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Chapter 1 

Literature Review 

1. Background  

1.1 Overarching questions and significance 

The longstanding pattern of classroom mathematics discourse is characterized by 

the dominance of teachers in classroom discourse and the limited to brief, “fill in the 

blank” student responses (e.g., Cazden, 1988; Pinnell & Jaggar, 1991). For example, 

Hiebert and Wearne (1993) found that teacher talk ranged from 77% to 91% in their 

sample of six classrooms. And Pianta, Belsky, Houts, & Morrison (2007) concluded after 

their large scale observational study of more than 1000 classrooms that American 

elementary school students have few opportunities to discuss mathematics or do anything 

beyond listening to the teacher demonstrate basic skills followed by individual practice. 

The same patterns were reported as far back as the start of systematic classroom 

observation (e.g. Stevens, 1910; Flanders, 1970). 

Despite the prevalence of this pattern of discourse, it differs from what is 

recommended both by standards proposed for mathematics education (i.e. NCTM, 2000) 

and recommendations drawn from current cognitive research (e.g., Rittle-Johnson, 2006; 

Siegler, 2002). NCTM’s (1989, 2002) Standard for Communication stresses the central 

role of student communication in mathematics instruction, arguing that instructional 

programs should help students to organize and consolidate their mathematical thinking as 

well as to analyze and evaluate the thinking and strategies of others. Ball (1991) provided 
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a good discussion of the rationale behind the earlier version of this standard, arguing that 

questions such as who talks, how they explain their ideas, and the kinds of evidence that 

is encouraged or accepted all are central to defining the nature of classroom mathematics. 

Hiebert & Grouws (2007) provided a concise specification of essential features of 

effective teacher-student interaction. They concluded that effective mathematical 

teaching requires two features: an explicit focus on mathematical concepts, and student 

struggle with important mathematics. 

This dissertation is aimed at addressing some of the empirical questions that are 

raised by this gap between educational practice and the recommendations of educational 

standards. I attempted to answer the following three sets of questions:  

1) Do US lessons feature fewer student explanations than those of high-achieving 

East Asian countries? Do the same factors account for variation in the prevalence of 

explanations within each country? 

2) Do US and Chinese children differ in the nature and quality of mathematical 

explanations they produce?  

3) Looking at how students process these explanations, do students listen 

differently to explanations from peers and adults? And if so, what implications do these 

differences have for how classroom discourse should be structured? 

Because classroom discourse leaves no visible trace, it can be difficult for 

teachers and students to attend to it. But we can make progress in understanding the 

nature and role of student explanations by comparing how explanation-focused student 

discourse differs across countries that differ in mathematics achievement, analyzing the 
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quality of explanations, and looking at how students process explanations from peers vs. 

adults.  

1.2 The production and processing of mathematical explanations: a framework 

1.2.1 What counts as a mathematical explanation? 

Location of mathematical explanation in the family of explanations 

In this project, I will focus on mathematical explanation in teaching and learning 

settings. In such settings, mathematical explanations rest at the intersection of two kinds 

of activity. The first trajectory consists of the division between common and disciplinary 

explanation. And the second consists of the division between instructional and 

self-explanations (Leinhardt, 1993). In this sense, mathematical explanations consists 

both instructional as well as self explanations, but specific to the discipline of 

mathematics, as elaborated in the following: 

Common vs Disciplinary explanations. Common explanations occur all of the 

time in everyday face-to-face conversation. There is an implicit coordination in the 

discussion that suggests the level of detail and content required in the answer. For 

example, the expected answer to the question of “why have they set up a detour here?” is 

a description of the logic or illogic of the choice (e.g. “Construction work will take place 

starting today.”), rather than an elaboration about policy implications of sending traffic 

one way or the other. At the other end of the trajectory, disciplinary explanations require 

reference to “agreed-upon discussions to date, an adherence to the rules and formalisms 

of the discussion in the discipline, and coordinated use of formal and informal 

representations” (Leinhardt, 2010). Disciplinary explanations answer questions that are of 

value and salience to the discipline. For example, the expected answer to the question of 
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“how do you know the two triangles are identical?” will typically involve the use of 

mathematical theorems.  

Instructional vs. Self explanation. Instructional explanation, as its name suggests, 

aims at teaching and sharing with others. They need to coordinate informal colloquial 

familiar forms of language and understanding with more formal disciplinary ones in the 

interests of improving learning. In order for an explanation to serve instructional 

purposes, the implicit assumptions need to be made explicit, connections between ideas 

need to be justified, representations need to be explicitly mapped, and the central query 

that guides the explanatory discussion must be identified. On the other hand, self 

explanations occur when an individual experiences an interruption in some aspect of 

comprehension. By definition, self-explanations are constructed to serve the needs of the 

self. Therefore, the language use can be internal, informal, fragmentary, and colloquial. 

Usually, the goal of a self-explanation is to link a current piece of information (in a text, 

figure, or speech) with an understood self-defined learning goal. 

Forms of mathematical explanations 

In teaching and learning settings, mathematical explanations typically cover 

content about how and why a procedure works or not (Siegler, 2002). A mathematical 

explanation can take different forms. For example, Hill, Schilling & Ball (2004) 

differentiated 3 forms of a mathematical explanation typically used in teacher’s 

instructions: description, explanation, and justifications. Descriptions provide 

characterizations of the steps of mathematical procedure or a process, but they do not 

necessarily address the meaning or reason for these steps. Explanations give 
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mathematical meaning to ideas or procedures. Justifications include deductive reasoning 

about why a procedure works or why something is true or valid in general. 

Curriculum standards have also provided an extensive list of kinds of student 

explanations. Specifically, they include self explanations to make sense of problems, 

communications to others regarding one’s own stances, as well as their reasoning and 

sense making of other’s solutions (Common Core Standards of Mathematics, 2010). 

Self explanations to make sense of problems. The content may include 1) 

analysis of givens, constraints, relationships, and goals; 2) conjectures about the form and 

meaning of the solution; 3) attempt on analogous problems, and special cases and simpler 

forms of the original problem; 4) monitoring and evaluation of their progress. 

Communication with others about one’s mathematical ideas. Such explanations 

may include 1) the usage of stated assumptions, definitions, and previously established 

results in constructing arguments; 2) use of example and counter-examples; 3) 

construction of formal proofs; and 4) determination of domains to which an argument 

applies.  

Reasoning about others’ solution. These explanations include students’ request 

for clarification, identification of flaws in others’ argument, use of examples and 

counter-examples to make sense of or to falsify others’ arguments. 

Quality of mathematical explanation 

Not only do mathematical explanations take different forms, but they are also 

of different qualities. On the perceptual level, explanations differ in terms of speech 

fluency, such as whether the explanation was given in fragmented or completed sentences, 

whether the speech is coherent (Ellis, 2009), and whether the explanation is articulate 
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(Hill, Ball & Schilling, 2008). On the content level, some dimensions of the explanation 

quality include mathematical accuracy (also referred to as mathematical fidelity, see Bos, 

2009, Moyer, Salkind, & Bolyard, 2008; or phrased as absence of mathematical error and 

imprecision, see Hill, et al., 2008) and mathematical richness (see Hill et al., 2008; Hill, 

Charalambous, & Kraft, 2012). 

Mathematical accuracy. This dimension refers to whether an explanation contains 

major errors that indicate gaps in one’s mathematical knowledge (Hill et al., 2008), 

whether the explanation features imprecision in language and notation (Moyer et al., 

2008), for instance when the explainer cannot differentiate numerator and denominator. 

Mathematical richness. Richness includes two elements: attention to the meaning 

of mathematical facts and procedures and engagement with mathematical practices and 

language. Meaning-making element refers to that an explanation not only describes a 

mathematical idea, but also draws connections to other related mathematical ideas (e.g., 

fractions and ratios) or different representations of the same idea (e.g., number line, 

counters, and number sentence). Mathematical practices include the presence of multiple 

solution methods, where more credit is given for comparisons of solution methods for 

ease or efficiency; selective use of efficient strategies, and developing mathematical 

generalizations from specific examples (Hill et al., 2012). 

Previous research on self-explanation has also proposed several features that 

differentiate successful learners from unsuccessful ones (Chi et a, 1989; Renkl, 1997, 

2002; Siegler 2002). Renkl (1997) found that quality of explanations produced by 

successful and unsuccessful learners differ in the following aspects. (1) The successful 

learners frequently assigned meaning to operators by identifying the underlying domain 
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principle (principle-based explanations). (2) They frequently assigned meaning to 

operators by identifying the (sub-) goals achieved by those operators (explication of goal–

operator combinations). (3) They tended to anticipate the next solution step instead of 

looking it up (anticipative reasoning). (4) The less successful learners explicated a 

greater number of comprehension problems, that is, they had metacognitive awareness of 

their own learning difficulties (metacognitive monitoring). Therefore, based on the 

relationship between explanation features and learning outcome, Renkl (1997) identified 

that explanations with the use of principle-based reasoning, explication of goal–operator 

combinations, and anticipative reasoning are of higher quality. 

Source of mathematical explanations 

 Previous research recognizes the following two sources of mathematical explanations: 

instructional explanation, or self-explanation. An instructional explanation is part of an 

instructional process wherein an agent, other than the student, provides an explanation for 

the student to comprehend. Instructional explanations usually contain the target 

knowledge components, which is the goal of the instruction (Schworm & Renkl, 2006; 

Hausmann & VanLehn, 2007). A self-explanation is defined as self-generated 

explanation of presented instruction that integrates the presented information with 

background knowledge and fills in tacit inferences (Chi et al, 1989). 

 However, in a classroom environment where there are more than two agents, there is 

also a third source of mathematical explanation. This third source is peer explanation. A 

peer explanation differs from an instructional explanation in that the former is produced 

by a student rather than the teacher. A peer explanation differs from a self-explanation in 

that the explanation is produced by others rather than oneself. 
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1.2.2 Explanation generation 

Question or Request for explanations: the explanation-eliciting context 

 The explanation-eliciting context is the immediate context in a classroom setting 

where explanations happen. For instructional explanations, the question can be the 

overall learning goal of the lesson. For example, Wittwer and Renkl (2010) shows that 

instructional explanations takes 70-80% of the lecturing time. The explanation-eliciting 

context could also be students’ feedback during classes, such as students’ wrong answers, 

misunderstanding, or disagreement between the students.   

As for the contexts where student explanations were elicited, examples may 

include a teacher asking the class how to carry out a particular procedure (e.g. “How do 

you solve the equation 3X+8=14?”), students’ request for clarification in the small group 

discussion (e.g. “Prove it to us. Prove that 6 is an odd number.” See MTLT, 2010a), a 

student’s disagreement with his/her peers (e.g. “He said he’s looking at the rectangle, but 

he’s not looking at the whole, he’s just…”, see MTLT, 2010b), and many others. 

 The exact form of an explanation-eliciting context may differ across classrooms and 

across instructional activities. For example, peer’s questions, disagreement, and 

help-seeking behavior are more likely to be followed by students’ explanations in small 

group work, while the overall learning goal that teachers have in mind are more likely to 

elicit instructional explanations in  

Effect of generating explanations on learning outcome: the case of self-explanation 

The term “self-explanation” or “self-generated explanation” (Chi, et al., 1989) 

refers to the explanation a learner generates on his or her own as opposed to the 

explanation(s) provided by an external source (e.g., instructor, book).  
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The beneficial effect of generating explanations on students’ learning outcome is 

supported by two decades of cognitive research. In the initial study, Chi et al (1989) 

found that “good” physics students differed from their less successful peers in generating 

what the researchers termed “self-explanations,” elaborations of what they learned that 

attempted to fit it into a larger context. Chi, de Leeuw, Chiu, and LaVancher (1994) 

found that simply prompting 8th graders periodically to “explain what it means to you” 

led to significantly increased learning. More recently, Rittle-Johnson (2006) included 

self-explanation instructions in a mathematics learning task that also compared both 

direct instruction or invention.  Under both instructional conditions, self-explanations 

led to increased learning of a correct procedure and transfer to new problems. Chi, Siler, 

Jeong, Yamauchi, & Hausmann (2001) compared learning by college students in tutoring 

sessions that varied in the degree to which tutors provided didactic information or asked 

leading questions to encourage the tutees to figure the problems out on their own. Results 

strongly favored the latter format. More recently, Chi, Roy, & Hausmann (2008) found 

that under some circumstances watching someone else receive tutoring can be as 

effective as being tutored yourself. In their paradigm, pairs of students watched a third 

student being tutored. Chi and colleagues argued that this can combine the effects of 

tutoring and collaboration, encouraging learners to become active and constructive 

observers. At least under some circumstances, watching a peer working through a 

problem can be as effective as personalized tutoring.    

1.2.3 Explanation processing 

Student processing of a mathematical explanation may be influenced by the 

following factors: characteristics of the explanation (e.g. quality of the explanation), 
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characteristics of the explainer (e.g. perception of explainer’s competence), and 

characteristics of the student him/herself (e.g. one’s prior knowledge). 

Quality of explanation 

Physicists have used the term “Feynman effect” (after the Nobel laureate Richard 

Feynman) to refer to a paradox in which a famously clear explainer fails to succeed in 

teaching novices. According to Jacoby, Bjork & Kelley (1994), students of the famous 

physicist and lecturer Richard Feynman actually performed worse in tests compared to 

students of others. This may partly due to Mr. Feynman’s ability in providing lucid 

explanations and making difficult materials easy to understand, students got a false and 

fleeting “feeling of knowing” that accompanies these lucid explanations by the expert; 

the student leaves feeling that he or she has a solid grasp on a topic because everything 

the expert said made sense. Only when they then try to apply what they’ve learned do 

they realize they didn’t understand it. Thus, very clarity of a high quality explanation may 

interfere with student learning if it serves to short cut the difficult reflection and 

integration required to make sense of new information. Both perceptual disfluency effect 

and the generation effect provided supporting evidence to this point.  

    Perceptual disfluency effect. Disfluency refers to the subjective experience of 

difficulty associated with cognitive operations (Alter & Oppenheimer, 2008; Alter et al., 

2007; Novemsky, Dhar, Schwarz, & Simonson, 2007; Reber & Zupanek, 2002). 

Disfluency can be easily produced by presenting study material in a slightly more 

difficult to read font (e.g., a small, gray, italicized font: sample, or condensed font like 

Haettenschweiler or Impact). For example, Alter et al (2007) presented participants with 

logical syllogisms in either an easy- or difficult-to-read font. Participants were less 
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confident in their ability to solve the problems when the font was hard-to-read, yet they 

were in reality more successful. On a similar note, Diemand-Yauman, Oppenheimer, & 

Vaughan (2010) presented subjects fictional biological taxonomies in either easy or 

challenging fonts in the studying phase. Participants were more successful in recalling 

when studied the taxonomies in challenging fonts. Diemand-Yauman et al (2010) later 

demonstrated that the disfluency effect retains in real classroom settings. The 

experimenters altered the fonts of the study material from the teachers before they were 

distributed. After one-week to one-month of exposure to study materials of different fonts, 

students who received study material in challenging fonts performed better in the end of 

the unit exams. Effects were consistent across subject areas as well across class difficulty 

levels.  

Generation effect. Generation effect refers to benefits of learning and retention 

related to the increased depth of processing by requiring the learner to generate rather 

than passively read information. For example, Hirshman & Bjork (1988) found that 

requiring participants to generate letters in a word pair (e.g. “Bread: B_tt_r”) during 

memorization resulted in a higher retention rate of the word pairs than when the pairs 

were presented entirely (e.g. “Bread: Butter”). The retention rate of the generation group 

triples that of the reading group. The striking benefits of generation are not limited in the 

context of word pair learning. Richland et al. (2005) reported similar effect in the context 

of science education. Undergraduates who went through the generation/retrieval test 

during the re-study session outperformed their peers who re-read the material. In the 

domain of mathematics, participants who generated answers to calculation problems 

remembered the answer better than the ones who simply read the answer, and the effect 
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size of generation is almost a full standard deviation (Slamecka & Graf, 1978; Pesta, 

Sanders, & Murphy, 1999; Bertsch et al, 2007). 

Perception of explainer’s competence  

 Previous studies on peer interaction and modeling suggested that students may gain 

from interaction with similarly competent peers, and the essential condition for such 

gains include disagreement and being strategic (i.e. being able to give reasons or 

arguments for a specific solution or offering an operational solution). For example, Miller 

and Brownell (1975) used Piagetian conservation task and showed that conservers 

influenced nonconservers and not vice versa because they could give consistent reasons 

for their solution when arguing with their peer. In contrast, the nonconservers kept 

asserting their solution without invoking reasons in favor of their assertions. Moreover, 

these researchers also suggested that simply hearing a contradicting solution plays a 

major part in the cognitive gains of peer interaction. Therefore, when two interacting 

solvers disagree, their cognitive gains originate not only from a pragmatic 

component—the disagreement—but also from the contradicting solution itself. In another 

study, Doise and Mugny (1979) showed that interaction with a less capable child who 

proposed a contradicting solution led even the more capable child to progress. In the 

same study, Doise and Mugny showed that when interacting students used different 

strategies, they progressed, whereas when they used the same strategies, they did not. A 

key result obtained by Doise and Mugny was that if the ability difference between the 

two students was too big, low-level students did not progress.  

Schwarz, Neuman & Biezuner (2000) provided a possible explanation why the 

low-level students did not progress when there is a great discrepancy between them and 
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their peers. They proposed that greater competence difference between the dyads might 

hinder the key process--hypothesis testing, to constructing or evaluating arguments. In 

other words, the low-level students trust the information provided by their high-level peer, 

due to the perception of the peer being competent. The lack of critical processing 

prevented them from gaining from these interactions. 

Students’ prior knowledge  

Prior knowledge is deployed in evaluation of the new information. For example, 

Legare, Gelman and Wellman (2010) showed that when the new information contains 

inconsistency with prior knowledge, young children were more likely to provide causal 

explanations for the new information. Similarly, Williams and Lombrozo (2013) 

suggested that explanation recruits prior knowledge to assess whether candidate patterns 

are likely to have broad scope (i.e., to generalize within and beyond study observations). 

Williams and Lombrozo showed that the effects of explanation on prior knowledge were 

attenuated when learners believe prior knowledge was irrelevant to generalizing category 

membership. 

1.3 The Mathematical Context 

In current study, I will focus on students’ understanding of mathematical 

equivalence. Mathematical equivalence refers to the understanding of the equal sign, the 

principle that the sum of the numbers on one side of an equation is equal to the sum of 

the numbers on the other side of the equation. It is fundamental to understanding algebra, 

which serves as a gatekeeper for future educational opportunities and has an important 

role in mathematics. The importance of understanding mathematical equivalence serves 

as the first reason why it is selected as the mathematical context in the current study.  
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The second reason lies in the pervasive misunderstanding of mathematical 

equivalence among elementary and middle school students in the United States. 70% or 

more of 3rd to 6th grade students in US misunderstand the principle of mathematical 

equivalence (Rittle-Johnson, Taylor, Matthews & McEldoon, 2011). Given a problem 

such as  “4+6+9=__+9”, they will calculate “4+6+9” and fill in the blank with the 

answer “19”. Some children will continue with “19+9” and get “28” as the answer 

(Alibali, 2005). In both cases, children appear to be interpreting the equal sign as an 

announcement of the result of an arithmetic operation rather than as a symbol of 

mathematical equivalence. Moreover, many middle school students still lack a 

sophisticated understanding of the equal sign, which resulted in difficulties in working 

with symbolic expressions and equations (Knuth, Stephens, McNeil, & Alibali, 2006). 

This misunderstanding of the mathematical equivalence is characterized as the 

“operational” understanding (e.g. Knuth, Alibali, Hattikudur, McNeil, & Stephens, 2008; 

Knuth, Stephens, McNeil, & Alibali, 2006; Rittle-Johnson, Taylor, Matthews, & 

McEldoon, 2010). Students with the operational understanding view the equal sign as a 

“do something” signal, where they are supposed to calculate what is on the left of the 

equal sign, and put the answer on the right of the equal sign. The pervasive 

misunderstanding of the mathematical equivalence may due to the engagement in 

arithmetic activities prior to middle school mathematics (McNeil, 2008). A more 

sophisticated understanding, that allows future progressive understanding of algebra, is 

the relational understanding, which the equal sign expresses a balance between quantities 

in an equation, i.e. balance between both sides of the equal sign. 

The third reason of the selection is the possibility to induce conceptual changes 
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regards mathematical equivalence within a short amount of time. Perry (1991) and 

Rittle-Johnson & Alibali (1999) found that conceptual instruction focusing on the 

meaning of “=” helps a majority of children to come up with procedures sufficient to 

solve the task. Siegler (2002) reported that a condition in which children were presented 

with examples of both correct and incorrect answers and were required to explain them 

led to significantly better learning than conditions in which children were just required to 

explain either their own answer or just the correct answer. 

The mathematical equivalence appears ideal as the mathematical context of the 

current study. Most students initially fail the task, yet real progress can be made in a 

single session. Several studies show that self-explanations can lead to improved learning. 

The specific form that self-explanation instructions took in these studies involve asking 

children to evaluate the explanations given by others. Thus it appears an ideal task to 

begin to look at how the nature and number of explanations, who gives them, and how 

children are asked to respond to them, all affect children’s learning. 
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2. Research Questions 

This project is aimed at answering three questions about the role of discussion in 

elementary student learning.  

Question 1 focuses on the contexts in which students produce mathematical 

explanations and the relation of explanations to achievement on the level of countries. In 

order to do this, I developed and validated a machine-learning system for identifying 

explanations in transcripts of lessons. This allowed me to look at two related questions: 1) 

Are there in fact fewer student explanations in US than in the higher achieving East 

Asian locales such as Japan and Hong Kong? 2) What factors predict the prevalence of 

student explanations, and do those predictors vary across countries? . 

Question 2 focuses on US and Chinese students’ production of mathematics 

explanation. Specifically, what is the quality of student generated explanations? How do 

US students differ from their Chinese peers in the quality of their explanations? Both 

questions will be examined in the context of mathematical equivalence. 

Question 3 focuses on whether students process peer explanations differently than 

those of adults. Specifically, would students processing of the information vary with the 

sources (adults vs. peers) and with the quality of the explanation? How do these 

differences, if any, relate to students’ learning outcome? 
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Chapter 2. 

Students’ production of mathematic explanations through classroom 

discourse 

 The centrality of providing students opportunities to communicate mathematics ideas 

has long been recognized.  In their Professional Standards for Teaching Mathematics, 

the National Council of Teachers of Mathematics (NCTM) stress the importance of 

communication in mathematics classes: instructional programs should enable children to 

“organize and consolidate their mathematical thinking through communication”, to 

“communicate their mathematical thinking coherently and clearly to peers, teachers and 

others” (NCTM, 2000). 

After an extensive meta analysis of research aimed at improving elementary 

mathematics achievement, Slavin & Lake (2008) concluded: 

“The research on these instructional process strategies suggests that the 

key to improving math achievement outcomes is changing the way teachers and 

students interact in the classroom. It is important to be clear that the 

well-supported programs are not ones that just provide generic professional 

development or professional development focusing on mathematics content 
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knowledge. What characterizes the successfully evaluated programs in this section 

is a focus on how teachers use instructional process strategies, such as using time 

effectively, keeping children productively engaged, giving children opportunities 

and incentives to help each other learn, and motivating students to be interested in 

learning mathematics.” (p. 475) 

Hiebert & Grouws (2007) also reviewed the literature on effects of mathematics 

teaching and their conclusions provide a concise specification of the essential features of 

that interaction between teacher and student. They concluded that effective teaching of 

mathematical concepts requires two key features: 1) Teachers and students attend 

explicitly to concepts, and 2) Students struggle with important mathematics. 

These recommendations are consistent with research on the relation between 

classroom discourse and student learning. For example, Smith (1977) has discovered that 

classroom discourse that allows more student involvement leads to more critical thinking 

and better learning outcome. Tobin (1984; 1986) reported that better questioning 

practices by the teacher encouraged student involvement and promoted learning. 

However, observations indicate that most teachers are not proficient in promoting 

student involvement. Pianta, Belsky, Houts and Morrison (2007) reported their analysis 

of the observation of over 1000 classrooms across 10 sites in the U.S. They found that 

most teachers only provided students with feedback on the correctness of their answer, 

rather than asking them to elaborate on their reasoning. This followed the simple teacher 
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initiation-student response-teacher evaluation IRE pattern (Mehan, 1979), reflecting a 

transmissionist view of learning that has been criticized by many contemporary 

researchers (e.g. Inagaki, Hatano & Morita, 1998; Nassaji & Wells, 2000; Waring, 2009). 

For example, Inagaki, Hatano & Morita (1998) argued that IRE instruction left little room 

for “negotiation”; in contrast, if a teacher allowed other students to elaborate or criticize 

their original responses, they would have the opportunity to construct their mathematical 

thinking by assimilating similar ideas from their peers or revising their current conceptual 

model to accommodate conflicting ideas from others, both of which have been confirmed 

by their study.  

This pattern of limited student opportunity to explain mathematics may not be 

universal. Sims and colleagues (Sims et al., 2008) compared the opportunity to talk in 

American and Chinese classrooms. She found that in US, 21% of utterances were 

generated by students, whereas in China the number was 69%. The fact that US students 

were not given enough opportunity to express their mathematical thinking in class may 

indicate a lack of facilitation from the teachers. 

One obstacle that prevents teachers from gaining expertise in discourse 

management is the implicit nature of this skill and the ephemeral nature of classroom 

discourse. It is difficult to pay attention to something like the distribution of talk or 

eliciting students’ explanations when one is teaching, at the same time that teachers need 

to worry about covering all the material, managing the classrooms and the accuracy of 
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their own explanations. Traditional teacher training does not provide many opportunities 

for teachers in training to develop skill at eliciting student explanations or managing 

student discussions. Eilam & Poyas (2006) described this process as consisting of three 

elements: learning theoretical knowledge, observing experienced teachers and teaching 

practice. None of these are directly aimed at improving skill in managing classroom 

discourse. Rather, it has been assumed that novice teachers can gain this skill 

automatically through experience. 

 

Research efforts to decipher classroom discourse 

A number of efforts have been made to increase teachers’ awareness in their 

classroom discourse. Teacher training programs have been carefully designed to help 

teachers better organize classroom talk (e.g. Chapin, O’Connor & Anderson, 2003). 

Researchers have also been investigating factors that affect the quality of classroom 

discourse. Using transcripts of lessons, Bellack and his colleagues discovered some 

universal features of talk moves in different classrooms, based on which they categorized 

teaching into four categories: structuring, soliciting, responding and reacting (Bellack, 

Kliebard, Hyman and Smith, 1966). The dynamic change of teaching activities among the 

four categories has been further used to define the “teaching cycle”, which reflects the 

instruction features in a class. For example, the average length of teaching cycles could 

represent the pace of instruction; by analyzing the initiator of each teaching cycle (be it 
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teacher or students), one could also obtain the “relative proportion of teacher and pupil 

discourse” (Kliebard, 1966).  

In an effort to help teachers visualize their classroom instruction, Walsh (2006) 

identified four classroom “modes”, including Managerial, Materials, Skills and systems 

and Classroom context. These categories were then introduced to teachers to help them 

perform “self-evaluation of teacher talk” (SETT), in which teachers watched their own 

classroom recordings and identified their teaching activities based on the given categories. 

Final interviews with these teachers indicated that their awareness of discourse 

management was improved after the practice. 

Cazden and Beck (2003) summarized five discourse features that can be 

consciously controlled by a teacher: speaking rights and listening responsibilities, teacher 

questions, teacher feedback, pace and sequence, and classroom routines. Variations on 

these features result in different types of classroom discourse, which further influences 

students’ learning. For example, a teacher can encourage student involvement by giving 

them more “speaking rights” and making sure other students take their “listening 

responsibilities”; she can also slow down the “pace” by providing more wait time before 

calling a student to answer a question so that other students may have longer time to think 

about it. 

The video project (Stigler, Gonzales, Kawanaka, Knoll, & Serrano,1999) 

conducted as part of the original TIMSS (Trends in International Mathematics and 
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Science Study) project (Peak, 1996) is perhaps the most ambitious effort to date to code 

classroom discourse in classrooms internationally. In the initial round of research, the 

team recorded middle school mathematics lessons in the U.S., Japan, and Germany, 

transcribing all classroom discourse. In later work, the method was extended to additional 

countries and expanded to include science as well as mathematics. The code book used 

by this project distinguished between whether or not interactions were public (i.e., 

involving the whole class as a unit) or individual/small-group work, and whether the 

teacher or the student was providing the bulk of the information (LessonLab, n.d.). Based 

on the coding system, eighth-grade mathematics lessons from the U.S., Germany and 

Japan have been compared and significant cross-country differences have been identified. 

For example, in the classes of Germany and Japan much more topics were “developed” 

instead of simply “stated” by the teacher, whereas in the U.S. the pattern was the opposite 

(Stigler, Gallimore & Hiebert, 2000).  

Conceptualization of student mathematical explanation in classroom discourse 

In addition to these studies of classroom discourse in general, there has been a 

specific focus on students’ mathematical explanations in several coding systems of 

mathematics instruction (e.g. Mathematical Quality of Instruction, or MQI) as well as in 

standards for mathematics instruction, particularly the Common Core State Standards 

(CCSSI, 2010) developed by the National Governors Association Center for Best 

Practices and Council of Chief State School Officers. The Mathematical Quality of 
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Instruction (MQI) provides specific standards for a variety of aspects of instruction such 

as teachers’ interactions with students and students’ interaction with mathematical 

content (Hill et al., 2008). Specifically, MQI captures the ways in which student engage 

with meaning making and reasoning. For example, it put an emphasis on the cognitive 

requirements of classroom tasks—e.g. whether student were required to find patterns, 

draw connections, determine the meaning of mathematical concepts, or justify and reason 

about their conclusions. On the students’ action part, MQI captures whether students ask 

mathematically motivated questions, examine claims and counter-claims, or make 

conjectures; and whether they provide mathematical explanations spontaneously or upon 

request by the teacher. In summary, MQI indicated that both the tasks students facing and 

the input they provided constitutes students’ sense making and reasoning of mathematics, 

yet what differentiates an explanation from other student statements is not clear.  

The Common Core State Standards (CCSSI, 2010, see 

CCSS.MATH.PRACTICE), on the other hand, described the ideals of mathematical 

explanations that mathematically proficient students should provide. The CCSS classified 

explanations into the following three types: 1) Statements student make to themselves in 

order to make sense of the problem; 2) Explanations students provide to others in order to 

convey mathematical ideas, to convince, and; and 3) Students’ inspection and reasoning 

of other’s solutions. Specifically, students’ sense making statements may include them 

analyzing givens, constraints, relationships, and goals of a task. The sense making 
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statements may also include their conjectures about the form and meaning of the solution 

and their plan of a solution pathway before jumping into a solution attempt. They also 

include students’ consideration of analogous problems, their trying of special cases or 

simpler forms of the original problem, as well as their making correspondence between 

different representations of a problem, such as equations, verbal descriptions, tables, 

graphs or diagrams. Students’ effort to communicate mathematical ideas starts with their 

awareness about the assumptions, definitions, and previously established results. Their 

making those explicit in their verbal communication marks their effort to construct 

arguments and explanations. Students may communicate their mathematical ideas 

through making conjectures and building a logical progression of statements, or they may 

construct arguments using concrete referents such as objects and diagrams. Students’ 

effort to communicate mathematical ideas also includes their attempts to convince others 

by justifying their conclusions and responding to the arguments of others. Finally, 

students’ inspection and reasoning of others’ solutions start with them listening to or read 

others’ solutions, students may then ask questions to determine the correctness of other’s 

solution, compare the effectiveness of plausible arguments, distinguish correct logic or 

reasoning from that which is flawed, and—if there is a flaw in an argument—identify 

what it is. In summary, CCSS defined student explanations through how they function 

(i.e. explain to self, convey information to others, and responding to others). It also 

provided exemplar cases which should be considered as explanations in mathematical 
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classrooms.  

Besides the functions an utterance may serve, the nature of information presented 

in the utterance also determines whether it should be treated as an explanation or not. 

Duffy and colleagues (Duffy, Roehler, Meloth, & Vavrus, 1986) pointed out three kinds 

of information that are essential in an explanation: the declarative information about the 

task, the conditional information about when and why things should be used, and the 

procedural information about how to successfully apply a strategy. The declarative 

information needs to be precise and relevant to the task at hand. For example, the 

statement “we need to find out what number can make the two sides the same” contains 

such declarative information, but the statement “you do the problem and put the answer 

down” does not. The conditional information describes conditions under which a 

particular strategy can be employed and why one strategy is more likely to be successful 

than another. An example with conditional information is “you can use this strategy when 

there is a number on the left side of the equation, and it is on the right side too”, while the 

following is considered to be lacking of conditional information, “you use this strategy to 

do math problems”. The procedure information is the explicit verbal statement of one’s 

understanding of how to apply a strategy in the problem solving. For example, the 

following statement contains the procedure information, “ the strategy is to cross out the 

same numbers. If the number on the left (of the equal sign) is the same as the one on the 

right, you cross them out”. Compare this to a statement showing less awareness of how to 
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use the same strategy: “you cross out numbers to make it right.”  

In the current study, both the function of and the nature of information in student 

utterances will be used to determine whether they are mathematical explanation. 

Specially, a statement needs to satisfy the following two conditions to be considered as a 

mathematical explanation. First, the statement needs to convey complete information. For 

example, in the following teacher-student interaction, only the bolded student utterance 

contains complete information. Therefore, even the first student statement signals the 

beginning of the students reasoning process, only the second statement would count as a 

student mathematical explanation. 

T: also, Kawamura says here and here are equal. Why is so? 

S: Because of the sizes of opposing angles. 

T: Huh?  

S: The sizes of opposing angles in a parallelogram are the same. 

 Second, the statement needs to be one or more of the following: a description of a 

procedure, a rule, or a definition; an analysis of problem conditions, its givens, structure, 

and the information in need to solve the problem; a justification of one’s solution. These 

statements can be produced spontaneously or upon request (e.g. respond to the teacher or 

a peer). And finally, statements can be mathematically accurate or not.  
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Automated modeling of classroom discourse 

The aforementioned coding systems have yielded useful information in 

educational research. However, they have important practical limitations. Coders need to 

receive many hours of training and certification before they can begin to use the 

instruments reliably. Even then, coding remains a time-consuming activity.  

An alternative could be machine coding of explanations from transcripts. If this is 

successful, it could make it easier and faster to code large amounts of lesson data. 

Ultimately it may be possible to incorporate this kind of analysis into a feedback system 

that gives teachers prompt feedback on the nature of classroom discourse in lessons they 

have just taught.  

 If we could automatically distinguish between an explanation and a 

non-explanation, and record the total amount of student explanations in a lesson, it might 

be possible to automatically identify student’s meaningful engagement with mathematics 

during lessons based on the nature of discourse involved. Such a system would not be 

able to evaluate the quality of students’ explanations, but information about the quantity 

might nonetheless provide a useful index to some important aspects of a lesson. 

The current study will use combine text mining and machine learning techniques 

to achieve the automated identification of student explanations. Specifically, the Random 

Forest algorithm was applied due to its ability to handle multiple variables at the same 

time, its classification robustness and its flexibility on the distribution of each individual 
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variable (Breiman, 1996, 2001). After model tuning and initial training to establish 

parameters in the algorithm, RF algorithm can automatically apply to an extended dataset 

and obtain classification results within seconds (Breiman, 2001).  

Exploring student production of math explanations in classroom discourse 

 The current study aims to explore students’ production of mathematical explanations 

in classroom discourse. To identify any pattern in classroom discourses, a large dataset is 

needed. Transcripts from 1999 TIMSS video study will satisfy the requirement of sample 

size. Among all 8 locales included in 1999 TIMSS 8th grade mathematics class recordings 

dataset, two English speaking countries, Hong Kong SAR and the United States, were 

selected to eliminate concerns about translation inaccuracy. In addition, Japanese 

classrooms were selected due to Japan’s unique classroom structure and the potential this 

might have for identifying similarity and variability in the relationship between 

classroom features and students’ production of explanations. The current study will focus 

on how discourse contexts affects student production of mathematical explanations. This 

question is multi-level in nature. Firstly, within a classroom, which features in the teacher 

utterance are more likely to elicit an explanation? Secondly, at the classroom level, which 

classroom characteristics predict the proportion of student explanation among all student 

utterances? Finally, how does the predictive value of the classroom characteristics differ 

across the countries? Multi-level analysis will be employed to answer these questions. 
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Method 

Datasets 

 The dataset in this study includes transcripts of 232 video recordings of lessons from 

the 1999 TIMSS video study (Hiebert et al., 2003). 1999 TIMSS video study recorded 8th 

grade mathematics lessons from 7 countries and 8th grade science lessons from 5 

countries. In each country, lessons were videotaped across the school year to try to 

capture the range of topics and activities that can take place throughout an entire school 

year.  

 The current sample includes all recordings of mathematics lessons from the 

following 3 countries, Japan (JP, N=50), Hong Kong SAR (HK, N=98), and the United 

States (US, N=84). Transcripts from all the 232 lessons were obtained and were used for 

analysis. All analysis is based on the English transcripts, which are original transcripts for 

US and Hong Kong lessons and translations for Japanese lessons. There are 3 variables 

available in each transcript, namely the timestamp of an utterance (i.e. the starting time of 

the utterance), the role of the person who produced the utterance (i.e. the teacher or a 

student), and the content of the utterance (i.e. the transcript of the utterance). 

 The mathematical topics covered in each lesson cover the following areas: number, 

geometry, algebra, and statistics. Table 1 (reproduced from 1999 TIMSS video technical 

report, see Hiebert et al., 2003) includes a detailed description of the average percentage 

per lesson in each topic area. 
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Table 1 Average percentage of problems per lesson with each major- and sub- category 
topic area, by country (reproduced from Hiebert et al., 2003, p69) 
Topic area Country  

Hong Kong SAR Japan United States 
Number   18  30 
    Whole numbers, fractions, decimals 5  17 

Ratio, proportion, percent 10  6 
Integers 3  8 

Geometry  24 84 22 
    Measurement (perimeter and area) 3 11 13 

Two-dimensional geometry (polygons, 
angles, lines) 

17 73 4 

Three-dimensional geometry 5  5 
Statistics  2  6 
Algebra  40 12 41 

Linear expressions 11  6 
Solutions and graphs of linear 
equations and inequalities 

23 12 27 

Higher order functions 6  8 
Trigonometry   14   

 

Procedure 

Coding 

 Due to the large amount of student utterances in the dataset (N=48336), 60% of 

lessons were randomly selected to be coded by two independent coders, T and P. The 

coded sample include 55 HK lessons, 28 JP lessons, and 48 US lessons. Student 
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utterances were coded into the following three categories: a mathematical explanation, a 

non- explanation, or missing. A mathematical explanation is defined as an utterance 

which comprised an analysis of the requirement of a task (e.g. the conditions and the 

requirements of the problem), or a description of problem solving procedure rather than 

just an answer, or a justification of why a problem solving procedure works or not, or a 

definition of a concept before applying it. All other student utterances are coded as 

non-explanations. Non-explanations may include students’ off-topic chatting, their 

“yes/no” answers, or their simple numeric answers with no reference to how such 

answers were produced. In some cases, students’ utterance recorded as “inaudible” in the 

transcripts. Such cases were coded as missing.   

Feature identification 

Computer assisted processing was used to identify features of students’ utterance 

as well as the teacher’s utterance immediately prior to any student utterance. I focused on 

these features because they may have predictive value on the 

explanation/non-explanation status of the student utterance.  

As shown in Table 2, following features were extracted for each student 

utterance—the length of the utterance, indication of casual relationship, indication of 

action sequence, indication of contrary, location of student utterance in the lesson, the 

“micro context” of the utterance (i.e. percentage of student utterance within the 

surrounding 5 minutes, 2 minutes, and 1 minute). And the following features were 
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extracted for the teacher utterance immediately precedes each student utterance—the 

length of the utterance, request for procedure, request for reasoning, request for repeat or 

rephrase, modeling of using casual conjunctions, modeling of using contradictory 

conjunctions. Table 2 provides the definition of each feature as well as the possible 

relationship between each feature and the explanation status of the student utterance. 

Table	  2.	  Features identified in each lesson and the rationale for using them 

a) Features in student utterance 

Features  Operationalization Rationale 
Length of utterance 
(Slength) 

The number of words uttered 
by student 

Explanations tend to be longer 
than non-explanations in nature. 

Casual indication Whether it contains casual 
conjunction words, 
(“because”, “since”, “so”, 
“therefore”, and “thus”) 

Casual words indicate casual 
relationship. Casual relationship 
is used to construct casual 
reasoning about why a 
procedure works or not. 

Action sequence 
indication 

Whether it contains adverbs 
or phrases, (“then”, 
“afterwards”, “after that”, 
and “next”).  

Indications of action sequence 
are more likely to occur when 
students are offering a 
procedure. 

Indication of contrary 
opinions 

Whether it contains contrary 
conjunctions, (“but”, 
“unlike”, and “however”), or 
verbs/ verb phrase indicating 
disagreement (“disagree” and 
“don’t think so”). 

Students are more likely to offer 
reasoning when they disagree 
with others rather than when 
they agree with others. 

Location of utterance The starting time of the 
utterance divide by the total 
duration of the recording 

Mathematics lessons usually 
follow the review—new 
material—practice sequences, 
during which students may be 
given different opportunities to 
participate. 

“Micro context” of the 
utterance 

The duration of total student 
utterance in a period centered 
on the middle of the target 
utterance. I looked at periods 
of 5 minutes (2.5 minutes 
before and after), 2 minute, 
and 1 minute segments  

The micro context of utterance 
may indicate the class activity. 
And certain class activities 
include more student 
participation, thus more likely 
to induce students’ 
explanations. 
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b) Features in teacher utterance 
Features  Operationalization Rationale 

Length of utterance 
(Tlength) 

The number of words uttered 
by the teacher 

Teachers maybe less likely to 
ask for an explanation when 
they are lecturing, which 
features long solo talk by the 
teacher. 

Request for procedure Whether it contains “how” 
questions. Note this does not 
include questions such as 
“how much” or “how many” 
that seek a number rather 
than an explanation. 

“How” request, for example 
“how do you do this” are likely 
to elicit a student’s explanation 
about the procedure. 

Request for reasoning Whether it contains the word 
“why.” 

“Why” request, for example 
“can you tell me why”, are 
likely to elicit a student’s casual 
reasoning. 

Request for 
repeat/rephrase 

Whether it contains words 
and phrases indicate a request 
to repeat or rephrase 
(“repeat”, “say it again”, 
“who else”). 

Request for repeat/rephrase may 
elicit a student response to 
rephrase a previously said 
explanation.  

Modeling of using 
causal conjunctions 

Whether it contains casual 
conjunction words 
(“because”, “since”, “so”, 
“therefore”, and “thus”) 

Modeling of using casual 
relationship provides students 
examples of constructing an 
explanation. 

Modeling of using 
contradictory 
connectives 

Whether it contains contrary 
conjunctions, including 
“but”, “unlike”, and 
“however”, or verbs/ verb 
phrase indicating 
disagreement, i.e. “disagree” 
and “don’t think so”. 

Teachers’ modeling to indicate 
contradictory opinions provides 
student examples of indicating 
different opinions, which may 
lead to a follow up explanation. 

 

Establishing the algorithm 
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 Half of the coded transcripts (30 HK lessons, 15 JP lessons, and 24 US lessons) were 

used as the training set, while the remaining coded sample were used as testing set to 

establish the reliability of the algorithm.  

The Random Forest (RF) algorithm was used to tune the model. The main idea of 

RF algorithm is to generate perturbed versions of the training data by drawing from that 

dataset a series of samples (with replacement) of the same size as the original set T, then 

training a classification tree on each perturbed version, and aggregating the results by 

majority voting (Breiman, 2001). The perturbed versions of the training data are obtained 

by creating B bootstrapped training data sets T1, T2… TB. The observations not included 

in the bootstrapped sample Tb form an out-of-bag sample that can be used to calculate the 

error for that training set. The training of each classification tree is described as follows: 

at every node, consider only a random set of variables for the next split. Trees will be 

grown to maximum size and not pruned. The majority voting process will classify each 

new observation X to the majority class predicted by the B classifiers. 

Empirical evidence suggests several advantages of the RF algorithm. Firstly, 

over-fitting due to growing the tree to maximum size is not an issue (Breiman, 2001). 

Secondly, performance of RF is insensitive to outliers in the training data. Thirdly, RF 

algorithm requires the selection of only a small number of variables at every node, hence 

is more efficient than other algorithms such as traditional classification tree. Finally, the 

algorithm provides a mechanism for estimating the importance of each variable in the 
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ensemble, which provides a way to directly examine the predictive power of each 

indicator. 

The variable importance estimate is obtained as follows: After each tree is 

constructed, the values of each variable in the out-of-sample sample are randomly 

permuted and the out-of-bag sample is run down the tree and therefore a classification for 

each observation is obtained. Thus, p misclassification error rates are obtained and the 

output is the percent increase in misclassification rate as compared to the out-of-sample 

rate with all variables intact. 

Analysis plan 

 Firstly, reliability of the algorithm prediction will be examined on both the utterance 

and the classroom level. Algorithm predictions will be used for further analysis only if its 

agreement with a human coder is at least as good as the agreement between two human 

coders. 

 Secondly, utterance level analysis will focus on the context of student explanations. 

Specifically, I will examine the utterance immediately preceding a student explanation. I 

will also examine the classroom activity during which student explanations were 

produced.  

 Lastly, classroom level analysis will focus on the classroom discourse features which 

predict the amount of students’ explanations in that class. Cross-national differences in 

the amount of student explanations as well as its association with other classroom 
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discourse features will be compared. 

Results 

1. Reliability of the algorithm 

 Two methods were used to measure the reliability of the algorithm. Firstly, the 

inter-rater agreement was obtained between algorithm predictions and human codes. The 

machine-human agreement was then compared with human-human agreement. Secondly, 

regression analysis was applied using either algorithm predictions or human codes as the 

dependent variable, and the regression coefficients were compared across the two. 

Inter-rater reliability between algorithm prediction and human codes 

At the individual utterance level, the inter-rater agreement between human codes 

and algorithm prediction (Cohen’s Kappa) is 0.608, while the agreement between two 

human coders, T and P, is 0.905. A confusion matrix (table 3) shows that compared to 

human coders, the algorithm tends to misclassify student explanations as 

non-explanations, whereas the classification predictions for non-explanations are 

relatively accurate.  

Table	  3	  Accuracy of classification at utterance level	  

 Human Code (T) 
Explanation Missing Non-Explanation 

Algorithm 
Prediction 

Explanation 1840 0 339 
Missing 0 631 9 
Non-Explanation 953 1415 23895 

Human 
Code (P) 

Explanation 2095 0 20 
Missing 0 2021 7 
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Non-Explanation 698 25 24216 

 

At the classroom level, however, the inter-rater agreement between human codes 

and algorithm prediction is vastly improved. Classroom level agreement is calculated by 

the correlation coefficients between the proportion of student explanations per class 

determined by algorithm prediction and that determined by human codes, with proportion 

of student explanation equals to the ratio between number of student explanations and 

total number of students’ utterance. The correlation coefficient between the two is 0.93, 

which is equivalent to the agreement between two human coders (r(136) = 0.95). As 

shown in Figure 1, the algorithm tends to slightly over-estimate proportions of student 

explanations within a classroom, especially at the higher end of the distribution. Overall, 

however, algorithm predictions and human coding produce similar results with regard to 

the proportion of students’ explanations within a class. 
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Figure	  1	  Relationship between machine and human code at classroom level (N=138) 

Comparison of regression results using algorithm prediction or human codes 

Mixed linear models (see lme4 package in R, Bates, Maechler & Bolker, 2012) 

were used to estimate the influence of classroom features as well as country of origin on 

the proportion of student explanations per class. Forward stepwise selection method was 

used to select the best-fitting model. Forward selection starts with a null model that 

contains only the random effect of country and no classroom level predictors. Predictors 

are then entered into the model one at a time. Only the ones who significantly improve 
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the model fit (measured by Chi square) are retained in the model. Table 4 shows the 

model fitting result (fixed effects) using both human codes and algorithm predictions. As 

shown on the table, fixed effects of the two models have similar sizes and yield the same 

conclusion about each predictor. As for random effects, the cross-national differences 

explained 4% of variability of the proportion of student explanations based on human 

codes, and 5% of variability of that based on algorithm prediction. Overall, models using 

algorithm prediction and human codes resulted in comparable effects and identical 

conclusion. Therefore, algorithm predication is reliable for the purpose of the current 

study and will be used for analysis of the full dataset. 

Table	  4.	  Mixed linear model using human code and algorithm predictions	  

              DV 
 
Predictors 

Proportion of S explanation 
(Algorithm) 

Proportion of S explanation 
(Human codes) 

Coeff (SE)a Chi sqb Coeff (SE)a Chi sqb 
(Intercept) 0.108 (0.014) N.A. 0.098 (0.010) N.A. 
T request for reasoning 2.09E-03 

(7.72E-04) 
7.68, p<.005 2.27E-03 

(1.12E-03) 
5.51, p<.05 

T request for procedure  0.364, ns  0.305, ns 
T request for 
repeat/rephrase 

 0.465, ns  1.213, ns 

T casual statements  0.169, ns  0.019, ns 
T contradiction 
indication 

1.06E-03 
(6.06E-04) 

4.399, p<.05 1.12E-03 
(4.41E-04) 

7.064, p<.01 

S procedure statements 5.09E-03 
(1.94E-03) 

9.873, p<.05 6.05E-03 
(2.56E-03) 

6.972, p<.01 

S contradiction 
statements 

5.47E-03 
(1.63E-03) 

13.562, 
p<.001 

6.53E-03 
(2.35E-03) 

11.171, 
p<.001 

S casual statements  0.001, ns  0.054, ns 
 
Model Fit: R square 0.262 0.219 

a. Only predictors which significantly improves model fit at each step was 
retained in the final model. Therefore, coefficients and standard errors 
were estimated for these predictors only. 

b. Chi square reflects the change in model fit after each predictor enters the 
model.     
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2. Utterance-level analysis 

 In this part, only human codes are used due to the low reliability of machine codes at 

utterance level. The analysis is therefore based on the 60% of data that were coded. 

Utterance-level analysis aims to examine the immediate context of student explanations. 

It includes the following parts: 1. Examine the agent who was talking before a student 

produce an explanation; and 2. Examine the content of the utterance before a student 

produce an explanation.  

 Who is talking. Both student explanations and their non-explanations were equally 

likely to follow a teacher’s utterance. Overall, 80.75% of the utterances prior to a student 

explanation were produced by the teacher, whereas 76.90% of those prior to a student 

non-explanation were produced by the teacher. However, compared to student 

non-explanations, student explanations are more likely to follow another explanation 

(0.88% vs 8.04%).  

Table	  5.	  Categories of the utterance immediately precedes a student explanation or 

non-explanation.	  
Utterancen-1 
Utterancen 

Teacher utterance Student Explanation Student 
Non-Explanation 

Student Explanation 80.75% 8.04% 9.67% 
Student 
Non-explanation  

76.90% 0.88% 20.21% 

 

 Content of their talk. Utterances that immediately preceded student 

explanation/non-explanation were broken into words. Relative frequency was than 
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calculated by dividing the actual frequency of a word (i.e. count) by the total student 

explanation/non-explanation statements. Words with significant discrepancies between 

two relative frequencies (i.e. 2 standard deviation away from the mean discrepancy across 

all words) are shown in Figure 2. Among the 15 words that are more likely to occur prior 

to a student explanation than a non-explanation, 13 of them are mathematical 

terminologies (e.g. “equal” and “angle” etc.), while among the 17 words that are more 

likely to precede a non-explanation than an explanation, only 2 of them can be used as 

mathematical terminologies (i.e. “point”, and “zero”).  

	  

Figure	  2.	  Words with greatest discrepancy in their frequencies leading to an explanation 
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(Nex=3568) and a non-explanation (Nnon=29590) 

 

3. Classroom-level analysis 

 In this part, I will focus on the factors that predict the differences in the percent of 

student math explanations across classrooms. The percent of student math explanations 

per classroom is defined as the ratio between total number of student explanations and the 

total number of student utterances.  

 There are significant differences in the amount of student explanations in three 

countries, F(2, 229)=21.21, p<. 0.001. HK students (M=.0583, SD=.0466) and JP 

students (M=.0465, SD=.0422) both produced higher proportion of explanations than 

students in US (M=.0227, SD=.0145).  

 Linear regression was conducted separately within each country, and relationships 

between classroom features and proportions of students’ explanations were estimated. In 

each model, the length of classes was controlled by dividing the number of class features 

by the total time of that class. As shown in table 6, relationships between class features 

and amount of student explanation show both similarity as well as difference between 3 

countries. Looking first at commonalities, in all 3 countries, the more chance students get 

to talk (i.e. higher percentage of student talk time), the more explanations they produce. 

Other student related features (i.e. the amount of students’ procedure statements, 

contradiction indication, as well as their causal statements) do not have a significant 
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relationship with explanations in any of the 3 countries. As for differences, teacher’s 

procedure prompts predicts the amount of student explanations in HK, but not in JP or 

US. Teacher’s reasoning prompts and their language modeling of indicating contradictory 

opinions predict the amount of student explanations in JP not in the other 2 countries.  

Figure 2.3 further illustrated the relationship between teacher’s reasoning prompts, 

procedure prompts, language modeling of contradictions and the amount of student 

explanations.  

Table	  6	  Predicting amount of student explanations in 3 countries	  

 

% S explanation 

HK JP US 

Teacher’s procedure prompts 2.537 (1.138)* 1.365(1.990) 0.066(0.597) 

Teacher’s reasoning prompts 3.034(2.878) 4.797(2.25)* 0.182(1.148) 

Teacher’s causal statements 0.637(1.782) 7.079(4.919) 0.825(0.609) 

Teacher’s contradiction indication 0.824(1.527) 3.119(1.195)* 0.367(0.387) 

% Student talk time 0.366 (0.066) *** 0.291(0.051)*** 0.101(0.023)*** 

Students’ procedure statements 1.932(2.786) -0.333(3.269) 0.988(1.058) 

Students’ contradiction indication -1.254(5.114) 0.791(5.787) 2.116(1.607) 

Students’ causal statements 1.402(8.839) 1.122(11.060) 0.129(1.539) 

    R square 0.459 0.657 0.404 

Adjusted R square 0.411 0.59 0.34 
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Figure 3. Relationship between classroom features and proportion of student explanations 

in 3 countries. 

Discussion 

The current study explored the context of students’ mathematical explanations in 

8th grade classrooms. Results showed that at utterance level, both student explanations 

and non-explanations are more likely to be a response to teacher utterances than a 

response to other student utterances. However, student non-explanations are more likely 

to follow a non-explanation, while student explanations are equally likely to follow 

another explanation or a non-explanation. At the classroom level, machine-learning 

techniques, such as the Random Forest Algorithm, have sufficient power to reliably 
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predict total number of student explanations per class. Associations between classroom 

linguistic features and the amount of student explanations differ across countries. In 

United States, only the proportion of student talk time has a significant positive 

relationship with the amount of students’ math explanations produced (adjusted for total 

class length). In Hong Kong, both the proportion of student talk time and teacher’s 

prompts for problem solving procedures significantly predict the amount of student math 

explanations per class. In Japan, beyond the proportion of student talk time, teacher’s 

prompts for reasoning, as well as their language modeling of offering contradicting 

opinions possess significant positive relationship with the amount of student math 

explanations.  

The categorization of explanation and non-explanation was based on prior 

analysis of mathematical explanations (Hill et. al., 2008; CCSS, 2010; Duffy et al., 1986). 

Specifically, both functions as well as content of statements were used to determine 

whether it qualifies as an explanation. As for function, statements may be a medium for 

student interaction with peers and the teacher (e.g. communicating their math ideas or 

responding to others), or they can serve as self-explanations. As for content of the 

statements, they need to convey complete meanings on its own and contain one of the 

following information: a description of a procedure or a definition/rule; an analysis of the 

problem’s condition, including its givens, structures, and breakdown of the problem 

solving goals; a justification of one’s (or other’s) problem solving. The validity of such 
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categorization is justified by the agreement between human coders. As shown in table 3, 

there is high agreement between two independent human coders at both utterance level as 

well as classroom level. At utterance level, Cohen’s Kappa between two human coders is 

0.905, with a 95% confidence interval of (0.897, 0.913). According to Landis and Koch 

(1977), this value indicates almost perfect agreement. At class level, the correlations 

between the percentage of student explanations using codes from two human coders 

reaches 0.95, which again indicates almost perfect agreement.  

The agreement between algorithm prediction and human coder shows similar 

level of agreement at classroom level yet less satisfactory result at utterance level. The 

moderate agreement between human code and algorithm prediction (Cohen’s 

Kappa=0.608, 95% CI 0.594- 0.622) is significantly lower than the agreement between 

two human coders. This may due to the difficulty the algorithm may have locating an 

explanation within teachers’ conversational exchange with several students in a row. For 

example, in the following segment, human coders will only classify the first two student 

utterances explanations, as they were used to describe Jen’s problem solving process. The 

third statement, provided by Alex, however, was simply repeating teachers’ sentence and 

hence were not classified as an explanation. However, the algorithm recognizes all 

bolded statements as explanations, as the 2nd and the 3rd statements looked almost 

identical in the linguistic features.  

T: Ok next problem. What do you start with, Jen? 
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S: I start with 6  

T: Then you do what? 

S: 6 times x plus 2… 

T: Okay. Alex, were you listening? 6 times x plus what? 

S: 6 times x plus what… 

T: What would you do next? Plus 2 or minus 2? 

S: Minus 2.  

These classification errors, although they influenced utterance level accuracy, 

showed little impact on classroom level reliability. At the classroom level, the correlation 

between human codes and algorithm prediction reaches 0.93, which is similar in size to 

the correlation between two human codes. In summary, the total amount of student 

explanations obtained from the algorithm prediction and that from manual coding showed 

high convergence; thus the classification algorithm provide reliable information on this 

measure. 

This classification of student mathematical explanations, together 

with computerized processing, inform us about the students’ involvement in class, and 

has the potential to create meaningful feedback for teachers’ classroom discourse 

management. First, the amount of student explanations per class can inform teachers 

about their students’ involvement in mathematics. Recent work in teachers’ professional 

development (e.g. Pianta, Belsky, Houts & Morrison, 2007; Walkowiak, Berry, Meyer, 
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Rimm-Kaufman, & Ottmar, 2014) showed that providing teachers with feedback on how 

much their students were meaningfully involved in mathematics discussion could 

potentially help teachers to provide instructional support for students when needed. These 

support, including language modeling, encouraging analysis and inquiry, have potential 

to improve students’ learning outcome (Allen, Gregory, Mikami, Lun, Hamre, & Pianta, 

2013).  

Moreover, current results also indicated potential instructional strategies to 

encourage students’ mathematical explanations in classrooms. As shown in Table 2.6 and 

Figures 2.3, the overall quantity of student talk positively relates to the amount of 

explanations produced by students. Over and above the overall amount of student talks, 

however, teachers’ discourse features also positively predict the amount of student math 

explanations. These features include teachers’ request for procedure description or 

reasoning, and their indication of contradictory opinions. Teachers’ request for procedure 

and reasoning, or their how and why questions, may request their effort in using 

instructional discussions and activities to promote students higher-order thinking. Higher 

percent of such requests can result from frequent teacher questions or back-and-forth 

exchanges between the teacher and students, known as “feedback loops”(Pianta & Hamre, 

2009). Meanwhile, teachers’ use of contradictory indications may serve as feedback for 

students or an invitation for brainstorming of ideas (Hamre, LoCasale-Crouch, & Pianta, 

2008), it may also model how to propose different ideas and solutions in the classroom 
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(Yackel & Cobb, 1996). Higher percent of such features may reflect teacher’s effort to 

extend students’ learning through their responses to students’ ideas, comments, and work. 

It is also worth noticing that the amount of student mathematical explanations, as 

well as its relationship with teachers’ language features, differs across countries. 

Compared to HK and JP classrooms, the amount of student explanations in US 

classrooms is much lower. This result coincide with previous findings that not only US 

students get fewer opportunities to talk in classroom (Sims et al., 2008), and when they 

talk, they are less likely to be asked for explanations.  

As for the relationship between teachers’ language features and the amount of 

student explanations, current result suggest moderate positive relation between the two in 

both Japan and Hong Kong, but no significant relationship were detected between the two 

in the United States classrooms. These findings can be explained by the possible 

difference in teachers’ effectiveness in using instructional methods, specifically the 

richness of feedback and the effectiveness of teacher questioning. Prior research 

suggested that US teachers tend to only provide their students with feedback on the 

correctness of their answer rather than asking them to elaborate on their reasoning (Pianta, 

Belsky, Houts & Morrison, 2007). And when teachers do ask for elaborations, they vary 

in how persistent they are with such efforts as well as how successful they are to elicit 

student explanations. For example, in the following table, the teacher in Segment A asked 

the question “What is it”, which can be interpreted as either asking for a description of 
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the rule related to multiplication by 10, or a request for answer. In fact, after the student 

provided a numerical answer, the teacher did not further request an explanation, but 

described the rule him/herself. The teacher in Segment B, however, illustrated a very 

different way of questioning. After the student provided his observation, the teacher 

further probed him to think about whether his statement holds true, as well as the 

conditions under which his statement holds true. After the student provided an 

explanation, the teacher further emphasized the importance of reasoning practice.  

 

Table	  7.	  Different effectiveness in teacher’s use of questioning to probe student 

explanations 
Segment A Segment B 
T: All right, now, the (area of) rectangle.  

You shouldn’t need a calculator for this. 
When I take 18.84 times 10, all you got 
to do is do something with that decimal 
point. Alex, what is it? 

S: 188.4 
T: 188.4 what? 
S: Centimeters squared. 
T: Centimeters squared. When you 

multiply by ten, your number’s getting 
larger, so just move the decimal point 
one place because of the zero. All right. 
Find the total area of that figure so that 
means you need to add all the pieces 
together. 

T: What’s the angle here? 
S: 75 degrees. 
T: What about here? 
S:  75 degrees. 
T: What do you notice here? 
S: They are the same. The angles that face each 

other are the same.  
T: Ok. The angles face each other, or top-left and 

bottom right. Is that okay? Can we summarize it 
then?  

S: Yes. 
T: But why is that? Please think about why this 

holds true. 
S: The reasons? 
T: The reasons why this and this is the same. 
S: Because the lines are strait and they are parallel. 
T: You noticed a very good thing. People think 

isn’t it like this? But you need to think about 
why it holds true.  

 

Other explanations for the difference in relationship between teacher’s language 

features and student production of math explanations may include a) different classroom 
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norms across three countries, and b) different mathematics topics influence the nature of 

interaction. Yackel & Cobb (1996) proposed that what is considered as an acceptable 

mathematical explanation differs across classrooms. This normative aspect of 

mathematics discourse is almost never stated explicitly in a classroom, but established 

implicitly through teacher’s response to students’ input. Hence, teachers may direct 

students’ input as well as their attention to different directions. Secondly, different 

mathematics topics may also influence the nature of discussion. Within the current 

dataset, over 80% of Japanese lessons were focusing on geometry, compared to about 20% 

of such content focus in two other countries. Compared to other content areas such as 

arithmetic and algebra, problem solving in geometry makes the need for mathematical 

proof explicit (Bell, 1976; Maher & Martino, 1996; Shoenfeld, 1989). The differences in 

contents of classes across the three countries may therefore influence both how students 

approach the problems as well as teachers’ expectation for students interaction with 

mathematical content.   

Limitations of the study and future directions: 

One obvious limitation of the current study is that the analysis was based on a 

historical dataset. TIMSS videos were collected in 1999, and classrooms may have 

changed in the past 15 years. Change in educational policy (e.g. curriculum standards, 

teacher accountability policies) as well as new technology (e.g. computer and mobile 

devices, see Seol, Sharp & Kim, 2011 for example) may both influence teacher-student 
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interaction hence the quantity and quality of students’ explanations in the classroom. The 

current large-scale classroom-video collection effort (e.g. Bill and Melinda Gates 

Foundation, see Ho & Kane, 2013) can possibly inform us about the changes and the 

trends in classroom interactions.  

Another limitation of the current study involves the form of explanations. With 

the current dataset, I focused on students’ audible verbal explanations only. This means 

that students talk in private or small groups were not captured (i.e. inaudible) due to the 

limitation of recording. Students’ talk in pairs and in small groups can differ from how 

they talk in whole class discussions. When students work in small groups, their verbal 

expressions are more likely to be influenced by the nature of task as well as the peers 

than the teacher. They may be more likely to produce elaborated explanations when there 

is a disagreement within their group (Schwarz, Neuman, & Biezuner, 2000; Reznitskaya, 

& Geogory, 2013). Using classroom transcripts on focusing on verbal explanations also 

means that non-verbal information is beyond the current scope. Non-verbal information 

includes diagrams and other visuals students create, the tools they choose to use, and their 

gestures. Prior studies have shown that students’ thinking and reasoning happens in and is 

expressed through semiotic coordination between speech, body, gestures, symbol, and 

tools (Novack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014; Radford, 2009). 

Collecting and recording information from all such modalities is certainly challenging 

and usually requires one-on-one testing. Though hard to achieve in large scale classroom 
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observation, incorporating non-verbal information to verbal expressions will create a 

more comprehensive look of students’ productions of explanations, and providing 

teachers with more tools to improve students’ learning (Cook, Duffy & Fenn, 2013).  

Finally, the current study focused on the quantity of the explanations in 

classrooms, but the quality of these explanations can provide additional information 

regarding the quality of student math input in classrooms. In the same way that methods 

such as latent semantic analysis have proven to be effective at identifying the quality of 

written text (Landauer, Foltz & Laham, 1998), techniques such as word-spotting 

(Barnwal, Sahni, Singh & Raj, 2012) that look for instances of particularly important 

keywords hold promise for adding information about the quality of explanations to the 

methods used here.  

Summary 

The current study focuses on the contexts in which students produce mathematical 

explanations and the relation of explanations to achievement on the level of countries. In 

order to do this, I developed and validated a machine-learning system for identifying 

explanations in transcripts of lessons. This allowed me to look at two related questions: 1) 

Are there in fact fewer student explanations in US than in the higher achieving East 

Asian locales such as Japan and Hong Kong? 2) What factors predict the prevalence of 

student explanations, and do those predictors vary across countries? Through examining 

232 mathematics classes in Japan, Hong Kong, and United States, results suggest that 
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Japan and Hong Kong lessons feature more student explanations than US lessons do. 

Also, teacher’s request for procedure, reasoning, as well as their language modeling of 

providing contradicting opinions positively predicts the number of student explanations 

in Hong Kong and Japan, while in US the only factor relates to student explanations is 

the portion of student talk per class.  

These differences in the amount of student mathematical explanations, as well as its 

relationship with teachers’ language features across nations, may indicate variant 

emphasis of student explanations across nations, as well as cross-national differences in 

effectiveness of instructional practices. One reason for this difference may be that 

teachers in the East Asian settings were more stringent in what they accepted as an 

adequate explanation. 
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Chapter 3 

Quality of mathematical explanation generated by Chinese and US 

elementary students: The case of mathematical equivalence 

 

Student explanation can provide learners the opportunity to work through their 

understanding and learn from ideas of others. The quality of student explanations varies, 

and there is evidence that it is a challenge for many teachers to have a proper expectation 

about the quality of student explanations and therefore establish the standards for 

acceptable mathematical explanations in classroom discussion. The current study aims at 

exploring the quality of mathematical explanations students produced in an inter-personal 

setting, with regard to mathematical equivalence. The goal of this study is to determine  

(a) quality of student explanations when they need to describe a solution 

(b) quality of student explanations when they need to justify their reasoning 

(c) quality of student explanations when they need to draw connections between 

representations 

Before describing the ways to achieve above specific goals, I will first discuss, 

(1) why producing mathematical explanations is important for learning, (2) research on 
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quality of mathematical explanations, (3) what kinds of variation we might expect for the 

quality of student explanations across different problem contexts.  

1. Producing mathematical explanation benefits learning 

The importance of student explanations in mathematics has been part of 

mathematics standards for several decades. NCTM’s (1989, 2000) Standard for 

Communication stresses the central role of student communication in mathematics 

instruction, arguing that instructional programs should help students to organize and 

consolidate their mathematical thinking as well as to analyze and evaluate the thinking 

and strategies of others. Ball (1991) provided a good discussion of the rationale behind 

the earlier version of this standard, arguing that questions such as who talks, how they 

explain their ideas, and the kinds of evidence that is encouraged or accepted all are 

central to defining the nature of classroom mathematics.  

The importance of student-generated explanations is also supported by two 

decades of cognitive research. In the initial study, Chi, Bassok, Lewis, Reimann, & 

Glaser (1989) found that high achieving physics students differed from their less 

successful peers in generating what the researchers termed “self-explanations,” 

elaborations of what they learned that attempted to fit it into a larger context. Chi, de 

Leeuw, Chiu, and LaVancher (1994) found that simply prompting 8th graders periodically 

to “explain what it means to you” led to significantly increased learning. More recently. 

Rittle-Johnson (2006) included self-explanation instructions in a mathematics learning 
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task that also compared both direct instruction or invention. Under both instructional 

conditions, self-explanations led to increased learning of a correct procedure and transfer 

to new problems. Chi, Siler, Jeong, Yamauchi, & Hausmann (2001) compared learning 

by college students in tutoring sessions that varied in the degree to which tutors provided 

didactic information or asked leading questions to encourage the tutees to figure the 

problems out on their own. Results strongly favored the latter format.  

Despite the benefits of generating mathematical explanation stated both in Standards 

and through research evidence. Consistent pattern of lacking discussion and student 

explanation in US classroom mathematics instruction has emerged from both direct 

observation (e.g., Hiebert et al., 2005; Stake & Easley, 1978; Stigler, Gonzalez, 

Kawanaka, Knoll, & Serrano, 1999; Stodolsky, 1988) and teacher self-report (e.g., 

Grouws, Smith, & Stajn, 2000; Weiss, Banilower, McMahon, & Smith, 2001).  

Decipher quality of mathematical explanations 

Previous research on self-explanation has proposed several features that 

differentiate successful learners from unsuccessful ones. Self-explanation is typically 

examined in student’s learning of worked-examples (Chi et al., 1989; Renkl, 1997, 2002; 

Siegler 2002). Renkl (1997) found that the quality of self-explanation is significantly 

related to learning outcome, even after controlling for time on task. Quality of 

explanations produced by successful and unsuccessful learners differ in the following 

aspects. 1) The successful learners frequently assigned meaning to operators by 
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identifying the underlying domain principle (principle-based explanations). 2) They 

frequently assigned meaning to operators by identifying the (sub-) goals achieved by 

those operators (explication of goal–operator combinations). 3) They tended to anticipate 

the next solution step instead of looking it up (anticipative reasoning). 4) The less 

successful learners described a greater number of comprehension problems, that is, they 

had metacognitive awareness of their own learning difficulties (metacognitive 

monitoring). Renkl further illustrated that successful learners did not necessarily show all 

characteristics which related to better learning outcome. Instead, he identified two types 

of successful learners: principle-based explainers and anticipative reasoners. 

Principle-based explainers concentrated their self-explanation efforts on the assignment 

of meaning to operators, both by principle-based explanations and by explicating goal–

operator combinations. They did not frequently anticipate solution steps. The anticipative 

reasoners, however, refrained from many principle-based explanations and from the 

repeated explication of goal–operator combinations, yet they anticipated solution steps 

extensively (Renkl, 1997). 

Students’ self-explanations occur in individual work settings, especially when 

they experience an interruption in some aspect of comprehension (Leinhardt, 1993, 2010). 

These explanations are constructed to serve the needs of the self; thus language can be 

internal, fragmentary, and colloquial as well as fuzzy. Usually, the goal of a 

self-explanation is to link a current piece of information (in a text, figure, or speech) with 
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an understood self-defined learning goal. The internal and private nature of 

self-explanation make them distinct from the explanations students are expected to give 

in group work as well as classroom discussion settings.  

Explanations in interpersonal settings, such as within a small group or in whole 

class discussion, have different requirements than do students’ self-explanations. These 

include awareness of audience, formality of language and the purpose of speech, just to 

name a few. Implicit assumptions need to be made explicit, representations need to be 

explicitly mapped, and the central query that guides the explanatory statements need to be 

identified. Students may also be requested to replace informal colloquial forms of 

language and understanding with more formal disciplinary ones in the interest of 

improving learning. In such interpersonal settings, students’ production of explanations 

show similarities with instructional explanations, although the latter are typically 

expected from teachers and learning material (i.e. textbook).  

Prior work on the quality of instructional explanations also provided insights on 

evaluating quality of student math explanations. For example, Duffy et al (1986) 

identified three characteristics of effective instructional explanation. Firstly, an effective 

explanation needs to contain all three types of knowledge: declarative, conditional, and 

procedure. It needs to identify the task, its characteristics and structure. It also needs to 

state when and why a strategy should be used. And it needs to provide information about 

how to apply a strategy. Secondly, an effective explanation needs to be precise and 
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explicit. It needs to be definitely stated and clearly expressed so that students become 

aware of the lesson content. Finally, an effective explanation needs to be presented within 

a meaningful framework. Duffy and colleagues’ emphasis on precision and meaning 

making is reflected in Hill and colleagues’ evaluation of Mathematical Quality of 

Instruction (MQI). MQI (Hill et al., 2008) listed both accuracy and richness as two 

dimensions to consider while evaluating teachers’ interaction with mathematical content. 

In their coding instrument, Mathematical Quality of Instruction, mathematical accuracy 

refers to the absence of mathematical errors and distortion of mathematical content. Lack 

of mathematical accuracy may result from gaps in one’s mathematical knowledge, the 

imprecision in language and notation, or a lack of clarity in the presentation of 

explanation. Mathematical richness contains two elements: attention to the meaning of 

mathematical facts and procedures and engagement with mathematical practices.  

In sum, prior efforts in evaluating self-explanation and instructional 

explanations indicated that mathematical precision, meaning making and connection 

building, use of anticipatory reasoning, and rule-based generalizations are characteristics 

of high-quality mathematical explanations. 

2. Variability in the quality of students’ explanations 

Explanations may take different forms, and each form carries different demands. 

For example, Hill, Schilling & Ball (2004) differentiated 3 forms of a mathematical 

explanation: description, argumentation, and justifications. The descriptions provide 
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characterizations of the steps of mathematical procedure or a process, but they do not 

necessarily address the meaning or reason for these steps. Argumentation gives 

mathematical meaning to ideas or procedures. Argumentation may involve the use of 

examples and counter-examples, estimation or approximation, as well as evaluating 

reasonableness through substituting and real-world knowledge (Kilpatrick, et. al., 2001). 

Justification includes deductive reasoning about why a procedure works or why 

something is true or valid in general. Recent efforts in the development of mathematical 

argumentation proposed that students first learn to describe their solutions. Then they 

learn to provide examples that support an argument. This is not to say that a positive 

example is easy to find, but just that it is easier to use. Next, students may learn to 

identify falsifying cases and counterexamples; this would be followed by informal 

methods of direct proof, and finally by a variety of formal proof methods (Graf, 2009; 

Bennett, 2010; Sireci, 2013). However, this proposed sequence of stages is still very 

loose, and it is expected that there would be significant variation across different tasks 

and problems. For example, some false statements may have counterexamples that are 

difficult to identify, and some true statements may be very straightforward to verify 

directly. Similarly, although students may be more comfortable using simple language to 

make mathematical observations early on, developing an extended verbal argument is 

more demanding than producing a simple diagram.  

Students’ mathematical knowledge and competence also influence the quality of 
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their explanations. Misconceptions often lead to inaccurate explanations, although 

students may create “mal-rules”, or incorrect rules, to justify their solutions (e.g., Payne 

& Squibb, 1990; Resnick, Cauzinille- Marmeche, & Mathieu, 1987; Sleeman, 1984). For 

example, Lee and Wheeler (1989) presented students with several algebraic statements 

and asked them to determine whether a given statement was definitely true, possibly true, 

or never true—students were also asked to justify the response. One of these statements 

was as follows: 

(a2 + b2)3 = a6 + b6 (Lee & Wheeler, 1989, p. 42)  

Half of the 10th-grade students queried believed this statement was true; the 

following was among the justifications that were provided: 

“ This statement is definitely true. There are several laws in dealing with exponents. 

And the one that applies here is you multiply the number (outside the bracket) with those 

exponents inside the bracket. You don’t add them like you normally do. If you had an 

example like a2 + a3 you add them so you get a5 but the brackets tell us to multiply.” (Lee 

& Wheeler, 1989, p. 42) 

In sum, explanations may take different forms and each creates various levels of 

demands for students. On the other hand, the quality of students’ explanations is also 

influenced by their understanding of mathematical content.     

3. The current study 
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The current study explored the quality of students’ explanations in the context of 

mathematical equivalence. The concept of mathematical equivalence, i.e. the principle 

that the sum of the numbers on one side of an equation is equal to the sum of the numbers 

on the other side of the equation, is fundamental to understanding algebra, which in turn 

serves as a gatekeeper for future educational opportunities and has an important role in 

mathematics. However, this concept does not come easily. Rittle-Johnson, Taylor, 

Matthews & McEldoon (2011) found that 70% or more of a sample of 3rd to 6th grade 

students in US misunderstand the principle of mathematical equivalence. Given a 

problem such as  “4+6+9=__+9”, they will calculate “4+6+9” and fill in the blank with 

the answer “19”. Some children will continue with “19+9” and get “28” as the answer 

(Alibali, 1999). In both cases, children appear to be interpreting the equal sign as an 

announcement of the result of an arithmetic operation rather than as a symbol of 

mathematical equivalence. Moreover, many middle school students still lack a 

sophisticated understanding of the equal sign, which resulted in difficulties in working 

with symbolic expressions and equations (Knuth, Stephens, McNeil, & Alibali, 2006).  

Mathematical equivalence comes up in the daily practice of elementary math 

classrooms, often in the context of equation solving and word problems (Pepin & 

Haggarty, 2001; McNeil, et al., 2006; Newton & Newton, 2007). The meaning of the 

equal sign is typically defined in textbooks (Mayer, Sims, & Taijka, 1995). The 

availability of examples and definitions provides a foundation for students to build their 
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explanations upon. Therefore, I expect that elementary students in the current study will 

be able to provide explanations, although the quality of their explanations may vary 

depending on students’ understanding of the particular mathematical content.  

To tap into the different types of explanations students may provide, three 

different tasks were adopted to elicit explanations. These tasks include equation solving, 

equation judgment, and problem posing. Equation solving task requires students to 

calculate an unknown number in an equation (e.g. Rittle-Johnson, et al., 2011). 

Explanations for this task may involve their description of their procedure as well as 

justification of their procedure. The equation judgment task requires students to judge the 

correctness of a worked example. Students may utilize examples or counter-examples, 

estimation or approximation, evaluating reasonableness through substitution, as well as 

using formal proof (e.g. Lee & Wheeler, 1989). The problem-posing task asks students to 

propose a word problem base on an equation. It requires the specification of the 

connections across representations (i.e. an equation and a real-life situation, e.g., Silver, 

1979; Singer, & Voica, 2013; Singer, Ellerton, & Cai, 2013).    

  

Method 

Participants  

Sixty Chinese (including thirty 2nd graders and thirty 4th graders) and 48 US 
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elementary school students (including twenty-four 2nd graders and twenty-four 4th graders) 

participated in the study. Chinese students were recruited from an elementary school 

located in a suburb of Beijing, and US students were recruited from public schools in 

southeast Michigan. All Chinese children were Mandarin speakers, and all US children 

have English as their first language. Parental permission to participate was obtained for 

all children. 

Procedure 

Students were interviewed individually in their native language by an 

experimenter. Interviews took place in a separate room in the child's own school lasting 

for approximately 15–20 min and were videotaped. During the interview, students were 

asked to solve on a white board the following mathematical equivalence problems. They 

were also requested to explain their solution as if they were explaining it to their peers. 

Students were encouraged to generate solutions and provide explanations, but no 

feedback was given regarding the accuracy of their solutions and explanations. 

Tasks. Three types of tasks were used in the study: Equation solving, Equation 

judgment, and Problem posing.  

For Equation solving tasks, students were presented with several equations 

with blanks in them, one at a time. They were asked to fill in the blanks as well as to 

explain the meaning of the equal sign and how they figured the answer out. Table 8 
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shows the problems used in this task. 

In the Equation judgment task, students were presented with a solved equation, 

“3+4+5=3+15”. They are told that this was another child’s answer to the problem 

“3+4+5=3+?”, and are also told that this other student got his answer by adding 3, 4, 5, 

and 3, which led to 15. They were asked whether they think 15 should go into the blank, 

and how would they explain their thoughts to this other student.  

Table	  8.	  Items used in equation solving task	  

Grade Items 
2 9 = _?_ + 5 

7 + 6 + 5 = __ +5 
76 + 9 = 76 + 4 + _?_ 

4 7 + 6 + 5 = __ +5 
4 + 5 + 9 = 4 + _?_ 
3 + 8 = 3 + _?_ + 7 
9 + 9 = _?_ + 5 + 4 

76 + 9 = 76 + 4 + _?_ 

After finishing the above two tasks, children were asked to make up a story 

problem based on a given equation. The equation “7=?+4” was used for second graders, 

and “7+3+5=7+ ? ” was used for forth graders.  

Coding 

For all tasks, children’s failure to provide any answer or explanation were 

grouped into a “No Response” category, and the response types that were not sufficiently 

frequent to warrant their own codes were grouped into an “Other” category. 

Equation solving. For equation-solving items, we coded the response along two  

dimensions: understanding of the equal sign, and strategies. Students’ understanding of 
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equal sign were coded as relational, operational, no response, or other, with the majority 

of responses falling into the first two categories. A response was coded as relational if a 

student expressed the general idea that the equal sign means “the same as”, and as 

operational if he/she expressed the general idea that the equal sign means “the answer” or 

“add the numbers”. This dimension reflects the mathematical accuracy of student 

explanations. 

Students’ problem solving strategies were coded as “add all”, “add left”, “add 

and subtract”, “cancel”, “equalize”, and “other”, with the majority of responses falling 

into the first 5 categories. A strategy was coded as “add all” if a student put the sum of all 

numbers on the blank. For example, a student answered 22 for the question “7+3+5=7+_” 

by attempting to add all four numbers together. A strategy was coded as “add left” if the 

student adds all the numbers left to the equal sign. In previous example, a student 

applying “add left” strategy will attempt to put the answer of 7+3+5 on the blank. A 

response was coded as “add and subtract” if the student adds the numbers on the one 

sides of the equal sign then subtract the numbers on the other dies. In previous example, a 

student using this strategy will explain that 7+3+5 is 15, and then subtract 7 on the right 

on the equation from 15 to get the answer 8. A response was coded as “cancel” if the 

student ignores the same number on both sides of the equation and only do the rest. In 

previous example, a response will be counted as “cancel” if the student directly add 3+5 

and put the answer 8 in the blank, whether or not he/her explains why 7 can be ignored. 
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Finally, a response was coded as “equalize” if the student explained that the number in 

question could make the two sides equal but did not provide explicit calculation. “Other” 

strategies usually involved student’s picking two random numbers from the equation and 

adding them up. Using effective strategies, including cancel, equalize, and add and 

subtract, rather than ineffective ones, reflected the accuracy of student explanations. 

Students’ use of more than one strategy, and comparison between strategies reflected the 

mathematical richness of their explanations. 

Equation judgment. For equation judgment task, the accuracy of the 

explanation is defined by students’ operational or relational reasoning about the equal 

sign, and the mathematical richness of the explanation is based on evaluations of their 

justifications. A justification is considered as answer-based if the child identified another 

value to fill in the blank or expressed agreement with the value offered in the problem, 

procedure-based if the student expressed agreement or disagreement with the procedure 

used in the problem, and principle-based if the student explicitly talked about the 

definition of the equal sign (e.g. “It means the two sides are the same rather than to add 

everything up”, “the number on the blank cannot make the two sides equal to each 

other”).    

Problem posing. Students’ representations of equal sign in their story problems 

were coded. Table 9 described the codes we used. This code reflects the accuracy 

dimension of explanation quality. Specifically, the explicit or implicit equivalent 
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relationship, as well as “equivalence after arithmetic processing”, indicated no major 

conceptual flaws in one’s explanation, whereas “total” and “total of the left side” 

reflected a gap in the explainer’s understanding of mathematical equivalence.  

Table	  9.	  Codes used in problem posing	  

Category Description Example Accuracy 
Explicit 
Equivalent 
Relationship  

The subject explicitly 
indicated two quantities 
being the same. 

Sam has 7 apples, 3 pineapples, and 5 
pears. Dave has the same amount of 
fruit as Sam, but he only has oranges 
and pears. If Dave has 7 oranges, how 
many pears does Sam have? (Original 
equation: 7+3+5= 7+_?_) 

No major 
flaws 

Implicit 
Equivalent 
Relationship 

The story suggested two 
equivalent amounts (e.g. 
cost=payment) without 
explicitly statement about 
the two amounts being 
the same. 

John had 7 jellybeans. He then gave 4 to 
Ashley. How many jellybeans does John 
still have? (Original question: 7= _?_ 
+4) 

Equivalence after 
arithmetic 
processing 

The subject canceled out 
the same item on both 
sides of equation and then 
generated a story problem 
according to the 
processed equation.  

Xiaoming bought himself pencils, pens 
and a pencil box. He spent 7 yuan for 
pens, 3 yuan for pencils, and 5 yuan for 
the pencil box. How much do the 
pencils and the pencil box cost in total? 
(Original equation: 7+3+5= 7+_?_) 

Total  The story request adding 
all the numbers in the 
equation. 

I had 7 candies. Then dad gave me 
another 4. How many candies do I have 
now? (Original question: 7= _?_ +4) 

Flaws in 
understanding 
mathematical 
equivalence Total of the left 

side 
The story request adding 
all the numbers on the left 
side.  

Seven cars passed by. Then another 3 
coming, and later comes another 5. How 
many cars in total have passed by? 
(Original equation: 7+3+5= 7+_?_) 

Non Sense The story does not make 
any sense in real life. 

I have 7 apples and 4 pears. How many 
oranges do I have? (Original question: 
7= _?_ +4) 

 

Inter-rater reliability. Children’s responses were coded by two independent 

coders and showed good to excellent reliability. For equation solving task, the Cohen’s 

Kappa on each item ranged from 0.93 to 1 for the accuracy of student explanations, and 
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ranged from 0.81 to 0.93 for their strategy usage. As for the justification and 

representations of equal sign in story problems, the Cohen’s Kappa was 0.96 and 0.88 

respectively. 

Results 

Equation solving task 

Overall, US students provided accurate explanations on a bit over half of the items 

(4th grader: M=0.59, SD=0.46; 2nd grader, Mean=0.51, SD=0.33). Their explanations 

were significantly less accurate than those of their Chinese peers (4th grader: M=1.00, 

SD=0.00; 2nd grader, Mean=0.93, SD=0.20), F(1,104)=4.568, p<.001. Yet no significant 

difference between 2nd and 4th graders was found in accuracy of their explanations. 

Examples of inaccurate explanations include: 

“Add all the numbers. That’s how you get the answer.” (A US second grader) 

“You don’t add the last number because it doesn’t matter. Just add the ones on the 

left (of the equal sign).” (A US fourth grader) 

In contrast, the following students’ explanations are considered to be accurate, 

“You add the left first. Then you need to think five add what equals to that 

number.” (A US fourth grader) 

“It is a plus sign on this side, so you change it into minus sign when you move it 

to the other side.” (A Chinese fourth grader, translated)  
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“Five is on both sides. That’s already the same. So you only need to look at the 

rest.” (A Chinese second grader, translated) 

Next, I examined the richness of students’ explanations. For this task, this aspect 

is reflected through the number of strategies students reported to solve the problem. As 

shown in table 10, on average, students tend to report more than one strategy. This does 

not necessarily mean that students typically describe more than one strategy on a single 

item, but that they report different strategies across items. Among all effective strategies, 

US students are more likely to use “equalize” strategies, while Chinese students are more 

likely to describe “add then subtract” and “cancel” strategies (χ²=39.46, p<.001). Also, 

increased use of “cancel” and “add then subtract” strategies from 2nd to 4th graders was 

only evident among Chinese students, but not their US peers (χ²=44.42, p<.001). Students’ 

use of ineffective strategies also differ by country and grades (χ²=23.54), as shown in table 

11.  

Table	  10.	  Number of effective and ineffective strategies reported by students	  

 
Grade 2 

# of effective strategies used 
One strategy Two strategies Three or more strategies 

Explanations accurate 14 16 1 
Explanations mixed 15 3 0 
Grade 4 
Explanations accurate 25 15 1 
Explanations mixed 4 1 0 

 

 
Grade 2 

# of ineffective strategies used 
One strategy Two strategies Three or more strategies 

Explanations inaccurate 1 1 2 
Explanations mixed 12 6 0 
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Grade 4 
Explanations inaccurate 3 4 1 
Explanations mixed 4 1 0 

 

 

Table	  11. Children’s reported strategies in equation solving tasks	  

 China USA 
2nd graders 4th graders 2nd graders 4th graders 

Effective 
strategies 

Add-subtract 41 66 16 9 
Cancel 20 58 26 22 
Equalize 17 18 12 42 
Effective 
strategy total  

78 142 54 73 

 Country×Grade×Strategy: χ²=44.42 *** 

Control for Grade, Country*Strategy: χ²=39.46 *** 

Control for Country, Grade*Strategy: χ²=21.44 *** 
Ineffective 
strategies 

Add left 11 7 9 15 
Add all 1 1 8 26 
Others 1 4 10 2 
Ineffective 
strategy total  

13 12 27 43 

 Country×Grade×Strategy: χ²=23.54 ** 

Control for Grade, Country*Strategy: χ²=19.36 *** 

Control for Country, Grade*Strategy: χ²=21.44 * 
* p<.05;   ** p<.005;   *** p<.001 

Equation judgment task 

The accuracy of students’ explanations in equation judgment task is similar to 

that in equation solving task. As shown in table 12, Chinese students outperformed US 

students, χ²=41, p<.001. The mathematical richness of explanations in the equation 

judgment task is reflected through how students built their arguments. There are three 

ways of argument development. Examples for answer-based argument is as following, 
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“I got the same answer.” (A US second grader) 

“He’s wrong. I got a different number.” (A US second grader)  

Compare this to procedure-based arguments, 

“You can’t add everything like this. You add some, then stop.” (A US fourth 

grader) 

“I won’t add these numbers up. It is an equal sign, not a plus sign. He can’t treat 

it like a plus sign.” (A Chinese second grader, translated) 

And principle-based argument, 

“Well if an answer is right, you should get the two sides to be equal when you 

put that answer back. But here the right side is bigger.” (A Chinese fourth grader, 

translated) 

“You need to get the same sum for both sides.” (A US fourth grader) 

“He can’t exchange the plus sign and the equal sign. They mean different things.” 

(A US second grader) 

Students tend to combine multiple types of arguments to support their judgments. 

On average, each student provided 1.54 arguments. Chinese students provided more 

arguments (M=1.83, SD=0.52) than their US peers (M=1.17, SD=0.37), F(1, 104)=59.73, 

p<.001. Further, log-linear analysis suggested that students from two countries also differ 

in the types of arguments they provided. Compared to US students, Chinese students 
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were more likely to provide principle based justification, while US students tend to 

provide a procedure based argument (χ²=12.8, p<.05).  

 

Table	  12	  Accuracy and richness of student explanation in equation judgment	  

Aspects  Codes  China US 
2nd  4th  2nd  4th  

Accuracy Inaccurate 3 1 18 11 
Accurate 27 29 6 13 

χ² Country×Grade×Accuracy: χ²=44.56 *** 
Control for Grade, Country*Accuracy: χ²=41 *** 
Control for Country, Grade*Accuracy: χ²=5.46 + 

Mathematical 
richness 

Answers 22 16 5 3 
Procedure 22 21 21 13 

Principle 15 14 4 10 

χ² Country×Grade×Understanding: χ²=14.98, * 
Control for Grade, Country*Understanding: χ²=12.8 * 
Control for Country, Grade*Understanding: χ²=5.2, ns 

	  

Table	  13	  Accuracy of student explanations in problem posing task	  

Accuracy Codes China US 
2nd grader 4th grader 2nd grader 4th grader 

Accurate Explicit Equivalent 
Relationship  

1 4 0 7 

Implicit Equivalent 
Relationship 

19 7 10 2 

Equivalence after 
arithmetic processing 

0 11 0 3 

Inaccurate Total  2 0 3 7 
Total of the left side 3 7 4 2 
Non Sense 3 1 4 1 

 χ² aCountry×Grade×Accuracy: χ²=8.56, ns 
Control for Grade, Country*Accuracy: χ²=4.86, ns 
Control for Country, Grade*Accuracy: χ²=3.74, ns 

a. Analysis was based on the aggregated number of accurate or inaccurate 

explanations 
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Problem posing task 

In the problem posing task, explanations take the form of representation 

mapping. Accuracy of explanation in this task refers to whether the word problem 

students created reflect the mathematical relationship between numbers and operations in 

the original equation. Overall, students provided similar amounts of accurate explanations 

as inaccurate ones (as shown in table 13). And loglinear analysis revealed no country or 

grade differences in the accuracy of students explanations in this task.  

	  

Discussion 

The current study explored the quality of elementary students’ mathematical 

explanations in the context of mathematical equivalence. Results indicated that 

elementary students could verbalize their thoughts and provide explanations when 

requested to, although the quality of explanation varies across grades and countries, as 

well as is influenced by the task demand. 

The three tasks adopted in current study were aimed at eliciting different forms 

of explanation, namely explanation as descriptions, explanation as argument and proof, 

and explanation as building links across representations (Hill et al., 2008). Both the 

accuracy and the mathematical richness of each explanation was coded (Duffy, Roehler, 

Meloth, & Vavrus, 1986; Hill, Umland, Litke, & Kapitula, 2012). The reliability of the 

coding system was supported by high inter-rater agreement across all tasks. 
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The accuracy of students’ explanations is limited by students’ understanding of 

the mathematical content. In the current study, about half of the US students defined the 

equal sign as an indication of the end of operation. This finding is in agreement with 

previous research that operational understanding of the equal sign is prevalent among the 

US elementary or even middle school students (e.g., Knuth, Alibali, Hattikudur, McNeil, 

& Stephens, 2008; Knuth, Stephens, McNeil, & Alibali, 2006; Rittle-Johnson, Taylor, 

Matthews, & McEldoon, 2010). On the other hand, Chinese students in the current study 

displayed more accurate explanations, interpreting the equal sign as a balance between 

quantities in an equation, i.e. balance between both sides of the equal sign. These 

differences in explanation accuracy between students from the two countries may result 

from different instructional materiasl as well as instructional practice (Confrey & Stohl, 

2004; Reys et al., 2004). For example, Chinese and US teachers have different tolerance 

about students’ having two different values on each side of an equal sign (Ma, 1999; 

Ding & Li, 2006; Li, Ding, Capraro & Capraro, 2008). US teachers are more likely to 

accept student work like “3 + 3×4 =12 = 15,” because in the U.S. the order of operations 

is paramount and the focus is on whether or not students are able to get correct answers 

(Ma, 1999). In fact, U.S. teachers themselves pay little attention on their equation solving 

demonstrations, and made errors such as writing 360÷4=90×3=270 on the blackboard or 

overhead (Ding & Li, 2006). 

  As for mathematical richness, students tend to engage in certain meaningful 
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mathematical practices when requested to. The types of mathematical practice they 

engage in vary across tasks. For example, when students were explaining their own 

answer, they tended to focus exclusively on the reasonableness of arithmetic operations, 

making explicit statements regarding the order of arithmetic operation. They tend to not, 

however, substitute their answer back into the equation to check its correctness. 

Meanwhile, when they were given a worked out solution and were asked about its 

correctness, students may use both forward as well as backward reasoning in their 

explanations. That is, they may choose to follow the procedure described in the given 

solution, as well as choose to substitute the answer into the original equation.  

Mathematical richness also differed between American and Chinese students. In 

equation solving tasks, US students are more likely to state an answer without explicitly 

presenting the procedure (i.e. “equalize” strategy), while Chinese students are more likely 

to report step-by-step arithmetic operations (i.e. “add then subtract”), or discuss possible 

shortcuts (i.e. “cancel” strategy) when applicable. Such differences may reflect one of the 

two possibilities. The first possibility is that students in two countries do not differ in 

their ability to offer mathematical explanations of the same richness, but that what counts 

as a mathematical explanation differs in US and Chinese classrooms. The second 

possibility is that due to different instructional practice and therefore experience, US and 

Chinese students differ in their abilities in providing explanations of mathematical 

richness. The current study cannot differentiate the two possibilities, yet previous large 
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scale classroom observational studies seem to indicate that there is a lack of explanation 

requests in US classrooms. Studies have shown that US lessons tend to focus on: 

low-level rather than high-level cognitive processes (i.e., memorizing and recalling facts 

and procedures rather than reasoning about and connecting ideas or solving complex 

problems), asking students to work alone (with little opportunity for discussion and 

collaboration), focusing attention on a narrow band of mathematics content (i.e., 

arithmetic in the elementary and middle grades), and doing little to help students develop 

a deep understanding of mathematical ideas (rarely asking for explanations, using 

physical models, or calling for connections to real world situations) (Hiebert, et al., 2005; 

Stake & Easley, 1978; Stigler, Gonzalez, Kawanaka, Knoll, & Serrano, 1999; Stodolsky, 

1988). 

It is worth noticing that although accuracy and mathematical richness are two 

important aspects of the quality of mathematical explanation, some other factors also play 

a role. For example, Berland and others (Berland & McNeil, 2010; Alonzo, & Gotwals, 

2012; Song, Deane, Graf, & van Rijn, 2013) proposed that social and discourse 

dimensions would also influence the quality of an argument. The social dimension refers 

to students’ realization about the need to persuade another person, their effort in making a 

persuasive appeal, as well as their metacognitive awareness of such effect. The discourse 

dimension refers to the organization and presentation students used to frame his or her 

case. These dimensions are beyond the scope of the current study, as they focus more on 
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the generic characteristics of any explanation rather than being specific to the content of 

mathematics.   

Finally, although the current study involves students’ production of 

mathematical explanation in an interpersonal setting (i.e. student with an interviewer), it 

still differs from the interpersonal environment of a math classroom in terms of the 

audience as well as the (lack of) instructional purpose. Segments of student discussions 

from classroom observation/recordings maybe utilized to further explore the quality of 

students’ mathematical explanations in action, although one should be cautious in 

controlling class mathematical content as well as the nature of problems presented. 
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Chapter 4.  

Consider the source: Children’s processing of peer and adult 

explanations of mathematical equivalence 

 

 

For more than 20 years, the National Council of Teachers of Mathematics 

(NCTM, 1991, 2000) has argued that student explanations of mathematics are a vital part 

of effective classroom lessons. In describing how mathematics classrooms should 

function, they note: 

“Like a piece of music, the classroom discourse has themes that pull together to create a 

whole that has meaning. The teacher has a central role in orchestrating the oral and written 

discourse in ways that contribute to students' understanding of mathematics… 

One aspect of the teacher's role is to provoke students' reasoning about 

mathematics...Instead of doing virtually all the talking, modeling, and explaining themselves, 

teachers must encourage and expect students to do so. Teachers must do more listening, students 

more reasoning.” (NCTM, 1991: 35-36). 

Despite this clear and longstanding advice, the realities of American mathematics 
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classroom reveal a quite different picture. For example, the 1999 TIMSS video study 

revealed that student talk occupies less than 20% of class time (Roth et al., 2006). 

Looking specifically at explanations, Sims et al. (2008) found that the discourse that 

American elementary students produce during mathematics lessons consisted primarily of 

fragments, such as answering “4” to questions such as “what is 2 + 2?”, with many fewer 

opportunities to provide explanations than their peers in Beijing have. 

Why might this be? Our informal conversations with teachers have revealed an 

interesting argument about the possible limitations of student explanations. In this view, 

although it is useful for students to have the opportunity to explain what they understand, 

this comes at a cost to the rest of the class. Because student explanations are likely to 

contain errors and to be fragmentary, they may mislead or confuse the rest of the class. 

Thus it may be better for the teacher to take on the role of explainer, because she is more 

likely to provide a complete and accurate explanation. 

In order to determine the utility of student vs. teacher explanations, we need better 

data on how students make sense of mathematical explanations provided by students 

compared with adults. After reviewing past research on the role of self-explanations in 

learning and the processing of lucid vs. difficult explanations, we will report a study that 

looked at how students process different kinds of explanations about mathematical 

equivalence from adult and child explainers. 
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The role of self-explanation in learning 

The relation between the quality of teacher explanations and student learning is 

neither as clear nor as direct as one might hope. For example, VanLehn et al. (2003) 

examined how tutors’ explanations of different types and quality may influence students’ 

learning gains through tutoring sessions and discovered no significant relationship 

between the two. Furthermore, Chi et al. (2001) demonstrated that students’ learning 

outcome was not impaired when the tutorial explanations were removed altogether.  

A possible explanation for this puzzling gap may lie in research on the importance 

of self-explanations, i.e., explanations generated by the learner. Self-explanations are 

related to deep processing and better learning outcomes (e.g., Chi et al. 1994; McNamara 

2004), even when their self-generated explanations are fragmented (Roy & Chi, 2005) or 

incorrect (Renkl, 2002). For example, students learned more when they generated 

explanations on a standardized achievement test regardless of their scores on the test. 

Even after controlling for students’ time on task, the ones who generated explanations 

still performed better than their peers who read the text twice (Chi et al., 1994). The 

positive effect of self-explanation on learning has been reported across in different age 

groups. Children as young as age 5 may benefit from explaining to themselves when 

learning strategies of tic-tac-toe games (Crowley & Siegler, 1999). When children learn a 

new strategy through observation and also explain the new strategy to themselves, they 

generalize the strategy more widely than children who learn a new strategy but do not 
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explain. The benefits of self-explaining last through the school years. For example, 

Bielaczyc, Pirolli, & Brown (1995) reported that prompts to self-explain, when compared 

with no-prompts, lead to immediate improvement in undergraduate’s learning of 

computer programing. The benefit of self-explaining is also found across subject domains 

and under different instructional conditions. The contexts in which prompts to 

self-explain led to improved learning outcomes include various domains in mathematics 

and science (Aleven & Koedinger, 2002; Atkinson, Renkl, & Merrill, 2003; Renkl, Stark, 

Gruber, & Mandl, 1998; Wong, Lawson, & Keeves, 2002).        

The key to the beneficial effect of self-generated explanations is believed to be 

the generation process itself (Renkl, 1997; Hausmann & VanLehn, 2007),). In this view, 

self-explanation causes students to engage in active processing, which includes accessing 

prior knowledge from long-term memory, using common-sense reasoning, identifying 

goal structure and employing sense-making strategies. The resulting increase in depth of 

processing leads to benefits in memory retention and learning transfer. 

A good explanation is not always the best source for learning 

According to Jacoby et al. (1994), the physicist Richard Feynman was known for his 

clear and lucid explanations of difficult physics concepts. However, his students 

performed worse on tests than students from other sections (Jacoby, Bjork, & Kelly, 

1994). The “Feynman effect”, is the claim that Feynman’s ability to make difficult 

concepts easily accessible to novices led students to get a false and fleeting “feeling of 
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knowing”, which led them to believe they had a solid grasp on a topic because everything 

the expert said made sense. This feeling of knowing serves as a misleading guide to their 

actual level of comprehension, with detrimental consequences to their subsequent 

learning. Only when they then try to apply what they’ve learned do they realize they 

didn’t understand it. Thus, the very clarity of a teacher’s explanation may interfere with 

student learning if it serves to short cut the difficult reflection and integration required to 

make sense of new information (Wittwer & Renkl, 2008). 

Although lucid explanations from adults may lead to a false feeling of knowing, 

incomplete or difficult-to-process explanations may stimulate learners to engage in 

deeper cognitive processing therefore have an impact on learning outcome. Two related 

lines of research shed light on the potential benefits of incomplete, or difficult-to-process 

explanations. First, work on the “generation effect” pointed to the benefits of learning and 

retention related to the increased depth of processing by requiring the learner to generate 

rather than passively read information. Richland et al. (2005) reported that undergraduates 

who went through a generation/retrieval test during a re-study session outperformed their 

peers who re-read the material. In the domain of mathematics, participants who generated 

answers to calculation problems remembered the answer better than the ones who simply 

read the answer, and the effect size of generation is almost a full standard deviation 

(Slamecka & Graf, 1978; Pesta, Sanders, & Murphy, 1999; Bertsch et al, 2007). 

Second, research on “disfluency” indicates that difficult presentations can result in 
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effortful processing and improved outcome (Alter & Oppenheimer, 2008; Alter et al., 

2007; Novemsky, Dhar, Schwarz, & Simonson, 2007; Reber & Zupanek). For example, 

Alter et al (2007) presented participants with logical syllogisms in either an easy- or 

difficult-to-read font. Participants were less confident in their ability to solve the 

problems when the font was hard-to-read, yet they were in reality more successful. 

Moreover, Diemand-Yauman et al (2010) demonstrated that the disfluency effect remains 

in real classroom settings. The experimenters altered the fonts of the study material from 

the teachers before they were distributed. After one-week to one-month of exposure to 

study materials of different fonts, students who received study material in challenging 

fonts performed better in the end of the unit exams. Effects were consistent across subject 

areas as well across class difficulty levels. 

Bjork (1994) coined the term “desirable difficulties” for conditions that make 

learning harder over the very short term but lead to more lasting and integrated 

knowledge over the long run. Both generation effects and disfluency fall into this 

category. In this view, to the extent that other students’ explanations are more difficult to 

process than are those of teachers, the activity of students in overcoming those difficulties 

may ultimately lead to better understanding. 

Can unreliable explanations be beneficial? 

Even with the evidence on the benefits of self-explanation and the interference of 

lucid explanation, there are still concerns that deficits in students’ explanations may 



	   99	  

confuse or mislead the class and impede other students’ learning. However, several 

studies suggest that students might not be as vulnerable to peers’ unreliable explanations 

as one may expect. Instead, students may view their peers as less reliable information 

sources therefore be more skeptical towards them. For example, Jaswal and Neely (2006) 

demonstrated that, when other things were equal, children showed preference for an adult 

as a credible source for object naming over a young girl. Research in college physics 

education has also revealed that students are not vulnerable to errors in peers’ 

explanations; at least they are aware errors may exist. For example, Rao & Dicalo (2000) 

demonstrated that undergraduates actually performed better in quizzes when they were 

exposed to common difficulties at the beginning of the class and had a chance to hear 

from each other before proposing a solution. Enhanced performance was reported on 

physics concept mastery as well as quantitative problem solving skills (Crouch & Mazur, 

2001). To the extent that peer explanations are incomplete, and learners notice that 

incompleteness, they may elicit gap-filling activity that will lead to better understanding. 

The current study  

Given the above evidence, the question becomes whether a student would be 

spontaneously skeptical towards a peer’s explanation due to peers being less reliable 

information resources; and whether students being skeptical would lead to deeper 

cognitive processing and better learning outcomes. Put another way, when a peer 

indicates that “1/2 + 1/3 = 2/5, because 1+1=2 and 2+3=5”, would a student be skeptical 
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towards the answer and think twice? Would their effortful processing towards this 

explanation lead to a closer examination and discover that the sum should not be smaller 

than the addend (i.e. 2/5 VS 1/2)? And would they therefore question the procedure? The 

current study aims to answer these questions. Specifically, we aim to test: a) whether 

children process peer and adult explanations differently; b) whether the difference in 

processing leads to enhanced understanding, and therefore better learning outcomes; and 

c) whether these effects depend on the mathematical quality of the explanations.  

We explored the above questions in the context of mathematical equivalence, i.e., 

the understanding of the equal sign. Prior research has characterized students’ 

development of mathematical equivalence concept as passing through two stages, an 

operational stage and a relational stage (e.g. Knuth, Alibali, Hattikudur, McNeil, & 

Stephens, 2008; Knuth, Stephens, McNeil, & Alibali, 2006; Rittle-Johnson, Taylor, 

Matthews, & McEldoon, 2010). In the operational understanding stage, students view the 

equal sign as a “do something” signal. For example, given the question “7+3=__ +5”, 

students at this stage will put 10 on the blank, thinking that the equal sign signals the 

need to perform an arithmetic operation and cues one to write down the answer right after. 

Students with relational understanding, on the other hand, treat the equal sign as a 

balance between the quantities on both sides, and therefore allow operations on both sides 

while still holding the equivalence. The change from operational to relational 

understanding typically happens between 2nd and 4th grade (McNeil, 2008; McNeil & 
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Alibali, 2005), yet many students enter middle school without a relational understanding 

of the equal sign (Knuth et al., 2006). We chose this mathematics domain because of the 

clearly defined mathematical misunderstanding (i.e. the operational understanding of the 

equal sign) as well as the prevalence of such understanding among elementary school 

students.  

 

Method 

Participants 

Participants were recruited from four public schools in Southeast Michigan. 92 

third grade students participated in the study (Age: mean=8.64 yrs, SD=0.51 yrs). A 

female research assistant interviewed students one-to-one. The interview took about 20 

minutes and all the interviews took place in a quiet room in students’ own schools. 

Procedure 

The interview was divided into three parts: a pretest, a video watching session, 

and a post-test (see Figure 4). In both pre- and post- test, students need to solve some 

equations (e.g. 7+3+5= __ +5), explain their answers, and explain the meaning of the 

equal sign in each item. During the video watching phase, each student will watch 4 short 

clips. A video clip lasts about 1 minute and contains a female explaining how she solved 

an equation. The female explainer is either a 9-year-old girl or an adult in her early 
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twenties. Participants were randomly assigned to watch either the child or adult explainer, 

and saw four kinds of explanations, with order counterbalanced using a Latin Square 

design. Explanation types were: 1) clear and correct, 2) correct but incomplete, 3) 

containing a calculation error (yet still demonstrating relational understanding), or 4) 

containing a conceptual error (See Appendix 1 for explanation scripts used in all 4 video 

clips). After watching each clip, students were asked to recall the explanations provided 

in the video. They were also asked to answer whether the explanations were clear, 

identify parts were confusing or ineffective, and provide their own solutions to the 

particular item. 

	  

Figure 4. the experiment procedure 

Scoring and Coding 

Students’ performance on pre- and post- test was coded as correct if they provided 

an effective solution and offered a relational definition for the equal sign (e.g. “The equal 

sign means the results needs to be the same on the two sides.”). Their performance was 
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coded as incorrect if their solutions were mathematically incorrect or they have offered 

an operational definition of the equal sign (e.g. “The equal sign means you add 

everything and get the answer.”). It is worth noticing that in the current experiment, all 

the students’ errors involved operational understanding of the equal sign. Students 

received 1 point for each item they have solved correctly. The total possible score for the 

pre-test is 5 points, and 7 points for the post-test. To facilitate pre- to post-test 

performance comparison, we converted the raw scores to accuracy rates for both tests. 

 Students’ evaluation of each video clip was coded into the following 2 

dimensions: the completeness of their recall, and whether students reported gaps in the 

explanation.  

 Completeness of the recall. Student’s recall of the explanation was coded as 

“complete” if they have provided all the key points in the explanation. Missing any key 

point would result in the “incomplete” code on this dimension. 

 Noticing gaps in the explanation. A “gap” is defined as the reason to carry out a 

particular procedure that was not offered in the explanation. For example, in the “correct 

but incomplete” explanation, students who noticed the gap in the explanation may 

mention that “There are two 3s in the problem. She didn’t say what to do with them”. Or 

in the “correct and complete” explanation, students were considered as “noticing a gap” 

when they indicated using “7+7” to approach the answer of “7+6” only works when the 

knowledge of the “double” is much easier to access than the arithmetic fact of “7+6”. 
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Similarly, in the explanations with calculation error, students who were suspicious about 

the start point of the counting sequence also counted towards “noticing the gaps”. For the 

explanations with conceptual error, students who identified the equal sign as indicating 

an equivalent relationship between two sides and, therefore, rejected conceptual error 

explanation would be counted as “noticing the gaps”. 

Results 

Among all the participants, 29 students scored 80% or higher (4 out of 5 correct 

or more) in the pre-test. These 29 students performed similarly in the post-test (Pretest: 

average 88% correct VS Posttest: average 91% correct. F(1,52)=1.347, p>.1), 

demonstrating that the students who have stable relational understanding in the pretest 

were unlikely to be confused with the erroneous explanations in the video and switch 

back to operational understanding. In the following analysis, we eliminated these 29 

cases to remove the influence of the celling effect on our results.  

In the remaining 63 cases, 30 watched the child-explanation videos, and 33 

watched the adult-explanation videos. Based on this reduced sample with N=63, we are 

able to focus on the students who had an operational or mixed understanding before 

watching the videos.  

The following results section is divided into two parts to address our three 

research questions respectively. In part 1, we analyzed the difference between two groups, 

adult vs. child explanation, to explore whether students process peer and adult 



	   105	  

explanations differently. In part 2, we analyzed individual differences, focusing on 

whether differences in video evaluation relate to one’s learning outcome and whether the 

type of the explanation moderates these relationships. 

1. Differences in video evaluation 

We used 2*4 mixed-design ANOVAs to examine participants’ evaluations of the 

explanations in all video clips (Between group: Video— adult or child; Within group: 

Videotaped Explanation— correct and complete, correct and incomplete, conceptual 

error, and calculation error).  

We examined how critical participants were in their video evaluation. “Critical” 

here refers to whether students “noticed the gap” in explanations. As shown in Figure 5, 

participants who watched other children’s explanations were more likely to point out a 

“gap” in the explanations, F(1,240)=18.64, p<0.001. The same pattern applied to all 4 

types of explanations (Interaction: F(3,240)=1.43, ns). Participants were also more likely 

to criticize explanations with errors or missing information than the correct explanation 

with complete information (types of explanation: F(2, 240)=2.91, p<.05). This implies 

that students were more aware of the computation and conceptual errors, as well as 

incomplete information, presented in the peers’ explanation than the adults’ explanation. 

It is also true that even when the explanations were correct and complete, students still 

tended to be more critical towards peers’ explanation. Their complaints were typically 
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that the analogy between the equal sign and the teeter-totter were unnecessary and 

irrelevant.   

	  

Figure	  5. Percentage of students who reported gaps in the explanations 

 

It is worth noticing that the higher likelihood of detecting gaps in peer rather than 

adult explanations cannot be reduced to differences in basic attention processing. Namely, 

it is not simply reflecting the effect of children’s paying more attention to peers than 

adults. We used the children’s complete recall of explanations as an indicator that they 

had paid close attention to the explanations. A two-way ANOVA on the completeness of 

children’s recall of explanations revealed no significant difference between two video 

watching conditions (F(1,240)=0.079, ns). Figure 6 shows the completeness of recall 

across all conditions. As shown in the graph, students were mostly successful in covering 

all key points in the explanations, with the exception of the calculation error explanation 
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(types of explanation: F(3, 240)= 2.806, p<.05). This result indicated that children were 

attentive to the explanations during the video watching session, and that they were 

equally attentive to both adults’ and peers’ explanations. 

	  

Figure	  6. Percentage of information recalled from the video 

2. Difference in learning outcome 

The previous result revealed that students process mathematical explanations 

differently depending on the source of the information. In this part, we will explore 

whether these differences in information processing lead to differences in the learning 

outcome. To put it another way, regardless of whether one watched the explanations from 

an adult or a peer, whether being critical towards the explanations will link to greater 

improvement from pre- to post-test. 

A profile analysis was firstly applied to provide a description of the role of critical 

evaluation on post-test scores. Table 15 shows how students who were critical toward 
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different sets of explanations (e.g. a combination of (0, 1, 0, 0) means a student was 

critical towards explanations containing incomplete information but not others) differ in 

their pre- and post-test performances. As indicated in table 14, students who identified 

conceptual error only, or calculation error only, or both conceptual and calculation errors, 

were among the ones who improved the most from pre-to post-tests. On the other hand, 

students who were only critical towards correct and complete explanations, or correct 

explanations with incomplete information, or a combination of the two, had little 

improvement from pre- to post- tests. 

Table 14. Relationship between critical evaluation of different types of explanations and 
pre- & post-test performances 
Critical evaluation of explanations* N Pre- test 

(% 
correct) 

Post- 
test (% 
correct) 

Improvement 
Complete Incomplete Conceptual 

error 
Calculation 
error 

0 0 0 0 31 1.29 7.83 6.54 
1 0 0 0 1 0 0 0 
0 1 0 0 5 4 2.86 -1.14 
1 1 0 0 1 0 0 0 
0 0 1 0 4 5 32.14 27.14 
0 1 1 0 7 0 2.04 2.04 
1 1 1 0 2 30 50 20 
0 0 0 1 4 5 28.57 23.57 
0 1 0 1 6 6.67 14.29 7.62 
0 0 1 1 1 0 71.43 71.43 
0 1 1 1 1 0 14.29 14.29 
* Value of 0 indicated that a student did NOT identify a gap in the given explanation; and 
a value of 1 indicated that a student identified gaps in the given explanation. 

Table	  15.	  Regression models in predicting students’ post-test scores	  
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Regression models were then used to explore the relationship between students’ 

being critical towards a particular explanation and their post-test scores. Table 15 shows 

the regression coefficients as well as the model fit. As shown in table 15, the mediation 

model (model 2) explained an additional 11% of variance in students’ post-test 

performance compared to their pre-test scores alone (model 1), F(4,61)=4.42, p<.01. 

Again, the moderation model (model 3) explained an additional 14% of variance than the 

mediation model, F(4,57)=6.23, p<.001. Thus, results indicate that the moderation model 

best described the influence of explanation evaluation on post-test performance. Figure 7 

illustrates the moderation effect. As shown in Figure 7, students who noticed the 

calculation error or the conceptual error in the explanations experienced a larger gain 

from pre- to post-test than the ones who did not notice these errors. On the other hand, 
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however, students who criticized the incomplete but correct explanation did not improve 

as much as the ones who thought the explanation with incomplete information was 

adequate. A closer investigation into students’ commentaries of the incomplete yet 

correct explanation revealed that they tend to reject the overall merit of the explanation 

due to the lack of information. For example, “This (explanation) is bad. Her math is 

wrong because she does not finish. She forgets the two 3s here!”.  

(A)  

(B) 	  

Figure 7. Moderation effect of noticing the gap in pre- to post- learning gain.  

7A shows the effect of noticing gaps in conceptual error or calculation error explanation; 

7B shows the effect of noticing the error in correct but incomplete explanation. 
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Discussion 

The goal of the current study is to examine whether students would process adult 

and peer explanations differently, and how these differences would lead to difference in 

learning outcome. Results demonstrate that elementary students are more critical towards 

peer than adult mathematical explanations, even when the content of the explanations are 

identical. Students are more likely to criticize peer-generated explanations when the 

explanations contain conceptual errors, miscalculations, or missing information. Their 

criticism identifies the errors or the insufficient information in the explanations. Students 

are also more likely to criticize peer-generated explanations even when the explanations 

are mathematically correct and sufficient. In such cases, students’ criticism was that the 

analogy between the teeter-totter and the equal sign are unnecessary.  

Moreover, students in the current study identify explanations as either good or 

bad ones with no “gray” areas in between. They do not treat explanations with 

conceptual/calculation errors and explanations with missing information differently in 

their evaluation. Rather, if they treat one as a “wrong” explanation, they also treat the 

other two as “wrong” or “bad” explanations. They also came to the conclusion that wrong 

explanation would result in wrong solution (i.e. “The math is wrong!”), which is not 

always the case. For instance, when a conceptual error or a calculation error occurred in 

the explanation, the given numerical answer is incorrect. But when an explanation 
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contains insufficient information, the given numerical answer is still correct. If one 

rejects the solution resulted from both erratic explanations (i.e. conceptual error or 

calculation error) and insufficient explanation, he/she is making mathematically correct 

decision for the former but not the latter. Therefore, students’ lack of differentiation 

between actual errors and insufficient information, together with their conclusion that 

both errors and insufficient information would lead to incorrect solutions, may explain 

the moderation effect of the types of explanations. As shown in the results, the types of 

explanations moderate the relationship between criticizing an explanation and the 

learning outcome. Students who criticized the conceptual or calculation error showed 

greater improvement from pre- to post-test, while the ones who criticized for the missing 

information in the explanations showed less improvement.  

Taken together, the current study indicates that peer explanations elicit students’ 

deep cognitive processing rather than confusing or misleading them, and such a 

difference in cognitive processing influences their learning outcomes. Identifying the 

calculation error or the conceptual error relates to larger improvement from pre- to post- 

test, whereas identifying missing information in a correct yet incomplete explanation 

relates to reduced improvement.  

Why does the source of the explanation matter? 

Students’ more critical stance towards peer explanation may result from their 

expectation that peers are a less reliable source of knowledge. There are at least two 
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reasons they might think so. Age is a cue that students use when they are screening 

sources for reliability (Lutz & Keil, 2002; Jaswal & Neely, 2006). Their own classroom 

experience may include experiences where their peers had difficulty solving a problem, 

or produced a wrong solution, and this may work against the credibility of an unknown 

peer in offering a math explanation.  

Besides the effect of the explainer’s age, the quality of explanations also matters 

in eliciting students’ criticism. Students were less likely to criticize the correct and 

complete explanation than the other three types. This result seems counterintuitive given 

that most students at pre-test hold the same erratic interpretation of the equal sign as that 

offered in the conceptual error explanation, and that students prefer the information 

which agrees with their own belief over that which challenges their own belief (Jaswal & 

Neely, 2006; Jaswal & Malone, 2007). If students were more likely to agree with what 

they already believed, they should have been less likely to raise criticism towards 

conceptual errors explanation than towards other explanations. One interpretation for this 

result is that in current studies, all explanations challenge students’ previous beliefs about 

the meaning of the equal sign to some degree. In the conceptual error explanation, the 

explainer added all the numbers to the left of the equal sign, which correspond to some 

students’ understanding about the meaning of the equal sign. Yet she continued adding 

numbers from the right side of the equation as well, which could challenge students’ 

beliefs that the equal sign “signals the end of operation”. In the calculation error 
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condition, the calculation error contradicts the arithmetic fact students may retrieve from 

memory. In both the correct and complete explanation as well as the explanation with 

missing information, the equal sign was treated as a relational sign to indicate the 

equivalent relationship between the two sides, which is contrary to students’ prior beliefs. 

Thus, when all the explanations offer some degree of challenge to students’ prior 

knowledge and understanding, they may update their previous knowledge to the 

explanations or criticize the explanation to be “bad”.  

The link between processing difference and learning outcome 

Identifying an explanation as a “bad” one is not the end of the story. Results 

reveal that the negative evaluation of the mathematical explanations relates to students 

learning outcome. Students’ subjective experience of difficulty in information processing, 

known as “disfluency” (Oppenheimer, 2008) will act as an indirect cue that serves as a 

metacognitive signal to prompt more elaborated processing of the information (Alter et 

al., 2007). This more elaborated processing makes students less vulnerable to errors. 

Moreover, students benefit from identifying the errors. The relationship between 

identifying the conceptual and calculation errors and the learning outcome may also 

result from the self-explanation process (Renkl, 1999; Siegler, 2002; Rittle-Johnson, 

2006). Students in the current study were asked to explain why they thought a particular 

explanation was good or bad. While their reasoning behind judgments of a “good” 

explanation is usually superficial, such as that the explanation was clear, students’ 
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reasoning behind judgments of a “bad” explanation involves identifying the possible 

errors in the explanation, which has been shown to lead to immediate procedural learning 

(Pine & Messer, 2000) and procedural transfer (Aleven & Koedinger, 2002; Atkinson, 

Renkl, & Merrill, 2003; Wong, Lawson, & Keeves, 2002). From this point of view, 

students should be encouraged to explain their problem solving and their reasoning in the 

math class, because their peers are more likely to engage in analytic reasoning towards 

students’ explanations than the teacher’s. The peers are able to identify the errors in the 

explanations and benefit from such practice. 

On the other hand, more elaborated processing of the information does not 

guarantee that students will attend to the important aspects of the explanations. Let’s take 

the correct yet incomplete explanation for example. Students who identified this 

explanation as “confusing” pointed out that “she missed some numbers here”. They went 

ahead and determined that one cannot delete numbers from a math problem but have to 

do something with them. They later focused their attention on putting these numbers back 

into the calculation, rather than whether it is OK to omit numbers and operations in 

certain cases. This way, students who reject the merits of the correct yet incomplete 

explanation were less likely to switch from an operational to a relational understanding. 

From this point of view, students need instructional help in where to pay attention to 

when a mathematical explanation is given.  

Results answers to teachers’ concerns that students may remember the erratic 
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explanation from their peers. The current research suggests that students are not so 

vulnerable. They are able to identify errors and missing information even when they may 

hold similar erratic understanding themselves, and students who identified the actual 

errors showed improvements in solving problems which they cannot solve in pre-test and 

have not seen in the video clips. Thus, students can benefit from peers’ math 

explanations.  

Role of teachers in eliciting peer explanation and monitoring peer interaction 

What is the role of teachers when peers are providing explanations? First of all, 

teachers’ instructions and questions are needed to elicit students’ mathematical 

explanations. This is because students do not usually spontaneously engage in providing 

mathematical explanations to their class. Students do not elaborate on material unless 

prompted to (Britton, Van Dusen, Glynn, & Hemphill, 1990), and they do not ask thought 

provoking questions without training on question asking (King, 1992). Secondly, teachers 

need to assure students are paying attention to each other. Students’ analytic reasoning of 

peers’ explanations is only possible if they paid attention to their peers. In current study, 

students were directed to attend to the explanations in the video by experimenters’ 

instructions as well as questions eliciting evaluations after their watching each of the 

video clips. While in the classroom, the complexity of the classroom environment and 

concurrent tasks may distract students when their peers are explaining, and thus eliminate 

the possibility of benefiting from the explanations. Teachers may use repeat or rephrase 
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requests to direct students’ attention as well as encourage their engagement in the sense 

making process (Chapin, O’Connor, & Anderson, 2009). Finally, teachers need to direct 

students’ attention to important aspects of explanations, especially when students reject 

the merits of peer explanations when the explanations are fragmented. Students’ 

over-simplification may keep them from further and deeper processing of the explanation 

and therefore hinder their learning. In these cases, teachers may use questions to direct 

students to attend to positive aspects of peers’ explanations, or to ask for elaboration from 

the students who offered the explanation. 

Overall, the current study suggests that students should be given opportunities to 

discuss their peer’s solutions and explanations. Teachers’ role in promoting students’ 

explaining and learning from others’ explanations include asking how and why questions 

to prompt explaining and elaborating, directing students attention to their peers’ 

explanations, and discouraging over-simplification in evaluating peers’ explanations. 
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Appendix 1. Explanations used in the videos 

Explanation 

type 

Problem Explanation script 

Calculation 

Error 

8+4+7=__+7 Umm... 8+4, I can count from, umm, 8 and count 4 numbers. That 

is 8... 9... 10... 11. So 8+4 is ...11. (pause). There is a 7 on both 

sides but it doesn't matter (pause). because I can cross that out. So 

the answer is 11, because now the two sides are equal. 

8+4+7=11+7. 

Conceptual 

Error 

6+5+4=__+4 Umm, 6+5 (pause). 6+6 is a double. I know it's 12. (pause). 6+5 

is one less, so 12 take away 1 is 11. 11+4 is 15. So 6+5+4=15. 

(pause). And I know 15+4=19 (pause). But here the blank is 

umm, 15, because it only asks you to do 6+5+4. 

Correct, 

complete 

7+6+5=__+5 Umm, 7 +7 is a double. I know that is 14. (pause). 7 + 6 is one 

less, so 14 take away 1…that is 13. The answer is 13. Umm... the 

5 on both sides doesn't count,  because I can cross that out. 

That's like...Umm...The equal sign here is like a teeter-totter. 

(pause) so if you take away both 5 at the same time, it doesn't 

matter. (pause). And when you put 13 here, the two sides are 

equal... 7+6+5=13+5. 

Correct, 

incomplete 

4+9+3=__+3 Umm, 4+9… I know 4+10 is, umm, 14. 9 is one less, so 14 take 

away 1, that is…umm... 13. So the answer is 13 
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Chapter 5 

Closing remarks 

	  

This set of studies set out to explore the discrepancy between the emphasis on 

students engaging in mathematical explanation in curriculum standards and the dearth of 

student explanations in US mathematics classrooms. Underlying reasons for such 

discrepancy may include a lack of understanding about which instructional features may 

effectively elicit explanations, the concern about young students’ competence in 

constructing any form of explanation, as well as the concern that a students’ inaccurate 

explanation may impede the learning of whole class.  

These concerns were addressed in the following three studies. The first study aimed 

to provide a benchmark about the quantity of students’ explanations in US in comparison 

with other countries, as well as to explore the links between classroom features and the 

amount of students’ explanations. The second study focused on the quality of students’ 

explanations in the context of mathematical equivalence. It aimed to provide a 

benchmark about the quality of students’ explanations in terms of both accuracy and 

mathematical richness. The third study focused on students’ processing of explanations. 
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It aimed to examine the effects of explanation source (i.e. from adults versus from peers) 

on students’ processing the explanation, specifically, whether students’ processing of the 

information varies with the sources and with the quality of the explanation, and how do 

these differences relate to students’ learning outcome. 

Summary of findings 

1. How many mathematical explanations do students provide in a class? Which 

classroom features predict students’ production of explanations? 

Firstly, students’ production of mathematical explanation is universally a rare 

phenomenon, and US classrooms are particularly low in this dimension. Study 1 showed 

that across three countries (United States, Japan, and Hong Kong SAR), less than 5% of 

students’ statements in a mathematics lesson are explanations. And the amount in US is 

half of that in Japan or Hong Kong.   

Secondly, the more talk opportunities students were given, the more 

explanations they may provide. Across all three countries, the proportion of student talk 

time in a class positively predicted the amount of students’ explanations produced in that 

class. 

Thirdly, teachers’ use of questioning and language modeling predicted the 

amount of students’ explanations, except in US. Teacher’s request for procedure, or their 

“how” questions, predict the amount of student explanations in Hong Kong. In Japan, it is 

teacher’s request for reasoning, or their “why” questions, as well as their use of 
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contradictory indication (i.e. disagree, different opinion) that predicted the amount of 

student explanations. In US, however, none of the teacher’s talk features examined in the 

current study exhibit a significant relationship with the amount of student explanations. 

Why might this be? This result suggests that simply asking “why” questions is 

not enough to ensure that the outcome of these questions will be explanations. What an 

explanation is is a complicated question in itself, and so it’s not surprising that students 

do not automatically know how to give a useful answer to “why” questions. More 

research on how teachers can help students learn how to engage in explanations will help 

us to understand how teachers can socialize students to focus on explanations. 

2. What can we expect from students’ explanations?  

Firstly, accuracy of students’ explanations is limited by their understanding of 

the mathematical content. Misconceptions are reflected in students’ inaccurate 

explanations. Study 2 showed that US students provided inaccurate explanations on about 

half of the items on mathematical equivalence. And their inaccuracy had to do with 

interpreting equal sign as an indication of the end of operations rather than an indication 

of relationship.  

Secondly, students’ explanations can take different forms, and tasks they were 

given influence the form of explanation provided. For equation solving problems, 

students’ most common explanations took the form of description, stating the steps they 

took to calculate the answer. When they were asked to judge the correctness of a given 
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solution, forms of explanation diverged. Some chose to solve the question themselves 

then compared the answer to what they got, some focused on whether the procedure 

described in the given solution made sense, while others substituted the number back into 

the original question to check if conditions were met.  

Results from Study 2 suggest that US children have a less clear sense of what an 

explanation is than do their peers in China, which is perhaps not surprising given their 

relative lack of opportunities to produce explanations in class. 

3. Will a student’s erroneous explanations impede other students’ understanding? 

We described a concern of some teachers that letting their students hear the 

erroneous explanations of peers might be an obstacle to learning, as the confusion of the 

original student would spread to his or her peers. Our results tend to allay these fears. 

Firstly, students are not as vulnerable to erroneous explanations as one may expect, 

especially when those explanations come from a peer. Compare to students who watched 

adult explanations, the ones who watched peers’ explanations were more likely to 

identify the insufficiency in the explanations.  

Secondly, elementary students’ criticalness towards an explanation is “all or 

none”. They tend to either accept an explanation to be a “good one”, or reject its merit 

altogether. Study 3 showed that students do not differentiate errors and inadequacy. They 

tend to reject the merit of an explanation when they identify a conceptual or calculation 

error, or when they realize there is information missing (and therefore perceive difficulty 
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in processing such information). 

Thirdly, being critical towards an explanation has an impact in one’s learning 

from these explanations. Students who identified the inaccurate information showed 

greater gain from pre- to post-test. On the other hand, students who were caught up with 

missing information, but not inaccuracy, in an explanation, showed smaller gains from 

pre- to post- test.  

Results suggest that the problem children have in evaluating peer explanations is 

not that they blindly accept them but that they tend to be overly critical, failing to 

distinguish real errors from minor oversights. These results suggest that students will 

need help in learning how to be appropriately critical of their peers’ explanations so as to 

focus on the underlying concepts.  

Implications 

 These studies have important implications for instructions. The question of when and 

how errors should be handled is a key issue in managing a classroom discussion, and one 

of the reasons that some teachers have given for eschewing classroom discussions 

(Correa & Miller, 2007). The current study provided evidence that it is unnecessary for 

teachers to worry that if a student says something wrong, it will influence others to have 

the same erroneous belief. In fact, students are more likely to identify the errors from 

their peers and benefit from the recognition of such errors. To attain such benefits, 

however, two conditions have to be met. The first condition is that students have to be 
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paying attention to their peers, and the second condition is that students need to be given 

the opportunity to respond to their peers. Giving students opportunities to respond to peer 

explanation also provides teachers with an opportunity to observe which part of the 

information were students focusing on, and whether an erroneous explanation has gained 

prevalence in the class. Moreover, the current study shed light on the potential of 

instructional practices to effectively elicit student explanations. Such practices include 

how and why questions and teacher’s language modeling. What differentiates the 

effective and ineffective questioning is that whether teacher focuses on the critical 

mathematical concept during the question, and whether he/she is persistent in requesting 

student elaborations.    

 My studies also helped to advance the measurement of students’ explanations. Study 

1 proposed a categorization algorithm which has the capacity to automatically categorize 

students’ utterance with high reliability at classroom level. This model, when combined 

with automatic speech recognition tools, has the power of providing real-time feedback 

about the quality of student explanations in the classroom, and the potential to both 

reduce the cost and increase the efficiency for classroom observation based professional 

development programs.  
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