation at varied pH before 

DO breakthrough in the flow-through systems. Figure 6.9 shows that the neutral 

Ca2UO2(CO3)3(aq) complex was the dominant species from pH range of 6.0 to 8.2, while 

minor species of UO2CO3(aq) and CaUO2(CO3)3
2- existed at pH 6 and 8, respectively. 

Among the three pH values studied, the total dissolved carbonate concentration was the 

highest at pH 7 (~12 mM) as a result of 5% CO2 gas equilibrating with the carbonate 

solution. In comparison, the total carbonate concentration decreased to 2.7 mM at pH 6, with 

the dominant species as H2CO3
*. In the experimental design, the total carbonate was fixed 

(rather than equilibrated with CO2 gas) and lowered to 1 mM to prevent calcite precipitation 

at pH 8, where HCO3
- was the dominant species. The thermodynamic modeling indicated the 

solution was still slightly oversaturated with respect to calcite at pH 8, which could further 

lower the total carbonate concentration in solution. However, total carbonate and calcium 

concentrations at all three pH values were in great excess of the dissolved U(VI) 

concentration before and after DO breakthrough occurred. 
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Figure 6.9 Dissolved U(VI) species distribution as a function of pH calculated by Visual 

MINTEQ. Simulation conditions: 1 μM UO2
2+, 8.0 mM NaHCO3, 0.4 mM KCl, and 2.0 mM 

CaCl2. The solution is equilibrated with 2% PO2, 5% PCO2 gas mixture. 

 

6.4 Discussion 

6.4.1 Accelerated Dissolution Rate of UO2 at Neutral pH 

After DO breakthrough occurred, the rapid dissolution of UO2 was consistently 

observed in flow-through experiments at pH 7 in the presence of FeS at varied concentrations 

(Figure 6.1). However, the enhanced oxidative dissolution rate of UO2 relative to that in the 

control experiments (UO2 alone) did not occur in the pH 6 and 8 experiments. Most notably, 

UO2 dissolved at slower rate than in the control at pH 8 when FeS-controlled DO no longer 

persisted. While the impact of solution pH on FeS oxidation has been documented (Jeong et 

al., 2010a; Bi and Hayes, 2013), this disparate behavior of UO2 dissolution within this small 

pH range was not reported previously. In order to determine the environmental significance 
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of FeS-controlled UO2 dissolution, it is necessary to identify the rate-limiting mechanisms of 

UO2 oxidative dissolution. 

Three possible mechanisms for promoting UO2 dissolution rate at pH 7 in the 

presence of FeS after DO breakthrough may be hypothesized. The first mechanism depends 

on UO2 oxidation by Fe(III) hydroxides, the oxidation products of FeS by oxygen, while the 

second is attributed to the labile or adsorbed U species, which are generated during the period 

of inhibited UO2 dissolution and low DO. The labile or adsorbed U species were 

subsequently released into the effluent solution in response to increased DO concentrations 

after breakthrough. The third mechanism involves the disruption of passivation layer by FeS 

during oxidative dissolution. The absence of passivation layer at pH 7 may result in the fast 

oxidative dissolution of UO2 and the release of Ca-U(VI)-CO3 complexes.  

Although the first mechanism has been previously studied and suggested as a 

potential pathway for UO2 oxidation under sulfate-reducing conditions (Ginder-Vogel et al., 

2006), the calculated oxidation rate by ferrihydrite was three orders of magnitude lower than 

that by dissolved oxygen (Ginder-Vogel et al., 2010). The flow-through experiments 

conducted in this study using mixed Fe(III) hydroxides and ferrihydrite confirmed the 

negligible impact of Fe(III) solids on the UO2 oxidative dissolution rate under oxic 

conditions (Figure 6.5). In the presence of Fe(III) hydroxides, UO2 dissolved at a slightly 

lower rate than in the absence of Fe(III). In addition, because Fe(III) hydroxides were 

continuously generated as oxidation products of FeS by dissolved oxygen, their impact on 

UO2 dissolution was expected to be progressive rather than abruptly occurring only after DO 

breakthrough.  
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The second mechanism was examined by the extraction of adsorbed U(VI), which 

only showed less than 1% extractable U after a 21 hr reaction period with a 0.5 M NaHCO3 

solution. If labile U dissolved after DO breakthrough accounted for the previously adsorbed 

U(VI), 25% - 36% of total U should have been adsorbed by FeS and its oxidation products 

during the inhibition period, depending on FeS and DO concentrations. In Chapter 5, 

XANES and EXAFS analyses indicated the lack of UO2 solid oxidation during the inhibited 

dissolution, which showed predominantly nano-particulate uraninite throughout the inhibited 

dissolution. Combining U extraction and solid characterization results, the enhanced UO2 

dissolution at pH 7 was unlikely due to the desorption of soluble U(VI) after DO 

breakthrough in flow-through experiments.  

The rejection of the first two mechanisms leaves the disrupted UO2 passivation layer 

as a probable candidate for causing fast UO2 dissolution. The XPS results of this study 

showed a clean, predominantly U(IV) surface during and shortly after the inhibited UO2 

dissolution at pH 7 in the presence of FeS (Figure 6.8a, b). In contrast, prior studies have 

reported the formation of a near-surface UO2+x coating around UO2 core during oxidation, 

which possibly controls UO2 oxidative dissolution rate by dissolved oxygen (Casas et al., 

1998; Ulrich et al., 2009). Although the synthetic UO2 used in this study initially contained 

~20% U(VI) on the near-surface, the U(VI) surface coating was removed under CSTR flow 

conditions (Figure 6.8a), probably due to UO2 dissolution and reduction of U(VI) by FeS 

particles. During the inhibition period, the UO2 dissolution rate was believed to be controlled 

by surface oxidation, whereas the detachment of U(VI) complexes was relatively fast (Bi and 

Hayes, 2013). The absence of visible U(VI) accumulation as determined by XAS and XPS 

also support the mechanism that the rapid detachment of Ca2UO2(CO3)3(aq) at pH 7 prevents 
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the formation of U(VI) passivation layer. This mechanism may also apply to the fast UO2 

dissolution in batch reactor experiments presented in Chapter 3 and in Bi et al. (2013). 

Because UO2 surface was prevented from U(VI) accumulation and passivation, the 

step of U(VI) complex detachment has to be fast enough to allow the U(VI) products to 

diffuse into bulk solution. When DO concentration remains low due to FeS scavenging, this 

surface-detachment limited oxidation can be reasonably achieved (Bruno et al., 1991). 

However, the results from the current study indicate that the fast U(VI) detachment can also 

be accomplished at a stage of DO increase, which seems to contradict the previous studies 

that a U(VI) passivation layer forms under mildly oxidizing conditions (~0.5 mg/L) (Ulrich 

et al., 2009). This disparity can be attributed to the coexistence of FeS with UO2 that controls 

the DO concentration in the CSTR and the presence of dissolved calcium and carbonate in 

the influent solution. Although the decreased concentration of FeS caused DO breakthrough, 

the residual FeS (estimated 0.3 – 0.5 mM) allowed the DO levels to slowly increase until the 

FeS was completely depleted. Meanwhile, the formation of stable Ca-U(VI)-CO3 complexes 

facilitated the desorption of U(VI) species from UO2 surfaces (Stewart et al., 2010). In 

contrast, DO levels were quickly established at ~1.8 mg/L in the control experiments without 

FeS. The detachment of Ca-U(VI)-CO3 complexes could no longer offset the fast surface 

oxidation of UO2, resulting in the accumulation of U(VI) and a slower dissolution rate.  

With a “clean” UO2 surface, dissolved oxygen may quickly attach to the UO2 surface 

and transfer electrons to U(IV). Due to the rapid detachment of surface complexes, the rate of 

UO2 dissolution would be controlled by surface oxidation and therefore the DO 

concentration. With an increasing supply of DO after breakthrough assisted by a rapid 

surface detachment, the apparent dissolution rate would consequently be enhanced unless the 



 143 

UO2 surface became passivated. It should be noted that the observed fast UO2 dissolution 

was only transient. The dissolved U concentration typically peaked within 32 τ after DO 

breakthrough with an influent DO of 1.8 mg/L (Figure 6.1), whereas it peaked within 20 

residence times with an influent DO of 7.8 mg/L. Although the gradient of DO concentration 

was greater, the UO2 dissolution rate was estimated to be comparable to that at an influent 

DO = 1.8 mg/L. 

The transient phase of fast UO2 dissolution and a clean UO2 surface suggests the 

intricate interplay between surface oxidation versus U(VI) detachment in limiting the overall 

dissolution rate during the suboxic to oxic transition. As long as DO concentration remains 

low to ensure a slower surface oxidation than U(VI) detachment, the overall dissolution rate 

can be enhanced by the increasing DO concentration. When DO concentration becomes high 

enough to passivate UO2 surface, the U(VI) layer may eventually limit the UO2 dissolution 

rate because oxygen has to diffuse through the layer before reacting with UO2. Therefore, 

this shift of the rate-limiting mechanism is essentially governed by the available DO, which 

can be controlled by FeS as an oxygen scavenger, influent DO concentration, flow rate, and 

calcium and carbonate concentration. 

 

6.4.2 Unchanged Dissolution Rate of UO2 at Acidic pH 

The fast dissolution of UO2 after DO breakthrough was not observed at pH 6 

experiments using an influent solution with 1.8 mg/L DO (Figure 6.2). Instead, steady-state 

dissolution of UO2 was established soon after DO breakthrough, resulting in comparable 

level of dissolved U concentrations as in the control experiments. As indicated by XPS 

results, surface passivation took place while DO levels were still low, showing ~30% U(VI) 
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present at the near surface at 31 τ (Table 6.5). At this time point, dissolved Fe(II) 

concentrations remained higher at 0.04 mM, a sign of incomplete oxidation of FeS. The 

passivated surface suggests that either the detachment of surface U(VI) complexes was too 

low to effectively remove the U(VI) products at pH 6 or FeS was incapable of reducing the 

UO2 surface. 

The impact of solution pH on FeS oxidation was previously discussed in Chapter 5. 

The results described in details there indicated that a slightly acidic pH can result in 

substantial FeS dissolution at low DO concentrations. The release of dissolved Fe(II) species 

lowers the reducing capacity of FeS for scavenging oxygen and, consequently, reduces the 

period of inhibited UO2 dissolution. Although DO was present at a low concentration even 

during the inhibition period, reaction with UO2 still took place. The less favorable 

detachment of U(VI) surface complexes at pH 6 compared to that at pH 7 (as noted earlier) 

may be attributed to the lower total carbonate concentration at pH 6 (2.7 mM vs. 12 mM). 

While the free Ca2+ ion concentration remained at 2 mM, the dominant carbonate species 

changed to H2CO3
* at pH 6, possibly reducing the tendency to form Ca2UO2(CO3)3(aq) 

complex (Wazne et al., 2003).   

In addition, soluble Fe(II) was found to be a weak reductant for oxygen and U(VI) at 

pH 6 in the present study, although some researchers reported U(VI) reduction by aqueous 

Fe(II) under reducing conditions (Liger et al., 1999; Du et al., 2011).  In the current study, 

adsorbed Fe(II) by Fe(III) hydroxides at pH 6 was investigated as a potential reductant for 

the U(VI) passivation layer, but the surface Fe(II) failed to promote UO2 dissolution under 

oxic groundwater conditions. As such, the loss of Fe(II) as soluble species at pH 6 may 

reduce the ability of FeS to diminish the formation of a U passivation layer when oxygen 
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intrusion occurs. Overall, the less favorable detachment of U(VI) surface complexes, the 

lower reducing capacity of FeS at pH 6, and the subsequent formation of a U(VI) passivation 

layer may explain the lack of a significant enhancement of the UO2 dissolution rate at pH 6 

when DO breakthrough occurs. 

 

6.4.3 Decreased Dissolution Rate of UO2 at Basic pH 

Contrary to the enhanced rate of UO2 dissolution at pH 7, UO2 dissolved at a 

noticeably slower rate at pH 8 when FeS approached depletion at DO breakthrough in the 

flow-through experiments. The XAS and XPS results suggested the formation of UO2+x phase 

as the final product of UO2 oxidation by dissolved oxygen in the pH 8 solution. The 

detectable surface oxidation of UO2 started during the inhibition period, generating a U4O9-

like surface before the apparent DO breakthrough. As oxidation proceeded, the complete 

oxidation of surface further generated a UO3-like outermost layer as evidenced by XPS 

analysis, similar to the results in Ulrich et al. (2009). The completely oxidized U(VI) surface 

layer was not apparent at pH 6 or 7, and was likely the cause of the slower dissolution rate of 

UO2 at pH 8.  

The more easily oxidized UO2 surface at pH 8 may be explained by 1) the slower 

detachment of U(VI) complexes than at pH 7, and 2) the obstructed ability of FeS to 

scavenge oxygen at pH 8. Thermodynamic modeling of the solution system indicated that the 

total carbonate concentration was the lowest at pH 8 (1 mM), one order of magnitude lower 

than at pH 7. In addition, calcite and liebigite (Ca2UO2(CO3)3(s)) solid phases may 

precipitate due to oversaturation. Although the formation of a uranyl mineral was not 

confirmed by EXAFS analysis, calcite was identified in the XRD pattern and TEM images of 

the final oxidation products (Appendix D). The precipitation of calcite likely further lowered 
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HCO3
- concentration, limiting the formation of Ca-UO2-CO3 complexes. It should be 

mentioned that the mineral calcite was not clearly found in the pH 8 control experiments in 

the absence of FeS. As a possible explanation to this discrepancy, the oxidation products of 

FeS, i.e., Fe(III) hydroxides and elemental sulfur, possess large surface areas for the 

adsorption of Ca2+ and HCO3
- ions and thus provide crystallization sites for calcite formation. 

The promotion of calcite precipitation may further lower dissolved Ca2+ and HCO3
- 

concentrations by adsorption, therefore limiting the detachment of U(VI) species from UO2 

surfaces. 

At basic pH values, FeS was shown to undergo a predominantly direct solid-phase 

transformation to produce Fe(III) hydroxides and elemental sulfur phases (Chapter 5). FeS 

dissolution was negligible throughout the course of oxidation, releasing less than 1% of total 

Fe as soluble Fe(II) into the effluent. Jeong et al. (2010a) demonstrated that the development 

of a Fe(III) hydroxides coating on FeS surfaces during oxidation at basic pH. The surface Fe 

speciation likely changed via the sequence of ≡FeII-S → ≡FeIII-S → ≡FeIII-O, which 

increasingly hindered the contact of oxygen with FeS. The considerable oxidation of Fe(II) 

was also observed in XPS data collected from pH = 8 experiments, which showed a greater 

shift of binding energy toward higher values than at pH = 6 and 7 samples (Figure C.1 of 

Appendix C). The Fe(III) surface coating possibly limited oxygen scavenging by FeS, 

allowing for more oxygen reacting with UO2 surfaces.  

 

6.5 Conclusions 

This study investigates UO2 dissolution behavior in the presence of FeS and explains 

the rate-limiting mechanism when FeS becomes depleted during suboxic-oxic transitions. 
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The previous chapters demonstrated that FeS inhibited UO2 dissolution through oxygen 

scavenging and keeping DO low, when FeS is present in molar excess compared to U under 

varied geochemical conditions. The results of this chapter illustrate the formation of 

passivation layers on UO2 surfaces and stable Ca-UO2-CO3 complexes in affecting the 

overall UO2 oxidative dissolution rate. 

While the oxidative dissolution rate of UO2 is directly limited by the passivation layer 

on UO2 surfaces, FeS greatly influenced the passivation processes when coexisting with UO2 

by governing the available DO concentration. In this study, a faster dissolution of UO2 

consistently occurred at pH 7 after DO breakthrough in the flow-through experiments. While 

DO concentrations were no longer negligible, residual FeS allowed a slow increase of DO to 

maintain surface-oxidation limited UO2 dissolution. The dominant Ca-UO2-CO3 complexes 

were thought to be the determining factor in preserving a largely reduced U(IV) surface with 

a negligible accumulation of U(VI) species. The favorable detachment of U(VI) complexes 

while leaving the UO2 core exposed led to the faster transient dissolution at pH 7 compared 

to pH 6 and 8 until an overwhelming DO concentration passivated its surface after FeS 

depletion.  

In contrast, FeS oxidation at pH 6 resulted in a similar dissolution behavior of UO2 

compared to that in the control in 1.8 mg/L DO groundwater solution. The slightly acidic pH 

resulted in a substantial dissolution of FeS to soluble Fe(II) species, which proved ineffective 

in keeping a U(VI) passivation layer from forming, perhaps partly due to less effective DO 

scavenging. When FeS concentration diminished in the CSTR, the UO2 surfaces became 

oxidized and formed a mixed U(IV)/U(VI) outermost layer, similar to those in control 
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experiments in absence of FeS. The rate of UO2 dissolution eventually was limited by the 

detachment of lower-concentration U(VI) complexes. 

The rate of UO2 dissolution at pH 8 during FeS depletion was slightly slower than 

that observed in the corresponding control. A considerably oxidized UO2 surface was 

identified before the event of DO breakthrough as determined by XAS and XPS analyses. 

The passivation layer then quickly evolved into a completely oxidized U(VI) coating, likely a 

liebigite phase, contributing to the slow dissolution of UO2 when effluent DO levels 

gradually approach the influent concentration of 1.8 mg/L. Because FeS surface was coated 

by Fe(III) hydroxides resulted from the surface-mediated oxidation, DO scavenging could be 

less efficient than at lower pH. In addition, uranyl complex formation and surface 

detachment were likely limited by the lower total carbonate concentration and calcite 

precipitation in the pH 8 groundwater solution. The promoted oxidation of UO2 particles 

ultimately generated a UO2+x bulk phase, which remained relatively stable under the flow-

through conditions. 

The combined results suggest that the presence of mackinawite in a biostimulation 

zone can significantly influence the long-term stability of reduced U by controlling DO 

levels. Oxidant intrusion into anoxic groundwater may eventually consume the reducing 

capacity of reduced phases, such as FeS, and lead to UO2 reoxidation. The oxidative 

dissolution of UO2 may be temporarily promoted in the presence of low concentrations of 

FeS, if the U(VI) passivation layer is prevented from forming and DO concentration is 

nontrivial. The subsequent fast release of dissolved U can be constrained, however, if a faster 

suboxic-oxic transition allows a rapid passivation of UO2 surface to generate a less-reactive 

coating. Because in situ geochemical and biological conditions are complex in the 
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subsurface, a manipulation of passivation layer formation may be impractical. Nevertheless, 

the correlation between U(VI) passivation layer and rate of UO2 oxidative dissolution 

obtained in this study provides a valuable insight for evaluating the stability of reduced U in 

the subsurface during suboxic-oxic transitions. This study has shown that passivation layers 

may slow down U mobilization in the subsurface, especially in low carbonate Ca-containing 

groundwater where uranyl solid phases can precipitate. As long as the reducing capacity of 

sulfide phases, such as FeS, produced during bioreduction are in excess of the occasional 

oxidant intrusion concentrations, or are regenerated in subsequent bioreduction periods, the 

longer-term stability of UO2 can be realized.  
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Chapter 7  

Conclusions and Recommendations 

 

7.1 Summary of Experimental Work 

This dissertation aims at understanding the role of iron sulfide minerals in the long-

term stability of reduced uranium under oxic groundwater conditions. By investigating the 

thermodynamic and kinetic constraints that control UO2 oxidative dissolution, the present 

work has identified important mechanisms of FeS-UO2 interactions at solution-mineral 

interfaces and demonstrated an inhibited dissolution of UO2 by FeS in artificial groundwater 

solutions when prevailing oxygen intrusion occurred. The overarching goal of this research is 

to mitigate U contamination, protect potable water supplies, and improve health and human 

welfare in the areas susceptible to U release. 

 

7.1.1 Inhibited UO2 Oxidative Dissolution by FeS 

In pH 7 batch experiments, mackinawite effectively scavenged dissolved oxygen and 

inhibited UO2 dissolution until DO breakthrough. The oxidation of structural Fe(II) and S(-

II) in FeS were found to control DO levels, leading to the formation of iron hydroxides (i.e., 

nanogoethite and lepidocrocite) and elemental sulfur, as determined by XRD, XAS, and 

Mössbauer spectroscopy. Once FeS approached depletion, DO levels rapidly increased and 

UO2 oxidative dissolution occurred at a fast rate of 1.2 ± 0.4 ×10-8 mol·g-1·s-1, higher than
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in the control experiment in the absence of FeS (5.4 ± 0.3 ×10-9 mol·g-1·s-1). XAS analyses 

on the final oxidation products identified U(VI)-carbonate surface complexes adsorbed by 

iron hydroxides, which was the final U(VI) retention mechanism under oxic conditions. 

Flow-through reactor studies examined the kinetics of UO2 oxidative dissolution in 

the presence of FeS as a function of pH, DO concentration, and FeS content. The dissolution 

rates in the presence of FeS were found over one order of magnitude lower than those in the 

absence of FeS under otherwise comparable oxic conditions. Because FeS preferentially 

reacted with oxygen and possibly soluble U(VI) species, UO2 particles remained unoxidized 

during an “inhibition period” at pH 7. The removal of DO by FeS was significant but 

incomplete during the inhibition period, resulting in surface-oxidation limited dissolution and 

greater UO2 dissolution rate with increasing influent DO concentration and decreasing FeS 

content. Although the rate was independent of solution pH in the range of 6.1–8.1, the length 

of the inhibition period was shortened by substantial FeS dissolution at the acidic pH. The 

reducing capacity of FeS for inhibiting UO2 dissolution was maximized at basic pH where 

surface-mediated FeS oxidation dominated.  

 

7.1.2 Surface Passivation Limited UO2 Dissolution  

When FeS approached depletion in oxic solution, UO2 dissolution exhibited strong 

pH-dependent behavior. At pH 7, fast dissolution of UO2 consistently occurred after DO 

breakthrough in the flow-through experiments. Solid-phase characterizations by XAS, XPS, 

and TEM techniques revealed a clean, unoxidized U(IV) surface and stoichiometric UO2 

bulk core in the presence of FeS even with an increasing DO concentration. The preservation 

of U(IV) surface was attributed to the fast detachment of surface uranyl complexes and 
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effective removal of U(VI) facilitated by high carbonate and calcium concentrations. FeS 

served as an important oxygen scavenger to control the available DO concentration, resulting 

in a surface-oxidation limited UO2 dissolution mechanism. The lack of passivation layer 

contributed to the enhanced overall oxidative dissolution rate of UO2 for a short period until 

UO2 surface became passivated by the overwhelming DO concentration.  

Unlike pH 7, oxidative dissolution of UO2 at pH 6 and 8 established a steady-state 

effluent U concentration after DO breakthrough, both showing an absence of promoted UO2 

dissolution. The less favorable detachment of U(VI) surface complexes, the lower reducing 

capacity of FeS, and the subsequent formation of a U(VI) passivation layer may explain the 

lack of significant enhancement of UO2 dissolution rate at pH 6 when DO breakthrough 

occurs. In contrast, the lowest total carbonate concentration and calcite precipitation at pH 8 

further limited the formation of ternary Ca-U(VI)-CO3 complexes and allowed the rapid 

passivation of UO2 surfaces. The surface-mediated oxidation of FeS at pH 8 may also 

hindered the oxygen scavenging by producing a Fe(III) hydroxide coating on FeS particles.  

The passivation-layer limited UO2 dissolution rate observed in this study indicates the 

dynamic interplay between surface oxidation versus U(VI) detachment in controlling U 

release during the suboxic to oxic transition. When passivation layers develop on UO2 

surface under oxic conditions, the overall UO2 dissolution rate may be lowered unless 

dissolved carbonate and calcium species promote a fast U(VI) detachment by forming highly 

stable ternary uranyl complexes. 
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7.1.3 Inactive FeS Oxidation Products for UO2 Oxidation 

Depending on solution pH, abiotic FeS oxidation by dissolved oxygen generated 

various iron and sulfur species, including dissolved Fe(II), Fe(III) hydroxides solids, and 

elemental sulfur. While Fe(III) hydroxides were proposed as possible oxidants for reduced 

U(VI), experiments using either mixed Fe(III) solids or synthetic ferrihydrite demonstrated 

the negligible impact of Fe(III) solids on oxidative dissolution of UO2 under oxic conditions. 

The dissolution rate of UO2 were almost the same in the presence and absence of Fe(III) 

solids as measured in flow-through experiments.  

While adsorbed Fe(II) by Fe(III) hydroxides were hypothesized as a potent reductant 

for U(VI), flow-through experiments conducted at pH 6 using Fe(II)-containing solution 

showed little impact of surface Fe(II) on UO2 oxidative dissolution. This result supported the 

observation that UO2 surface was readily passivated at pH 6, where FeS underwent 

substantial dissolution during oxidation by oxygen. Higher pH may contribute to greater 

adsorption of Fe(II) by Fe(III) hydroxides, and also much faster oxidation of soluble Fe(II) 

and precipitation of Fe(III) solids. Because Fe(II) was readily oxidized at pH> 7 by dissolved 

oxygen, surface-adsorbed Fe(II) was not suspected to reduce U(VI) under oxic conditions at 

basic pH.  

In the abiotic systems, nano-sized elemental sulfur (S8
0) was the primary sulfur 

oxidation product of FeS, although trace thiosulfate (S2O3
2-) and sulfate (SO4

2-) were also 

identified in aqueous solution. This result is in contrast to FeS oxidation in a biologically 

active system where remarkable sulfate production and solution acidification take place. The 

lack of further sulfur oxidation contributed to a relatively stable pH during FeS oxidation 

reaction. Because elemental sulfur particles were strongly hydrophobic, they tended to 
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escape aqueous phase and accumulate on water-air interface upon FeS depletion. Therefore, 

the interactions of elemental sulfur with UO2 particles were minimized without noticeable 

impact on UO2 oxidative dissolution.  

 

7.2 Environmental Implications 

7.2.1 Mobility of Uranium at Contaminated Sites 

The primary hypothesis of the project, that nanocrystalline mackinawite strongly 

influences the oxidative dissolution of uraninite by controlling dissolved oxygen levels, has 

been verified. While much attention has been devoted to the immobilization of low-level 

soluble U(VI) in groundwater at former mill tailings and Department of Energy Complex 

sites, the current dissertation presents a timely study in understanding the role of sulfide 

minerals for maintaining the long-term stability of reduced uranium solids when 

encountering oxic groundwater intrusion.  

Given that bacteria capable of reducing U, Fe, and SO4
2- are ubiquitous in natural 

environments, FeS and reduced U(IV) solids can be simultaneously produced under sulfate-

reducing conditions where Fe(III) minerals and sulfate are frequently encountered. When 

naturally produced in anoxic sediments, FeS will serve as an oxygen scavenger to maintain 

low DO levels in the subsurface. Because of the preferential reaction of FeS with oxygen, 

uraninite remobilization may be inhibited by lowering the DO concentration, as long as the 

anoxic condition is restored before the complete FeS depletion. Under conditions favoring a 

large production of mackinawite, a long inhibition period of UO2 dissolution may be 

guaranteed even with a high DO concentration (> 7 mg/L). The strategy of FeS generation 

may be employed and engineered by stimulating the activities of SRB and injecting 
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necessary sulfate and soluble iron sources (e.g., Fe(II) or ferrihydrite) into subsurface. Within 

the entire life of the site management, however, constant monitoring of dissolved U and DO 

concentrations would be necessary to optimize the timing for reproduce FeS in order to keep 

U immobilized. The periodic maintenance of anoxic condition and FeS generation in 

contaminated sites may be superior to injecting chemically produced agents, such as 

zerovalent iron (ZVI), in a permeable reactive barrier (PRB) due to the advantage in energy 

and chemical conservation and cost reduction. 

Despite the success of FeS in inhibiting UO2 oxidation in the abiotic systems, great 

challenges exist for scaling experimental results into the field environment in an effective 

and sustainable manner. Extremely varied geochemical and hydrogeological conditions at U 

remediation sites likely pose significant challenges on U immobilization. For example, the 

spatial distribution of FeS and reduced U solids within a subsurface matrix may limit the 

protective role of FeS. If the enzymatically reduced U is physically apart from FeS 

precipitates in the porous media, uraninite has a greater chance to be in contact with oxygen 

and becomes dissolved. The nanoscale UO2 produced by microorganisms may be mobile in 

porous sediments and thus more susceptible to oxidation than bulk uraninite. In addition, 

other co-contaminants, soils matrices, and complexing ligands (e.g., carbonate and DOM) 

may also influence U mobility while FeS scavenges oxygen and keeps sediments anoxic. 

Perhaps the most confounding behavior of uranium at contaminated sites is associated 

with native microbial populations, which cause the reduction of uranium and sulfate under 

sulfate reducing conditions. When a dominant anoxic subsurface yields to oxic conditions, 

sulfur oxidizing bacteria can promote the sulfide oxidation, producing sulfate and protons 

and noticeably shifting solution pH (Burton et al., 2009). The acidic water may severely 
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impair FeS reducing capacity and undermine UO2 stability. Therefore, the possibility of 

changing geochemical conditions due to microbial activities should be carefully considered 

when using sulfide minerals as the protector for reduced U. In parallel with uraninite 

precipitates, non-uraninite biomass-bound U(IV) has been observed in acetate-amended 

sediments (Fletcher et al., 2010; Bargar et al., 2013). While mackinawite has the potential to 

reduce the monomeric U(IV) complex, current knowledge is deficient for predicting the 

mobility of monomeric U(IV) upon interaction with FeS. 

 

7.2.2 Long-term Behavior of Oxidized U Solids 

Without the timely restoration of anoxic conditions, uraninite solids will eventually 

be oxidized by oxygen in the subsurface. When oxidizing condition prevails, the passivation 

layers on UO2 surface can play a critical role in controlling the transport and transformation 

of U(VI) species in groundwater. Thus, the long-term behavior of uranium at a contaminated 

site will likely be dependent on the dissolution equilibrium and kinetics of UO2 and 

secondary U(VI) phases. Ideally, the knowledge of dissolution rate laws and equilibrium 

solubility will enable the construction of reactive transport model capable of predicting the 

long-term distribution of uranium among the dissolved and various solid phases.  

The accurate prediction of UO2 stability, as shown in this dissertation, may be 

complicated by the presence of sulfide minerals that directly govern DO concentrations. A 

transient phase of fast UO2 dissolution may occur when UO2 surfaces remain reduced and 

DO increases, as long as the U(VI) detachment step is faster than UO2 surface oxidation. The 

rapid U release may cause considerable U spread in groundwater and soils, exceeding the 

rate estimated from the current model of UO2 oxidative dissolution at circumneutral pH. In 
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the field, other reactive mineral phases capable of scavenging DO may also facilitate in 

preserving the UO2 surface from passivation. A number of complexing ligands, including 

carbonate and DOM, may enhance the overall dissolution rate of UO2 in the subsurface. 

Because the hydraulic residence time of groundwater varies from years to decades, the slow 

flow may allow a long period of low DO concentration and sluggish diffusion of soluble 

U(VI) species to downstream before UO2 surfaces become passivated by the elevated oxygen 

concentration. More importantly, because soil minerals in the subsurface cannot move freely, 

the impact of FeS on UO2 oxidation and dissolution processes would be spatially and 

temporally localized. The dissolved U(VI) species from the upstream may slowly travel with 

the flow of groundwater unless they are retained by the mineral phases or reduced by 

microorganisms in the downstream environment. 

Unlike previous studies performed under reducing conditions (Sani et al., 2005; 

Ginder-Vogel et al., 2010), Fe(III) hydroxides and elemental sulfur do not appear to pose an 

additional risk of UO2 mobilization under oxic conditions, although they may serve as 

additional adsorbents of soluble U(VI). It should be noted that the transformation of FeS to 

Fe(III) solids are unlikely to play a key role in U retention, given that Fe(III) hydroxide 

minerals are usually already the most common mineral phases in the subsurface. The 

complexing ligands in groundwater, including calcium and carbonate, may limit U(VI) 

adsorption through their interactions with uranyl species to form stable complexes, especially 

under oxic conditions. When exceeding the solubility of uranyl minerals, however, the 

precipitation of secondary U(VI) solid phases, such as liebigite, may occur to control the 

dissolution rate of UO2. When oxidizing condition is unavoidable, procedures that promote 

UO2 surface passivation may be practiced to limit the UO2 dissolution rate. 
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7.3 Recommendations for Future Work 

7.3.1 Extension to Different Materials and Solution Conditions 

Because of the complexity of soil mineralogy and U speciation in the subsurface, new 

information and trends would be revealed by extending the approaches described in this 

dissertation to different types of iron sulfide minerals, reduced U(IV) species, and solution 

compositions: 

1. Other metastable iron sulfide minerals, including pyrrhotite and greigite, can be 

investigated for their reactivity with uraninite and dissolved oxygen. The 

transformation of these sulfide minerals into more stable mineral phases under 

oxic and anoxic conditions can also have important implications for geochemical 

cycling of sulfur and uranium in the environment.  

2. Monomeric U(IV) complexes produced via microbial U(VI) reduction can be 

examined for their stability and mobility after interacting with mackinawite. The 

potentially important U(IV) species in the field may exhibit different mechanisms 

and kinetics of oxidation and dissolution during anoxic-oxic transitions as 

compared to uraninite.  

3. Groundwater containing complexing ligands, such as dissolved organic matter 

and siderophore, can be evaluated for their role in influencing FeS and UO2 

solubility and transformation under anoxic and oxic conditions. In particular, the 

influence of Ca-UO2-CO3 complexes on U stability and U(VI) detachment can be 

studied by systematically varying Ca2+ and CO3
2- concentrations under constant 

pH values.  
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7.3.2 Extension to the Field Environment 

Because the current research is mainly based on laboratory-scale experiments, 

applications of the results to environmental systems may be limited. By working with natural 

sediments besides synthetic minerals, aspects of environmental complexity could be 

addressed. Instead of using component additivity approaches to predict U stability in 

heterogeneous systems, direct measurements of the mobility of U in the field samples could 

serve to further constrain reactive transport models.  

A bench-scale column experiment using Rifle or Hanford sediments may be a good 

starting point for evaluating the geochemical heterogeneity of a porous media. The U 

mobility can be studied in unsaturated soils subjected to repeated wetting and drying cycles 

in the field and analog laboratory systems. Although FeS may continue to serve as an oxidant 

scavenger, frequent redox cycles may cause redistribution of uranium and precipitation of 

U(VI) secondary phases. Over redox reactions, the aqueous and solid phase characterization 

techniques applied in this dissertation research can be utilized. 

Given that iron sulfides and uraninite are most effectively produced by iron- and 

sulfate-reducing bacteria in natural environments, a comprehensive understanding of U 

stability will not be complete without the consideration of microbial activities. Biogenic iron 

sulfide and uraninite solids generated by different strains of SRB can be investigated for their 

reactivity with oxygen and complexing ligands, which provide a comparison with the abiotic 

counterparts. Stimulation of SRB activity in sediment columns can be conducted to 

determine the maximum production of FeS for U(VI) reduction. The goal would be to 

understand the relative contribution of biotic and abiotic processes that control U 

transformation and mobility in the field. 
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Appendix A 

Thermodynamic Database 

The aquatic chemistry of uranium is very complex and the available thermodynamic 

database is still subject to considerable uncertainty. The uncertainty of the thermodynamic 

database has been considered an important limiting factor in equilibrium modeling and 

reactive transport modeling. For the purpose of comparing the results between studies, a 

consistent database of thermodynamic constants is essential. In this appendix, the 

thermodynamic constants for dissolved and solid uranium species which commonly present 

in the groundwater are summarized.  

Most stability constants of dissolved uranium species in the present work are from the 

NEA database (Guillaumont et al., 2003) with the exception of the constant for ternary Ca-

UO2-CO3 complexes (Dong and Brooks, 2006). All constants were compared with the native 

database of the chemical equilibrium software application Visual MINTEQ (version 3.1). 

Necessary update was made on the software database to include the most recently published 

data. Additional reactions (e.g., acid-base) used in equilibrium calculations used the default 

constants in the software database. 
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Table A. 1 Thermodynamic constants of aqueous uranium species used in Visual MINTEQ 

simulation.  

Reaction Log β* 

(I = 0) 

ΔrH0
m 

(kJ.mol-1) 
UO2

2+ + H2O = UO2OH+ + H+ -5.25  

UO2
2+ + 2H2O = UO2(OH)2(aq) + 2H+ -12.15  

UO2
2+ + 3H2O = UO2(OH)3 - + 3H+ -20.25  

UO2
2+ + 4H2O = UO2(OH)4

2- + 4H+ -32.4  

2UO2
2+ + H2O = (UO2)2OH3+ + H+ -2.70  

2UO2
2+ + 2H2O = (UO2)2(OH)2

2+ + 2H+ -5.62  

3UO2
2+ + 4H2O = (UO2)3(OH)4

2+ + 4H+ -11.90  

3UO2
2+ + 5H2O = (UO2)3(OH)5

+ + 5H+ -15.55  

3UO2
2+ + 7H2O = (UO2)3(OH)7 - + 7H+ -32.2  

4UO2
2+ + 7H2O = (UO2)4(OH)7

+ + 7H+ -21.9  

UO2
2+ + CO3

2- = UO2CO3(aq) 9.94 5.0 ± 2.0 

UO2
2+ + 2CO3

2- = UO2(CO3)2
2- 16.61 18.5 ± 4.0 

UO2
2+ + 3CO3

2- = UO2(CO3)3
4- 21.84 -39.2 ± 4.1 

UO2
+ + 3CO3

2- = UO2(CO3)3
5- 6.95±0.36  

3UO2
2+ + 6CO3

2- = (UO2)3(CO3)6
6- 54±1 -62.7 ± 2.4 

U(CO3)5
6- = CO3

2-+ U(CO3)4
4- 1.12  

U4++5CO3
2- = U(CO3)5

6- 34.0 -20.0 

2UO2
2+ + CO2(g) + 4H2O = (UO2)2CO3(OH)3

- + 5H+ -19.01  

3UO2
2+ + CO2(g) + 4H2O = (UO2)3O(OH)2(HCO3)+ + 5H+ -17.5 ± 0.5  

11UO2
2+ + 6CO2(g) + 18H2O = (UO2)11(CO3)6(OH)12

2- + 24H+ -72.5 ± 2.0  

2UO2
2+ + CO3

2- + 3H2O = (UO2)2CO3(OH)3
- + 3H+ -0.855  

Ca2+ + UO2
2+ + 3CO3

2- = CaUO2(CO3)3
2- 27.4†  

2Ca2+ + UO2
2+ + 3CO3

2- = Ca2UO2(CO3)3(aq) 30.70†  

UO2
2+ + Cl- = UO2Cl+ 0.17 ± 0.02 8.0 ± 2.0 

UO2
2+ + 2Cl- = UO2Cl2(aq) -1.10 ± 0.4 15.0 ± 6.0 

H2O(l)+U4+ = H++UOH3+ -0.54  

4OH-+U4+ = U(OH)4(aq) 46.0  

U4++2CO3
2- +2OH- = U(OH)2(CO3)2

2- 42.4  

SO3
2- +UO2

2+ = UO2SO3 (aq) 6.6 ± 0.6  

S2O3
2- +UO2

2+ = UO2S2O3 (aq) 2.8 ± 0.3  

SO4
2- +UO2

2+ = UO2SO4 (aq) 3.15 ± 0.02 19.5 ± 1.6 

SO4
2- +U4+ = USO4

2+ (aq) 6.58 ± 0.19 8.0 

2SO4
2- +U4+ = U(SO4)2 (aq) 10.51 ± 0.2 32.7 

2SO4
2- +UO2

2+ = UO2(SO4)2
2-(aq) 4.14 ± 0.07 35.1 ± 1.0 

3SO4
2- +UO2

2+ = UO2(SO4)3
4-(aq) 3.02 ± 0.38  
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Table A.2 Possible solid phases and their solubilities considered in Visual MINTEQ 

simulations. 

  

Solid Phase Dissolution Reaction Log K 

(I = 0) 

Aragonite CaCO3 (s) = Ca2+ + CO3
2- -8.063 

becquerelite Ca(UO2)6O4(OH)6•8H2O+ 14H+ = Ca2+ + 6UO2
2++18H2O 2.302 

Calcite CaCO3 (s) = Ca2+ + CO3
2- -8.063 

Fe(OH)2 (am) Fe(OH)2 (am) + 2H+ = Fe2+ + 2H2O 8.869 

Fe(OH)2 (c) Fe(OH)2 (c) + 2H+ = Fe2+ + 2H2O 8.869 

Halite NaCl (s) = Na+ + Cl- -4.491 

KCl(s) KCl (s) = K+ + Cl- -5.79 

liebigite Ca2UO2(CO3)3•11H2O =  2Ca2+ + 3CO3
2- +UO2

2++11H2O -37.09 

Lime CaO (s) + 2H+ = Ca2+ + H2O 11.387 

Natron Na2CO3•10H2O = 2Na+ + CO3
2- + 10H2O -9.481 

Portlandite Ca(OH)2 (s) 2H+ = Ca2+ + 2H2O 11.387 

Rutherfordine UO2(CO3) (s) + 2H+ = UO2
2+ + CO3

2- -20.964 

Schoepite UO3•2H2O + 2H+ =  UO2
2+ + 3H2O -1.514 

Siderite FeCO3(s) = Fe2+ + CO3
2- -10.581 

Thermonatrite Na2CO3•H2O = 2Na+ + CO3
2- + H2O -9.481 

UO2(OH)2 (beta) UO2(OH)2 (beta) + 2H+ =  UO2
2+ + 2H2O -1.514 

UO3(s) UO3(s) + 2H+ =  UO2
2+ + H2O -1.514 

Fe3(OH)8(s) Fe3(OH)8(s) + 8H+ = Fe2+ + 2Fe3+ + 8H2O 2.530 

Ferrihydrite Fe(OH)3 (am) + 3H+ = Fe3+ + 3H2O -3.169 

Ferrihydrite (aged) Fe(OH)3 (aged) + 3H+ = Fe2+ + 3H2O -3.169 

Goethite FeOOH + 3H+ = Fe3+ + 2H2O -3.169 

Hematite Fe2O3 + 6H+ = 2Fe3+ + 3H2O -6.339 

Lepidocrocite FeOOH + 3H+ = Fe3+ + 2H2O -3.169 
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Table A.3 Half-reactions of U(IV)/U(VI) and  Fe(II)/Fe(III) redox couples and the 

corresponding standard electrode potentials. U(VI) and Fe(II) species are based on the 

predominant dissolved species predicted by Visual MINTEQ. 

Reaction E°(v) 

Ca2UO2(CO3)3(aq)+3 H++ 2e- = UO2(s)+3 HCO3
-+ 2 Ca2+ 0.278§ 

CaUO2(CO3)3
2-+3 H++ 2e- = UO2(s)+3 HCO3

-+ Ca2+ 0.427§ 

0.5 UO2(CO3)3
4-(aq) + 1.5 H+ + e- = 0.5 UO2(s)+1.5 HCO3

- 0.687 

Fe(OH)3(s)(fresh) +3H+ + e- = Fe2+(aq) + 3H2O 1.064 

FeOOH(s) + 3H++ e- = Fe2+(aq) + 2H2O 0.799 

  Reference: § (Gavrilescu et al., 2009). 
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Table A.4 Calculated Gibb’s free energy of redox reactions at standard state conditions (∆Gr°) and at experimental conditions at pH 6, 

7 and 8 in flow-through experiments (∆Gr
*). 

Reactions* 
∆Gr° (kJ mol-1)§ ∆Gr

* (kJ mol-1)¶ 

pH 6- 8 pH 6 pH 7 pH 8 

Fe(OH)3(s) + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ Ca2+ ↔ 

0.5Ca2UO2(CO3)3(aq) + Fe2+ + 3H2O 
-59.39 -7.25 -14.03 -4.17 

Fe(OH)3(s) + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ 0.5Ca2+ ↔ 

0.5CaUO2(CO3)3
2- + Fe2+ + 3H2O 

-49.35 -6.91 -13.69 -3.82 

Fe(OH)3(s) + 0.5UO2 + 2.5H+ + 0.5HCO3
-↔ 0.5UO2CO3(aq) 

+ Fe2+ + 3H2O 
-59.21 -6.92 -13.71 -3.84 

α-FeOOH + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ Ca2+ ↔ 

0.5Ca2UO2(CO3)3(aq) + Fe2+ + 2H2O 
-41.81 10.33 3.55 13.42 

α-FeOOH + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ 0.5Ca2+ ↔ 

0.5CaUO2(CO3)3
2- + Fe2+ + 2H2O 

-31.77 10.67 3.89 13.76 

γ-FeOOH + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ Ca2+ ↔ 

0.5Ca2UO2(CO3)3(aq) + Fe2+ + 2H2O 
-50.61 1.53 -5.25 4.62 

γ-FeOOH + 0.5UO2 + 1.5H+ + 1.5HCO3
-+ 0.5Ca2+ ↔ 

0.5CaUO2(CO3)3
2- + Fe2+ + 2H2O 

-40.57 1.87 -4.91 4.96 

* Only three Fe(III) hydroxides, i.e., ferrihydrite, goethite and lepidocrocite, are considered for the redox reactions with 

uraninite. The selection of Fe(III) solids was based on the experimental results in Chapter 4 and 5.The dominant 

dissolved uranyl species were predicted to be Ca2UO2(CO3)3(aq), CaUO2(CO3)3
2-, and UO2CO3(aq) at pH 6, 

Ca2UO2(CO3)3(aq), CaUO2(CO3)3
2- for pH 7 and 8.  

§ At standard state conditions, the Gibbs free energy of the reactions is the same at any pH. Gibbs free energies of 

formation for all uranium species were obtained from Guillaumont et al. (2003) except for the Ca-UO2-CO3 species 

(Dong and Brooks, 2006). Gibbs free energy of formation for iron hydroxides were obtained from (Majzlan et al., 2003) 

and (Majzlan et al., 2004). The Gibbs free energy of formation for all other dissolved species were obtained from (Morel 

and Hering, 1993). 
¶ The experimental condition at pH 6 is 0.5 × 10-6 M U(VI) species, 0.1× 10-3 M Fe2+, 1 × 10-3 M HCO3

-, and 2 × 10-3 M 

Ca2+ ;  pH 7 experimental conditions 0.5 × 10-6 M U(VI) species, 5 × 10-6 M Fe2+, 1 × 10-2 M HCO3
-, and 2 × 10-3 M 

Ca2+; pH 8 experimental conditions 0.5 × 10-6 M U(VI) species, 1 × 10-7 M Fe2+, 5 × 10-4 M HCO3
-, and 1.5 × 10-3 M 

Ca2+. 
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Appendix B 

FeS Batch Control Experiment Results 

 

 
Figure B.1 The kinetic profiles of (a) total dissolved Fe and Eh; (b) sulfur species, i.e., 

elemental sulfur, thiosulfate, and sulfate during control experiment in the presence of only 

FeS. Experimental conditions: 5.0 g/L FeS; 4.0 mM NaHCO3, 0.4 mM KCl, and 2.0 mM 

CaCl2, the solution is equilibrated with 2% PO2, 5% PCO2 gas mixture.  
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Appendix C 

XPS Spectra of FeS and UO2 Oxidation Products 

 
Figure C.1 Deconvolution of representative U 4f XPS spectra of CSTR samples after 

complete FeS oxidation  (a) 82 τ at pH = 6.1; (b) 106 τ at pH = 8.1. The surface U has been 

completely oxidized to U(VI) oxidation state by the time of reaction. Both were collected in 

the same sequence of samples shown in Figure 6.8 of Chapter 6, where experiments were 

carried out under 4.8 mM FeS and DO = 1.8 mg/L groundwater conditions.  
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Figure C.2 Narrow scans of Fe 2p3/2 XPS spectra for the initial FeS and oxidized FeS 

samples collected as a function of time at pH 6 (a), 7 (b), and 8 (c) flow-through experiments.  

The U 4f XPS spectra of corresponding samples were reported in Figure 6.8 in Chapter 6. 

The spectra were only calibrated without fitting. 
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The initial FeS shows a Fe 2p3/2 spectra dominated by ~706.8 eV peak, which was 

identified as the Fe(II)-S component (Mullet et al., 2002; Jeong et al., 2010a). The broad 

tailing feature at the binding energy of 708–714 eV has been attributed to the surface Fe3+ 

species, possibly due to the trace Fe(III)-S multiplets in FeS.  

When FeS is oxidized by DO, the binding energy of the Fe 2p3/2 peak shifts to higher 

energies at all pH values in this study (Figure B.1). At pH 6 and 7, the decreased Fe(II)-S 

peak at ~706.8 eV is accompanied by an increasing peak in the range of 709–711 eV, which 

can be attributed to the growing Fe(III)-S component (Jeong et al., 2010a). Because 

significant loss of Fe occurred at pH 6 due to FeS dissolution, the peak intensity of 83 τ 

sample at 710.6 eV was reduced as compared to the earlier samples. The oxidized surface Fe 

also exhibit broadened XPS spectra, indicating a combination of mixed Fe(III) species. The 

tailing at binding energy greater than 711 eV was previously attributed to the Fe(III)-O 

species on oxidized FeS (Jeong et al., 2010a). 

At pH 8, the Fe species at mackinawite surface shows a significantly different feature 

after oxidation compared with the pH 6 and 7 experiments (Figure B.1c). While an 

intermediate sample exhibits a similar Fe(III)-S phase at ~710.5 eV after 45 τ reaction, the Fe 

2p3/2 spectra eventually shifted to a higher binding energy of ~714 eV after 60 τ in the flow-

through experiment. The Fe(III)-O component gradually became a dominant surface species 

at pH 8, possibly due to the formation of Fe(III) hydroxide coating on FeS surface. The 

dominance of Fe(III)-O surface species after FeS oxidation was not observed at lower pH 

values where Fe(III)-S species was more prominent. The disparate surface Fe species 

observed by XPS Fe 2p3/2 spectra suggest the different FeS oxidation pathways occurring at 

the three pH values, which may affect the oxygen scavenging efficiency in groundwater. 
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Appendix D 

Additional Solid Phase Characterization 

 
Figure D.1 XRD patterns of final solid samples collected from CSTR at pH 6, 7, and 8 after 

FeS has been completely oxidized by 7.8 mg/L DO in simulated groundwater. Calcite 

precipitates were identified at pH 8 by a characteristic (104) peak at ~29.5° 2θ.  
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Figure D.2 TEM images of CSTR samples collected at 106 τ of pH 8 CSTR experiment after 

complete FeS oxidation. (a) BF image at 40 K magnification; (b) BF image at 80 K 

magnification of the same material. Both images shows platelet materials comprised of 

calcite precipitates. The samples were dried inside an anaerobic chamber prior to TEM 

analysis. 
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