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ABSTRACT

Complex Geometric Invariants Associated to Zoll Manifolds

by
Kin Kwan Leung

Chair: Daniel M. Burns

In this thesis, we explore several invariants associated to Zoll manifolds such as

the manifold of geodesics and the ways to embed them into complex spaces. We

study the construction by Lebrun and Mason on Zoll surfaces and the Grauert tube

constructions in the CROSSes. We prove that the only Zoll spheres with an infinite

tube are the round ones. Using a similar argument, we prove a special case of

Burns’ algebraicization conjecture. In the study of the Lebrun-Mason construction,

we obtain some new ideas about the embedded holomorphic disks on the quadric

Q2 ⊂ CP3.

v



CHAPTER I

Introduction

It is well-known that the round sphere Sn has many symmetries. One of the

“symmetries” that the sphere possesses is that it is a Zoll manifold, i.e., all of its

geodesics are simply closed and of equal length. In fact, it is well-known that all

compact rank-one symmetric spaces (CROSSes) are Zoll. It seems that the Zoll

condition is very strong, which may suggest that Zoll manifolds are not abundant

at all. But to the contrary even we restrict to the surface in the case of n = 2 with

an S1-action of isometries, i.e., a surface of revolution, there is already an infinite

dimensional family of Zoll metrics on S2 [Bes78]. In this thesis, our main focus will

be on the n = 2 Zoll case, although some of the theorems here apply to the case of

arbitrary dimension.

It is also well-known that the fundamental group of a Zoll manifold must be finite

[Bes78]. Indeed one can show that any Zoll manifold is compact and the universal

cover of a Zoll manifold will have the property that all the geodesics are closed. This

in turn shows that the universal cover is also compact, thus the original Zoll mani-

fold will have a finite fundamental group. This means all the Zoll surfaces must be

diffeomorphic to the real projective space or the sphere. The original Blaschke con-

jecture, proved by Leon Green [Gre63], asserts that, up to isometries and rescaling,

1
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the only Zoll metric on RP2 is the standard one. On the other hand, not much is

known about the Zoll metrics on S2. It is known that, by a theorem of Guillemin

[Gui76], originally suggested by Funk [Fun13], modulo isometries and rescalings, a

general Zoll perturbation of the round metric on S2 depends on an odd function on

S2.

Given a Zoll manifold (M, g) of real dimension n, one can define the moduli space

of oriented geodesics N+
g as a symplectic manifold [Bes78]. We would naturally ask

whether we could put (M, g) and N+
g together and study their correspondence.

One would start looking at the tangent bundle TM of M . It is well-known that

TM is equipped with a canonical symplectic form (which is the pull-back of the Li-

ouville form on the cotangent bundle by the metric). With respect to this symplectic

form, the Hamiltonian flow of the energy function E := 1
2
gx(v, v) is well-known to

be the geodesic flow of (M, g). Since (M, g) is Zoll, the geodesic flow is periodic

in the slit tangent bundle TM − 0M . Thus we can perform the symplectic reduc-

tion at the level E = 1
2
. The resulting manifold is exactly N+

g , the moduli space

of oriented geodesics. One could also perform the symplectic cut at E = 1
2
to get

a (2n)-dimensional manifold X. Notice that M is identified as the zero section in

TM ; and N+ is identified as the symplectic reduction and both are submanifolds of

X. One interesting observation here is that M is Lagrangian and N is symplectic.

[Aud07]

On the other hand, Lebrun and Mason [LM02, LM10] introduced a different ap-

proach to Zoll surfaces. Given a Zoll surfaceM , we look at the projectivized tangent

bundle PTM being embedded into the projectivized complexified tangent bundle

PTCM . The canonical foliation map PTM → N , where N denotes the moduli space

of unoriented geodesics, gives an embedding of N into CP2, which is obtained by
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blowing down the closure of a connected component of PTCM − PTM along the

projection PTM → N . Then the locus {gC(v, v) = 0} ⊂ PTCM , which descends

to CP2, traces out a complex submanifold, which can be identified with M , with

the conformal structure determined by the Zoll metric. This shows that there is

an opposite way to embed M and N in CP2, with M being complex and N being

totally real and Lagrangian (with respect to a sign-ambiguous symplectic form on

CP2 −M).

Lebrun and Mason showed part of the converse: if N is a totally real surface

diffeomorphic to RP2 satisfying some transversality and Lagrangian conditions (they

sayN is docile), then one can reconstruct a Zoll manifold (M, g) such thatN ⊂ CP2 is

given by the above construction. Later Rochon [Roc11] showed that the Zoll manifold

constructed is the unique one leading to N by the Lebrun-Mason construction. Since

docility is an open condition in the (infinite dimensional) space of all totally real

embeddings of RP2 into CP2, we at least have some idea about a large open set of

the space of all the Zoll metrics on S2.

One would start to think if there is a construction that put the world of complex

geometry and symplectic geometry together: Lempert and Szőke [LS91, Sző91], to-

gether with Guillemin and Stenzel [GS91, GS92], investigated how to put a complex

structure in a neighborhood of the zero section of the tangent bundle, such that for

each geodesic γ, its tangent bundle Tγ is a complex submanifold of TM where the

complex structure is defined. They together showed that the energy E := 1
2
gx(v, v) is

strictly plurisubharmonic (s.p.s.h.) and its square root is plurisubharmonic (p.s.h.)

and satisfies the homogeneous complex Monge-Ampère (HCMA) equation off the

zero-section. In this complex structure, the zero section M is embedded in an open

set in TM as a totally real submanifold. The complex structure is called the adapted
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complex structure and the open neighborhood of M in TM is called the Grauert

tube of M . It is well-known (for example [LS91]) that for the CROSSes, the adapted

complex structure can be defined on the whole tangent bundle. By compactifying

the tangent bundle, M can be embedded in a compact complex manifold X. The

complement X −TM corresponds exactly to the manifold of oriented geodesics N+.

In this way, M is a totally real submanifold and N+ is a codimension one complex

submanifold of X. For example, if M = Sn, TM = Qn
aff and X = Qn, where

Qn is the (non-singular) hyperquadric in CPn+1 and Qn
aff is the affine part. Here

N+ = Qn − Qn
aff = Qn−1. One would say that this is the “cut at infinity” as the

resulting compactified manifold is Kähler.

In these cases, there are always extra structures corresponding to the embedding,

namely foliations. In the Grauert tube picture, there are Riemannian foliations on

X−M such that all the leaves are closed and could be extended acrossM . Each leaf

corresponds to a compactified complexified geodesic - Tγ compactified with 2 extra

points. (The same applies to the symplectic cut picture for a general M .) Following

the Lebrun-Mason construction, there are foliations of CP2−N by holomorphic disks

centered inM with boundaries in N . For a totally realM ⊂ X, let M be the moduli

space of all embedded holomorphic disks in X −M with boundaries on M . In the

Lebrun-Mason construction, X = CP2, M is a docile surface and M ≈ S2.

In this thesis, we investigate these pictures and present some interesting results.

In Chapter II, we review some basic facts about Zoll manifolds. In Chapter III, we

review the Grauert tube picture described in [LS91]. It is clear that there exists

a family of surface of revolutions that has infinite Grauert tubes[Sző91]. But what

about Zoll surfaces? The round n-spheres are Zoll and they have infinite Grauert

tubes. Are there any others? The answer is no:



5

Theorem III.20. Let M be diffeomorphic to Sn be a Zoll manifold with period

2π, such that the adapted complex structure is defined on the whole tangent bundle

(R = ∞). Then M is isometric to the round n-sphere.

In Chapter 3.5, we generalize this theorem by localizing the Zoll properties of u,

the solution of the homogeneous Monge-Ampère equation, near infinity. In particu-

lar, we prove a special case of Burns’ algebraicization conjecture. In Chapter IV, we

review the Lebrun-Mason construction and discuss our related work in Chapter V

about holomorphic disks. Lastly, we outline some possible further research directions

in Chapter VI.



CHAPTER II

Zoll Manifolds and their Properties

2.1 Definitions and manifold of geodesics

We would start by stating the basic definitions of Zoll manifolds and the objects

associated to them.

Definition II.1. Let (Mn, g) be a Riemannian manifold of dimension n. M is a Zoll

manifold if all of whose geodesics associated to g are simply closed curves of equal

length.

Remark II.2. In [Bes78], Zoll manifolds with all of whose geodesics are of length l

are called SCl-manifolds.

Let TM be the tangent bundle of a Riemannian manifold (M, g). We have the

Liouville form αg given by the pullback of the canonical Liouville form α on T ∗M

by g. Let (xi) be a local coordinates on M and (pi) be the coordinates on TM

cooresponding to the basis
∂

∂xi
. In this local coordinate system, we have

(2.1) g =
∑

i,j

gijdx
i ⊗ dxj.

Then

(2.2) αg =
∑

i,j

gijp
idxj.

6
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Let x ∈ M and v ∈ TxM . Let E(x, v) = 1
2
gx(v, v) be the energy function on TM .

Denote STM be the unit tangent bundle E−1(1
2
). From the viewpoint of symplectic

geometry, the geodesic flow on TM is given by the hamiltonian flow of E with

respect to the symplectic form ωg := dαg. Restricting the flow to the slit tangent

bundle TM − 0M , by the Zoll property of M , the orbits of the hamiltonian flow are

all periodic and of equal length. This means that by symplectic reduction, we can

define

Definition II.3. N+ as the moduli space of the orbits of the flow. In particular,

(2.3) N+ = STM/S1,

is a (smooth) manifold, where S1 is action of the geodesic flow, i.e. Hamiltonian

flow.

Remark II.4. Note that symplectic reduction reduces the dimension by 2, which

means dimN+ = 2n− 2.

In this case, each orbit corresponds to an oriented geodesic. This means that N+

cooresponds to the manifold of oriented geodesics.

One could also consider the map a on N+ to itself by reversing the direction of

the geodesic. The map a is an involution on N+ and thus we can

Definition II.5. Define

(2.4) N := N+/a

be the manifold of unoriented geodesics.

One can also think of a as the map induced by N−1 on TM , in which for s ∈ R,

let Ns denote the map that multiplies the vectors in TM by s. In other words, for
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x ∈M and v ∈ TxM ,

(2.5) Ns(x, v) = (x, sv).

The map N−1 preserves the level sets of E and thus it defines an involution on STM .

Using this map, we can consider the free action of Z2 × S1 on STM and this gives

N . It is clear that N+ is a two-sheeted covering of N .

As one can see that the tangent space of N+ captures the geodesic variations.

Thus one intuitively would think that the tangent space of N+ is related to the

space of Jacobi fields. This is indeed the case:

Proposition II.6. ([Bes78] Theorem 2.13) The tangent space at a point γ in N+ is

naturally isomorphic to the space of normal Jacobi fields along the geodesic γ in M .

Remark II.7. We exhibit a local chart for N+: Let γ ∈ N+. Then γ is a unit speed

geodesic on M . Let m = γ(0). Let Nmγ be the vector subspace of TmM normal to

γ̇(0). Define a map ϕ from R2n−2 to E−1(1
2
) as follows: for (u, v) ∈ Nmγ ×Nmγ,

(2.6) ϕ(u, v) =
d

ds
expexpm u

(

sPu

(

γ̇(0) + v
√

1 + gm(v, v)

))∣

∣

∣

∣

∣

s=0

,

where Pu is the parallel transport along the geodesic t 7→ expm tu. Via the projection

map q : E−1(1
2
) → N+, the map q ◦ ϕ is a differentiable map from R2n−2 into N+

with maximal rank [Bes78], thus it is a local chart of N+ around γ. See Fig. 2.15

of [Bes78].

The manifold of oriented geodesics N+, constructed by symplectic reduction, is

clearly a symplectic manifold with the induced symplectic form ω. For a point

γ ∈ N+ and J1, J2 ∈ TγN
+, where we identifies tangent vectors to normal Jacobi

fields J1 and J2, we have

(2.7) ω(J1, J2) = g(J1, J
′
2)− g(J2, J

′
1),
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where J ′ denotes the covariant derivative of J along γ.

2.2 Compact Rank One Symmetric Spaces

The standard examples of Zoll manifolds are the spaces that are called the Com-

pact Rank One Symmetric Spaces (CROSSes). We start off by introducing basic

definitions. Let M be a Riemannian manifold and p ∈ M . Define s : TpM → TpM

by s(X) = −X for X ∈ TpM (Note that s = N−1 from the previous section).

Definition II.8. A connected Riemannian manifold M is a symmetric space if

for each p ∈M there is an involutive isometry sp :M →M such that

(2.8) sp ◦ expp = expp ◦s.

Clearly if M is symmetric then M is complete.

Remark II.9. If M is a symmetric space, then M can be written as G/K, where G

is the Lie group of isometries of M and K is the isotropy group of the action of G

on M fixing a point p ∈M .

Definition II.10. The rank of a symmetric space M is the maximal dimension of

a flat, totally geodesic submanifold of M .

We restrict our focus on the symmetric spaces of compact type.

Proposition II.11. (Classification of CROSSes) Let M be a compact rank one sym-
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metric space. Then M must be one of the followings:

M G K

RPn (n ≥ 1) O(n+ 1) O(n)×O(1)

Sn (n ≥ 1) O(n+ 1) O(n)

CPn (n ≥ 1) U(n+ 1) U(n)× U(1)

HPn (n ≥ 1) Sp(n+ 1) Sp(n)× Sp(1)

OP2 F4 Spin(9)

Proposition II.12. The CROSSes are Zoll.

2.3 Examples of non-trivial Zoll manifolds

It seems very difficult for a manifold to be Zoll. The CROSSes have a lot of

symmetries and so one would think that they are naturally Zoll. But in fact there

are Zoll manifolds with much smaller (or even trivial) isometry groups. We are going

to describe a family of Zoll surfaces. With an S1 action by isometries, one would

study the surfaces of revolution on S2.

Let M be diffeomorphic to S2 having S1 as an effective isometry group, i.e. the

metrics of revolution. Since χ(S2) = 2 and by Hopf’s index theorem, this equals to

the sum of the indices at the zeroes of any vector field with isolated singularities.

The vector field generated by the S1 isometry action will have isolated zeroes and

the indices of those would be 1. This means that there are two fixed points of the

S1 action. We call them N and S, which denote the north and south pole.

A local chart of M − {N,S} can be given by

(2.9) (u, θ) ∈ (0, π)× (0, 2π) →M − {N,S}.

The S1 action is given by the (constant) translation in the θ variable.

We have the following classification of Zoll surfaces of revolution.
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Proposition II.13. In the above coordinate system, g is a Zoll metric of revolution

with all the period of length 2π if and only if

(2.10) g = [1 + h(cos r)]2 dr2 + sin2 r dθ2,

where h : [−1, 1] → (−1, 1) is an odd function such that h(1) = h(−1) = 0. The

metric is Ck if and only if h is Ck on [−1, 1].

This shows that there is an infinite dimensional family of Zoll surfaces even we

restrict our objects of interest to the surfaces of revolution.

The theorem can be extended to showing that there are nontrivial Zoll metrics

on Sn:

Proposition II.14. Let h : [−1, 1] → (−1, 1) be a C∞ odd function with h(−1) =

h(1) = 0. Then the metric

(2.11) g = (1 + h(cos θ))2 dθ + sin2 θ cand−1

extends to a Zoll metric on Sd. Here cand−1 is the canonical metric on Sd−1. For

details, see [Bes78].

For general Zoll metric on S2, we let gt = exp(ρt)g0 be a smooth family of Zoll

metrics on S2, where g0 is the round metric on S2. Then Weinstein [Wei74] showed

the following:

Proposition II.15. Let gt = exp(ρt)g0 be a smooth family of Zoll metrics with

geodesics of length 2π on a compact manifold M , with ρ0 = 0. Denote ρ̇ =
dρt
dt

∣

∣

∣

∣

t=0

.

Then for any closed geodesic γ of the metric g0,

(2.12)

∫ 2π

0

ρ̇(γ(s))ds = 0.
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For any Zoll perturbation of the round metric of S2, Funk[Fun13] showed (2.12)

holds if and only if ρ̇ is an odd function of S2, by means of Radon transform. One

would naturally ask that given any odd function f on S2, does there exist a family

gt = exp(ρt)g0 such that ρ̇ = f? Funk gave a method for this by expanding exp(ρt)

analytically but his proof was only formal. He did not succeed in proving the conver-

gence of the series for t small. Later, Guillemin[Gui76] proved the following results

by looking into the Nash-Moser implicit function theorem:

Theorem II.16. For every odd function f on S2, there exists a smooth one-parameter

family of C∞ functions ρt such that ρ0 = 0, ρ̇ = f and exp(ρt)g0 is a Zoll metric for

small t.

After some more work, one can show [Bes78] that there exists an open dense

subset in the space of odd functions on S2 such that for any f odd on S2, exp(ρt)g0

admits no non-trivial isometry for t small.



CHAPTER III

Grauert Tubes

3.1 Monge-Ampère model and adapted complex structures

Following [LS91], we discuss the Monge-Ampère model.

Definition III.1. Let X be a complex manifold of complex dimension n, M a real

analytic maximally totally real submanifold of X such that M = {u = 0} for a non-

negative plurisubharmonic exhaustion function u of X. Moreover, u2 is smooth on

all of X and strictly plurisubharmonic and that u satisfies the Homogeneous complex

Monge-Ampère equation

(3.1) (∂∂̄u)n = 0

on X −M . In this case, we say that (X,M, u) is a Monge-Ampère model. Here

we call M the center.

We have

∂2(u2)

∂zi∂z̄j
= 2

(

u
∂2u

∂zi∂z̄j
+
∂u

∂zi
∂u

∂z̄j

)

.

Let s = (si) such that
∑

i,j

∂2u

∂zi∂z̄j
sis̄j = 0.

Then by the strict plurisubharmonicity of u2, we have
∑

i s
i ∂
∂zi

6= 0. But there is

at most 1 dimension of s satisfying this condition. Thus we have that the kernel of

13
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∂ū is of one dimension. This gives a foliation of X −M with leaves of one complex

dimension and ∂∂̄u(v,−) = 0 for v tangent to each leaf. We call this the Monge-

Ampère foliation.

Since u2 is strictly plurisubharmonic, there is a Kähler metric on X whose Kähler

form is −i∂∂̄u2. We call this metric the u2-metric or the metric associated to u. To

study the Monge-Ampère model, one would define the Riemmanian foliation of the

slit tangent bundle of some manifolds.

Example III.2. Let (M, g) a compact real-analytic Riemannian manifold with g

real analytic, and TM be its tangent bundle. Let τ ∈ R and recall that from (2.5),

Nτ : TM → TM be the smooth mapping defined by multiplication by τ in the fibers.

If γ : R →M is a geodesic, we define an immersion ψγ : C → TM by

(3.2) ψγ(σ + iτ) = Nτ γ̇(σ).

The images of C−R under the mapping ψγ defines a smooth foliation of TM − 0M

by (real) surfaces. Each leaf of the foliation extends across M but the leaves will

intersect each other on M . We called this foliation the Riemannian foliation. We

call each leaf a complexified geodesic and we denote it by Cγ for the leaf containing

a geodesic γ. (or just C if the context is clear). Let

(3.3) TRM = {v ∈ TM : g(v, v) < R2}.

and recall from Chapter II that E : TM → R denotes half the riemannian length:

(3.4) E(x, v) =
1

2
gx(v, v),

Then we have:

Proposition III.3. ([LS91] Theorem 3.1) Given a Monge-Ampère model (X,M, u),

such that R = sup u ≤ +∞, let g be the restriction of the u2-metric on M . Then
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there is a diffeomorphism φ : TRM → X such that 2E = (u ◦ φ)2 and φ maps the

leaves of the Riemannian foliation associated to g biholomorphically onto leaves of

the Monge-Ampère foliation.

Notice that, a priori, TRM does not carry a complex structure. This means φ is

only a diffeomorphism, not a biholomorphism. Pulling back the complex structure

on X to TRM via φ gives a complex structure on TRM , in which the leaves of the

Riemannian foliations are complex submanifolds:

Definition III.4. An adapted complex structure on TRM is a smooth complex

structure on TRM such that the leaves of the Riemannian foliation are complex

submanifolds in this structure.

The adapted complex structure is studied by [LS91, Sző91] and at the same time

by [GS91, GS92].

Remark III.5. P. Dombrowski [Dom62, Agu96] introduced another way to define an

almost complex structure J on TM , by the following:

Let X,Z ∈ TM , and Xh
Z , X

v
Z ∈ TZTM be the horizontal and vertical lifts of X

at Z. Then we define

(3.5) JXh
Z = Xv

Z ; JXv
Z = −Xh

Z .

Dombrowski[Dom62] shows that J is integrable if and only if (M, g) is flat.

Here we want to show the uniqueness of the adapted complex structure.

Definition III.6. A parallel vector field ξ on a complexified geodesic C is a

vector field on TRM along C such that ξ is invariant under Nτ and φs, where φs is

the geodesic flow.

Let z ∈ TRM −M and ξ̃ ∈ TzT
RM , then there exists a parallel vector field ξ

such that ξ(i) = ξ̃.
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A parallel vector field can also be visualized as geodesic variations. Let z ∈

TRM − M and ξ̃ ∈ TzT
RM . Then ξ̃ is a tangent vector at z of a smooth curve

z(t) ∈ TM with z(0) = z. Denote γt : R → M as a geodesic variation such that for

each t, γ̇t(0) = z(t). For every t, the mapping ψγt defined by

(3.6) ψγt(σ + iτ) = Nτ γ̇t(σ)

are holomorphic from open subsets of C to TM and ψγt(i) = z(t). Then we have

(3.7) ξ =
d

dt
ψγt

∣

∣

∣

∣

t=0

.

Then we also have ξ(i) = ξ̃. Let π : TM → M is the projection map and K :

T (TM) → TM is the connection map.

Lemma III.7. ξ|R is a Jacobi field Y along γ0, with Y (σ) = π∗(ξ(σ + i)) and

Y ′(σ) = K(ξ(σ + i)).

Proof. Using the above notation we have

(3.8) ξ(σ) =
d

dt
N0γ̇t(σ)

∣

∣

∣

∣

t=0

=
d

dt
γt(σ)

∣

∣

∣

∣

t=0

.

Thus ξ|R is a Jacobi field Y with

(3.9) Y (σ) = ξ(σ) = (N0)∗(ξ(σ + i)) = π∗(ξ(σ + i))

and

(3.10) Y ′(σ) = K
d

dσ
ξ(σ) = K

d

dσ

dγt(σ)

dt

∣

∣

∣

∣

t=0

= K
d

dt
γ̇t(γ)

∣

∣

∣

∣

t=0

= Kξ(σ + i)

since N0 = π.

Conversely,

Lemma III.8. Let Y be a Jacobi field along γ with Y (0) = u and Y ′(0) = v, there

exists a unique parallel vector field ξ along Cγ such that ξ|R(σ) = Y (σ)
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Proof. At the point z = γ̇(0) ∈ Cγ, TzTM is the direct sum of HzTM and VzTM ,

the horizontal subspace and vertical subspace of TzTM . Therefore there is a unique

ξ(i) ∈ TzTM such that Kξ(i) = Y ′(0) and π∗ξ(i) = Y (0). Extend this to a parallel

vector field ξ so that it restricts to R is a Jacobi field Ỹ with Ỹ (0) = Y (0) and

Ỹ ′(0) = Y ′(0). By the uniqueness of Y , Y = Ỹ .

Notice that if ξ is tangent to the leaf at a point, then ξ is tangent to the leaf at

all points.

Recall that αg is the canonical one form on TM (c.f. (2.2)). Using Lempert-Szőke’s

notation, we rename αg to Θ:

(3.11) Θ(v) = g(z, π∗v) v ∈ Tz(TM).

Then Ω := dΘ is the canonical symplectic form on TM . For z ∈ TM , we define

(3.12) Vz = ker(Θ)z ∩ ker(dE)z ⊂ Tz(TM).

By Theorem 5.3 in [LS91], we know that Vz is a J-invariant subspace. Let z = γ̇ ∈

TM . We also notice that ξ is a parallel vector field such that ξ(i) ∈ Vz if and only

if ξ|R is a normal Jacobi field along γ.

Let γ be a arc-length parametrized geodesic in M and let z = γ̇(0) ∈ Tγ(0)M .

Choose wj ∈ Tγ(0)M , 1 ≤ j ≤ n be a set of orthonormal basis such that wn = z.

Define parallel vector fields ξ and η such that

(3.13) π∗ξj(i) = wj Kξj(i) = 0;

and

(3.14) π∗ξj(i) = 0 Kξj(i) = wj.

Let Yj = ξj|R and Zj = ηj|R be Jacobi fields along γ. Notice that Yj’s are pointwise

linearly independent (except perhaps on a discrete subset S of R) Jacobi fields along
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γ. The Zj’s are also smooth vector fields and hence there exist smooth functions ãjk

such that

(3.15) Zk =
∑

ãjkYj

on R− S. The presence of an adapted complex structure ensure that [LS91] ãjk has

a (unique) meromorphic extension ajk over the domain

D = {σ + iτ ∈ C, |τ | < R/
√

2E(z) = R}

such that the poles of ajk lie on R and the matrix =m (ajk) is symmetric and positive

definite (hence invertible) in D − R. Let (ejk) = (=m (ajk))
−1 and from [LS91], for

any point p = ψγ(σ + iτ), 0 < τ < R, we have

(3.16)

Jpξh(σ + iτ) =
∑

ekh(σ + iτ)
[

ηk(σ + iτ)−
(

∑

(<e ajk(σ + iτ))ξj(σ + iτ)
)]

.

This equation shows that

Proposition III.9. Given a complete Riemannian manifold (M, g) and R such that

0 < R ≤ ∞, there is at most one adapted complex structure on TRM .

We also notice that ξ1,0 = 1
2
(ξ−iJξ) ∈ T 1,0X is a holomorphic section of T 1,0(TM)

along the geodesic. Regarding the adapted complex structures, we have the following

relations.

Lemma III.10. ∂̄E − ∂E = iΘ and ∂∂̄E = i
2
Ω.

Lemma III.11. E is strictly plurisubharmonic and
√
E is plurisubharmonic and

satisfies the Monge-Ampère equation (∂∂̄
√
E)n = 0.

Lemma III.12. N−1 is an antiholomorphic involution of TRM .
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Remark III.13. Since N−1 is antiholomorphic, it follows that the zero section M is

real analytic. This shows that analyticity is a necessary condition for the existence

of the adapted complex structure.

By (III.9) and (III.3), every Monge-Ampère model (X,M, u) is biholomorphic to

(TRM,M,
√
2E). This means that a Monge-Ampère model is characterized by the

center and u:

Proposition III.14. Suppose (X,M, u) and (X ′,M ′, u′) are two Monge-Ampère

models such that M is isometric to M ′ in their metric associated to u and u′ respec-

tively. Assume theat supu = sup u′. Then there is a biholomorphic map F : X → X ′

such that u = u′ ◦ F .

Looking at the existence of an adapted complex structure, we have

Theorem III.15. (Theorem 2.2 [Sző91]) Let M be a compact real analytic manifold

equipped with a real analytic metric g. Then there exists R > 0 such that TRM

carries a unique adapted complex structure. We call TRM the Grauert tube of M .

Remark III.16. If there is an adapted complex structure on all of TM , then we sayM

has an infinite tube. In this case, TM admits a strictly plurisubharmonic exhaustion

function, which implies that TM is Stein.

Remark III.17. This shows that the analyticity of M is a necessary and sufficient

condition on the existence of a Grauert tube. One may wonder if the analyticity of

g is a necessary condition. Lempert showed that it is indeed necessary [Lem93].

3.2 Complexifications of the CROSSes

It is well-known [PW91] that ifM is a CROSS, thenM has an infinite tube. Thus

TM is Stein. Moreover, the symmetry of M allows TM to be openly embedded into
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a smooth projective variety X. The following is the list of all the CROSSes and their

tube.

(3.17)

M X M ⊂ X TM ⊂ X

RPn(n ≥ 2) CPn RPn ⊂ CPn CPn −Qn−1

Sn(n ≥ 2) Qn Qn ∩ RPn Qn −Hn

CPn(n ≥ 1) CPn × CPn {([z], [z̄])} {([z], [w])|z · w 6= 0}

HPn(n ≥ 1) GrC(2, 2n) J-inv. elements in GrC(2, 2n) GrC(2, 2n)−HN−1

Remark III.18. There are several remarks regarding the above table.

1. Here RPn ⊂ CPn is the fixed point of a standard conjugation in CPn

2. Qn denotes the complex hyperquadric in CPn+1.

3. Hn is a hyperplane in the CPn+1.

4. J is a C-antilinear map from C2n to C2n given by

(3.18) ((z1, w1), . . . , (zn, wn)) = ((−w̄1, z̄1), . . . , (−w̄n, z̄n)).

5. Via the Plücker embedding, GrC(2, 2n) can be embedded into CPN , where N =

n(2n− 1)− 1.

6. The case of OP2 is notationally very complicated and is omitted here.

3.3 Spheres of revolution with infinite Grauert tubes

One would wonder whether the existence of infinite Grauert tubes is abundant

among various metrics on the 2-sphere. Szöke showed that [Sző91] among the surface

of revolutions (there is an S1-action on M by isometries), there are two parameters

that characterize all the metrics with infinite tubes among the case of surfaces of

revolution.
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Theorem III.19. There exists a two parameter family of different, real analytic

metrics gr,d (r > 0, d ≥ 0) on the two sphere S2 such that all of them give rise to an

adapted complex structure on the whole TS2. The metric gr,0 gives the standard round

sphere with constant curvature 1/r2 and gr,d is homogeneous in r, i.e., gr.d = rg1,d.

Following the homogeneity, we have

(3.19) g1,d = ds2 +
sin s

d sin2 s+ 1
dθ2,

where (s, θ) ∈ (0, π)× (0, 2π) is a local chart on M − {N,S} and the free S1-action

on M − {N,S} is given by the translation of θ.

This shows that modulo dilations, there is one-parameter family of spheres with

infinite tubes.

3.4 Zoll spheres with infinite Grauert tubes

We already know that there exist “exotic” spheres which possess infinite Grauert

tubes. In the follow sections, we show that among the Zoll spheres in arbitrary

dimension, the only one with an infinite tube is the round one:

Theorem III.20. Let M be diffeomorphic to Sn be a Zoll manifold with period

2π, such that the adapted complex structure is defined on the whole tangent bundle

(R = ∞). Then M is isometric to the round n-sphere.

To prove this, we have to look at the properties of Zoll manifolds.

Fix an arc-length parametrized geodesic γ in M . The moduli space of geodesic

N+ is a manifold and the tangent space of N+ corresponds to the space of normal

Jacobi fields (c.f. Chapter II). Recall from (2.6) that a neighborhood of γ ∈ N+ can

be given as below.
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For m ∈ γ and u, v ∈ NγM at m, where NγM denotes the normal subspace with

respect to g, we have

(3.20) (u, v) 7→ d

ds
expexpm u s

(

Pu
γ̇(0) + v

√

1 + g(v, v)

)∣

∣

∣

∣

∣

s=0

∈ TM.

then project to N+. This map is of maximal rank and for any fixed (u, v),

(3.21) expexpm u s

(

Pu
γ̇(0) + v

√

1 + g(v, v)

)

is a geodesic. So this is a (2n− 2)-parameter family of geodesics around γ.

Relative to a local frame {ei} of NγM , let ui (resp. vi) be the standard coordinates

corresponding to u (resp. v) relatives to ei, then
∂
∂ui

at (u, v) = (0, 0) corresponds

to the Jacobi field Y such that Y (0) = ei and Y
′(0) = 0; ∂

∂vi
at (0, 0) corresponds to

the Jacobi field Z such that Z(0) = 0 and Z ′(0) = ei [Bes78].

Now let m = γ(0) and z = γ̇(0). Let {wi}, i = 1...n− 1 be an orthonormal basis

of NγM at m. Then define ξ̃i at TzTM to be the horizontal lift of wi; and η̃i at

TzTM to be the vertical vector corresponding to wi. Define parallel vector fields ξ

and η as in (3.13) and (3.14). Then we have the meromorphic functions aij on Cγ.

As Cγ is the complexified geodesic of γ, and γ is closed and of equal length of 2π,

the Riemannian foliation is actually a map ψγ from C/2πZ to TM , and thus it is

isomorphic to C∗ to TM . This shows that each Cγ is a copy of C∗.

Now consider that following map ψ : C/2πZ×NmM ×NmM → TM .

(3.22) (σ + iτ, u, v) 7→ d

ds
expexpm u sτ

(

Pu
γ̇(0) + v

√

1 + g(v, v)

)∣

∣

∣

∣

∣

s=σ

.

Here U is a small open neighborhood of NmM around 0. Notice that ψ restricted to

{τ > 0} × U × U is a diffeomorphism onto its image when U is small enough. Let

u =
∑

ujwj and v =
∑

vjwj. Using this diffeomorphism, we can see that [Bes78]

(3.23) ξj(i) =
∂

∂uj
at (i, 0, 0); and
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(3.24) ηj(i) =
∂

∂vj
at (i, 0, 0).

Since Nτ and φσ commutes with ∂
∂u

and ∂
∂v
, we have the above two at any points

in the leaf Cγ. This can also be interpreted in the way that ∂
∂uj

and ∂
∂vj

are given by

Jacobi fields. As geodesic flows and reparametrizations preserve Jacobi field (after

reparametrizations), we have ξj =
∂
∂uj

and ηj =
∂
∂vj

everywhere.

Now we want to compactify TM by adding some points as below. Using the fact

that ψ restricted to τ > 0 is a diffeomorphism onto its image, we compose ψ with

a conformal map in C then add the points in the center of disk. Explicitly, locally

around a geodesic γ, define the map ψ̃ as follows:

ψ̃ : D∗ × U × U
−i log z×id×id−−−−−−−−→ C/2πZ× U × U

ψ−→ TM,

where D ⊂ C is the open unit disk. This map is a diffeomorphism. Then locally

around γ, let Xγ := (D × U × U) ∪ψ̃ TM . It is clear that Xγ is locally a manifold.

Let X be pasting all the Xγ together. This makes X a real compact manifold with

N+ := X − TM corresponds to the set of oriented geodesics. Notice that along

each Cγ ∼= C∗, we add 0 and ∞ in N+ so that Cγ is completed to a “compactified

complexified geodesic”. We will abuse some notation and denote each compactified

complexified geodesic by Cγ or just C. Notice that along each C, C ∼= P1.

Lemma III.21. Let ξj and ηj be parallel vector fields along Cγ − {0,∞} defined

above. Then they can be extended to a smooth vector field along Cγ.

Proof. This is clear since using the map ψ̃, ξj and ηj corresponds to
∂
∂uj

and ∂
∂vj

along

D∗×{0}×{0}. Then it is clear that ∂
∂uj

and ∂
∂vj

can be extended toD×{0}×{0}.

Lemma III.22. Let J be the adapted complex structure on TM . Then J can be

extended to a complex structure on X.
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Proof. If J can be extended to X smoothly (or C1), then J is integrable on X by

the C1 condition. So we just want to extend J smoothly to X.

Along C, the complex structure J can be extended using the structure in P1. It

suffices to extend the structure to the normal direction of C. We can do this by

looking at the action of J to ∂
∂uj

and ∂
∂vj

locally in the D×U ×U . We already know

the action of J on D∗ ×U ×U as in (3.16). To extend the J smoothly, we just have

to extend aij smoothly to the origin such that =m (aij) is invertible at the origin.

We know that =m (aij) is symmetric and positive definite in D∗. Any diagonal

entry in a positive definite matrix must be positive, which means =maii > 0 in

D∗. But aii is holomorphic in D∗ which =maii > 0. This shows that aii can be

extended to a holomorphic function in D by Little Picard theorem and the fact that

the upper half plane does not contain a neighborhood of ∞. Any principal minor of

a symmetric positive definite matrix is positive. Let i < j, a 2× 2 principal minor

(3.25)







=maii =maij

=maij =majj







is positive definite with positive diagonal entries. This means

(3.26) (=maij)
2 < (=maii)(=majj).

We already know aii are holomorphic, hence bounded in a neighborhood of 0. This

means in a neighborhood of 0, =maij is bounded. Using the same argument (Little

Picard and ∞ neighborhood), we can see that aij can be extended to a holomorphic

function on D.

It suffices to show that =maij is invertible at 0. Fix v ∈ Cn−{0} and A = =m (aij)

be the matrix. Then vtAv is a harmonic function on D. Since A is positive definite

in D∗ we have vtAv > 0 in D∗. By the maximum principle of harmonic functions,
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we have vtAv > 0 in D, which shows that A is positive definite in D, in particular A

is invertible. This shows that J can be extended along each leaf of the compactified

Riemannian foliation.

To show that J is continuous, we use the Cauchy integral formula. Since these aγij

is continuous in D∗ ×NmM ×NmM which can be extended to D ×NmM ×NmM

continuously along each D, by the Cauchy integral formula, the aγij is continuous

(smooth). Hence J is smooth and this completes the proof.

By Lemma III.12, we know that N−1 is antiholomorphic in TM . We can extend

this to an antiholomorphic map on X by mapping 0 to ∞ along each leaf. Again

this is clearly antiholomorphic.

Lemma III.23. N+ is a complex submanifold of X.

Proof. By construction, ∂
∂uj

and ∂
∂vj

are tangent vectors to N+ in X. By (3.16), we

have J preserves TN+. As N+ is a real submanifold with J preserving TN+, N+ is

a complex submanifold of X.

To show that the pair (X,N+) is the same as (Qn,Qn−1) in Pn+1 (c.f. Table 3.17),

we want to show that X is Kähler. Qn is Kähler with its Fubini-Study metric with

potential log(1 + ‖z‖2). Here in an affine chart of Qn ⊂ CPn+1, ‖z‖2 =∑i z
iz̄i. On

the other hand, in [LS91] and [PW91] we have cosh−1 ‖z‖2 = 2
√
2E, we should look

at the potential function ρ := log(1 + cosh 2
√
2E) in X. In [LS91], we know that

E = (
√
E)2 is strictly plurisubharmonic and thus ρ is strictly plurisubharmonic.

Proposition III.24. The potential function ρ := log(1 + cosh 2
√
2E) defines a

Kähler form on TM , which extends to a Kähler form in X.

Proof. To prove this, first we want to show that the Kähler form extends to X

continuously. To do this, look at each leaf in the Riemannian foliation and let



26

z = σ + iτ ∈ C/2πZ. Here σ is the unit speed geodesic parameter and τ is the

length. Hence τ =
√
2E. Locally near a point in X − TM in each leaf can be given

by ζ = eiz. Thus ζ = 0 corresponds to the point p in X −TM in each leaf and let U

be a neighborhood of p. Then we know e−τe−iσ = ζ and thus τ = − log |ζ|. In this

coordinate, in U − {p},

ρ = log(1 + cosh 2τ)

= log(1 + cosh(− log |ζ|2))

= log

(

1 +
|ζ|2 + |ζ|−2

2

)

= log
(1 + |ζ|2)2

2|ζ|2 .

Notice that ζ is not holomorphic in X, but ζ restrict to each leaf is holomorphic.

Let w be a holomorphic coordinate in U such that w = 0 corresponds to X − TM

and dw 6= 0 at w = 0. Then restricted to the leaf, both ζ and w are holomorphic

and vanish at degree 1 at p. Thus we can write ζ = fw for some smooth function

along the leaf and f(p) 6= 0, in which f is holomorphic along each leaf. It is easy to

see that f locally a smooth function near p in X by Cauchy integral formula.

Returning to our function ρ, we have

ρ = log
(1 + |ζ|2)2

2|ζ|2 = log
(1 + |fw|2)2

2|fw|2 = log
(1 + |fw|2)2

2|f |2 − log |w|2.

Since w is a holomorphic coordinate inX and by simple calculation that ∂∂̄ log |w|2 =

0, we can see that the function log (1+|fw|2)2

2|f |2
defines the same Kähler form as ρ does

in X − TM . But this function is smooth near p ∈ TM and thus it defines a form in

X near p. Repeat this process for different p ∈ X − TM will give a form on X that

restrict to TM is a Kähler form.

Now we have to show that this form is positive definite at p ∈ X − TM . To show
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this, we use the method of brute force. Notice that the form is given by

ω : = −i∂∂̄ log(1 + cosh 2
√
2E)

= −i∂
(

2
√
2 sinh 2

√
2E

1 + cosh 2
√
2E

∂̄
√
E

)

= −i
(

2
√
2 sinh 2

√
2E

1 + cosh 2
√
2E

∂∂̄
√
E +

8

1 + cosh 2
√
2E

∂
√
E ∧ ∂̄

√
E

)

.

We have

∂∂̄
√
E = ∂

(

1

2
√
E
∂̄E

)

=
1

2
√
E
∂∂̄E − 1

4E
√
E
∂E ∧ ∂̄E

and

∂
√
E ∧ ∂̄

√
E =

1

4E
∂E ∧ ∂̄E.

Using Lemma III.10 and Corollary 5.5 in [LS91], we have

∂E ∧ ∂̄E =
1

2
(∂E + ∂̄E) ∧ (∂̄E − ∂E) =

1

2
dE ∧ iΘ =

i

2
dE ∧Θ

and

∂∂̄E =
i

2
Ω.

Thus we have

∂∂̄
√
E =

1

2
√
E
∂∂̄E − 1

4E
√
E
∂E ∧ ∂̄E

=
i

4
√
E
Ω− i

8E
√
E
dE ∧Θ

=
i

8E
√
E
(2EΩ− dE ∧Θ).

and

∂
√
E ∧ ∂̄

√
E =

1

4E
∂E ∧ ∂̄E =

i

8E
dE ∧Θ.

So we have

ω = −i∂∂̄ log(1 + cosh 2
√
2E)

= −i
(

2
√
2 sinh 2

√
2E

1 + cosh 2
√
2E

∂∂̄
√
E +

8

1 + cosh 2
√
2E

∂
√
E ∧ ∂̄

√
E

)

=

√
2 sinh 2

√
2E

4E
√
E(1 + cosh 2

√
2E)

(2EΩ− dE ∧Θ)

+
1

E(1 + cosh 2
√
2E)

dE ∧Θ.
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Look at the parallel vector fields ξj and ηj generated by wj again (1 ≤ j ≤ n − 1),

we know that ξj and ηj restricted to R are normal Jacobi field and thus they lie in

kerΩ ∩ ker dE. We also know that ξj and ηj extends to X smoothly to independent

vectors at X − TM . We also have

Ω(ξj, ηj) = g(π∗ξj, Kηj)− g(π∗ηj, Kξj) = g(wj, wj) = 1

at z = i. Since N∗
sΩ = sΩ for s ∈ R, we have Ω(ξj, ηj) =

√
2E at any point in the

leaf of TM −M . Thus we have

ω(ξj, ηj) =

√
2 sinh 2

√
2E

2
√
E(1 + cosh 2

√
2E)

Ω(ξj, ηj) =
sinh 2

√
2E

(1 + cosh 2
√
2E)

.

When E → ∞ we have ω(ξj, ηj) → 1 6= 0. Since Ω(ξj, ξk) = Ω(ηj, ηk) = 0 and

Ω(ξj, ηk) = 0 for j 6= k, by continuity ω(ξj, ξk) = ω(ηj, ηk) = 0 and ω(ξj, ηk) = 0

for j 6= k. This applies to ξn and ηn in the sense that ω(ηn, ξj) = ω(ηn, ηj) = 0 and

similarly for ξn (1 ≤ j ≤ n − 1). We also have ω(ηn, ξn) 6= 0 because this is the

standard Fubini-Study metric on the C. Thus ω is non-degenerate n all directions

at p ∈ X − TM .

Using the details of this proof, we can conclude that

Lemma III.25. O(N+) is a positive line bundle.

Proof. To prove that O(N+) is a positive line bundle, we want to construct a her-

mitian metric h on O(N+) such that −i∂∂̄ log h is the Kähler form above. As in the

proof above, let p ∈ N+ and Uα be a neighborhood of p in X. Using the notation

above we set

hα(x) =
(1 + |fα(x)wα(x)|2)2

2|fα(x)|2

for x ∈ Uα. Let gα be a (holomorphic) defining function of N+. Notice that we can

pick gα = wα since wα is also a defining function on Uα. This means, for another
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neighborhood Uβ of p, and x ∈ Uα ∩ Uβ −N+, we have

hα =
(1 + |fαwα|2)2

2|fα|2

= |wα|2
(1 + |fαwα|2)2

2|fαwα|2

= |wα|2
(1 + |ζ|2)2

2|ζ|2

=
|wα|2
|wβ|2

(1 + |fβwβ|2)2
2|fβ|2

=
|wα|2
|wβ|2

hβ.

Since all of hα, hβ and |wα|2

|wβ |2
are continuous in Uα ∩ Uβ, we have

hα =
|wα|2
|wβ|2

hβ

for all x ∈ Uα ∩ Uβ. Since wα

wβ
is the transition function of O(N+), we successfully

define a hermitian matrix such that O(N+) is positive in a neighborhood of O(N+).

To complete the proof, we have to define h away from N+. This is easy, as we

can just set

h =
(1 + |ζ|2)2

2|ζ|2 =
1

|wα|2
hα

Since 1 is a defining function of N+ away from N+, we have a hermitian metric such

that −i∂∂̄ log h = ω is a Kähler form, hence positive. This completes the proof.

Remark III.26. We have

c1(O(N+)) = − i

2π
∂∂̄ log h =

1

2π
ω ∈ H2(X,Z).

Since X is Kähler and has a positive bundle O(N+), by Kodaira embedding

theorem, X is projective and thus algebraic. In the following discussion we rename

N+ as V to fit in the algebraic geometry world.

Next we have to figure out what the cohomologies of X are.
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Proposition III.27. If n be even, then

H i(X,Z) =



























0 if i is odd

Z⊕ Z if i = n

Z if otherwise.

If n is odd, then

H i(X,Z) =











0 if i is odd

Z if i is even

Proof. c.f. [Aud07]. By the construction, the symplectic cut W at E = 1
2
of TM

in the liouville symplectic form on TM is diffeomorphic to X. Then M ⊂ W is

Lagrangian and the symplectic reduction at E = 2 is a symplectic codimension-2

submanifold, with E a Morse-Bott function with only M and V as critical sets.

This means W is a polarized symplectic manifold. By [Aud07], it has the above

cohomology groups. Since X is diffeomorphic to W , X has the above cohomology

group.

Remark: In [Aud07], the above cohomology groups are generated by the Poincaré

dual of [N+]i over Q(1
2
Z to be clear) if they are isomoprhic to Z (with [V ]n = 2).

Hn(X,Z) is generated by the Poincaré dual of [V ]n/2 and [M ] if n is even, with

[V ]n = 2, [V ].[M ] = 0 and [M ]2 = 0 if n is odd and [M ]2 = −2 if n is even. (c.f.

[Aud07])

Lemma III.28. Let C be a compactified complexified geodesic and we know C ∼=

CP1. Let N be the (holomorphic) normal bundle of C in X. Then detN = OCP1(2n−

2), where n is the complex dimension of X.

Proof. Using previous notation, we have ξj, 1 ≤ j ≤ n − 1 be parallel vector fields

along C. Then ξ1,0j is a holomorphic section of T 1,0(TM) ([LS91] Prop 5.1). By
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continuity in our extension, it is a holomorphic section of T 1,0X. Since these parallel

fields are not in TC, ξ1,0j define holomorphic sections of N . Now ξ1,0j are linearly

independent over C except a discrete set of points in M , in which the ξ1,0j vanishes.

This shows that
∧

ξ1,0j defines a holomorphic section of detN =
∧n−1 N .

∧

ξ1,0j has

the vanishing order the sum of the vanishing order of ξ1,0j because they are linearly

independent over C except where one of them vanishes. But ξj are given by Jacobi

fields along M and each Jacobi field vanishes at exactly 2 points. This shows that

∧

ξ1,0j has vanishing order of 2n− 2 and therefore detN = OCP1(2n− 2).

Lemma III.29. KX = O(−nV )

Proof. Case n > 2: By adjunction formula we have KC = KX |C + detN . Since

C = P1, we have KC = O(−1 − 1) = O(−2) and detN = O(2n − 2). This shows

that KX |C = O(−2n). Since we know that c1(KX) defines a class in H2(X) and

h2(X) = 1 and it is generated by [V ], we must have KX = rV for some r ∈ Z.

Since V intersects C transversely at 2 points, we have V |C = O(2). This shows that

O(−2n) = KX |C = rV |C = O(2r) and so r = −n.

Case n = 2: We also have

c1(X)|V = c1(TV ⊕NV |X)

= c1(V ) + c1(NV |X)

= c1(P
1) + [V ] · [V ]

= 2 + 2 = 4 ∈ H2(V,Z).

This shows that c1(X) · [V ] = 4. Since [V ] and [M ] are generators of H2(X,Z), we

can write c1(X) = α[V ] + β[M ]. From c1(X) · [V ] = 4, we see that α = 2. By

Proposition III.27, the Euler characteristics of X is 4. Thus by Thom-Hirzebruch

Signature Theorem, we have

c21(X) = 2χ+ 3τ = 2(4) + 3(0) = 8.
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Thus we have β = 0. This shows that c1(X) = 2[V ] and equivalently KX = O(−2V ).

Proposition III.30. h0(X,OX(V )) = n+ 2.

Proof. Case n > 2: Since O(V ) is positive and by Kodaira vanishing theorem, we

have

H i(X,O(kV )⊗KX) = H i(X,O((k − n)V )) = 0 for i, k > 0.

This is equivalent to

H i(X,O(rV )) = 0 for all r > −n and i > 0.

We also have H0(X,O(rV )) = 0 for any r < 0 and H0(X,C) = C. Let

χ(r) = χ(X,O(rV )) =
∑

(−1)ihi(X,O(rV )).

Then we have χ(0) = 1 and χ(r) = 0 for −n < r < 0. We also have χ(1) =

h0(X,O(V )).

By Serre duality and Kodaira vanishing theorem, we have

hi(X,O(−nV )) = hn−i(X,O(nV )⊗KX) = 0 for n− i > 0.

On the other hand, we have

hn(X,O(−nV )) = h0(X,O(nV )⊗KX) = h0(X,O) = 1.

This shows that χ(−n) = (−1)n.

The following table summarizes all the information about hi(X,O(rV )).

i = 0 0 < i < n i = n χ

r = −n 0 0 1 (−1)n

−n < r < 0 0 0 0 0

0 1 0 0 1

1 ? 0 ? h0(X,O(V ))
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Let ci(X) = λi[V ]i for λi ∈ Q, for i 6= n/2. For n even, we have

cn/2(X) = λn/2[V ]n/2 + λ[M ].

Then we have

td(X) =
∑

µi[V ]i + µ[M ] + ν[M ]2

and

ch(O(kV )) =
∑ ci1(O(kV ))

i!
=
∑ ki[V ]i

i!
.

(Notice that µ = ν = 0 if n is odd.) The Riemann-Roch Theorem states that

χ(k) = ch(O(kV ))td(X) = ν[M ]2
n
∑

i=0

kiµn−i[V ]n

i!
= ν[M ]2 +

n
∑

i=0

ki
2µn−i
i!

=
n
∑

i=0

aik
i.

Since we know χ(k) for −n ≤ k ≤ 0, we can uniquely solve for ai.

By simple calculations, when X = Qn and V = Qn ∩ H, we have [V ]n = 2,

χ(1) = n+ 2, O(V ) positive and KX = O(−nV ).

This shows that the values of χ(k) (−n ≤ k ≤ 0) are the same as the case

when X = Qn. Since the χ(k)’s uniquely determine the values of ai, in which they

uniquely determine χ(1). This shows that χ(1) = n + 2 as in the case of X = Qn

and V = Qn ∩H. But χ(1) = h0(X,O(V )), we have h0(X,O(V )) = n+ 2.

Case n = 2: The exact sequence

0 → OX → OX(V ) → OV (V ) → 0

induces that exact sequence

0 → H0(X,OX) → H0(X,OX(V )) → H0(V,OX(V )) → H1(X,OX).

Since X is Kähler, we have H1(X,OX) = H0,1(X,C) ⊂ H1(X,C) = 0. Then

h0(X,OX(V )) = h0(X,OX) + h0(V,OX(V )) = 1 + h0(CP1,O(V.V )) = 1 + 3 = 4,
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by [V ]2 = 2 and V ∼= P1 since V can be identified with the manifold of oriented

geodesics of M .

Using Kachi and Kollár’s argument [KK00], X is biholomorphic to the nonsingular

quadric Qn by looking at the map X → PH0(X,OX(V ))∗.

Lemma III.31. For s ∈ H0(X,OX(V )), define Ns := N∗
−1s. Then N is a conjugate

linear involution from H0(X,OX(V )) to itself.

Proof. Let X and V be X and V with opposite complex structure. Then N−1 is a

holomorphic map from X to X and from V to V . Since OX(V ) = OX(V ), we have

N∗
−1 mappingH0(X,O(V )) toH0(X,O(V )). This meansN∗

−1s is an antiholomorphic

map from X to O(V ) such that composing with the bundle map is the identity (the

bundle map is antiholomorphic). Conjugating the line bundle, we have Ns = N∗
−1s

to be a holomorphic map from X to O(V ) such that the composition with the bundle

map is identity. This mean Ns ∈ H0(X,O(V )). N is clearly conjugate-linear from

the conjugation of the line bundle.

Lemma III.32. The set of fixed points of N is a maximal totally real subspace

H0(X,OX(V ))R of H0(X,OX(V )).

Proof. Since all complex vector spaces are isomorphic to Cn, we just assume if N is

a conjugate linear map from Cn to Cn, then its fix point is totally real.

N is an involution of R2n such that NJ = −JN for the complex structure J . Since

N is an involution, the possible eigenvalues are ±1. Their correpsonding eigenspace

are denoted by Z+ and Z−. Notice that J sends Z+ to Z− and the other way around.

Since J is of full rank with J2 = −I, we have dimZ+ = dimZ−. Any element v in

R2n can be written as 1
2
(v + Nv) + 1

2
(v − Nv) ∈ Z+ + Z−, and Z+ ∩ Z− = 0. This
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shows that dimZ+ = n. Since J sends Z+ to Z−, Z+ is maximally totally real in

Cn.

By the above, we can choose s̃0, . . . s̃n+1 ∈ H0(X,OX(V ))R and it spanH0(X,OX(V ))

over C. We can let s0 be the defining section of V (since V is N -invariant). Thus we

have f : x 7→ [s̃0(x) : . . . : s̃n+1(x)] and f commutes with the standard conjugation

in Pn+1. This shows that N−1 extends to the standard conjugation in CPn+1.

Proof of Theorem III.20. Without loss of generality, we can set Q = {∑n+1
i=0 z

2
i = 0}.

Since Q ⊂ Pn+1 is an embedding, we can say that X ⊂ CPn+1. By above we know

that N−1 : X → X extends to a conjugation τ in CPn+1. Let σ be the standard

conjugation in the zi coordinates: [zi] 7→ [z̄i]. Then τ ◦σ is a bihomolorphic map from

CPn+1 to itself fixing Q. This shows that τ ◦ σ is a projective linear transformation

fixing Q. This shows that there exists a linear biholomorphism G : Q → Q such that

it mapsM , the fixed point of N−1, to the fixed point of σ, which is the standard case

of round sphere.

Since G is linear, it maps complex lines to complex lines. But the complex lines

are complexified compactified geodesics and their restriction to M are geodesics.

This means that the geodesics of M are the same as those of the round sphere and

thus M must be isometric to the round sphere, modulo dilations.

Remark III.33. Most of the above procedures above can be applied to all the Zoll

manifolds with an infinite tube. Indeed, one can use the same argument to show that

any Zoll manifold with an infinite tube can be embedded into a projective complex

manifold, with the space of oriented geodesics being a positive divisor.
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3.5 Generalizations

One could ask whether the extended complex normal Jacobi fields are crucial

in the proof of III.22 that the complex structure extends to the points at infinity.

Consider the following scenario, originally suggested by Stoll [Sto77, Sto80]:

Let X be a complex Stein manifold of complex dimension n with a strictly

plurisubharmonic exhaustion function τ > 0. Then we can define a Kähler met-

ric Ω, or a “τ -metric”, with Kähler form equal to:

i

2
∂∂̄τ = ddcτ > 0.

In local coordinates,

Ω =
∑

i,j

τij̄dz
i ∧ dz̄j,

where τi =
∂τ
∂zi

and τī =
∂τ
∂z̄i

.

Define τ ij̄ by the relation
∑

j

τ ij̄τkj̄ = δik.

We consider the vector field of type (1, 0):

Y :=
∑

i,j

τ ij̄τj̄
∂

∂zi
.

Let ξ = <e Y and η = =mY , with flow ψ and φ respectively. Let u be a real-valued

function on X such that eu = τ . Assume that there exists a τ0 < +∞ such that

whenever τ ≥ τ0,

1. u is plurisubharmonic and satisfies the homogeneous complex Monge-Ampère

equation

(∂∂̄u)n = 0.

2. η has a periodic flow φ and there is a free action of S1 on X0 := X ∩ {τ ≥ τ0}

corresponding to this flow.
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By the uniqueness of the solution to ODE, the flow φ is simply periodic with the

same period. Now since τ = eu, similar to the previous section, we have

τij̄ = eu(uij̄ + uiuj̄).

Let z = (zi) such that

(3.27)
∑

i,j

uij̄z
iz̄j = 0.

Then by the strict plurisubharmonicity of τ , we must have
∑

i uiz
i 6= 0. But there is

at most 1 dimension of z′s satisfying condition 3.27 and thus we have that the kernel

of uij̄ is one dimension. This gives a foliation of X0 with leaves of one complex

dimension and ddcu(v,−) = 0 for all v tangential to each leaf. We call this the

Monge-Ampère foliation. We denote a generic leaf of the foliation by C.

Notice that by Stoll [Sto80], Y is tangent to the foliation in the sense that Y ∈

T 1,0C. This means that ξ and η are parallel to the leaves and they commute with

each other. We also have that

Y τ = τ.

Thus, we have

ξτ = τ, and ητ = 0.

This means that η preserves τ and thus u.

Lemma III.34. Recall that Ω = ddcτ > 0. We have ψ∗
tΩ = etΩ and φ∗

tΩ = Ω.

Proof. For φt, we have

φ∗
tΩ = φ∗

tdd
cτ = ddcφ∗

t τ = ddcτ = Ω,

here we used φt preserves τ .
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For ψt, pick a point x ∈ X0 and consider w(t) = τ(ψt(x)). Then we have

w(T )− w(0) = τ(ψT (x))− τ(x) =
∫ T

0
d
dt
τ(ψt(x))dt

=
∫ T

0
dτψt(x)(ξ)dt

=
∫ T

0
ξψt(x)(τ)dt

=
∫ T

0
τ(ψt(x))dt

=
∫ T

0
w(t)dt.

Differentiate w(T ) with respect to T gives a differential equation

w′(T ) = w(T ).

Thus w(T ) = w(0)eT , which means

ψ∗
t τ = τ ◦ ψt = etτ.

This shows that

ψtΩ = ψ∗
t dd

cτ = ddcψ∗
t τ = etddcτ = etΩ.

This also shows that ψ∗
t u = t+ u.

Following Stoll’s work [Sto80], we have for the followings:

Lemma III.35. Let C be a leaf of the foliation F . Then C ∩ {τ > τ0} ∈ X0 is

biholomorphic to a punctured holomorphic disk.

Proof. Let x ∈ X0 such that τ(x) = τ0. Let C be the leaf of the foliation containing

x. Then C is a one-dimensional complex manifold, and τ0 is a regular value of τ

since ξτ = τ 6= 0. Thus the set τ−1(τ0) ⊂ C is a one real dimensional manifold.

Let y ∈ τ−1(τ0) ∩ C and recall φ is periodic and non-trivial. Thus the connected

components of τ−1(τ0)∩C are closed and thus they are diffeomorphic to S1. If there
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are more than one connected components, say it contains more than one copy of S1,

by Morse theory, as it has no critical point in C, C will be more than one copy of a

cylinder. This is a contradiction because C as a (maximal) leaf of a foliation, must

be connected. This also shows that C is a cylinder.

It is clear that the flow of φ is periodic of the same period for each punctured

disk. This is because φs commutes with ψt: Assume φ has a period of s0 at x ∈ X0.

Then

ψt(x) = ψt(φs0(x)) = φs0(ψt(x)),

which shows that at ψt(x), φ has the same period by continuity of t. Thus there is

a diffeomorphism

R/s0Z × R>0 → C

(s , t) 7→ φsψt(x).

Since ψ and φ are real and imaginary components of a holomorphic vector field on

C, by giving the set R/s0Z×R>0 the standard complex structure, i.e. J ∂
∂s

= ∂
∂t
, the

above map is a biholomorphism from R/s0Z × R>0 to C. Let u0 = u(x). Then by

composing with the exponential map

ζ = e
− 2π

s0
(t+u0−is),

we have a map from a holomorphic disk to C, where

|ζ| = e
− 2π

s0
(t+u0) = e

− 2πu
s0 .

Thus we can compactify each leaf:

Corollary III.36. Each leaf can be compactified by filling the hole of each punctured

disk. Thus X can be compactified to a real (2n)-dimensional manifold X̂ by filling

all the holes of the disks of the leaves in the foliation.
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Proof. We have that each leaf can be compactified by filling the hole of each punc-

tured disk. Now in the neighboring leaf, ζ can be defined as a smooth coordinate

around C which restricts to holomorphic coordinates in each leaf. This can be done

because the period s0 is constant. Thus a neighborhood of C is given by D∗×R2n−2.

Thus X̂ is a smooth manifold.

Following Lempert and Szőke [LS91], we want to describe the complex structure

J as we did in the previous section. But first, we define the notion of parallel vector

fields.

Pick a point x ∈ X0 such that τ(x) = τ0 and C be the leaf containing x. Let

ṽ ∈ TxX0. Recall ψ denotes the flow of ξ and φ denotes the flow of η. Since φ and

ψ commute and φ is periodic along the leaf C, we have a well-defined vector field v

along C such that it is invariant under φ and ψ.

Let Vx = ker du ∩ ker dcu. We have

Lemma III.37. Vx is a J-invariant subspace and TxX0 = Vx ⊕ TxC.

Proof. Let VxC = Vx ⊗ C = V 1,0
x ⊕ V 0,1

x . Then we have VxC = ker ∂u ∩ ker ∂̄u.

Let v ∈ Vx. Then v ∈ VxC and we can write v = v1,0 + v0,1. Then

∂u(Jv) = ∂u(Jv1,0 + Jv0,1) = ∂u(iv1,0) = i∂u(v1,0) = 0

and similarly for ∂̄. Thus Jv ∈ ker ∂u ∩ ker ∂̄u = VxC. But Jv is a real vector and

thus Jv ∈ Vx. As d
cu(η) 6= 0 and du(ξ) 6= 0, we have TxX0 = Vx ⊕ TxC.

Let ξ be a parallel vector field along C such that ξx ∈ Vx at a point x. Then by

the relations ψ∗
t u = t+ u and φ∗

su = u, we have ξy ∈ Vy for all y ∈ C.

Lemma III.38. Any parallel vector fields can be extended to the compactification

X̂0 = ∩X0 ∪ {X̂ −X}.
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Proof. Let γ(r) be a curve in X0 such that γ(0) = x and γ′(0) = ṽ. Extend ṽ to

a parallel vector field v along the leaf. Then v at the corresponding point would

be defined as (ψtφsγ)
′(0). To extend the parallel vector field, one defines it to be

lim
t→+∞

(ψtγ)
′(0). The limit exists in the compactification X̂0 and is well-defined be-

cause lim
t→+∞

ψt = lim
t→+∞

ψtψs for any s.

Following Lempert-Szőke, choose ξ̃i ∈ TxX0, 1 ≤ i ≤ n, such that the vectors

{ξ̃1,0i }, 1 ≤ i ≤ n form a basis of T 1,0
x X0. We can assume ξ̃n = ξ at x. Extend ξ̃i to

parallel vector fields ξi along C. Choose n more vectors η̃i ∈ TxX0 such that together

with ξ̃j they form a basis when 1 ≤ i, j ≤ n. Extend them to parallel vector fields ηi

along C. Again, assume η̃n = η at x. The holomorphic sections ξ1,0i are independent

at x over C, hence they are pointwise independent except on a discrete subset S on

C. Therefore there are meromorphic functions ajk on C − S such that

η1,0k =
∑

j

ajkξ
1,0
j on C − S

Taking the real part, we have

ηk =
∑

j

(<e ajk)ξj +
∑

j

(=majk)Jξj.

Let (ejk) = (=majk)
−1, then we have

Jξh =
∑

k

ekh

(

ηk −
∑

j

(<e ajk)ξj
)

.

If we can show that the meromorphic functions ajk can be extended to the compact-

ifications near X̂0 − X0 and their imaginary parts are invertible, we can extend J

to X̂0 and hence X̂ as an almost complex structure. (Here J is at least C1 by the

Cauchy integral formula, similar to the proof of Lemme III.22 in the above section.)

Since V := X̂ − X is of measure zero, by continuity, the Nijenhius tensor will also



42

vanish at V and therefore J is integrable everywhere. Lastly, V is J invariant by the

above formula, which in turn implies that V is a complex submanifold of X.

To show that ajk can be extended, we have to choose the ξ̃i’s and η̃i’s wisely. We

first establish a series of lemmas.

Lemma III.39. Let ξ and η be parallel fields along C. If Ω(ξ, η) = 0 at a point

y ∈ C, then Ω(ξ, η) = 0 at all points in C.

Proof. This is clear by the above theorem and by the fact that any parallel vector

fields are φs and ψt invariant.

Lemma III.40. Ω(v, w) = 0 for v ∈ Vx and w ∈ TxC. Hence Ω = ddcτ restricts to

a symplectic form in Vx.

Proof. Since τ = eu, we have

∂̄∂τ = eu(∂∂̄u+ ∂̄u ∧ ∂u).

Since ∂∂̄u = 0 along C and Vx = ker du ∩ ker dcu, we have Ω(v, w) = 0.

Since Vx is J-invariant, symplectic with a symplectic form Ω, Ω is a (1, 1)-form

defined by a strictly plurisubharmonic function, we have Ω restricted to Vx tamed

and compatible with J . Thus there exists an orthonormal basis with respect to the

metric Ω(−, J−)

{ξ̃1, Jξ̃1, . . . , ξ̃n−1, Jξ̃n−1}

such that Ω(ξ̃i, ξ̃j) = 0 and Ω(ξ̃i, Jξ̃j) = δij . Then {ξ̃1,0i }1≤i≤n−1 span T 1,0Vx. To-

gether with ξ̃1,0n = ξ1,0, it will span T 1,0
x X0. Let η̃i = Jξ̃i and extend to parallel vector

fields ξ and η along C. Then ajk = iδjk at x.

Lemma III.41. There vector fields ξj and Jξk are (pointwise) linearly independent

over R at all of C. (Here Jξk are not parallel)
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Proof. Assume that ξ0 =
∑

biξi =
∑

cjJξj at some point in C, for some nonzero bi

and cj. Then

Ω(ξ0, Jξ0) =
∑

bicjΩ(Jξj, Jξi) = 0.

But Ω is a Kähler form and thus it is a contradiction.

Lemma III.42. Using this choice of ξi and ηj, we have (aij) holomorphic and in-

vertible on all of C.

Proof. Since ξj and Jξk is linearly independent over R on all of C, we have {ξ1,0j }

linearly independent over C on C. Similarly {η1,0j } is linearly independent over C on

C. Thus (aij) carries linearly independent vectors to linearly independent vectors

are therefore it is invertible. (This suggests that S = ∅.) And at each point aij is

well-defined because of the linear independence of ξj’s.

Lemma III.43. (eij) is a symmetric matrix on all of C. Thus (aij) is symmetric

on all of C.

Proof. We have

Ω(ξi, Jξh) = Ω(ξi, ekh(ηk − (<e ajk)ξj)) = Ω(ξi, ekhηk) = ekhΩ(ξi, ηk).

At x′ ∈ X0 such that x′ = ψtφs(x), Ωx′ = etΩx. Thus at x
′, we have

Ω(ξi, Jξh) = ekhΩx′(ξi, ηk) = ekhe
tΩx(ξi, ηk) = ekhe

tδik = eihe
t.

But Ω is Kähler and therefore

Ω(ξi, Jξh) = Ω(ξh, Jξi),

Thus we have eih = ehi and therefore ajk = akj.

Corollary III.44. =m (ajk) is symmetric and positive definite on all of C.
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Proof. Since =m (ajk) = Id at x, and the matrix is invertible on all of C, it is positive

definite on all of C.

Corollary III.45. J can be extended to a complex structure on X̂0.

Proof. The proof is completely the same as Lemma III.22.

Now we claim that

Proposition III.46. The potential function ρ := log(1 + cosh 4πu
s0

) defines a Kähler

form on X0, which extends to a Kähler form on X̂.

Proof. In a neighborhood of V , we have τ is strictly plurisubharmonic, and u =

log τ is plurisubharmonic and it satisfies the Homogeneous Complex Monge-Ampère

equation. Using the strictly plurisubharmonicity of τ , we have

(∂∂̄τ)n = (∂∂̄eu)n

= enu(∂∂̄u+ ∂u ∧ ∂̄u)n

= enu((∂∂̄u)n + n∂u ∧ ∂̄u ∧ (∂∂̄u)n−1)

= nenu∂u ∧ ∂̄u ∧ (∂∂̄u)n−1

6= 0.

This means

nenu∂u ∧ ∂̄u ∧ (∂∂̄u)n−1 6= 0.

Then we have

(∂∂̄u2)n = 2n(u∂∂̄u+ ∂u ∧ ∂̄u)n

= 2n(un(∂∂̄u)n + nun−1∂u ∧ ∂̄u ∧ (∂∂̄u)n−1)

= 2nnun−1∂u ∧ ∂̄u ∧ (∂∂̄u)n−1

6= 0.
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Thus near V , u2 is strictly plurisubharmonic and so is 16π2

s2
0

u2. Thus by Lemma 3.1

from Patrizio-Wong [PW91], we have that ρ is strictly plurisubharmonic near V .

Since X is a Stein manifold, we can extend ρ to a strictly plurisubharmonic function

on all ofX. To do this, first we pick a smooth function ρ1 onX−X0 such that it agrees

with ρ on the boundary {τ = τ0}. The set X −X0 is holomorphically convex, thus

there exists a strictly plurisubharmonic function ρ2 on X −X0 such that it vanishes

at the boundary. Since X −X0 is compact, there exists C1 such that ρ1 + C1ρ2 is

strictly plurisubharmonic on X−X0 such that it agrees on ρ on the boundary. Thus

ρ can be extended to a function which is strictly plurisubharmonic on X except on

{τ = τ0}. Smoothing ρ near the boundary gives a strictly plurisubharmonic function

on X such that it agrees with ρ when τ is large enough. Thus it defines a Kähler

metric on X.

Notice that we have

ρ = log(1 + cosh
4πu

s0
) = log(1 + cosh(− log |ζ|2)),

and from the proof of Proposition III.24,

ω := −i∂∂̄ρ

can be extended to a form on X̂.

To prove the form is positive definite, the method is exactly the same as in the

proof of Proposition III.24:

ω : = −i∂∂̄ log
(

1 + cosh
4πu

s0

)

= −i
(

8πi

s0eu
sinh 4πu

s0

1 + cosh 4πu
s0

Ω +
4π

s0

4π
s0

− sinh 4πu
s0

1 + cosh 4πu
s0

∂u ∧ ∂̄u
)

.

For parallel vector fields ξj and ηj lying in Vy for all y ∈ C, we have

Ω(ξj, ηj) = 1
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at x. Since ψ∗
tΩ = etΩ, and u = u0 + t, we have

ω(ξj, ηj) =
8π

s0eu
sinh 4πu

s0

1 + cosh 4πu
s0

Ω(ξj, ηj)

=
8π

s0τ0

sinh 4πu
s0

1 + cosh 4πu
s0

→ 8π

s0τ0
6= 0

as u → +∞. Similarly we have Ω(ξj, ξk) = Ω(ηj, ηk) = 0 and the same holds for

ξn and ηn, as in the proof of Proposition III.24. Thus ω defines a Kähler form on

X̂.

Similar to Proposition III.25 we can prove that

Lemma III.47. O(V ) is a positive line bundle.

Proof. Similar to the proof of Lemma III.25.

Thus by Kodaira’s embedding theorem, X̂ is projective algebraic.

Notice that we have

1

2π
ω = c1(O(V )) ∈ H2(X,Z).

This in the end shows that X̂ is projective algebraic.

This is one direction of a special case of Burn’s algebraicization conjecture:

Conjecture III.48. Let X be a Stein manifold, τ is a smooth strictly plurisubhar-

monic exhaustion function. Then the followings are equivalent:

(a) There exists a τ0 > 0 such that on X0 = {τ ≥ τ0}, we have u := log τ is

plurisubharmonic and satisfies the Homogeneous Complex Monge-Ampère equa-

tion (∂∂̄u)n = 0.

(b) X is canonically an affine algebraic variety with coordinate ring

(3.28) R = {f ∈ O(X), |f | ≤ Cf (1 + τ)N for some N < +∞}
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We proved that

Proposition III.49. If (a) is satisfied with the conditions that the action given by

the flow of φ is free and periodic, we have (b).

Proof. The only thing we have to prove here is the coordinate ring is given by 3.28.

Any algebraic function on X is given by polynomials. Since X is quasiprojective, it

can be extended to a meromorphic function g on X̂. Since τ = 1
|ζ|2

= 1
|fw|2

, where w

is a holomorphic coordinate near a point on V and f does not vanish at V , c.f. the

proof of III.24. Thus g is locally bounded by a polynomial of τ . But X̂ is compact.

Thus g is bounded by a polynomial of τ .

Conversely, if g is bounded by a polynomial of τ , g is bounded by a polynomial of

w, a holomoprhic coordinate system near a point on V . Thus g is meromorphic and

thus it is a rational function which is holomorphic defined on X. Thus g is algebraic

on X.

In the converse direction, Burns [Bur84] proved the conjecture in the case that

X ⊂ CN ⊂ CPN such that V = X̂ ∩H, where H is a generic hyperplane in CPN (X̂

intersects H transversally).



CHAPTER IV

Lebrun-Mason Twistor Correspondence

In 2002, Lebrun and Mason [LM02] discovered a way to embed a Zoll surface

and its manifold of unoriented geodesics into complex projective manifold in a dif-

ferent way than what we have looked at in the Grauert tube case. Chapter 4.1 will

all be about Lebrun and Mason’s work [LM02] on the struction and chapter 4.2

will be about their work on docility in 2010[LM10]. We also present two small re-

sults (Proposition IV.17 and Proposition IV.20) related to their construction. This

construction will be crucial for the picture in Chapter V. We will be using their

terminologies for subsequent uses.

4.1 The construction

Lebrun and Mason did extend the notion of Zoll metric into Zoll projective struc-

tures. We include their discussion here for the convenience of the readers.

Definition IV.1. Two torsion-free affine connections ∇ and ∇̂ on a manifold M

are said to be projectively equivalent if they have the same geodesics, considered as

unparametrized curves.

Definition IV.2. A Ck projective structure on a smooth manifold is the projective

equivalence class [∇] of some torsion-free Ck affine connection ∇.

48
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Definition IV.3. Let ∇ be a C1 torsion-free affine connection on a smooth surface

M . We will say that the projective equivalence class [∇] of ∇ is a Zoll projective

structure if the image C of any maximal geodesic of ∇ is an embedded circle S1 ⊂M .

Let Z be the projective tangent bundle

PTM = (TM − 0M)/R∗,

where TM denotes the tangent bundle of M and 0M denotes its zero section.

If c : (a, b) →M is any immersed curve, its derivative is a well-defined element on

Z. We call the map t 7→ [dc/dt] ∈ Z the canonical lift of c. Given a Ck Zoll projective

structure [∇] on M , the canonical lifts of its geodesics give us a Ck foliation F of Z

by circles. Let N := Z/S1 denote the leaf space. Notice that N can be realized as

the space of unoriented geodesics.

Theorem IV.4. Let M be a (real) surface with a Zoll projective structure. Then M

is diffeomorphic to RP2 or S2. N is a 2-dimensional real manifold, diffeomorphic to

RP2.

Denote µ : Z →M the canonical projection of the bundle and ν : Z → N be the

quotient map of the foliation to the leaf space.

Theorem IV.5. If M = S2, |π1(Z)| = 4. If M = RP2, |π1(Z)| = 8.

If [∇] is a Zoll projective structure on a compact surface M , we know that N is

diffeomorphic to RP2. Let

`x = ν(µ−1(x))

be the set of geodesics passing through x ∈M . Note that the `x ⊂ N are embedded

circles.
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4.1.1 Case M ≈ RP2

Now assume that M = RP2. Let Z denote the projectivized complexified tangent

bundle

Z := PTCM = (C⊗ TM − 0M)/C∗.

Note that Z is a hypersuface in Z. Our goal is to embed N into a complex surface

N by “blowing down” Z to N via the map ν.

Theorem IV.6. Let [∇] be a Zoll projective structure which is represented by a C3

connection ∇ on M ≈ RP2. Then the manifold of unoriented geodesics N can be

embbeded into a complex surface N , via the blowing down map Φ as illustrated below,

Z � �
//

ν
��

Z
Φ
��

N � �
// N

such that Φ maps Z − Z diffeomorphically to N − N . The map Φ is C1 and N is

biholomorphic to CP2.

We denote

Σx = Φ(PTxCM).

Then Σx is an embedded genus 0 complex curve in N . Note that Σx ∩N = `x and

we can think of Σx be the “complexification” of the embedded circles `x in N .

Theorem IV.7. The complex conjugation in the fibers of Z = PTCM induces an

antiholomorphic involution of N with fixed point set N . Thus N is maximally totally

real surface in N . Consequently N can be identified with the standard RP2 embedded

into CP2.

Theorem IV.8. The curves Σx ⊂ N are projective lines.
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Using the above theorem, we have the Blaschke conjecture on Zoll manifold on

RP2:

Theorem IV.9. Let (M, [∇]) be a compact 2-manifold diffeomorphic to RP2 with

a Zoll projective structure. If ∇ is of differentiability class Ck,α, for some k ≥ 3

and some α ∈ (0, 1), then there is a Ck+2,α diffeomorphism Φ : M → RP2 such

that [∇] = [Φ∗∇0], where ∇0 is the Levi-Civita connection of the standard, constant

curvature Riemannian metric h on RP2.

If we start with a Zoll metric g on M = RP2 instead of just a Zoll projective

structure, the complex surface N comes equipped with a complex curve Q ⊂ N .

Consider

C = {[v] ∈ PTCM |gC(v, v) = 0},

where gC denotes the extension of g from TM to TCM as a complex bilinear form.

Let

Q = Φ(C).

Then we have C is diffeomorphic to S2 and it intersects each Σx at 2 points. Using

this curve, we have the following

Theorem IV.10. Let (M, g) be a Ck,α Riemannian 2-manifold whose geodesics are

all embedded circles of length π, where k ≥ 4 and α ∈ (0, 1). If M is not simply

connected, there is a Ck+1,α diffeomorphism Φ :M → RP2 such that g = Φ∗h, where

h is the standard curvature 1 Riemannian metric on RP2.

This in turn re-confirms[Gre63] that the only Zoll metric on RP2 is the standard

one.
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4.1.2 Case M ≈ S2

The construction when M ≈ S2 is similar to the construction in RP2 except that

Z − Z is disconnected.

LetM be a real surface diffeomorphic to S2 with a Zoll projective structure. Then

Z − Z consists of two connected components U+ and U−. Consider the compact 4-

manifold-with-boundary

Z+ := U+ ∪ Z,

with ∂Z+ = Z. Then we have

Theorem IV.11. Let [∇] be a Zoll projective structure which is represented by a

C3 connection ∇ on M ≈ S2. Then the manifold of unoriented geodesics N can be

embbeded into a complex surface (with no boundary) N , via the blowing down map

Φ as illustrated below,

Z � �
//

ν
��

Z+

Φ
��

N � �
// N

such that Φ maps U+ diffeomorphically to N − N . The map Φ is C1 and N is

biholomorphic to CP2. Moreover if ∇ is of class C2k+6, then Φ is Ck.

Definition IV.12. A differentiable embedding j : RP2 ↪→ CP2 is weaakly unknotted

if there exists a diffeomorphism ϕ : CP2 → CP2 such that j = ϕ◦j0, where j0 : RP2 ↪→

CP2 is the standard embedding [x : y : z] 7→ [x̄ : ȳ : z̄].

Theorem IV.13. Let [∇] be a C3 Zoll projective structure on an oriented surface

M ≈ S2. Then, up to a projective linear transformation, the projective structure [∇]

uniquely determines a differentiable, totally real weakly unknotted embedding of the

space of geodesics N ≈ RP2 into CP2. If [∇] is C∞, so is the embedding. Moreover,
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the image of each of the circles `x ⊂ N , x ∈M , bounds a holomorphic embedding of

the disk D2 ↪→ CP2, and the interiors of these disks foliate the complement CP2−N .

Note that the disks are images of the fibers of Z+ →M under Φ.

An open question remains: How to classify all Zoll surfaces using this picture?

One would suspect that given any weakly unknotted, totally real surfaces N ≈ RP2

in CP2, it corresponds to the manifold of unoriented geodesics from a Zoll surfaces

M ≈ S2. In order to let this happen, one must first construct a family of disks in

CP2, such that their boundaries are lying on N such that the interiors of the disks

foliate the complement CP2−N . The boundaries of the disks were realized as `x for

x ∈ M if we started with a Zoll surface. This means that points in M correspond

to unparametrized disks in the foliation. This motivates one to look at the “moduli

space” of these disks and we can re-construct M as the moduli space of the disks.

To trace each geodesic on M , recall that a point on N corresponds to a geodesic on

M . Tracing out the set

Cy = {D ∈M, y ∈ D ∩N}

gives a family of curves in M which can be realized as geodesics on M .

Indeed this is true locally around the standard Zoll sphere:

Theorem IV.14. If N ⊂ CP2 is the image of any embedding RP2 ↪→ CP2 which is

sufficiently closed to the standard one in the C2k+5 topology, then

1. N contains a unique family of embedded oriented circles `x ⊂ N , x ∈ S2, each

of which bounds an embedded holomorphic disk D2 ⊂ CP2. These disks are all

embedded and their interiors foliate CP2 −N .

2. There is a unique Ck Zoll projective structure [∇] on M ≈ S2 for which for any

y ∈ N , Cy is a geodesic.
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If we start with a Riemannian metric g, then N ⊂ CP2 is “Lagrangian” with

respect to the sign-ambiguous symplectic form Ω = =mΥ on CP2 −Q, where

Υ = ±z0dz1 ∧ dz2 + z1dz2 ∧ dz0 + z2dz0 ∧ dz1
√

(z20 + z21 + z22)
3

,

and

Q = {z20 + z21 + z22 = 0}

is the non-singualr conic in CP2. It turns out that it is also true in the reverse

direction.

Theorem IV.15. Let N ⊂ CP2 be a totally real embedding of RP2 which arises from

a Ck,α projective structure [∇] on M ≈ S2, k ≥ 3, α ∈ (0, 1). Then there is a Ck+1,α

Riemannian metric g on M whose Levi-Civita connection ∇ belongs to the projective

class [∇] iff, after a PSL(3,C) transformation of CP2, the surface N avoids the conic

Q, and is “Lagrangian” with respect to ±Ω on CP2−Q. Such a Lagrangian embedding

completely determines the metric g up to an overall multiplicative constant.

The theorem was strengthened by F. Rochon [Roc11]:

Theorem IV.16. Let N ⊂ CP2 be a totally real embedding. If it exists a family of

holomorphic disks that give rise to a Zoll surface, the family of disks is unique.

To summarize, a smooth Zoll metric g on S2 gives a unique embedding N ⊂ CP2

up to PSL(3,C) transformation of CP2 avoiding Q, which given any N ⊂ CP2 close

to the round one (after a PSL(3,C) transformation), it uniquely determines g on

S2.

Using Lebrun and Mason model in [LM02], one obtains the following result.

Proposition IV.17. Let (M, g) be a Riemannian manifold diffeomorphic to S2 such

that all of its geodesics are simple closed curve and of equal length, i.e. Zoll. As-

sume that for every point x ∈ M , there exists another point x′ ∈ M such that all
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the geodesics passes through x coincide with all the geodesics passes through x′ as

unparametrized curve. Then M is isometric to the round sphere, modulo dilation.

Proof. To prove this theorem, we first show that the map x 7→ x′ is well-defined and

differentiable. Using the notation of the work by Lebrun and Mason [LM02], let N

be the manifold of unoriented geodesics. Then for x ∈M , let `x be all the geodesics

passing through x. Then `x is an embedded circle in N . By their construction, by

embedding N into CP2, each embedded oriented circle bound a unique holomorphic

disk which the interior of these disks foliate CP2 − N . The condition states that

for any x ∈ M , there exists an x′ ∈ M such that `x = `x′ . Since there are only 2

orientations on a curve, this shows that if there is at most 2 points such that there

are at most 2 holomorphic disks that bound the embedded circle. This means that

the map x 7→ x′ is well-defined and it is an involution.

Let f be this map x 7→ x′. Using theorem 2.15 of [LM02], we have a smooth

diffeomorphism ψ : STN → PTM . Observe that the map σ : STN → STN that

flip the direction of the vector in STN is smooth. Let π be the projection map from

PTM to M . Then we have f ◦π ◦ψ = π ◦ψ ◦σ. Since PTM →M is a smooth circle

bundle and σ is a smooth map, we conclude that f is a smooth map.

Now by Chapter 2 of [LM02], let ∇ be the Levi-Civita connection associated

with g. Then f ∗∇ is also a connection such that all the geodesics are the same

as ∇ as unparametrized curve. Thus they belong to the same projective class of

connection. Then the connection ∇ + f ∗∇ also belong to the same class and it is

f -invariant. This mean the connection descends to a connection on S2/f ∼= RP2

such that all the geodesics are simple closed curve. By Chapter 3 of [LM02], the

connection corresponds to the round metric on RP2 and thus S2 is round.

This is a very similar to the results of Blaschke conjecture, which asserts that the
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only Wiedersehen spheres are the round ones. By Wiedersehen manifolds, it means

the cut locus of every point x consists of a single point x′.

4.2 Docility and consequences

Several years after [LM02], Lebrun and Mason published an explicit open condi-

tion on N that gives rise to the Zoll metric [LM10].

Definition IV.18. A compact connected smoothly embedded two-manifold N ⊂

CP2 will be called a docile surface if

• N is a totally real submanifold of CP2;

• N is disjoint from the conic Q; and

• N is transverse to each tangent projective line of the conic Q.

The standard RP2 is docile and any docile surface N is diffeomorphic to RP2.

Moreover, any docile surface is connected in the sense that any docile surface is

isotopic to the standard RP2 ⊂ CP2 through a family of other docile surfaces Nt

such that N1 = N and N0 is the standard RP2. Notice that the docility condition is

not affected by any PSL(3,C) transformation of CP2.

The docility and Lagrangian conditions on N are sufficient to gaurantee that it

arises from a Zoll metric by the Lebrun-Mason construction.

Theorem IV.19. Let N ⊂ CP2 be any docile surface and let M denote the moduli

space of all holomorphic disks in CP2 representing the generator of H2(CP
2, N) ∼= Z,

with boundaries in N , modulo reparametrization. Then M is diffeomorphic to S2.

The interiors of these disks foliate CP2 − N . If N is “Lagrangian” with respect to

±Ω then there is a unique Zoll metric g whose closed geodesics all have length 2π.
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Notice that docility is not a necessary condition. In the appendix of [LM10], one

can find an N which is not docile which arises from a Zoll metric.

One can ask whether we can define a Monge-Ampère solution such that the Monge-

Ampère foliation coincides with the Lebrun-Mason foliation for any docile N . By

[LM02], there is a unique holomorphic disk D → CP2 passing through x such that

the interior of these disks foliates CP2−N . Let u = − log |ζ|, where ζ is a coordinate

of the disk, such that ζ = 0 corresponds to the point where the disk meets M . Here

ζ is not well-defined, but |ζ| is. Thus u is well-defined. We want to investigate if u is

the function of Grauert tube picture. But this could only happen in the round case

because of the following:

Proposition IV.20. Let N be diffeomorphic to RP2 such that N ⊂ CP2 is disjoint

from a nonsingular quadric Q1 in CP2. Assume that there is a function u : CP2 −

M → R≥0 such that

1. u−1(0) = N and u(z) → +∞ as z →M ;

2. u is smooth and p.s.h. and satisfies the HCMA equation on CP2 − {M ∪N};

3. u2 is smooth and s.p.s.h. on CP2 −M ; and

4. each leaf of the Monge-Ampère foliation on CP2−{M ∪N}, given by the kernel

of ddcu, extends across N and intersects N in a simple closed curve.

Then N must be the standard RP2 ⊂ CP2.

Proof. By [PW91] Theorem 5.1, The Monge-Ampère foliation is totally geodesic with

the u2-metric, can be extended across N and so that the intersection of the foliations

are geodesics on N . Thus N has the property that all the geodesics are closed in the

Kähler metric defined by i∂∂̄u2 (we call this metric the “u2-metric”). By the Blaschke

conjecture or [LM02], N is isometric to the round RP2 up to a scale constant. By
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[PW91] Theorem 5.2, there exists biholomorphism F : CP2 −M → CP2 −M such

that u ◦ F = u0 and F sends the standard RP2 to N . Here u0 is the standard

Monge-Ampère solution associated to the round RP2 ⊂ CP2 −Q1.

Since we have F a biholomorphism from CP2−Q1 to itself, and u0 is the pullback

of u, the Monge-Ampère foliation of u0 is the pullback of the Monge-Ampère foliation

of u. Let D∗ (resp. D∗
0) be a leaf of the Monge-Ampére foliation of u (resp. u0).

Here D∗ and D∗
0 are punctured disks. Thus we have F (D∗

0) = D∗. Using the

biholomorphism F , we have

u0|D∗

0
= u|D∗ .

Therefore, F restricted to each punctured disk can be extended to a biholomorphism

F̃ of the whole disk and F̃ |D∗

0
(0) = 0 ∈ D∗. Thus F̃ is a map from CP2 to itself.

Using the Cauchy integral formula, we see that F̃ is differentiable near Q1 and thus

holomorphic. Thus F̃ is holomorphic on all of CP2. Thus F̃ is a biholomorphism

from CP2 to itself. Thus F̃ is projective linear and F̃ sends RP2 to N linearly. Thus

N is the standard RP2 modulo linear transformation.

It is curious that both the lagrangian condition and the docility condition come

from the double branched cover of CP2, branching at Q:

• Υ was originally defined on the double cover of CP2−Q (notice that singularity

of Υ at Q). The form Ω is sign-ambigious because Υ does not descend to

CP2 −Q.

• Although the docility of N can be explicitly defined on CP2, the condition is

much simpler in the branched cover of CP2. Consider the Segre embedding

Π̂ : CP1 × CP1 → CP3

([u0 : u1], [v0 : v1]) 7→ [i(u0v0 + u1v1) : u0v0 − u1v1 : u0v1 + u1v0 : i(u0v1 − u1v0)]
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Let % be the projection map

% : CP3 → CP2

[z0 : z1 : z2 : z3] 7→ [z0 : z1 : z2]

and Π = % ◦ Π̂. Then Π is a two-to-one branched cover, ramified over the conic

Q. Let Ñ = Π−1(N). Then N is docile if and only if Ñ is given by the graph

of a fixed-point-free orientation reversing diffeomorphism. Indeed, let a be the

antipodal map of CP1

a : CP1 → CP1(4.1)

[z1 : z2] 7→ [−z̄2 : z̄1].(4.2)

Then Ñ can be thought of being the graph of ϕ = ψ◦a◦ψ−1 for some orientation-

preserving diffeomorphism ψ of CP1. Conversely, given any orientation-preserving

diffeomorphism ψ, the graph of ϕ projects via Π to a docile surface N . Hence

the docility condition can be given by aa orientation-preserving diffeomorphism

ψ of CP1 to itself on the branched cover. Note that if the diffeomorphism is the

identity, then the resulting docile surface is the standard RP2.

The discussion that both conditions arise from the branched cover, which is the

quadric Q2 motivates us to work on the picture on Q2. We will discuss the work on

Q2 in the next Chapter.



CHAPTER V

Holomorphic Disks

In this section we are going to simulate the Lebrun-Mason construction on CP1 × CP1,

the branched cover of CP2. Although it may not have any connections to Zoll sur-

faces, it is interesting in its own right in terms of global results on the existence

of holomorphic disks. Via the Segre embedding, CP1 × CP1 can be realized as Q2.

Using the map Π as we have seen in the previous chapter, Π−1(Q) can be realized as

Q1 = Q2 ∩H, where H is a hyperplane in CP3. If N is the standard RP2 embedded

in CP2, then Π−1(N) is the standard S2 in Q2 (in the picture of the Grauert tube

of the CROSS, c.f. Section 3.2, Table 3.17). Moreover, the foliation by holomorphic

disks in CP2−RP2 will lift to Q2−S2. In the case when N ≈ RP2, the holomorphic

disks extend across RP2 and join with the holomorphic disks corresponding to the

antipodal point of S2.

We proved in Chapter III that any Zoll surface diffeomorphic to S2 with an infinite

tube is the round one. This means that the foliation by rational curves in Q2 is rigid

in some sense, i.e., if we perturb the S2 by a bit, we should not expect that there is a

foliation ofQ2−S2 by holomorphic disks with the circles of intersection corresponding

to the geodesics of a Zoll metric on S2. But looking at the Lebrun-Mason picture,

one would suspect that we can find holomorphic disks, instead of rational curves,

60
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whose boundaries lie on S2 such that the disks foliate Q2 − S2.

For convenience, we will regard Q2 as CP1 × CP1. The Q is represented by the

diagonal ∆ := {u1v0 = v1u0} ⊂ CP1 × CP1.

Following Lebrun-Mason definition, we have in the CP1 × CP1 picture,

Definition V.1. A compact, connected, smoothly embedded two manifold N ⊂

CP1 × CP1 is docile if N is given by the graph of ψ ◦ a ◦ ψ−1 : CP1 → CP1 for some

orientation-preserving ψ diffeomorphism of CP1 onto itself. Here a is the antipodal

map 4.1 of CP1 described in the previous chapter.

Clearly if N is docile, then N is diffeomorphic to S2.

5.1 Existence of holomorphic disks

Consider the round S2 picture:

S2 = {x21 + x22 + x23 = 1} ⊂ R3.

We can complexifiy R3 in C3 and give an embedding of

S2 ⊂ {z21 + z22 + z23 = 1} = Q2
aff ⊂ {Z2

1 + Z2
2 + Z2

3 = Z2
0} = Q2 ⊂ CP3,

where zi = Zi/Z0. The geodesics on S2 are given by the intersections of real planes

in R3 passing through the origin:

a1x1 + a2x2 + a3x3 = 0,

where the ai’s are, obviously, real.

Notice that any plane

a1x1 + a2x2 + a3x3 = a0,

which intersects the real sphere transversely will have its intersection diffeomorphic

to a circle. Complexifying and taking the (Zariski) closure in Q2, these planes are
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given by the homoegeneous equations

a1Z1 + a2Z2 + a3Z3 = a0Z0,

which intersect S2 in a circle C. Thus it divides the rational curve into 2 holomorphic

disks, in which it intersects the divisor {z0 = 0} at infinity at the same point when

a0 varies. Any point q at Q1, the divisor of infinity will correspond to a point

[a1 : a2 : a3] in CP2∗ uniquely, as the point is given by the element representing the

line that passes through both q and q̄. (Here q 6= q̄, thus [a1 : a2 : a3] is well-defined

and it belongs to RP2∗) Thus this shows that for any point q ∈ Q1, there is a 1-real-

parameter family of holomorphic disks that passes through q and with its boundary

lying on S2.

One also notices that if a0 changes such that the real plane intersects the real

sphere at 1 point (non-transversally), after complexification the rational curve inter-

sects the real sphere at 1 point only. In this case there will be no holomorphic disk

with boundaries in S2. Indeed, this is an example of “bubbling” in the boundary

as the boundary shrinks to a point when a0 approaches the value at which the 2

surfaces do not intersect in a circle on S2.

Now fix q ∈ ∆ and let f(D) be a holomorphic disk with boundary on S2. Notice

that S2 is the fixed point of the conjugation map in Q2 ⊂ CP3. Then C := f(D) ∪

f(D) can be realized as a map from Ĉ to Q2 such that it is holomorphic in Ĉ − R.

Thus by reflection principle, it is holomorphic in all of Ĉ. The construction gives C

a rational curve in Q2 which intersects ∆ at 2 distinct points. Thus C is a projective

line on CP3 by Bézout’s theorem. Since C is invariant under conjugation, C is the

complexification of a real line, and therefore it is in the form of

a1Z1 + a2Z2 + a3Z3 = a0Z0,
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with all ai ∈ R.

Since it intersectsM in a circle, we conclude that we have its (Euclidean) distance

from the origin less than 1, i.e. any holomorphic disk in Q2 with boundary on S2 is

given by

{a1Z1 + a2Z2 + a3Z3 = a0Z0} ∩ Q2,

with the point of intersection with Q1 specified. Consider the set

M :=











([a0 : a1 : a2 : a3], [q1 : q2 : q3]) ∈ RP3∗ × CP2 |

a20 < a21 + a22 + a23; q
2
1 + q22 + q23 = 0; and a1q1 + a2q2 + a3q3 = 0











.

Here we can think of M as the “moduli space” of holomorphic disks. The map from

Q1 × I → M given by

((q1, q2, q3), t) 7→ [t
√

a21 + a22 + a23 : a1 : a2 : a3],

where

[a1 : a2 : a3] = [=mq2q̄3 : =mq3q̄1 : =mq1q̄2]

is an diffeomorphism and the space of holomorphic disks (modulo reparametrizations)

is isomorphic to Q1 × I.

To investigate this phenomenon when the round S2 is replaced by a docile N ⊂

Q2 = CP1 × CP1, one needs some basic facts similar to those in [LM10].

Following Lemma 1 in [LM10], as the space of orientation preserving diffeomor-

phisms from CP1 to itself is connected, we can smoothly deform the map ψ to the

identity and thus it gives a family of docile surfaces. As a result, any docile surface

N ⊂ CP1×CP1 is isotopic to the standard S2 ⊂ Q2 through a family of other docile

surfaces.

Following Lemma 2 in [LM10], we have that the homomorphismH2(CP
1×CP1, N) →

Z given by homological intersection with [∆] ∈ H2(CP
1×CP1−N) is an isomorphism.
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Following Lemma 3 in [LM10], there is a Kähler metric h such that N is La-

grangian with respect to the Kähler form ω of h. The metric can be chosen such

that ω represents 2πc1(Q2) in the deRham cohomology. The metric can be con-

structed to vary smoothly with N , as N varies among docile surfaces.

Following with the definitions on embedded holomorphic disks in [LM10], one also

defines

Definition V.2. Let D denote the closed unit disk in C, and let Z be a complex

manifold. A continuous map f : D → Z is called a parametrized holomorphic disk

in Z if f is holomorphic in the open unit disk. If f(∂D) ⊂ W for a specified subset

W ⊂ Z, we will say that f is a parametrized holomorphic disk in (Z,W ).

By the proof of Proposition 1 in [LM10], given any docile surface N ⊂ Q2 and f a

parametrized holmorphic disk in (Q2, N) whose relative homology class [f ] generates

H2(Q2, N) ∼= Z, then f is a smooth embedding, f(D) meets N only along f(∂D),

and f(D) meets Q transversely in a single point.

Let

MN =











f : (D, ∂D) → (Q2, N)
f parametrized holomorphic disk,

[f ] generates H2(Q2, N)











/ ∼,

where

f ∼ g ⇐⇒ f = g ◦ h for some automorphism h of D.

We will drop the superscript N if it is clear from the context that N is fixed. Here

MN is the moduli space of holomorphic disks where the boundaries lie on N .

Let q ∈ ∆ ⊂ Q2. Define MN
q ⊂ M to be the space of disks that pass through q.

In this section we want to prove that

Proposition V.3. Let N ⊂ Q2 be a docile surface and q ∈ ∆ ⊂ Q2. Then MN
q is

non-empty and dimMN
q = 1.
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We first describe the Maslov index (c.f. [LM10]): Let L → D be a complex

line bundle and ` → ∂D is a real line sub-bundle of L|∂D, then the Maslov index

µ(L, `) is obtained by trivializing L, viewing ` as a map ∂D → RP1 and µ(L, `)

is defined as the winding number of this map. Note that µ(L, `) is independent of

the trivialization and amount to the first Chern class of the double of (L, `). More

generally, if V → D is a rank-r complex vector bundle, and if v → S1 is a rank-r

real sub-bundle of V |∂D, the Maslov index µ(V, v) is defined to be the Maslov index

of the associated line-bundle pair (
∧r V,

∧r v).

If Z is a complex manifold, W ⊂ Z is a maximal totally real submanifold, and

f is a parameterized holomorphic disk in (Z,W ), then the normal Maslov index

of f(D) is defined to be µ(N, n), where N is the normal bundle of the disk and

n = TW/T (∂f(D)) is the relative normal bundle of its boundary.

Digression: Let X be a complex manifold and M be a maximal totally real sub-

manifold. Assume that C is a rational curve in X such that it intersects M in an

embedded circle. This would be the case for the compactification of the Grauert

tubes of the CROSSes, where the intersection with M is a geodesic. In these cases,

the rational curves are complexified compactified geodesics and each of these curves

consists of two holomorphic disks with their boundaries conincide with the intersec-

toin circle with M . Since C is a rational curve, the normal bundle N of C can be

written as

O(k1)⊕ . . .O(kn−1),

by Grothendieck’s splitting principle. It is clear that N is the double of the normal

bundle of (N, n) of each holomorphic disk. Thus µ(N, n) is the first Chern class of
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N of C and thus we have

µ(N, n) =
n−1
∑

i=1

ki.

This is the end of the digression.

Now let N ⊂ Q2 be a docile surface and f be a parametrized holomorphic disk

in (Q2, N) whose relative homology class represents the generator of H2(Q2, N).

Following the proof in Proposition 2 in [LM10], f(D) has normal Maslov index 2.

This means that the double of the normal bundle of f(D), in the sense of [LeB06], is

the O(2) line bundle of the double CP1 = f(D)∪f(D), where f(D) is f(D) equipped

with the opposite complex structure. Since H1(CP1,O(2)) = 0, we have the Moduli

space of nearby holomorphic disks in (Q2, N) is smooth with an isomorphism

Tf(D)M ∼= H0
R(CP

1,O(2)),

where the right-hand side denotes the real-linear subspace of H0(CP1,O(2)) consist-

ing of sections which are real along RP1 ⊂ CP1.

An element ofH0
R(CP

1,O(2)) can be written as αZ2
0+βZ0Z1+γZ

2
1 , where [Z0 : Z1]

are homogeneous coordinates of CP1. Here α, β, γ are real constants. By transform-

ing the upper half plane into the unit disk, the element can be written as

(α− γ − iβ)ζ2 + 2(α + γ)ζ + (α− γ + iβ).

Let a = α − γ − iβ ∈ C and b = 2(α + γ) ∈ R, we can represent elements of

H0
R(CP

1,O(2)), after a trivialization as

g(ζ) = aζ2 + bζ + ā,

where a ∈ C and b ∈ R.

Let f be a parametrized holomorphic disk in M such that f(0) = q ∈ ∆. Then

by the above trivialization, dimMq = 1, because it corresponds to a = 0. So it
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suffices to prove the existence of holomorphic disks passing through q. This also

suggests that for f(D) ∈ Mq, we can represent elements of Tf(D)Mq as g(ζ) = bζ

after the same trivialization. This in turn shows that for all disks close to f(D),

their boundaries won’t intersect each other. Since M ≈ S2, f(∂D) divides M into

two disks. This in turn shows that Mq cannot contain any loop.

Now assume that fsj ∈ Mq and this sequence of holomorphic disks converge to

a possibly singular holomorphic curve X in the same relative homology class. By

Gromov’s compactness theorem, X is a union of holomorphic CP1’s and at most one

holomorphic disk in (Q2, Nτ ). With respect to the Kähler form described above, all

of these disks fsj(D) has an area of 4π. Thus we know that X has total area of 4π,

by the Gromov’s compactness theorem. If X contains a copy of CP1, then the area

of the CP1 is at least 4π, which is given by the “coordinate lines”. In the picture of

(z, w) ∈ CP1 × CP1, the coordinate lines coorespond to {z = const} (“right line”)

or {w = const} (“left line”). Thus, X either only contains a coordinate line, or

X only contains a holomorphic disk with area 4π. Any coordinate lines intersect

M at 1 point only, which means if X is a coordinate line, fsj(∂D) are circles on M

converging to a point onM . If ftj(D) converges to a holomorphic disk, then the limit

lim
sj→s

fsj ∈ Mq. This shows that for f ∈ Mq, the connected component containing f

in Mq is an open interval, say fs, s ∈ (−1, 1), while lim
s→−1

fs and lim
s→1

fs are coordinate

lines. Note that these two coordinate lines have to pass through q. But there are

only 2 coordinate lines passing through a point in Q2 = CP1 ×CP1. And lim
s→1

fs and

lim
s→−1

fs definitely are different coordinate lines because they intersect M at different

points. This shows that, without loss of generality, lim
s→1

fs and lim
s→−1

fs correspond to

the left line and the right line, respectively.

Similar to [LM10], we apply the continuity method. Let Nt be a smooth family
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of docile surfaces, t ∈ [0, 1] such that N1 = N and N0 denotes the standard round

S2 ⊂ Q2. It is clear from the discussion above that the theorem holds for the

standard round S2. Let E ⊂ [0, 1] be the set of t for which such a disk exists. Thus

0 ∈ E, so E is non-empty.

Lemma V.4. E is open.

Proof. By Theorem 4 of [LeB06], we have that a small deformation of Nt contains

an h0(CP1,O(2))-dimensional family of holomorphic disks. Thus if τ ∈ E, and for

values of t in a small interval about τ , there is a family of holomorphic disks with

boundary on Nt.

Lemma V.5. E is closed.

Proof. Let tj be a sequence of values in [0, 1] for which there exists a corresponding

sequence of holomorphic disk ftj ∈ MNtj . Suppose tj → τ ∈ [0, 1]. we want to

show that it converges to a holomorphic disk in (Q2, Nτ ). Notice that by the proof

in [LM10], and the existence of the Kähler form ωt described earlier above, we can

think of the sequence of disks ftj(D) in (Q2, S2) which are holomorphic with respect

to some fixed almost-complex structure. Again, since these Kähler forms correspond

to the same holomogy class, we have each disk here would have an area of 4π.

By the above discussion, this sequence of holomorphic disks either converges to a

parametrized holomorphic disk in (Q2, Nτ ), or a coordinate line.

Let q1 (resp. q2) be a point onM such that it corresponds to the intersection point

of the left line (resp. right line) passing through q ∈ ∆. For any t ∈ E, let ft,s be the

family of disks in the connected component of MNt
q containing ft with ft,0 = ft. We

know that ft,s converges to the left line (resp. right line) passing through q as s→ 1

(resp. −1). Then we have ft,s(∂D) → q1 as s → 1 and ft,s(∂D) → q2 as s → −1.
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Pick small open sets U1 (resp. (U2) of M containing q1 (resp. q2). We can pick Ui

such that for each tj, there exists an sj such that ftj ,sj(∂D) ⊂M − U1 − U2.

Now assume that τ /∈ E. This means that for every sequence ftj ,sj(D) of holomor-

phic disks, the limit is a coordinate line, in which the image of the boundary converges

to q1 or q2. This is impossible since we assume that ftj ,sj(∂D) ⊂ M − U1 − U2 and

thus it cannot converge to q1 or q2. This is a contradiction and thus τ ∈ E.

Thus E is both open and closed in [0, 1]. As E is non-empty, E = [0, 1]. This

shows that there exists a parametrized holomorphic disk passes through q and with

boundary in N , and because of the existence, we know dimMN
q = 1. Thus we have

proved the existence of holomorphic disks for a general docile N .

5.2 Moduli space of holomorphic disks and case of higher dimensions

The above proof actually shows more:

Proposition V.6. Let N is a docile surface. Then M = MN is diffeomorphic to

S2 × I. In particular, Mq is connected and is diffeomorphic to an interval.

Proof. The only thing we have to prove here is that Mq may contain more than one

connected component. To prove this, we apply the continuity method backwards,

similar to the proof in Proposition 1 in [LM10]. Since E is open and we know that

there is a three-dimensional family of holomorphic disks near any fixed f(D) when

we perturb N , the topology of MN
q won’t change. This means that by the continuity

argument, the topology of MN
q is the same as MS2

q ≈ I. This shows that MN
q is

also connected and thus M is diffeomorphic to S2 × I.

Notice here the first factor S2 is represented by the points in ∆, and dim I =

dimMq.
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If we look at the round Sn and its compactified Grauert tube Qn, if q ∈ Qn, one

could see that Mq is an (n− 1)-dimensional family of 2-planes that passes through

q. Indeed Mq can be identified as an open set in the space of real projective lines

in CPn+1 containing q. Since q ∈ Qn−1, which is not a real point, q 6= q̄. The real

projective lines have to contain both q and q̄. Thus it will satisfy two equations and

thus it is of dimension n− 1.

To be specific, C will be given as the intersection of n − 1 real projective lines

with Sn. The lines can be written as


























a11Z1 + . . . + a1sZs = b1Z0

... +
. . . +

... =
...

ar1Z1 + . . . + arsZs = brZ0

,

or














a11 . . . a1s

...
. . .

...

ar1 . . . ars





























z1

...

zs















=















b1

...

br















.

Here r = n− 1 and s = n+ 1. Let

A =















a11 . . . a1s

...
. . .

...

ar1 . . . ars















; z =















z1

...

zs















; and b =















b1

...

br















.

The equation becomes

Az = b.

We want to minimize z · z subject to the constraints Az = b. Using the method of

Lagrange multipliers, we have










2z = ATλ

Az = b

.
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Let B = AAT . Since A has maximal rank, B = AAT has maximal rank and thus

B−1 exists. Then we have

z = ATB−1b

as the closest point of the line to the origin. We want the distance to be less than 1

so that it intersects Sn in a circle. This means

zTz < 1,

or

bTB−1b < 1.

Here B is a symmetric matrix with maximal rank. Therefore the set of b satisfying

the above equation is an (n−1)-ball. To conclude, we show that Mq is diffeomorphic

to the (n− 1)-ball.

By looking at the Grauert tube picture of the CROSSes (other than OP2), we

have the following observations.

Let (M, g) be a CROSS (other than OP2). Let C be a compactified complexified

geodesic. Recall the normal Maslov index is defined to be the first chern class of the

Maslov index of the normal bundle NC|X of C in X with respect toM . If the normal

bundle is ⊕jO(nj), then µ =
∑

j nj’s. Let I be the index of a geodesic of M . Then

as computed in [Bes78], we have

1. M = RPn, I = 0.

2. M = Sn, I = n− 1.

3. M = CPn, I = 1.

4. M = HPn, I = 3.

We observe that
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Proposition V.7. (Index formula) Let (M, g) be a CROSS of real dimension d other

than the Cayley projective plane. Using the above notation, we have

µ = I + d− 1

Proof. 1. M = RPn.

Since C intersects Qn−1 at two points, it follows that C has degree 1 and thus

NC|X = O(1)⊕(n−1). Thus µ = n− 1 and the formula holds.

2. M = Sn.

C intersects Qn−1 at two points. In CPn+1, Qn−1 = Qn ∩ H, where H is a

hyperplane in CPn+1. This shows that C has degree 2 in CPn+1. By the relation

between degrees and irreducible subvariety in projective space, we know that C

must lie inside a linear CP2. So we get

NC|CPn+1 = NC|CP2 ⊕NCP2|CPn+1 |C

= OC(4)⊕OCP2(1)⊕(n−1)|C

= OC(4)⊕OC(2)
⊕(n−1).

Since NQn|CPn+1 |C = OCPn+1(2)|C = OC(4) and

NC|Qn ⊕NQn|CPn+1 |C = NC|CPn+1 ,

we concluded that NC|Qn = OC(2)
⊕(n−1) and thus µ = 2(n− 1) and the formula

holds.

3. M = CPn.

Since C intersects the divisor at infinity V = X − TM at two points, in which

V has bidegree (1, 1), and the fact that C is irreducible, we can conclude that C

is of bidegree (1, 1) in CPn×CPn. Thus C must lie inside a CP1 ×CP1, each of
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the factor must be linearly embedded in CPn × CPn. Then the normal bundle

NC|CPn×CPn = NC|CP1×CP1 ⊕NCP1×CP1|CPn×CPn |C

= NC|CP1×CP1 ⊕ (OCP1(1)⊕OCP1(1))|C

= OC(2)⊕OC(1)
⊕2(n−1).

The relation NC|CP1×CP1 is from the case S2 above the other one is from the

fact that C has bidegree (1, 1). By this we know µ = 2 + 2(n − 1) = 2n, since

dimRCP
n = 2n, the formula holds.

4. M = HPn Without loss of generality, we assume that C lies in Gr(2, 4) ↪→

Gr(2, 2n+2). To calculate the normal bundle of C in Gr(2, 2n+2), we use that

NC|Gr(2n+2) = NC|Gr(2,4) ⊕NGr(2,4)|Gr(2,2n+2)|C = N0 ⊕N |C .

The case for n = 1 corresponds to the S4 case above and thus N0 = OC(2)
⊕3.

To find N |C , we first note that there is the sequence

0 // S // Gr(2, 2n+ 2)× C2n+2 // Q2n+2
// 0

0 // S // Gr(2, 4)× C4
?�

OO

// Q4
//

?�

OO

0

Here S is the tautological vector bundle of the Grassmannian. Notice that

Q2n+2|Gr(2,4) = (Gr(2, 2n+ 2)× C2n+2/S)|Gr(2,4)

= (Gr(2, 2n+ 2)× (C4 ⊕ C2n−2)/S)|Gr(2,4)

= Q4 ⊕ (Gr(2, 2n+ 2)× C2n−2)|Gr(2,4)

= Q4 ⊕Gr(2, 4)× C2n−2.
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Observe that the tangent bundle

TGr(2, 2n+ 2)|Gr(2,4) = Hom(S,Q2n+2)|Gr(2,4)

= Hom(S,Q2n+2|Gr(2,4))

= Hom(S,Q4 ⊕Gr(2, 4)× C2n−2)

= Hom(S,Q4)⊕ (S∗)⊕(2n−2)

= TGr(2, 4)⊕ (S∗)⊕(2n−2).

Thus we have

N |C = NGr(2,4)|Gr(2,2n+2)|C = (S∗)|⊕(2n−2)
C .

By the Plücker embedding of i : Gr(2, 4) ↪→ CP5, we have
∧2 S∗ correspond

to i∗O(1). But the case of HP1 is the same as S3 and thus C corresponds to a

degree 2 curve in P5. Thus we have ∧2S∗|C = OC(2). By the splitting theorem

again, S∗ = OC(a)+OC(b). Since ∧2S∗|C = OC(a+ b), it means that a+ b = 2.

This means µ = 2 + 2 + 2 + (2n− 2)(a+ b) = 6 + 4(n− 1) = 4n+ 2. Thus the

formula holds since dimR HPn = 4n.

To analyze this result, one notices that the tangent space of the moduli space M

of parametrized holomorphic disks are given by

Tf(D)M = H0
R(CP

1,O(N)).

If N =
∑

j O(nj) and nj ≥ 0, then

H0
R(CP

1,O(N)) = ⊕H0
R(CP

1,O(nj)).

Thus we have

dimR M =
∑

j

h0R(CP
1,O(nj)) =

∑

j

(1 + nj) = d− 1 + µ.



75

Fix q ∈ V . We have

dimRM = dimRMq + dimR V.

But dimR V = 2d− 2. Thus the formula reads

dimRMq = dimRM− dimR V = d− 1 + µ− (2d− 2) = µ− (d− 1) = I.

Since the index of a geodesic is the dimension of the negative eigenspace of the

Hessian of the length function on M , it encodes the dimension of the deformation

of the geodesic such that its length decreases. By looking at dimRMq, at least in

the Sn case, it corresponds to the dimension of sliding the projective line passing

through q, in which the projective line intersects Sn at circles. Notice that there is

only 1 projective line which corresponds to the compactified complexified geodesics,

and all the others intersect Sn at circles whose length is less than the geodesics. This

provides a geometrical interpretation of the index formula.

5.3 Further directions

Notice that even in the S2 case, there is a one-dimensional family of holomor-

phic disks passing through q ∈ ∆. We would like to produce a similar result as in

[LM10],i.e. there is a foliation of Q2 − S2 by a family of parametrized holomorphic

disks on (Q2, S2). In the round S2 case, it is clear that in this one-dimensional family

of holomorphic disks passing through q, there is only one disk that corresponds to

the complexified compactified geodesic. This suggests that in the general case, for

each q ∈ ∆, one should choose a holomorphic disk in Mq such that our choices of

disks give a foliation of X − S2 when q varies. We suggest to look at the Robin’s

constant:

Let w be the defining function of ∆ such that dw 6= 0 at ∆. Let q ∈ ∆ and

f : D → X be a parametrized holomorphic disk with boundary in M , such that
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f(0) = q. We define the Robin’s constant

R(f) = log |(w ◦ f)′(0)|2.

Notice that If f(z) is replaced by f(eiθz), R(f) is unchanged. If w is replaced by

another defining function w̃, then w̃ = sw for some function s 6= 0. Then

(w̃ ◦ f)′(0) = (sw ◦ f)′(0)

= s(f(0))(w ◦ f)′(0) + s′(f(0))(w ◦ f(0))

= s(q)(w ◦ f)′(0) + s′(q)w(q)

= s(q)(w ◦ f)′(0).

Thus R(f) is replaced by log s(q) +R(f). If we fixed q, then R(f) is shifted.

For each fixed q, we would like to choose a disk in Mq such that R(f) is the

smallest. In the round S2, we compute the standard example and find that R(fa) =

log 4− log(1− a2), where fa corresponds to the disk obtained by the intersection of

{z1 = 0} and {z21 + z22 + z23 = z20}. Thus a ∈ (−1, 1). Notice that R(fa) → +∞

when a→ ±1, and R(fa) consists of only 1 critical point (a = 0), in which its second

derivative is positive.

Let Mq = {ft|t ∈ (−1, 1)}. We pose the following:

Conjecture V.8. Let R(t) = R(ft).

1. R(t) → +∞ when t→ ±1.

2. Let t0 ∈ (−1, 1) such that R′(t0) = 0. Then R′′(t0) ≥ 0.

Both of this would suggest that there is only 1 minimum point and thus one can

“choose” the correct disk.



CHAPTER VI

Further Research Directions

6.1 Docility on Q2

The Lebrun-Mason model on CP2 with the foliation of holomorphic disks are

interesting in their own right. We would like to prove a theorem similar to that of

Lebrun and Mason for the case when CP2 is replaced by Q2. As above, we prove the

existence of a certain family of disks passing through each q ∈M in the case of Q2.

We pose the following conjecture:

Conjecture VI.1. For each q ∈ M , in the family of holomorphic disks through

q, there exists one unique disk with minimal distortion (minimal Robin’s constant).

Varying q gives a foliation by disks of Q2 −N .

We computed that this result is true for the round case (N being the anti-diagonal

in CP1 × CP1).

In the Grauert tube picture, recall that Sn can be embbeded into Qn, where the

manifold of oriented geodesics N+ can be realized as Qn−1, the intersection of Qn

with a generic hyperplane in CPn+1. Let M , diffeomorphic to Sn, be a perturbation

of Sn. We also conjecture that

Conjecture VI.2. For any points q ∈ Qn−1, there exists an (n − 1)-dimensional

family of embedded holomorphic disks passing through q such that their boundaries

77
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lie on M . Varying q we can find a foliation of Qn − M by holomorphic disks by

selecting the disk of minimal distortion through q.

We suggest that the dimension of the family is n − 1, which coincides with the

index I of a geodesic in Sn, as we can see in Chapter V.

6.2 Other CROSSes

We showed that the only Zoll metric on Sn with an infinite Grauert tube must

be the round one. The same technique could be applied to other CROSSes like RPn,

CPn, HPn or even OP2.

Question VI.3. Let M be diffeomorphic to a CROSS. Does there exist any Zoll

metric on M , other than the round ones, with an infinite Grauert tube?

As the only Zoll metric on RPn is the round one [Ber03], and we proved the case

for Sn, we just have to extend our method to CPn, HPn and OP2. The question

itself is not very strong since we know that any analytic Zoll perturbation (i.e. gt is

analytic in the t parameter) of the CROSSes for CPn, HPn and OP2 are isometric to

the CROSSes [Tsu81].

Following our results in the round case of the spheres, we can just extend our

theorem to all of the CROSSes and so their tangent bundle TM can be compactified

to X by adding the points at infinity, in which X−TM corresponds to the manifold

of oriented geodesics N+. We can even extend our proof of X being Kähler and

V = X − TM being a positive divisor. However, in the case of CPn, HPn and

OP2, we don’t have Audin’s cohomological structure theorem for the associated cut

as for the case of a Zoll g on Sn, and thus we could not find the relation between

the canonical divisor KX and the divisor V at inifinity, which was crucial for our

arguments above. It would thus be interesting if we could generalize these topological
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results of polarized symplectic manifolds on CPn, HPn and OP2.

6.3 Finsler metric

In the Lebrun-Mason construction, there is a family of embedded circles on N

that gives the boundary of holomorphic disks. We conjecture that

Conjecture VI.4. There is a Finsler metric on N such that all the embedded circles

are geodesics.

In this case N is Finsler-Zoll. By looking at the moduli space of geodesics of N ,

it corresponds to the moduli space of holomorphic disks with boundaris on N . But

this corresponds to points of M . This makes us wonder whether we could extend

the Lebrun-Mason construction to a Finsler metric. For a Finsler-Zoll surface, we

have to look at the unit tangent bundle and complexify it in a more or less canonical

way. In this case we are looking for a complexification of the Finsler metric to each

complexified tangent space.

It is worth noting that for a Finsler-Zoll metric on M , one could not look at the

projectivized tangent bundle PTM . One has to look at the sphere bundle STM

and, if the construction works, we could blow it down to the manifold of oriented

geodesics N+. This is like a double cover of N in the Lebrun-Mason picture and

thus it looks like that this would be the picture on Q2, which we have discussed

above. At this stage, we cannot figure out whether a Finsler-Zoll surface would give

a Lebrun-Mason construction on Q2, nor whether the docility of a totally real surface

N in Q2 actually corresponds to a Finsler-Zoll surface via some construction.
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6.4 Duality

The main connection between a Zoll manifold M and its manifold of geodesics

N is mysterious. Given a Zoll manifold M one can find its manifold of geodesics.

Lebrun and Mason showed that if N is nice enough (docile in a certain embedding),

it gives the Zoll manifold M back by looking at the moduli space of a family of

closed curves. Here N is totally real and M is complex. In the view of symplectic

cut, we have M being lagrangian and N being symplectic. Both pictures give this

property but the roles of M and N are opposite, in the sense that one would relate

symplectic objects with complex objects, and totally-real objects with lagrangian

objects. In addition, there are foliations by curves (either disks or CP1 in both

pictures) on the complement of the totally-real or lagrangian manifold. We would

like to investigate more to see something deep and elegant behind the picture. For

example, the interchange of the roles of complex and symplectic geometry seems

reminiscent of mirror symmetry.
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[LS91] László Lempert and Róbert Szőke, Global solutions of the homogeneous complex Monge-

Ampère equation and complex structures on the tangent bundle of Riemannian manifolds,
Math. Ann. 290 (1991), no. 4, 689–712. MR 1119947 (92m:32022)

[PW91] Giorgio Patrizio and Pit-Mann Wong, Stein manifolds with compact symmetric center,
Math. Ann. 289 (1991), no. 3, 355–382. MR 1096176 (92e:32009)

[Roc11] Frédéric Rochon, On the uniqueness of certain families of holomorphic disks, Trans. Amer.
Math. Soc. 363 (2011), no. 2, 633–657. MR 2728581 (2011j:53079)

[Sto77] Wilhelm Stoll, Variétés strictement paraboliques, C. R. Acad. Sci. Paris Sér. A-B 285

(1977), no. 12, A757–A759. MR 0457793 (56 #15997)

[Sto80] , The characterization of strictly parabolic manifolds, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (4) 7 (1980), no. 1, 87–154. MR 577327 (81h:32028)
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