
Spatial and temporal control of quantum dots for on-chip integration

by

Jieun Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in the University of Michigan
2014

Doctoral committee:

Assistant Professor Vanessa Sih, Chair
Assistant Professor Xiaoming Mao
Professor Joanna M. Millunchick
Professor Georg A. Raithel
Professor Duncan G. Steel



Copyright c© 2014

by

Jieun Lee



Acknowledgements

I would like to thank the many people who have helped me on the path towards this thesis.

First, I sincerely appreciate my thesis advisor, Vanessa Sih, for her wonderful guidance.

Her support, patience and enthusiasm on research were great encouragements for me to

pursue graduate studies.

I am also grateful for all current and former members of our group. In particular, I

thank Ben Norman, Tim Saucer and Chris Trowbridge for their knowledge and efforts to

introduce the lab equipments to me. Also, I would like to express many thanks to Marta

Luengo-Kovac, Michael Macmahon and Brennan Pursley for making the lab an enjoyable

place to conduct research. I wish the best of luck to the newest members of the group, Xinlin

Song and Aneesh Venugopal.

Many thanks to collaborators who have contributed to my research. I am especially

indebted to Andrew Martin from the Millunchick group who grew quantum dot samples

for us which was the foundation of this thesis work. I also very much enjoyed conducting

experiments with Sunyeol Jeon and Myungkoo Kang from the Goldman group.

I appreciate my committee members including Xiaoming Mao and Georg Raithel for

their help to complete this thesis. In particular, I would like to thank Joanna Millunchick

for her valuable advice and contributions to the quantum dot experiments. I am also thank-

ful to Duncan Steel for fruitful discussions on interpreting our experiments and building a

theoretical background.

ii



Many people in the Lurie Nanofabrication Facility greatly helped me to make photonic

crystals. I would like to thank Greg Allion, Robert Hower and Vishva Ray and other staff

for sharing their knowledge and experience.

I am also grateful to professors Jeongsoo Kang, Yoon-Ho Kim and Byung Il Min who en-

couraged me to do summer undergraduate research participation and Master degree research

at Pohang University of Science and Technology.

Finally, I wish to thank my family for their love and support during the journey of my

PhD study.

iii



Contents

Acknowledgements ii

List of Figures vii

List of Tables x

List of Appendices xi

Abstract xii

Chapter 1 Introduction 1

1.1 Background 2

1.2 Results 3

1.3 Organization 4

Chapter 2 Semiconductor Quantum Dots 5

2.1 Quantum Confinement 5

2.2 Photoluminescence of quantum dots 8

2.3 Growth Techniques 9

2.4 Site-controlled Quantum Dots 11

2.4.1 Focused-Ion-Beam 12

2.4.2 Other Techniques 14

iv



Chapter 3 Site-Controlled Quantum Dots using Focused-Ion-Beam 15

3.1 Motivation 15

3.2 Sample Fabrication 17

3.3 Scanning Micro-photoluminescence Set-up 19

3.4 Optical Characterization Results 20

3.4.1 Single Quantum Dot Photoluminescence 20

3.4.2 Power Dependence of Single Quantum Dot 23

3.4.3 Spatial Imaging of Site-controlled Quantum Dots 24

3.4.4 Multiple Emissions at the Same site 26

3.4.5 Statistical Results 27

3.5 Conclusions 30

Chapter 4 Photonic Crystals 31

4.1 Photonic Bandgap 31

4.2 Photonic Crystal Cavity 35

4.3 Coupling Quantum Dots to a Photonic Cavity 36

4.3.1 Purcell Enhancement of Spontaneous Emission 37

4.3.2 Strong Coupling 38

4.4 Toward Solid-State Photonic Network 39

Chapter 5 Photonic Crystals Simulation and Measurement 41

5.1 Computational Method 41

5.1.1 Finite-Difference Time-Domain Calculation 41

5.1.2 MEEP Simulation Results 44

5.2 Cavity Q-factor measurement 48

5.2.1 Cavity Mode Probed by Quantum Dot Ensembles 48

5.2.2 Comparing Measurements to MEEP Results 50

v



Chapter 6 Nonlinear Dynamics of Quantum Dots in a Photonic Cavity 52

6.1 Motivation 52

6.2 Sample Preparation 53

6.3 Time-resolved Pump-pump Set-up 54

6.4 Experimental Results 55

6.4.1 Purcell enhanced emission of cavity-coupled QDs 55

6.4.2 Nonlinear Luminescence Autocorrelation 56

6.4.3 Exciton Nonlinearity 59

6.4.4 Biexciton Nonlinearity 62

6.5 Quantum Optical Simulation 63

6.6 Conclusions 66

Chapter 7 Summary and Future Works 67

Appendices 69

Bibliography 83

vi



List of Figures

Figure 2.1 Density of states of low dimensional structures 6

Figure 2.2 Energy level diagram of a quantum dot compared to an atom 8

Figure 2.3 Ground and exciton states of a quantum dot 8

Figure 2.4 Micro-photoluminescence of individual quantum dots 9

Figure 2.5 Molecular beam epitaxy (MBE) growth of self-assembled quantum

dots 10

Figure 2.6 Atomic force microscopy (AFM) image of InAs quantum dots grown

on GaAs substrate 11

Figure 2.7 Site-controlling quantum dots 11

Figure 2.8 Focused-ion-beam-induced single quantum dots growth 13

Figure 2.9 AFM image of a single layer FIB-induced quantum dots 13

Figure 3.1 Sample schematic of Focused-Ion-Beam-patterned quantum dots 17

Figure 3.2 AFM image of multi-layers FIB-patterned QDs 19

Figure 3.3 Scanning micro-photoluminescence set-up 20

Figure 3.4 Spectrally and spatially resolved FIB-patterned single dot PL 22

Figure 3.5 Power-dependent PL of FIB-patterned single QD and wetting layer 23

Figure 3.6 2D PL intensity maps of the same spatial region 25

Figure 3.7 Multiple emissions at the same site of FIB-patterning 26

Figure 3.8 Statistical results of FIB-patterned QD emissions 29

vii



Figure 4.1 1D photonic crystal dispersion relation 33

Figure 4.2 Hexagonal photonic crystal dispersion relation 34

Figure 4.3 Schematic of H1 cavity with an embedded QD 35

Figure 4.4 QD-cavity coupling with dissipations 36

Figure 4.5 Schematic spontaneous emission spectrum of Purcell regime and strong

coupling regime 38

Figure 4.6 Schematic of future quantum network using photonic crystals 39

Figure 5.1 Central difference approximation 43

Figure 5.2 Leap-frog algorithm 44

Figure 5.3 Hexagonal L3 cavity design 45

Figure 5.4 Field profile of L3 photonic crystal cavity calculated by MEEP 47

Figure 5.5 Photoluminescence of InAs QDs in bulk GaAs substrate before fab-

ricating photonic crystals 48

Figure 5.6 Photoluminescence of QDs in a photonic crystal cavity and Q-factor

measurement 50

Figure 5.7 Cavity mode wavelength and Q-factor as functions of crystal lattice

constant and hole radius obtained from experiment and MEEP cal-

culation 51

Figure 6.1 SEM image of fabricated L3 photonic crystal cavity 54

Figure 6.2 Luminescence intensity autocorrelation set-up 55

Figure 6.3 Cavity Q measurement using the Purcell enhancement of QDs em-

bedded in a cavity 56

Figure 6.4 Luminescence intensity autocorrelation color map 57

Figure 6.5 Luminescence intensity autocorrelation of a single quantum dot 58

Figure 6.6 Power dependence of exciton luminescence intensity autocorrelation 60

viii



Figure 6.7 Extracted exciton lifetime from a cavity with Q = 680 61

Figure 6.8 Power dependence of biexciton luminescence intensity autocorrelation 62

Figure 6.9 Quantum optical simulation of exciton luminescence intensity auto-

correlation 65

Figure A.1 Image generated by a photonic crystal design file for e-beam Raith 150 70

Figure A.2 SEM image of a PMMA mask fabricated by e-beam JEOL 6300 71

Figure A.3 Sample dry etched by Oxford PlasmaLab 100 72

Figure A.4 SEM images of underetched and overetched samples 72

Figure A.5 Microscope image of sample after undercut 73

Figure A.6 SEM images of the final sample after undercut 74

Figure A.7 Debris on sample before treated with citric acid 75

Figure B.1 Two-level system with a decay rate γ 79

Figure B.2 QD excited state population and cavity photon number as a function

of time 80

Figure B.3 QD spontaneous emission when excited by time-delayed two pulses 81

Figure B.4 Simulation as a function of laser power for selected photon numbers 82

ix



List of Tables

Table 5.1 Parameters used for MEEP calculation of L3 cavity 45

Table 6.1 Parameters used for quantum optical simulation 64

Table A.1 Etch recipe using Oxford PlasmaLab 100 71

x



List of Appendices

Appendix A Photonic Crystal Fabrication 69

Appendix B Quantum Optical Toolbox 76

xi



Abstract

Quantum dots are nanostructures that confine electrons in three spatial dimensions. Due

to their discrete atom-like energy levels and localization from the environment, individual

quantum dots have the potential to be used as solid-state qubits for quantum information

processing. To enable such information processing in a scalable manner, it is necessary to

integrate quantum dots on-chip to devices like photonic crystal cavities for building a hybrid

interface of a light-matter coupled system. Motivated to develop an effective way to integrate

quantum dots with photonic crystals, this thesis first investigates spatially controlled InAs

quantum dots that are fabricated by focused-ion-beam milling and molecular-beam epitaxy.

Here, multi-layers of InAs quantum dots on top of the site-controlled seed dots are fabricated

and the linewidth of an individual dot as narrow as 160 µeV is measured, indicating an

improved optical quality over single-layer quantum dot samples. In addition, a spatial map

of the micro-photoluminescence of individual quantum dots is measured to verify the dot

positions with diffraction-limited spatial resolution. Statistical analysis over 16 array sites

shows that the seed dot positions have transferred to the upper layers with a finite spatial

deviation due to the formation of mounds. In addition to an optical study of site-controlled

quantum dots, the second part of this thesis investigates the temporal dynamics of self-

assembled InAs quantum dots that are coupled to a photonic crystal cavity. By performing

the luminescence intensity autocorrelation experiment, the Purcell enhanced emission from

individual quantum dots resonant to a cavity mode is measured, demonstrating a temporal

xii



control of quantum dots through coupling to an optical nanocavity. The measurement of

exciton and biexciton transitions reveals distinct autocorrelation signals which originate

from their different nonlinearities. Finally, a quantum optical simulation incorporating the

interaction between the laser pulses, cavity mode and atomic two-level system is used to

support the experimental exciton autocorrelation data.
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Chapter 1

Introduction

Semiconductor quantum dots coupled to optical nanocavities are relevant to and require

the understanding of several fields including quantum mechanics, condensed-matter physics,

nanoscience and quantum optics. Quantum dots are artificial structures that can confine

electrons within a small volume in a manner that is similar to how electrons are bound in

atoms. Also, nanocavities can confine light similar to more conventional optical cavities,

such as the Fabry-Perot interferometer, and can be fabricated with a size as small as a

cubic optical wavelength. By coupling quantum dots to optical nanocavities, we are able

to create a light-matter interaction interface resembling an atom-cavity coupled system on

a miniaturized chip. Such coupling between quantum dots and nanocavities is expected

to provide an interesting platform to study cavity quantum electrodynamics (QED). In

this work, we explore methods to fabricate optimized quantum dots and examine their

optical properties and study quantum dot-cavity interactions in relation to nonlinearities

and emission dynamics.

1



1.1 Background

The ability to achieve light-matter interaction using solid-state nanostructures has provoked

interests in realizing quantum information processing on a miniaturized chip [1]. In order

to realize information processing, it is necessary to initialize, manipulate, transport and

read-out information [2]. In earlier experiments, it has been found that quantum dots can

generate single photons that can be used as qubits [3, 4]. Researchers demonstrated that

spins of quantum dots can also work as qubits through optical initialization [5] and gate

operations [6].

To enable information processing using quantum dots, we need to efficiently generate

single photons, couple spatially separated quantum dots together and enhance the interaction

between the dots and photons, which can be achieved by integrating dots in photonic crystals.

Coupling quantum dots to photonic crystals has demonstrated the enhanced spontaneous

emission rate of dots [7], giant optical nonlinearity using a few photons [8–11], coherent

strong coupling [12, 13] and the possibility to entangle a dot with cavity photons [14]. Thus,

cavity QED in solid-state is promising for creating an efficient hybrid interface between light

and matter to enable photonic networking.

However, quantum dots are solid-state materials which require techniques to regulate

them as qubits. For example, epitaxial quantum dots are typically grown with random

locations which is detrimental for coupling to photonic crystals. Therefore, there has been a

lot of efforts to deterministically couple quantum dots to photonic cavities by locating a dot

and fabricating a cavity around it [13] or site-controlling the dots at the fabrication level [15–

25]. In addition, to enable photon processing using quantum dots and cavity, it is necessary

to understand their nonlinearity and develop tools to quantify the coupling dynamics [8].

Nonlinearity in the strong coupling regime has shown that the system can be used as an

ultrafast photon switch [10] while fewer studies have been reported about nonlinearity in the

2



Purcell regime.

1.2 Results

My work focuses on investigating quantum dots grown by a site-controlled method and

nonlinear dynamics observed when quantum dots are coupled to a photonic crystal cavity in

the Purcell regime.

First, I carried out photoluminescence imaging of site-controlled single quantum dots

with diffraction-limited optical resolution to determine their optical quality and fidelity for

practical applications. The site-control of the dots was achieved by focused-ion-beam pat-

terning in collaboration with the group of Prof. Joanna Millunchick in the Department of

Materials Science and Engineering. The optical quality was improved by vertically stacking

quantum dots on top of the seed dots, demonstrating single quantum dot exciton line width

of 160 µeV using micro-photoluminescence. In addition, we spatially mapped the photolu-

minescence of individual dots in the sample using scanning confocal microscopy over 10 ×

10 µm2 for a statistical analysis.

Second, I designed and fabricated photonic crystal cavities with embedded quantum dots

and investigated the nonlinear emission dynamics of quantum dots in the Purcell regime

using luminescence intensity autocorrelation. For measuring luminescence autocorrelations,

I used two laser pulses with a controlled time delay to sequentially excite the coupled system

and measured the emission as a function of the delay times and the laser powers. I found

distinct contrasts between exciton and biexciton autocorrelations which originate from dif-

ferent nonlinearities. Finally, I performed a quantum optical simulation that accounts for the

interaction between the laser pulses, exciton, and cavity mode to quantify the parameters

related to the coupling.
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1.3 Organization

This thesis is organized as follows. Chapter 2 introduces the optical properties and growth

methods of quantum dots and describes some of the site-control techniques. In Chapter 3,

I investigate the spatially resolved photoluminescence of InAs quantum dots patterned by

a focused-ion-beam. Chapter 4 contains an introduction to photonic crystals including the

origin of photonic bandgaps, the two different coupling regimes to a quantum dot, and

the prospect of building a photonic network using photonic crystals. Chapter 5 describes

computational methods to simulate a photonic crystal cavity and compares the calculated

results with measurements. Chapter 6 explores the nonlinear dynamics of quantum dots

coupled to a photonic crystal cavity in the Purcell regime. Finally, Chapter 7 summarizes

this work and makes suggestions for future research.

4



Chapter 2

Semiconductor Quantum Dots

Quantum dots (QDs) are nanostructures that are small enough so that confined electrons

(holes) can have discrete energy levels. Due to their rich quantum optical and electronic

properties, QDs can be utilized for various applications from light emitting diodes [26], low-

threshold lasers [27], solar cells [28] to single electron transistors [29] and quantum bits

(qubits) [30] for quantum information processing. This chapter will introduce the quantum

confinement effect of QDs and their subsequent optical properties. We will also look into

how we can grow these semiconductor QDs epitaxially. The self-assembly method will be

briefly introduced. Then various site-control methods will be reviewed with a special focus

on focused-ion-beam patterning.

2.1 Quantum Confinement

Semiconductor heterostructures can be categorized as wells (2D), wires (1D) and dots (0D)

depending on their dimensionality of spatial confinement. The effect of spatial confinement

is that the movement of charge carriers is restricted to fewer dimensions. Therefore, the

density of states, defined as the number of available electronic states per unit area per unit
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energy, changes as shown in Fig. 2.1. For example, the electronic density of states in 3D

bulk near the band edge energy (E0) can be expressed as follows using the effective mass

(m∗) approximation [31].

DOS3D(E) =

√
2m∗3/2(E − E0)

1/2

π2h̄3
(2.1)

We can also obtain the density of states at lower dimensions as follows. Note the appear-

ance of subbands due to the quantum confinement effect.

Energy

DOS

Energy

DOS

Energy

DOS

Energy

DOS

3D 

2D 

1D 

0D 

Figure 2.1: Density of states of low dimensional structures.

6



DOS2D(E) =
m∗

πh̄2
; E > Ei for each subband. (2.2)

DOS1D(E) =

√
2m∗1/2(E − E0)

−1/2

πh̄
; E > Ei for each subband. (2.3)

The density of states at 0D becomes discrete as a result of spatial confinement in all three

dimensions.

DOS0D(E) = δ(E − Ei) (2.4)

The situation is similar to a particle in a box or an electron bound to a nucleus. There-

fore QDs are sometimes called ’artificial atoms’ for their discrete energy states. Although

composed of hundreds to thousands of atoms, a QD can confine an electron (e), hole (h) or

exciton (e-h pair) if the dot size is comparable or smaller than the exciton Bohr radius.

There are a few key differences between QDs and atoms. First, while atoms are all the

same given the same atomic number and number of electrons, no two QDs are alike. This

is due to complex microscopic processes involved during the fabrication of a QD that affect

the QD’s geometry, composition and environment. Therefore there has been a lot of efforts

to control QDs using temperature [32] and field [33] tuning which is necessary to incorporate

them as qubits for information processing. In addition, for solid-state technologies, highly

tunable QDs at the fabrication level are attractive for various practical applications including

light emitting diodes [26] and solar cells [28].

Another difference is that the excitons of QDs can be dissociated by thermalization at

room temperature (kBT = 25.6 meV) more easily than atoms due to a larger size and

smaller binding energy (see Fig. 2.2), which is why cryogenics is generally required in QD

experiments.
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~ 1 Å  

Vatom(x) 

Atom 

Δ Eatom (~ eV) 

~ 20 ‒ 500 Å 

VQD(x) 

Quantum Dot 

Δ EQD (~ meV) 

Figure 2.2: Energy level diagram of a quantum dot compared to an atom.

The epitaxially grown QDs are generally embedded in a substrate which has a larger

bandgap than QDs. For example, InAs QDs are embedded in a GaAs substrate. Therefore

the surrounding substrate can act as finite potential wells in all directions for an electron

(hole) confined in a dot. By varying the width of the wells (size of the QD), one can tune

their energy states.

2.2 Photoluminescence of quantum dots

The energy states of QDs can be optically accessed using photoluminescence measurements.

When a sufficiently high energy is absorbed by a QD, an electron in the valence band can

be excited to the conduction band and form an e-h pair which is called an exciton [Fig. 2.3].

 0   𝑋  

 0  

 𝑋  

VB 

CB 

Figure 2.3: Ground and exciton states of a quantum dot. Photon absorption and emission can
induce transition between the two states. CB and VB refer to conduction and valence band,
respectively.

8



This e-h pair recombines after a characteristic lifetime and can produce spontaneous

photon emission. Since the energy states of a QD are discrete, the emitted photon also has a

very narrow spectral width. The photoluminescence spectrum measured from multiple self-

assembled InAs QDs is shown in Fig. 2.4 at T = 10 K and when laser P = 0.28 µW using

above-bandgap HeNe excitation (λ = 633 nm). The linewidth of single QD excitons varies

between 0.05 nm (70 µeV) and 0.2 nm (300 µeV) due to different radiative recombination

[34], spectral wandering [35–37], charge fluctuations [38] and pure dephasing [39].
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Figure 2.4: Micro-photoluminescence of individual quantum dots.

2.3 Growth Techniques

There are several types of QDs depending on growth methods. Colloidal type QDs [26]

are synthesized from QD compounds dissolved in solutions which then nucleate to cre-

ate nanocrystals at high temperatures. CdSe, CdS and InP QDs can be synthesized by

colloidal methods and have direct applications in LED technology. Lithographically pat-

terned QDs [40] are defined by gate electrodes etched on 2D electron gases in semiconductor

heterostructures. Self-assembled QDs can be grown on a substrate using molecular-beam-
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epitaxy (MBE). The QDs discussed in this thesis are grown by MBE, so let’s take a closer

look at the self-assembly method.

GaAs 

GaAs 

GaAs 

InAs 

As In 

InAs 

Figure 2.5: Molecular beam epitaxy (MBE) growth of self-assembled quantum dots.

Fig. 2.5 shows the schematic of growing InAs QDs by MBE method. In this method, a

single crystal GaAs substrate is first grown in an MBE chamber under high vacuum. Then

heated Indium and Arsenic gases are provided and condense on GaAs to form a single crystal

InAs wetting layer. By increasing the thickness of the InAs wetting layer, strain energy starts

to build up rapidly due to the lattice constant mismatch between InAs (6.06 Å) and GaAs

(5.65 Å). In order to relieve the strain, InAs starts to nucleate and forms islands which are

QDs. Such growth method is known as the Stranski-Krastanov method [41] or ’layer-plus-

island’ growth. The thickness of the wetting layer where QDs start to nucleate is called

the ’critical thickness’. For InAs/GaAs QDs, the critical thickness is between 1.5 and 2.0

monolayers (ML) depending on MBE chamber conditions [42]. The size and density of

QDs depend on the growth rate which can be controlled by temperature. The atomic force

microscopy (AFM) image of an InAs QD sample is shown in Fig. 2.6.
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500 nm 
 

Figure 2.6: Atomic force microscopy (AFM) image of InAs quantum dots grown on GaAs sub-
strate. Image courtesy of Timothy Saucer.

2.4 Site-controlled Quantum Dots

Epitaxially grown QDs typically nucleate at random locations as shown in Fig. 2.6. Such

random positioning has been detrimental for some applications such as LED or solar cells

which require a desired dot density and homogeneity. Additionally, integrating QDs to

optical structures like a waveguide or cavity requires an accurate positioning of QDs for

scalable quantum information processing. Therefore, there has been a lot of efforts to achieve

site-controlled QDs using either a templating or etching method which are shown in Fig. 2.7.

(a) (b) 

Figure 2.7: Site-controlling quantum dots. (a) Templating method (b) Etching method
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In a templating method, QDs are formed at predetermined locations where holes are

fabricated prior to the deposition of QDs. Various methods are developed to fabricate holes

including electron-beam lithography [15–20], focused-ion-beam [21–23], local oxidation [24]

and using crystal growth anisotropy [25]. Etching methods are also possible which create

QDs by selectively etching the sample except the QD areas. Progress on fabricating GaN

QDs using an etching method have been recently reported [43].

2.4.1 Focused-Ion-Beam

The site-controlled InAs QDs discussed in Chapter 3 of this thesis are grown by the focused-

ion-beam (FIB) method. Here we review the FIB growth method performed by Andrew

Martin before moving on to the details of the experiments.

FIB patterning during the QD growth process is shown in Fig. 2.8. First a GaAs layer

is grown in a MBE chamber to prepare a substrate for growing QDs. Then this substrate

is moved to the FIB chamber in vacuo. In this chamber, the substrate was exposed locally

to a single pass of a 10 pA, 30 keV Ga+ focused ion beam. The size of the holes can be

controlled by the FIB dwell time. For example, the diameter and depth of the holes increase

from 85 nm and 3 nm to 133 nm and 12 nm, respectively by increasing the FIB dwell time

from 1 ms to 9 ms [44]. The 2D lattice spacing between the FIB patterns could also be

controlled. After patterning the holes, the sample is moved back to the MBE chamber in

vacuo to deposit single or multilayers of InAs QDs in addition to GaAs intermediate layers

and a capping layer depending on sample designs. The single layer of FIB-induced InAs

QDs image measured by AFM is shown in Fig. 2.9. QDs are formed only in the FIB exposed

area. This is because the thickness of InAs was smaller than the critical thickness required to

nucleate self-assembled QDs on the unpatterned surface. In the FIB hole area, the additional

strain by the changed surface morphology has induced QDs to be selectively formed.

12



Figure 2.8: Focused-ion-beam-induced single quantum dots growth. Reprinted figure with per-
mission from [45]. Copyright (2011) by Elsevier.

Figure 2.9: AFM image of a single layer FIB-induced QDs. FIB dwell time is 1 ms and 2.0 ML
of InAs is deposited to form QDs. Reprinted figure with permission from [46]. Copyright (2013)
by the American Vacuum Society.
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2.4.2 Other Techniques

There are other techniques that have achieved site-controlling of QDs using templating meth-

ods in addition to FIB patterning. E-beam lithography and wet etching is one of the most

widely used methods [15–20]. This method has shown an accurate placement of QDs [17]

and the ability to generate single photons for qubit applications [47, 48]. More recently, QDs

grown on an etched pyramidal substrate has demonstrated a highly symmetric QD growth

which will be advantageous for polarization-entangled photon creation [49]. The pyramidal

QDs has also shown that a deterministic coupling to photonic crystal cavities is possible

[50, 51]. However, site-controlling QDs by etching requires a careful treatment of an etched

surface before depositing QDs to prevent oxidation and contamination at the patterned sites

which adds chemical steps in the fabrication process [19]. In contrast, the FIB method does

not require these additional steps. Nevertheless, it has been known that the aforementioned

techniques create defects at the QD sites which result in the line-broadening of single QDs

which is undesirable when using QDs as qubits. To improve this issue, a new approach has

recently been reported which induces defect-free site-controlled QDs on a nanoengineered

substrate by using crystal anisotropy [25].
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Chapter 3

Site-Controlled Quantum Dots using

Focused-Ion-Beam

3.1 Motivation

Semiconductor quantum dots (QDs) have great potential for a wide variety of applications

ranging from low-threshold diode lasers and solar cells to quantum bits for quantum in-

formation processing. Electron confinement in three spatial dimensions leads to discrete

atom-like energy levels that can be tailored by changing the size and composition of the QD.

However, self-assembled QDs typically nucleate at random locations, which is detrimental

for some applications. For example, the coupling strength and Purcell enhancement of a QD

in a photonic crystal cavity depends on the spatial and spectral overlap of the QD with the

cavity mode [7, 12]. Therefore, there has been great interest in precisely controlling the lo-

cations and improving the spectral homogeneity of self-assembled QDs. This placement has

recently been demonstrated using electron beam lithography [15–20] and focused-ion-beam

(FIB) patterning [21–23] to produce preferred sites for QD nucleation.

E-beam pre-patterning has accurately positioned QDs to within 50 nm of their desired lo-
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cations, as determined using scanning electron microscopy[17]. However, the patterned holes

were observed to result in a broader single dot emission linewidth compared to unpatterned

self-assembled dots [18]. The QD linewidth has been improved through better preparation

of the patterned substrates [19] as well as vertical stacking of QDs above the initial layer of

prepatterned dots [20].

FIB-patterning has also been shown to direct the nucleation of QDs at predetermined lo-

cations, as verified by atomic force microscopy (AFM) [21, 23]. In these experiments, growth

on ion irradiated substrates leads to a reduction of the critical thickness for QD formation.

Arrays of QDs have been achieved by growing upon substrates patterned with holes milled

by the FIB. Photoluminescence (PL) measurements on ensembles of FIB-directed dots have

demonstrated that they can be optically active [21, 23, 45]. However, single dot emission

by FIB patterning had not yet been reported. Information about the spectral linewidth,

homogeneity and accuracy of placement of individual FIB patterned optically active QDs is

necessary to determine the possible range of application of this technique.

Here we report on optical measurements conducted on multi-layer stacks of FIB-patterned

InAs QDs. We use scanning confocal microscopy to spatially map the PL of individual dots,

giving a site-selective spectral probe of the dot luminescence. Single dot luminescence with

0.1 nm (160 µeV) linewidth is observed. We mapped an area containing 16 FIB-templated

sites to characterize the fidelity and spectral homogeneity of optically active quantum dots

at each site. We find that dots at the same site have similar emission wavelengths. These

measurements show the potential for this technique to regulate the spectral and spatial

homogeneity of site-controlled self-assembled InAs quantum dots.

The results described in this chapter have been published in Ref. [52] and [53].
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3.2 Sample Fabrication

In vacuo FIB-patterning of GaAs was used for directed growth of a multi-layer InAs/GaAs

QD structure [Fig. 3.1] by molecular beam epitaxy (MBE). A 300 nm GaAs buffer layer was

grown at a substrate temperature of T = 590 ◦C after oxide desorption. The structure was

then annealed for ten minutes under an As overpressure. The As and Ga fluxes for buffer

growth were 2.8 and 1.0 monolayers s−1 (ML s−1), respectively.

Figure 3.1: Sample schematic. Seed QD positions (black circles and arrow) are patterned by FIB
in a square lattice of 2 µm spacing. 11 layers of 1.5 ML InAs QDs were subsequently deposited
with 45 nm GaAs interlayers. Reprinted figure with permission from [53]. Copyright (2013) by
Elsevier.

Next, the sample was transferred in vacuo to the FIB where a 40 x 40 µm2 square array
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was patterned. The array consisted of circular, FIB-milled holes spaced 2.0 µm apart in a

2D square lattice. Each hole was dosed in a single pass with a 9.2 pA, 30 keV Ga+ ion beam

with a dwell time of 3.0 ms. A similar array with the same spacing was also patterned on

the same substrate using a shorter dwell time of 1.0 ms.

The sample was subsequently transferred back to the MBE chamber, where the sample

temperature was raised to the growth temperature of T = 485 ◦C under an As overpressure.

Eleven 1.5 ML-thick layers of InAs were grown at a rate of 0.11 ML s−1, separated by 45 nm-

thick GaAs spacer layers grown at a rate of 1.0 ML s−1. The topmost layer of InAs remained

uncapped. The As flux remained constant at 2.8 ML s−1 for both the QD and spacer layers.

After growth of the eleventh layer of QDs, the sample was immediately quenched under an

As overpressure. All substrate temperatures were determined using an optical pyrometer

and all fluxes were determined by reflective high-energy electron diffraction oscillations.

AFM imaging of the FIB-induced structures showed the formation of QDs only in the

patterned areas, in agreement with prior results [22, 23]. Previous experiments showed that

these patterning conditions created holes that resulted in QD formation for deposited InAs

thicknesses less than the critical thickness for self-assembled dots on unpatterned areas of the

sample. AFM images of the uncapped surface confirmed dot formation upon stacking. Figure

1 shows AFM images of the sample in the patterned region where the FIB dwell time was 1.0

ms [Fig. 3.2 (a)] and an unpatterned region [Fig. 3.2 (b)]. The unpatterned region is devoid

of QDs, as the critical thickness for their formation has not been exceeded. However, within

the patterned region, QDs are visible and have the intended spacing of 2 µm. Observed dots

are about 50-60 nm wide and 2-3 nm high. In addition to the QDs, mounds that are 0.3

by 0.6 µm in size are also present. The mounds are most likely a consequence of the strain

introduced by patterning and subsequent overgrowth. Such mounds have also been observed

in multilayer stacks of QDs grown on substrates patterned using e-beam lithography [54, 55].
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Figure 3.2: AFM images of patterned (a) and unpatterned (b) areas of a multilayer QD sample.
The only difference in this sample and the area for which we report PL measurements is the shorter
FIB exposure time (1.0 ms vs. 3.0 ms). Grid intersects in (a) represent the approximate locations
of the FIB holes. Reprinted figure with permission from [52]. Copyright (2011) by the American
Chemical Society.

3.3 Scanning Micro-photoluminescence Set-up

Spatially-resolved micro-PL measurements [Fig. 3.3] were conducted in a helium-flow cryo-

stat for the optical characterization of the QDs. All spectra shown were taken at a tempera-

ture of 30 K unless otherwise noted. A continuous-wave HeNe laser (633 nm wavelength) was

used to excite PL, with a typical excitation power of 0.4 µW measured before the cryostat.

The excitation beam was focused onto the sample (5 µm beam diameter) using a 0.7 NA

objective lens with 100X magnification. The same objective lens was also used to collect the

PL, and a fast-steering mirror controlled the angle of the beam path going into and out of

the objective lens for the 2D spatial mapping. The collection path included a lens pair and

a 150 µm pinhole in a confocal microscopy configuration. After passing through a 0.75 m
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spectrometer with a 1200 lines/mm reflection grating, the PL spectra were recorded by a

CCD detector with 5 s exposure time.

Figure 3.3: Scanning micro-PL set-up. Fast-steering-mirror (FSM) controls the spatial scanning
electronically and confocal microscopy is employed in the PL collection path to increase the spatial
resolution. Reprinted figure with permission from [53]. Copyright (2013) by Elsevier.

3.4 Optical Characterization Results

3.4.1 Single Quantum Dot Photoluminescence

Emission spectra from individual quantum dots were resolved using scanning micro-PL mea-

surements [Fig. 3.4]. Single dot emission spectra centered at 891.1 nm was recorded at 30 K

over an area of 4 x 4 µm2 with 0.2 µm step size on the patterned region with 3.0 ms FIB dwell

time. Fig. 3.4 (a) shows the spectrum measured at the position where the dot luminescence

is strongest. The single dot emission spectrum has a full-width at half-maximum (FWHM)

of 0.1 nm (160 µeV). The FWHM of single dots measured in this sample were all below
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0.2 nm (300 µeV). These relatively narrow linewidths indicate that the dots are sufficiently

isolated from surface states and charge traps that may have been introduced by the FIB

milling and could introduce additional nonradiative relaxation pathways or contribute to

dephasing and spectral diffusion [18, 56]. The inset shows the temperature dependence of

the emission wavelength, which shifts as expected due to the band gap change of the InGaAs

material [57]. Within this temperature range (10-50 K), there was no significant increase in

the measured linewidth. The power selected for these measurements (0.4 µW) was below the

threshold power where excited state emission is expected. A power dependence measurement

showed that the QD emission increased linearly with power between 0.04 µW and 0.43 µW

and saturated at higher power. We did not observe any emission from dots away from the

patterned region.

Fig. 3.4 (b) shows the spatial map of the PL at wavelength 891.1 nm. The pinhole size

of 150 µm was selected for the imaging based on the trade-off between resolution and signal

loss. Assuming the Airy disc-like pattern of the beam, the theoretical pinhole size limited

lateral and axial resolutions of the image are 0.5 µm and 1 µm, respectively [58]. In our

measurements, the lateral resolution is approximately 1 µm [Fig. 3.4 (c)]. Since the minimum

possible axial resolution due to the pinhole (1 µm) is larger than the structure thickness (11

stacks with a total thickness of 450 nm), we cannot easily determine the layer from which the

dot emission originates from the measurements. However, the center of the QD emission can

be determined with greater accuracy than the lateral resolution by fitting the QD emission

and collecting statistics from multiple scans [59].
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Figure 3.4: Spectrally and spatially resolved single dot PL from FIB-patterned InAs/GaAs QD
sample. (a) Single dot PL measured at T = 30 K. FWHM of 0.1 nm ( 160 µeV) is observed.
The inset shows the temperature dependence of the PL peak wavelength (black circles) and a
second order polynomial fit (red line). (b) 2D spatial map of PL intensity at 891.1 nm. (c) 1D
line scan through the center of the PL peak, showing a spatial resolution of 1 µm as determined
by a Gaussian fit (red line). Reprinted figure with permission from [52]. Copyright (2011) by the
American Chemical Society.
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3.4.2 Power Dependence of Single Quantum Dot

In Fig. 3.5, we present a power dependence measurement of a single QD and the wetting

layer for comparison. While increasing the excitation power from 4 nW to 2000 nW, we

recorded the emission spectrum from 800 nm to 1000 nm.

Figure 3.5: The power dependence measurement of a single QD and the wetting layer (WL). The
PL intensity is the recorded peak intensity of the QD and WL peaks, respectively, measured as a
function of power at the sample, from 4 nW to 2000 nW. The inset shows the spectrum recorded
at 30 nW. Reprinted figure with permission from [53]. Copyright (2013) by Elsevier.

The QD emission increases nearly linearly and then saturates as a function of pump
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power, which is consistent with single exciton emission by a single photon emitter. For this

spectral window and range of excitation powers, we did not observe excited state emission.

The absence of excited state emission may be due to the emission wavelength of ground

state excitons (∼ 900 nm) being close to the bandgap of GaAs (∼ 855 nm), resulting in not

sufficiently strong excited state confinement. It should be noted that similar measurements

were done on three different QDs at different locations, which showed the same behavior.

3.4.3 Spatial Imaging of Site-controlled Quantum Dots

In order to determine the relative placement of the QDs, we then mapped the PL over a 6

x 6 µm2 region containing multiple dots using a 0.2 µm step size. For this measurement, we

collected spectra from wavelength of 890 nm to 910 nm. Fig. 3.6 (a, b, c, d) are intensity

profiles of the same region for wavelengths 902.0 nm, 902.8 nm, 898.8 nm, and 899.2 nm,

respectively. Fig. 3.6 (e) shows the PL spectra at the selected positions labeled A, B, and C.

Single dot PL centered at 904.8 nm was also localized around position B but is not shown

here. It should be noted that at least four dots (898.8 nm, 902.0 nm, 902.8 nm, and 904.8

nm) are formed within 0.4 µm from locations A and B while two (898.8 nm and 899.2 nm)

are formed within 0.2 µm around position C. In addition, we observed two dots with the

same wavelength at 898.8 nm that are spaced 2.5 µm apart [Fig. 3.6 (c)], a distance close to

the FIB-milled hole separation of 2 µm.

In order to verify that the dots are located on the FIB pattern, we later performed a

spatial scan over a larger area and spectral range. The data presented in Fig. 3.8 was collected

during a different cool-down than the data in Fig. 3.6 and after rotating the orientation of

the sample in the cryostat in order to better align the underlying FIB pattern with the

principal axes of the fast-steering mirror.
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Figure 3.6: 2D PL intensity maps of the same spatial region at four different wavelengths (a, b,
c, d) and PL spectra (e) at positions marked A, B, and C. Each map is separately normalized so
that the color axis shows the relative intensity at each wavelength as a function of position. Note
that two dots of similar wavelength are formed within a lateral separation of 0.4 µm: 902.8 nm and
902.0 nm at positions A and B, respectively and similarly 898.8 nm and 899.2 nm at position C.
Reprinted figure with permission from [52]. Copyright (2011) by the American Chemical Society.
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3.4.4 Multiple Emissions at the Same site

Before we map a larger area for statistical analysis, let us focus on the reason why we observe

multiple emission peaks at the same site. Multiple dot emissions (A - D) at the same location

are observed in Fig. 3.7, while recording the spectra over a wavelength range from 870 nm

to 950 nm. For each transition wavelength (A: 897.5 nm, B: 921.4 nm, C: 923.2 nm, and D:

924.2 nm), a PL intensity map scanned over the same area (6 x 6 µm2) shows the spatially

localized dot emission (inset). The black squares in the inset indicate the position where the

depicted spectrum is measured. These multiple transitions at near sites could have originated

from either different exciton transitions of the same QD or several different QDs from the

stacked layers.

Figure 3.7: QD emission spectrum measured at one site. Multiple emissions are labelled by
letters (A - D) and their PL maps at the corresponding wavelengths are shown in the insets. Each
map is separately normalized so that the color axis shows the relative intensity at each wavelength
as a function of position. All spectra are measured with 280 nW of HeNe excitation and at the
temperature of 30 K. Reprinted figure with permission from [53]. Copyright (2013) by Elsevier.
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If the multiple peaks originate from the same QD, the different exciton transitions could

possibly be attributed to either (i) ground and excited state excitons, or (ii) neutral and

charged excitons. However, the excited state emissions did not appear in this sample under

our measurement conditions, and therefore all emissions are from the ground states, excluding

possibility (i). In addition, from the PL maps shown in Fig. 3.7, the strongest emission peak

position is not the same for maps A - D and slightly deviated (0.4 - 0.8 µm) from each

other. From this lateral separation of PL positions, we exclude the second possibility as

well. Therefore, the observed multiple peaks at near locations are from separate QDs which

could be in the same layer or different layers. Since multiple dots could be formed at a

single hole position in the initial layer as observed in the AFM image of similar samples [23],

there is a possibility that some of the peaks are from dots in the same layer. However, by

varying the axial position of sample relative to the focused laser spot in our measurement,

we could observe changes in the relative intensity of peaks A - D (not shown), which is a

strong indication that these dots are located in different layers. From these observations, we

confirm that the multiple emissions are not from the same QD, but from several different

QDs, some of which are vertically separated.

3.4.5 Statistical Results

A larger area 2D PL scan of the sample was conducted while recording spectra over a larger

wavelength range, from 870 nm to 950 nm, in order to conduct statistical analysis on the

placement and emission wavelengths of optically active QDs. A total of 26 optically active

dots were observed over 16 array sites and the spectral inhomogeneity of the measured dots

was approximately 20 nm (30 meV) [Fig. 3.8 (b)]. In Fig. 3.8 (a), the filled circles indicate

the center positions of QD PL and the QD wavelength, as indicated by the color scale. The

location of the QDs reflects the 2 µm square array of holes milled by the FIB. While AFM

measurements have established that the hole diameter is around 100 nm for 3.0 ms FIB dwell
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time, we observe that these QDs are more disordered than the original pattern, perhaps due

to the fact that the observed mounding (see Fig. 3.2 (a)) shifts the dot position [54, 55].

The apparent scatter in the QD position is approximately 0.4 µm from the estimated center

positions of the FIB pattern, which is on the same order as the size of the mounds. Note

that multiple dots with similar wavelength tend to form near each other, consistent with our

earlier observations for the dots in Fig. 3.6 and Fig. 3.7.

Fig. 3.8 (c) shows the frequency of occurrences of array sites containing a particular

number of optically active dots, as observed in the micro-PL measurements and within 0.4

µm from the estimated site positions. At least 65 percent of sites contained optically active

dots, and the maximum number of quantum dots detected at one site (four) was smaller

than the total number of stacks (eleven). However, we anticipate that the initial and final

(uncapped) layers of dots may have lower luminescence due to ion damage and surface

states, respectively. In addition, the stacking fidelity may be low due to the somewhat large

interlayer GaAs thickness [60]. Due to the limited axial resolution of this measurement,

we cannot determine whether the observed multiple emissions at some sites are from dots

formed on different layers or the same layer. AFM studies on uncapped dots have shown that

multiple QDs may form at a single patterned hole [23]. However, we also noticed that the

closely spaced QDs have similar wavelengths, indicating that they may have similar sizes.

Cross-sectional imaging of stacked dots on a patterned sample have reported similar sizes

within a stack [61].
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Figure 3.8: (a) 2D map of single dot PL over an 8 x 8 µm2 area. The filled circles indicate
the center positions of QD PL and the QD wavelength as indicated in the color bar. Estimated
positions of the FIB holes are at the center of the dashed gray circles. The circles (0.4 µm radius)
are our estimate of the site area. Note that multiple dots with similar wavelength can be formed at
the same site (arrow). (b) Wavelength distribution of the QDs. (c) Number of occurrences of sites
containing the specified number of dots. Reprinted figure with permission from [52]. Copyright
(2011) by the American Chemical Society.
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3.5 Conclusions

In summary, the first site-selective optical measurement is performed on FIB-patterned QDs

using scanning micro-PL spectroscopy. Single dots of narrow linewidth (< 300 µeV) are

observed with positions that reflect the lateral separation of the underlying FIB hole array

spacing. Multiple dots at the same site have similar wavelengths, reflecting the size homo-

geneity of stacked dots. The observed position of the dots with respect to the initial FIB

hole position may be shifted during the growth of the multilayer stack due to the formation

of mounds. We expect that the shift in dot position may be reduced by varying the growth

conditions and sample structure, and that the fidelity may be increased by decreasing the

interlayer thickness. Our method images quantum dots with close to the diffraction-limited

spatial resolution, which is advantageous for determining the center position of the dots.

With abilities to position and spectrally probe and locate quantum dots, we anticipate the

possibility of coupling multiple quantum dots in a network of photonic cavities, which is a

promising pathway for the scalable integration of solid-state quantum bits.
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Chapter 4

Photonic Crystals

Photonic crystals are nanostructured materials with periodic variation of dielectric constants.

These crystals can create a range of forbidden frequencies called a photonic bandgap, similar

to an electronic bandgap in atomic crystals of a semiconductor. Since photons with energies

within the bandgap cannot propagate through the medium, photonic crystals can manipulate

the light path and the density of optical states locally by introducing defects that can guide,

bend and confine light. One such example is a 2D photonic crystal defect cavity which

can localize light within a space smaller than a cubic optical wavelength. This chapter will

introduce the origin of the photonic band gap of these structures and discuss the phenomena

observed when quantum dots are coupled to photonic crystals. Also, the possibility of

building a photonic network on a chip using quantum dots and photonic crystals will be

briefly discussed.

4.1 Photonic Bandgap

To understand the photonic bandgap of periodic materials, we first look into the most simple

case of 1D photonic crystals which are also known as distributed Bragg reflectors (DBR).
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As an example, we show a periodic structure in Fig. 4.1 and compare it to a homogeneous

material. The grey color is assumed to be GaAs (εr = 12.9) while empty spaces represent air

(εr = 1). The ratio between the length of the air space (d) and the periodicity (a) is chosen

to be 0.8 for the case of DBR. With these structures, we calculated dispersion relations

using the plane wave expansion method [62]. Below we briefly show the basic principles of

1D plane wave expansion method.

In the plane wave expansion method, the electric fields and dielectric permittivities (εr)

are expanded in Fourier series components along the reciprocal lattice vector.

1

εr
=

∞∑
m=−∞

Aεrme
−i 2πm

a
z (4.1)

E(ω,−→r ) =
∞∑

n=−∞

AEyn e−i
2πn
a
ze−i

−→
k ·−→r (4.2)

Here we assumed that light propagates in the z direction along the material periodicity

and the polarization of light is along the y-axis.

It is well known that under the plane wave assumption, Maxwell’s equations can be

combined to result in the following expression.

1

ε(−→r )
∇×∇× E(−→r , w) = (

ω

c
)2E(−→r , w) (4.3)

Substituting Eq.4.1 and 4.2 to 4.3, we obtain the following simplified form of an eigenvalue

problem.

∑
n

(
2πn

a
+ kz)(

2πm

a
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εr
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Ey
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ω

c
)2AEym (4.4)

Solving this equation, we calculate the eigenvalues corresponding to the modal solutions

and the results are shown in Fig. 4.1 when (a) d/a = 0 and (b) d/a = 0.8.
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Introducing a periodicity to bulk GaAs has led to an important change in the photonic

band structure. While the dispersion relation is linear in a homogeneous material, inserting

periodic air gaps in the material has opened up gaps in the dispersion relation. This we can

understand by the plane wave solutions satisfying the periodic conditions when k = ±π/a

(λ = 2a). Due to the periodicity of the material permittivity, the eigenvector solution of

Eq.4.4 has the form of stationary waves which has anti-nodes at either the center of GaAs

or the air gaps. However, the energies (frequencies) of the two solutions are not identical

due to the different energy density distributions (εairE
2 vs. εGaAsE

2), which opens up a gap.

Therefore a material with a periodic dielectric contrast has photonic bandgaps.
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Figure 4.1: (a) Uniform material dispersion relation (εGaAs = 12.9). (b) 1D photonic crystal
dispersion relation when d/a = 0.8 and εair = 12.9.
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The same principle can be extended to 2D photonic crystals. One example is air holes

placed in 2D hexagonal lattices as shown in the inset of Fig. 4.2. Due to the spatial periodicity

of εr, dispersion relation is again different from a uniform material. The dispersion relation

is calculated by Reference [63]. In 2D crystals, dispersion relation becomes anisotropic,

therefore, we define three most symmetric points (Γ, M, K) in the reciprocal space and look

into the dispersion relations on the line connecting these points.

One can also find that the modes are classified to either TE or TM modes. This is because

of the mirror symmetry of 2D photonic crystals. Defining the in-plane of the photonic

crystals as xy-plane, the operation ẑ → −ẑ must always give even or odd solutions. With

this, the only non-zero components of even modes are (Ex, Ey, Hz) and that of odd modes

are (Hx, Hy, Ez). The former confines E-fields in the xy-plane (TE modes) and the later

confines H-fields in the xy-plane (TM modes). Note that these hexagonal air-hole type 2D

photonic crystals prefer a bandgap in TE modes, but a complete bandgap can also appear

when the size of the air holes becomes large enough.

Figure 4.2: Dispersion relation of a hexagonal photonic crystals with air holes (r = 0.48a) in
dielectric (εr = 13). For this large size of air holes, a complete bandgap can appear for both TE
and TM modes. Calculation and image courtesy of reference [63]. Copyright (1997) by the Nature
Publishing Group.
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4.2 Photonic Crystal Cavity

We have seen that in a photonic bandgap, no photon modes are allowed. Therefore if light

at the bandgap is shone onto or emerged in perfect photonic crystals, it can exist only

evanescently and will decay exponentially. However, if we introduce a defect in the photonic

crystal, the defect region can now sustain non-evanescent fields. Therefore this defect region

can work as a cavity that can confine light. One such example is the H 1 (or L1) cavity in

Fig. 4.3 where defect is just a missing hole (the region where a QD is embedded). While

the lateral confinement of light in this cavity originates from photonic crystals, the vertical

confinement is achieved by the finite thickness of the slab through total internal reflection.

The figure of merit that shows the strength of the field confinement in a cavity is Q/Vmode

where Vmode is the modal volume of the cavity

Vmode =

∫
ε(−→r )|

−→
E (−→r )|

2
d3−→r

max(ε(−→r )|
−→
E (−→r )|

2
)

(4.5)

and Q is similar to the lifetime of the confined photons and thus inversely related to the

decay rate of the cavity mode (Q = πfo/κ). Note that Q depends on several factors including

the lateral and vertical confinements and for realistic materials on material absorption and

light scattering.

QD 

Figure 4.3: Schematic of H1 cavity with an embedded QD.
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4.3 Coupling Quantum Dots to a Photonic Cavity

Photonic crystal cavities coupled to single QDs are an interesting platform to study light-

matter interactions in solid-state systems and to develop a quantum network for information

processing using photons. The advantage of photonic crystals is that current semiconductor

technology can realize the coupling in a relatively simple manner compared to the more

traditional atom-cavity interaction. However, most of the theory describing the coupling

dynamics is borrowed from atomic cavity quantum electrodynamics (cQED) [64].

Fig. 4.4 shows the parameters governing the coupling between a QD and cavity. Here

g is the coupling rate between the two, and κ and γ are the decay rates of the cavity and

QD, respectively. Depending on the relative strength between the coupling and decay rates,

the dynamics become dramatically different. When decay rates are larger than the coupling

(κ, γ > g), the system is known to be in the Purcell regime and the spontaneous emission

rate of the QD changes. In the opposite case (strong coupling), the coupling exceeds the

decay rates (κ, γ < g) and the QD and cavity are coherently coupled and reversibly exchange

energy with each other.

Cavity QD 
𝑔 

QD decay 
𝛾 

Cavity decay 
κ 

coupling 

Figure 4.4: Schematic of QD-cavity coupling with dissipation.
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4.3.1 Purcell Enhancement of Spontaneous Emission

The Purcell effect refers to the phenomenon where the spontaneous emission rate changes

by modifying the emitter’s optical environment [65]. In the theory of spontaneous emission,

the emission rate is not an intrinsic property of a material but rather depends on the optical

environment where the level transition accompanying the emission occurs.

The spontaneous emission rate of an emitter by transition from an excited state (|e〉) to a

ground state (|g〉) can be derived using the Wigner-Weisskopf theory [66] which we describe

here briefly. In the theory, the general state vector including all possible optical states k is

given by

|ψ(t)〉 = ce(t)e
−iωot|e, {0}〉+

∑
k

cgk(t)e
−iωkt|g, {1k}〉 (4.6)

By substituting this in the Schrödinger equation |ψ̇(t)〉 = −(i/h̄)Hint|ψ(t)〉 where Hint =

h̄
∑

k(gkσ
+ak + h.c.), one can get the probability that the emitter is in the excited state

Pe(t) = 1−
∑

k |cgk(t)|2. By calculating Pe(t) and substituting gk =
√
ωk/2h̄ε0V µ12, we can

get the excited state decay equation.

dPe(t)

dt
= −ω

3|µ12|2

3ε0πh̄c3
Pe(t) = (

2π

h̄2
)|〈µ12E〉|2Dfree(ω)Pe(t) = −ΓPe(t). (4.7)

The third term indicates that the spontaneous emission rate depends on both the ma-

terial transition rate (µ12) and the density of optical states in free space (Dfree(ω)), which

corresponds to Fermi’s golden rule.

If the emitter is placed inside a cavity, the density of optical states becomes

Dcav(ω) =
κ

2πVmode

1

(κ/2)2 + (ωcav − ω)2
. (4.8)

37



By using this and the relation Q = πf0/κ, we arrive at the expression of the final

spontaneous emission rate of an emitter in a cavity at resonance.

Γcav = Γfree
3Q

4π2
(
λ30

Vmode
) (4.9)

The enhancement factor 3Q
4π2 (

λ30
Vmode

) is known as the Purcell factor (F ) which is the possible

maximum enhancement when the emitter is at resonance and perfectly placed and oriented

inside a cavity. In reality the actual enhancement is smaller than F due to the spectral,

spatial and polarization mismatches between the emitter and cavity.
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4.3.2 Strong Coupling

When the emitter is strongly coupled to a cavity, the situation becomes quite different from

the Purcell regime.

Figure 4.5: Schematic spontaneous emission spectrum of Purcell regime (blue) and strong coupling
regime (red) at resonance.
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Here the emitter and cavity form a polariton where the two entities mix together pro-

ducing the level splitting in the emission spectrum at resonance. Such level splitting is the

fingerprint of strong coupling and can be observed when the emitter is coupled to an ex-

tremely high Q (low κ) cavity. For a QD inside a photonic crystal cavity, for example, strong

coupling can be observed when Q > 3,000 [67].

4.4 Toward Solid-State Photonic Network

The ability to fabricate QD-cavity coupled systems on a large scale using solid-state tech-

nologies is a promising route to build future photonic networks on chip.

Figure 4.6: Schematic of future quantum network using photonic crystals.

The QD-cavity coupled system in the Purcell regime has demonstrated effective single

photon generation [68, 69] which can provide quantum bits (qubits) for information process-

ing. The strongly coupled QD-cavity system has possibilities to function as a high speed
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and low power photon switch [10], modulator [70] and logic gate [71] by using their strong

nonlinear responses. Waveguides and couplers can also be fabricated by photonic crystals,

and on-chip photon detection can be achieved by implementing miniaturized superconduct-

ing nanowires [72]. One of the biggest obstacles to realize the photonic network using QDs

was the random positioning of them during the growth process. However, recent progress

in achieving site-controlled QDs has proved that site control can be a solution in the near

future [16, 17, 19, 21, 23, 45, 52].
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Chapter 5

Photonic Crystals Simulation and

Measurement

In this chapter, we introduce a computational method that can characterize photonic crystal

cavities by calculating resonant frequencies, quality (Q) factors and field patterns of cavity

modes. The software used in this work is MEEP which is an open-source Linux-based free

software [73, 74] for finite-difference time-domain calculation. The calculated resonant fre-

quencies and cavity Qs by MEEP software are compared to the experimentally measured

values at the end of this chapter. To experimentally measure the cavity modes, photolu-

minescence of quantum dot ensembles embedded in a cavity is measured and analyzed by

polarization and spectrum.

5.1 Computational Method

5.1.1 Finite-Difference Time-Domain Calculation

Finite-difference time-domain (FDTD) is a computational method for modeling the propa-

gation of electromagnetic waves in an arbitrary material by solving the Maxwell’s equation
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in discretized time and space. The idea originates from Kane Yee’s algorithm [75] where the

electric and magnetic field components are allocated to space grids and march in time steps

for the space-time evolution. To illustrate this mechanism, let’s consider a simple example

in one dimension. First we write the Maxwell’s equations in free space.

∂E

∂t
=

1

ε0
∇×H (5.1)

∂H

∂t
= − 1

µ0

∇× E (5.2)

In a one-dimensional example, the above equations can be rewritten as

∂Ex
∂t

= − 1

ε0

∂Hy

∂z
(5.3)

∂Hy

∂t
= − 1

µ0

∂Ex
∂z

(5.4)

which is a plane wave propagating in z direction.

Yee’s algorithm uses a central difference approximation of the derivatives [Fig. 5.1] to

numerically solve the Maxwell’s equations.

E
n+1/2
x (k)− En−1/2

x (k)

∆t
= − 1

ε0

Hn
y (k + 1/2)−Hn

y (k − 1/2)

∆z
(5.5)

Hn+1
y (k + 1/2)−Hn

y (k + 1/2)

∆t
= − 1

µ0

E
n+1/2
x (k + 1)− En+1/2

x (k)

∆z
(5.6)

The Eq. 5.5 indicates that the change in the E-field in time is dependent on the change

in the H-field across space (the curl). The result is the FDTD time-stepping where the field

components are updated depending on the stored value of the E-field and the numerical curl
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of the H-field distribution in space with increasing iteration, n. This scheme is also known

as ”leap-frog” algorithm [Fig. 5.2].

1.0 0.5 0.0 0.5 1.0
xx 

𝑓(𝑥 − 𝑥) 

𝑓(𝑥 + 𝑥) 

𝑓(𝑥) 

𝑓′ 𝑥  ≅   
𝑓 𝑥 + 𝑥 − 𝑓(𝑥 − 𝑥)

2𝑥
 

Figure 5.1: Central difference approximation.

To implement these equations in the numerical simulation, choosing the right values of ∆t

and ∆z is important to reduce the computational time without sacrificing the temporal and

spatial resolution. Generally ∆z should be smaller than 1/10 of the wavelength to obtain

adequate results. With this chosen cell size, the time step is also chosen considering the

stability condition:

∆t ≤ ∆z

co
√
dim.

(5.7)

This means that a field component cannot travel more than one cell size in the time step

∆t. A reasonable choice for ∆t in three-dimensional is ∆z/2c0.

Also, to run a realistic simulation, it is important to consider boundary conditions. Since

we cannot simulate the propagation in an infinite material, we need to terminate FDTD

at a finite mesh without affecting the overall solution. The way to simulate open-end in
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FDTD is called absorbing-boundary-conditions [76] and for MEEP it is implemented by

perfectly-matched-layer which is a perfect absorber.

Start 

Stop 

Set space and define parameters 

Compute field coefficients 

Update H-field component at time (n+1/2)t 

Update E-field component at time (n+1)t 

Apply boundary conditions 

Increment time step, n  n+1 

Last iteration? 
No Yes 

Output 

Figure 5.2: Leap-frog algorithm.

For a photonic crystal slab, FDTD methodology is the same to the free space case, but

the spatial variation of the permittivity ε of a host material is added.

5.1.2 MEEP Simulation Results

The FDTD calculation is numerically performed using a simulation package called MEEP.

With a 3D design of a photonic crystal cavity scripted in an input file, the light propagation
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from a point source inside a cavity (placed in a non-symmetric arbitrary position) is simulated

for a wide frequency range to find the cavity modes. Once the frequencies of the cavity

modes are found, we run the simulation again at a resonant frequency to find the cavity

mode field profile. All these simulations can be time-consuming if we use small cell sizes,

but by exploiting structure symmetries the computation size can be incredibly reduced.

a 2r 

s 

d 

Figure 5.3: Hexagonal crystal L3 cavity design.

MEEP Parameter a (lattice constant) (e.g.) a = 284 nm

Hole radius (r) 0.31 88 nm

Edge hole shift (s) 0.15 43 nm

Slab thickness (d) 0.56 159 nm

Table 5.1: Parameters used for MEEP calculation of L3 GaAs (n = 3.59) cavity.
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The input parameters to simulate a high Q cavity are shown in Table 5.1. The ratios

between the lattice constant (a), air hole radius (r), edge shift (s), and slab thickness (d) are

commonly accepted values for an optimized L3 photonic crystal cavity [77]. In particular,

the implementation of the edge shift can significantly increase the cavity Q by forcing the

gradual change of the field near the cavity edge which can lead to the reduction of the cavity

loss [78]. With this edge shift, the theoretical cavity Q can be on the order of ∼ 10,000.

In addition to the edge hole shift, Tim Saucer, et al. has found a cavity design with all-

optimized cavity adjacent holes that can enhance the cavity Q by an order of magnitude

[79].

For the actual cavity fabrication, the parameters in the right column of Table 5.1 are

selected such that the cavity resonant wavelengths matches with the quantum dots that will

be coupled to the cavities. When λQD = 950 nm, for example, by using the relation f =

0.29c/a = c/λ, we get the photonic crystal lattice constant a = 280 nm. From this lattice

constant, we determine the cavity design including r, s, and d.

Using the parameters in Table 5.1, the calculated TE mode field profile is shown in

Fig. 5.4. Depending on the field polarizations, we get different field profiles (b),(c). This

well-localized field within the cavity can be seen in the simulation result at a time sufficiently

long after the propagation of the initial point source starts. In addition to the field profile,

we also obtained the cavity wavelength and Q-factor from simulation and converted them to

the actual length using the lattice constant (a) for comparison to the experimental results

[Fig. 5.7].
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Figure 5.4: Field profile of L3 photonic crystal cavity (a) calculated by MEEP at different field
polarizations (b)(c).
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5.2 Cavity Q-factor measurement

The Q-factor of a cavity can be measured by transmission/reflection type measurement using

a broadband white light source [80] or photoluminescence using broadband emitters within

a cavity [7]. Here we show the Q-factor measurement using photoluminescence method with

QDs as emitters.

5.2.1 Cavity Mode Probed by Quantum Dot Ensembles

The schematic of a QD sample we used for fabricating photonic crystal cavities is shown in

the inset of Fig. 5.5. This sample was grown by Andrew Martin in the Millunchick group.

In this sample, InAs QDs are embedded in the center of the GaAs slab which is 150 - 160

nm thick for cavity fabrication. This slab is grown on top of 1 µm thick AlGaAs layer which

will be chemically etched so that the final cavities can be suspended in air.
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Figure 5.5: Photoluminescence of QDs in bulk GaAs substrate before fabricating photonic crys-
tals. Spectrum was measured at T = 10 K with HeNe (λ = 633 nm) excitation power = 400 uW
using InGaAs detector. Inset is the structure of the sample grown for cavity fabrication (GaAs
substrate for PhC slab = 150 nm; QD = 2.3 ML; AlGaAs sacrificing layer = 1000 nm).
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Fig. 5.5 shows the photoluminescence measured from these QDs. Strong PL from QD

ensembles is detected at the wavelength centered around 930 nm without polarization depen-

dency. With 2.3 ML of InAs thickness, typical QD PL is around 1000 nm, but we blue-shifted

the QDs because we wanted the QD emission to be within the detection range of our Si CCD

(350 - 950 nm). The blue-shift was done by annealing during growth process [81].

Then we fabricated photonic crystal cavities on this QD sample following the procedure

in Appendix A. For the e-beam input design file, we used the target parameters a = {d/0.55,

d/0.6, d/0.65}, s = 0.15a, r = {0.15a, 0.25a, 0.3a} with fixed d = 150 nm. The e-beam dose

rate was varied which can further change the hole radius, r. Among 51 fabricated cavities,

we were able to measure the cavity mode from 13 cavities that were successfully undercut.

Note that r = 0.15a and 0.25a were too small for undercut and supporting a cavity mode.

We show the photoluminescence result from one of the cavities in Fig. 5.6. The emission

from the cavity is measured in two different polarizations, 0 and 90 degrees (for orientations,

see Fig. 6.1.) While we did not observe polarization dependency in bulk QD emission, we see

sharp emission features with QDs in a cavity only at a certain polarization. This is because

of the Purcell enhanced emission from QDs that are resonant to cavity modes. These cavity

modes exist at both 0 and 90 degrees but at different wavelengths (see Fig. 5.4) [82].

From cavity-enhanced QD emissions, we can calculate the Q-factor of a cavity.

Q =
f0
∆f

(5.8)

Using the above relation, we obtain Q = 110 and 921 for cavity mode field direction in

0 and 90 degrees, respectively.
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Figure 5.6: Photoluminescence of QDs in a photonic crystal cavity at 10 K. QD emissions are
enhanced for those that are resonant to cavity modes. (b), (c) Q-factor measurement. Cavity mode
can exist in different polarizations.

5.2.2 Comparing Measurements to MEEP Results

We summarize the measured cavity mode wavelengths and cavity Qs in Fig. 5.7. The lattice

constant and hole radius are measured from the actual fabricated cavities by SEM. MEEP

results are plotted together for comparison. The general trends of wavelengths and cavity Qs

are similar between experiments and calculations. However, there is about 10 % discrepancy

which could have originated from an inaccurate GaAs refractive index or cavity geometry

used for the calculation. In addition, MEEP predicted that a very high Q can be achieved
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for cavity with a = 283 nm and r = 0.31a, which was not observed in our data. This may be

due to the imperfect undercut, not achieving the optimum cavity dimensions and sidewall

angle, and debris left on the cavity which can be further improved by optimizing the etching

process. We expect that the fabricated cavity Q can be increased by at least an order of

magnitude by further optimizing the cavity design and fabrication process. Other groups

have reported cavity Q’s > 104 for similar GaAs L3 cavities [9, 77] and > 106 in silicon

heterostructure [83], waveguide-type [84] and L3 [85] cavities.
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Figure 5.7: Cavity mode wavelength and Q-factor as functions of crystal lattice constant (a) and
hole radius (r) obtained from experiment and MEEP calculation.
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Chapter 6

Nonlinear Dynamics of Quantum

Dots in a Photonic Cavity

6.1 Motivation

In the field of cavity quantum electrodynamics (QED), tailoring the optical environment of

a quantum emitter can lead to the modification of spontaneous emission as first discovered

by Purcell [65] and demonstrated in atoms [64] and solid-state systems [7, 86, 87]. The

ability to modify the temporal and spectral features of quantum emitters using cavity QED is

expected to greatly enhance the performance of optoelectronic devices such as quantum gates

and micro-lasers. It has been recognized that for these applications utilizing the nonlinear

optical response of cavity-coupled quantum emitters is advantageous [8, 88, 89]. For example,

recent experiments have shown the ultrafast switching of two weak laser pulses enabled by the

nonlinear response of a strongly coupled solid-state system [10, 90]. Earlier measurements

in the weak coupling regime have also revealed complex nonlinear coupling dynamics [91].

Despite the importance of nonlinearity in cavity QED for both strong and weak coupling

regimes, the effects of nonlinearity in modifying the temporal dynamics and quantum yield
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of coupled systems are not fully understood. In this work, we use luminescence intensity

autocorrelation (LIA) to experimentally and theoretically investigate the dynamics of single

emitters whose emission are enhanced by the Purcell effect, at various power regimes. This

approach enables the direct visualization of the nonlinear emission as a function of time

under constant incident power.

LIA is a time-resolved optical measurement that monitors the emission as a function of

the delay time between two optical excitation pulses. Therefore both the power-dependent

and time-resolved response of the excitation and emission can be simultaneously studied,

with the temporal resolution limited only by the duration of the laser pulse. For LIA, the

radiative lifetime of an emitter is measured through the nonlinear response of the time-

averaged emission intensity, which is inherently different from time-resolved photo-detection

methods using streak cameras [92] or photon correlation measurements [93].

Here we present a study on the nonlinear dynamics of single quantum dots (QDs) cou-

pled to photonic crystal (PhC) cavities. The Purcell effect by the cavity is demonstrated

by performing LIA on QDs both coupled and uncoupled to a cavity. The enhanced sponta-

neous emission of the cavity-coupled QDs enables a strong LIA signal which evolves when

varying the incident power over a wide range. We also observe distinct differences between

exciton and biexciton LIA, demonstrating the potential of LIA as a tool to identify the QD

transitions.

The results described in this chapter have been published in Ref. [94].

6.2 Sample Preparation

For sample fabrication, 2.3 monolayers of InAs were deposited for QD nucleation and subse-

quently annealed at the growth temperature in order to blue-shift the emission wavelength

[81]. Under these growth conditions, QDs nucleate with a density of 500/µm2 as verified by
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atomic force microscopy of an uncapped sample. For PhC fabrication, QDs are grown in the

middle of a 150 nm GaAs layer which forms the membrane of the PhC. The final L3 cavity

looks similar to the SEM image in Fig. 6.1.

1 μm 

90° 

0° 

Figure 6.1: Scanning Electron Microscopy image of the fabricated L3 cavity. This image is tilted
by 20◦. The arrows show the polarization of the collected PL. Reprinted figure with permission
from [94]. Copyright (2013) by the American Physical Society.

6.3 Time-resolved Pump-pump Set-up

The set-up for optical measurements is shown in Fig. 6.2. The optical characterization of

the QDs coupled to the PhC cavity is carried out using a HeNe laser. For the time-resolved

experiment, pulses from a modelocked picosecond Ti:S laser (76 MHz repetition rate) tuned

to a center wavelength of 780 nm with controlled time delay are used as the excitation source.

An objective lens with numerical aperture NA = 0.7 and a fast-steering mirror controlling

the beam path going to the sample are used to focus the beam on the cavity with 5 µm
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beam diameter. The emitted light from the sample is collected by the same objective lens

and spatially resolved by a translational confocal microscopy configuration with a pinhole

used as an aperture to selectively collect emission from QDs coupled to the cavity [52].

The collected light is recorded by a CCD detector with 1 s exposure time. The sample

temperature was set to 10 K by a Helium-flow cryostat for all measurements.
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Figure 6.2: Luminescence intensity autocorrelation set-up. Ti:S provides laser pulses for pump-
pump time-resolved autocorrelation experiment, whereas HeNe provides CW excitation for the
cavity mode spectral characterization. Reprinted figure with permission from [94]. Copyright
(2013) by the American Physical Society.

6.4 Experimental Results

6.4.1 Purcell enhanced emission of cavity-coupled QDs

The coupling between the PhC cavity and QDs are studied by polarization-dependent micro-

photoluminescence (PL) measurements as shown in Fig. ??. PL from QDs with emission

wavelength well within the cavity mode are Purcell enhanced only when the PL polarization

is parallel to the cavity mode field direction which is at 0◦ in this cavity [74]. From the
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Lorentzian fit of the Purcell enhanced PL at a laser power = 190 µW, the calculated cavity

Q = 190 which corresponds to the cavity loss rate κ = 5500 GHz. At a lower laser power

= 0.28 µW, a smaller number of Purcell enhanced QD emissions are observed. For both

powers, the 90◦ polarized light emission is suppressed due to the polarization mismatch to

the cavity mode [7].
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Figure 6.3: Purcell enhancement of PL from QDs embedded in a PhC cavity. The HeNe laser
polarization was set to 45◦ relative to the cavity and the PL was collected at either 0 or 90◦ (see
Fig. 6.1) by using a half-wave plate (λ/2) and a polarizing beam splitter (PBS) as shown in Fig. 6.2.
(a) PL spectra measured when laser power = 0.28 µW. (b) PL spectra measured at a laser power
= 190 µW. Blue dashed line is the Lorentzian fit. Reprinted figure with permission from [94].
Copyright (2013) by the American Physical Society.

6.4.2 Nonlinear Luminescence Autocorrelation

In order to evaluate the Purcell enhancement by the cavity, we directly measure the lifetime

of the QDs using LIA. For the time-resolved experiment, two Ti:S pulses arrive at the sample

with a relative time delay τd which is controlled by a mechanical delay line on one arm of
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the laser path [Fig. 6.2]. To verify that the position of the delay line has minimal effect

on the optical alignment, we first measured the PL when scanning the delay line and with

the beam going to the other (fixed) path blocked. With the blocked fixed line, the 2D plot

of the PL from three QDs coupled to the cavity while scanning the delay line is shown in

Fig. 6.4(a). For every measurement, the variation in PL intensity for a delay line scan with

the fixed path blocked was maintained to be below 5 %.
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Figure 6.4: Luminescence intensity autocorrelation data. (b) The measured 2D plot shows the
PL intensity of three QDs while varying the delay line position with the fixed line blocked. The
measured spectrum at a delay line position (horizontal white line) is shown in the shaded area of
(a). (c) The PL intensity with both arms unblocked exhibits a dependence on time delay. Reprinted
figure with permission from [94]. Copyright (2013) by the American Physical Society.

We then performed the time-resolved experiment with pulses from both the delay line
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and fixed arms on the same QDs [Fig. 6.4(b)]. For a long delay between pulses (> 1.5

ns), the PL intensity becomes about twice that of a single pulse, but when the two pulses

are overlapped around zero time delay, the PL decreases. Such delay time dependence is

observed in several QDs for the selected laser power (= 36 µW). The appearance of the dip

at this laser power is related to the radiative recombination time (τ) of the QD. The origin

of the dip will be examined in more detail with the simulation described below. Fitting the

data to the exponential decay function I = I0 − I1exp(−τd/τ), for the QD with λ = 897.7

nm, we found τ = 0.5 ns [Fig. 6.5, black filled circles]. The autocorrelation function of the

laser pulse is also plotted for reference.

-1 0 1

-0.08 0.00 0.08

QD in cav.

QD (no cav.)

Laser

 

 

N
o

rm
. 

C
C

D
 c

o
u

n
ts

Time delay (ns)

 

 

 

Figure 6.5: The black filled circles are measured from a cavity-enhanced QD and correspond to
the vertical white line in Fig. 6.4(c). The grey open circles are from a QD that is not in a cavity.
The inset shows the extended view of the laser autocorrelation (red open squares). For comparison
of time-resolved data between QDs and laser autocorrelation, the detector CCD counts at large
time delays are normalized. The time-resolved data of both QDs and the laser are fitted to the
exponential decay function. Reprinted figure with permission from [94]. Copyright (2013) by the
American Physical Society.
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To compare the lifetime of the Purcell enhanced QD to a QD without a cavity, we also

measured LIA for a single QD with a similar emission wavelength in a different sample which

has no cavity [Fig. 6.5, grey open circles], and the measured τ = 1 ns, similar to lifetimes of

previously reported InAs QDs. Therefore the extracted Purcell factor F = 2 for this selected

QD. The largest F we observed in this cavity is 4, corresponding to a measured τ = 0.25

ns. The variation of the measured Purcell factor from QDs is due to the different spatial

and spectral match to the cavity mode [7]. If there is no spatial and spectral mismatch, the

estimation of the Purcell factor with the given Q and Vmode is about 20.

6.4.3 Exciton Nonlinearity

We studied LIA in more detail by varying the laser power. Fig. 6.6(a) shows the experi-

mentally measured PL intensity of a QD exciton as a function of time delay where the laser

power increases from 0.1 to 71.9 µW. The laser power where the dip starts to appear is near

where the QD emission saturates. This indicates that the evolution of LIA by varying the

laser power results from the QD nonlinearity. Such QD nonlinearity is due to an atom-like

quantized energy state of a single QD. It should be noted that this clear relation between

the QD power dependence and LIA was not observed for an ensemble of QDs [95].

To understand the origin of the dip at high laser power where the QD emission saturates,

let us consider the two cases where (i) τd = 0 and (ii) τd >> τ . We are interested in a laser

power where a single laser pulse can completely fill the QD exciton state. At τd = 0, two laser

pulses arrive at the QD simultaneously but they can fill the QD exciton state once. However,

when τd >> τ , the first and the second pulse can each independently fill the QD since the

exciton excited by the first pulse has enough time to relax before the second pulse arrives.

Therefore we expect that the number of excitons generated when τd = 0 to be half of when

τd >> τ . In the experimental data, the ratios PL(τd = 0) / PL(τd >> τ) of the 3 highest

powers are {0.68, 0.64, 0.63} for P = {7.3, 29.7, 71.9} µW. As the laser power increases, the
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ratio approaches the expected value of 0.5. We consider that the experimentally observed

ratio is higher than 0.5 due to imperfect alignment and a finite time step ∆τd (= 0.13 ns).
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Figure 6.6: Power-dependent LIA of an exciton. (b) The linear power-dependence before the PL
saturation shows that the peak is from an exciton. (a) From bottom to top, laser power increases.
At the laser power where the QD nonlinearity appears, the dip starts to evolve in the time-resolved
LIA. Reprinted figure with permission from [94]. Copyright (2013) by the American Physical
Society.
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The lifetime τ obtained from the 3 highest powers are {0.24, 0.38, 0.39} ns for P =

{7.3, 29.7, 71.9} µW. Here the QD lifetime is increasing with laser power and saturating at

some point. Note that the increase and saturation of τ with power was also observed on

several QDs in a different cavity [Fig. 6.7]. The increase of τ , together with the decrease of

the ratio PL(τd = 0) / PL(τd >> τ), at the intermediate power range is the result of the

partial state filling (< 100%) of the exciton state in the QD by the first pulse.
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Figure 6.7: (a) PL intensity and (b) extracted exciton lifetime of four different QDs in a different
cavity (Q = 680) as a function of laser power. Lifetimes are measured for the nonlinear power range
(shaded area). Reprinted figure with permission from [94]. Copyright (2013) by the American
Physical Society.
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6.4.4 Biexciton Nonlinearity

In this section, we show the experimental result of QD biexciton emission in Fig. 6.8. Due

to the superlinear power dependence in the low power regime, the PL intensity at zero delay

time is higher than the PL at large time delays.
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Figure 6.8: Power-dependent LIA of a biexciton. (a) Unlike the exciton, biexciton emission shows
a rise at low laser powers. This is consistent with the superlinear power dependence of the biexciton
emission (c). τ from an exponential fit from bottom to top are 0.6, 3.5, 0.33, 0.56, 0.44 ns (lowest
laser power excluded). (b) The change from rise to dip is more apparent in the 2D plot (Left: P =
2.2 µW, Right: P = 7.3 µW). The color scales of both plots are normalized. Reprinted figure with
permission from [94]. Copyright (2013) by the American Physical Society.
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Such a rise at low power can be understood by the formation of a biexciton through the

combination of two excitons, one from each of the first and the second laser pulse, which

is possible only when the two pulses arrive within the lifetime of the exciton. Therefore

the fitted τ at low laser power is related to the recombination time of both the exciton and

biexciton [96]. At higher laser power, the sublinear power dependence results in a dip in

the time-resolved data, similar to what we observe for exciton emission. At the lowest laser

power, no features are observed due to the reduced probability of creating a biexciton. In

our sample, due to the high density of QDs, the corresponding exciton peak of this biexciton

was hard to identify. By isolating the emission from a single QD, direct comparison between

the QD exciton and biexciton lifetime will be possible.

6.5 Quantum Optical Simulation

In order to model the experimental data, we have conducted a simulation using the quantum

optics toolbox [97]. In the simulation, we first constructed the Jaynes-Cummings Hamilto-

nian that takes into account the interaction between the two-level system and the cavity

photon mode. The QD transition and cavity mode are assumed to be degenerate, similar

to the selected experimental data. The pulsed laser is introduced as two Gaussian functions

(width = 10 ps) with a time delay. Here the energy of the laser is assumed to be resonant

with the QD and the cavity, which is reasonable because any coherent effects due to the

laser in the simulation cannot last longer than the pulse width (10 ps) which is much shorter

than τ and the timescale of the dynamics that we are interested in. The dissipation factors

are phenomenologically included in the Lindblad form for all calculations: κ = 5500 GHz,

γ = 1 GHz, γd = 40 GHz. Here κ, γ, and γd are the cavity loss rate, QD transition rate,

and the QD dephasing rate, respectively. κ and γd are from the measured cavity and QD

emission width and γ is from the measured τ of the cavity-uncoupled QD. The dot-cavity
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coupling strength g is obtained by finding a best fit and the resultant g = 42 GHz. From

these parameters, the calculated critical photon number n0 = 0.01 which is well below one.

The critical photon number is a measure of the number of photons required in the cavity

mode in order to saturate the QD [98]. Therefore any photon number N above n0 could be

used to include the power nonlinearity in the simulation. In our calculation, using photon

number N = 1 to 4 showed similar results. The single pulse amplitude E was varied to

incorporate the varying laser power of the two pulses (2E2). An alternative to this quantum

optical simulation has also been reported which solves the nonlinear semiclassical model [99].

In our simulation, the average QD exciton state population <P(X)> was calculated for

each E while varying the time delay between the two pulses. We find excellent similarity

between the experimental data and the simulation [Fig. 6.9]. In addition, the dip in the

simulation starts to appear at the power where <P(X)> saturates which is consistent with

the experimental data. Using a single set of physical parameters, the lifetime τ of the

simulation in the nonlinear regime is 0.38 ns for all E. The peak around zero time delay is

the result of resonant excitation that could not be washed out in the simulation within the

pulse overlap (τd < 20 ps).

Parameter Symbol Value (GHz) Source

Cavity decay κ 5500 Cavity Q measurement

Bulk QD decay γ 1 QD LIA measurement

QD pure dephasing γd 40 QD spectral width

Coupling rate g 42 Fitting

Table 6.1: Coupling and dissipation parameters used for quantum optical simulation.
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Figure 6.9: Quantum optical simulation result of exciton luminescence intensity autocorrelation.
This result is very similar to the experimental data in Fig. 6.6. Reprinted figure with permission
from [94]. Copyright (2013) by the American Physical Society.
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6.6 Conclusions

In conclusion, the nonlinear dynamics of a dot-cavity coupled system is studied by LIA,

which is a power-dependent and time-resolved measurement method using two time-delayed

degenerate laser pulses. Modeling the excitonic LIA using a quantum optical simulation,

we found physical parameters governing the coupling (g) and emission dynamics (κ, γ) for

a cavity-coupled QD in the Purcell regime. The LIA signal of the Purcell enhanced QD

is negative (dip) for laser powers above the dot saturation point, which is qualitatively the

same to the QD outside the cavity except that the dip is narrower due to the shorter lifetime.

We expect that positive or even oscillating excitonic LIA can be observed by increasing Q to

the strong coupling [10, 90] or lasing regime [91]. This method can be applied to study the

nonlinear emission dynamics of various types of quantum structures for the next generation

of quantum lasers and quantum information processing.
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Chapter 7

Summary and Future Works

In this thesis, I have investigated methods to spatially and temporally control InAs quantum

dots for on-chip integration. Site-controlled quantum dots patterned by a focused-ion-beam

are examined optically using scanning micro-photoluminescence. I found that the line-width

broadening of site-controlled dots can be improved by vertically separating quantum dots

from the seed dots through stacking multi-layers of dots. Quantum dots in the upper layers

are nucleated at laterally shifted positions from the seed dots due to the mounds formed

at focused-ion-beam patterned sites, which can be improved by optimizing the growth con-

ditions including the spacer layer thickness and focused-ion-beam dwell time [44, 46]. The

temporal control of quantum dot emission was achieved by coupling dots to photonic crystal

cavities. Purcell enhancement of dot emission rate is demonstrated by luminescence intensity

autocorrelation. In addition, nonlinear emission dynamics of quantum dot exciton and biex-

citon are explained with the excited-state-filling mechanism. Quantum optical simulation

of exciton has further supported our data interpretation and enabled the extraction of dot-

cavity coupling strengths. I expect that the luminescence autocorrelation experiment and

simulation tool can be used to understand other nonlinear phenomena in quantum two-level

systems [91, 100].
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Below I suggest future works related to the site-controlled quantum dots and photonic

crystal cavities.

• Deterministic coupling between focused-ion-beam-induced quantum dots and photonic

crystal cavities. This will require fabricating two or three-layer quantum dot samples

and accurate reading of quantum dot positions, fabrication of alignment markers [18]

and positioning of the markers during e-beam lithography.

• Luminescence autocorrelation experiment of a quantum dot strongly coupled to a pho-

tonic crystal cavity. To achieve strong coupling, it is necessary to increase the Q of

the cavities through fabrication improvement or design optimization [79, 85].

• Coupling two or more quantum dots within a cavity or in multiple cavities through

mediating photons. Spatial control of quantum dots using a focused-ion beam and

deterministic integration to photonic crystal cavities are expected to greatly increase

the chance to achieve coupling between multiple quantum dots.

Furthermore, driving quantum dots in photonic crystals by electrical excitation [101] will

enable single photon generation and quantum gate operation without optical fields which

will be beneficial for realizing a lab-on-a-chip using quantum circuits in combination with

on-chip single photon detectors [72].
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Appendix A

Photonic Crystal Fabrication

Here we summarize the steps required to fabricate photonic crystals on a InAs/GaAs quan-

tum dot sample (see the inset of Fig. 5.5 for the sample structure). All processes are carried

out at the Lurie Nanofabrication Facility.

A.1 Sample Preparation

• Prepare sample with a clean surface by checking with an optical microscope.

• The size of the sample should be bigger than the minimum size that the resist spinner

can hold by vacuum suction.

• Dip the sample into acetone for 60 s and isopropanol (IPA) for 60 s without an interval

and dry with nitrogen blowing. Repeat if necessary.

A.2 E-beam Lithography

• Prepare the resist PMMA A4 (polymethyl methacrylate diluted in 4% anisole).
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• Spin coat the resist PMMA A4 on the sample at 1000 RPM for 45 s (ramp 500

RPM/sec). Target resist thickness = 400 nm.

(If using PMMA A6, spin at 3000 RPM for 60 s (ramp 1500 RPM/s).)

• Soft bake at 180◦C for 2 mins.

• Expose the sample to e-beam using either Raith 150 or JEOL 6300. JEOL 6300 in 5th

lens mode can achieve resolution down to a few nanometers.

• Develop the exposed sample in 25 % MIBK (methyl isobutyl ketone) for 50 s and rinse

MIBK with IPA for 60 s. Dry IPA with a gentle blow of nitrogen.

• Bake at 80◦C for 10 s.

• Check if the photonic crystal patterns are transferred to PMMA by using either a

microscope or SEM [Fig. A.2]. Note that imaging PMMA with SEM can harden

PMMA which can affect etching.

Figure A.1: Image generated by a photonic crystal design file for e-beam Raith 150. Four squares
in corners are designed to help undercutting, which are optional.
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Figure A.2: SEM image of a PMMA mask fabricated by e-beam JEOL 6300.

A.3 Dry Etching

• Etch the sample using the recipe below by Oxford PlasmaLab 100.

Temperature 5 ◦C

Pressure 3 mTorr

Cl2 2 sccm

Ar 10 sccm

BCl3 8 sccm

RF power 47 W

ICP 200 W

Time 90 s

Table A.1: Etch recipe using Oxford PlasmaLab 100.

• Note that stabilizing the chamber with the same recipe for 30 - 60 mins. before etching

the sample helps to increase the repeatability.

• It may be necessary to update the etch recipe after the chamber maintenance.
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• After dry etch, remove the PMMA by dipping the sample to acetone for 60 s and IPA

for 60 s by repeated times (e.g., 3 times). Stirring the sample helps. Dry IPA with a

gentle blow of nitrogen.

• Remove the remnant by descum using YES Plasma Stripper for 180 sec.

• Repeat cleaning with acetone (60 s) and IPA (60 s) and dry with gentle nitrogen blow.

Figure A.3: Sample dry etched by Oxford PlasmaLab 100. (b) is a tilted image of an etched
letter.

• Sometimes the sample can be under- or over-etched due to an inaccurate etch time.

Figure A.4: SEM images of (a) underetched and (b) overetched samples after undercut.
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A.4 Undercutting

• Prepare citric acid, 5 % hydrofluoric acid (HF), water, acetone and IPA in separate

beakers.

• While performing the following steps, make sure that the sample surface is always

covered by liquid and does not dry until using nitrogen.

• Dip the sample in citric acid for 60 s.

• Dip the sample in 5 % HF for 5 s and rinse in water for 25 s. Gently agitate the sample.

Repeat this about 6 times. (Dipping the sample in HF for a longer time can damage

the sample due to the hydrogen gas released during the etch.)

• Dip the sample in citric acid and rinse with acetone and IPA, each for 60 s.

• Dry the sample with gentle nitrogen blow.

• Check the sample by microscope. The color of the undercut area changes to pink due

to the index contrast by an air gap as shown in Fig. A.5.

Figure A.5: Microscope image of sample after undercut.
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• Image the sample by SEM and check if photonic crystals are suspended in air and free

of debris [Fig. A.6].

(a) 

(b) (c) 

Figure A.6: SEM images of the final sample after undercut. Sample tilted by (a) 0◦, (b) 30◦ and
(c) 65◦.

• If necessary, repeat the etching process, but adjust the number of dips into HF.

74



• Citric acid can additionally remove small debris on sample [Fig. A.7] by etching oxidized

GaAs.

Figure A.7: Debris on sample before treated with citric acid.
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Appendix B

Quantum Optical Toolbox

Quantum optical tool box is a matlab-based program that can simulate the time-evolution

of a two-level system interacting with photons [97]. Here we look into the quantum optical

background to understand the toolbox and follow the numerical solutions that lead to the

simulation result in Chapter 6.

B.1 Jaynes-Cummings Hamiltonian

The Jaynes-Cummings Hamiltonian is a theoretical model that describes the coupling of an

atomic two-level system to a quantized field of light. The two-level in a quantum dot, for

example, consists of the combination of ground |0〉 and exciton |X〉 states. With this, we

express the quantum objects such as states and operators using vectors and matrices in the

simulation. In case of a two-level system (|ψ〉 = a|X〉 + b|0〉), we use the Pauli matrices to

construct the ladder (transition) operators.

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σx =

1 0

0 −1

 (B.1)
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The raising (lowering) operator that takes into account the transition from the ground

(exciton) to exciton (ground) state can be written as the following.

σ+ =
1

2
(σx + iσy) =

0 1

0 0

 , σ− =
1

2
(σx − iσy) =

0 0

1 0

 (B.2)

Using these we can define

σ+σ− =

1 0

0 0

 (B.3)

and obtain the exciton state population by calculating 〈σ+σ−〉. Here the operators that

describe the two-level system are 2 × 2 matrices.

The photon number (Fock) states, on the other hand, have dimension that corresponds

to the number of photons. For example, if N = 3, the creation and annihilation operators

are

a+ =


0 0 0
√

1 0 0

0
√

2 0

 and a =


0
√

1 0

0 0
√

2

0 0 0

 (B.4)

from the relation 〈m|a|n〉 =
√
nδm,n−1. Then the photon number operator is

a+a =


0 0 0

0 1 0

0 0 2

 . (B.5)

By calculating 〈a+a〉, we can obtain the average photon number. Note that in the

simulation we assume that the maximum photon number is small so that we can use a

truncated Fock state basis.
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Now, let us consider constructing the Hamiltonian operator for a two-level system inter-

acting with a driving field, which is also called the Jaynes-Cummings Hamiltonian.

H = ω0σ+σ− + ωca
+a+ ig(a+σ− − aσ+) + E(e−iωLta+ + eiωLta) (B.6)

where ω0 is the atomic transition frequency, ωc is the cavity photon frequency and ωL is

the frequency of the classical driving field. g is the atom-photon interaction strength and E

is the field amplitude. We have set h̄ = 1.

We can simplify the Hamiltonian by the rotating wave approximation. Moving to an

interaction picture rotating at the driving field frequency,

H = (ω0 − ωL)σ+σ− + (ωc − ωL)a+a+ ig(a+σ− − aσ+) + E(a+ + a). (B.7)

Note that a+σ− (aσ+) is the tensor product which acts on the space of joint systems.

From above, we next construct the equation of motion using the density matrix,

dρ

dt
= −i[H, ρ]. (B.8)

However, a realistic system has dissipations as shown in Fig. 4.4. For example,the dissi-

pation in the quantum dot decay can be incorporated in the equation as follows.

dρ

dt

∣∣∣∣
XX

= −i[H, ρ]XX − γρXX (B.9)

dρ

dt

∣∣∣∣
00

= −i[H, ρ]00 + γρXX (B.10)

where γ is the exciton decay rate.
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 0  

 𝑋  

Figure B.1: Two-level system with a decay rate, γ.

We can involve the dissipations in the equation of motion by using the Liouvillian L

which is a superoperator.

L[D] = DρD+ − 1

2
D+Dρ− 1

2
ρD+D (B.11)

Including the cavity loss rate κ, two-level decay rate γ and pure dephasing rate γd, we

arrive at the final equation of motion, which is also known as the master equation in Lindblad

form.

dρ

dt
= −i[H, ρ] + 2κL[a] + 2γL[σ−] + 2γdL[σ+σ−] (B.12)

By solving this equation, we can obtain ρ(t) from which we calculate 〈σ+σ−(t)〉 and

〈a+a(t)〉. Here the relation 〈a〉 = Tr(aρ) is used. Note that 〈σ+σ−(t)〉 is proportional to the

spontaneous emission of a quantum dot.

B.2 Numerical Solution

The equation B.12 is solved by a numerical integration using the ’quantum optical toolbox’.

In this section, we show a sample simulation result. The driving field is incorporated by a

Gaussian pulse with a duration of 9 ps which is our estimation of the pulse width from the
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laser autocorrelation.

Fig. B.2 shows the quantum dot spontaneous emission and cavity output as a function of

time after excited by one pulse (a) and two time-delayed pulses (b). One can find that the

cavity photon number increases initially by the pulse excitation which subsequently increase

the quantum dot emission. Then the emitted photons from the dot are reabsorbed by the

cavity which again increases the cavity photon number. Such coherent exchange happens

because in the simulation the quantum dot, cavity, laser pulse are resonant with each other.
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Figure B.2: QD excited state population and cavity photon number as a function of time, when
excited by (a) single pulse and (b) time-delayed two pulses.

We then calculated the quantum dot spontaneous emission as a function of time with

varying time-delay between two pulses in Fig. B.3 (a). As the time delay increases, the emis-

sion excited by the second pulse becomes more apparent. This is because the first pulse has

saturated the quantum dot which hinder the excitation by the second pulse arriving before

the dot decays. Since the exposure time of our detector (1 s) is much longer than the time
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scale shown in the graph, we integrate the emissions with time and plot the total emission

as a function of time-delay between the two pulses [Fig. B.3]. We can see that emission gen-

erally decreases near zero time-delay as a result of quantum dot saturation (nonlinearity).

The slight bump at zero time delay may originate from the coherent interaction between the

laser pulses, quantum dot and cavity.
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Figure B.3: QD spontaneous emission when excited by time-delayed two pulses. (a) Time evolu-
tion. (b) Time-integrated emission.

We also calculated the integrated quantum dot emission at a large time-delay for varying

N in Fig. B.4. Although we have used truncated Fock states in the simulation, we obtained

similar results for N > 2. This indicates that the quantum dot saturation is intrinsically

incorporated in the simulation and not originating from the limited photon numbers.
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Figure B.4: Simulation as a function of laser power for selected photon numbers.
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