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Abstract 

The overall objective of this research was to understand the distribution, sources and risks 

of PAHs and NPAHs in Lake Michigan, to characterize their emissions from a major source 

(diesel exhaust), and to model and predict their environmental fate in the Lake Michigan basin. 

The petroleum biomarkers hopanes and steranes were characterized along with PAHs and 

NPAHs to provide more information on hydrocarbon contamination.  

Several types of samples were collected in Lake Michigan, including bottom sediments 

and fish. Homogenized composite samples were analyzed. Ecological and human health risks 

were evaluated by the toxic equivalency approach and sediment quality guidelines. Emissions of 

target compounds from diesel exhaust were characterized to examine the effects of fuel type, 

engine load and after-treatment. Finally, fugacity-based multimedia models were used to 

evaluate the overall behaviors of PAHs and NPAHs in Lake Michigan. 

In summary, the results suggest the ubiquitous distribution of target compounds in 

sediments and fish from Lake Michigan. PAHs seem to display "biodilution" through the aquatic 

biota. Sediment concentrations show a spatial trend with high concentrations near-shore and low 

concentrations in the middle of the lake. Decrease of PAHs in Lake Michigan sediments from the 

1990s is also suggested. Source apportionment identifies vehicle exhaust as the most important 

PAH source in this region, and bench tests demonstrate the effectiveness of alternative fuels and 

after-treatment in reducing the emissions. Finally, the modeling results suggest that the 

environmental concentrations and emission rates of PAHs and NPAHs can be estimated mutually 

by simple multimedia models.  

This study provides new information regarding levels and risks of PAHs and NPAHs in 

the Great Lakes basin, especially the first report of NPAHs in sediment and biota, which can help 

target these chemicals for pollution prevention and reduction. This work obtains baseline data for 

trending progress towards elimination of toxic substances in the basin. It can also deepen our 

understanding to their behaviors in aquatic biota, and provide valuable information for fish 

advisories. Moreover, the modeling helps to improve understanding of the overall behavior of 

these compounds, and the estimated emission rates can complement and improve existing 

emission inventories. 
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Chapter 1 Introduction 

1.1 Overview 

The presence of persistent toxic substances in the Great Lakes has been of concern for 

many decades. These substances, which include polychlorinated biphenyls (PCBs), 

organochlorine pesticides, and polycyclic aromatic hydrocarbons (PAHs), enter the Great Lakes 

mainly from atmospheric deposition where they can persist in bottom sediments, be taken up by 

benthic organisms, and accumulated in aquatic wildlife (EPA 2012b). Many fish in the Great 

Lakes have high concentrations of persistent toxic contaminants, posing health risks to both 

humans and wildlife. In humans, exposure to persistent toxic substances has been linked to 

adverse health effects that include low birth weight, developmental problems in children, 

neurological problems, immune system disorders, and cancer (EPA 2012b). The United States 

Environmental Protection Agency (U.S. EPA) has been monitoring levels of persistent toxic 

substances in air and precipitation of the Great Lakes (EPA 2012b). In addition, the U.S. and 

Canada established the Great Lakes Binational Toxics Strategy in 2004 to control and eventually 

eliminate persistent toxic substances in the Great Lakes (EPA and EC 2004). 

This dissertation focuses on Lake Michigan, the only Great Lake that is located entirely 

within the U.S.  Lake Michigan has high concentrations of many contaminants, a result of 

historically large loadings from agricultural, municipal and industrial sources (Hickey et al. 

2006).  This dissertation focuses on four classes of chemicals, including polycyclic aromatic 

hydrocarbons (PAHs), nitro-PAHs, hopanes and steranes. PAHs include a number of carcinogens 

(ATSDR 1995; Eisler 1987). Nitro-PAHs, the nitrated derivatives of PAHs, are potentially more 

toxic than PAHs (Tokiwa et al. 1987). Hopanes and steranes, known collectively as petroleum 

biomarkers, are potentially valuable tracers of hydrocarbon contaminations. Using new 

measurements, this research examines the distribution of PAHs, nitro-PAHs, hopanes and 

steranes in sediments and fish of Lake Michigan, identifies major sources contributing to 

sediment concentrations, characterizes their emissions from one important source - diesel engine 

exhaust, and evaluates their environmental fate using multimedia models. 
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This chapter is organized into five sections. Section 1.1 (this section) gives an overview 

of the study area, persistent toxic substances, and the research needs. Section 1.2 provides 

background information on the target compounds and reviews their physiochemical properties, 

sources, environmental fate, bioaccumulation and toxicity; a review of the contamination in Lake 

Michigan and data gaps follows; this section also discusses methods of source apportionment 

and multimedia modeling. Section 1.3 describes the overall objective and specific aims, and 

Section 1.4 presents the organization structure of this dissertation. Tables/figures and references 

are presented in Sections 1.5 and 1.6, respectively. 

1.2 Background 

1.2.1 Target compounds 

The target contaminants examined in this research include four classes of semivolatile 

organic compounds (SVOCs). An SVOC is an organic compound that has a boiling point higher 

than water and which may vaporize when exposed to temperatures above room temperature 

(EPA 2013). The first class is PAHs, which are a group of persistent organic compounds that are 

ubiquitous in the environment (Eisler 1987). PAHs consist of hydrogen and carbon arranged in 

the form of two or more fused benzene rings (Eisler 1987). There are thousands of PAH 

compounds, each differing in the number and position of aromatic rings, but historically, 

analyses have focused on a relatively small subset of PAHs. U.S. EPA listed 16 PAHs as priority 

pollutants (CFR 1982), among which benzo[a]pyrene (BAP) is the most widely studied 

compound. This research includes these 16 priority PAHs as listed in Table 1.1. 

Nitro-PAHs (NPAHs) are nitrated derivatives of PAHs. They can have stronger 

carcinogenic and mutagenic activity than the parent PAHs. Unlike PAHs, NPAHs have not been 

prioritized. This dissertation focuses on 11 NPAHs, listed in Table 1.1, that have been frequently 

detected in airborne particulate matter (PM) (Albinet et al. 2007; de Castro Vasconcellos et al. 

2008), diesel exhaust PM (Liu et al. 2010; Khalek et al. 2011), and sediments (MDH 2011; 

Lübcke-von Varel et al. 2012; Sato et al. 1985). 

Hopanes and steranes are two additional classes of SVOCs that are derived from cell 

membranes of prokaryotes (Ourisson and Rohmer 1992) and eukaryotes (Mackenzie et al. 1982), 

respectively. They are common constituents of crude oil (Manan et al. 2011) and derived 

products such as engine lubricating oil (Rogge et al. 1993). There is a wide variety of different 
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stereoisomers of these compounds.  This research focuses on five hopanes and six steranes, listed 

in Table 1.1, that are most frequently found at relatively high concentrations in sediments and 

diesel exhaust PM samples (Boitsov et al. 2011; Liu et al. 2010; Khalek et al. 2011; Qu et al. 

2007; Schauer et al. 2002, 1999). 

1.2.1.1 Physical and chemical properties 

Physical and chemical characteristics of PAHs can vary considerably. With increasing 

molecular weight, melting point, boiling point, and log Kow tend to increase, while water 

solubility and vapor pressure decrease. For example, considering the 16 target PAHs, the boiling 

point, water solubility, vapor pressure and log Kow range from 218 to 536 °C, from 0.00019 to 

31 mg/L, from 1.33×10-8 to 11.3 Pa, and from 3.3 to 6.63, respectively (all at 25 °C and standard 

atmospheric pressure)(EPA 2012a). This large range of properties means that PAHs can vary 

substantially in their behavior and distribution in the environment, and in their biological effects 

(Eisler 1987). Generally, however, PAHs have low water solubility, high Kow, low volatility and 

Henry’s Law constant, and moderate-to-high chemical stability. The physical and chemical 

properties of NPAHs are similar, but they generally have lower volatility and lower water 

solubility than their parent PAHs (EPA 2012a). 

Hopanes and steranes generally have high boiling points (around 400 °C), very low water 

solubility (1×10-7 to 1×10-5 mg/L), low vapor pressure (1×10-5 to 1×10-3 Pa), and extremely high 

log Kow (9 to 11) (EPA 2012a). These compounds are highly stable in the environment, i.e., they 

are resistant to chemical, photochemical and microbial degradation (Manan et al. 2011; Neff and 

Durell 2012).  

1.2.1.2 Sources, transport and fate 

PAHs are released to the environment through natural and anthropogenic sources; the 

latter provides much higher emissions (Crane et al. 2010). There are three major types of PAH 

sources: pyrogenic PAHs are emitted during incomplete burning of coal, oil, gas, coke, wood, 

garbage, or other organic matters; petrogenic PAHs form in the earth by geological processes at 

low temperature, over long time periods and possibly at high pressures, and include crude oil, 

coal, coal tar pitch, asphalt or asphalt sealant, and tire particles; lastly, diagenetic PAHs found in 

recent sediments are derived from biogenic precursors like plant terpenes (Crane et al. 2010). 

Previous apportionment studies examining airborne and sediment PAHs in Chicago and Lake 
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Michigan have identified major sources as coke ovens, vehicle emissions and wood burning 

(Christensen et al. 1999; Li et al. 2003; Simcik et al. 1999). Most PAHs are pyrogenic and are 

subsequently released into the atmosphere, adsorbed on particulate matter, and then deposited on 

terrestrial surface or water bodies (Baek et al. 1991; Helfrich and Armstrong 1986; Neff 1979).  

The distribution of PAHs differs by compounds. For example, BAP partitions mainly into 

soil (82%) and sediment (17%), while about 1% partitions into water and less than 1% into air, 

suspended sediment and biota (Hattemer-Frey and Travis 1991).  

PAHs can undergo photo-oxidation and biodegradation in the environment (Suess 1976). 

However, PAHs in aquatic sediments degrade very slowly given the absence of radiation and 

oxygen (Suess 1976), and may persist indefinitely in oxygen-poor basins or in anoxic sediments 

(Neff 1979). 

NPAHs arise mainly from two sources: (1) direct emissions from incomplete 

combustions of organic matter such as coal, oil, gas, coke and wood; and (2) gas-phase 

atmospheric reactions between PAHs and nitrogen oxides (Perrini et al. 2005). Atmospheric 

formation of NPAHs is initiated by OH radicals during daytime, and by NO3 after sunset (Perrini 

et al. 2005; Albinet et al. 2007). Most airborne NPAHs are believed to be secondary pollutants 

formed by atmospheric reactions (Yaffe et al. 2001). Like PAHs, airborne NPAHs are mostly 

released or formed in the atmosphere, associated with particulate matter, and then deposited on 

land or water surfaces (Yaffe et al. 2001). There is also evidence of endogenous NPAH 

production in fish (tilapia) facilitated by nitrite (NO2-), which potentiates the mutagenicity of a 

noncarcinogenic PAH (phenanthrene) (Shailaja et al. 2006). The distribution of NPAHs depends 

on physical and chemical properties. For example, 1-nitropyrene mostly partitions into soil 

(99.2%), while 1-nitronaphthalene partitions mainly into air-gas phase (30.6%) and soil (68.9%) 

(Yaffe et al. 2001). Like PAHs, NPAHs also can undergo photo-degradation (Fan et al. 1996) 

and biodegradation (Heitkamp et al. 1991) in the environment.  

Hopanes are pentacyclic triterpenoids derived from cell membranes of prokaryotes 

(bacteria) (Ourisson and Rohmer 1992), while steranes are derived from the sterols of cell 

membranes of eukaryotes, mainly algae and higher plants (Mackenzie et al. 1982). Hopanes and 

steranes arise from petrogenic or biogenic sources. Petrogenic hopanes and steranes are derived 

from bacteria, algae and higher plants in ancient times, undergo various transformation and 
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rearrangement during geological processes, and finally become constituents of crude oil (Peters 

et al. 2007). In contrast, biogenic hopanes and steranes arise from the decomposition of bacteria, 

algae and vascular plants during recent times (Qu et al. 2007; Xiong et al. 2010). Petrogenic and 

biogenic hopanes and steranes generally have distinct structures or configurations (Qu et al. 

2007; Boitsov et al. 2011).  

Hopanes and steranes are highly resistant to chemical, photochemical and microbial 

degradation (Manan et al. 2011; Neff and Durell 2012), so they have been used as signature or 

marker compounds to help identify sources of organic matters in lake sediments (Meyers and 

Ishiwatari 1993; Qu et al. 2007; Xiong et al. 2010) and the extent of biodegradation (Prince et al. 

1994). They also have been used as tracers of vehicle exhaust in the atmosphere because they 

appear specific to the engine lubricating oil used in diesel and gasoline engines (Kleeman et al. 

2008; Schauer et al. 2002, 1999).  

1.2.1.3 Bioaccumulation in aquatic food web 

PAHs in bottom sediments can be taken up by benthic organisms. Many aquatic 

invertebrates (clams, mollusks, crustaceans, etc.) cannot efficiently metabolize PAHs (Hahn et 

al. 1994; Varanasi et al. 1985) and sediment-associated PAHs can be accumulated in bottom-

dwelling invertebrates and fish in the Great Lakes (Bruner et al. 1994; Eadie et al. 1982b; Eadie 

et al. 1982a; Levengood and Schaeffer 2011). Bioconcentration factors (BCFs) for aquatic biota, 

which represent the ratio of tissue to the water concentrations, range from roughly 101 to 104 for 

many PAHs (Eisler 1987). However, most PAHs are rapidly metabolized in fish because they 

possess the Ah receptor and sufficient cytochrome P450 (Livingstone 1998; Hahn et al. 1994), so 

PAHs generally show little tendency of biomagnifications in aquatic food webs (Eisler 1987). 

Very little information is available regarding bioaccumulation of NPAHs in aquatic 

organisms. Only one recent study reported NPAHs at ppt to ppb levels in marine bivalves at 

Osaka Bay, Japan, which were much lower than PAH concentrations in bivalves (Uno et al. 

2011). Like PAHs, NPAHs can induce cytochrome P450 activity in fish (Jung et al. 2001). 

NPAHs are metabolized in fish by nitro-reduction followed by acylation (Kitamura and Tatsumi 

1996). 

Hopanes and steranes have been measured in aquatic organisms to assess oil pollution 

(Manan et al. 2011; Neff and Durell 2012). Bioaccumulation has been reported in aquatic 
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invertebrates (amphipods and bivalves) (Neff and Durell 2012) and fish (Manan et al. 2011), 

with concentrations in the ppb levels, one or two orders of magnitude lower than PAH levels 

(Manan et al. 2011; Neff and Durell 2012). 

1.2.1.4 Toxicity, health effects and exposure guidelines 

Certain PAHs are potent carcinogens and systemic toxicants with wide-ranging effects in 

humans, non-human mammals, birds, invertebrates, plants, amphibians, and fish. Several PAHs 

and NPAHs are mutagens and carcinogens based on microbial mutagenicity bioassays and a 

forward mutation human assay (Fu et al. 1985; Sakai et al. 1985; Watanabe et al. 1995). The 

mechanism of toxic action is that PAHs and NPAHs form intercalation compounds with DNA 

molecules, which can affect DNA replication, recombination and repair, ultimately leading to 

DNA damage (Tokiwa et al. 1987). While PAHs are indirect mutagens which require metabolic 

activation, NPAHs are direct-acting mutagens. Many NPAHs have stronger carcinogenic and 

mutagenic activity than PAHs. For example, the mutagenic activity in Salmonellaty phimurzum 

TA98 of 1,8-dinitropyrene is three orders of magnitude higher than benzo[a]pyrene’s, considered 

one of the most toxic PAHs (Tokiwa et al. 1987). Therefore, although concentrations are 

generally lower than PAHs, NPAHs may be toxicologically more important (Murakami et al. 

2008). Toxicity information for hopanes and steranes is unavailable. Since these compounds are 

derived from cell membranes, however, it is likely that their toxicity is low. 

PAHs can exert photo-induced toxicity in aquatic organisms when PAHs in biological 

tissues are exposed to UV radiation in sunlight (Arfsten et al. 1996). Phototoxic effects that have 

been observed in laboratory animals include acute skin reactions, enhancement of UV-induced 

carcinogenesis, and death (Arfsten et al. 1996). The mode of action is that a PAH molecule 

absorbs UV light, and then transfers the energy to an oxygen molecule, which creates an oxygen 

radical that can cause cell damage at respiratory surfaces (McDonald and Chapman 2002). Not 

all PAHs are phototoxic.  Phototoxic compounds include anthracene, fluoranthene, pyrene and 

benzo[a]pyrene (Arfsten et al. 1996). Phototoxicity of one NPAH, 1-nitropyrene, has also been 

observed (Arfsten et al. 1996). Although phototoxicity of PAHs have been clearly demonstrated 

in laboratory studies, its ecological relevance remains uncertain (McDonald and Chapman 2002). 

Organisms have various protective mechanisms, e.g., behaviors and genetic adaptions, that can 

prevent exposure to sunlight or PAHs (McDonald and Chapman 2002).  
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Exposure limits have been proposed by U.S. EPA and other agencies for several PAHs, 

and limits or guidelines exist for domestic water, fish consumption, and air concentrations 

(ATSDR 1995). For the 16 EPA priority PAHs, consensus-based sediment quality guidelines 

(SQGs) are available for the protection of benthic-dwelling organisms (WDNR 2003). PAH 

concentrations in engine exhaust are unregulated (Khalek et al. 2011). No regulatory limits or 

guidelines exist for NPAHs.   

Since PAHs and NPAHs almost always occur as mixtures in the environment, U.S. EPA 

has used the toxic equivalency (TEQ) approach for many years to account for mixture exposures 

and assess the carcinogenic risks to humans (Schoeny and Poirier 1993). In this approach, each 

PAH or NPAH is assigned a toxic equivalent factor (TEF, unitless) based on its relative 

carcinogenic potency compared to BAP (Table 1.1). B[a]P has a TEF of 1. Then the TEQBAP for 

the mixture is calculated as  

𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  =  ∑ (𝐶𝐶𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 )                                                    (1.1) 

where Ci is the concentration of each PAH and NPAH in the mixture. 

1.2.2 Status of Lake Michigan 

The Great Lakes ecosystem is particularly vulnerable to contamination given the 

numerous urban and industrial discharges in the region, the Lakes’ large surface area that 

increases loadings via atmospheric deposition (Simcik et al. 1999), and the long hydrologic 

retention times (De Vault et al. 1996). As noted, Lake Michigan has high levels of many 

contaminants given the historically large loadings from atmospheric deposition, urban runoff and 

municipal/industrial effluents due to the urban and industrial centers surrounding its southern 

portion (Hickey et al. 2006; Helfrich and Armstrong 1986). The Lake also receives inputs from 

petroleum spills, particularly since Indiana Harbor, Indiana and Chicago, Illinois are major 

distribution centers for petroleum products (Helfrich and Armstrong 1986). Coal-tar pavement 

sealant may be another important source of PAHs to Lake Michigan given its use in central and 

eastern U.S. cities (Van Metre and Mahler 2010). 

Although PAH levels in air and precipitation of Lake Michigan have been monitored 

extensively by the Integrated Atmospheric Deposition Network (IADN) (Sun et al. 2006a; Sun et 

al. 2006b), studies on PAH levels in sediment and biota are limited. In addition, sediment and 
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biota in Lake Michigan have not been characterized for PAHs since the 1990s (Su et al. 1998; 

Zabik et al. 1996). Newer information is needed to assess the contaminant trends. No 

information is available regarding nitro-PAHs, hopanes and steranes in the sediment and biota of 

Lake Michigan; such data are extremely limited across the world. 

1.2.3 Source identification and apportionment methods 

Identification of the major sources of the target compounds can help understand the 

origin of these compounds and target those sources for emission reduction. Several approaches 

have been used for identifying and apportioning sources of PAHs, NPAHs and petroleum 

biomarkers in ambient air and sediments (Albinet et al. 2007; Boitsov et al. 2011; Bzdusek et al. 

2004; Li et al. 2003; Qu et al. 2007; Tang et al. 2005; Yunker et al. 2002). These approaches can 

be grouped as diagnostic ratios and receptor models. Both approaches are based on uniqueness 

and stability of patterns of PAH, NPAH and petroleum biomarker emissions from different 

sources. 

1.2.3.1 Diagnostic ratios 

Ratios between concentrations of pairs of compounds that have unique values for each 

type of source can serve as a “fingerprint” to identify sources. Such diagnostic ratios are semi-

quantitative, that is, they can identify the major sources, but they cannot apportion the 

contribution from each source. For example, an ANT/(ANT+PHE) ratio < 0.10 usually indicates 

petroleum-derived PAHs, while a ratio > 0.10 indicates a dominance of combustion-derived 

PAHs (Yunker et al. 2002) (Abbreviations of compounds are given in Table 1.1). For PAHs, the 

ratio of BAA/CHR has been used to identify urban influences (Gschwend and Hites 1981; 

Helfrich and Armstrong 1986); ratios of PHE/ANT, FLA/PYR, ANT / (ANT + PHE), FLA / 

(FLA + PYR), BAA / (BAA + CHR) and IcdP / (IcdP + BghiP) are commonly used to 

distinguish between high temperature combustion and low temperature petroleum sources 

(Gschwend and Hites 1981; Yunker et al. 2002; Budzinski et al. 1997). For NPAHs, the ratio of 

2-NFLA/1-NPYR has been used to evaluate the contributions of primary (direct emissions) and 

secondary sources (formation in gas-phase atmospheric reactions) (Albinet et al. 2007). The 2-

NFLA/2-NPYR concentration ratio has been used to distinguish between OH radical and NO3 

initiated oxidation pathways of NPAH formation (Albinet et al. 2007). The 1-NPYR/PYR ratio is 

an indicator of diesel-engine vehicles and coal combustion (Tang et al. 2005). For petroleum 
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biomarkers, several thermal maturity indicators can be used to distinguish between petrogenic 

and biogenic origins of hydrocarbons in sediments (Boitsov et al. 2011; Qu et al. 2007; 

Hostettler et al. 1992). 

1.2.3.2 Receptor modeling 

Receptor models utilize chemical measurements at a monitoring site (the receptor) and 

statistical techniques such as regression and factor analysis to calculate the relative contributions 

from major sources to the pollution at that site (EPA 2011). Receptor modeling is quantitative, 

because it can not only identify the major sources, but also apportion the relative contribution 

from each source. Receptor modeling has been applied using PAHs.  Because source profiles 

(the pattern of emissions from each source) for NPAHs and petroleum biomarkers are mostly 

unavailable, receptor modeling has not been used for these compounds.  

Receptor modeling is based on the assumption of mass conservation. The concentration 

of chemical species i at the receptor is assumed to be a linear combination of contributions from 

various sources (j = 1…m). The general equation is 

C = AS + E                                                                   (1.2) 

where C is a n×1 vector of concentrations of chemical species i measured at a receptor site with 1 

≤ i ≤ n; A is n×m source composition matrix of n compounds for each of the m sources modeled; 

S is a m×1 vector of the source contribution factor; and E is a n×1 error vector. (Li et al. 2003) 

Eq. (1.2) may be solved using several techniques. This dissertation focuses on one of the 

most commonly used techniques, the chemical mass balance (CMB) approach, which is 

described below.  

Chemical mass balance (CMB) methods  

The CMB model requires source profiles (the mass fraction of a chemical in the 

emissions from each source type, i.e., matrix A) and ambient data (concentrations measured at 

the receptor) (EPA 2004). All source profiles must be known, as obtained using measurements or 

the literature. CMB methods also require that (1) the number of sources (m) must be less than or 

equal to the number of chemical species (n); (2) the composition of source emissions is 

consistent over the period of receptor and source sampling; (3) the chemical species do not react 

with each other, i.e., they add linearly; (4) all possible sources are identified and source profiles 
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are known; (5) the compositions of different sources are linearly independent of each other; and 

(6) measurement uncertainties are random, uncorrelated, and normally distributed (Li et al. 

2003). CMB typically uses a least squares solution to the set of linear equations represented by 

eq. (1), that is, minimizing the sum of squares for error to obtain the source contribution factor Sj 

for each of the m sources (Li et al. 2003).  

CMB models have been used extensively to apportion airborne pollutants including 

metals, SVOCs and VOCs.  Applications in aquatic environments are not common, although 

CMB models have been used to apportion PAHs in Lake Michigan sediments (Christensen et al. 

1999; Li et al. 2003) and sediments in other lakes (Van Metre and Mahler 2010).  

Limitations of CMB methods include difficulties in identifying all possible sources and 

obtaining all source profiles. Also, source emissions and the composition of emissions can vary 

considerably over time (i.e., the source profile is not consistent).  The emission mix has clearly 

changed, e.g., over the past century or two, emissions have shifted from wood to coal to 

petroleum (Christensen et al. 1999). Pertinent to this research are recent (2007) emission controls 

on diesel engines that significantly reduced PM and PAH emissions from newer vehicles (Liu et 

al. 2010). Moreover, PAHs and other compounds can undergo degradation and partitioning 

during environmental transport, which violates the assumption that profiles remain constant from 

source to receptor (Li et al. 2003; Galarneau 2008). 

1.2.4 Multimedia fate models: the fugacity approach 

Multimedia fate models use physical-chemical properties, reactivity, and transport 

characteristics to describe a comprehensive picture of a chemical’s environmental behavior, 

based on the chemical’s emission rates into the environment (Mackay and Paterson 1991). A 

widely used type of multimedia model is based on the concept of fugacity (Mackay 2010). 

Briefly, fugacity (f) describes an “escaping” tendency of a chemical, which has units of pressure 

(Pascal). It can be considered as the partial pressure of a chemical in a phase, and it is 

logarithmically related to chemical potential. Chemical potential, also known as partial molar 

free energy, is a form of potential energy that can be absorbed or released during a chemical 

reaction or a phase transition. Fugacity is an equilibrium criterion of chemical partitioning, that 

is, if a chemical partitions between two phases, it seeks to establish an equal fugacity in both 

phases (Mackay 2010).  
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Fugacity models are mass balance models in which the environment is modeled as 

several compartments. Each compartment is assumed to be homogeneous, or well-mixed 

(Mackay 2010). There are four levels of fugacity models. The most widely used are level III and 

level IV models. Level III is a steady-state model with emissions into the system, advective 

flows coming in and out of the system, reactions within compartments, and intermedia transport 

between compartments; the chemical is not in equilibrium between compartments. Level IV is a 

dynamic level III model, that is, the system is not in steady-state (Mackay 2010). These and 

other fugacity models can be used to estimate chemical concentrations in different environmental 

compartments under steady-and unsteady-state conditions (Mackay and Paterson 1991). They are 

particularly valuable in identifying key environmental processes and showing which 

environmental and chemical properties are the most important determinants of fate (Mackay and 

Hickie 2000). The fugacity-based models have been applied a wide variety of mostly persistent 

contaminants, including PCBs, PBDEs, pesticides and PAHs (Lim and Lastoskie 2011; Mackay 

and Hickie 2000; Mackay and Paterson 1991). 

1.3 Research objectives 

The overall objectives of this study are to understand the sources, distribution and risks of 

PAHs and NPAHs in Lake Michigan, to characterize emissions of these contaminants in diesel 

exhaust as a major potential source, and to model and predict the environmental fate of these 

contaminants. Petroleum biomarkers hopanes and steranes are also studied, but are not the main 

focus of this dissertation. The research has five specific objectives: the first two relate to PAHs 

and NPAHs in fish and sediment from Lake Michigan; the next two are concerned with diesel 

exhaust emissions; and the fifth is related to multimedia modeling.  The following expands on 

these objectives and states its importance. 

Objective 1: Characterize the distribution of PAHs and NPAHs (plus hopanes and 

steranes) in predator fish from Lake Michigan, and estimate the carcinogenic risk from the 

consumption of these fish. This information will help to understand the behavior of target 

SVOCs in top predator fish, including the effects of location, season and gender. The results can 

also be compared to PAH and NPAH levels in lower-trophic-level organisms (as reported in the 

literature) to assess biomagnification across the aquatic food web. The risk estimates can inform 

policy and risk communication regarding fish advisories and other health-related actions. 
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Objective 2: Characterize bottom sediments from Lake Michigan for PAH and 

NPAH (plus hopanes and steranes) levels, identify the major sources, and apportion sources. 

This objective is aimed at providing information that fills a substantial knowledge gap regarding 

the distribution of these contaminants, particularly for NPAHs, in Lake Michigan sediments.  

Since sediment represents the largest reservoir of SVOC contamination in the Great Lakes, 

sediment analyses are highly relevant to the restoration of the Great Lakes.  The distribution of 

the target PAH and NPAH contaminants will provide information to help characterize governing 

transport and fate processes.  PAH levels will be compared to literature data to evaluate temporal 

trends.  In addition, the NPAH measurements can serve as baseline data for future studies 

examining trends, while the hopane and sterane data can help to identify sources of hydrocarbon 

contamination. The source apportionments will identify the major sources of PAHs and NPAHs, 

which could then be targeted for emission reduction.   

Objective 3: Analyze PAH and NPAH (plus hopanes and steranes) emissions from 

current and next generation diesel engines (which differ in exhaust after-treatment technology 

and fuel).  Diesel engine exhaust represents an important source of these contaminants, and 

vehicle emissions previously has been identified as one of the major sources of PAHs in Lake 

Michigan (Christensen and Arora 2007; Christensen et al. 1999; Li et al. 2003). Work in this 

objective will provide useful data on NPAH along with PAH emissions in diesel exhaust, and an 

understanding of the effects of new after-treatment technologies and fuels, in particularly, 

biodiesel fuels and particulate traps. Widespread use of these technologies and fuels will 

decrease emissions, reduce atmospheric deposition into Lake Michigan, and ultimately lower 

concentrations in the Great Lakes ecosystem. 

Objective 4: Examine the integrity of PAHs and NPAHs (plus hopanes and steranes) 

during filter processing and storage, which is needed to analyze the particulate samples 

collected from diesel exhaust. This objective is a supplement to Objective 3. Filter processing 

and storage involve multiple, sequential and complex steps, during which target SVOCs can 

volatize, decompose, or transform. Thus, sample integrity must be characterized and maintained 

to obtain quantitative measurements. The results have important implications on SVOC sampling 

and analysis protocols, which should utilize stringent criteria and performance checks to limit 

possible biases occurring during filter and extract processing and storage. 
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Objective 5: Use multimedia models to predict the environmental fate of PAHs and 

NPAHs in Lake Michigan, and to estimate emission rates of these contaminants. Emission 

and process data is essential for understanding the overall behavior of PAHs and NPAHs in the 

Lake Michigan basin (including distribution, transport and fate in different environmental 

compartments) and in the Lake Michigan aquatic food web (incorporating bioaccumulation, 

trophic transfer, biomagnifciation, and other processes). A comparison between predicted and 

measured concentrations is used to illustrate model strengths and highlight potential issues, e.g., 

estimating model parameters.  The model also is used in an inverse fashion to estimate emission 

rates of PAHs and NPAHs based on fitting concentrations measured in different environmental 

media (e.g., fish and sediment). This information can be used to evaluate and improve current 

and historical emission inventories of PAH and NPAH emissions.  

1.4 Organization of this dissertation 

This dissertation is organized into eight chapters. Chapter 1 (this chapter) has 

summarized the background, literature findings, objectives of this research and importance of 

each objective. Chapters 2 to 6 pertain to each specific objective described in Section 1.3. 

Chapter 2 presents the concentrations of target compounds in Lake Michigan lake trout, 

evaluates the effects of site, season, gender and trophic level, and estimates the associated human 

cancer risk. Chapter 3 presents the concentrations of target compounds in Lake Michigan 

sediments, evaluates their spatial distribution patterns, assesses the temporal trend of PAHs, and 

identifies/apportions major sources of these compounds. Chapter 4 investigates the emissions of 

target compounds from a major source – diesel engine exhaust -- and then examines the effects 

of fuel type, engine load and after-treatment. Chapter 5 investigates the effects of filter 

conditioning, filter storage and extract storage on the integrity of target compounds in diesel 

exhaust PM samples. Chapter 6 uses fugacity-based multimedia models to predict the 

environmental fate and to estimate the emission rates of PAHs and NPAHs in the Lake Michigan 

basin. The findings of several chapters have been published in peer-review journals, which are 

indicated in the footnote of those chapters. Finally, Chapter 7 integrates the major findings of the 

individual chapters, highlights the significance of this research, discusses the limitations, and 

provides suggestions for further studies. 
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1.5 Tables and figures 

Table 1.1 List of target compounds 

 
a (Nisbet and LaGoy 1992); b (EPA 2010); c (RIDEM 2008) 

d No information available.  

e Estimated by (EPA 2012a).Values with an asterisk are from experimental database. 

  

Group Compound Abbrev. CAS # MW # of rings

g/mol

Naphthalene NAP 91-20-3 128 2 0.001 b 3.30 *

Acenaphthylene ACY  208-96-8 152 3 0.001 b 3.94 *

Acenaphthene ACE  83-32-9 154 3 0.001 b 3.92 *

Fluorene FLU 86-73-7 166 3 0.001 b 4.18 *

Phenanthrene PHE 85-01-8 178 3 0 a 4.46 *

Anthracene ANT 120-12-7 178 3 0 a 4.45 *

Fluoranthene FLA  206-44-0 202 4 0.08 a 5.16 *

Pyrene PYR  129-00-0 202 4 0 a 4.88 *

Benzo[a]anthracene BAA  56-55-3 228 4 0.2 a 5.76 *

Chrysene CHR  218-01-9 228 4 0.1 a 5.81 *

Benzo[b]fluoranthene BBF 205-99-2 252 5 0.8 a 5.78 *

Benzo[k]fluoranthene BKF 207-08-9 252 5 0.03 a 6.11 *

Benzo[a]pyrene BAP  50-32-8 252 5 1 a 6.13 *

Dibenzo[a,h]anthracene DBA 53-70-3 278 5 10 a 6.54 *

Indeno[1,2,3-cd]pyrene IcdP 193-39-5 276 6 0.07 a 6.70

Benzo[g,h,i]perylene BghiP 191-24-2 276 6 0.009 a 6.63 *

1-Nitronaphthalene 1-NNAP 86-57-7 173 2 n/a d 3.19 *

2-Nitronaphthalene 2-NNAP 581-89-5 173 2 n/a d 3.24 *

2-Nitrobiphenyl 2-NBPL 86-00-0 199 2 n/a d 3.57

3-Nitrobiphenyl 3-NBPL 2113-58-8 199 2 n/a d 3.87 *

4-Nitrobiphenyl 4-NBPL 92-93-3 199 2 n/a d 3.82 *

5-Nitroacenaphthene 5-NACT 602-87-9 199 3 0.03 c 3.82 *

2-Nitrofluorene 2-NFLU 607-57-8 211 3 0.01 c 3.37 *

9-Nitroanthracene 9-NANT 602-60-8 223 3 n/a d 4.78 *

9-Nitrophenanthrene 9-NPHE 954-46-1 223 3 n/a d 4.16

1-Nitropyrene 1-NPYR 5522-43-0 247 4 0.1 c 5.06 *

6-Nitrochrysene 6-NCHR 7496-02-8 273 4 10 c 5.34

17α(H),21β(H)-Hopane Hop1 471-62-5 413 5 10.78

17α(H)-22,29,30-Trisnorhopane Hop2 53584-59-1 371 5 9.45

17α(H),21β(H)-30-Norhopane Hop3 53584-60-4 399 5 10.36

22R-17α(H),21β(H)-Homohopane Hop4 60305-22-8 427 5 11.27

22S-17α(h),21β(h)-Homohopane Hop5 60305-23-9 427 5 11.27

20S-5α(H), 14α(H), 17α(H)-Cholestane Ste1 41083-75-4 373 4 n/a

20R-5α(H), 14α(H), 17α(H)-Cholestane Ste2 481-21-0 373 4 10.36

20R-5α(H), 14β(H), 17β(H)-Cholestane Ste3 69483-47-2 373 4 n/a

20R-5α(H), 14β(H), 17β(H)-24-Methylcholestane Ste4 71117-90-3 387 4 n/a

20R-5α(H), 14α(H), 17α(H)-24-Ethylcholestane Ste5 62446-14-4 401 4 n/a

20R-5α(H), 14β(H), 17β(H)-24-Ethylcholestane Ste6 71117-92-5 401 4 n/a

Hopanes n/a d

Steranes n/a d

TEF (new) LogKowe

PAHs

NPAHs
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Chapter 2 Characterization of target compounds in Lake Michigan fish1 

2.1 Abstract 

This study examines concentrations and risks of polycyclic aromatic hydrocarbons 

(PAHs), nitro-PAHs (NPAHs), steranes and hopanes in lake trout collected in Lake Michigan. A 

total of 74 fish were collected in two seasons at three offshore sites. Σ9PAH concentrations in 

whole fish ranged from 223 to 1,704 pg/g wet weight (ww), and PAH concentrations and profiles 

were similar across season, site and gender. Σ9NPAH concentrations ranged from 0.2 to 31 pg/g 

ww, and carcinogenic compounds, including 1-nitropyrene and 6-nitrochrysene, were detected. 

In fall, NPAH concentrations were low at the Illinois site (0.2 – 0.5 pg/g ww), and site profiles 

differed considerably; in spring, concentrations and profiles were similar across sites, possibly 

reflecting changes in fish behavior. In fall, Σ5Sterane and Σ2Hopane levels reached 808 and 141 

pg/g ww, respectively, but concentrations in spring were ten times lower. Concentrations in eggs 

(fall only) were in the same order of magnitude as those in whole fish. These results demonstrate 

the presence of target SVOCs in a top predator fish, and are consistent with PAH “biodilution” 

observed previously. Using the available toxicity information for PAHs and NPAHs, the 

expected cancer risk from consumption of lake trout sampled are low. However, it is notable that 

NPAHs contributed a significant portion of the TEQs in some samples. This study provides the 

first measurements of NPAHs in freshwater fish, and results suggest that additional assessment is 

warranted. 

  

1 Results of this chapter have been accepted for publication in Environmental Toxicology & Chemistry. 
DOI: 10.1002/etc.2620 
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2.2 Introduction 

The presence of semivolatile organic compounds (SVOCs) in the Great Lakes has been a 

concern for decades. One class of SVOCs, polycyclic aromatic hydrocarbons (PAHs), includes a 

number of persistent and ubiquitous environment pollutants that are formed mainly through 

incomplete combustion and released into the atmosphere (Crane et al. 2010). Other PAH sources 

include petroleum and petroleum derived products, as well as diagenetic sources that are derived 

from biogenic precursors (Crane et al. 2010). These pollutants reach the aquatic environment 

through atmospheric deposition, urban runoff and municipal/industrial effluents, where they 

accumulate in bottom sediments and enter the aquatic food web. A number of PAH species are 

toxic to aquatic invertebrates and fish, potentially causing deformities, lesions, tumors, 

compromised immunity and death (Logan 2007). Accumulation of PAHs in sediments and 

bottom-dwelling invertebrates and fish has been documented in the Great Lakes (Eadie et al. 

1982b; Levengood and Schaeffer 2011). Benthic fish in the Great Lakes region, such as brown 

bullhead (Yang and Baumann 2006), winter flounder (Koza et al. 1993), alewife and minnow 

(Levengood and Schaeffer 2011), have been studied for PAH contaminations, but few studies 

have examined top predator fish.  

Nitrated PAHs, called nitro-PAHs (NPAHs), can have stronger carcinogenic and 

mutagenic activity than the parent PAHs. For example, the mutagenic activity in Salmonella 

typhimurzum TA98 of 1,8-dinitropyrene is three orders of magnitude higher than 

benzo[a]pyrene’s, which is considered one of the most toxic PAHs (Tokiwa et al. 1987). NPAHs 

result from combustion-related emissions, as well as through transformations of atmospheric 

PAHs (Perrini et al. 2005). There is also evidence of endogenous production of mutagenic 

NPAHs in fish (tilapia) exposed to nitrite (NO2-) and a noncarcinogenic PAH (phenanthrene) 

(Shailaja et al. 2006). As determined for other SVOCs like the PAHs (Simcik et al. 1996), 

atmospheric deposition is likely to be a major source of NPAHs in the Great Lakes. Information 

regarding bioaccumulation of NPAHs in aquatic organisms is very limited, although a recent 

study reported NPAHs at ppt to ppb levels in marine bivalves at Osaka Bay, Japan (Uno et al. 

2011). 

Hopanes and steranes are two additional classes of SVOCs. These materials are derived 

from the cell membranes of prokaryotes (Ourisson and Rohmer 1992) and eukaryotes (Ourisson 
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et al. 1987), respectively, and are constituents of crude oil (Manan et al. 2011).  Both can enter 

the environment from petrogenic and pyrogenic sources (Manan et al. 2011). These compounds 

have been used as “markers” or "tracers" of vehicle exhaust because they are resistant to 

environmental degradation (Manan et al. 2011; Neff and Durell 2012), and because they appear 

specific to diesel and gasoline engine lubricating oils (Kleeman et al. 2008). Toxicity 

information for hopanes and steranes is unavailable. Bioaccumulation of these compounds has 

been reported in marine amphipods, bivalves (Neff and Durell 2012) and fish (Manan et al. 

2011) and related to oil pollution, but concentrations in aquatic biota in the Great Lakes have not 

been reported.  

The Great Lakes ecosystem is particularly vulnerable to contamination due to the 

numerous urban and industrial emission sources in the region, the Lakes’ large surface area that 

increases loadings via atmospheric deposition (Simcik et al. 1996), and the long hydrologic 

retention times. Lake Michigan has the highest contaminant levels of many contaminants, a 

result of historically large loadings from agricultural, municipal and industrial sources (Hickey et 

al. 2006; Chang et al. 2012). PAHs in the atmosphere and sediments of Lake Michigan have 

been extensively studied, and contributions from vehicle emissions and coal/coke oven emissions 

have been documented (Sun et al. 2006; Christensen and Arora 2007).  However, little 

information exists regarding levels of PAHs in biota, especially fish. Lake trout (Salvelinus 

namaycush), a top predator fish, was extirpated from Lake Michigan in the 1950s, but stocked 

and rehabilitated since 1965 (Madenjian et al. 2002). Historically, this species has been used as 

an bioindicator species in the Great Lake Fish Monitoring and Surveillance Program (GLFMSP) 

for monitoring trends of PCBs, pesticides and mercury (Chang et al. 2012; Zananski et al. 2011), 

but PAHs, NPAHs, hopanes and steranes have not been monitored in this program.  

This study characterizes concentrations and profiles of PAHs, NPAHs, hopanes and 

steranes in lake trout from Lake Michigan. We investigate possible differences among sampling 

sites, gender and season, and provide initial estimates of risks to human and fish health from 

these contaminants.  To our knowledge, this is the first report of NPAHs in freshwater fish, and 

the first since the 1990s for PAHs in Lake Michigan lake trout (Zabik et al. 1996). The study is 

intended to provide new information regarding the concentration, distribution and risk of the 

target SVOCs in the aquatic biota of the Great Lakes. 
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2.3 Materials and methods 

2.3.1 Fish collection and processing 

Lake trout (Salvelinus namaycush) were collected at three offshore sites on Lake 

Michigan (Charlevoix, MI; Clay Banks, WI;  Waukegan, IL; Figure 2.1) by personnel from the 

Michigan Department of Natural Resources (DNR), Illinois DNR and Wisconsin DNR. The fish 

collection was part of an annual Lake Michigan lakewide survey supported by the Great Lakes 

Fishery Commission to assess the progress toward rehabilitation of the lake trout population in 

Lake Michigan. The three sites were chosen for the present study to cover a north-south transect 

of Lake Michigan. Fish were collected by gillnet in fall (September – October) of 2011 and 

spring (April – May) of 2012 following well-defined protocols (De Vault et al. 1996).  Individual 

fish were placed in plastic bags, frozen whole and shipped to the U.S. Geological Survey 

(USGS) Great Lakes Science Center (GLSC) in Ann Arbor, Michigan, where they were thawed, 

sexed, weighed, measured for total length, and homogenized individually in a Robot Coupe 

grinder. Eggs of female fish collected in the fall were removed prior to homogenization and 

analyzed separately. Subsamples of homogenized tissues were stored at -20 °C in solvent-washed 

glass jars with aluminum foil-lined screw caps until brought to the nearby University of 

Michigan School of Public Health for analysis. Whole fish (instead of fish fillets) were analyzed 

in order to be consistent with the protocol used by GLFMSP for PCBs and pesticides in Great 

Lakes lake trout (Chang et al. 2012; De Vault et al. 1996).  

2.3.2 Materials 

All solvents were HPLC grade and obtained from Fisher Scientific Inc.. Florisil (60-100 

mesh) and sodium sulfate (anhydrous, certified ACS granular, 10-60 mesh) for column 

chromatography were supplied by the same vendor.  

 Calibration standards included a mixture of 16 PAHs (Sigma-Aldrich), a mixture of 8 

NPAHs (Sigma-Aldrich), individual standards for 17α(H),21β(H)-hopane and 20S-

5α(H),14α(H),17α(H)-cholestane (Chiron Laboratories), and SRM 2266 (National Institute of 

Standards and Technology). The SRM (standard reference material) 2266 is a solution of five 

hopanes and five steranes in iso-octane, which is intended primarily for use in the calibration of 

chromatographic instrumentation (NIST 2010). Fluoranthene-d10 (Cambridge Isotope 
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Laboratories Inc.) and an internal standard (IS) PAH mixture which includes anthracene-d10, 

benzo[a]pyrene-d12, chrysene-d12 and benzo[ghi]perylene-d12 (Wellington Laboratories), were 

used as ISs for PAH analyses. 1-Nitrofluoanthene-d9 (Cambridge Isotope Laboratories Inc.) was 

used as an IS for NPAH analyses. Lastly, n-tetracosane-d50 (Chiron Laboratories) was used as 

an IS for hopanes and steranes. Surrogate standards included C27-α,α,α-(20R)-cholestane-d2 (for 

hopanes and steranes), 1-nitropyrene-d9 (for NPAHs), chrysene-d12 and naphthalene-d8 (for 

PAHs) (Chiron Laboratories). 

2.3.3 Sample preparation and chemical analysis 

A 10-g subsample was taken from each homogenized sample, to which 15 μL of a 

surrogate standard (0.2 ng/µL of each compound) was added. The sample was dried with 

Na2SO4, extracted twice using dichloromethane/hexane (4:1, v/v), and sonicated for 30 min. Any 

fish tissue was separated from the extract by centrifugation and removed. The extract was passed 

through an activated Florisil column and fractionated into three portions:  fraction A was eluted 

with 15 mL hexane; fraction B was eluted with 15 mL hexane/acetone (1:1, v/v); and fraction C 

was eluted with 30 mL methanol. Each fraction was then evaporated under a N2 stream to 1mL. 

Fraction C was further cleaned to remove lipids by freezing at -79 °C for 5 h, and then separating 

and discarding the frozen lipid solids. Fractions A, B and C were analyzed for hopanes and 

steranes, PAHs, and NPAHs, respectively. 

Target compounds were quantified using a gas chromatography-mass spectrometry (GC-

MS; HP 6890/5973, Agilent Industries), an autosampler, and splitless 2 µL injections.  Injector 

and detector temperatures were 275 ºC and 280 ºC, respectively.  Separations used a capillary 

column (DB-5, 30 m x 0.25 mm id; film thickness 0.25 µm; J&W Scientific).  The carrier gas 

was helium (1.5 mL/min, pressure of 37.4 kPa, average velocity of 31 cm/s), and the MS reagent 

gas was ultra high purity methane. The PAH analyses used a temperature program that started at 

80 °C, then increased at 15 °C /min to 150 °C, then at 5 °C/min to 200 °C, and finally increased 

by 10 °C /min to 300 °C, which was held for 20 min, giving a total run time of 44.7 min. The MS 

detector was operated in electron impact (EI) mode. Scan mode was used to evaluate 

chromatography, and selective ion monitoring (SIM) mode was used for quantitative analysis 

with seven time windows (4, 5.8, 10, 14.25, 19, 22.2, and 25 min) and multiple ions. NPAH 

analyses used a temperature program that started at 40 °C held for 1.7 min, then increased by 
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25 °C/min to 150 °C and held for 10 min, increased by 10 °C/min to 220 °C and held for 10 min, 

and increased by 10 °C/min to 310 °C and maintained for 15 min giving a total run time of 57.1 

min. The MSD was operated in negative chemical ionization (NCI) mode, again in scan mode to 

evaluate chromatography and in SIM mode for quantitative analysis (using ions 223, 247, and 

297). Hopanes and steranes analyses used a third program: an initial oven temperature of 50 °C 

and no hold, ramping at 6 °C /min to 300 °C and holding for 10 min, giving a total run time of 

41.7 min. Analyses used MSD-EI, again in scan mode to evaluate chromatography and in SIM 

mode for quantitative analysis (using ion 191 for hopanes and ions 217 and 218 for steranes). In 

each case, 15 µL of the IS (0.5 ng/µL of each compound) was added to each sample extract using 

a 25 µL syringe prior to GC-MS analysis.  

2.3.4 Determination of lipid content 

A 3-g subsample was taken from each homogenized sample, mixed with Na2SO4, and 

extracted twice by dichloromethane/hexane (4:1, v/v) using sonication.  Fish tissue was separated 

from the extract by centrifugation and removed.  Extract was dried under the fume hood and then 

weighed. The lipid content was calculated as the weight of the dried extract divided by the 

subsample weight.  

2.3.5 Calibration and quality assurance (QA) 

For calibration, each standard (mentioned in “Materials”) was prepared at concentrations 

of 0.01, 0.05, 0.10, 0.50, and 1.00 ng/µL. All analytes were individually quantified against 

authentic standards. 

QA measures included regular use of lab blanks, replicates, surrogate spike recovery tests 

and standard reference materials, specifically SRMs 1647e (Priority Pollutant PAHs in 

Acetonitrile), 2264 (Nitrated Aromatic Hydrocarbons in Methylene Chloride I) and 2266 

(Hopanes and Steranes in, 2,2,4-Trimethylpentane) used for PAHs, NPAHs and 

hopanes/steranes, respectively. All SRMs were purchased from the National Institute of 

Standards and Technology (NIST). Replicates were performed for 10 whole fish samples and 2 

egg samples. Measurement precisions, expressed as the average relative percent difference 

(RPD) across the 12 replicate measures and compounds in the group, were 25%, 31%, 19% and 

12% for PAHs, NPAHs, steranes and hopanes, respectively.  Target compounds were not 

detected in the blanks except for trace levels of naphthalene and phenanthrene. The spike 
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recovery of surrogate standards was 77-89% during the study, and the shift (abundance of target 

compounds in standard solutions before and after running a batch of samples) was within 20%.  

2.3.6 Data analysis 

Concentrations were calculated as pg per g wet weight (ww). Compounds with a 

detection frequency below 30% (Table A2.1) were excluded from the calculation of statistics 

(e.g., sums and relative abundances), following guidance for highly censored data (Antweiler and 

Taylor 2008). For compounds with a higher detection frequency, measurements below method 

detection limits (MDLs) were set to MDL/2. (MDLs are listed in Table A2.1). The relative 

abundance of each PAH compound was calculated as the concentration of each compound 

divided by the total concentration of PAHs with > 30% detection frequency (e.g., in whole fish, 9 

PAHs were detected in over 30% of the samples, so the total concentration is denoted as 

Σ9PAHs). The relative abundances of NPAHs, steranes and hopanes were similarly determined.  

For statistical analyses, data were checked for normality using the Shapiro–Wilk test and 

for homogeneity of variances among groups using Levene’s test. Group differences were tested 

using 1-way ANOVAs or t-tests if variables were normally distributed with equal variances. 

Non-parametric tests, including Kruskal-Wallis and Wilcoxon tests, were used to compare group 

means when data distributions were not normal or variances were not equal. Statistical analyses 

used SAS 9.3 (SAS Institute, Inc.).  

For human health risks, the toxic equivalency (TEQ) for benzo[a]pyrene (BAP) was 

calculated for target compounds using toxic equivalent factors (TEFs, unitless) (Table A2.1) and 

the equation TEQBAP = Σi (Ci × TEFi), where Ci is the concentration of the ith PAH or NPAH in 

each sample (pg/g)  (Levengood and Schaeffer 2011). The new TEF values (Table A2.1) 

provided in the 2010 EPA document (draft) (EPA 2010) were used for PAHs, and TEFs for 4 

NPAHs were obtained from the Rhode Island Air Toxics guideline (RIDEM 2008). Two 

scenarios were considered: (1) the average scenario, including only the compounds with > 30% 

detection frequency, nondetect substituted by MDL/2; and (2) the worst-case scenario, including 

all target compounds, nondetect substituted by MDL/2. The excess lifetime cancer risk 

(dimensionless) was determined by multiplying the TEQ (BAP) by fish consumption rate 

(average 0.73 g/kg-day and high 2.2 g/kg-day) (EPA 2011) and the B[a]P oral cancer slope 

factor (7.3 per mg/kg-day) (EPA 2010). Since fish fillets were not analyzed, PAH concentrations 
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in fish muscles were estimated from the whole fish data using literature estimates of the tissue 

distribution of PAHs in fish and fish organ weights (Table A2.2).  

2.4 Results and Discussion 

2.4.1 Fish characteristics 

Fish weights were similar across site and season, but females weighed more than males at 

sites 1 and 2 in fall 2011 (t-test; p < 0.01 at sites 1 and 2; p = 0.60 at site 3), and females 

remained slightly, but not significantly, heavier in spring 2012 (Table A2.3). The fall samples 

were collected just before spawning, and all but one female contained large amounts of eggs.  

Fish collected at site 3 were slightly but not significantly heavier than fish at other sites, and 

weights varied considerably (1,205 to 6,214 g), which likely masked differences due to gender. 

The lipid content of the lake trout did not differ by gender, site or season (Table A2.3). In 

similarly sized lake trout (average of 639 mm in length) collected from Lake Ontario in 1986 

(Madenjian et al. 2010), lipid content also did not vary by gender.  However, lipid levels in lake 

trout collected in 1992 from Lake Michigan were considerably higher (17.9 ± 0.4%) (De Vault et 

al. 1996) than those in the present study (14.9 ± 3.1%). Fish in the present study may have had a 

low-lipid diet, e.g., abundant in relatively lean rainbow smelt and poor in fatty alewives 

(Madenjian et al. 2000). The decline in Diporeia abundance in Lake Michigan likely has lowered 

the lipid content of prey fish, leading to decreased lipid content of lake trout and other predatory 

salmonids (Madenjian et al. 2000). We did not observe the fall season decline in lipid content 

previously observed in Lake Michigan lake trout (Madenjian et al. 2000), possibly a result of 

dietary changes, the variation in the size of our fish (coefficient of variation in length = 8% 

versus 1.8% in the cited study), or sample size issues.  

2.4.2 Whole fish: PAHs 

Nine of the 16 target PAHs were found above MDLs in over 30% of the whole fish 

samples. Σ9PAH concentrations averaged 546 ± 244 pg/g ww (n = 74) and varied over an 8-fold 

range among individual fish. Site means by season and gender ranged from 350 to 819 pg/g ww 

(Figure 2.2A), but differences between season, gender and site were insignificant or marginally 

significant, probably due to the large variation among individual fish and the relatively small 

sample size. Two- and three-ring compounds were most abundant, e.g., phenanthrene, 
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acenaphthylene, naphthalene and acenaphthene; abundances of four or five-ring compounds did 

not exceed 4% (Figure 2.3). PAH abundances did not vary by site, gender or season (Kruskal-

Wallis and Wilcoxon tests). The fluoranthrene/pyrene ratio, an indicator of atmospheric transport 

distance that tends to increase at remote sites as pyrene undergoes more photo-oxidation (Zhang 

et al. 1993), was 6.3±10.3, 1.1±1.1, and 2.0±3.5 at the Charlevoix, Clay Banks and Waukegan 

sites, respectively. Differences between Charlevoix and Clay Banks sites (Mann-Whitney U test, 

p = 0.001) and between sites Charlevoix and Waukegan sites were significant (Mann-Whitney U 

test, p = 0.004), and reflect the proximity of the Clay Banks and Waukegan sites to major PAH 

sources near Green Bay and southwestern Lake Michigan, respectively (Figure 2.1). 

A 1991 study of PAHs in Lake Michigan lake trout found Σ27PAH levels of 1.52 ± 0.38 

ng/g ww and slightly less, 1.47 ± 0.4 ng/g ww, for the 16 target PAHs in the present study (Zabik 

et al. 1996). The average PAH concentration in the present study is 63% lower. The lower 

concentrations can be explained by declining environmental levels, e.g., PAH concentrations and 

accumulation rates in Lake Michigan sediments have been falling since 1980 (Simcik et al. 1996; 

Huang et al. 2014), as have airborne concentrations in Chicago over the 1996 to 2004 period 

(Sun et al. 2006). It is also important to recognize that the Lake Michigan food web has changed 

considerably since 1990s, with the invasion of zebra and quagga mussels and the rapid decline of 

Diporeia (Nalepa et al. 2009; Nalepa et al. 2005). Zebra mussels can alter the contaminant 

cycling in Lake Michigan by bioconcentrating PAHs from the water column (Bruner et al. 1994); 

the mussels also cover large areas of the sediment surface which may reduce the amount of 

PAHs that reach the sediments. These factors may have decreased PAH concentrations in water 

and sediments, resulting in fewer PAHs entering the upper-trophic aquatic organisms. In 

addition, the fish in the earlier study were caught near-shore at Pentwater and close to two 

contaminated Areas of Concern (AOCs; White Lake and Muskegon Lake) that may have had 

higher PAH levels (Zabik et al. 1996). In contrast, fish in the present study were caught in open 

water areas distant from AOCs and other contaminant sources.  ΣPAH concentrations in the 

Great Lakes food web generally decrease at higher trophic levels (Table 2.1).  Roughly speaking, 

concentrations in aquatic invertebrates are about 100 to 1000 ng/g (Eadie et al. 1982a; Eadie et 

al. 1982b; Metcalfe et al. 1997), levels in bottom-feeding fish are 10 to 100 ng/g (Levengood and 

Schaeffer 2011; Baumann et al. 1991; Ridgway et al. 1999); and levels in top predator fish such 

as lake trout are 1 to 10 ng/g (Zabik et al. 1996).  This trend is consistent with the “biodilution” 
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of PAHs observed in marine organisms (Takeuchi et al. 2009), and results from the rapid 

metabolism of PAHs by fish (Takeuchi et al. 2009) and the lack of effective oxidative enzyme 

systems in aquatic invertebrates (Hahn et al. 1994). While PAH concentrations in fish are low, 

PAH metabolites such as benzo[a]pyrene-7,8-dihydrodiol, 1-hydroxy benzo[a]pyrene, 3-hydroxy 

benzo[a]pyrene, 1-pyrenol, fluorenols, fluoranthenols, phenanthrols, and phenanthrene-9,10-diol, 

may persist in fish tissues (Varanasi and Stein 1991).  The toxicological importance of these 

metabolites has been suggested by their association with hepatic lesions and liver neoplasms 

found in English sole from Puget Sound (Krahn et al. 1986). 

The PAH concentrations in Lake Michigan lake trout in the present study (0.22 to 1.7 

ng/g ww) are generally comparable to or lower than levels elsewhere. For example, 

concentrations of PAHs in western U.S. national park fish were very low and the values were not 

reported (Ackerman et al. 2008). The majority of fish samples collected in Mississippi Gulf 

Coast affected by the Deepwater Horizon oil spill did not exceed 10 ng/g ww (Xia et al. 2012). 

ΣPAH concentrations in commercial fish collected from the coastal waters of Madagascar 

following an oil spill ranged from 1.9 to 63 ng/g ww (Rumney et al. 2011). Pelagic (marbled 

flounder) and benthic fish (rockfish) in the west coast of Korea following an oil spill had 

Σ16PAH concentration ranging from 9.6 to 22 ng/g dw (Jung et al. 2011). In constrast, ΣPAH 

concentrations in fish (brown ray, megrim and angler) from the Mediterranean Sea were higher, 

ranging from 210 to 227 ng/g ww (Storelli et al. 2013). The PAH concentrations in Lake 

Michigan lake trout were at the lower end of these observations, probably because there were 

few major oil spills in Lake Michigan, and since lake trout is at the very top of the aquatic food 

web. PAHs in sediments in open water regions of Lake Michigan are dominated by atmospheric 

deposition in the southern basin of the lake, which results in large part from combustion sources 

in the southwestern area (e.g., Chicago, Milwaukee and Gary); the waterborne contaminants are 

then transported and distributed throughout the lake (Simcik et al. 1996). As a result, sediments 

along a north-south transect of the open water showed fairly similar PAH concentrations and 

compositions (Simcik et al. 1996). Since tissue concentrations of PAHs in bottom prey fish are 

strongly related to sediment concentrations (Levengood and Schaeffer 2011), and lake trout feed 

mostly on bottom prey fish (Madenjian et al. 1998), similar PAH levels among the lake trout at 

the three sampling sites were expected. The similar PAH concentrations in fish collected in fall 

and spring seasons may reflect comparable atmospheric particle-phase PAH concentrations in 
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these seasons (Sun et al. 2006), or the significance of the PAH reservoir in the sediments, which 

changes concentration only very slowly. 

Contaminant levels in fish reflect a balance between uptake from the water column, diet 

and sediments, and metabolism, partitioning and elimination. These processes can vary 

significantly by compound. For example, the predominance of phenanthrene reflects its high 

concentrations in water (Offenberg and Baker 2000), prey fish (Levengood and Schaeffer 2011) 

and sediments (Huang et al. 2014), as well as its relatively slow metabolism (or clearance) in fish 

(half-life of phenanthrene = 2.55 days;  Table A2.1).  The abundance of other 2- to 3- ring 

compounds, such as naphthalene and acenaphthylene, likely reflects uptake from the water via 

gills because of their greater concentration in water (Offenberg and Baker 2000) and the 

relatively slow metabolism (half-lives of 4.53 and 3.73 days, respectively).  Although its 

concentration in water was also relatively high (Offenberg and Baker 2000), acenaphthene’s fast 

metabolism in fish (half-life of 0.25 days) will lower levels in lake trout. The relatively low 

fluoranthene levels in lake trout compared to prey fish (Levengood and Schaeffer 2011) could 

result from its low bioavailability in the diet or low assimilation efficiency in lake trout. Despite 

pyrene’s high concentrations in water (Offenberg and Baker 2000) and sediment (Huang et al. 

2014), low levels in lake trout and other fish (Levengood and Schaeffer 2011) can be explained 

by rapid biotransformation (half-life of 0.56 days). The low levels of higher molecular weight 

(HMW) PAHs, e.g., benzo[a]pyrene and benzo[g,h,i]perylene, may reflect lower gill uptake and 

lower concentrations in water (Offenberg and Baker 2000). However, ingestion of sediments 

(bottom and /or suspended) can also contribute to PAH uptake. Although sediments were 

relatively abundant in HMW PAHs (Simcik et al. 1996), concentrations of these PAHs in fish 

may be low because of low gut assimilation efficiency and higher metabolism rates (e.g., short 

half-lives for benzo[a]pyrene and benzo[g,h,i]perylene, Table A2.1), which is also reflected in a 

small biota-sediment accumulation factor (BSAFs) at high Kow (Liang et al. 2007).  

2.4.3 Whole fish: nitro-PAHs 

Nine of the 11 target NPAHs were detected in at least 30% of the samples. Σ9NPAH 

concentrations are presented in Figure 2.2B and Table A2.5. Σ9NPAH concentrations in 

individual fish ranged from 0.2 to 31 pg/g ww, roughly 10 to 1000 times lower than Σ15PAH 

concentrations. Like the PAHs, Σ9NPAH concentrations did not differ by gender. Site differences 
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were seen only in fall 2011 when Σ9NPAHs concentrations at Site Waukegan (IL) (0.39 ±0.10 

pg/g ww) were lower than those at other sites. Seasonal differences were significant but 

inconsistent for all site-gender combinations excluding Charlevoix females and Clay Banks 

males. Σ9NPAH and Σ9PAH concentrations were not significantly correlated (Spearman r = -

0.08, p = 0.499, N = 74). 

The most abundant NPAH compounds were 3-nitrobiphenyl and 2-nitrobiphenyl, each 

contributing 14% and 23% (median) of the Σ9NPAH, respectively (Figure A2.1). 1-

Nitronaphthalene, 2-nitronaphthalene, 1-nitropyrene and 6-nitrochrysene had similar 

abundances. For most of the NPAH compounds, abundances varied by site in the fall, while 

abundances in the spring were similar (Kruskal-Wallis test) (Figure 2.4). 

Several studies have reported NPAH concentrations in the low ng/g range in both 

freshwater and marine sediments around the world (Lübcke-von Varel et al. 2012; Ozaki et al. 

2010), including our measurements in southern Lake Michigan sediments (Huang et al. 2014). 

However, information regarding NPAH concentrations in aquatic biota is very scarce. One study 

reported ΣNPAH concentrations from 380 to 4100 pg/g ww in mussels and from 430 to 4300 

pg/g ww in oysters in Osaka Bay, Japan (Uno et al. 2011) (calculated from pg/g dry weight (dw) 

reported and a moisture content of 85% (He et al. 2002)), levels that were approximately 10 to 

100 times lower than ΣPAH concentrations reported in those mussels and oysters (Uno et al. 

2011). We found similar or greater ratios in lake trout. NPAH levels are anticipated to be low 

relative to PAH levels given the large differences in atmospheric levels (Albinet et al. 2007), 

engine exhaust (Liu et al. 2010), and sediments (Huang et al. 2014).  However, NPAH 

concentrations can be altered due to reactions during atmospheric transport, abiotic loss in the 

water column, biodegradation in sediments, biotransformation in fish, fish behavior, and possibly 

endogenous formation. Thus, concentrations in fish will not be proportional to atmospheric 

concentrations or emission rates.  

The low NPAH concentrations at the Waukegan site in the fall might have resulted from 

lake trout’s homing behavior. Lake trout return to the same site during the fall spawning season, 

but occupy a larger area where fish from different spawning stocks will mix during the 

remainder of the year (Schmalz et al. 2002). In the fall samples, the lake trout collected at the 

Waukegan site likely belonged to a single local spawning stock given the proximity of Julian’s 
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Reef, a major spawning site (Holey et al. 1995). In contrast, the spring sample probably reflected 

a mixed sample with individuals from other spawning stocks, resulting in similar average 

concentrations across the three sites. Homing behavior might also explain the similar NPAH 

profiles across sites in spring (Figure 2.4B) but not fall seasons (Figure 2.4A).  

As noted earlier, the highly urbanized and industrial areas around Waukegan site near 

southwestern Lake Michigan contain many PAH and NPAH sources. While these emissions 

would be diluted during transport to sites Charlevoix and Clay Banks, additional NPAH 

formation is expected given the longer atmospheric transport time compared to site Waukegan.  

Unfortunately, atmospheric concentrations of NPAHs in the Great Lakes region have not been 

reported. At three sites in downtown and suburban Kanazawa, Japan, NPAH levels were higher 

in winter than summer; patterns were inconsistent in fall and spring (Hayakawa et al. 2002). In 

Los Angeles, California, atmospheric NPAH levels were higher in summer (Reisen and Arey 

2005).  These studies may have only limited relevance to the Great Lakes region. In addition, 

nearby sources and other factors may affect local water, sediment and food concentrations. 

NPAH concentrations in lake trout result from atmospheric levels and deposition, levels 

accumulated in sediment, and uptake, metabolism and elimination processes. Information 

regarding NPAHs in sediments is limited, but includes a report for marine sediments in Japan 

(Ozaki et al. 2010) and our (yet unpublished) results for southern Lake Michigan (Huang et al. 

2014). Abundances of individual NPAHs in lake trout are compared to those in biota, sediment, 

ambient air and diesel engine exhaust reported in the literature (Figure 2.5). Abundances of 1-

nitronaphthalene and 2-nitronaphthalene in lake trout (around 10%) were low compared to 

abundances in both diesel exhaust (Liu et al. 2010) and the atmosphere (Albinet et al. 2007), 

likely reflecting the rapid clearance of these compounds relative to other NPAHs (Table A2.1). 

Much higher abundances of 1-nitronaphthalene and 2-nitronaphthalene (30-50%) were found in 

mussels and oysters from Osaka Bay, Japan (Uno et al. 2011), again highlighting effects of 

clearance rates. 2-Nitrobiphenyl and 3-nitrobiphenyl show a different pattern with high 

abundances (15 – 25%) in lake trout, probably reflecting slow metabolism (Table A2.1). 

Although these two compounds have not been detected in Lake Michigan sediments (Huang et 

al. 2014), they may be taken up by lake trout from the water column given their relatively low 

Kow (Table A2.1).  Two other NPAHs, 1-nitropyrene and 6-nitrochrysene, had low abundances 

in lake trout (10-15%) and bivalves (Uno et al. 2011) compared to sediments (30-40%, (Huang et 
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al. 2014), Figure 2.5), probably a result of rapid clearance in fish and possibly other biota (Table 

A2.1).  Sampling across major ecosystem compartments, e.g., water, sediments and across the 

food web, is needed to confirm the sources and mechanisms affecting levels of individual NPAH 

species.  

2.4.4 Whole fish: steranes and hopanes 

Five of the six target steranes were detected in more than 30% of the samples. Only two 

hopanes, 17α(H),21β(H)-hopane and 17α(H),21β(H)-30-norhopane, had a detection frequency 

above 30%  in the fall, but they were not detected in any sample in the spring. Σ2Hopane and 

Σ5Sterane concentrations are presented in Figures 2.2C and 2.2D, respectively. In fall 2011, 

Σ5Sterane concentrations averaged 269 ± 111 pg/g ww (range from 167 to 808 pg/g ww in 

individual fish), while Σ2hopane concentrations averaged 37 ± 23 pg/g ww (11 to 141 pg/g ww). 

In spring 2012, sterane and hopane concentrations fell 10-fold.  Like PAHs and NPAHs, no 

differences by gender were noted for either Σ5sterane and Σ2hopane levels. In fall 2011, both 

Σ5sterane and Σ2hopane showed the same spatial trend: Charlevoix < Clay Banks < Waukegan; 

and concentrations of both groups of compounds at Waukegan were significantly higher than 

those at Charlevoix (Mann-Whitney U test; p < 0.001). This trend disappeared in spring 2012. 

The relative abundances of the five detected steranes were similar across season, site and gender. 

20S-5α(H), 14α(H), 17α(H)-cholestane and 20R-5α(H), 14β(H), 17β(H)-24-ethylcholestane were 

most abundant, averaging 36 ± 13 and 42 ± 18%, respectively. Abundances of the other 3 

detected steranes were between 5% and 10%. In fall, the abundances of the two detected hopanes 

(17α(H),21β(H)-hopane and 17α(H),21β(H)-30-norhopane) were also consistent across site and 

gender, averaging 65 ± 10 and 35 ± 10%, respectively. 

Two studies pertain to steranes and hopanes in aquatic biota.  Concentrations of 

Σhopanes in aquaculture fish (red fish, grouper, tiger grouper, pomfret) in the Strait of Malacca 

were high, 17 to 250 ng/g ww (calculated from ng/g dw), possibly reflecting the extensive 

offshore oil and gas extraction and ocean shipping in this region (Manan et al. 2011).  In the 

second study, concentrations of total biomarkers (10 hopanes and 6 steranes) ranged from 

undetected to 10 ng/g ww (calculated from ng/g dw) in arctic amphipods (Anonyx nugax) in the 

Alaskan Beaufort Sea (Neff and Durell 2012). These concentrations, which should not be 
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affected by offshore oil and gas activities (Neff and Durell 2012), are comparable to levels 

measured in Lake Michigan trout. 

As noted above, steranes and hopanes enter the environment primarily from pyrogenic 

(e.g., traffic) and petrogenic (e.g., crude oil, asphalt and gasoline) sources. The Chicago/Gary 

area mentioned is a primary source area for steranes and hopanes for Lake Michigan, and 

southwesterly winds are common, especially in fall (Angel 2009).  The decrease in sterane and 

hopane concentrations with distance from the Chicago/Gary area (sites Waukegan to Charlevoix) 

in fall 2011 suggests the significance of this source. Much lower sterane and hopane levels in 

spring 2012 might result from changes in SVOC loadings to Lake Michigan, fish uptake and 

diet, and possibly fish metabolism. 

Hopane and sterane profiles measured in Lake Michigan sediments (Huang et al. 2014) 

show the predominance of 17α(H),21β(H)-hopane, as seen in lake trout. However, Σ6sterane 

concentrations in sediments were lower than Σ5hopane levels in sediment; the opposite was seen 

in lake trout.  This pattern does not appear to result from metabolism in fish since the estimated 

half-life in fish of 20R-5α(H), 14α(H), 17α(H)-cholestane (only half-life available for steranes) is 

shorter than that for all five target hopanes (Table A2.1). Microbial biodegradation may play a 

role here given the long biodegradation half-life of 20R-5α(H), 14α(H), 17α(H)-cholestane (1662 

days) relative to the five target hopanes (799-1249 days) (EPA 2012a). Levels in lake trout might 

also be driven by uptake via suspended particles and biota, in addition to sediment. The similar 

hopane and sterane compositions in the fish across season, site and gender suggest the same 

sources. Moreover, the same compounds (17α(H),21β(H)-hopane and 20S-5α(H), 14α(H), 

17α(H)-cholestane) were most abundant in both fish and diesel engine exhaust (Liu et al. 2010). 

The presence of these petroleum biomarkers in Lake Michigan lake trout is consistent with 

traffic-related emissions that are deposited in the lake and accumulated by aquatic biota.  

2.4.5 SVOCs in eggs 

Female fish presented eggs in the fall, the spawning season. Fewer PAH compounds were 

detected in the eggs than in the whole fish. Of the 9 PAHs detected in over 30% of whole fish 

samples, anthracene and fluoranthene were not detected in over 30% of the egg samples (Table 

A2.1). Σ7PAH concentration in the 15 egg samples ranged from 99 to 527 pg/g ww.  (Averages 

by site are presented in Table A2.4.) Σ7PAH concentrations in eggs were significantly lower than 
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the Σ9PAH concentrations in the corresponding female fish (paired t-test, t = 4.08, df = 14, p = 

0.001). Similar patterns have been observed for PCBs in lake trout from Lake Ontario, i.e., 

concentrations in gonads were 4-fold lower than those in female whole fish (Madenjian et al. 

2010). PAH profiles in eggs also differed from those in whole fish where the abundance of 

phenanthrene was very low (Figure A2.2).  

Compared to whole fish, two additional NPAH compounds were detected in eggs in over 

30% of samples, i.e., all 11 target NPAHs were detected in eggs (Table A2.1). Σ11NPAH 

concentration in the 15 egg samples ranged from 0.81 to 130 pg/g ww.  (Site averages are 

presented in Table A2.5.) Σ11NPAH concentrations in eggs were higher than the Σ9NPAH 

concentrations in the corresponding female fish, and differences are marginally significant 

(paired t-test, t = -1.94, df = 14, p = 0.072). NPAH profiles in eggs resembled those in whole fish 

(Figure A2.3). 

Eggs contained the same steranes and hopanes detected in whole fish. Σ5Sterane and 

Σ2hopane concentration in the eggs ranged from 204 to 493 pg/g ww and 10 to 119 pg/g ww, 

respectively. (Site averages are presented in Table A2.6.) Σ5Sterane and Σ2hopane concentrations 

in the eggs did not differ significantly from those in female fish, and abundances of individual 

compounds were also similar. 

2.4.6 Screening level risk estimates 

For the average scenario, using only the compounds detected in over 30% of whole fish 

samples and adjusting from whole fish to muscle tissue (see Data Analysis), the average TEQ 

from PAHs and NPAHs combined was 25 pg/g (19 pg/g from PAHs, 6 pg/g from NPAHs). 

Based on an oral cancer slope factor of 7.3 per mg/kg-day (EPA 1994), and average (0.73 g/kg-

day) and high (2.2 g/kg-day) fish consumption rates (EPA 2011), consumption of lake trout from 

Lake Michigan gives lifetime cancer risks of 0.13 and 0.40 per million. For the worst case 

scenario, considering all target compounds (regardless of detection frequency), the average 

muscle TEQ from PAHs and NPAHs combined is 516 pg/g (510 pg/g from PAHs and 6 pg/g 

from NPAHs), and the resulting cancer risks are 2.7 and 8.3 per million. The difference is largely 

due to dibenzo[a,h]anthracene, which was only detected in 1.2% of the samples but which has a 

TEF = 10 (Table A2.1). Even in the worst case scenario, calculated risks fell within the upper 

range of protective risk guidelines, 1 to 10 per million; the total TEQ (averaged 516 pg/g) also 
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fell below the Canadian limit of 1 to 4 ng/g benzo[a]pyrene for fish and shellfish established to 

protect consumers from adverse health effects (MOE 1993). However, these calculations involve 

several uncertainties and caution is necessary in interpreting the results. First, several TEFs have 

been reported for certain PAH compounds, and some differ by several orders of magnitudes 

(EPA 2010). Using the highest TEF values (EPA 2010) and the worst case scenario, the average 

PAH TEQ was 1949 pg/g (range from 1763 to 3389 pg/g) in our sample (fish muscles), which 

exceeded the Canadian limits. Second, the oral cancer slope factor for BAP ranges from 4.5 to 

11.7 per mg/kg-day (median of 7.3 per mg/kg-day) (EPA 1994). Combining these variables and 

using a high fish consumption rate (2.2 g/kg-day), the highest possible risk associated with lake 

trout consumption is 87 per million, well above guidelines. Moreover, since many NPAHs lack 

TEFs and not all NPAHs were measured, the current risk estimates may be underestimated. Even 

in the current calculation which only included the 4 NPAHs with available TEF values, NPAHs 

contributed a significant portion (40-80%) of the TEQs in some samples (under the average 

scenario).  

Due to their rapid metabolism and resulting low concentrations, PAHs and NPAHs in 

lake trout may pose minimal human health risks, in contrast to risks resulting from the 

biomagnification of contaminants such as PCBs and mercury in Great Lakes fish (Chiang et al. 

2012; Zananski et al. 2011). Still, the PAH and NPAH risk estimates presented may be 

underestimated, and additional toxicology studies and environmental measurements appear 

warranted.  

In addition, PAH exposure has been associated with immunosuppression, decreased 

growth and DNA damage in juvenile salmon collected in Puget Sound at stomach content 

concentrations from 4,000 to 15,000 ng/g wet weight for total PAHs (16 EPA priority PAHs plus 

5 alkylated PAHs) (Johnson et al. 2007). While we did not collect data regarding juvenile fish or 

analyze stomach contents separately, these concentrations are three to four orders of magnitude 

higher than levels (223 to 1,704  pg/g ww) we measured in whole adult fish from Lake Michigan 

(which included stomach contents). Phototoxicity of PAHs and NPAHs may also be a concern 

for fish health. Laboratory studies showed that toxic effects can occur when fish were exposed to 

PAHs at μg/L levels in water in the presence of sunlight (Arfsten et al. 1996). However, 

observed concentrations of ΣPAHs in southern Lake Michigan waters did not exceed 20 ng/L 

(Offenberg and Baker 2000), and the model-predicted water concentrations of phototoxic PAHs 
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and NPAHs (Chapter 6) based on measurements in lake trout (this chapter) and sediments 

(Chapter 3) did not exceed 10 ng/L. Moreover, coho salmon preferentially select habitats with 

shade to avoid exposure to sunlight (Kelly and Bothwell 2002), and lake trout may have similar 

behavior that can prevent them from harm UV radiation.  Although direct evidence is lacking, 

phototoxicity may not be important for Lake Michigan lake trout, . While adverse effects seem 

unlikely, an analysis of fish health should focus on susceptible life stages and key target tissues.  

2.4.7 Strengths and limitations 

The present study has several strengths. First, a wide range of SVOCs was examined, and 

this appears to be the first reporting NPAH concentrations in fish.  Second, fish were collected 

during two seasons, which allowed a comparison between spawning and non-spawning season. 

Third, because measurements used whole-fish homogenates, and eggs from female fish in the 

spawning season were separated and measured, whole-fish body burdens without the influence 

of eggs were determined. Finally, although the literature is sparse, many of our results are 

consistent with earlier reports. 

The study has several limitations.  First, only selected PAHs were measured.  

Investigation of PAH metabolites, due to possible persistence and toxicity, is warranted.  Second, 

organ-specific analyses were not attempted. PAH concentrations are higher in fish liver and bile, 

and lower in muscles (Varanasi and Stein 1991).  This also may be the case for NPAHs, steranes 

and hopanes. Since most fish mass was muscle, concentrations were low in whole-fish 

homogenates, which may have decreased detection rates of some compounds. Third, individual 

samples rather than composite samples were used, but this highlights fish-to-fish variation. 

Fourth, the small number of samples in each season-site-gender group did not allow some 

statistical analyses, e.g., repeated measures analysis of variance. Finally, tissue concentrations of 

SVOCs in lake trout were weakly correlated to the concentrations in sediments, which will be 

discussed in Chapter 3.  It would be informative to sample bottom-feeding and small feeding 

range fish (e.g., catfish or carp) that reside near the sediment sampling sites.  

2.5 Conclusions 

The present study demonstrates the accumulation of PAHs, NPAHs, steranes and 

hopanes in lake trout from Lake Michigan, and provides the first report of the occurrence of 

NPAHs in freshwater fish. In whole fish, ΣPAH concentrations averaged 546 ± 244 pg/g ww, 
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and levels were similar across season and site. These low concentrations suggest “biodilution” of 

PAHs in lake trout. ΣNPAH concentrations averaged 7.2 ± 7.0 pg/g, and fish behavior and 

specifically spawning seems to affect the seasonal pattern of NPAH concentrations. Sterane and 

hopane concentrations were 2 to 20 times lower than PAH levels and differed by season, which 

might be attributed to substantial differences in uptake and/or clearance rates. Spatial differences 

also were seen steranes and hopanes in fall, indicating the impact of sources in the Chicago/Gary 

area. No difference by gender was observed for the target SVOCs. 

All but one female fish collected in fall contained eggs.  NPAH, sterane and hopane 

levels in eggs were similar to those in the corresponding female fish, but significantly lower for 

PAHs.  

Upper bound worst-case estimates of lifetime human cancer risks due to lake trout 

consumption exceeded 10 per million, but generally PAHs and NPAHs in lake trout seem to pose 

a minimal threat to human health. However, NPAHs contributed a significant portion of the 

toxicity in some samples, and the risks from NPAHs were probably underestimated.  Thus, 

further assessment of NPAH contamination in Great Lakes fish, and effects on fish and 

ecological health, is warranted. 
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2.6 Tables and figures 

Table 2.1 ΣPAH concentrations reported for Great Lakes biota  

(mean ± std unless otherwise specified) 

 

  

Species Location No. of PAHs measured ΣPAH concentrations Reference
(ng/g wet weight)
Male: 0.56 ± 0.29

Female: 0.53 ± 0.18
Eggs: 0.30 ± 0.11

Lake Michigan Lean: 1.52 ± 0.38
Lake Superior Fat/siscowet: 6.34 ± 0.94

Minnow 10 - 350 (range)
Sunfish 10 - 80 (range)
Alewife 15 - 1064 (range)

Round Goby 55 (mean)
Yellow Perch 20 (mean)

Crayfish 10 - 130 (range)

Upstream: 16 ± 6 
Downstream: 11 ± 6

Lake Michigan tributaries 20 - 24 (range)
St. Mary's River tributary 24 (mean)

Lake Erie tributary 220 (mean)

mphipod: Pontoporeia ho Lake Michigan 7 4000 - 7000 (range) Eadie et al., 1982

Oligochaete Worms 300 - 400 (range)
Chironomid Midges 400 - 800 (range)

Bivalves: Zebra musselDetroit River and western Lake Erie 16 EPA priority 12.6 - 98.7 (range) Metcalfe et al., 1997

Invertebrates Lake Erie

Ridgway et al., 1999

5

8

Baumann et al., 1991

33                         
(including 17 methyl 

PAHs)

Eadie et al., 1982

Lake trout Lake Michigan This study

Lake trout Zabik et al., 1996

16 EPA priority

Calumet region of                        
southwestern Lake Michigan Levengood et al., 2011

Brown Bullhead

27

Upstream and downstream of the 
Moses-Saunders power dam in 

St. Lawrence River near Cornwall, 
Ontario and Massena, New York

White Sucker

15
(16 EPA priority 
excluding NAP)Fish
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Figure 2.1 Map showing Lake Michigan and sampling locations.  
Site 1: Charlevoix, MI; Site 2: Clay Banks, WI; Site 3: Waukegan, IL. The colors reflect water 
depth in increments of 100 ft (to >800 ft depth).  
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Figure 2.2 Concentrations of (A) Σ9PAHs; (B) Σ9NPAHs; (C) Σ5Steranes; and (D) Σ2Hopanes in 
whole fish (pg/g ww). 
(Data presented are mean ± SD.) 
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Figure 2.3 PAH profiles in whole fish. Boxplots show 10th, 25th, 50th, 75th and 90th percentiles for 
pooled samples  
N = 84 including replicates. Only compounds with >30% detection frequency are shown. 
Acronyms of PAHs can be found in Table 1.1. 
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Figure 2.4 Mean relative abundance of each NPAH compound (A) in the fall; (B) in the spring 
for whole fish.  
Only compounds with >30% detection frequency are shown. Acronyms of NPAHs can be found 
in Table 1.1. 
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Figure 2.5 Comparison between this study’s NPAH profile (dashed line) and profiles in 
literature. 
Acronyms of NPAHs can be found in Table 1.1. 
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Table A2.2 PAH concentrations in fish organs 

 
a (Hoffman et al. 1999). 
b (Deb et al. 2000). 

  

Fish organ weighta

(as % of total body weight)

Brain Gill Muscle Bone Liver

0.05 4 60 20 1

Concentrations of PAHs < 4 ringsb 

(as a ratio of the concentration in muscle)

Brain Gill Muscle Bone Liver

2 1.5 1 0.8 0.5

Concentrations of PAHs >= 4 ringb

(as a ratio of the concentration in muscle)

Brain Gill Muscle Bone Liver

4 1.5 1 1.5 0.8
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Table A2.3 Mean weight, length and lipid content of lake trout samples  

(standard deviation in parenthesis) 

 
a The weight for female fish includes eggs.       
b The lipid content for female fish excludes eggs.       

  

Weighta Length Lipid Contentb

Season Site Gender (g) (mm) (%)

M 6 2391 (344) 600 (36) 14.8 (1.2)

F 6 3152 (204) 645 (9) 14.1 (1.5)

M 6 2500 (191) 640 (25) 14.7 (1.4)

F 6 3152 (318) 645 (17) 15.1 (0.7)

M 7 3197 (1124) 646 (90) 14.6 (2.0)

F 5 3622 (1575) 641 (68) 15.0 (2.2)

M 9 2717 (641) 614 (49) 16.0 (5.8)

F 7 3070 (387) 628 (37) 15.8 (2.9)

M 7 2352 (493) 613 (35) 14.0 (4.4)

F 5 2840 (491) 649 (33) 14.3 (3.8)

M 5 3395 (435) 666 (29) 14.8 (4.3)

F 5 3643 (809) 665 (57) 14.8 (3.5)

All combined 74 2962 (756) 639 (49) 14.9 (3.1)

Clay Banks, WI

Waukegan, IL

Sample 
size

Fall 2011

Charlevoix, MI

Spring 2012

Charlevoix, MI

Clay Banks, WI

Waukegan, IL
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Table A2.4 Concentrations of ΣPAHs (pg/g ww) 

 
a Mean and std for whole fish include 9 compounds (with detection freq. >30%), and the mean 
and std for eggs include 7 compounds (with detection freq. >30%). 

  

Type Season Site Gender Sample size Meana Stda

Male 6 550.1 214.3

Female 6 538.4 140.1

Male 6 367.6 74.5

Female 6 438.6 209.2

Male 7 624.0 146.7

Female 5 565.9 132.1

Male 9 558.2 192.2

Female 7 581.1 186.1

Male 7 819.4 295.9

Female 5 624.9 183.8

Male 3 349.7 97.9

Female 2 427.2 106.7

Charlevoix, MI 6 242.8 81.2

Clay Banks, WI 4 287.5 63.1

Waukegan, IL 5 383.2 82.3

Fall 2011

Whole fish

Spring 2012

-Fall 2011Eggs

Charlevoix, MI

Clay Banks, WI

Waukegan, IL

Charlevoix, MI

Clay Banks, WI

Waukegan, IL
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Table A2.5 Concentrations of ΣNPAHs (pg/g ww) 

 
a Mean and std for whole fish include 9 compounds (with detection freq. >30%), and the mean 
and std for eggs include 11 compounds (with detection freq. >30%). 

  

Type Season Site Gender Sample size Meana Stda

Male 6 11.69 4.06

Female 6 7.13 1.92

Male 6 6.02 7.23

Female 6 15.08 9.88

Male 7 0.41 0.08

Female 5 0.44 0.06

Male 9 5.67 2.48

Female 7 9.68 5.17

Male 7 11.61 6.35

Female 5 4.48 2.04

Male 3 7.03 2.22

Female 2 5.58 3.40

Charlevoix, MI 6 8.4 2.5

Clay Banks, WI 4 68.1 35.3

Waukegan, IL 5 1.1 0.2

Whole fish

Fall 2011

Spring 2012

Eggs Fall 2011 -

Charlevoix, MI

Clay Banks, WI

Waukegan, IL

Charlevoix, MI

Clay Banks, WI

Waukegan, IL
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Table A2.6 Concentrations of Petroleum biomarkers (pg/g ww) 

 
a Mean and std for both whole fish and eggs include 2 compounds (with detection freq. >30%).  
b Mean and std for both whole fish and eggs include 5 compounds (with detection freq. >30%). 

  

Type Season Site Gender Sample size Meana Stda Meanb Stdb

Male 6 18.3 6.2 215.7 26.4

Female 6 19.3 5.7 192.9 25.4

Male 6 38.2 7.6 268.6 36.4

Female 6 37.7 8.1 243.2 39.4

Male 7 50.2 11.3 319.5 72.0

Female 5 59.6 32.7 388.1 191.8

Male 9 25.3 9.0

Female 7 30.7 14.9

Male 7 47.9 19.1

Female 5 37.6 11.5

Male 3 34.0 11.7

Female 2 23.7 9.4

Charlevoix, MI 6 15.7 3.8 292.1 75.8

Clay Banks, WI 4 47.5 12.7 302.0 59.1

Waukegan, IL 5 60.1 35.3 317.0 78.7

Eggs Fall 2011 -

< MDL

Charlevoix, MI

Clay Banks, WI

Waukegan, IL

Whole fish

Fall 2011

Spring 2012

ΣHopanes ΣSteranes

Charlevoix, MI

Clay Banks, WI

Waukegan, IL

51 
 



 

 

 

Figure A2.1 NPAH profiles in whole fish. Boxplots show 10th, 25th, 50th, 75th and 90th percentiles 
for pooled samples.  
Only compounds with >30% detection frequency are shown. Acronyms of NPAHs can be found 
in Table 1.1. 
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Figure A2.2 PAH profiles in eggs.  
The points show averages, and the whiskers show maximum and minimum for pooled samples 
(N = 17 including replicates). Only compounds with >30% detection frequency are shown. 

 

 

 

Figure A2.3 NPAH profiles in eggs.  
The points show averages, and the whiskers show maximum and minimum for pooled samples 
(N = 17 including replicates). Only compounds with >30% detection frequency are shown. 
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Chapter 3 Characterization and source apportionment of target 

compounds in sediments from Lake Michigan2 

3.1 Abstract 

PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in 

bottom sediments.  The nitro derivatives of PAHs, nitro-PAHs (NPAHs), which can have 

stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport 

routes and also are accumulated in sediments. Limited information exists regarding the current 

distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan 

sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in 

surface sediments collected at 24 offshore sites in southern Lake Michigan. The total PAH 

concentration (ΣPAH15, sum of 15 compounds) varied from 213 to 1291 ng/g dry weight (dw) 

across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. 

Compared to consensus-based sediment quality guidelines (SQGs), PAH concentrations suggest 

very low risk to benthic organisms. The total NPAH (ΣNPAH5) concentration ranged from 2.9 to 

18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. 

ΣHopane5 and ΣSterane6 concentrations ranged from 98 to 355 and 6.2 to 36 ng/g dw, 

respectively. Based on these concentrations and estimated sedimentation rates, Lake Michigan is 

currently receiving 11, 0.16, 0.25 and 3.6 metric tons per year (t/yr) of ΣPAH15, ΣNPAH5, 

ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations displayed declining 

concentrations with increasing off-shore distance in the study area. The relative abundances of 

the SVOCs were generally similar across sites. The major sources of PAHs and NPAHs are 

pyrogenic sources in nature, as based on diagnostic ratios; chemical mass balance (CMB) 

modeling apportioned these sources to emissions from diesel engines (56±18%), coal power 

plants (27±14%), coal-tar pavement sealants (16±11%), and coke ovens (7±12%). The 

biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of 

2 Results of this chapter have been accepted for publication in Science of the Total Environment.  
DOI: 10.1016/j.scitotenv.2014.03.131  
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the lake more impacted by petroleum. This first report of NPAH levels in sediments of Lake 

Michigan reveals several carcinogenic compounds at modest concentrations, and a need for 

further work to assess potential risks to aquatic organisms.   

3.2 Introduction 

PAH inputs to aquatic environments arise from atmospheric deposition, urban stormwater 

runoff and municipal/industrial effluents (Helfrich and Armstrong 1986). Petroleum spills may 

be a significant PAH source in certain locations (Helfrich and Armstrong 1986). Recently, coal-

tar pavement sealants have been identified as an important source of PAHs in urban waterways, 

especially in central and eastern U.S. (P. C. Van Metre and Mahler 2010). Sealed pavements also 

emit PAHs by volatilization to urban air (P. C. Van Metre et al. 2012).   

Lake Michigan receives large inputs of PAHs from atmospheric deposition, urban runoff 

and municipal/industrial effluents due to the large urban and industrial centers that surround its 

southern portion (Helfrich and Armstrong 1986). The Lake also receives inputs from petroleum 

spills given that Indiana Harbor, Indiana and Chicago, Illinois are major distribution centers for 

petroleum products (Helfrich and Armstrong 1986).  In 1980, the cumulative loadings of PAH 

from these sources was estimated to be 50 to 55 metric tons/year (MT/yr), which included 40 

MT/yr from atmospheric deposition (based on measured ΣPAH12 concentrations in air and dry 

and wet deposition rates) (Andren and Strand 1979), 0.8 to 8 MT/yr from urban runoff/municipal 

effluent (based on measured ΣPAH22 concentrations in sewage discharge and combined 

runoff/effluent flows) (Kveseth et al. 1982), and 5 to 7.5 MT/yr from commercial and private 

vessels and petroleum spills (Helfrich and Armstrong 1986). PAHs in Lake Michigan sediments 

have been characterized in several major studies conducted in the 1980s and 1990s (Eadie et al. 

1982; Helfrich and Armstrong 1986; Simcik et al. 1996). Surface sediment accumulation rates 

for ΣPAH17 were estimated to be 50-70 ng/cm2-yr in 1991-1993 (Simcik et al. 1996). While 

recent declines in PAH levels have been observed in sediment cores from Grand Traverse Bay, 

Lake Michigan (Schneider et al. 2001), only two studies (Helfrich and Armstrong 1986; Eadie et 

al. 1982) have reported PAH levels in sediments in the Lake’s southern basin, the area closest to 

the source areas around Chicago, Illinois and Gary, Indiana where levels are likely to be highest. 

Several studies have examined sediments in Areas of Concern (AOC) of southern Lake 

Michigan, including Grand Calumet, Waukegan Harbor, Milwaukee Estuary, and Muskegon 
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Lake (Ghosh et al. 2003; MacDonald et al. 2002; A. Li et al. 2003; Kannan et al. 2001; Kemble 

et al. 2000). The National Coastal Condition Assessment (NCCA) project is planning to analyze 

near-shore sediments from the Great Lakes for 25 PAHs (EPA 2010). However, studies on open 

water sediments have not been carried out since the 1980s. Thus, assessment of current PAH 

levels in open lake sediments is needed to understand contaminant trends and the potential for 

environmental risks. 

Airborne NPAHs also can enter aquatic environments through atmospheric deposition 

and urban runoff (Ozaki et al. 2010). Although the behavior of NPAHs in the atmosphere has 

been extensively studied (Albinet et al. 2007; de Castro Vasconcellos et al. 2008; Hayakawa et 

al. 2002; Librando and Fazzino 1993), few studies have investigated the occurrence of NPAHs in 

aquatic environments. The Minnesota Pollution Control Agency (MPCA) measured PAHs and 

NPAHs in urban stormwater pond sediments (Crane et al. 2010). While NPAHs were not 

detected in pond stations in the Twin Cities, MN, metropolitan area (Crane 2014), NPAHs 

including 2-nitrofluorene, 1-nitropyrene and 6-nitrochrysene were detected at ppb to ppm levels 

in Varney Pond, White Bear Lake, MN (MDH 2011). In Europe, NPAHs including 

nitronaphthalenes, 9-nitronaphthalene, 1-nitropyrene, 6-nitrochrysene and dinitropyrenes have 

been found at ppb levels in sediments from the Elbe River basin, Germany and Czech Republic 

(Lübcke-von Varel et al. 2012; Lübcke-von Varel et al. 2011). In sediments of the Suimon River, 

Japan, 1-nitropyrene and 2-nitrofulorene were measured at ppb levels (Sato et al. 1985). In 

marine (coastal) sediments collected off Barcelona, Spain, 1-nitropyrene and 6-nitrochrysene 

were found to contribute to the mutagenic activity (Fernandez et al. 1992), and NPAHs in the 

Hiroshima Bay Area, Japan, were found at concentrations up to 30 ng/g (2-nitrofluoranthene) 

(Ozaki et al. 2010). No information has been located regarding NPAHs in Great Lakes 

sediments.  

Hopanes and steranes have been used as signature or marker compounds to help identify 

sources of organic matter in lake sediments (Meyers and Ishiwatari 1993; Xiong et al. 2010; Qu 

et al. 2007), the extent of biodegradation (Prince et al. 1994), and as tracers of vehicle exhaust in 

the atmosphere (given their specificity to lubricating oils used in diesel and gasoline engines) 

(Kleeman et al. 2008; Schauer et al. 2002, 1999). Information regarding hopanes and steranes in 

the Great Lakes is scarce. These compounds were detected in western Lake Ontario sediments 

where direct input of crude oil or petroleum products was indicated (Kruge et al. 1998). Hopanes 
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and steranes were also used to identify the source of the 2009 Sarnia oil spill in Lake Huron (Z. 

Wang et al. 2011). However, these compounds have not been reported for Lake Michigan.  

The objective of this chapter is to characterize PAHs, NPAHs, hopanes and steranes in 

surficial sediments from the southern basin of Lake Michigan. The analysis includes an 

evaluation of compositional profiles, spatial patterns and loadings. Semi-quantitative forensic 

techniques (diagnostic ratios) are used to identify sources of target compounds, and quantitative 

CMB modeling is also used to apportion PAH sources. Temporal trends of PAHs are derived in 

conjunction with literature data. This first report regarding NPAHs and biomarkers in sediments 

of Lake Michigan provides information that can be used to monitor trends over time, identify 

sources of hydrocarbon contamination, and evaluate health and ecological consequences. 

3.3 Materials and methods 

3.3.1 Sample collection 

Sediment samples were collected as “add-ons” to an ongoing program designed to assess 

long term trends in benthic communities in southern Lake Michigan, which has been conducted 

by the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental 

Research Laboratory (GLERL) at the same 40 sites since 1980.  Of these, we selected 24 

offshore sites (Figure 3.1) intended to sample various locations, depths and sediment types 

across the southern basin of Lake Michigan. Most of the sites (except S-2, S-3, S-4, V-1, H-8, B-

7) were in depositional zones (Corcoran 2013). Sampling took place from August 16 to 19, 2011 

on the R/V Laurentian (NOAA GLERL) using EPA methods (EPA 1999).  The top 1 cm of 

sediment was collected by a Ponar Dredge, placed in solvent-washed brown glass jars with PTFE 

(polytetrafluoroethylene)-lined screw caps, and stored at 4 °C in a refrigerator on board. 

Immediately after the expedition, samples were transported in coolers to our Ann Arbor, 

Michigan laboratory and stored at -20 °C for two weeks before extraction.  

3.3.2 Materials 

All solvents were HPLC grade and obtained from Fisher Scientific Inc. (Pittsburgh, PA, 

USA).  Florisil (60-100 mesh) and sodium sulfate (anhydrous, certified ACS granular, 10-60 

mesh) for column chromatography were supplied by the same vendor. The method detection 

limits (MDLs) of the target compounds are presented in Table 3.1. Authentic standards of PAHs, 
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NPAHs and biomarkers were purchased from Cambridge Isotope Laboratories (Andover, MA), 

Sigma-Aldrich, (St. Louis, MO), and Chiron AS (Trondheim, Norway), respectively. Internal 

standards (ISs) for PAHs were fluoranthene-d10 (Cambridge Isotope Laboratories Inc., Andover, 

MA, USA) and an IS PAH mixture (Wellington Laboratories, Guelph, ON, Canada). 1-

Nitrofluoanthene-d9 (Cambridge Isotope Laboratories Inc., Andover, MA, USA) was used as an 

IS for NPAH analyses, and n-tetracosane-d50 (Chiron Laboratories, Trondheim, Norway) as an 

IS for hopanes and steranes. Surrogate standards included C27-α,α,α-(20R)-cholestane-d2, 1-

nitropyrene-d9, chrysene-d12 and naphthalene-d8 (Chiron Laboratories, Trondheim, Norway) . 

3.3.3 Sample preparation and chemical analysis 

After decanting the water layer on top of each sediment sample and homogenization, a 

10-g subsample was taken to which 15 μL of the surrogate standard was added.  The sample was 

dried with Na2SO4, extracted twice using dichloromethane/hexane (4:1, v/v), sonicated for 30 

min twice, and any remaining solids were separated by centrifugation and removed. Extracts 

were passed through an activated Florisil column and fractionated into three portions. The 

fractionation and GC-MS analysis have been described in detail in Chapter 2 Section 2.3.3.  

Quality assurance (QA) measures included the regular use of field and lab blanks, 

replicates, surrogate spike recovery tests and standard reference material (SRM 2266, NIST, 

USA). Replicates were performed for six samples (i.e., one replicate for every 4 samples). 

Measurement precisions, expressed as the average relative percent difference (RPD) across the 

six replicate measures and compounds in the group, were 22%, 19%, 26% and 23% for PAH, 

NPAH, sterane and hopane determinations above the reporting limits, respectively. Several target 

compounds were detected, but at trace levels, in blanks. Blank corrections were not used. The 

spike recovery was acceptable (between 70 to 100%), and the shift (abundance of target 

compounds in standard solutions before and after running a batch of samples) was below the 

25% limit. QA data, including blanks, lab replicates and surrogate spike recoveries, are presented 

in Tables A3.1-A3.4.  

The total organic carbon (OC) content was determined using the loss-on-ignition method 

(Q. Wang et al. 2011).  Briefly, 2 to 4 g of sediment was placed in a borosilicate glass beaker, 

heated at 105 °C for 12 h to remove moisture, and then the sample dry weight was determined.  

The dried sediment was then placed in a muffle furnace (Neycraft Vulcan A-550), combusted at 
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500 °C for 12 h, and weighed.  The weight loss was multiplied by 0.58 to calculate the OC mass 

(Q. Wang et al. 2011), and the OC content was calculated as the OC mass divided by the dry 

sample weight times 100%. Replicates performed for seven samples gave an average RPD of 

7.1%. For method calibration and standard recovery tests, similar weights of L-glutamic acid 

(Sigma-Aldrich, St. Louis, MO) and mixture of glutamic acid and CaCO3 (Sigma-Aldrich, St. 

Louis, MO) were prepared along with the samples. QA data for OC measurements, including 

replicates, blanks and recoveries, are presented in Table A3.5.  

3.3.4 Data analysis 

PAH, NPAH, hopane and sterane concentrations were calculated as ng/g wet weight 

(ww), and then divided by (1 – moisture content) to obtain ng/g dry weight (dw).  

(Measurements were not corrected for spike recoveries since QA bounds were acceptable.)  

Sums and abundances exclude the few compounds (acenaphthene, nitrobiphenyls, 5-

nitroacenaphthene, 9-nitroanthracene and 9-nitrophenanthrene) that were undetected in all 

samples (Table 3.1). Compounds detected in over 30% of samples were included, and the 

nondetect were substituted by MDL/2 (MDLs presented in Table 3.1). For those compounds 

(with > 30% detection frequencies), concentrations within a compound class were summed, e.g., 

the 15 detected PAHs, 5 detected NPAHs, 6 detected steranes and 5 detected hopanes were 

designated as ΣPAH15, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. The abundance of each 

PAH compound was calculated as the concentration of that compound divided by the ΣPAH15 

concentration. Abundances of NPAHs, steranes and hopanes were calculated similarly.   

Concentrations of individual PAHs (ng/g dw) at each site were divided by the 

corresponding %OC to yield a value normalized to 1% OC. To assess potential effects on benthic 

organisms, the normalized concentrations were compared to consensus-based sediment quality 

guidelines (SQGs) (WDNR 2003).  

Concentrations of ΣPAH15, ΣNPAH5, ΣSterane6 and ΣHopane5 (ng/g dw) were plotted 

against OC content (Figure A3.1) and regression analyses were performed. The regression 

analyses excluded sites B-6 and V-1 because the sample containers broke before OC 

measurements could be completed, and determinations using the available samples were not 

considered accurate due to lack of homogenization or contamination. 

Concentrations (dry weight) were divided by their OC content to obtain OC-adjusted 
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concentrations (expressed as μg/g OC). (Data from sites B-6 and V-1 were excluded as noted 

above.)  

OC-adjusted concentrations across southern Lake Michigan were estimated using 2-D 

ordinary Kriging and a power variogram γ(hij) = αhij
1.5 where hij = distance between two points 

(Deglo De Besses 2013), and then plotted as concentration maps using surface charts (Microsoft 

Excel 2013, Microsoft, Redmond, CA). 

The loading rate of ΣPAH14 into southern Lake Michigan, L (t/yr) was estimated as  

L = �F ∙ (A ∙ 1010cm2/km2) ∙ 100−M
100

∙ OC
100

∙ C� ∙ 10−12t/µg    (1) 

where F = sedimentation rate (g/cm2-yr), A = surface area of the southern portion (km2), M = 

sediment moisture content (%), OC = sediment OC content (%), C = average OC-adjusted  

ΣPAH14 concentration (μg/g OC) across the study area derived from the Kriging map, and 

constants provide unit conversions. Loadings of ΣNPAH5, ΣSterane6 and ΣHopane5 were 

calculated similarly. Further details on these parameters are provided in Section 3.4.1.4. This 

approach assumed that the degradation of these compounds in sediments was slow and the losses 

in one year were negligible, which was probably true since long degradation half-lives in 

sediments were suggested in the literature (Mackay 2010; Mackay and Hickie 2000) or estimated 

by EPISuite (EPA 2012). Significant uncertainties can result from using a one-compartment 

model that assumes the average sedimentation rate, moisture content and OC content apply to all 

of southern Lake Michigan, as well as the Kriging-based estimates that use a limited data set that 

may incompletely account for localized and near-shore discharges. Still, the approach using eq. 

(1) provides insight regarding total loadings to open water lake sediments from all sources. 

Nine diagnostic source ratios between individual compounds were calculated to help 

identify major sources of target SVOCs, and are listed and interpreted in Table 3.2. Maps for 

each ratio were also produced using 2-D Kriging and techniques described above.  

3.3.5 Chemical mass balance (CMB) modeling 

CMB modeling was used to apportion PAHs in southern Lake Michigan sediments, 

following applications performed previously (A. Li et al. 2003; Christensen et al. 1999; P. C. 

Van Metre and Mahler 2010). This approach assumes that the concentration of each chemical 

species measured at a receptor is linear combination of the contributions from various sources. 
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The EPA-CMB v8.2 software (EPA 2004a) with inputs including source profiles (described 

below) and experimentally measured PAH concentrations in Lake Michigan sediments, in ng/g 

dw (Table A3.9). The precision of each measurement, used in the model, was determined from 

duplicate laboratory analyses, and calculated as the average percent difference between 

duplicates (which ranged from 17% to 49% among the 16 PAHs) multiplied by the measured 

concentration.  

Twelve PAH source profiles were considered (Table A3.10).  They include eight coal- 

and traffic- related profiles based on a comprehensive compilation (A. Li et al. 2003), an 

industrial boiler profile that represents the average of four boiler types (heavy oil, diesel, heavy 

oil + natural gas and coke oven gas + blast furnace gas) (C.-T. Li et al. 1999), and a fireplace 

combustion profile for burning pine wood (Schauer et al. 2001). Two profiles for coal-tar sealed 

pavement dust were also included:  the mean profile across six cities (Minneapolis, MN; 

Chicago, IL; Detroit, MI; Washington, D.C.; New Haven, CT and Austin, TX), and the Chicago 

profile (P. Van Metre et al. 2008). All of these profiles used PAH measurements in the 

particulate phase except the boiler profile, which included both vapor and particulate phases. The 

profiles combined BBF and BKF given the difficulties separating these two compounds (A. Li et 

al. 2003). An uncertainty of 40% was applied to each component of each profile (P. C. Van 

Metre and Mahler 2010; A. Li et al. 2003).  

For the EPA-CMB v8.2 software, the maximum number of iterations was set at 20 

(maximum allowable), and a maximum source uncertainty of 50% was used, exceeding the 

default (20%) given the higher uncertainties expected for PAHs in sediments due to complex 

transport and transformation processes (A. Li et al. 2003). The minimum source projection was 

0.95 (default value), below which the source is considered as “inestimable,” and the option 

“source elimination” was selected, which eliminated physically impossible negative source 

contributions. 

3.4 Results and discussion 

The physical characteristics and SVOC concentrations at the 24 Lake Michigan sediment 

samples are presented in Table 3.3, and relative abundances of individual PAHs, NPAHs and 

biomarkers are shown in Figure 3.2. Maps of OC-adjusted ΣPAH15, ΣNPAH5, ΣSterane6 and 

ΣHopane5concentrations are displayed in Figure 3.3. 
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3.4.1 Concentrations and distributions 

3.4.1.1 PAHs 

Of the 16 target PAHs, 14 were detected at concentrations above MDLs in all samples.  

Acenaphthene was not detected in any sample, and fluorene was detected in only 9 of 24 samples 

above MDL (0.033 ng/g dw) with a maximum concentration of 1.1 ng/g dw (site B-5). Sites with 

detectable fluorene levels were dispersed and did not show any clear patterns. Three- and four-

ring compounds were most abundant, e.g., phenanthrene, fluoranthene, pyrene and chrysene, and 

accounted for about 80% of ΣPAH15, while five- and six-ring PAHs constituted the remainder. 

PAH profiles were similar across sites, as shown by Figure 3.2 and the correlation between 

concentrations at different sites (Table A3.6).  

ΣPAH15 concentrations varied from 213 to 1291 ng/g dw among sites, and were 

significantly correlated with OC content (p < 0.0001, R = 0.79, n = 22; Figure A3.1a), as shown 

previously (Liang et al. 2007; X. Zhang et al. 1993). This correlation reflects the tendency for 

PAHs and other hydrophobic organic chemicals to sorb to organic matter in bottom sediments 

(Karickhoff 1981). The OC-adjusted concentrations better reflect spatial differences in the 

sediments. Samples collected closest to the AOCs, specifically sites H-8, S-2, X-1, H-28 and A-1 

corresponding to Waukegan Harbor, Grand Calumet, Muskegon Lake, Kalamazoo River and the 

St. Joseph River estuary, respectively, had significantly higher ΣPAH15 concentrations (86 ± 43 

μg/g OC) than off-shore sites (29 ± 16 μg/g OC; t = 2.95, df = 4.3, p = 0.039).  

The concentration map (Figure 3.3a) shows a clear pattern of declining concentration 

with increasing distance from the shore. This map shows the mean values from the kriging 

interpolation and does not include the confidence intervals. In addition, concentrations in areas 

with few or no data points and near the coast can have large uncertainties. For example, the 

southwest near-shore regions near Chicago and Gary had the highest interpolated mean ΣPAH15 

levels (160 to 180 μg/g OC). Gary is near an AOC, the Grand Calumet River, that is heavily 

contaminated with PAHs, as well as Indiana Harbor and the Ship Canal (EPA 2013; Nevers et al. 

2013; MacDonald et al. 2002). Chicago is a large and highly industrialized city with potentially 

significant emissions from traffic, diesel engines, coke ovens, coal combustion, wood burning 

(Bzdusek et al. 2004; Simcik et al. 1999), and coal-tar pavement sealcoat (P. C. Van Metre and 

Mahler 2010).  Measurements in sediments of the Grand Calumet region include ΣPAH17 levels 
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from 123 to 500 μg/g OC (4.9 to 20 μg/g dw, assumed 4% OC) in adjacent Lake Calumet 

(discharging into the Calumet River and then into Lake Michigan) (A. Li et al. 2003), mean 

ΣPAH16 concentrations of 1400 μg/g OC at Indiana Ridge Marsh, 2700 μg/g OC at the Indiana 

Ship Canal, 630 μg/g OC at the Little Calumet River, and 40 μg/g OC at Big Marsh (all 

converted from μg/g dw assuming 4% OC) (Levengood and Schaeffer 2011). These levels 

exceed the off-shore kriging estimates near Chicago and Gary by two- to ten-fold. Since the 

present study uses only 24 open-water sites with water depths greater than 10 m, and no samples 

were taken directly from areas near AOCs and urban and industrial discharges, the mapping 

results apply to only open water areas. While estimated concentrations appear reasonable, 

additional measurements are desirable for confirmation.  

Time trends are examined using data from five earlier studies that measured PAH levels 

in Lake Michigan surficial sediments during the 1980s and 1990s. Three studies examined open 

water areas (Eadie et al. 1982; Helfrich and Armstrong 1986; Simcik et al. 1996), and two 

examined Green Bay (Su et al. 1998; X. Zhang et al. 1993), which is separated from the open 

water and near the industrial city of Green Bay and two AOCs.  The six PAHs measured in 

common across the studies (phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]pyrene 

(B[a]P), and benzo[ghi]perylene) were summed (designated ΣPAH6) and are depicted in Figure 

3.4. ΣPAH6 concentrations in open water sediments declined from 1980 to 2011, and a linear 

regression using mean concentrations and five time points indicates an average decrease of 42 ± 

5 ng/g per year (Figure 3.4;  R2 = 0.96 ). This trend likely reflects the decreasing PAH loadings 

into the lake, a result of lower airborne concentrations and atmosphere deposition rates, as 

observed in gaseous, particulate and precipitation sampling in Chicago (Sun et al. 2006a; Sun et 

al. 2006b), in vapor phase sampling at remote sites including Eagle Harbor and Sleeping Bear 

Dunes (Sun et al. 2006b), and as derived from sediment cores (Schneider et al. 2001; Simcik et 

al. 1996). The decline has been attributed to the transition from coal to oil and natural gas, 

controls on industrial emissions, reduced coke production, and changed coking technology 

(Simcik et al. 1996; Schneider et al. 2001);  it may also reflect decreased emission rates from 

vehicles occurring since the 1970s (Beyea et al. 2008). The trend also might reflect analytical 

changes that have increased the resolution and sensitivity of measurements; sampling and 

analysis of sediment cores would be useful to confirm results. 

Green Bay sediments have higher ΣPAH6 concentrations that do not fit the trend line in 
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Figure 3.4. Green Bay is near two AOCs (Menominee River and Fox River Lower Green Bay) 

and an industrial city. High PAH concentrations due to coal tar wastes have been detected in 

Menominee River sediments, and leaking underground storage tanks have been a concern for the 

lower Fox River Basin (EPA 2013). The proximity to PAH sources likely explains the higher 

PAH concentrations seen in these sediments. 

The PAH concentrations in open water sediments of southern Lake Michigan in the 

present study (213 to 1291 ng/g dw) are generally comparable to levels elsewhere, although 

lower than levels in highly polluted areas. For example, sediment ΣPAH19 concentrations in Isle 

Royale National Park, Lake Superior ranged from 17 to 346 ng/g dw at background sites, and 

1516 to 3410 ng/g at marinas and docks (Cox and Clements 2013). Sediment ΣPAH13 

concentrations reached 14 μg/g dw in Detroit River, but ranged from 0.25 to 2.0 μg/g in other 

parts of the Huron-Erie Corridor (Szalinska et al. 2011). In two headwater lakes of the Athabasca 

Oil Sands Region, Canada, ΣPAH16 concentrations ranged from 100 to 320 ng/g dw throughout 

the sediment cores (Jautzy et al. 2013). ΣPAH15 concentrations in Lake Taihu sediments in 

highly populated eastern China were 209 to 1003 ng/g dw (Y. Zhang et al. 2012). Surface 

sediments from Lake Koumoundourou, Greece had ΣPAH14 concentrations from 780 to 3600 

ng/g dw (Hahladakis et al. 2013).  

Normalized PAH concentrations were compared to consensus-based SQGs to assess 

potential effects on benthic organisms using recommendations by the Wisconsin Department of 

Natural Resources (WDNR 2003) (Table A3.8). For most individual PAHs and the PAH sum, 

concentrations were lower than threshold effect concentrations (TECs), indicating that the 

toxicity effect to benthic-dwelling organisms is unlikely. However, concentrations of pyrene, 

chrysene, and dibenzo[a,h]anthracene at site S-2 (259, 187, and 36 ng/g, respectively), and 

pyrene, benz[a]anthracene and chrysene at site H-28 (193, 134, and 183 ng/g) exceeded TECs, as 

did dibenzo[a,h]anthracene at sites A-1 and H-15 (47 and 38 ng/g). However, concentrations 

were much lower than midpoint effect concentrations (MECs) and probable effect concentrations 

(PECs), suggesting a low risk to the benthic organisms. The B[a]P toxic equivalents were not 

calculated for these samples given that the bottom sediments were too deep for human exposure 

and no other human exposure pathway was plausible.  
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3.4.1.2 NPAHs 

Five of the 11 target NPAHs (1-nitronaphthlene, 2-nitronaphthalene, 2-nitrofluorene, 1-

nitropyrene and 6-nitrochrysene) were detected above MDLs in all samples; the six other 

NPAHs were never detected. ΣNPAH5 concentrations ranged from 2.9 to 18.6 ng/g dw (Table 

3.3), roughly 10 to 100 times lower than the ΣPAH15 concentrations. (NPAH data at each site are 

presented in Table A3.13).  The two most abundant compounds, 1-nitropyrene and 6-

nitrochrysene, respectively comprised an average of 33% and 40% of the ΣNPAH5 concentration 

(Figure 3.2b). The abundance of 6-nitrochrysene is noteworthy given its high carcinogenic 

potency, i.e., toxic equivalent factor or TEF = 10 relative to B[a]P (RIDEM 2008).  Average 

abundances of the other NPAHs detected were below 10%.  

Like the PAHs, ΣNPAH5 levels were significantly correlated with OC content (p < 

0.0001, R2 = 0.85, n = 22, Figure A3.1b). OC-adjusted ΣNPAH5 concentrations were higher at 

sites near AOCs and urban/industrial areas (1.33 ± 0.95 μg/g OC) compared to other sites (0.43 ± 

0.28 μg/g OC; Mann-Whitney U = 10, p = 0.005). The concentration map again shows declining 

concentrations with increasing distance from the shore, and high concentrations near source 

areas (Chicago/Gary and Kalamazoo River) (Figure 3.3b), suggesting that urban and industrial 

sources are important in near-shore environments.  Again, the map shows only mean values, and 

near shore areas are subject to large uncertainties. 2-Nitronaphthalene, 1-nitropyrene and 6-

nitrochrysene were highly correlated with each other, while 1-nitronaphthalene was significantly 

correlated with 2-nitrofluorene (Table A3.6). 

NPAH concentrations in the low ng/g range have been reported in several studies 

examining both freshwater and marine sediments. ΣNPAH5 (1- and 2-nitronaphthalenes, 1-

nitropyrene, 6-nitrochrysene and 9-nitrophenanthrene) in Elbe river, Germany and Czech 

Republic ranged from 5.4 to 14.9 ng/g (Lübcke-von Varel et al. 2011). In sediments of the 

Suimon River, Japan, 1-nitropyrene and 2-nitrofluorene averaged 25 and 1.5 ng/g, respectively 

(Sato et al. 1985). Marine coastal sediments near Barcelona, Spain had 1-nitropyrene and 6-

nitrochrysene concentrations of 0.68 and 0.52 ng/g dw, respectively (Fernandez et al. 1992). 

ΣNPAH3 (9-nitroanthracene, 1-nitropyrene and 6-nitrochrysene) concentrations in Hiroshima 

Bay, Japan averaged 2.2 ng/g dw (n=11; range: 0.25 to 7.34) (Ozaki et al. 2010). These levels are 

roughly comparable to those measured in southern Lake Michigan in the present study (ΣNPAH5 
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average of 8.0 ± 3.9 ng/g, range from 2.9-18.6 ng/g dw, n = 24). Much higher levels were 

measured in sediments of a small municipal stormwater settling pond in Varney Pond, MN, e.g., 

1-nitropyrene, 2-nitrofluorene and 6-nitrochrysene ranged from 19-120, 40-710, and 73-150 µg/g 

dw, respectively (MDH 2011), which suggests the significance of urban runoff sources.  

3.4.1.3 Biomarkers 

All target hopanes and steranes in all samples were detected above MDLs. ΣHopane5 

concentrations ranged from 98 to 355 ng/g dw and ΣSterane6 levels from 6.2 to 36 ng/g dry 

weight.  Like PAHs and NPAHs, levels were correlated with OC content (p < 0.0001, R = 0.80 

and 0.83 for steranes and hopanes, respectively; p < 0.0001) (Figures A3.1c and d). OC-adjusted 

ΣSterane6 and ΣHopane5 concentrations displayed spatial patterns similar to the PAHs (Figures 

3.3c and d), and concentrations were significantly higher near source areas (sites H-8, S-2, X-1, 

H-28 and A-1) than other sites (for ΣHopane5: Mann-Whitney U = 12, p = 0.009; for ΣSterane6: t 

= 2.62, df = 4.41, p = 0.053). Among steranes, 20R-5α(H),14β(H),17β(H)-24-methylcholestane 

and 20R-5α(H),14β(H),17β(H)-cholestane were most abundant, contributing to 36% and 23% of 

the total, respectively. Among hopanes, 17α(H),21β(H)-hopane was most abundant (35% of 

ΣHopane5); the four other hopanes had similar contributions (16-17%).  The profiles of the 

biomarkers were similar across sites (Figure 3.4), and individual hopane and sterane compounds 

were significantly correlated to each other (Table A3.7).  

3.4.1.4 Loading rates of SVOCs 

The loading rate of ΣPAH15 to open water sediments of southern Lake Michigan, 

estimated using eq. (1), the spatial average OC-adjusted ΣPAH15 concentration (41 μg/g OC), a 

mass sedimentation rate of 0.0356 g/cm2-yr for southern Lake Michigan (Corcoran 2013), the 

average moisture content of 41.5% and OC content of 2.2% (this study), and the estimated 

surface area of the southern portion (21600 km2), is 4.1 t/yr. Although we did not measure 

concentrations in the northern portion of the lake, an approximate lake-wide loading rate is 

calculated by scaling up to the entire Lake surface area (58000 km2), which gives a ΣPAH15 

loading of 10.9 t/yr. Using the same approach, lake-wide loadings of  ΣNPAH5,  ΣSterane6 and  

ΣHopane5 are 0.16, 0.25 and 3.6 t/yr, respectively. The historical decline in PAH levels must be 

considered to compare these results to earlier loading estimates. A 1980 estimate of PAH 

loadings to Lake Michigan, obtained by summing the PAH inputs from various sources (some of 
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which had inconsistent PAH species) is 50 to 55 t/yr (Helfrich and Armstrong 1986). Using the 

regression line for PAH levels in Lake Michigan sediments shown in Figure 3.4, ΣPAH6 

concentration in 1980 (1679 ng/g dw) was 4.6 times the level in 2011 (368 ng/g dw). Assuming 

that ΣPAH14 concentrations follow the ΣPAH6 trend, and that sedimentation rate, sediment 

moisture content, and OC content are unchanged, then the ΣPAH15 loading rate in 1980 would be 

4.6 times the current (2011) loading or 50.6 t/yr, within the range reported for 1980. A second 

and independent estimate of PAH loadings, based on accumulation profiles in sediment cores 

sampled in 1991-1993 (and calculated using a ΣPAH17 deposition rate = 50-70 ng/cm2-yr and 

area = 58000 km2), is 29 to 41 t/yr (Simcik et al. 1996). For 1992, we estimate a ΣPAH15 loading 

rate of 35.2 t/yr, again within the reported range.  

While the estimated ΣPAH15 loading rates agree well with the earlier estimates, 

uncertainties and possible errors in our estimates are recognized. Overall, the southern portion of 

the lake is more polluted than the northern, thus applying the average concentration in the 

southern portion to the whole lake may overestimate loadings. However, this may be offset since 

near-shore areas that tend to have higher concentrations were under-sampled. Second, 

sedimentation rate, sediment moisture content and OC content can vary across sites, and 

applying the average data from the southern portion to the whole lake may be inaccurate. Third, 

sampling and measurement variation can affect results, although open water sediment samples 

provide a high degree of spatial and temporal representativeness, particularly compared to 

airborne and deposition samples that can vary considerably. Given the difficulty in assessing 

these factors, especially the extrapolation to the whole lake, no quantitative estimates of 

uncertainty is provided. Despite these concerns, our loading estimates show remarkable 

agreement with earlier estimates that used independent methods. Moreover, the stability and 

representativeness of sediment samples suggests that this approach for estimating SVOC 

loadings is useful and applicable to other persistent and sediment-bound contaminants. However, 

the uncertainties of the approach, especially in near shore areas, should be recognized.   

3.4.2 Source identification 

3.4.2.1 PAHs 

Diagnostic ratios 

PAH sources contributing to southern Lake Michigan sediments are identified using 
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abundances and ratios of individual compounds, which serve as source indicators. Eight 

diagnostic ratios for identifying PAH sources (Table 3.4) are used to help identify sources.  

These ratios are semi-quantitative (i.e., numerical apportionments are not provided), and they are 

most useful when there is a single dominating source, which is unlikely in a large region like 

Lake Michigan.  In addition, the ratios can be influenced by atmospheric reactions and selective 

loss processes, and thus may provide contradictory or inconsistent results (Katsoyiannis et al. 

2011). Despite such limitations, the ratios can provide useful insights to contributing sources.  

The BAA/CHR ratio is an indicator of urban influences by reflecting differences in the 

susceptibility to photo-oxidation (Table 3.2) (Gschwend and Hites 1981). The average 

BAA/CHR ratio (0.72 ± 0.23) is comparable with previous studies and within the range reported 

for sediments collected near urban areas (Gschwend and Hites 1981; Helfrich and Armstrong 

1986). Site B4, most distant from urban sources (54 km from shore, 54 km from Benton Harbor 

and 175 km from Chicago), had the second lowest BAA/CHR ratio (0.57). However, this ratio 

was not significantly correlated with either distance from shore or to AOCs, industrial or urban 

areas, and there was no clear spatial pattern (see Figure A3.2c), as has been noted previously 

(Helfrich and Armstrong 1986). This lack of correlation can arise from several factors. First, the 

southern Lake Michigan contains several cities/harbors/AOCs, and the off-shore samples likely 

are affected by multiple sources. Second, this ratio does not apply to waterborne transport, e.g., 

materials discharged or deposited in near-shore areas and then transported and distributed to 

sediments (Simcik et al. 1999). Third, there is movement and redistribution of surface sediments 

in southern Lake Michigan (Corcoran 2013). Finally, as noted, this ratio could be influenced by 

other physiochemical processes (Katsoyiannis et al. 2011).  

The remaining seven PAH ratios indicate petrogenic or pyrogenic sources (Table 3.2) 

(Yunker et al. 2002; Budzinski et al. 1997; Wang et al. 2006). PHE/ANT and FLA/PYR ratios 

are usually used simultaneously (Budzinski et al. 1997). A plot of PHE/ANT vs. FLA/PYR ratios 

suggests that pyrogenic (i.e., combustion) sources are the main contributor of PAHs at most 

(N=14) sites (Figure 3.5).  Seven sites reflect a combination of petrogenic and pyrogenic sources. 

Three sites are in the petrogenic zone, but at the boundary, suggesting significant contributions 

from pyrogenic sources. The ANT/178 ratio averaged 0.12 ± 0.04 (N = 24) and several sites had 

ratios just slightly below 0.10. The FLA/202 ratio averaged 0.54 ± 0.13 (n=24); 17 sites had 

ratios >0.50; six sites had ratios between 0.40 and 0.50; and only one site had a ratio <0.4. All 
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sampling sites had BAA/228 ratios above 0.35, IcdP/276 ratios above 0.50, and 

∑LPAHs/∑HPAHs ratios below 1. Together, these ratios suggest the dominance of pyrogenic 

(combustion) sources (Table 3.2). Moreover, the fact that all sites had IcdP/276 ratios above 0.50 

and 17 sites had FLA/202 ratios above 0.50 indicated significant contribution from coal, wood or 

grass combustion; the FLA/202 ratio ranging between 0.40 and 0.50 at 6 sites suggested the 

contribution from liquid fossil fuel combustion, i.e., vehicle emissions (Table 3.2).  

Although the PAH diagnostic ratios are qualitative and have limitations, they consistently 

identify pyrogenic sources as the major contributors of PAHs to southern Lake Michigan 

sediments. This is in accordance with previous apportionment studies, which identified traffic 

emissions, coal combustion and wood burning as major sources (Bzdusek et al. 2004; 

Christensen and Arora 2007; Simcik et al. 1996). 

CMB results 

Collinearity among the twelve PAH source profiles and the mean PAH profile in 

southern Lake Michigan sediments, initially evaluated using Pearson correlation coefficients 

(Table A3.11), showed several profiles were similar to the 24-site average profile, including 

those for coal-tar Chicago, pine-wood combustion, power plant, traffic average, and diesel 

engine exhaust (r = 0.93, 0.91, 0.89, 0.89 and 0.87, respectively). Several source profiles were 

significantly correlated, suggesting the possibility of multicollinearity issues, e.g., unstable 

source estimates and convergence issues. To investigate and help account for such concerns, ten 

CMB models using different fitting species and subsets of source profiles were tested. Each was 

run 24 times (one for each site), and the “preferred” model discussed here was selected as the 

model that converged at all 24 sites and showed good performance in terms of R2, χ2 and 

percentage of ΣPAH mass explained (Table A3.12). This model included four sources: coal-fired 

power plant, coke oven, diesel engine and coal-tar pavement dust Chicago. Since all four traffic-

related profiles were highly correlated, the diesel engine profile is considered to represent traffic-

related sources. Including industrial boiler and pine-wood combustion profiles caused 

convergence issues at many sites. This model included nine fitting species, specifically, PHE to 

BghiP with the exceptions of ANT and BAP, two compounds that are highly reactive in the 

atmosphere (A. Li et al. 2003; Gschwend and Hites 1981).  
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Using the selected four-source model, diesel engine exhaust was identified at all sites as 

the most significant source, contributing to 56 ± 18% of the ΣPAHs; coal power plant emissions 

were identified (source contribution larger than zero) at 22 sites, contributing 27 ± 14%; coal-tar 

sealed pavement dust was identified at 19 sites with a 16 ± 11% contribution; and coke oven was 

detected at 11 sites with a 7 ± 12% contribution (Table A3.12). These results are consistent with 

the diagnostic ratios as well as previous apportionment studies highlighting the importance of 

pyrogenic sources (e.g., traffic emissions and coal combustion) (Simcik et al. 1996; Bzdusek et 

al. 2004; Christensen and Arora 2007). While coal-tar sealed pavement dust was identified, its 

contribution was low compared to the 57% estimated for urban lakes in the eastern U.S. (P. C. 

Van Metre and Mahler 2010), possibly reflecting the significance of atmospheric deposition in 

Lake Michigan as compared to urban runoff, the principal pathway for coal-tar sealcoat dust.  

Across the 24 sites, the CMB model performance was reasonable, e.g., R2, χ2 and 

percentage mass explained averaged 0.81, 3.1 and 106%, respectively (Table A3.12).  However, 

CMB apportionments in urban lakes have attained better performance, e.g., R2 > 0.9 and χ2 < 2 

(P. C. Van Metre and Mahler 2010; A. Li et al. 2003). Given the potentially longer transport 

distances and times relevant to Lake Michigan, the assumption that profiles remain constant from 

source to receptor (sampled sediment) (EPA 2004b) may not reflect chemical, photochemical 

and biological degradation, as well as partitioning, that occurs during atmospheric transport, 

deposition and sediment burial (A. Li et al. 2003; Galarneau 2008). These concerns may be 

mitigated for urban lakes near sources. Target transformation and other techniques (Thurston and 

Spengler 1985; Pistikopoulos et al. 1990) might be used to help address such issues.   

3.4.2.2 NPAHs 

Few diagnostic source ratios are available for NPAHs. The 1-NPYR/PYR ratio has been 

used to distinguish contributions of diesel-engine vehicles and coal combustion emissions in both 

atmospheric particulate matter and marine sediments (Ozaki et al. 2010; Tang et al. 2005).  This 

ratio is approximately 0.001 for lower temperature (900 °C) coal stove emissions , and 0.36 for 

higher temperature (2700 °C) diesel engine exhaust (Tang et al. 2005). Although the type of coal 

stove sampled was not stated, this ratio may apply to coal combustion in smaller furnaces that 

has a lower temperature than diesel engines. Coal and wood stoves/fireplaces are used for 

residential heating or aesthetics around Lake Michigan area, although wood stoves may be more 
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popular. In Lake Michigan sediments, the 1-NPYR/PYR ratio averaged 0.03 ± 0.01 (range from 

0.01 to 0.08, N = 24, Table 3.4), which is comparable to levels reported in marine sediments 

(0.017 – 0.023) (Ozaki et al. 2010), suggesting a combination of diesel engine and coal 

combustion emissions, consistent with the sources identified for the parent PAHs. This ratio 

showed a complex spatial pattern (Figure A3.2h), possibly due to the instability of diagnostic 

ratios in the environment, as discussed above.  

The NPAH profiles provide additional source information. In Lake Michigan sediments, 

1-nitropyrene and 6-nitrochrysene were the predominant compounds, followed by 2-

nitrofluorene. In the atmosphere, these compounds are primarily emitted by diesel vehicles 

(Albinet et al. 2007; Bamford and Baker 2003; Reisen and Arey 2005), and an airborne 2-

nitrofluorene concentration equal to 15% of that of 1-nitropyrene is commonly observed (Albinet 

et al. 2007). Thus, levels of these compounds may suggest contribution from diesel engine 

exhaust. On the other hand, sediment concentrations of 6-nitrochrysene were slightly higher than 

those of 1-nitropyrene, while concentrations of 6-nitrochrysene generally are lower than those of 

1-nitropyrene in diesel and gasoline engine emissions, tire debris and asphalt paste (Khalek et al. 

2011; Ozaki et al. 2010). However, atmospheric formation of 6-nitrochrysene has been shown by 

exposing chrysene to 10 ppm of nitrogen dioxide (NO2) (Tokiwa et al. 1981). Chrysene is a 

marker of coal combustion (Harrison et al. 1996), and the most abundant PAH in coal power 

plant emissions (Bzdusek et al. 2004). States surrounding Lake Michigan, including Illinois and 

Indiana, have numerous coal-fired power plants. Thus, we speculate that a portion of the 

chrysene emitted from coal combustion sources undergoes atmospheric transformation into 6-

nitrochrysene, followed by deposited in the lake and incorporation into sediments. However, 

further studies are needed to confirm this pathway.  

3.4.2.3 Biomarkers 

Anthropogenic sources of hopanes and steranes in Lake Michigan include crude oil and 

derived products, e.g., engine lubricating oil. Although major oil spills have not been reported in 

southern Lake Michigan, it may be subject to some oil spillage since Indiana Harbor and 

Chicago are major distribution centers for petroleum products (Helfrich and Armstrong 1986). In 

addition, hopanes and steranes are present in lubricating oils of diesel and gasoline engines, and 

are components of vehicle exhaust (Liu et al. 2010; Khalek et al. 2011; Schauer et al. 2002, 
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1999).  Similarly, outboard motor oil and exhaust from ships/boats are potential sources (Bieger 

et al. 1996).  Sediments can also reflect natural sources of hopanes and steranes including 

decomposition of bacteria, algae and vascular plants (Qu et al. 2007; Xiong et al. 2010).  

Unlike PAHs and NPAHs, diagnostic ratios of hopanes and steranes cannot distinguish 

between petrogenic and pyrogenic sources because these compounds are largely conserved 

during combustion and environmental transport (Manan et al. 2011; Neff and Durell 2012). 

However, these ratios can distinguish petrogenic and biogenic hydrocarbons (Hostettler et al. 

1992; Neff and Durell 2012; Qu et al. 2007; van Dongen et al. 2008). One such ratio can be 

calculated considering the hopanes and steranes measured in the present study.  This ratio, C31-

22S/(22S+22R), compares two diastereomers of C31-homohopanes (17α(h), 21β(h)-

homohopanes), and a value of 0.6 indicates equilibrium or full maturity, i.e., petroleum (Table 

3.2). In Lake Michigan, this ratio ranged from 0.37 to 0.65; four sites had ratios >0.6; seven sites 

had ratios from 0.5 - 0.6; and 13 sites had ratios <0.5. The ratio map shows that the lower half of 

the study area tends to have ratios > 0.5, while the upper half generally displays ratios < 0.5 

(Figure A3.2i). This suggests that the southern end of the lake was significantly impacted by 

petroleum (crude oil, vehicle emissions, etc.), while biogenic inputs (vascular plants, microbes) 

become more important in the central and northern parts. While consistent with earlier results, 

the ratio map does not represent sampling and analytical variability, and a single diagnostic ratio 

might not be robust, thus, measurement of additional compounds and calculation of several 

diagnostic ratios in future studies would help to confirm results.    

3.5 Conclusions 

Four groups of SVOCs were measured in sediments collected at 24 off-shore sites in 

southern Lake Michigan of varying water depths and sediment types. Compared to the 3-5 

sampling sites used in previous studies, data from 24 sites better describe the spatial patterns and 

the influence of potential source areas, and provide more robust estimates of levels across the 

lake. ΣPAH15 concentrations, which ranged from 213 to 1291 ng/g dw, were highest at near-

shore industrialized and contaminated areas. Overall, PAH levels in sediments have been 

declining for the past three decades, and only low risks to benthic organisms are indicated using 

consensus-based SQGs. We provide the first report of NPAHs in Lake Michigan sediments. 

ΣNPAH5 concentrations ranged from 3 to 19 ng/g dw, and several highly toxic compounds were 
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detected, including 6-nitrochrysene. ΣHopane5 and ΣSterane6 concentrations ranged from 98 to 

355 ng/g and 6 to 36 ng/g dw, respectively, and several petroleum-specific hopanes were 

detected. OC-adjusted SVOC concentrations increase at locations near AOCs and larger 

urban/industrial areas. 

The estimated 2011 loading rates of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5 to open 

water sediments of Lake Michigan are 10.9, 0.16, 0.25 and 3.6 t/yr, respectively. The PAH 

loading estimate has excellent agreement with prior estimates obtained using different and 

independent methods; loading rates for the other three compound groups are the first presented in 

the literature. Relative abundances were similar across sites, indicating that common source 

types affected sediments across southern Lake Michigan. Based on diagnostic ratios and 

chemical mass balance modeling, PAHs were contributed by primarily pyrogenic sources, e.g., 

coal combustion and vehicle exhaust; coal-tar sealed pavement dust was also identified. Based 

on hopane biomarkers, both petroleum-derived and biogenic sources are important contributors 

of hydrocarbons in sediments. Finally, NPAH compounds with high carcinogenic potencies (e.g., 

6-nitrochrysene) were measured at relatively high concentrations in sediments, suggesting that an 

assessment of ecological risks may be warranted. 
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3.6 Tables and Figures 

Table 3.1 MDLs of target compounds, and summary of study measurements.   

  

MW: molecular weight. MDL: instrument detection limit. Std: standard deviation. ND: not 
detected. 

Group Compound MDL Mean Std Min Max Detection freq.
(ng/g dw) (%) (N = 24)

Naphthalene 0.03 6.2 2.8 2.5 12.7 100
Acenaphthylene 0.07 1.4 0.7 0.7 3.9 100
Acenaphthene 0.07 - - - - 0
Fluorene 0.10 0.22 0.30 ND 1.1 37
Phenanthrene 0.07 70.4 36.3 29.1 179.1 100
Anthracene 0.05 9.1 4.4 3.8 18.7 100
Fluoranthene 0.10 134.1 84.2 47.3 385.2 100
Pyrene 0.05 110.3 57.7 25.3 236.3 100
Benz[a]anthracene 0.05 55.8 35.3 12.0 167.4 100
Chrysene 0.08 75.9 40.4 19.3 175.3 100
Benzo[b]fluoranthene 0.13 28.5 13.2 13.2 71.9 100
Benzo[k]fluoranthene 0.14 22.5 9.5 10.4 44.2 100
Benzo[a]pyrene 0.06 2.7 2.0 1.0 10.2 100
Dibenzo[a,h]anthracene 0.53 24.9 17.9 7.8 95.4 100
Indeno[1,2,3-cd]pyrene 0.38 18.2 13.5 5.9 74.1 100
Benzo[g,h,i]perylene 0.02 6.7 5.2 2.3 27.5 100

1-Nitronaphthalene 0.07 0.61 0.39 0.19 1.69 100
2-Nitronaphthalene 0.09 0.52 0.42 0.13 2.15 100
2-Nitrobiphenyl 0.07 - - - - 0
3-Nitrobiphenyl 0.06 - - - - 0
4-Nitrobiphenyl 0.27 - - - - 0
5-Nitroacenaphthene 0.02 - - - - 0
2-Nitrofluorene 0.11 0.83 0.55 0.22 2.64 100
9-Nitroanthracene 0.02 - - - - 0
9-Nitrophenanthrene 0.01 - - - - 0
1-Nitropyrene 0.01 2.67 1.41 0.85 6.44 100
6-Nitrochrysene 0.06 3.22 1.67 1.15 8.09 100

17α(h),21β(h)-Hopane 0.02 64.5 34.3 28.6 160.8 100
17α(h)-22,29,30-Trisnorhopane 0.04 30.9 15.9 11.7 70.9 100
17α(h),21β(h)-30-Norhopane 0.04 33.3 18.9 12.5 92.4 100
22R-17α(h),21β(h)-Homohopane 0.02 31.0 16.5 9.9 79.6 100
22S-17α(h),21β(h)-Homohopane 0.02 31.5 17.1 15.9 76.3 100

20S-5α(h), 14α(h), 17α(h)-Cholestane 0.02 0.7 0.5 0.2 1.7 100
20R-5α(h), 14α(h), 17α(h)-Cholestane 0.03 1.1 0.5 0.4 2.8 100
20R-5α(h), 14β(h), 17β(h)-Cholestane 0.02 3.4 1.9 1.3 8.4 100
20R-5α(h), 14β(h), 17β(h)-24-Methylcholestane 0.03 5.5 3.6 1.7 15.2 100
20R-5α(h), 14α(h), 17α(h)-24-Ethylcholestane 0.02 2.2 1.3 1.0 5.7 100
20R-5α(h), 14β(h), 17β(h)-24-Ethylcholestane 0.03 1.9 1.2 0.7 5.2 100

Study measurements (ng/g dry sediment)

PAHs

NPAHs

Steranes

Hopanes
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Figure 3.1 Lake Michigan sampling sites.  
The green shaded area surrounding the lake indicates the drainage area. 
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Figure 3.2 Boxplots showing the concentrations of individual (A) PAHs; (B) NPAHs; and (C) 
biomarkers that are normalized to the corresponding total concentrations.   
Boxplots show 10th, 25th, 50th, 75th and 90th percentiles.  
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Figure 3.3 Concentration maps of OC-adjusted concentrations of (A) ΣPAH15; (B) ΣNPAH5; (C) 
ΣSterane6; and (D) ΣHopane5. 
Units are μg/g OC. White dots indicate sediment sampling sites in this study. Graph axes show 
Universal Transverse Mercator coordinate system.   
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Figure 3.4 Trend of Σ6PAH concentrations in Lake Michigan sediments. 
(showing mean, maximum and minimum of observations, plus regression line). ΣPAH6 = 85433 
– 42.3x, where x is time (year). 

 

 

 

Figure 3.5 Plot of PHE / ANT ratios against FLA / PYR ratios for all samples 
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3.7 Appendix 

 

Figure A3.1 Correlation of organic carbon content with (A) ΣPAH15 concentrations; (B) 
ΣNPAH5 concentrations; (C) ΣHopane5 concentrations; and (D) ΣSterane6 concentrations. 
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Figure A3.2 Maps of diagnostic ratios.  
(A) PHE/ANT; (B) FLA/PYR; (C) BAA/CHR; (D) ANT/178; (E) FLA/202; (F) BAA/228; (G) 
IND/276; (H) 1-NPYR/PYR; and (I) C31-22S/(22S+22R). Ratios are unitless. White dots indicate 
sediment sampling sites in this study. Graph axes show Universal Transverse Mercator 
coordinates.  
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Table A3.4. Surrogate standard recoveries (%) 

 

  

Sample PAH NPAH Biomarker

A-1 79.9 77.3 82.5

A-1 rep 82.0 81.1 84.4

B-2 85.2 83.3 86.9

B-2 rep 86.3 85.2 88.2

B-3 90.6 91.3 87.4

B-4 77.4 70.3 75.4

B-5 74.0 73.4 88.8

B-5 rep 72.5 77.3 92.3

B-6 92.5 87.3 83.4

B-7 85.5 83.5 85.4

C-5 95.3 92.6 86.4

C-6 75.5 70.4 87.5

C-7 74.2 75.8 85.3

EG-14 86.9 80.9 76.3

EG-14 rep 83.9 82.4 79.5

EG-18 87.3 84.8 90.3

H-15 74.7 71.6 77.4

H-22 77.0 75.3 77.2

H-28 86.5 83.5 86.4

H-28 rep 87.2 88.2 90.2

H-29 86.7 85.2 87.1

H-30 84.8 73.3 82.6

H-31 76.6 77.2 80.3

H-8 80.5 79.4 85.4

S-2 77.9 83.4 88.2

S-3 89.5 76.2 75.4

S-4 78.4 70.5 79.9

V-1 79.6 74.6 74.1

V-1 rep 78.0 72.1 77.1

X-1 81.4 88.0 72.4

Field blank 87.6 95.6 94.8

Lab blank-1 89.9 94.0 97.6

Lab blank-2 93.6 98.7 95.5
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Table A3.5 Replicates, blanks and recoveries of OC analysis 

 

RPD: relative percent difference. 

GA: glutamic acid. 

  

Sample OC (%) RPD (%)

A-1 0.59 5.22

A-1 Re 0.56

B-2 3.68 11.80

B-2 Re 3.27

B-5 2.59 6.36

B-5 Re 2.76

EG-14 4.19 8.02

EG-14 Re 4.54

H-28 0.29 6.67

H-28 Re 0.31

S-2 0.29 3.51

S-2 Re 0.28

V-1 4.36 8.35

V-1 Re 4.74

OC recovery 

Sample (%)

Blank-1 0 0.002

Blank-2 0 0

GA-1 3.401 0.003 3.398 99.91

GA-2 3.136 0.002 3.134 99.94

GA-3 3.328 0.002 3.325 99.91
GA+CaCO3-1 2.704 1.722 0.003 2.672 98.82

GA+CaCO3-2 1.847 2.057 0.003 1.810 98.00

GA+CaCO3-3 1.717 2.518 0.002 1.697 98.84

GA added 
(g)

CaCO3 

added (g) 
Weight lost at 

100 °C (g)
Weight loss at 

500 °C (g)
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Table A3.8 Consensus-based sediment quality guidelines (ng/g dry weight at 1% TOC) 

 

TEC: threshold effect concentration. 

MEC: midpoint effect concentrations. 

PEC: probable effect concentrations. 

  

Chemical TEC MEC PEC

Naphthalene 176 369 561

Acenaphthylene 5.9 67 128

Acenaphthene 6.7 48 89

Fluorene 77.4 307 536

Phenanthrene 204 687 1170

Anthracene 57.2 451 845

Fluoranthene 423 1327 2230

Pyrene 195 858 1520

Benz[a]anthracene 108 579 1050

Chrysene 166 728 1290

Benzo[b]fluoranthene 240 6820 13400

Benzo[k]fluoranthene 240 6820 13400

Benzo[a]pyrene 150 800 1450

Dibenzo[a,h]anthracene 33 84 135

Indeno[1,2,3-cd]pyrene 200 1700 3200

Benzo[g,h,i]perylene 170 1685 3200
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Table A3.12 CMB model performance and source contribution estimates 

 

A zero in source contribution indicates source was not detected by the model and was treated as 
zero source contribution. 

  

Fitting species (9): PHE, FLA, PYR, BAA, CHR, BBKF, IND, DBA, BGP

Site R2 χ2 % mass explained DF Power plant Coke oven Diesel engine Coal-tar Chicago

A-1 0.80 2.72 122.6 6 0.323 0.105 0.798 0

B-2 0.84 2.51 99.3 6 0.396 0 0.446 0.151

B-3 0.85 2.02 101.9 6 0.480 0 0.496 0.042

B-4 0.90 1.39 106.5 6 0.092 0 0.669 0.303

B-5 0.85 2.2 106.4 6 0.374 0 0.541 0.149

B-6 0.76 5.09 96.4 5 0.233 0.055 0.374 0.303

B-7 0.78 4.36 105 5 0.312 0.029 0.536 0.173

C-5 0.75 5.3 97.3 5 0.311 0.054 0.367 0.241

C-6 0.73 4.45 107.1 6 0.378 0.273 0.419 0

C-7 0.79 3.48 89.3 6 0.286 0 0.408 0.199

EG-14 0.83 2.23 121.6 6 0.255 0.087 0.875 0.000

EG-18 0.80 3.82 113.5 5 0.233 0.230 0.590 0.081

H-15 0.82 1.88 130.5 7 0 0.364 0.941 0

H-22 0.81 2.95 101.5 6 0.284 0 0.506 0.225

H-28 0.78 3.68 97.5 6 0.316 0 0.389 0.270

H-29 0.79 3.16 96.8 6 0.489 0 0.385 0.094

H-30 0.76 3.77 89.3 6 0.403 0 0.372 0.118

H-31 0.79 3.19 98.7 6 0.333 0 0.522 0.132

H-8 0.77 3.9 91.9 6 0.306 0 0.405 0.208

S-2 0.82 2.91 101.4 6 0.239 0 0.516 0.259

S-3 0.85 2.58 104.3 5 0.021 0.110 0.661 0.250

S-4 0.85 2.12 104.6 6 0.103 0 0.567 0.375

V-1 0.82 1.78 132.9 7 0 0.379 0.950 0

X-1 0.86 2.43 114.8 5 0.222 0.034 0.692 0.200

Mean 0.81 3.08 105.5 0.27 0.07 0.56 0.16

Std 0.04 1.05 11.8 0.14 0.12 0.18 0.11

Min 0.73 1.39 89.3 0.00 0.00 0.37 0.00

Max 0.90 5.30 132.9 0.49 0.38 0.95 0.38

Source contribution (fraction)
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Table A3.13 NPAH concentrations in southern Lake Michigan sediments (ng/g dw) 

 
nd: not detected above MDL. 

  

Site 1-NNAP 2-NNAP 2-NBPL 3-NBPL 4-NBPL 5-NACT 2-NFLU 9-NANT 9-NPHE 1-NPYR 6-NCHR

A-1 0.31 0.53 nd nd nd nd 0.79 nd nd 1.37 2.06

B-2 0.42 0.77 nd nd nd nd 1.24 nd nd 3.71 4.27

B-3 1.56 0.27 nd nd nd nd 1.35 nd nd 2.22 2.67

B-4 0.26 0.70 nd nd nd nd 0.47 nd nd 3.95 4.11

B-5 0.99 0.35 nd nd nd nd 1.58 nd nd 2.78 3.33

B-6 0.45 0.37 nd nd nd nd 0.57 nd nd 2.47 2.67

B-7 0.27 0.23 nd nd nd nd 0.47 nd nd 1.90 1.97

C-5 0.51 0.72 nd nd nd nd 2.64 nd nd 6.09 6.91

C-6 0.53 0.18 nd nd nd nd 0.39 nd nd 1.84 2.22

C-7 0.43 0.68 nd nd nd nd 0.42 nd nd 3.38 3.49

EG-14 1.69 1.12 nd nd nd nd 1.45 nd nd 4.32 5.70

EG-18 0.60 0.57 nd nd nd nd 1.21 nd nd 1.72 1.97

H-15 0.19 0.16 nd nd nd nd 0.48 nd nd 0.89 1.15

H-22 0.99 0.59 nd nd nd nd 0.99 nd nd 1.60 2.22

H-28 0.72 0.43 nd nd nd nd 0.67 nd nd 1.68 2.07

H-29 0.20 0.63 nd nd nd nd 0.27 nd nd 2.60 3.08

H-30 0.60 2.15 nd nd nd nd 1.10 nd nd 6.44 8.09

H-31 0.60 0.29 nd nd nd nd 0.78 nd nd 2.80 4.32

H-8 0.30 0.36 nd nd nd nd 0.34 nd nd 2.05 2.62

S-2 0.66 0.47 nd nd nd nd 0.75 nd nd 2.73 3.14

S-3 0.47 0.13 nd nd nd nd 0.22 nd nd 2.03 2.10

S-4 0.33 0.26 nd nd nd nd 0.48 nd nd 2.64 3.08

V-1 0.56 0.24 nd nd nd nd 0.48 nd nd 0.85 1.56

X-1 1.03 0.26 nd nd nd nd 0.82 nd nd 1.99 2.59
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Chapter 4 Characterization of exhaust emissions from diesel engines at 

various loads and speeds using different fuels and after-treatments 

4.1 Abstract 

Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) 

for which emission information is limited, especially for idling conditions, new fuels and after-

treatment systems. This study investigates diesel exhaust emissions of particulate matter (PM), 

polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane 

petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 

900 kPa BMEP), with three types of fuel (ultra low sulfur diesel or ULSD, Swedish low aromatic 

diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and 

diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, 

Σ16PAHs, Σ11NPAHs, Σ2Hopanes and Σ2Steranes, and biodiesel resulted in larger reductions. 

However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-

nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to 

exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. 

The DOC+DPF combination reduced emissions of PM2.5 and the measured SVOCs during both 

DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, 

in terms of the estimated human carcinogenic risk, was greatly reduced using Swedish diesel and 

biodiesel fuels and the DOC+DPF. The PAH profiles showed high abundances of three and four 

ring compounds as well as naphthalene; NPAH profiles had high abundances of 

nitronaphthalenes, 1-nitropyrene and 9-nitroanthracene. The results demonstrate the effects of 

fuel type, engine load and after-treatment system on emissions. The emission data and chemical 

profiles presented can be used for emission inventories, exposure and risk assessments, and 

source apportionments.   
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4.2 Introduction 

Vehicle exhaust emissions are one of the most important anthropogenic sources of air 

pollutants, and standards and regulations to reduce emissions of particulate matter (PM), carbon 

monoxide (CO), nitrogen oxides (NOx), and nonmethane hydrocarbon (NMHC) emissions have 

been widely applied (Khalek et al. 2011; Karavalakis et al. 2010).  Exhaust emissions include 

many other pollutants of public health concern, including semivolatile organic compounds 

(SVOCs) such as polycyclic aromatic hydrocarbons (PAHs) (Simcik et al. 1999; Li et al. 2003). 

SVOCs are not directly regulated, despite the toxicity of many compounds, except as part of PM 

mass or number concentration standards.  Emissions of both regulated and unregulated pollutants 

depend on many factors, e.g., fuel type and quality, engine type, after-treatment technologies, 

engine operating (driving) conditions, and engine wear and maintenance (Karavalakis et al. 

2010).   

SVOCs in vehicle exhaust are found in both solid and vapor forms and, besides PAHs, 

include nitro-PAHs (NPAHs), hopanes, steranes, and many other classes of compounds (Khalek 

et al. 2011). PAHs can be emitted as unburned fuel and lubricating oil, or formed during the 

combustion process from other organic compounds (Karavalakis et al. 2010). NPAHs can be 

formed by reactions of PAHs with hydroxyl (OH) and nitrate (NO3) radicals in the presence of 

NOx, or through nitration during the combustion process (Karavalakis et al. 2010). Hopanes and 

steranes in vehicle exhaust mainly originate from engine lubricating oil (Schauer et al. 1999, 

2002; Kleeman et al. 2008). Oils, fuels and after-treatment controls affect emissions, as 

summarized below.   

Ultra-low sulfur conventional diesel (ULSD, sulfur content <15 ppm) has fueled most on-

road diesel vehicles in the U.S. since 2006 (EPA), although the use of biodiesel and other 

alternative fuels has grown rapidly in recent years, and soy-based biodiesels are now widely 

available.  In Sweden, a low sulfur (2 to 5 ppm) and low aromatic (<5% by volume) diesel is 

used (Westerholm et al. 2001). Such fuels, either neat or in blends with conventional diesel, 

generally reduce emissions of PM, CO and NMHC (Ratcliff et al. 2010; Chin et al. 2012). While 

biodiesel and low-aromatic fuels also are expected to decrease PAH and NPAH emissions due to 

the lower content of key PAH precursors (Ratcliff et al. 2010; Karavalakis et al. 2010), 

information regarding these (and other unregulated) emissions with alternative fuels is limited 
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and inconsistent. For example, substantially lower emissions of particle-associated PAHs and 

NPAHs have been found with soybean-based biodiesel and biodiesel blends as compared to 

reference diesel (Bagley et al. 1998; Westerholm et al. 2001; Correa and Arbilla 2006; 

Karavalakis et al. 2010; Ratcliff et al. 2010). However, emissions increased or were unchanged 

with canola oil-based biodiesel (Zou and Atkinson 2003), and while PAH emissions were 

reduced, NPAH and oxy-PAH emissions increased (Karavalakis et al. 2010). No study has 

reported on hopane and sterane emissions with alternative fuels, an important data gap given the 

use of these petroleum biomarker data in apportionment studies of ambient PM (Huang et al. 

2006; Kleeman et al. 2009). 

After-treatment technologies strongly affect engine emissions. Diesel particulate filters 

(DPF), used in conjunction with ULSD, can significantly reduce PM emissions (EPA 2013) and 

PM-associated PAH emissions (Heeb et al. 2010, 2008; Ratcliff et al. 2010). Effects reported for 

NPAHs, however, are inconsistent. For example, Ratcliff et al. measured >90% conversion of 

most NPAHs and 35% reduction of 1-nitropyrene (Ratcliff et al. 2010), while Heeb et al. found 

emissions of some NPAHs increased, possibly due to secondary nitration reactions in the DPF 

(Heeb et al. 2010, 2008). These studies did not measure 6-nitrochrysene, which has a high 

carcinogenic potency (RIDEM 2008). More information is needed to elucidate effects of DPFs 

on NPAH emissions, as well as on hopane and sterane emissions for which no information is 

available. 

This chapter investigates exhaust emissions of PAHs, NPAHs, hopanes and steranes 

using well-controlled bench tests of a heavy-duty diesel engine. Emissions are tested at idle and 

two loaded conditions using three types of fuels, and with and without a DOC+DPF. The results 

can help elucidate effects of alternative fuels, engine load, and DPF on the emissions of toxic 

pollutants and petroleum marker compounds, and can be used to estimate exposures and risks. 

4.3 Materials and methods 

4.3.1 Engine, fuels and test conditions 

The test engine is a Ford 2008 6.4 L “Power Stroke” engine manufactured by Navistar 

International Corporation (Lisle, IL) and used in pick-up trucks, SUVs, vans, school buses, and 

other vehicles. This 8 cylinder, 32 valve common rail direct-injection diesel engine is equipped 

with dual sequential turbocharging, cooled exhaust gas recirculation (EGR), and an EGR 
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oxidation catalyst. Bore, stroke and compression ratio are 98.0 mm, 104.9 mm, and 16.7:1, 

respectively. Maximum power and torque are 261 kW at 3000 rpm and 880 Nm at 2000 rpm.  

Three fuels were tested: mid-cetane U.S. specification ultralow sulfur conventional diesel 

(ULSD, sulfur content <15 ppm); Swedish Environmental Class 1 (MK1) low sulfur and low 

aromatic (sulfur content <10 ppm, aromatics <5% by volume) diesel fuel (Haltermann Ltd., 

Hamburg, Germany); and neat soy-based biodiesel (B100, 100% soy methyl ester) (Peter Cremer 

North America, Cincinnati, OH). Fuel properties are listed in Table 4.1. The engine oil used in 

the study was Shell Rotella-T 15W-40 conventional petroleum lubricating oil. 

The tested configuration approximates a 2004 engine calibration without exhaust gas 

after-treatment (Table 4.2). For tests with after-treatment, the engine was equipped with a DOC 

and a catalyzed silicon carbon DPF with 11±2 µm pores. The experiments used 11 test 

conditions described in Table 4.2. In tests 1-9, the engine was operated without after-treatment 

using each fuel at idle, low load (600 kPa BMEP at 1500 rpm), and medium load (900 kPa 

BMEP at 2500 rpm) conditions.  Injection timing was set as at 3.5° after top dead center 

(ATDC). Test 10 sampled tailpipe PM during DPF loading, and test 11 sampled tailpipe PM 

during DPF regeneration. DPF regeneration used four injections, including two very late 

injections that elevate engine-out hydrocarbon concentration to boost temperature rise across the 

DOC. Except for condition 11, each test was run in triplicate, and three filter samples were 

collected sequentially. 

4.3.2 Materials 

PM samples were collected on 47 mm diameter Polytetrafluoroethylene (PTFE)-bonded 

glass fiber filters (Emfab™ TX40-HI20WW, borosilicate glass microfibers, reinforced with 

woven glass cloth and bonded with PTFE; Pall Corporation, Port Washington, NY, USA).  

PTFE-bonded glass fiber filters have been the filter media of choice for sampling diesel and 

gasoline engine particulate emissions to characterize PAHs and/or mutagenicity (Alsberg et al. 

1985; Salmeen et al. 1984; Zinbo et al. 1995), and these filters are also used to sample PM 

emissions in engine compliance tests (CFR 2013).These filters can be more heavily loaded than 

PTFE membrane filters and the pressure drop across them rises more slowly. The mutagenicity 

and composition of diesel exhaust PMs collected on these and two other types of filters (PTFE 

membrane, quartz) are indistinguishable (Gorse Jr et al. 1982). Thus, PTFE-bonded glass fiber 
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filters should be a suitable filter media to collect particulate phase SVOCs in diesel exhaust and 

then study their composition and integrity during filter conditioning and storage (presented in 

Chapter 5). 

Solvents were HPLC grade and obtained from Fisher Scientific Inc. (Pittsburgh, PA, 

USA).  Florisil (60-100 mesh) and sodium sulfate (anhydrous, certified ACS granular, 10-60 

mesh) for column chromatography were supplied by the same vendor. 

4.3.3 Exhaust measurements 

A heated AVL 415S smoke meter and heated sample line (AVL Inc., Plymouth, MI, 

USA) were used to measure filter smoke number (FSN), which was converted to mass of 

carbonaceous soot using a correlation proposed by Christian et al.(Christian et al. 1993) that also 

applies to low smoke levels and biodiesel (Northrop et al. 2011). The soluble organic fraction 

(SOF) was calculated as the difference between PM (described below) and carbonaceous soot, 

normalized by PM. 

Exhaust PM was sampled using a partial flow dilution tunnel (BG-2, Sierra Instruments 

Inc., Monterey, CA, USA) and a flow rate of 10 L/min through a 0.95-cm diameter stainless steel 

sample probe inserted into the center of a straight section of exhaust pipe, facing upstream, and 2 

m downstream of the engine's turbine (Figure A4.1). The probe was 40-cm long and heated to 

191 °C. The dilution tunnel, at the end of the sample probe, mixed raw exhaust with filtered air 

with a dilution ratio of 6:1. The mixture then passed through a transfer tube (40 cm length×16 

mm i.d.) to a 2.5-μm cyclone separator (Sierra Instruments Inc., Monterey, CA, USA), a second 

transfer tube (20 cm×16 mm i.d.), and to a Teflon filter cassette holder (Sierra Instruments Inc., 

Monterey, CA, USA) that supported a filter on a perforated stainless steel backing plate. The 

exposed area of the filter was 39 mm in diameter. The transfer tubes, cyclone separator, and filter 

were maintained at 47 ± 5 °C, and the filter flow rate was 60 L/min (face velocity of 91 cm/s). 

Before sampling, dilution and total flows were stabilized at desired set points for 60 s, 

and additional dilution air was back flushed into the exhaust pipe. Sampling times were adjusted 

to sufficiently load filters with >280 μg of PM, at which point the pressure drop across the filter 

reached ~30 kPa. After sampling, the filter and cassette were immediately wrapped with 

Parafilm, placed in a sealed metal container, and transported to the filter conditioning and 

weighing laboratory. A 30-s high-flow purge cycle (100 L/min) was used to minimize PM 
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accumulation in the dilution tunnel and the transfer line prior to the next sample. 

Filters were weighed before and after PM loading after conditioning for 24 h in a glove 

box (Series 100 twin plastic glove box isolator, Terra Universal, Inc.) held at 25 °C and 33% 

relative humidity (RH). Electrostatic charges on filters and instruments were neutralized using an 

ionizer (Terra Universal, Inc.) in the filter weighing chamber for 30 min before weighing. Filters 

were weighed twice to 1 μg precision using a microbalance (ME 5, Sartorius Inc., Edgewood, 

NY, USA). If weights agreed to within 5 μg, results were averaged; otherwise filters were 

reweighed.  

To the extent possible, the PM sampling and analysis protocols were consistent with the 

US EPA engine testing procedures (CFR 2013), ISO-DIS 16183 (ISO 2009), verbal 

recommendations by Sierra Instruments, and internal standard operating protocols. To quantify 

the overall reproducibility (including engine, dilution tunnel, and filter conditioning, and filter 

weighing), nine PM samples were collected at specified conditions over a 2-day period. These 

tests showed good repeatability, i.e., the 95% confidence interval was ± 5.1% of the collected 

PM mass. 

4.3.4 SVOC analysis  

Filters were extracted by placing each in a 50 mL centrifuge tube, adding 25 mL of 

dichloromethane/hexane (4:1, v/v) to immerse the entire filter, and sonicating for 30 min 

(1510R-MTH, Branson Ultrasonics Corporation, Danbury, CT).  The filter was then removed 

using a cotton stick and discarded.  Extracts were passed through an activated Florisil column 

and fractionated into three portions. No additional cleaning of each fraction was necessary. The 

fractionation and GC-MS analysis have been described in detail in Chapter 2 Section 2.3.3.   

4.3.5 Data analysis 

Compounds that were not detected above IDLs (IDLs presented in Table A4.1) in all 

three replicate samples (using the same fuel type, after-treatment and engine load) were treated 

as zero. If compounds were detected above IDLs in at least one of the three replicates, the 

undetected values were substituted by IDL/2. PM mass (µg) was calculated as the difference in 

filter weights before and after loading. Emissions were expressed in terms of the brake-specific 

emissions (e.g., g/kWh or µg/kWh) for loaded conditions and as an emission rate per time (e.g., 
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mg/s or ng/s) for idle conditions (since BMEP was near zero). Comparisons between idle and 

loaded conditions used emission rates per time. Reference or baseline emissions refer to 

emissions using ULSD and without the DPF.  Baseline emissions were compared to literature 

data using ULSD as well as older fuels. For each test except test #11, SVOC measurements were 

averaged over three replicate filters, and differences between ULSD and Swedish fuels, between 

ULSD and B100 fuels, and between no after-treatment and DPF, were evaluated using 2-sample 

t tests (2-tailed, significance level p = 0.05).  

For human health risks, the toxic equivalency of benzo[a]pyrene (BAP) (TEQBAP) was 

calculated for target compounds using toxic equivalency factors (TEFs, unitless) shown in Table 

1.1 and the equation TEQBAP = Σi Ci × TEFi, where Ci is the emission rate of the ith PAH or 

NPAH in each sample (ng/kWh). The TEFs use BAP as the baseline compound, whose TEF is 

assigned to be 1.  

PAH and NPAH profiles were developed to represent on-road diesel sources for future 

use in receptor models that apportion sources of these compounds in ambient air and potentially 

other media based on the chemical composition of emissions. The profiles used emission rates 

(ng/s) for ULSD (required since 2007 in the U.S.) and weighted idle, low- and medium-load 

results by 24, 21 and 55%, respectively, reflecting activity data for medium and heavy duty 

diesel trucks (Huai et al. 2006; Lutsey et al. 2004). A composite PM2.5 emission rate (ng/s) was 

also calculated using ULSD measurements and the same weightings. PAH and NPAH profiles 

were expressed as abundances, i.e., each compound was calculated as its fraction of total PAH 

emissions (ΣPAHs) or total NPAH emissions (ΣNPAHs). Profiles were plotted and compared to 

those in the literature, derived similarly, using Spearman correlation coefficients. All statistical 

analyses were performed using SPSS Statistics 21.0 (IBM Corporation). 

4.4 Results and Discussion 

4.4.1 Baseline emissions  

Table 4.3 shows the emission rates of PM and target SVOCs using ULSD in the present 

study and previous studies. PM emissions under low- and high-load conditions were 0.033 ± 

0.001 and 0.10 ± 0.002 g/kWh, respectively, comparable to measurements reported in other 

studies, most of which ranged from 0.03 to 0.3 g/kWh (Sharp et al. 2000a; Hori and Narusawa 

2001; Lea-Langton et al. 2008; Tanaka et al. 1998; Ratcliff et al. 2010; Liu et al. 2010; Gambino 
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et al. 2001).  For ΣPAHs, emissions at low load were slightly lower than earlier reports (Sharp et 

al. 2000b; Liu et al. 2010; Khalek et al. 2011), but emissions at high load (3.45 μg/kWh) were 

similar to a previous study (2.21 μg/kWh) (Sharp et al. 2000b). ΣNPAH emission rates (0.2 

μg/kWh at high load) were similar to those in two previous studies (Sharp et al. 2000b; Gambino 

et al. 2001).  ΣHopane and ΣSterane emission rates under high load (0.02 and 1 μg/kWh, 

respectively) were slightly lower than earlier reports (Khalek et al. 2011; Liu et al. 2010). For 

most SVOCs, emission rates increased considerably with load, e.g., ΣPAH emissions increased 

6-fold from low to high load (0.55 to 3.45 μg/kWh) and ΣNPAH emissions also increased 6-fold 

(0.06 to 0.35 μg/kWh). 

4.4.2 Effect of fuel 

4.4.2.1 PM emissions, soot emissions and SOF 

PM2.5 emission rates strongly depended on fuel and engine load. Under load, Swedish 

diesel reduced PM2.5 emissions by 7-27% compared to ULSD, and B100 reduced emissions by 

68-81% (Table 4.4). With ULSD and Swedish fuels, idling emission rates were low compared to 

loaded conditions. However, with B100 the PM2.5 emission rate during idling (0.60 ± 0.06 mg/s) 

and high load (0.65 ± 0.06 mg/s) were 5.5 times higher than under idling with ULSD (0.11 ± 

0.01 mg/s).  

Like PM2.5, the emission rate of carbonaceous soot was reduced by Swedish diesel and 

B100 under the three conditions (Table 4.4). Notably, B100 increased PM2.5 emissions during 

idling, but at the same time, reduced the emission rate of soot. The use of biodiesel also 

increased the SOF of the PM under all three conditions (Table 4.4). For the same fuel, the SOF 

decreased with increasing engine load.  

A number of studies have found that biodiesel reduces PM2.5 and soot emission rates as 

compared to ULSD (Sharp et al. 2000a; Chin et al. 2012; Lapuerta et al. 2008; EPA 2001).  This 

has been attributable to the lower content of aromatic hydrocarbons and sulfur in biodiesel (and 

biodiesel blends) that serves as soot precursors (Sharp et al. 2000a; Lapuerta et al. 2008). 

Biodiesel also has higher oxygen content, which may lead to more complete combustion and the 

oxidation of already formed soot, further reducing PM2.5 emissions (Lapuerta et al. 2008; Sharp 

et al. 2000a). The increased SOF using biodiesel has been attributed to an increased fraction of 

unburned fuel, which tends to condense on the filter used to collect particulate emissions (Sharp 
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et al. 2000a). Swedish diesel has been reported to reduce PM emissions by 11% compared to an 

European reference diesel (which is similar to ULSD) (Westerholm et al. 2001), again probably 

reflecting the lower sulfur as well as lower aromatic content in Swedish diesel.  

B100 dramatically increased idle emission rates of PM2.5. A similar increase was 

observed using B20 in a light-duty engine (Chin et al. 2012). Under idle conditions with low 

exhaust gas temperature (<150 °C), unburned fuel and oil may represent a significant fraction of 

PM2.5 emissions.  Thus, the increased PM2.5 could result from unburned biodiesel fuel and oil 

emissions that exceed the reduction in soot and sulfate emissions (Sharp et al. 2000a). We also 

note that PM emission at idle may be underestimated due to the very low idle exhaust 

temperature (<150 °C), which could cause volatiles to be collected on exhaust pipe surfaces.  

4.4.2.2 PAH emissions 

The highest Σ16PAH emission rates were obtained under high-load conditions when all 16 

target PAHs were detected (Figure 4.1). Compared to ULSD, Swedish diesel reduced Σ16PAH 

emissions by 46-69% and B100 reduced emissions by 80-98%; these reductions were statistically 

significant (Table 4.5). Individual compounds followed the same trend as Σ16PAHs, with the 

exception that Swedish diesel slightly increased benzo[k]fluoranthene emissions under the idle 

condition. The lower emission rates obtained for PAHs are consistent with the low aromatic 

content in Swedish fuel and the absence of aromatics in biodiesel (Karavalakis et al. 2010; 

Ratcliff et al. 2010; Westerholm et al. 2001).  

Σ16PAH emission rates were positively correlated with PM2.5 emission rates (r = 0.93, p < 

0.001), but negatively correlated with the SOF (r = -0.70, p < 0.001), expected since biodiesel 

and Swedish diesel reduced Σ16PAH emissions but increased SOF. Also, increased engine load 

was accompanied with increased Σ16PAH emissions (Table 4.5) but decreased SOF (Table 4.4). 

Both biodiesel and Swedish diesel appear to increase the emissions of unburned fuel and oil in 

PM, which contribute to increased emissions of SOF, but these fuels contain few or no 

aromatics. Similarly, low load and idle conditions may also increase the fraction of unburned 

fuel and oil, leading to high SOF and low PAH emission rates.  

4.4.2.3 NPAH emissions 

Emission rates of total and speciated NPAHs are summarized in Table 4.5 and Figure 4.1, 
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respectively. All 11 target NPAHs were detected above MDLs while idling; 10 were detected 

under the low-load and high-load conditions. The most abundant compound was 1-nitropyrene, 

followed by 2-nitronaphthalene and 1-nitronaphthalene. Compared to ULSD, Swedish diesel 

reduced Σ11NPAH emissions by 50-58% and B100 reduced emissions by 90-99%; these large 

reductions were statistically significant (Table 4.6). Individual compounds followed the same 

trend as Σ11NPAHs, but B100 generated highest emissions of 5-nitroacenaphthene during idling. 

NPAH emission data in the literature are limited. Using a D12A 420 diesel engine (6-cylinder, 

heavy-duty), Swedish diesel reduced 1-nitropyrene emissions (both particulate and vapor) 

compared to a reference diesel (Westerholm et al. 2001), similar to our observations. Like 

Σ15PAH, Σ11NPAH emission rates were positively correlated with PM2.5 emission rates (r = 0.94, 

p < 0.001) and negatively correlated with SOF (r = -0.72, p < 0.001). 

5-Nitroacenaphthene was detected only with B100 in the no load (idling) condition. 

Higher NPAH emissions were measured during idling for a Euro 2 compliant VW Golf 1.9 TDi 

diesel engine with B100 and a low speed driving cycle (Karavalakis et al. 2010). Biodiesel 

generally increases emissions of NOx (Chin et al. 2012; EPA 2001) and the SOF of PM, which 

consists of unburned fuel and oil (Sharp et al. 2000a; Karavalakis et al. 2010). Under low 

temperature idle conditions, biodiesel appears to lead to poorer combustion that facilitates the 

formation of products of incomplete combustion (PICs) such as PAHs, which then may react 

with hydroxyl (OH) and nitrate (NO3) radicals in the presence of NOx to form NPAHs, leading to 

increased emissions of selected NPAHs.  

4.4.2.4 Hopane and sterane emissions 

Emission rates of total and speciated hopanes and steranes are summarized in Table 4.5 

and Figure 4.1. Only two hopanes and two steranes were detected above IDLs. Swedish diesel 

reduced Σ2Hopane emissions (by 51-54%) compared to ULSD under idling and high-load 

conditions, but emissions increased (by 24%) under low-load conditions. Swedish diesel fuel 

reduced Σ2Sterane emissions under all three conditions (by 36-77%). B100 reduced emissions of 

both Σ2Hopane (by 65-92%) and Σ2Sterane (by 82-96%). Emission rates of individual 

compounds followed the trend of the totals. 

A number of studies have used hopanes and steranes as tracers of diesel and gasoline 

vehicles to apportion sources of ambient PM (Kleeman et al. 2009; Kleeman et al. 2008). These 
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compounds have been detected in vehicle exhaust but not in diesel/gasoline fuels (Schauer et al. 

2002, 1999). It has been suggested that these compounds are found in the higher temperature 

fraction of crude oils, and thus are only found in lubricating oils (Rogge et al. 1993). Our results 

show that the fuel can significantly affect hopane and sterane emission rates. We speculate that 

fuel type may affect the amount of lubricating oil released into the exhaust through several 

possible mechanisms. First, with a constant injection time, the higher cetane number of B100 and 

Swedish diesel result in earlier combustion that causes fuel to burn closer to the injector and 

decreases the oil washed from the cylinder walls by the fuel spray. Second, higher cetane number 

fuels also may lead to less premixed combustion and more diffusion combustion, which may be 

better at oxidizing oil mist in the cylinder. Finally, less premixed combustion means lower rates 

of pressure rise, which might dislodge less oil from engine surfaces like piston rings.  While 

further work is needed to understand the mechanisms, the variation in emission rates of these 

biomarker compounds imposes limits in their use as traffic-related tracers, as discussed later.  

4.4.3 Effect of DPF 

Effects of the DOC+DPF and DPF regeneration on PM and SVOC emissions are 

summarized in Table 4.6; effects on individual compounds are shown in Figure 4.2. The DPF 

caused large (>99%) reductions in PM, Σ16PAH, Σ11NPAH, Σ2Hopane and Σ2Sterane emission 

rates. While regeneration increased emissions compared to normal DPF use, emission rates 

remained much lower (83-99%) than those without DPF. This applied to individual compounds 

as well as the sums. During regeneration, exhaust temperatures are raised to burn off the PM 

accumulated on the DPF, and thus slightly increases in PM and SVOC emissions are expected. 

The DPF also increased the SOF of the PM since the carbonaceous soot was filtered out by the 

DPF. Consistent with a previous study (Ratcliff et al. 2010), our data confirmed that the DPF 

was highly effective in converting particle-bound PAHs and nitro-PAHs. 

4.4.4 Toxicity of engine exhaust 

Considering PAHs and NPAHs together, Swedish diesel reduced the TEQBAP by 42% to 

59% for all three conditions, and B100 provided a 77% to 98% reduction (Table 4.5). These 

reductions were statistically significant. The DOC+DPF reduced the total TEQBAP of emissions 

by a factor of 2950 (factor of 590 while regenerating; Table 4.6. These data suggest that toxicity, 

measured as carcinogenic risk from PAHs and NPAHs, is greatly reduced by the use of DPF and 
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alternative fuels. This is consistent with previous studies that reported lower mutagenic potency 

of diesel exhaust with the use of biodiesel (Bünger et al. 1998) and Swedish diesel (Westerholm 

et al. 2001).  

Although B100 reduced the total TEQ of diesel exhaust, it increased 5-nitroacenaphthene 

emissions during idling, as discussed above. This compound is classified as group 2B (possibly 

carcinogenic to humans) by the International Agency for Research on Cancer (IARC), although 

its TEF is only 0.03 relative to benzo[a]pyrene (RIDEM 2008). Still, given the recent attention to 

exposures from idling vehicles, the higher 5-nitroacenaphthene emissions found while idling 

with B100 may warrant further investigation.   

4.4.5 PAH and NPAH profiles  

PAH profiles have high abundances of naphthalene, phenanthrene, fluoranthene and 

pyrene, and low abundances of high molecular weight compounds (Table A4.2). Overall, the 

profiles resemble literature profiles (Khalek et al. 2011; Liu et al. 2010), e.g., Spearman 

correlation coefficients range from 0.69-0.75 (p < 0.05; Figure 4.3). NPAH profiles have high 

abundances of nitronaphthalenes, 9-nitroanthracene and 1-nitropyrene. While fewer data are 

available for comparison, this profile is highly correlated with one reported for year 2000 

engines (Spearman r = 0.90, p = 0.037) (Khalek et al. 2011). While overall agreement is good, 

abundances of individual compounds can vary considerably among different studies, reflecting 

differences in engine configuration, operating conditions, sampling protocols, and other factors.  

The more volatile compounds, e.g., naphthalene, are particularly sensitive to partitioning 

between vapor and particulate phases (Singh et al. 1993), so studies combining both phases 

reported high abundances (70-80%) of this compound (Liu et al. 2010; Khalek et al. 2011). 

The relative concentrations of engine exhaust emissions of PAHs, NPAHs and PM2.5 vary 

considerably among studies. In five recent studies (Liu et al. 2010; Khalek et al. 2011; Chiang et 

al. 2012; Gambino et al. 2001; Sharp et al. 2000b, 2000a), ΣPAH/PM2.5  ratios ranged from 

2.2×10-5  to 0.23, and ΣNPAH/PM2.5  ratios from 1.3×10-6 to 3.2×10-4.  In the present study, the 

ΣPAH/PM2.5 and ΣNPAH/PM2.5 ratios are 3.2×10-5 and 1.2×10-6, respectively (Table A4.2).  

These results highlight considerable differences in the composition of vehicle exhaust PM, which 

depends on engine type and configurations, operating condition, fuel, control technology, etc.  

The variation also suggests that PAHs and NPAHs profiles measured using individual engines 
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may not be useful for quantitative apportionments of vehicle exhaust PM2.5, although composite 

profiles, potentially derived from many vehicles and over multiple conditions, may be more 

representative and useful in this application.  

As mentioned earlier, chemical compositions or profiles are used in chemical mass 

balance (CMB) and other receptor models to apportion pollutant sources. To apportion PAHs 

and NPAHs in sediments, a different application but using the same approach, profiles should 

use only the particulate phase (rather than combining vapor and particulate phases) since in 

sediments these contaminants arise mostly from deposition of airborne particulates (Li et al. 

2003). In addition, the profiles should be expressed as fraction of ΣPAHs/ΣNPAHs, rather than 

PM mass.  Given the variability of certain compounds, the profiles, specifically, the fitting 

species used, might focus on compounds that have similar abundances among studies, e.g., 

phenanthrene, fluoranthene, pyrene, and 1-nitropyrene, and exclude or down-weight compounds 

with large variability, e.g., naphthalene, benzo[a]pyrene and 2-nitrofluorene. 

Hopanes and steranes have been used as tracers of vehicle exhaust PM (Kleeman et al. 

2008; Kleeman et al. 2009). Our results suggest that fuel type significantly affects hopane and 

sterane emissions, as well as PAH and NPAH emissions. Thus it may be possible to establish a 

relationship between hopane/sterane and PAH/NPAH. Emission rates of Σ15PAH, Σ11NPAH, 

PM2.5 and SOF were significantly correlated to 17α(H)21β(H)-hopane emissions (r = 0.72 – 0.95; 

Figure 4.4). Emissions of Σ5Hopane, Σ6Sterane and other individual hopane and sterane followed 

the same trend as 17α(H)21β(H)-hopane. 

If the ratio of 17α(H)21β(H)-hopane to Σ15PAH / Σ11NPAH remains constant, then 

17α(H)21β(H)-hopane can be used to apportion traffic-originated PAHs/NPAHs.  This also 

assumes that 17α(H)21β(H)-hopane comes from only vehicle emissions, and that the ratio 

remains constant across different engines and engine types. However, six studies in the literature 

(Phuleria et al. 2006) show ratios of Σ9PAH (FLA to IcdP)/17α(H)21β(H)-hopane and 

FLA/17α(H)21β(H)-hopane that range from 0.6 to 5400 and from 0.04 to 3000, respectively; the 

present study obtained ratios of 95 and 21. PM2.5/17α(H)21β(H)-hopane ratios also vary, e.g., 

from 2000 to 227000 in three studies (Schauer et al. 1999, 2002; Rogge et al. 1993; Liu et al. 

2010);  the present study shows a ratio of 1.1×107. Such variation limits the value of hopanes and 

steranes as quantitative tracers of diesel exhaust emissions, although these compounds still have 
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diagnostic and qualitative value in detecting vehicle contributions to PAHs, NPAHs and ambient 

PM.  

4.5 Conclusions 

This study characterized exhaust emissions of PM2.5, PAHs, NPAHs, steranes and 

hopanes from a heavy-duty diesel engine for three fuels, three engine conditions, and with and 

without a DOC+DPF. Swedish diesel, biodiesel and the DOC+DPF significantly reduced 

emissions of PM2.5, PAHs, NPAHs, hopanes and steranes, although emissions of PM2.5 and 

several compounds (benzo[k]fluoranthene and 5-nitroacenaphthene) increased during idling with 

biodiesel. Emissions of PM2.5 and SVOCs increased with higher engine loads, with the important 

exception that PM2.5 emissions increased during idling with B100. The toxicity of diesel exhaust, 

in terms of human carcinogenic risk, was reduced using the alternative fuels and the DOC+DPF. 

A PAH/NPAH profile for potential use in receptor models that apportion these compounds was 

developed by combining emission measurements during idle and load and accounting for 

variability. This profile was consistent with the literature, at least for certain compounds, which 

are suggested for use as fitting species. Emissions of petroleum biomarkers hopanes and steranes 

were significantly correlated with PAHs, NPAHs and PM2.5, but abundances varied considerably, 

suggesting that these compounds can provide only qualitative or diagnostic results when used in 

apportionment studies.  
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4.6 Tables and figures 

Table 4.1 Properties of ULSD, Swedish diesel and B100 

 

 

 

 

Table 4.2 Experimental design and test conditions 

 

*ATDC: after top dead center. A negative number means degrees before top dead center 

(BTDC). 

  

Fuel parameters ULSD Swedish Biodiesel Test method

Cetane number 46.7 55.9 55 ASTM D613
Kinematic viscosity (mm2/s at 40 °C) 1.9-3.4 1.843 4.0 ASTM D445
Net heating value (MJ/kg) 42.699 43.535 37.348 ASTM D240
Carbon (wt%) 86.69 85.72 77.27 ASTM D5281
Hydrogen (wt%) 13.31 14.28 11.82 ASTM D5281
Oxygen (wt%) <0.05 10.91 ASTM D5622
Sulfur content (wt ppm) <15 <10 <1 ASTM D5453, D7039
C/H atomic ratio 1.829 1.985 1.823 ASTM D5281
Saturates/Olefins/Aromatics (vol%) 59.2 / 4.5 / 36.3 95.4 / 1.3 / 3.3 N/A ASTM D1319

Amoco Ultra Low Sulfur 
#2 Premium Diesel Fuel

Halterman HF0860 Swedish 
Environmental Class I Diesel 

Peter Cremer Nexol BD-
99.9 Biodiesel

Product name

BMEP Speed Power EGR Start of injection
Test Engine Fuel Calibration (kPa) (rpm) After-treatment No. of samples (kW) (%) (degree ATDC)*

1 6.4 L Ford ULSD 2004 600 1500 none 3 48.2 14 3.5
2 900 2500 none 3 120.3 17 3.5
3 idle 650 none 3 0.1 8 3.5
4 Swedish 600 1500 none 3 48.1 14 3.5
5 900 2500 none 3 121 17 3.5
6 idle 650 none 3 0.2 8 3.5
7 B100 600 1500 none 3 47.8 14 3.5

8 900 2500 none 3 120.2 17 3.5
9 idle 650 none 3 0.1 8 3.5
10 ULSD 600 1500 DOC+DPF 3 48.4 14 -12/-3
11 500 1500 DOC+DPF regen 1 40.3 14 1/9/47/139
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Table 4.4 PM and carbonaceous soot emission rates using different fuels. Change (%) is the 
percent change compared to ULSD for the same engine condition. 

  

SOF: soluble organic fraction. SOF = (PM - soot) / PM 

* Differed significantly from ULSD under the same engine condition (p < 0.05 using two-sample 

t-test). 

  

Engine condition Fuel
Idle ULSD 0.11 ± 0.01 0.009 ± 0.003 0.92 ± 0.04

Swedish 0.02 ± 0.00 * -82 0.003 ± 0.000* -67 0.85 ± 0.02* -8

B100 0.60 ± 0.06* 445 0.003 ± 0.000 * -67 1.00 ± 0.00 9

Low-load ULSD 0.44 ± 0.02 0.25 ± 0.02 0.43 ± 0.02
Swedish 0.41 ± 0.07 -7 0.27 ± 0.00 8 0.33 ± 0.12 -23
B100 0.14 ± 0.01 * -68 0.022 ± 0.001* -91 0.84 ± 0.01* 95

High-load ULSD 3.42 ± 0.08 2.9 ± 0.1 0.15 ± 0.04
Swedish 2.48 ± 0.03* -27 1.9 ± 0.1* -34 0.21 ± 0.03 40
B100 0.65 ± 0.06 * -81 0.14 ± 0.01* -95 0.78 ± 0.00* 420

PM Soot SOF
(mg/s) Change (%) (mg/s) Change (%) (unitless) Change (%)
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Table 4.6 PM and SVOC emission rates, SOF and TEQs with and without a DOC+DPF 

 

ND: not detected. 

  

PM SOF Σ16PAH Σ11NPAH Σ5Hopane Σ6Sterane TEQBAP

After-treatment Fuel Engine condition (mg/kWh) (unitless) (ng/kWh) (ng/kWh) (ng/kWh) (ng/kWh) (ng/kWh)
None 1500 rpm, 600 kPa 32.9 ± 1.3 0.43 ± 0.02 554 ± 114 47 ± 9 1.5 ± 0.3 243 ± 8 118 ± 13

w/ DOC+DPF 1500 rpm, 600 kPa 0.1 ± 0.0 1.0 ± 0.0 1.5 ± 0.2 0.034 ± 0.004 ND 0.1 ± 0.0 0.04 ± 0.02
DOC+DPF regen 1500 rpm, 500 kPa 5.7 0.9 3.2 0.12 0.1 0.2 0.2

ULSD
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Figure 4.3 Comparison between this study’s profile and profiles in literature. (A) PAHs; (B) 
NPAHs. 
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Figure 4.4 Emission rates of PAHs, NPAHs, PM and SOF versus 17α(H)21β(H)-hopane. 
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4.7 Appendix 

Table A4.1 Instrument detection limits (IDLs) of target compounds 

  

Group Compound IDL

(ng/mL)
Naphthalene 0.50

Acenaphthylene 0.25

Acenaphthene 0.22

Fluorene 0.07

Phenanthrene 0.22

Anthracene 0.18

Fluoranthene 0.32

Pyrene 0.25

Benzo[a]anthracene 0.25

Chrysene 0.28

Benzo[b]fluoranthene 0.08

Benzo[k]fluoranthene 0.05

Benzo[a]pyrene 0.05

Dibenzo[a,h]anthracene 0.09

Indeno[1,2,3-cd]pyrene 0.12
Benzo[g,h,i]perylene 0.05

1-Nitronaphthalene 0.01

2-Nitronaphthalene 0.01

2-Nitrobiphenyl 0.01

3-Nitrobiphenyl 0.01

4-Nitrobiphenyl 0.01

5-Nitroacenaphthene 0.01

2-Nitrofluorene 0.01

9-Nitroanthracene 0.01

9-Nitrophenanthrene 0.01

1-Nitropyrene 0.01

6-Nitrochrysene 0.01

17α(H),21β(H)-Hopane 0.05

17α(H)-22,29,30-Trisnorhopane 0.08

17α(H),21β(H)-30-Norhopane 0.08

22R-17α(H),21β(H)-Homohopane 0.05

22S-17α(h),21β(h)-Homohopane 0.05

20S-5α(H), 14α(H), 17α(H)-Cholestane 0.04

20R-5α(H), 14α(H), 17α(H)-Cholestane 0.06

20R-5α(H), 14β(H), 17β(H)-Cholestane 0.04

20R-5α(H), 14β(H), 17β(H)-24-Methylcholestane 0.06

20R-5α(H), 14α(H), 17α(H)-24-Ethylcholestane 0.05

20R-5α(H), 14β(H), 17β(H)-24-Ethylcholestane 0.06

Steranes

Hopanes

NPAHs

PAHs
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Table A4.2 Profiles of PAHs and NPAHs for diesel engine exhaust. 

 

  

Group Chemical Emission rate Fraction of the sum

(ng/s)
PM2.5 2000600

Naphthalene 30.2 0.461

Acenaphthylene 2.10 0.032

Acenaphthene 3.65 0.056

Fluorene 0.39 0.006

Phenanthrene 6.22 0.095

Anthracene 3.81 0.058

Fluoranthene 3.93 0.060

Pyrene 3.64 0.055

Benzo[a]anthracene 3.52 0.054

Chrysene 3.72 0.057

Benzo[b+k]fluoranthrene 0.67 0.010

Benzo[a]pyrene 0.44 0.007

Indeno[1,2,3-c,d]pyrene 0.94 0.014

Dibenzo[a,h]anthracene 0.95 0.014

Benzo[g,h,i]perylene 1.43 0.022
Σ15PAHs/PM 3.21E-05

1-Nitronaphthalene 0.35 0.091

2-Nitronaphthalene 0.78 0.204

2-Nitrobiphenyl 0.05 0.012

3-Nitrobiphenyl 0.05 0.013

4-Nitrobiphenyl 0.06 0.015

5-Nitroacenaphthene 0 0

2-Nitrofluorene 0.14 0.037

9-Nitroanthracene 0.52 0.136

9-Nitrophenanthrene 0.30 0.078

1-Nitropyrene 1.48 0.388

6-Nitrochrysene 0.10 0.027
Σ11NPAHs/PM 1.91E-06

Hopane 17α(H),21β(H)-Hopane 0.175

PM/17α(H),21β(H)-Hopane 1.1E+07

NPAHs

PAHs
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Figure A4.1 PM sampling system flow diagram 
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Chapter 5 Integrity of target compounds in diesel exhaust particulate 

matter3  

5.1 Abstract 

Diesel exhaust particulate matter (PM) contains many semivolatile organic compounds 

(SVOCs) of environmental and health significance. This study investigates the integrity of 25 

SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and 

petroleum biomarkers hopanes and steranes, in diesel exhaust PM. Diesel engine PM, generated 

using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was 

collected on PTFE-bonded borosilicate glass fiber filters. Storage losses were evaluated for three 

cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing 

filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and 

storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. 

After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility 

NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 

4 °C for up to one month did not lead to significant losses, but storing extracts for five months led 

to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. 

These results suggest that even relatively brief filter conditioning periods, needed for gravimetric 

measurements of PM mass, and extended storage of filter extracts can lead to underestimates of 

SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent 

criteria and performance checks to identify and limit possible biases occurring during filter and 

extract processing. 

5.2 Introduction 

Air sampling of target SVOCs involves, in brief, collection of a sufficient sample on an 

appropriate matrix, e.g., 10 to 150 m3 of air on a Teflon or quartz filter for the particulate 

3 Results of this chapter have been published in Water, Air & Soil Pollution 224(8): 1-14. 
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fraction, and a polyurethane foam cartridge for the vapor fraction, followed by storage, 

extraction, purification and analysis. 

Because PAHs and NPAHs can volatize, decompose or transform during sample handling 

and storage, an important consideration in measuring SVOCs is the integrity of collected 

samples, especially for air samples, which involve multiple, sequential and complex steps. 

Sample integrity must be characterized and maintained, otherwise the measurements cannot be 

used quantitatively, and even some qualitative uses may be limited.  Several sampling and 

analysis protocols specify sample storage times.  EPA Method SW-846 for solid samples (e.g., 

soil, sediment, sludge, ash, etc.) requires extraction within 14 days of sample collection, and 

analysis within 40 days following extraction (EPA 2008). EPA method 3542 for air sampling 

specifies the same extraction and analysis times, and also specifies storage of filters at 4 °C (EPA 

1996). 

A few studies have investigated the storage losses of SVOC samples. Mussel tissues 

stored at -80 °C and -120 °C showed PAH concentrations that were stable for up to 10 years 

(Schantz et al. 2001). Soils stored at 4 °C for two weeks showed significant losses of 2- to 5-ring 

PAHs due to biodegradation; storage at -20 °C or the addition of a biocide reduced losses (Rost 

et al. 2002). PM collected on Teflon filters wrapped in foil, packed in glass bottles, and stored at 

room temperature in a darkened room for up to 118 days gave consistent readings for PAHs 

ranging in volatility from fluoranthene/pyrene to coronene (Oda et al. 1998). PM collected on 

quartz fiber filters stored for one week at 4 °C were stable for 50 of 61 PAHs, although 11 or the 

more volatile PAHs showed losses of 50 to 80% (Oda et al. 1998).Tests using artificially 

generated particles and quartz filters indicated that PAHs were stable for up to 120 days when 

stored at -79 °C (Sverdrup et al. 1990). Only one NPAH study was identified, which tested the 

storage losses of a single NPAH compound (2-nitrofluorene) on quartz filters.  Filter samples 

stored at both -79 °C and 20 °C showed losses of about 40% after 30 days of storage (Sverdrup 

et al. 1990). 

The integrity of PAH samples following extraction, typically dissolved in organic 

solvents, has received some attention. Ampouled PAH solutions in acetonitrile and toluene were 

stable after 1-year storage at both -20 and 20 °C (Vaessen et al. 1988). 61 PAHs tested stored in 

acetonitrile were stable after 4 weeks of storage at 4 °C (Oda et al. 1998). Three PAHs (fluorene, 
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anthracene and benzo[a]pyrene) stored in six separate organic solvents (methanol, acetonitrile, 

DMSO, dichloromethane, hexane and cyclohexane) were stable for 20 days, with the exceptions 

of anthracene and benzo[a]pyrene in DMSO (Dabrowska et al. 2008). Post-extraction integrity of 

NPAH, hopane and sterane samples has not been demonstrated. Air sampling can involve 

storage and conditioning of PM filters if the gravimetric mass is determined from the same filter. 

No information was identified pertaining to losses of hopanes and steranes during filter storage 

and conditioning, or during extract storage. Similarly, no information was located regarding 

integrity of PAH and NPAH compounds during filter conditioning. 

This chapter investigates the integrity of particulate phase PAHs, NPAHs, hopanes and 

steranes in diesel exhaust sampled on PTFE-bonded glass fiber filters. Samples obtained from 

well-controlled engine dynamometer laboratory tests are used to investigate effects of filter 

conditioning, storage of filters before extraction, and storage of extracts. We believe that this is 

the first study examining losses of NPAHs and diesel biomarkers in both filters and extracts.  

This study is also unique in its use of PM from a real engine, which is significant because sample 

integrity may be affected by the PM composition (or matrix).  The study's recommendations 

have implications for the design, methods, and quality assurance activities of future studies. 

5.3 Materials and Methods 

5.3.1 Experimental design 

Several series of laboratory experiments were used to investigate the integrity of SVOCs 

collected as PM samples of diesel engine exhaust.  As target compounds, 14 PAHs, 7 NPAHs, 2 

hopanes and 2 steranes were selected since they are frequently detected in airborne PM. Table 

5.1 lists these compounds, CAS numbers, selected chemical properties, abbreviations used in this 

chapter, and instrumental detection limits (IDLs).  Table 5.2 summarizes the test conditions for 

PM sampling.  Diesel exhaust was generated by a 6.4 L 2008 Ford Power Stroke diesel engine 

using conventional ultra low sulfur diesel (ULSD).  The engine was operated under three engine 

conditions: idle (650 rpm, 0 bar Brake Mean Effective Pressure or BMEP); low load (1500 rpm, 

6 bar BMEP); and high load (2500 rpm, 9 bar BMEP).The engine configuration represented a 

2004 engine calibration without exhaust gas after-treatment.  This configuration and operating 

conditions were selected because they produce relatively high PM concentrations, which 
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facilitated sample collection, and because they are representative of many current in-use diesel 

engines. 

A total of 24 filters were collected, including 1 exhaust blank and 5 field blanks, using 

the exhaust gas dilution sampling system (described below). Since samples were obtained 

consecutively, side-by-side replicate samples could not be collected.  To obtain replicates and 

increase the number of samples available for the tests, nine filters were cut into quarters using a 

cleaned razor blade, and designated as sub-samples a, b, c and d.  While these quarter filters had 

only one-fourth the mass of a full filter, loadings were designed to obtain sufficient mass for 

analytical purposes. 

The first set of experiments tested the effect of filter conditioning, a standard practice to 

equilibrate air and exhaust sampling filters to a constant temperature and humidity needed to 

obtain repeatable weight measurements down to 1 or 2 µg (or better).  These experiments used 

three loaded filters that had been sectioned into quarters. (Table A5.1 shows details pertaining to 

each set of experiments). Selected quarter filters were spiked with 1 µL spiking solution 

(described in Table 5.1) that contained known concentrations of the target compounds. These 

spiked filters served as a performance check to guarantee that the target SVOCs had large 

enough masses and can be measured quantitatively (i.e., well above MDLs). In addition, with the 

spiked and unspiked quarter filters, the possible difference in SVOC losses between high and 

low concentrations could be examined. For spiking, each quarter filter was supported by glass 

tubes placed on aluminum foil, and 1 µL of the spiking solution was slowly transferred from a 2 

µL syringe throughout the filter.  The spiking solution was not allowed to penetrate to the 

aluminum foil. Selected quarter filters were conditioned by placing them on clean aluminum foil 

in a glove box maintained at 25°C and 33% RH for 24 h.  During conditioning, filters were 

unwrapped and exposed to air in the glove box. 

A second set of experiments examined the effect of filter storage. These experiments used 

six loaded filters that were sectioned into quarters, and selected quarter filters were spiked as 

described above (Table A5.1). In this case, quarter filters were folded in half, individually 

wrapped in aluminum foil, packed in a zip-lock bag, and placed in a clean refrigerator at 4 °C for 

0, 7 or 30 days. 
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The third experiment examined the integrity of extracts for extended storage periods (up 

to six months).  A total of 12 filters were used.  Full (uncut) and unspiked loaded filters were 

conditioned for 24 h after sampling, extracted, fractionated into three portions, and immediately 

analyzed, as described below.  These extracts were then stored in 2 mL glass vials (Fisherbrand, 

Cat. No. 03-391-5) capped with Teflon crimp seals (National Scientific Company, Part No. 

C4011-1A), placed in a refrigerator at 4 °C, and reanalyzed after 1, 5 and 6 months. 

5.3.2 Materials 

PM samples were collected on 47 mm diameter PTFE-bonded glass fiber filters, which 

have been described in Chapter 4 Section 4.4.2.  

Solvents were HPLC grade and obtained from Fisher Scientific Inc. (Pittsburgh, PA, 

USA).  Florisil (60-100 mesh) and sodium sulfate (anhydrous, certified ACS granular, 10-60 

mesh) for column chromatography were supplied by the same vendor. The spiking solution, 

which included 14 PAHs and 3 NPAHs at the concentrations listed in Table 5.1, was prepared 

from standard solutions of individual compounds (Cambridge Isotope Laboratories Inc., 

Andover, MA, USA).   

5.3.3 Filter conditioning and weighing 

Filters were conditioned and weighed before and after PM loading, following engine 

testing procedures (CFR 2013).Filters were conditioned in a glove box (Series 100 twin plastic 

glove box isolator, Terra Universal, Inc.) at 25°C and 33% RH for 24 h. Electrostatic charges on 

filters and instruments were neutralized using an ionizer (Terra Universal, Inc) placed in the 

filter weighing chamber for 30 min right before weighing. Then the filters were weighed twice to 

1 µg precision using a microbalance (ME 5, Sartorius Inc., Edgewood, NY, USA).  If the 

weights agreed within 5 µg, the results were averaged; otherwise filters were reweighed.  After 

loading, selected filters were carefully cut into four equal sections. 

5.3.4 Sample collection 

The collection of PM samples from diesel engine exhaust has been described in detail in 

Chapter 4 Section 4.3.3.  
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5.3.5 Extraction, fractionation, and analysis 

Filters were extracted by placing each in a 50 mL centrifuge tube, adding 25 mL of 

dichloromethane/hexane (4:1, v/v) to immerse the entire filter, and sonicating for 30 min 

(1510R-MTH, Branson Ultrasonics Corporation, Danbury, CT).  The filter was then removed 

using a cotton stick and discarded.  Extracts were passed through an activated Florisil column 

and fractionated into 3 portions. No additional cleaning of each fraction was necessary. The 

fractionation and GC-MS analysis have been described in detail in Chapter 2 Section 2.3.3.   

5.3.6 Data analysis 

Spiking reproducibility was quantified by calculating the absolute percent difference 

between the two quarters cut from the same filter that used the same conditioning and storage 

conditions.  These statistics were calculated for each PAH and NPAH, as well as sum of the 

target PAHs and NPAHs (denoted as ΣPAHs and ΣNPAHs). 

The effect of filter conditioning was evaluated as the relative change for each compound 

(using the difference between the averages of conditioned and unconditioned quarter filters, 

divided by the average of unconditioned filters).  The uncertainty of the change was evaluated as 

its standard deviation, estimated by propagating the standard deviations of the average mass in 

conditioned and unconditioned quarter filters.    

The effect of filter storage was evaluated as the relative change between quarter filters 

obtained from the same filter stored for different lengths of time.  This helps to avoid variation 

due to engine emissions, spiking retention, and other factors.  Specifically, unstored filter 

subsamples (unspiked: S5a and S5b; spiked: S2a and S2b) were compared to 7 day subsamples 

(unspiked: S5c and S5d; spiked: S2c and S2d).  Similarly, subsamples stored for 7 days 

(unspiked: S6a and S6b; spiked: S3a and S3b) were compared to subsamples stored for 30 days 

(unspiked: S6c and S6d;  spiked: S3c and S3d).  Unspiked and spiked filters were compared 

separately.  

The effect of extract storage was calculated as the relative change between stored and 

directly analyzed (unstored) extracts.  Because losses for individual compounds across the three 

engine conditions were generally similar, results are averaged.  Significant differences are 

discussed in the results. 
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5.3.7 Calibration and quality assurance 

Calibration standards were prepared using three mixtures: 16 PAHs; 8 NPAHs (both 

Sigma-Aldrich, St. Louis, MO, USA); SRM 2266 and individual standards for one hopane 

(Hop19) and one sterane (Ster42) (Chiron Laboratories, Trondheim, Norway).  Five 

concentrations were used:  0.01, 0.05, 0.10, 0.50, and 1.00ng/µL.  Instrumental detection limits 

(IDLs) for each compound are reported in Table 5.1.  All analytes were individually quantified 

against authentic standards when present as mixtures.  Fluoranthene-d10 (Cambridge Isotope 

Laboratories Inc, Andover, MA, USA) and an internal standard (IS) PAH mixture (Wellington 

Laboratories, Guelph, ON, Canada) were used as ISs for PAH analyses.  Nitrofluoanthene-d9 

(Cambridge Isotope Laboratories Inc, Andover, MA, USA) was used as an IS for NPAH 

analyses. Lastly, n-tetracosane-d50 (Chiron Laboratories, Trondheim, Norway) was used as an 

IS for hopanes and steranes.  Using a 25 µL syringe, 15 µL of the internal standard was added to 

each sample prior to GC-MS analysis. 

Quality assurance (QA) measures included the regular use of blanks, replicates, spike 

recovery tests, and standard reference materials (SRM 2585, NIST, USA).  To check for possible 

contamination, solvent blanks, lab blanks and field blanks were collected and analyzed using the 

procedures described above.  No contamination of target compounds was found in the three 

types of blanks. 

Spike recovery was 90-98% during the study, and the shift (abundance of target 

compounds in standard solutions before and after running a batch of samples) was within 20%.  

The reproducibility of spiked quarter filters for ΣPAH and ΣNPAH measurements, shown in 

Table A5.2, was within 10% for most filters.  Reproducibility for individual compounds was 

similar (data not shown), indicating that spiking was reproducible.  However, large differences 

were shown by one sample (S1, including subsamples S1a, S1b, S1c, and S1d).  This was the 

first filter spiked, and the variability may be due to different spiking volumes among the quarter 

filters, penetration and loss of the spiking solution through the filter, or some other reason.  (The 

reproducibility of spiking for hopanes and steraneswas not calculated as these compounds were 

not contained in the spiking solution.) 
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5.4 Results and Discussion 

5.4.1 Filter conditioning 

Unconditioned and conditioned filters (24 h at 25 °C and 33% RH) are compared in 

Table 5.3.  PAH and NPAH results represent only unspiked filters collected at the low load 

condition (thus avoiding possible errors from spiking); hopane and sterane results include both 

spiked and unspiked filters (since spiking did not contain these compounds).  Under the test 

conditions, five PAHs were detected on the quarter filters with masses from 0.02 ng for 

phenanthrene to 1.16 ng for naphthalene (Table A5.3).  The average (± standard deviation) loss 

from conditioning was 27 ± 20% across the five PAHs.  Acenaphthylene and phenanthrene had 

the highest losses, 39 ± 22% and 35 ± 36%, respectively.  These PAHs had four or fewer rings 

and relatively high vapor pressure (Table 5.1), which may explain the losses.  Considering that 

significant PAH levels have been detected downstream of PM filters in other studies (Schauer et 

al. 1999), it is not surprising that filter conditioning at 25 °C for 24 h can reduce PAHs in PM 

samples. Greater losses would be expected with longer conditioning periods, e.g., a 60% loss of 

fluorene has been reported for surrogate filter samples stored for 30 days at 20 °C (Sverdrup et 

al. 1990). 

Six NPAHs were detected on the quarter filters (masses from 0.04 ng for 4-nitrobiphenyl 

to 0.72 ng for 6-nitrochrysene; Table A5.3). Conditioning produced an average loss of only 8 ± 

38%.  The replicates showed relatively large variation, probably because concentrations were 

low and sometimes near detection limits. The NPAHs have lower volatility than their parent 

PAHs (Dušek et al. 2002), and thus lower losses.  

Hopane and sterane levels on the filters after conditioning increased by 23 ± 34% and 8 ± 

21%, respectively, but these changes were not statistically significant (Table A5.3).  

Reproducibility was only fair for 17α(H)-22,29,30 trisnorhopane, probably because 

concentrations were low and close to detection limits.  These compounds are known to be stable 

and non-volatile (Prince and Walters 2007), thus filter conditioning was not expected to produce 

significant losses. 

In summary, filter conditioning produced significant losses of the most volatile PAHs, 

but other SVOCs were not affected.  Experimental variation somewhat exceeded the normal 

criterion of 25%, a result of several factors. First, although samples S1 and S4 were collected 
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under the same engine operating condition, they were obtained sequentially (over a 1 h period), 

and thus reflect any variation in engine emissions and sampling conditions. Second, experimental 

variation reflects two sets of measurements (pre- and post-conditioning).Third, sectioning of 

filters can yield different amounts of PM and SVOCs. Fourth, GC-MS analyses on different days 

can vary due to instrumental fluctuations (Grimmer 1988; Kloster et al. 1992). Finally, as 

mentioned, concentrations of some compounds were low and near IDLs.  Given these factors, the 

variation is reasonable. 

5.4.2 Filter storage 

Filter storage tests showed mostly small or negligible changes for PAHs, e.g., on average, 

PAHs gained 2 ± 32% after 7 days of storage, and lost 4 ± 15% after 30 days, as compared to 7 

days (Table 5.3).  These results are based on the seven PAHs found on the unspiked quarter 

filters, which were mostly four or fewer ring compounds as seen in the filter conditioning tests.  

Spiked filters also showed small changes for PAHs, with the exception of acenaphthene (ACT) 

due to an anomalously high concentration in sample S2d, a possible instrumental error.  

Excluding this compound, spiked PAHs gained 11 ± 46% after 7 days of storage, and lost 2 ± 

16% after 30 days.  Overall, PAHs in the stored filters were stable for 30 days, including the 

relatively volatile PAHs such as naphthalene, which had 30% losses after one day of 

conditioning.   

NPAH changes due to filter storage were also small, e.g., average losses were 9 ±24% 

and 6 ± 17% after 7 and 30 days of storage, respectively, for combined spiked and unspiked 

quarter filters (Table 5.3).  Several spiked and unspiked comparisons differed, e.g., 1-

nitronaphthalene in spiked and unspiked quarter filters lost 30 ±9% and 8 ± 8%, respectively, 

after 7 days of storage, these results likely reflect measurement variation at the low 

concentrations seen (the spiking solution did not include 1-nitronaphthalene).   

Changes in hopane and sterane levels during filter storage fell within the range expected 

for experimental variation, e.g., average changes below 12% (Table 5.3).  Thus, filter storage for 

30 days had little effect on these compounds.  

Overall, SVOC changes over the 30 day period were modest, indicating many SVOCs 

will be retained for at least 30 days in filters that are wrapped in aluminum foil and stored at 

4 °C.  The variability in the experimental results is due to the same factors discussed in the 
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section on filter conditioning, e.g., low concentration samples, changes in the engine exhaust 

concentrations, and instrument fluctuations. 

5.4.3 Extract storage 

Extract storage tests are summarized in Figure 5.1.  For PAHs dissolved in 

hexane/acetone, storage for one month had no effect, e.g., losses averaged 1 ± 44% across the 

three engine conditions.  The high-load condition (2500 rpm - 9 bar) showed greater variation, 

however, individual filters were fairly consistent with those measured in the directly analyzed 

extract (data not shown).  After five months, PAH losses became appreciable (56 ± 31%) and 

several compounds were not detected, e.g., anthracene and benzo[a]pyrene that were initially 

found at low concentrations, 0.08 and 0.45 ng/mL, respectively)(Figure A5.1c).  After six 

months, no PAHs were detected.  These results indicate that storage of PAH extracts in 

hexane/acetone solvents in glass vials with Teflon crimped seals at 4 °C should be limited to one 

month. 

NPAHs dissolved in methanol and stored at 4 °C were stable for one month.  Losses for 

the NPAHs detected (3, 5 and 6 compounds were detected under idle, low-load and high-load 

conditions, respectively) averaged 1 ± 66%.  The large variation is due to the low concentrations 

of NPAHs in the extracts.  After five months, losses averaged 23 ± 32% for the detected NPAHs 

(5 and 6 compounds in samples collected under low and high load, respectively) (Figure A5.2b 

& A5.2c). (The 5 month idle samples were considered invalid due to broken vial inserts. We 

attempted to restore these samples by re-dissolving the partially dried extract with additional 

solvent and transferring the mixture to new inserts and vials, but the NPAHs were not 

successfully recovered.) No NPAHs were detected in the extracts after six months of storage.   

For the hopanes and steranes dissolved in hexane, storage for one month also showed 

negligible change (average loss of 2 ± 27%).  After five months, losses for hopanes under the 

low-load condition (Figure A5.3b) were larger and variable (39 ± 28%), probably due to the low 

concentrations (0.04 – 0.07 ng/mL) of the extracts.  Excluding the low-load condition, losses for 

hopanes and steranesaveraged 10 ± 28% at five months. After six months, hopanes and steranes 

were not detected.  These results suggest that hopane and sterane extracts dissolved in hexane 

and stored at 4 °C are stable for at least one month, and five months may be acceptable with 

small (10%) losses.  
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After 6-month storage of extracts, most of the samples needed solvent additions (due to 

evaporation), which could introduce additional errors, e.g., incomplete mixing and transfer losses 

if vial inserts were replaced. This may explain the fact that no target SVOCs were detected in the 

extracts after six month.  

In summary, storage of PAH, NPAH, hopane and sterane extracts in glass vials with 

Teflon crimped seals at 4 °C should be limited to about one month, although longer storage may 

not be detrimental for hopanes and steranes. Losses and variability will increase if solvents 

evaporate and solvent additions are used to re-dissolve extracts prior to analysis.   

5.4.4 Strengths and limitations 

This study was designed to investigate effects of processing and storage of SVOC 

samples collected as air samples.  The study's strengths include the use of PM samples collected 

from diesel engine exhaust under controlled conditions, which allowed characterization using 

reproducible, real world and relevant samples.  This is important since storage integrity may be 

affected by the matrix, i.e., the physical and chemical properties of the sample. Thus, results in 

the present paper should be more representative than those obtained using artificially generated 

PM.  Other strengths include the use of environmentally relevant concentrations, consideration of 

a wide range of SVOCs, and the use of real extracts.  On the last point, extracts may be affected 

by co-contaminants, impurities and other factors, and previous studies used known solutions of 

pure PAHs in solvents (Oda et al. 1998; Sverdrup et al. 1990; Vaessen et al. 1988). In addition, 

the use of sectioned filters provided replicates with filter-specific controls that helped to 

eliminate differences between filters, although it has the disadvantages of reducing sample mass 

and sensitivity, potentially increasing variability, and restricting PM mass measurements.   

The study has several limitations.  First, replicate filters collected under the same engine 

test condition were not ‘true’ replicates since samples were taken sequentially, not 

simultaneously. Although engine conditions were kept constant, variation in emissions and 

sampling conditions could alter the mass and composition of collected PM, as suggested by our 

results (Tables A5.4-A5.6).  The temporal variation could be minimized using parallel sampling 

trains.  The number of samples in each filter conditioning and storage test was small, and thus 

statistical hypothesis testing was not feasible.  While the overall trends were clear, larger sample 

sizes would help to confirm the findings of the present study.  Finally, we recognize that ambient 
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sampling networks, such as IMPROVE and Speciation Trends networks (Kleiman et al. 2003), 

use Teflon filters to collect PM2.5, not the borosilicate glass fiber filters used in the engine tests. 

We did not evaluate other filter types, but anticipate that our estimates of volatilization losses 

during filter conditioning will apply to other types of filters. 

5.5 Conclusions 

In this study, well controlled tests investigated the integrity of SVOCs samples collected 

from diesel engine exhaust. Conditioning filters for 24 h at 25 °C and 33% RH for weighing 

purposes did not significantly change concentrations of NPAHs, hopanes and steranes, however, 

approximately 30% of the more volatile PAHs were lost.  Filters loaded with PM can be held for 

at least one month without appreciable losses of these four classes of compounds if the filter is 

wrapped in aluminum foil and held at 4 °C. Filter extracts (PAHs in hexane/acetone, NPAHs in 

methanol, hopanes and steranes in hexane) can be stored at 4 °C for at least one month without 

significant losses.  Hopane and sterane extracts may be stored for five months or more with 

acceptable results.   

Our findings show that even the relatively brief periods used to condition filters, which 

are needed for gravimetric measurements of PM mass, can lead to underestimates of PAH 

concentrations.  Ideally, filter conditioning would not be used for SVOC measurements, and a 

separate parallel sampler would be used to determine gravimetric concentrations. Often, this is 

not feasible. To reduce potential biases, conditioning protocols might be altered by lowering 

temperatures (e.g., from 25 to 10 °C) and/or reducing conditioning times (e.g., from 24 to 12 h).  

Such temperatures will require refrigeration, and shorter times may not work if the filter or the 

collected PM is hydroscopic, e.g., PM containing a large fraction of sulfate aerosols. 

Additionally, SVOC sampling and analysis protocols might utilize performance checks and 

criteria aimed at identifying and limiting potential biases occurring during filter and extract 

processing, e.g., PM samples on glass fiber filters should be sealed appropriately, extracted 

within 30 days of collection, and analyzed within one month. 
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5.6 Tables and Figures 

Table 5.1 List of target compounds 

 

*Predicted by (EPA 2012). 

  

Group Compound Abbrev. CAS # # of rings IDL Concentration in spiking solution
(ng/mL) (ng/µL)

Naphthalene NAP 91-20-3 2 8.50E-02 0.1 2.5
Acenaphthylene ACY  208-96-8 3 6.68E-03 0.2 2
Acenaphthene ACT  83-32-9 3 2.15E-03 0.1 5
Phenanthrene PHE 85-01-8 3 1.21E-04 0.1 10
Anthracene ANT 120-12-7 3 6.53E-06 0.1 1
Fluoranthene FLA  206-44-0 4 9.22E-06 0.2 7.5
Pyrene PYR  129-00-0 4 4.50E-06 0.1 2
Benzo[a]anthracene BAA  56-55-3 4 2.10E-07 0.1 10
Chrysene CHR  218-01-9 4 6.23E-09 0.2 10
Benzo[b]fluoranthene BBF 205-99-2 5 5.00E-07 0.3 10
Benzo[k]fluoranthene BKF 207-08-9 5 9.65E-10 0.3 0
Benzo[a]pyrene BAP  50-32-8 5 5.49E-09 0.1 1
Indeno[1,2,3-c,d]pyrene IND 193-39-5 6 1.25E-10 * 0.8 10
Dibenzo[a,h]anthracene DBA 53-70-3 5 9.55E-10 1.1 10

1-Nitronaphthalene 1-NNAP 86-57-7 2 4.80E-04 0.2 0
2-Nitronaphthalene 2-NNAP 581-89-5 2 2.83E-04 * 0.2 1
2-Nitrobiphenyl 2-NBPH 86-00-0 2 5.21E-04 * 0.2 0
3-Nitrobiphenyl 3-NBPH 2113-58-8 2 1.01E-04 * 0.1 0.5
4-Nitrobiphenyl 4-NBPH 92-93-3 2 3.01E-05 * 0.6 0
2-Nitrofluorene 2-NFL 607-57-8 3 4.43E-06 * 0.2 0
6-Nitrochrysene 6-NCHR 7496-02-8 4 7.61E-09 * 0.1 0.5

17α(h),21β(h)-Hopane Hop19 471-62-5 5 3.91E-07 * 0.2 0
17α(h)-22,29,30-Trisnorhopane Hop15 53584-59-1 5 2.09E-06 * 0.6 0

20s-5α(h),14α(h),17α(h)-Cholestane Ster42 481-21-0 4 8.79E-06 * 0.3 0
20r-5α(h),14β(h),17β(h)-Cholestane Ster43 69483-47-2 4 n/a 0.3 0

PAHs

NPAHs

Hopanes

Steranes

Vapor pressure
(mmHg at 25 °C)
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Table 5.2 Engine and PM sampling conditions for each filter.  

 
aBMEP: Brake Mean Effective Pressure. 

bEGR: Exhaust Gas Recirculation. 

  

Filter ID Type Speed BMEPa Start of injection EGRb Sampling time Sampling volume Cut into quarters
(rpm) (bar) (degree ATDC) (%) (s) (L)

S1, S2, S3, S4, S5, S6 Sample 1500 6 3.5 14 330 55 Yes
B1, B2, B3 Field blank n/a n/a n/a n/a n/a n/a Yes
S7, S8, S9 Sample 1500 6 3.5 14 330 55 No

S10, S11, S12 Sample 2500 9 3.5 17 90 15 No
S13, S14, S15 Sample 650 0 3.5 8 480 80 No

S16 Exhaust blank n/a n/a n/a n/a 330 55 No
S17, S18 Field blank n/a n/a n/a n/a n/a n/a No
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Table 5.3 Effect of filter conditioning and storage, showing average percentage change and 
standard deviation (in parentheses).  

 
aResults for PAHs and NPAHs include only unspiked filters to avoid possible errors due to 

spiking (see text).  

bExcluded ACT. 

cResults for hopanes and steranes combine both spiked and unspiked filters since the spiking 

solution did not contain these compounds. 

n/a: Compound was not detected. 

  

Group Compound

Naphthalene - 27 (3) n/a - 4 (8) - 11 (12) 0 (3)
Acenaphthylene - 39 (22) 0 (31) 0 (86) - 4 (5) - 6 (46)
Acenaphthene - 3 (5) - 6 (23) 123 (257) - 1 (31) 0 (3)
Phenanthrene - 35 (36) n/a 12 (48) 0 (1) - 4 (6)
Anthracene n/a n/a 2 (82) n/a - 3 (0)
Fluoranthene n/a n/a 0 (21) n/a - 2 (12)
Pyrene - 29 (15) - 2 (21) - 10 (16) - 7 (6) - 9 (3)
Benzo[a]anthracene n/a n/a n/a n/a - 2 (7)
Chrysene n/a n/a n/a n/a - 2 (10)
Benzo[b]fluoranthene n/a 17 (44) 57 (13) n/a - 3 (8)
Benzo[k]fluoranthene n/a n/a n/a n/a 7 (24)
Benzo[a]pyrene n/a - 1 (32) 12 (43) n/a 2 (6)
Indeno[1,2,3-c,d]pyrene n/a n/a 26 (16) n/a - 5 (21)
Dibenzo[a,h]anthracene n/a n/a n/a n/a - 4 (6)
Average - 27 (20) 2 (32) 11 (46)b - 4 (15) - 2 (16)

1-Nitronaphthalene n/a - 8 (8) - 30 (9) - 11 (19) - 25 (8)
2-Nitronaphthalene - 14 (4) 34 (8) - 9 (37) - 5 (40) - 2 (29)
2-Nitrobiphenyl - 10 (61) 1 (9) 8 (8) - 15 (7) - 1 (2)
3-Nitrobiphenyl - 9 (45) - 32 (15) - 23 (4) - 9 (8) - 2 (7)
4-Nitrobiphenyl - 13 (31) - 29 (8) 10 (49) n/a - 4 (4)
6-Nitrochrysene 2 (21) - 21 (11) - 14 (46) 3 (18) 0 (2)
Average - 8 (38) - 9 (10) - 10 (32) - 7 (20) - 6 (13)

17α(h),21β(h)-Hopane 7 (27) - 2(14) - 13 (16)
17α(h)-22,29,30-Trisnorhopane 39 (40) - 22 (21) 25 (27)
Average 23 (34) - 12 (18) 6 (22)

20s-5α(h),14α(h),17α(h)-Cholestane 2 (14) - 8 (11) 5 (11)
20r-5α(h),14β(h),17β(h)-Cholestane 13 (26) - 9 (13) 1 (18)
Average 8 (21) - 8 (12) 3 (15)

Filter storage

(%)
Unspiked

(%)
Spiked

(%)

Change (Day7-1 vs. Day0) Change (Day30 vs. Day7-2)
Unspiked

(%)
Spiked

Steranesc

PAHs

NPAHs

Hopanesc

(%)

Changea                               

(conditioned vs. unconditioned)

Filter conditioning

154 
 



 

 

Figure 5.1 Effect of storage time for SVOCs in extracts. 
Panels a through d show average percentage loss for sum of the detected PAHs, NPAHs, 
hopanes and steranes, respectively.  Low-load is 1500 rpm – 6 bar. High-load is 2500 rpm – 9 
bar.  Error bars show one standard deviation. 
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5.7 Appendix 

Table A5.1 Summary of experimental design. 

 
aS1a, S1b, S1c and S1d are quarter filters from filter S1. See text for details. 

bThe composition of the spiking solution is shown in Table 5.1. 

  

Filter IDa Spikedb Conditioning
(h)

S1a, S1b Yes 0
S1c, S1d Yes 24
S4a, S4b No 0
S4c, S4d No 24
B1a, B1b No 0
B1c, B1d No 24

Filter ID Spikedb Conditioning Storage of filter
(h) (d)

S2a, S2b Yes 24 0
S2c, S2d, S3a, S3b Yes 24 7

S3c, S3d Yes 24 30
S5a, S5b No 24 0

S5c, S5d, S6a, S6b No 24 7
S6c, S6d No 24 30
B2a, B2b No 24 0

B2c, B2d, B3a, B3b No 24 7
B3c, B3d No 24 30

Filter ID Spikedb Conditioning Storage of filter Storage of extract
h d m

S7-S18, Test #1 No 24 0 0
S7-S18, Test #2 No 24 0 1
S7-S18, Test #3 No 24 0 5
S7-S18, Test #4 No 24 0 6

Experiment 3: Stability during  storage of extracts

Experiment 1: Stability during conditioning of filters

Experiment 2: Stability during storage of filters
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Table A5.2 Reproducibility of ΣPAH and ΣNPAH measurements among spiked quarter filters. 

 
a IDs are quarter filters. 

bAverage mass ΣPAHs or ΣNPAHs of the two quarter filters.  

cCalculated as the absolute value of the difference between two quarter filters, divided by the 

average of these two quarter filters.  

dData for sample S1c is missing. 

eExcludes data for samples S1a, S1b, S1c and S1d. 

  

Filter IDa Conditioning Storage of filter Averageb Absolute % differencec Averageb Absolute % differencec

(hr) (day) (ng) (%) (ng) (%)
S1a, S1b 0 0 59.4 118 1.78 46.8
S1c, S1d 24 0 33.6 n/ad 0.56 84.1
S2a, S2b 24 0 42.5 7.2 0.67 1.0
S2c, S2d 24 7 53.2 20.3 0.67 1.3
S3a, S3b 24 7 43.5 7.8 1.62 1.3
S3c, S3d 24 30 41.8 10.7 1.60 1.9
Averagee 11.5 1.4

ƩPAHs ƩNPAHs
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Table A5.3  Average mass of target SVOCs in conditioned and unconditioned quarter filters, and 
the change in conditioned quarter filters compared to unconditioned ones. Standard deviation in 
parentheses.  

 
aIncludes only unspiked quarter filters. 

bIncludes both spiked and  unspiked quarter filters. 

  

Group Compound Unconditioned Conditioned Change
(ng) (ng) (%)

Sample size (N) 2 2
NAP 1.16 (0.04) 0.84 (0.01) -27 (3)
ACY 0.06 (0.02) 0.04 (0.01) -39 (22)
ACT 0.09 (0.00) 0.09 (0.00) -3 (5)
PHE 0.02 (0.01) 0.02 (0.00) -35 (36)
PYR 0.46 (0.02) 0.33 (0.07) -29 (15)

Average -27 (20)

Sample size (N) 2 2
2-NNAP 0.06 (0.00) 0.05 (0.00) -14 (4)
2-NBPH 0.09 (0.05) 0.08 (0.04) -10 (61)
3-NBPH 0.14 (0.05) 0.13 (0.04) -9 (45)
4-NBPH 0.04 (0.01) 0.04 (0.01) -13 (31)
6-NCHR 0.72 (0.10) 0.73 (0.11) 2 (21)
Average -9 (38)

Sample size (N) 4 4
Hop19 0.02 (0.00) 0.02 (0.00) 7 (27)
Hop15 0.02 (0.00) 0.03 (0.01) 39 (40)

Average 23 (34)

Sample size (N) 4 4
Ster42 2.29 (0.20) 2.34 (0.25) 2 (14)
Ster43 0.19 (0.03) 0.22 (0.04) 13 (26)

Average 8 (21)

Hopanesb

Steranesb

PAHsa

NPAHsa
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Table A5.4 Mass of PAHs in stored and unstored quarter filters, separated by filter. Data 
presented are mean (SD). 

 
aExcludes ACT. 

  

Treatment Compound Day 0 Day 7-1 Day 7-2 Day 30 Change (Day7-1 vs. Day0) Change (Day30 vs. Day7-2)
(ng) (ng) (ng) (ng) (%) (%)

Filters involved S5a, S5b S5c, S5d S6a, S6b S6c, S6d S5a, S5b, S5c, S5d S6a, S6b, S6c, S6d
NAP 0.00 (0.00) 0.00 (0.00) 1.22 (0.00) 1.09 (0.15) n/a -11 (12)
ACY 0.16 (0.04) 0.16 (0.03) 0.10 (0.00) 0.09 (0.00) 0 (31) -4 (5)
ACT 0.15 (0.02) 0.14 (0.03) 0.08 (0.02) 0.08 (0.02) -6 (23) -1 (31)
PHE 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.02 (0.00) n/a 0 (1)
PYR 0.21 (0.03) 0.20 (0.03) 0.37 (0.02) 0.34 (0.01) -2 (21) -7 (6)
BBF 0.47 (0.08) 0.55 (0.19) 0.00 (0.00) 0.00 (0.00) 17 (44) n/a
BAP 0.16 (0.04) 0.16 (0.03) 0.00 (0.00) 0.00 (0.00) -1 (32) n/a

Average 2 (32) -4 (15)

Filters involved S2a, S2b S2c, S2d S3a, S3b S3c, S3d S2a, S2b, S2c, S2d S3a, S3b, S3c, S3d
NAP 1.85 (0.09) 1.77 (0.13) 1.79 (0.06) 1.79 (0.00) -4 (8) 0 (3)
ACY 1.20 (0.16) 1.20 (1.02) 0.24 (0.08) 0.23 (0.09) 0 (86) -6 (46)
ACT 0.97 (0.23) 2.17 (2.45) 0.77 (0.01) 0.77 (0.02) 123 (257) 0 (3)
PHE 2.97 (0.20) 3.35 (1.41) 2.60 (0.09) 2.50 (0.12) 12 (48) -4 (6)
ANT 1.91 (0.17) 1.95 (1.55) 0.30 (0.00) 0.30 (0.00) 2 (82) -3 (0)
FLA 3.56 (0.33) 3.55 (0.68) 1.26 (0.06) 1.24 (0.14) 0 (21) -2 (12)
PYR 3.70 (0.30) 3.55 (0.52) 3.44 (0.06) 3.14 (0.10) -10 (16) -9 (3)
BAA 0.00 (0.00) 0.00 (0.00) 3.00 (0.15) 2.92 (0.15) n/a -2 (7)
CHR 0.00 (0.00) 0.00 (0.00) 2.46 (0.18) 2.42 (0.18) n/a -2 (10)
BBF 10.03 (0.44) 15.74 (1.09) 5.82 (0.39) 5.66 (0.26) 57 (13) -3 (8)
BKF 0.00 (0.00) 0.00 (0.00) 1.10 (0.21) 1.18 (0.14) n/a 7 (24)
BAP 2.57 (0.30) 2.87 (1.06) 0.20 (0.01) 0.21 (0.00) 12 (43) 2 (6)
IND 13.71 (0.14) 17.30 (2.25) 17.93 (2.41) 16.95 (3.02) 26 (16) -5 (21)
DBA 0.00 (0.00) 0.00 (0.00)  2.53 (0.07) 2.44 (0.14) n/a -4 (6)

Average 11 (46)a -2 (16)

Unspiked

Spiked
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Table A5.5 Mass of NPAHs in stored and unstored quarter filters, separated by filter. Data 
presented are mean (SD). 

 

  

Treatment Compound Day 0 Day 7-1 Day 7-2 Day 30 Change (Day7-1 vs. Day0) Change (Day30 vs. Day7-2)
(ng) (ng) (ng) (ng) (%) (%)

Filters involved S5a, S5b S5c, S5d S6a, S6b S6c, S6d S5a, S5b, S5c, S5d S6a, S6b, S6c, S6d
1-NNAP 0.109 (0.005) 0.100 (0.007) 0.127 (0.022) 0.113 (0.014) -8 (8) -11 (19)
2-NNAP 0.103 (0.002) 0.138 (0.007) 0.273 (0.084) 0.258 (0.076) 34 (8) -5 (40)
2-NBPH 0.138 (0.007) 0.140 (0.010) 0.128 (0.006) 0.109 (0.008) 1 (9) -15 (7)
3-NBPH 0.575 (0.014) 0.393 (0.084) 0.243 (0.012) 0.222 (0.015) -32 (15) -9 (8)
4-NBPH 0.189 (0.013) 0.134 (0.013) 0.000 (0.000) 0.000 (0.000) -29 (8) n/a 
6-NCHR 0.808 (0.038) 0.640 (0.082) 0.753 (0.115) 0.777 (0.063) -21 (11) 3 (18)
Average -9 (10) -7 (20)

Filters involved S2a, S2b S2c, S2d S3a, S3b S3c, S3d S2a, S2b, S2c, S2d S3a, S3b, S3c, S3d
1-NNAP 0.017 (0.002) 0.012 (0.001) 0.018 (0.002) 0.014 (0.000) -30 (9) -25 (8)
2-NNAP 0.076 (0.026) 0.070 (0.015) 0.071 (0.014) 0.069 (0.015) -9 (37) -2 (29)
2-NBPH 0.273 (0.019) 0.294 (0.001) 0.284 (0.002) 0.283 (0.005) 8 (8) -1 (2)
3-NBPH 0.112 (0.001) 0.086 (0.004) 0.305 (0.015) 0.298 (0.014) -23 (4) -2 (7)
4-NBPH 0.028 (0.012) 0.031 (0.003) 0.055 (0.002) 0.053 (0.001) 10 (49) -4 (4)
6-NCHR 0.072 (0.038) 0.062 (0.004) 0.804 (0.014) 0.806 (0.004) -14 (46) 0 (2)
Average -10 (32) -6 (13)

Unspiked

Spiked
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Table A5.6 Mass of hopanes and steranes in stored and unstored quarter filters, separated by 
filter. Data presented are mean (SD). 

 

  

Group Compound Day 0 Day 7-1 Day 7-2 Day 30 Change (Day7-1 vs. Day0) Change (Day30 vs. Day7-2)
(ng) (ng) (ng) (ng) (%) (%)

Filters involved S2a, S2b, S5a, S5b S2c, S2d, S5c, S5d S3a, S3b, S6a, S6b S3c, S3d, S6c, S6d

Hop19 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) 0.01 (0.00) -2 (14) -13 (16)
Hop15 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) -22 (21) 25 (27)
Average -12 (18) 6 (22)

Ster42 2.03 (0.07) 1.87 (0.21) 1.75 (0.17) 1.84 (0.06) -8 (11) 5 (11)
Ster43 0.18 (0.00) 0.17 (0.02) 0.16 (0.02) 0.16 (0.02) -9 (13) 1 (18)

Average -8 (12) 3 (15)

Hopanes

Steranes
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Figure A5.1 Losses of PAHs in stored extracts compared to directly analyzed extracts. (A) Idle; 
(B) 1500 rpm-6 bar; (C) 2500 rpm-9 bar.  
Error bars show 1 SD. 
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Figure A5.2 Losses of NPAHs in stored extracts compared to directly analyzed extracts. (A) Idle; 
(B) 1500 rpm-6 bar; (C) 2500 rpm-9 bar.  
Error bars show 1 SD. 
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Figure A5.3 Losses of hopanes and steranes in stored extracts compared to directly analyzed 
extracts. (A) Idle; (B) 1500 rpm-6 bar; (C) 2500 rpm-9 bar.  
Error bars show SD. 
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Chapter 6 Multimedia fate modeling of PAHs and Nitro-PAHs in Lake 

Michigan 

6.1 Abstract 

While ambient levels of PAHs in the Great Lakes region have been monitored since 

1990, and concentrations in water, sediment and biota have been occasionally reported, a 

comprehensive picture of their environmental distribution and fate has to be elucidated. In 

addition, the potentially more toxic nitro-derivatives of PAHs (NPAHs) have rarely been 

reported for this region. The present study uses fugacity-based models to predict the distribution 

and fate of PAHs and NPAHs in Lake Michigan, including air, water, soil, sediments and biota; 

results were compared to an extensive set of PAH and NPAH measurements in sediments and 

upper tropic level fish. The steady-state model used air emission data to predict concentrations of 

16 priority PAHs. Due to the unavailability of NPAH emission data, emissions were estimated 

using the model in an inverse manner with the measured concentrations in sediments. Good 

agreement was found between predicted and measured PAH concentrations in air, but PAH 

concentrations in water and sediments were generally under-predicted, possibly caused by 

underestimating the degradation half-lives. The food web model accurately predicted 

concentrations in lake trout of heavier PAHs, but generally overestimated concentrations of 

lighter PAHs and NPAHs. This is attributed to an overestimate of metabolic half-lives and/or 

gut/gill absorption efficiencies. A dynamic model is used inversely to reconstruct historical 

emission rates of two representative PAHs using concentrations measurements in sediment cores. 

Results suggest that the PAH emission rates may be underestimated in the existing emission 

inventory for the Great Lakes region. Additional measurements and physiochemical data are 

needed to refine the models, and a more sophisticated model structure might be needed to better 

describe the environmental fate of NPAHs. The inverse modeling technique can help 

complement and improve current emission inventories.  
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6.2 Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and persistent 

environmental pollutants that are released into the atmosphere mainly through incomplete 

combustion (Neff 1979). In aquatic environments, PAHs arise from atmospheric deposition, 

urban runoff, municipal/industrial effluents and petroleum spills (Helfrich and Armstrong 1986). 

Some PAH compounds are carcinogenic to humans and fish (ATSDR 1995; Baumann et al. 

1991; Logan 2007). Nitro-PAHs (NPAHs), which are nitro-derivatives of PAHs, also are widely 

distributed, a result of emissions from combustion sources as well as atmospheric 

transformations of PAHs (Yaffe et al. 2001; Perrini et al. 2005). Although environmental 

concentrations are far lower than the parent PAHs (Ozaki et al. 2010; Albinet et al. 2007), 

NPAHs can have stronger carcinogenic and mutagenic activity (Tokiwa et al. 1987).  

The presence of PAHs in the U.S. Great Lakes has been of concern for decades (EPA and 

EC 2004) due to the many urban and industrial sources in this region, the large surface areas that 

increase atmospheric deposition (Simcik et al. 1999), the long hydrologic retention times and 

great depths (De Vault et al. 1996), and the presence of contaminated sites including the 26 

Areas of Concern in the region. Historically, Lake Michigan has received large inputs of PAHs 

from the urban and industrial centers surrounding its southern portion (Helfrich and Armstrong 

1986). Airborne PAHs levels have been monitored since 1990 by the Integrated Atmospheric 

Deposition Network (IADN) (Sun et al. 2006). Sediment measurements have been performed 

intermittently in 1982, 1986, 1993, 1996, 1998, 2001 and 2011 (Huang et al. 2014a; Eadie et al. 

1982; Helfrich and Armstrong 1986; X. Zhang et al. 1993; Simcik et al. 1996; Su et al. 1998; 

Schneider et al. 2001). Surface water measurements are reported in a single study in 2000 

(Offenberg and Baker 2000). PAH measurements in aquatic biota of Lake Michigan are scarce 

(Huang et al. 2014b; Zabik et al. 1996; Levengood and Schaeffer 2011; Eadie et al. 1982). Given 

the “biodilution” observed in marine organisms (Takeuchi et al. 2009; Baumard et al. 1998), 

PAH concentrations should be measured through the food web and not only in the top trophic 

level. With respect to NPAHs, our two recent reports (Huang et al. 2014a, 2014b) represent the 

only measurements in Lake Michigan. .  

Significant anthropogenic PAH emissions date back to at least the Industrial Revolution. 

Efforts to estimate PAH emissions include the National Emissions Inventory (NEI), which 
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provides estimates of annual air emission at county, state and national level for 2002, 2005, 2008 

and 2011 (EPA 2002-2011), and an earlier program of the Great Lakes Commission that 

assessed emissions from 1993 to 2008 (GLC 1993-2008). The accuracy and comprehensiveness 

of such inventories are always potential concerns since PAHs are emitted from numerous point, 

area, and mobile sources that are difficult to characterize, emission factors can be highly 

variable, and measurements are expensive and thus scarce.  However, in large-scale system such 

as the Great Lakes, a historical record of airborne concentrations is provided indirectly via 

deposition and accumulation of PAHs in sediments. Thus, current levels and historical trends 

may be inferred using contaminant levels measured in surficial sediments and sediment cores, in 

conjunction with dynamic multimedia models.  This makes it possible to estimate PAH 

emissions and levels in multiple compartments over time.  Moreover, since sediment tends to be 

the ultimate sink of all releases, the approach can yield emission estimates that include all 

sources affecting the lake.  

The present study estimates the fate and distribution of PAHs and NPAHs in Lake 

Michigan using fugacity-based models, which provide a relatively simple yet effective approach 

for multimedia analyses of chemical fate in the environment (Mackay 2010).  Previously, level 

III fugacity models (steady-state, non-equilibrium) have been applied for several persistent 

organic contaminants (including several PAHs) in Southern Ontario and Quebec. Canada 

(Mackay and Hickie 2000; Mackay and Paterson 1991), and level IV models (nonsteady-state, 

non-equilibrium) have been applied for PCBs, DDT and brominated flame retardants (Lim and 

Lastoskie 2011; Li et al. 2006; Sweetman et al. 2002).  These models also have been used to 

assess bioaccumulation of PCBs and PBBs in aquatic food webs (Campfens and Mackay 1997; 

Lim and Lastoskie 2011).  Here, level III models are developed for PAHs and NPAHs in the 

Lake Michigan basin and compared to recent measurements in sediment and fish, and level IV 

models are developed to reconstruct the emission trends for selected PAHs. The models can help 

understand the overall behaviors of PAHs and NPAHs in the Lake Michigan drainage area 

(distribution, transport and fate in different environmental compartments) and aquatic food web 

(bioaccumulation, trophic transfer, biomagnifciation, etc.). Comparison between predicted and 

measured concentrations can help to validate the models. It can also examine the 

usefulness/appropriateness of these models for less persistent compounds such as NPAHs. 

Moreover, the model-estimated emission profiles can fill a knowledge gap regarding historical 
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emission rates of PAHs, and can help improve and complement existing emission inventories.  

6.3 Modeling methods 

6.3.1 Chemicals and modeling approach 

Chemicals considered include the 16 EPA priority PAHs (CFR 1982) and 6 NPAHs that 

are commonly detected at relative high concentrations in diesel exhaust, fish and sediments 

(Huang et al. 2014a, 2014b; Liu et al. 2010; Khalek et al. 2011; Chiang et al. 2012), specifically, 

1-nitronaphthalene, 2-nitronaphthalene, 2-nitrobiphenyl, 2-nitrofluorene, 1-nitropyrene and 6-

nitrochrysene.  

The level III fugacity-based model used is a steady-state, non-equilibrium model with 

environmental compartments for air, water, soil and sediment.  Mass balance equations for each 

compartment are presented as Equations A6.1-A6.4, and detailed descriptions of the model 

formulation is presented elsewhere (Mackay 2010).  This model (Level III version 2.80) is 

available from the Canadian Centre for Environmental Modelling and Chemistry (CEMC) 

(2004).  We developed a comparable spreadsheet model in Excel (Microsoft, Redmond, CA) in 

order to facilitate uncertainty analysis using the @Risk software (Palisade Corporation, Ithaca, 

NY). 

The dynamic (nonsteady-state) and non-equilibrium level IV model included the same 

four compartments described above, and the mass balance equations are presented in Equations 

A6.6-A6.9. The D values (transport parameters with units of mol/Pa-h (Mackay 2010)) in the 

level IV model were obtained from the level III model results. Emission and background 

concentration data are time-dependent functions (described later). The level IV model was used 

to estimate the historical emission profiles for two representative PAHs, benzo[a]pyrene and 

phenanthrene, which is discussed later.  

The bioaccumulation model uses eight species to model the food web of Lake Michigan 

that are coupled by a feeding matrix (described later). For each species, chemical uptake comes 

from water intake and food consumption, and elimination occurs through metabolism, egestion, 

discharge through gills, and organism growth (growth dilution).  The steady-state and dynamic 

mass balance equations for each species are presented in Equations A6.5 and A6.10.  
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6.3.2 Model inputs 

Physiochemical and food web parameters 

The study area encompasses Lake Michigan’s surface water area and the drainage basin 

(Figure A6.1). Parameters for air, water, soil and sediment compartments, including transport 

velocities between compartments, are presented in Table A6.1. The transport velocities are 

estimated on data for Lake Huron (Lim and Lastoskie 2011), these lakes are linked and share 

similar climates. 

Physiochemical properties of the chemicals, e.g., vapor pressure, melting point, water 

solubility and log Kow at 25 °C were obtained from EPISuite (EPA 2012) experimental database, 

if available, otherwise as estimated using EPIWIN.  Vapor pressure, water solubility and log 

Kow at the Lake Michigan’s mean temperature (11.7 °C) were recalculated using the van’t Hoff 

equation and phase-change enthalpies (Lei et al. 2000; White 1986; Paasivirta et al. 1999; 

Chickos et al. 1999; Basařová and Svoboda 1995).  Degradation half-lives in air, water, soil, 

sediment and top trophic-level fish (lake trout) were obtained from EPISuite.  All 

physiochemical parameters are listed in Tables A6.2 and A6.3.   

The Lake Michigan food web, depicted in Figure 6.1, included eight species (Charles P 

Madenjian et al. 2002; Charles P. Madenjian et al. 2012; 2012), representing both benthic 

(diporeia) and pelagic (plankton, mysid, fish) organisms. Dietary preferences were estimated 

using several Lake Michigan studies (Charles P. Madenjian et al. 1998; Wells and Beeton 1963; 

Davis et al. 1998; Hondorp et al. 2005). The species and their physiological properties are listed 

in Table A6.4, and the feeding matrix is presented in Table A6.5.   

For many chemicals and aquatic organisms, experimental data regarding metabolic half-

lives is limited. Unlike PCBs and PBDEs whose metabolism in aquatic organisms is negligible, 

metabolism is important for PAHs, and the metabolic rate differs by trophic level (Takeuchi et 

al. 2009; Hahn et al. 1994). Therefore, compared to the top tropic species (lake trout), we 

assumed that metabolic half-lives were three times longer for prey fish (alewife, bloater, sculpin, 

smelt), ten times longer in diporeia and mysid, and 100 times longer in plankton (food web 

base). These ratios were set arbitrarily, but reflect the presence of the Ah receptor and sufficient 

cytochrome P450 in fish (but not invertebrates) to metabolize PAHs (Livingstone 1998; Hahn et 

al. 1994), and the biodilution of PAHs observed in both marine and freshwater organisms 
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(Huang et al. 2014b; Takeuchi et al. 2009; Baumard et al. 1998).  Metabolic half-lives are 

presented in Table A6.3. 

Emissions and background concentrations 

Atmospheric deposition accounts for an estimated 80% of PAH loadings into Lake 

Michigan’s water (Helfrich and Armstrong 1986). Effluent discharges contribute much smaller 

fraction (2-16%) of the total loading, as do petroleum spills (10-15%) (Helfrich and Armstrong 

1986). No information is available regarding to PAH loadings via run-off (water and sediment) 

or transfers via lake or river flows in the basin (water and sediment). We considered only air and 

water releases, and assumed that air emission comprised 90% of the total emissions since not all 

PAHs emitted into air would be deposited to the water body. For the level III model, the annual 

PAH emissions were obtained from the 2008 Great Lakes Regional Air Toxic Emissions 

Inventory (GLC 1993-2008), which include point, area and mobile sources in the overall Great 

Lakes region. Emissions in the Lake Michigan basin were assumed to be 24% of this total (Q. 

Zhang et al. 2003).  Annual rates were converted to kg/h for the model, and water discharges 

were calculated as 1/9 of the air emission rate, as discussed above.  Emission data is listed in 

Table A6.6. 

Background concentrations for the level III model are presented in Table A6.6. Air 

concentrations of 13 target PAHs (excluding NAP, ACY and ACE) in the region have been 

monitored in the IADN at urban (Chicago) and rural (Sleeping Bear Dunes) sites near Lake 

Michigan since 1990. The most recent report (Sun et al. 2006) provides average concentrations 

in particulate and vapor phases from 1996 to 2003 (vapor phase since 1992 at the rural site). A 

lake-wide background concentration was estimated by summing the two phases and weighting 

the totals by 0.75 and 0.25 for the urban and rural sites, respectively, based on the prevailing 

southwestern winds . Concentrations of ACY and ACE were estimated using ratios of their 

airborne concentrations to B[a]P obtained from measurements in Chicago and off-shore sites in 

Lake Michigan (Simcik et al. 1999). For NAP, air monitoring data are scarce.  The background 

level was estimated by determining the NAP/B[a]P ratio for U.S. air emissions (Y. Zhang and 

Tao 2009), which was multiplied by the B[a]P background concentration as calculated above.  

No atmospheric measurements of NPAHs are available for the Great Lakes region. Using 

concentration data from Maryland, California, Europe, Japan and Brazil (Albinet et al. 2007; 
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Librando and Fazzino 1993; de Castro Vasconcellos et al. 2008; Reisen and Arey 2005; Bamford 

and Baker 2003; Murahashi et al. 1999), we determined the average ratio of each NPAH relative 

to B[a]P, which was then multiplied by the estimated B[a]P background concentration.  

6.3.3 NPAH emissions and concentrations in Lake Trout 

Year 2011 emission rates of NPAHs were estimated using the level III model and our 

2011 measurements of NPAH concentrations in surficial sediments collected at 24 sites across 

southern Lake Michigan. NPAHs arise primarily as products of incomplete combustion and from 

atmospheric transformation of PAHs (Perrini et al. 2005).  Thus, urban runoff and effluent 

discharge are anticipated to be negligible, and only airborne NPAH emissions were considered. 

(Background concentrations were estimated as discussed above.)  NPAH concentrations in lake 

trout were calculated using the estimated emission rates, the level III multimedia model, and the 

food web model with the same parameters described for the PAH model.  Predicted 

concentrations in the lake trout were compared to our recent measurements in Lake Michigan 

lake trout.   

6.3.4 Reconstruction of historical PAH emissions  

PAH emission trends were reconstructed using benzo[a]pyrene (B[a]P) and phenanthrene 

(PHE)  measurements determined for 1850 to 1990 from a Lake Michigan sediment core 

study(Simcik et al. 1996). Accumulation rates (ng/cm2-yr) were divided by the mass 

sedimentation rates (g/cm2-yr) to estimate concentrations (ng/g). Concentrations were averaged 

across cores from four sites (18, 19, 47s and 68k) along a north-south transect of Lake Michigan.  

(Site 70m was excluded due to significant mixing.)  B[a]P and PHE concentrations in 2011 were 

obtained as the average across 24 sites in southern Lake Michigan using our recent 

measurements (Huang et al. 2014a). The sediment data between 1990 and 2011 were 

interpolated, because available data has a large gap. The fugacity in sediment (f4, Pa) was 

calculated as f4 = Csed ∙ ρsse/(Zsse ∙ MW ∙ 106) where Csed = concentration in sediment (ng/g 

dry), ρsse = density of sediment solids (kg/m3), Zsse = fugacity capacity in sediment solids 

(mol/m3-Pa), and MW = molecular weight (g/mol). The fugacity capacity (Z value), analogous to 

heat capacity, describes the capacity of a phase to absorb a chemical for a certain fugacity rise 

(Mackay 2010). 
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The level IV (dynamic) model was used to estimate B[a]P emissions from 1850 to 2011.  

Again, 90% of total emissions were to air (E1) and 10% to water (E2). Background 

concentrations in air were assumed to follow the same trend as air emissions (i.e., a constant 

ratio); background concentrations in water were assumed to be zero. For B[a]P and PHE, the 

background concentration in air (Cb1, ng/m3) was assumed to be 0.75 E1 and 3 E2, respectively, 

based on ratios in 2008 (B[a]P: E1 = 0.81 kg/h, Cb1 = 0.61 ng/m3; PHE: E1 = 9.9 kg/h, Cb1 = 30.2 

ng/m3). Air emissions (E1) was further assumed to take a certain mathematical form which 

includes several unknown parameters. This E1 function was used to solve the set of coupled 

ordinary differential equations (ODEs) (Supplemental Equations S6-S9) so the predicted f4 

includes the unknown parameters; finally the unknown parameters were determined by 

minimizing the sum of the squared difference between predicted and measured f4 across all time 

points. These calculations were performed using Matlab R2013b (MathWorks Inc., Natick, MA): 

the stiff solver ode23tb solved the ODEs; and the function fminsearch (Nelder-Mead simplex 

direct search) estimated the best fits and parameters for the E1 function.  

6.3.5 Uncertainty analysis 

While the modeling involves many possible sources of uncertainty in model predictions, 

sensitive analyses highlighted that the major uncertainties were associated with degradation half-

lives, emission rates, and background concentrations.  Degradation half-lives were taken mostly 

as EPISuite estimates, rather than experimental data, and uncertainties may exceed a factor of 10 

(Lim and Lastoskie 2011; Gouin et al. 2004).  For emission rates, the available inventory may be 

incomplete, or possibly overstate emissions, e.g., 2002 B[a]P emission estimates were reduced 

by 32.2% after revision (Soehl and Wu 2012). In addition, PAH emission rates for Lake 

Michigan were estimated using data from surrounding states. For background concentrations, 

PAH data were available only through 2003, and NPAH levels were estimated using 

measurements in other areas.  

Monte Carlo (MC) analysis was used to address parameter uncertainty.  For the level III 

PAH model, we used a uniform distribution for each degradation half-life with lower and upper 

bounds of 1/10 and 10 times the EPISuite estimate.  For emission rates and background 

concentrations, log-normal distributions were assumed using confidence factors (CF) of 3 and 2, 
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respectively.  (CF = 3, for example, means that 95% of the trial values will lie between one-third 

and three times the median.)   

In modeling NPAH emission rates, the same uncertainties for degradation half-lives were 

applied.  Considering the greater uncertainty of the background estimates, a log-normal 

distribution with a CF of 5 was applied.  

For each modeled compound and each application, the MC analysis used 1000 

simulations, and confidence intervals were expressed using the 5th and 95th percentiles of the 

model outputs.  This analysis was carried out using @Risk 6.1 (Palisade Corporation, Ithaca, 

NY) and Excel (Microsoft, Redmond, WA).  

6.4 Results and discussions 

6.4.1 Level III model 

6.4.1.1 Multimedia model for PAHs 

Model results for the level III model are demonstrated in detail for B[a]P. Figure 6.2 

depicts transfers and reservoirs for this compound over the modeled Lake Michigan domain 

using the parameters listed in Supplemental Tables S1-S2.  The total atmospheric input, 5.92 

kg/h, is dominated by advective flows into the airshed (86% of the total); local emissions make 

up the balance (14%). Airborne B[a]P is lost by advection (22%) and reaction (64%), and 

relatively little is deposited to the lake (6%) and the surrounding land (7%).  The airborne 

concentration over the lake is 0.159 ng/m3, which agrees well with the mean concentration 

reported in 1994-5 of ~0.2 ng/m3 reported by Simcik et al. (Simcik et al. 1999), especially 

considering decreases that have occurred. (Newer data are unavailable.) In water, the major 

inputs are atmospheric deposition (80%) and direct emissions to water (20%), and losses are 

dominated by reaction and deposition to sediments. Advective losses are negligible due to the 

Lake’s very long hydrologic retention time (99 years). Of the total 0.45 kg/h entering the lake, 

reactions in the water column consume the majority (76%); net transfers to sediment represent 

24%; and evaporation is negligible. The predicted B[a]P concentration in the water column, 

0.049 ng/L, can be compared to the mean of 0.4 ng/L measured in southern Lake Michigan near 

Chicago in 1994-1995 (Offenberg and Baker 2000).  The model’s lower value, representing a 

lake-wide average, appears reasonable given that the 1994-1995 measurements represent 
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impacted (potentially polluted) samples. In sediment, the predicted B[a]P concentration (2.94 

ng/g) agrees remarkably well with our 2011 measurements (mean of 2.7 ng/g; range of 1.0-10.2 

ng/g). Losses in the sediment include reaction (61%) and burial (39%).  

Modeled results for the 16 PAHs are summarized and compared to measurements in air, 

water, soil and sediment in Table 6.1; results of the MC analysis, reflecting the range of 

concentrations in sediments attributable to uncertainty in degradation rates, emission rates, and 

background air concentrations, are shown in Figure 6.3. For the low molecular weight 

compounds, the largest reservoirs (containing most of the mass of the PAH) are the water 

column and the atmosphere. In contrast, the high molecular weight compounds accumulate 

mostly in soil and sediments.  Modeled airborne concentrations closely match observed data 

(Simcik et al. 1999), reflecting the dominance of advective flows and rapid atmospheric 

reactions. Modeled concentrations in water and sediments show greater deviations and are 

generally underestimated compared to available observations.  However, examining the MC 

analyses (Figure 6.3), medians of measured sediment concentrations for most PAHs are within 

5th and 95th percentile predictions. Also, the predicted relative abundance between individual 

compounds agrees well with the observations, except for B[a]P and BghiP. Moreover, while the 

sediment concentrations for most compounds tend to be under-predicted by the model, the B[a]P 

concentration seems to be over-predicted. Since the point estimate of B[a]P concentration agrees 

well with the measurements (Table 6.1), it is possible that the deterministic parameters used for 

B[a]P are fairly accurate, and the Monte-Carlo analysis actually overestimate the uncertainties 

associated with B[a]P. 

Under-predictions of water and sediment concentrations can be explained by several 

factors.  First, as discussed previously, water sampling sites were very close to Chicago and 

sediment samples were collected in southern Lake Michigan; both sets of measurements may be 

significantly impacted by local sources and not reflect open water values. Second, EPISuite 

generally over-estimates the reactivity of persistent organic pollutants (Gouin et al. 2004), e.g., 

estimated half-lives in water, soil and sediments for PCBs are one to two orders of magnitude 

lower than other references (Gouin et al. 2004). If parameters for PAHs are similarly biased, then 

PAH concentrations will be under-estimated. Third, given the lack of data for effluent discharge 

and petroleum spills, emissions into water may be under-estimated.  Similarly, the zero 

background concentration in water inflows assumed will contribute to the underestimate.  
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Finally, the level III model assumes equilibrium between compartments, but since some time is 

needed to achieve equilibrium, measured concentrations in sediments may reflect earlier and 

higher emission rates, e.g., as seen by the declining trend of airborne PAH concentrations (Sun et 

al. 2006).  All of these factors might explain the low concentrations in sediments predicted using 

the 2008 emission rates.  

Spatial and temporal variation in concentrations is not predicted by the model, which 

assumes that each model compartment is homogeneous, well-mixed, and time-invariant.  Thus, 

seasonal effects, e.g., temperature changes that can affect a chemical’s physiochemical properties 

and degradation rates, as well as site-to-site differences in degradation rates, sources, and other 

factors, are not modeled. Ideally, model predictions would incorporate both variation as well as 

uncertainty; the MC simulations help show the possible ranges but depend strongly on inputs, as 

discussed below.  

6.4.1.2 Estimation of NPAH emission rates 

As noted, NPAH emission rates are unavailable. NPAH emissions to the Lake Michigan 

airshed, as well as concentrations in air, water and soil, are estimated using “inverse modeling” 

approach, parameters derived in large part from EPISuite (EPA 2012), and our 2011 NPAH 

measurements in southern Lake Michigan sediments.  MC analysis is used to incorporate 

uncertainties associated with degradation half-lives and background airborne concentrations. 

Emissions include both direct releases (e.g., from combustion sources), as well as secondary 

formation (e.g., from atmospheric reactions).  The results, shown in Table 6.2, indicate that 1-

nitronaphthalene has the highest emission rate (median of 69 kg/h), considerably exceeding that 

of other NPAHs, including those found at much higher concentrations in sediments (e.g., 1-

nitropyrene, 6-nitrochrysene), a result governed by physiochemical properties, e.g., the lighter 

compounds partition mainly into air and water, and typically degrade much faster than heavier 

compounds. Estimated median emission rates of all NPAHs are lower than emission rates of the 

parent PAHs except for 2-nitrofluorene (46 kg/h) which considerably exceeds flourene (2.36 

kg/h), which suggests large primary emissions of 2-nitrofluorene from combustion sources, e.g., 

diesel engines (Khalek et al. 2011; Chiang et al. 2012; Yang et al. 2010), or possibly production 

from other pathways. It should be noted that these estimates depend strongly on a number of 
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parameters and uncertainties are high. NPAH measurements in air, water and soil are needed to 

confirm these results.  

6.4.1.3 Bioaccumulation of PAHs and NPAHs 

Predicted water and sediment concentrations for PAHs are used in the food web model 

(Table 6.1) to evaluate the overall model performance based only on emission rates and 

physiochemical parameters (i.e., no corrections from real water and sediment measurements). 

For NPAHs, no predicted sediment concentrations are available since the emission rates are 

inversely estimated from measured sediment concentrations; thus, the average measured 

sediment concentrations and the median predicted water concentrations are used in the food web 

model (Table 6.2). Detailed results for B[a]P, presented in Table 6.3, show that bioaccumulation 

factors (BAF = concentration in organism divided by the concentration in water) generally 

decreases at higher trophic levels. For example, the highest concentration is found in diporeia 

(4738 pg/g ww) which resides in sediments where B[a]P concentrations are relatively high; 

diporeia also is unable to efficiently metabolize B[a]P (Livingstone 1998; Hahn et al. 1994). 

Slimpy sculpin had the highest concentrations among prey fish since most of its diet is diporeia. 

In contrast, the lowest levels are found in lake trout (15 pg/g ww) which efficiently metabolize 

these compounds. This predicted concentration agrees well with our measurements in Lake 

Michigan lake trout (5.6-43.4 pg/g, average 18.4 pg/g) (Huang et al. 2014b). Throughout the 

food web, B[a]P uptake is dominated by food consumption (except for plankton and diporeia 

which do not consume other organisms), a result of B[a]P’s lipophilicity. B[a]P is lost primarily 

through respiration in invertebrates (plankton, mysid, diporeia), and through metabolism in fish.   

The food web model results for all PAHs and NPAHs are summarized in Table A6.7. For 

PAHs with 5 or more rings (BBF to BghiP), predicted and observed concentrations in lake trout 

are within a factor of 5 with the exception of BghiP (predicted/observed ratio ≈ 20). This 

compound shows an especially short metabolic half-life in fish (7 h) estimated by EPISuite; also, 

predicted BghiP concentrations in water and sediments (used in the food web model) are low 

compared to observations (Table 6.1). Concentrations in lake trout for PAHs with 4 or fewer 

rings and for NPAHs are generally overestimated (especially for 1-NNAP, 2-NNAP and 2-

NFLU). Considering that the predicted water and sediment PAH concentrations used in the food 

web model are lower than the real measurements (discussed above), this discrepancy would be 
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larger if real water and sediment measurements were used. This discrepancy may result from 

several factors: underestimating the clearance rates in aquatic organisms, e.g., a half-life of 17 h 

has been reported for anthracene in bluegill sunfish (Spacie et al. 1983), compared to the 61 h 

estimated by EPISuite; also, we made strong assumptions regarding half-lives at different trophic 

levels (due to the lack of information for fish and aquatic invertebrates);  and applying the same 

gut absorption efficiencies (from water and food) to all compounds (for a particular species). For 

heavier compounds with high log Kow, predicted water concentrations are relatively low and the 

absorption efficiencies resulted in “reasonable” uptake rates from water and concentrations in 

fish. However, lighter compounds (and especially NAP, PHE, FLA, 1-NNAP, 2-NNAP and 2-

FLU) have relatively high predicted water concentrations, which increases the predicted uptake 

from water and concentrations in fish to unlikely levels. While gut absorption efficiency is 

relatively constant for organic compounds with log Kow  from 5 to 7 (Gobas et al. 1988), 

efficiency may change for compounds with log Kow  less than 4. In addition, gut absorption may 

not be linear with water concentrations. For these and likely other reasons, uptake from water 

and thus concentrations in fish appear considerably overestimated.  Moreover, there is a lack of 

measurements of NPAHs in water, and we suspect that NPAH concentrations (especially 1-

NNAP, 2-NNAP and 2-FLU) are significantly over-predicted since these compounds are much 

more reactive than their parent PAHs. Clearly, NPAH measurements (especially in air and water) 

are needed to evaluate and refine the model. Finally, NPAHs in water may be photo-degraded in 

the surface microlayer, which has different physical and chemical properties from the water 

underneath (Daumus 1976), and such process cannot be handled by the current model which 

treats the water column as one homogeneous compartment. Thus, a more sophisticated model 

structure may be needed for highly reactive compounds, such as NPAHs. 

It should be noted that the Lake Michigan food web has changed considerably over time. 

The native amphipod Diporeia, once the dominant benthic organism in Lake Michigan and 

served as an important prey of many forage fish, has been rapidly declining since 1990s, 

following the invasion of zebra and quagga mussels (Nalepa et al. 2009; Nalepa et al. 2005). The 

average population density of Diporeia in Lake Michigan was approximately 4000/m2 in 1997, 

which dropped to 57-1409/m2 in 2009 (Barbiero et al. 2011). While the density of invasive 

mussels has increased dramatically, diets of a few fish (e.g., lake whitefish) have shifted to 

include zebra and quagga mussels (Nalepa et al. 2009); diets of alewife, bloater, smelt and 
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sculpin still consist of mainly Diporeia, mysid and plankton, although the percentage of 

Diporeia is decreased (Hondorp et al. 2005). Therefore, Diporiea was kept in the food web used 

here, and mussels were not included. However, the mussels may play an important role in 

contaminant cycling in Lake Michigan. For example, the zebra mussels cover large areas of 

sediment surfaces and can bioconcentrate PAHs from the water column (Bruner et al. 1994), 

which may reduce the amount of PAHs that reach the sediments. In contrast, zebra mussels may 

increase the PAH concentrations in sediments through biodeposition of contaminated feces and 

pseudofeces (Bruner et al. 1994). Moreover, Lake Michigan has become more oligotrophic due 

to reduced phosphorus loadings (Charles P Madenjian et al. 2002), decline of energy-rich 

Diporeia and increase of energy-poor zebra/quagga mussels (Nalepa et al. 2009), so it is possible 

that there will be less organic carbon in surficial sediments that could increase PAH 

bioavailability. Thus, the inclusion of zebra/quagga mussels in the food web, as well as the 

associated environmental processes, should be considered in future modeling efforts.  

6.4.2 Level IV model 

6.4.2.1 Historical PAH emissions 

As stated above, the level III model has a disadvantage that it assumes steady-state and 

cannot account for emissions in earlier years. Thus, to accurately predict the environmental 

concentrations of PAHs, a dynamic (level IV) model is needed, which requires continuous 

emission data from the onset of emissions. Significant anthropogenic PAH emissions began in 

the 19th century, but emission inventories are available only since 1993 (GLC 1993-2008). Thus, 

we seek to use PAH records in sediment cores and inverse modeling to reconstruct their 

historical emission profiles. Also, the approach here can account for all emission sources 

affecting the lake since sediment tends to be the ultimate sink, which can help complement the 

existing emission inventories. Inverse modeling is performed for two representative PAHs, B[a]P 

and PHE. For B[a]P, sediment concentrations predicted by the level III model agreed well with 

measurements (Table 6.1), thus the level IV model used same degradation half-lives.  For PHE, 

the level III model considerably underestimated sediment concentrations (Table 6.1), probably 

because degradation rates were underestimated by EPISuite, as discussed above. Thus, we 

adjusted degradation half-lives for PHE in both water and sediment.  (Model parameters, 

including degradation half-lives, are listed in Table A6.8.)  
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Estimated emission rates in air of B[a]P and PHE are shown in Figure 6.4, and 

concentrations in sediment predicted using these emissions and those derived from sediment 

cores are shown in Figure 6.5. Following the trend seen for sediment concentrations, emissions 

gradually increased from 1850 until the 1950s, which can be attributed to increased 

industrialization, coal use (Simcik et al. 1996; Christensen and Zhang 1993), and probably 

vehicle emissions.  Both B[a]P and PHE emission sharply declined in the early 1970s, and 

current (2011) emission rates are back to 1850-1880 levels. This reduction likely results from the 

transition in heating fuels (from coal to oil and natural gas), reduced coke production, changes in 

coking technology, controls on emissions from industry (Christensen and Zhang 1993; Simcik et 

al. 1996; Schneider et al. 2001), and reduced vehicle emissions (including the impact of 

alternative fuels and exhaust after-treatment) (Ratcliff et al. 2010). For B[a]P, emission rates 

peaked in 1958 (74 kg/h) and sediment levels one year later (269 ng/g).  For PHE, emissions 

peaked in 1951 (131.46 kg/h) and sediment levls in 1952 (389.55 ng/g). Both compounds show a 

one year lag between the emissions and sediment compartment, shorter than that reported (4 

years) for hexabrominated biphenyl in Lake Huron (Lim and Lastoskie 2011), probably due to 

the shorter degradation half-lives of PAHs. Predicted sediment concentrations closely match 

measurements (R2 > 0.95), although peaks are slightly displaced for PHE, in part because the 

1955-1965 measurements showed rapid changes, and these values were probably treated as 

outliers and assigned a low weighting by the fitting algorithm (Figure 6.5). Ideally, additional 

measurements would be obtained to help confirm that these values are representative, since the 

sediment data between 1990 and 2011 were interpolated due to lack of data. 

Emission rates estimated using the level IV model and sediment records exceed those 

reported in the Great Lakes Regional Air Toxic Emissions Inventory, especially for B[a]P where 

differences are a factor of 10 to 20;  PHE estimates exceeded inventory values by 2 to 3 times.  

Much larger differences (factors of 100 – 1000) were recently reported for PAH emission rates 

derived using inverse modeling for the Athabasca oil sands region (AOSR), attributed to 

underestimates of indirect emission sources (Parajulee and Wania 2014). The Great Lakes region 

may be more complicated than the AOSR due to the numerous and diverse PAHs sources, which 

can be difficult to quantify and vary considerably over time and place.  In 1997, the Great Lakes 

regional inventory reported that on- and non-road mobile sources contributed to 27% of total 

PAH emissions; apportionments based on Lake Michigan sediments were much higher, 45%. 
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The inventory also indicates that B[a]P emissions were unchanged from 1996 to 2008, while 

PHE emission rates declined by 8 folds. While it is not surprising that inventory estimates based 

mostly on emission factors and activity data diverge from estimates derived from receptor-based 

methods using monitoring and modeling, the magnitude of the differences suggest a need for 

further use of the receptor methods to help reconcile these differences.  Given appropriate 

monitoring data, emission estimated using models and environmental monitoring data may 

provide a more reliable approach to estimate emissions.   

6.4.2.2 PAH bioaccumulation trends 

Food web concentrations were calculated using the dynamic food web model and the 

estimated B[a]P and PHE emission rates (Figure 6.6). For B[a]P, the same metabolic rates (for 

the 8 species) as in the steady-state model were used. For PHE, half-lives in each species were 

shortened by 5 times (Table A6.8), since the steady-state model greatly overestimated 

concentrations in lake trout (Table A6.7). With these parameters, predicted B[a]P and PHE 

concentrations in lake trout by the dynamic model for year 2011 were 56 and 524 pg/g, 

respectively, which agreed closely to our measurements (6 - 43 pg/g for B[a]P, 17 – 850 pg/g for 

PHE).  

B[a]P and PHE predictions in aquatic invertebrates and fish followed the same trend as 

the air emission rates and sediment concentrations, e.g., levels peak in the 1950s.  The highest 

B[a]P concentration in plankton occurred in 1958, which corresponds to the highest 

concentration in water, since plankton only respires in water and does not consume other 

organisms. Concentrations in other species, more affected by the sediments, peak one year later, 

1959. This lag is short compared to that observed for more bioaccumative chemicals, as 

discussed earlier. For PHE, the highest concentrations in plankton, mysid and smelt occurred in 

1951 (corresponds to peak water concentration) while the others occurred in 1952 (corresponds 

to peak sediment concentration). This is because the water:sediment concentration ratio of PHE 

is much higher than B[a]P’s, so the influence of the water compartment dominates in more 

species.  

The dynamic model gave concentration patterns through the food web that were similar 

to those discussed earlier for the steady-state model, e.g., B[a]P concentrations were highest in 

Diporeia, followed by mysid, plankton, prey fish, and lake trout. PHE trends were similar as 
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B[a]P; however, sculpin had higher concentrations than plankton because biotransformation 

(metabolism) of B[a]P is more efficient in sculpin (due to B[a]P’s higher Kow ), while 

biotransformation of both compounds are negligible in plankton. PHE concentrations in other 

prey fish were similar, reflecting the significance of uptake from water relative to diet. 

6.5 Conclusions 

The present study developed and applied fugacity-based models for 16 PAHs and 5 

NPAHs in the Lake Michigan basin in order to characterize the distribution, fate and loadings of 

these potentially toxic compounds.  Model parameters were derived from the literature or 

estimated using EPISuite, and Monte Carlo methods were used to address uncertainty and 

variability in key parameters, e.g., degradation half-lives, emission rates and background air 

concentrations. Model predictions were compared to recent measurements in sediment and fish. 

Using the steady-state (level III) fugacity model and 2008 emission inventories, predicted 

PAH concentrations agree well with air measurements, but are generally underestimated in water 

and sediment. Air emission rates of NPAHs estimated using inverse level III model and 2011 

sediment measurements show that 1-nitronaphthalene has the highest emission rate (median of 

69 kg/h), and the emission rates of all 5 NPAHs are lower than those of the parent PAHs except 

for 2-nitrofluorene. The steady-state food web model produces concentrations in lake trout 

similar to our 2011 measurements for heavier PAHs (BBF to BghiP), but overestimates the 

concentrations for lighter PAHs and NPAHs. Historical emission rates over the past century, 

estimated using an inverse modeling technique, the level IV dynamic model and sediment 

records, suggest that PAH air emissions gradually increased from 1850 until the 1950s, peaked in 

1960s, and sharply declined since the early 1970s. The results also suggest that PAH emission 

rates in the Great Lakes regional inventory are significantly underestimated. 

This work is essential for understanding the overall behaviors of PAHs and NPAHs in the 

Lake Michigan drainage area aquatic food web. Results demonstrate that environmental 

concentrations of heavier PAHs can be accurately predicted by the model. The model can also be 

used inversely to estimate emission rates of PAHs from their environmental concentrations, 

which can provide information regarding historical emissions when there was no emission 

inventories available. Moreover, this information can complement and help improve existing 

emission inventories. On the other hand, the results suggest that certain model parameters are 
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inappropriate for lighter PAHs and NPAHs. Additional measurements and physiochemical data 

are needed to better estimate parameters and evaluate model predictions. Finally, more 

sophisticated model structures might be needed to better describe the environmental fate of 

reactive chemicals such as the NPAHs.  
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6.6 Tables and figures  

Table 6.1 Comparison between predicted PAH concentrations from the level III model and 
observed concentrations 

 
a Simcik MF, 1999 (Simcik et al. 1999) 
b Offenberg JH, 2000 (Offenberg and Baker 2000) 
c Our data, 2011 (Huang et al. 2014a) 
d Simcik MF, 1996 (Simcik et al. 1996) 
e The value in parenthesis is the percent of total mass in that compartment. 
f Data presented are mean (range). 

  

Compound

Naphthalene 76.4 (40.4%) n/a 3.8 (56.8%) n/a 2.20E-02 (2.4%) n/a 0.30 (0.4%) 6.2 (2.5-12.7) c

Acenaphthylene 0.15 (3.3%) 0.3 a 0.16 (93.6%) 0.7 b 4.08E-05 (0.2%) n/a 0.06 (3.0%) 1.4 (0.7-3.9) c

Acenaphthene 0.60 (18%) 0.8 a 0.09 (76.4%) 1.2 b 3.39E-04 (2.0%) n/a 0.05 (3.6%) 0.01 (0.01-0.03) c

Fluorene 6.9 (26.7%) 5.4 a 0.64 (68.9%) 2.1 b 1.95E-03 (1.5%) n/a 0.31 (2.9%) 17.3 (5.9-30.3) d

Phenanthrene 16.7 (5.7%) 11 a 7.8 (73.9%) 3.0 b 4.20E-02 (2.9%) n/a 21.6 (17.5%) 70.4 (29.1-179.1) c

Anthracene 0.44 (5.8%) 0.3 a 0.20 (74.6%) 0.1 b 8.27E-04 (2.2%) n/a 0.55 (17.3%) 9.1 (3.8-18.7) c

Fluoranthene 5.0 (2.6%) 3 a 2.9 (42.6%) 1.5 b 3.96E-02 (4.1%) n/a 41.3 (50.6%) 134.1 (47.3-385.2) c

Pyrene 1.1 (3.2%) 1.6 a 0.7 (55.8%) 0.8 b 8.76E-03 (5.0%) n/a 5.4 (36%) 110.3 (25.3-236.3) c

Benz[a]anthracene 0.19 (0.9%) 0.2 a 0.12 (16.7%) 0.2 b 2.53E-02 (24.6%) n/a 5.07 (57.8%) 55.8 (12-167.4) c

Chrysene 0.24 (0.9%) 0.5 a 0.15 (16.6%) 0.4 b 2.89E-02 (22.6%) n/a 6.5 (59.8%) 75.9 (19.3-175.3) c

Benzo[b]fluoranthene 0.57 (4.4%) 0.5 a 0.09 (19%) 0.4 b 6.20E-03 (9.6%) n/a 3.68 (67%) 28.5 (13.2-71.9) c

Benzo[k]fluoranthene 0.09 (0.6%) 0 a 0.04 (8.1%) 0.3 b 3.76E-02 (50.1%) n/a 2.64 (41.2%) 22.5 (10.4-44.2) c

Benzo[a]pyrene 0.16 (0.8%) 0.2 a 0.05 (7.2%) 0.4 b 5.19E-02 (55.2%) n/a 2.94 (36.8%) 2.7 (1.0-10.2) c

Indeno[1,2,3-cd]pyrene 0.16 (0.6%) 0.2 a 0.04 (4.4%) 0.4 b 8.25E-02 (63.7%) n/a 3.44 (31.2%) 24.9 (7.8-95.4) c

Dibenzo[a,h]anthracene 0.03 (0.6%) 0 a 0.01 (7.6%) 0.3 b 9.91E-03 (40.9%) n/a 1.05 (50.9%) 18.2 (5.9-74.1) c

Benzo[g,h,i]perylene 0.11 (0.8%) 0.2 a 0.02 (2.9%) 0.3 b 5.39E-02 (76.5%) n/a 1.19 (19.9%) 6.7 (2.3-27.5) c

ObservedObserved Observedf

Air (ng/m3) Water (ng/L) Soil (ng/g dry) Sediment (ng/g dry)
Predictede Predictede Predictede PredictedeObserved
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Table 6.2 Estimation of NPAH emission rates and environmental concentrations by the level III 
model 

 
a Mean concentrations across 24 sampling sites in southern Lake Michigan. 
b Data presented are median (5th percentile – 95th percentile). 

 

 

 

Table 6.3 Bioaccumulation of B[a]P in Lake Michigan food web 

 

  

Measurementsa

Compound Sediment 
(ng/g dry)

1-Nitronaphthalene 0.61 8.6 (6.3-41.2) 11.7 (11.6-14.2) 0.12 (0.02-0.55) 69 (11-444)
2-Nitronaphthalene 0.52 4.7 (3.2-25.7) 8.5 (8.3-10.4) 0.10 (0.01-0.51) 31 (0-304)
2-Nitrofluorene 0.83 4.5 (2.9-25.9) 8.7 (8.6-11.2) 0.15 (0.02-0.89) 46 (25-298)
1-Nitropyrene 2.67 0.09 (0.06-0.45) 0.17 (0.17-0.23) 0.16 (0.02-0.81) 0.3 (0-4.3)
6-Nitrochrysene 3.22 0.04 (0.03-0.16) 0.11 (0.11-0.15) 0.29 (0.03-1.24) 0.2 (0-2.0)

Model predictionsb

Air Emission to air
(kg/h)(ng/m3)

Water
(ng/L)

Soil
(ng/g dry)

Plankton Mysid Diporeia Slimy Sculpin Rainbow Smelt Bloater Alewife Lake trout
Fugacity (Pa) 5.27E-12 5.66E-12 2.76E-11 7.72E-13 4.58E-13 4.61E-13 4.70E-13 1.72E-14
Concentration (pg/g wet) 453 1295 4738 354 105 264 188 14.8
Equilibrium BCF 2.49E+04 6.64E+04 4.98E+04 1.33E+05 6.64E+04 1.66E+05 1.16E+05 2.49E+05
BAF (g/L) 9.2 26 97 7.2 2.1 5.4 3.8 0.30

Transfer rates (×10-16mol/h)
Uptake by respiration in water 0.45 11 0 118 227 512 344 5207
Uptake by respiration in sediment 0 0 6.0 0 0 0 0 0
Uptake from food 0 12 0 734 533 6622 2309 50673
Loss by respiration 0.44 11 5.3 17 19 44 30 17
Loss by egestion 0 1.8 0 13 18 65 35 175
Loss by metabolism 0.001 5.5 0.40 807 709 6917 2548 55543
Loss (dilution) by growth 0.009 4.3 0.31 16 14 108 40 145
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Figure 6.1 Schematic diagram of the Lake Michigan food web.  
Colors indicate trophic levels. Dietary preferences are expressed as fractions of the total diet. For 
example, the diet of lake trout consists of 50% alewife, 20% bloater, 10% rainbow smelt, 10% 
slimy sculpin and 10% Diporeia.  
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Figure 6.2 Level III mass balance diagram showing the fluxes (kg/h) of benzo[a]pyrene in Lake 
Michigan.  
Adapted from (CEMC 2012). 

  

BAP

Air
0.81 1.33

Mass 28.0 kg
Of total 0.8 %

5.11 Fugacity 5.83E-10 Pa 3.78
Conc. 0.159 ng/m3

3.71E-06 1.32E-03

0 0.44 0.0896
Soil 0.36

Water
Mass 1839.3 kg 0 Mass 238.7 kg 2.75E-04

Of total 55.2 % Of total 7.2 %
Fugacity 1.11E-12 Pa Fugacity 5.19E-12 Pa

0.44 Conc. 0.052 ng/g solids 3.52E-04 Conc. 0.049 ng/L 0.345

0.154 0.047

LEGEND Residence Time
Emission (kg/h) Total = 554.6 h Sediment

Reaction = 719.2 h
Advection (kg/h) Advection = 2424.2 h 0 Mass 1224.8 kg 4.19E-02

Of total 36.8 %
Reaction (kg/h) Total Emissions = 0.896 kg/h Fugacity 3.14E-11 Pa 0.065

Total Mass = 3.33E+03 kg Conc. 2.94 ng/g soilds
Exchange (kg/h)
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Figure 6.3 Comparison between measured and predicted PAH concentrations in Lake Michigan 
sediments.  
Solid lines show 95th and 5th percentiles of Monte-Carlo results, while dashed lines show the 
maximum and minimum. The boxplots show maximum, 95th percentile, median, 5th percentile 
and minimum of the measured concentrations.  
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Figure 6.4 Estimated and reported air emission rates of (A) B[a]P and (B) PHE.   
Box indicates year and value of peak prediction. 
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Figure 6.5 Predicted and measured sediment concentrations of (A) B[a]P and (B) PHE.  
Predicted represents the best fitted values based on the assumed emission scenario. Box indicates 
year and value of peak prediction. 
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Figure 6.6 Predicted time-dependent concentrations of (A)(B) B[a]P and (C)(D) PHE in Lake 
Michigan food web. 
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6.7 Appendix 

6.7.1 Model equations 

6.7.1.1 The steady-state (level III) model 

The mass balance equations for each compartment are as follows. They are the same for PAHs 

and NPAHs. 

Air (subscript 1) 

0 = (E1 + GA1CB1 + D21f2 + D31f3) – f1 (D12 + D13 + DR1 + DA1)                 (A6.1) 

Water (subscript 2) 

0 = (E2 + GA2CB2 + D12f1 + D42f4) – f2 (D21 + D24 + DR2 + DA2)                (A6.2) 

Soil (subscript 3) 

0 = (E3 + D13f1 ) – f3 (D31 + D32 + DR3)                                     (A6.3) 

Sediment (subscript 4) 

0 = (E4 + D24f2 ) – f4 (D42 + DR4 + DA4)                                     (A6.4) 

Biota (the ith organism) 

0 = DW(f2 ∙ XW + f4 ∙ XS) + ∑ Feedij ∙ Dij
8
i=1 − fF(DW + DM + DE + DG)              (A6.5) 

 

f: fugacity (Pa) 

E: emission rate (mol/h) 

GA: advection flow rate (m3/h) 

CB: background concentration (mol/m3) 

D: D value (mol/Pa-h) 

D12 represents the transport D value from compartment 1 to compartment 2, others in the same 

way.  

Subscripts R, F, W, M, E and G represent reaction, the organism i, gill respiration, metabolism, 

egestion and growth, respectively.  
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XW: fraction of respiration from water 

XS: fraction of respiration from sediment  

Feedij: fraction of species i in the diet of species j  

Dij: effective D value of food consumption when species i is consumed by species j 

 

6.7.1.2 The dynamic (level IV) model 

Air (subscript 1) 

V1Z1(df1/dt) = (E1 + GA1CB1 + D21f2 + D31f3) – f1 (D12 + D13 + DR1 + DA1)               (A6.6) 

Water (subscript 2) 

V2Z2(df2/dt) = (E2 + GA2CB2 + D12f1 + D42f4) – f2 (D21 + D24 + DR2 + DA2)              (A6.7) 

Soil (subscript 3) 

V3Z3(df3/dt) = (E3 + D13f1 ) – f3 (D31 + D32 + DR3)                                (A6.8) 

Sediment (subscript 4) 

V4Z4(df4/dt) = (E4 + D24f2 ) – f4 (D42 + DR4 + DA4)                                  (A6.9) 

Biota (the ith organism) 

 VFZF(dfF
dt

) = DW(f2 ∙ XW + f4 ∙ XS) + ∑ Feedij ∙ Dij
8
i=1 − fF(DW + DM + DE + DG)       (A6.10) 

 

V: compartment volume (m3) 

Z: fugacity capacity (mol/m3-Pa) 
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6.7.2 Supplemental tables and figures 

Table A6.1 Environmental properties and transport velocities. 

 

a Reference ; b Reference (EPA); c Reference (Lim and Lastoskie 2011);d Reference (Q. Zhang 

et al. 2003); e Reference (Mackay 2010).  

Compartment Parameter Lake Michigan Reference
Mean temperature (°C) 11.6 a

Area (m2) 1.76E+11 b
Height (m) 1000 c
Aerosol volume fraction 5.22E-12 c
Aerosol density (kg/m3) 1800 d
Wind speed at 5m (m/s) 5.35 a
Residence time (h) 20.96 d

Area (m2) 5.78E+10 b
Depth (m) 85 b
Suspended particles fraction 5.00E-06 d
Suspended density (kg/m3) 2400 d
Suspended OC fraction 0.2 d
Biota fraction 1.00E-06 d
Biota density (kg/m3) 1000 d
Biota lipid fraction 0.05 d
Residence time (h) 8.67E+05 b

Depth (m) 0.25 c
Air fraction 0.2 d
Water fraction 0.3 d
Solid density (kg/m3) 2400 d
Soil OC fraction 0.02 d

Depth (m) 0.01 c
Water fraction 0.7 d
Solid fraction 0.3 d
Solid density (kg/m3) 2400 d
Sediment OC fraction 0.04 d
Residence time (h) 2.92E+04 e

Rain rate 9.30E-05 d
Dry deposition 18.04 d
Air side air-water MTC 41.85 c
Water side air-water MTC 0.0801 c
Soil-air phase diffusion MTC 0.04 c
Soil-water phase diffusion MTC 1.00E-05 c
Soil-air boundary layer MTC 1 c
Sediment-water diffusion MTC 1.00E-04 c
Sediment deposition 4.57E-07 d
Sediment resuspension 1.14E-07 d
Soil-water runoff rate 3.72E-05 d
Soil-soid runoff rate 2.28E-08 d

Sediment 

Transfer rate 
(m/h)

Air

Water

Soil
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Table A6.2 Physiochemical properties and degradation half-lives of modeled compounds 

 

All values are from EPISuite (EPA 2012) 

  

Group Chemical Abbrev. CAS# MW Melting point Water solubility Vapor pressure LogKow Henry's law constant Air Water Soil Sediment Fish (fat)
(g/mol) (°C) (g/m3) (Pa) (Pa·m3/mol) (h) (h) (h) (h) (h)

Naphthalene NAP 91-20-3 128.2 80 2.65E+01 7.94E+00 3.36 3.84E+01 11.9 900 1800 8100 108.7
Acenaphthylene ACY  208-96-8 152.2 93 1.47E+01 5.90E-01 4.01 6.10E+00 1 360 720 3240 89.5
Acenaphthene ACE  83-32-9 154.2 93 3.30E+00 1.89E-01 3.99 8.92E+00 4.4 900 1800 8100 6.0
Fluorene FLU 86-73-7 166.2 115 1.44E+00 4.97E-02 4.11 5.74E+00 19.7 360 720 3240 33.0
Phenanthrene PHE 85-01-8 178.2 99 1.00E+00 1.05E-02 4.53 1.86E+00 20 1440 2880 13000 61.3
Anthracene ANT 120-12-7 178.2 215 3.43E-02 5.68E-04 4.52 2.95E+00 6 1440 2880 13000 60.8
Fluoranthene FLA  206-44-0 202.3 108 2.23E-01 7.14E-04 5.23 6.48E-01 23.3 1440 2880 13000 61.6
Pyrene PYR  129-00-0 202.3 151 1.17E-01 3.50E-04 4.95 6.04E-01 5 1440 2880 13000 13.4
Benz[a]anthracene BAA  56-55-3 228.3 84 7.89E-03 1.64E-05 5.86 4.74E-01 5.1 1440 2880 13000 72.8
Chrysene CHR  218-01-9 228.3 258 1.61E-03 4.71E-07 5.89 6.65E-02 5 1440 2880 13000 75.4
Benzo[b]fluoranthene BBF 205-99-2 252.3 168 1.22E-03 3.77E-05 5.88 7.77E+00 14 1440 2880 13000 64.1
Benzo[k]fluoranthene BKF 207-08-9 252.3 217 6.38E-04 7.28E-08 6.21 2.88E-02 4.8 1440 2880 13000 80.9
Benzo[a]pyrene BAP  50-32-8 252.1 175 1.41E-03 4.09E-07 6.22 7.31E-02 5 1440 2880 13000 21.7
Indeno[1,2,3-cd]pyrene IcdP 193-39-5 276.3 164 1.47E-04 9.13E-09 6.80 1.71E-02 4.0 1440 2880 13000 28.1
Dibenzo[a,h]anthracene DBA 53-70-3 278.4 270 7.98E-04 6.87E-08 6.64 2.39E-02 5.1 1440 2880 13000 84.8
Benzo[g,h,i]perylene BghiP 191-24-2 276.3 278 2.26E-04 7.16E-09 6.73 8.77E-03 3.0 1440 2880 13000 7.1

1-Nitronaphthalene 1-NNAP 86-57-7 173.2 61 7.90E+00 3.70E-02 3.19 8.11E-01 47.5 900 1800 8100 31.5
2-Nitronaphthalene 2-NNAP 581-89-5 173.2 79 8.07E+00 2.18E-02 3.24 4.67E-01 45.8 900 1800 8100 32.7
2-Nitrofluorene 2-NFLU 607-57-8 211.2 157 1.74E-01 2.95E-04 3.37 3.57E-01 61.7 900 1800 8100 7.3
1-Nitropyrene 1-NPYR 5522-43-0 247.3 155 9.80E-03 4.76E-06 5.06 1.20E-01 41.1 4320 8640 38900 6.0
6-Nitrochrysene 6-NCHR 7496-02-8 273.3 187 1.25E-02 4.13E-07 5.34 9.06E-03 41.1 4320 8640 38900 21.3

Data temperature: 11.7 °C Degradation half-lives

PAHs

NPAHs
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Table A6.3 Metabolic half-lives in aquatic organisms used in the food web model 

 

  

Group Chemical Plankton Mysid Diporeia Sculpin Rainbow Smelt Bloater Alewife Lake trout
Naphthalene 32610 3261 3261 326 326 326 326 109
Acenaphthylene 26850 2685 2685 269 269 269 269 90
Acenaphthene 1800 180 180 18 18 18 18 6
Fluorene 9900 990 990 99 99 99 99 33
Phenanthrene 18390 1839 1839 184 184 184 184 61
Anthracene 18252 1825 1825 183 183 183 183 61
Fluoranthene 18480 1848 1848 185 185 185 185 62
Pyrene 4020 402 402 40 40 40 40 13
Benz[a]anthracene 21840 2184 2184 218 218 218 218 73
Chrysene 22620 2262 2262 226 226 226 226 75
Benzo[b]fluoranthene 19230 1923 1923 192 192 192 192 64
Benzo[k]fluoranthene 24270 2427 2427 243 243 243 243 81
Benzo[a]pyrene 6504 650 650 65 65 65 65 22
Indeno[1,2,3-cd]pyrene 8430 843 843 84 84 84 84 28
Dibenzo[a,h]anthracene 25440 2544 2544 254 254 254 254 85
Benzo[g,h,i]perylene 2130 213 213 21 21 21 21 7

1-Nitronaphthalene 9461 946 946 95 95 95 95 32
2-Nitronaphthalene 9799 980 980 98 98 98 98 33
2-Nitrofluorene 2203 220 220 22 22 22 22 7
1-Nitropyrene 1796 180 180 18 18 18 18 6
6-Nitrochrysene 6398 640 640 64 64 64 64 21

Metabolic half-lives (h)

PAHs

NPAHs
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Table A6.4 Aquatic organisms and their physiological properties in the food web of Lake 
Michigan 

 

LF: lipid volume fraction.  

QD: digestion factor.  

GR: growth rate (fraction of volume/body mass per day).  

FR: feeding rate (percent of body mass per day). XW: fraction of respiration from water.  

XS: fraction of respiration from sediment.  

GAO: gut absorption efficiency parameter (organic).  

GAW: gut absorption efficiency parameter (water).  
a Reference (Davis et al. 1998); b Reference (Charles P. Madenjian et al. 2000); c Our 
measurements in Lake Michigan lake trout (Huang et al. 2014b).  

All other values were obtained from the FoodWeb model software (2006).  

  

No. Species Volume LF QD GR FR XW XS GAW GAO
(cm3) (g/g-day) (% per day)

1 Plankton 0.0005 0.015 3 0.025 0 1 0 5.3E-08 4
2 Mysid 0.1 0.04 3 0.02 20 1 0 5.3E-08 3.5
3 Diporeia 0.002 0.03 3 0.02 0 0 1 5.3E-08 4
4 Sculpin 5.4 0.08 3 0.005 4 1 0 5.3E-08 1.5
5 Rainbow Smelt 16 0.04 3 0.005 4 1 0 5.3E-08 1.5
6 Bloater 62a 0.1b 3 0.004 3.5 1 0 5.3E-08 1.5
7 Alewife 32 0.07 3 0.004 3.5 1 0 5.3E-08 1.5
8 Lake trout 2962c 0.15 3 0.002 2 1 0 5.3E-08 1.2
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Table A6.5 Feeding matrix of the Lake Michigan food web 

 

  

Plankton Mysid Diporeia Sculpin Rainbow Smelt Bloater Alewife Lake trout
Plankton 0 0.8 0 0 0.6 0.1 0.3 0
Mysid 0 0 0 0.3 0.2 0.4 0.3 0
Diporeia 0 0.2 0 0.6 0.05 0.5 0.3 0.1
Sculpin 0 0 0 0.1 0 0 0.1 0.1
Rainbow Smelt 0 0 0 0 0 0 0 0.1
Bloater 0 0 0 0 0.05 0 0 0.2
Alewife 0 0 0 0 0.1 0 0 0.5
Lake trout 0 0 0 0 0 0 0 0

Predator

Prey
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Table A6.6 Emission rates and background concentrations used in the level III model 

TBD: to be estimated by the model. 

  

Group Chemical To air To water To soil To sediment In air In water
(kg/h) (kg/h) (kg/h) (kg/h) (ng/m3) (ng/L)

Naphthalene 98.5 10.9 158.5
Acenaphthylene 15.7 1.74 1.22
Acenaphthene 1.46 0.16 2.44
Fluorene 3.27 0.36 12.2
Phenanthrene 9.90 1.10 30.2
Anthracene 2.04 0.23 1.23
Fluoranthene 3.27 0.36 8.90
Pyrene 4.19 0.47 4.15
Benz[a]anthracene 1.91 0.21 0.56
Chrysene 1.36 0.15 0.85
Benzo[b]fluoranthene 0.55 0.06 1.16
Benzo[k]fluoranthene 0.41 0.05 0.38
Benzo[a]pyrene 0.81 0.09 0.61
Indeno[1,2,3-cd]pyrene 0.72 0.08 0.80
Dibenzo[a,h]anthracene 0.10 0.01 0.13
Benzo[g,h,i]perylene 0.98 0.11 0.62

1-Nitronaphthalene 2.51
2-Nitronaphthalene 2.51
2-Nitrofluorene 0.38
1-Nitropyrene 0.13
6-Nitrochrysene 0.063

0 00TBD

PAHs

NPAHs 0

Background concentration

0 0 0

Emission rate
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Table A6.7 Concentrations in aquatic organisms predicted by the steady-state food web model 

 

  

Group Compound Plankton Mysid Diporeia Slimy Sculpin Rainbow Smelt Bloater Alewife Lake trout
Naphthalene 132 351 549 692 347 832 598 596 74.8 (3.0-172.6)
Acenaphthylene 24 63 110 119 60 129 99 44 125.6 (21.2-483.1)
Acenaphthene 13 35 91 35 19 20 21 2 64.4 (6.5-478.2)
Phenanthrene 3813 10268 39386 16765 8280 14494 12274 2351 163.3 (16.8-849.9)
Anthracene 98 263 1004 430 212 372 315 61 22.3 (4.5-178.4)
Fluoranthene 6469 18203 74935 21073 8955 15398 12780 1711 28.7 (8.7-284.7)
Pyrene 860 2285 9691 1210 607 683 662 51 25.1 (4.8-141.1)
Benz[a]anthracene 779 2482 8955 2217 728 1687 1254 167 7.4 (4.9-23.8)
Chrysene 1001 3222 11473 2901 943 2217 1642 222 8.8 (6.9-43.5)
Benzo[b]fluoranthene 564 1795 6482 1440 470 1086 806 100 22.5 (12.1-70.1)
Benzo[k]fluoranthene 402 1422 4484 1127 339 882 635 85 17.5 (12.6-97.7)
Benzo[a]pyrene 453 1295 4738 354 105 264 188 15 18.4 (5.6-43.4)
Indeno[1,2,3-cd]pyrene 495 1400 4356 343 99 269 188 14 45.6 (34.4-146.9)
Dibenzo[a,h]anthracene 152 588 1594 379 110 303 214 27 53.4 (47.2-92.8)
Benzo[g,h,i]perylene 176 227 1124 23 7 18 13 1 23.5  (1.9-149.4)

1-Nitronaphthalene 271 724 1119 1382 698 1559 1167 625 0.7 (0.01-4.3)
2-Nitronaphthalene 221 590 949 1125 568 1265 948 497 0.5 (0.01-11.3)
2-Nitrofluorene 305 812 1521 1275 670 1061 953 153 0.3 (0.01-3.3)
1-Nitropyrene 263 680 4772 188 81 108 95 6.5 1.2 (0-20.7)
6-Nitrochrysene 296 872 5792 531 184 359 279 24.7 0.7 (0.01-6.1)

Measurement (pg/g wet)
Lake trout

PAHs

NPAHs

Model predictions (pg/g wet)
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Table A6.8 Degradation half-lives of phenanthrene (PHE) used in level IV models 

 

a Reference (EPA 2012); b Reference (Mackay and Hickie 2000). 

c Values are reduced by 5 times based on level III model results. 

  

Half-life (h) Reference
Air 19.7 a
Water 1440 a
Soil 17000 b
Sediment 55000 b
Plankton 3000 c
Mysid 300 c
Diporeia 300 c
Slimy Sculpin 30 c
Rainbow Smelt 30 c
Bloater 30 c
Alewife 30 c
Lake trout 10 c
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Figure A6.1 The study area, including Lake Michigan (blue area) and its drainage basin (green 
area). 
The wind rose plot at the bottom left corner indicates the prevailing wind directions from 1961 to 
1990 at Chicago (Angel 2009). This figure is adapted from the Michigan Sea Grant (MISC 
2014).  
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Chapter 7 Conclusions 

The overall objective of this research was to understand the distribution, sources and risks 

of PAHs and NPAHs in Lake Michigan, to characterize their emissions from a major source 

(diesel exhaust), and to model and predict their environmental fate in the Lake Michigan basin. 

The petroleum biomarkers hopanes and steranes were characterized along with PAHs and 

NPAHs to provide more information on hydrocarbon contamination. The research had five 

specific aims: (1) Characterizing the distribution of target compounds in predator fish from Lake 

Michigan and estimating the carcinogenic risk from the consumption of these fish; (2) 

Characterizing bottom sediments from Lake Michigan for concentrations of the target 

compounds and identifying major sources; (3) Analyzing the emissions of target compounds 

from a major source - diesel engines; (4) Examining the integrity of target compounds during 

filter processing and storage needed for analysis of diesel exhaust emissions; and (5) Predicting 

the environmental fate and estimating the emission rates of PAHs and NPAHs in Lake Michigan 

using multimedia models. 

This chapter summarizes the major findings, significance and limitations of this research. 

Section 7.1 describes the interrelationship between the specific aims. Section 7.2 discusses the 

major findings of each specific aim in turn. The implications of the findings and the limitations 

of the study are presented in Sections 7.3 and 7.4, respectively. The chapter is concluded with 

recommendations for future studies. 

7.1 Integration of specific aims 

The dissertation shows that the target compounds are widely distributed in the Lake 

Michigan basin. Specifically, NPAHs may be of health concern and may warrant further 

investigation since certain highly carcinogenic compounds were detected at moderate 

concentrations. In fish, PAHs display "biodilution," while in sediment, a spatial trend is seen 

with high concentrations near-shore and low concentrations in the middle of the lake. PAHs 

levels in Lake Michigan sediments have decreased from the 1990s. Currently, vehicle exhaust 
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was identified as the most important PAH source, while bench tests demonstrate the 

effectiveness of alternative fuels and after-treatment in reducing emissions of all target 

compounds. Finally, the fugacity modeling suggests that environmental concentrations and 

emission rates of PAHs and NPAHs can be estimated and inter-related using relatively simple 

multimedia models. 

The five specific aims of this research are diverse in scope, but closely related and 

mutually supportive. Concentrations measured in lake trout (Chapter 2) served as empirical data 

for model validation (Chapter 6); the “biodilution” observed supported lower metabolic half-

lives for the higher trophic levels of the model; and the similar concentrations across sites 

supported the use of a one-compartment model for Lake Michigan. Similarly, measured sediment 

concentrations (Chapter 3) were used for model validation and as input data in inverse-modeling 

for estimating emission rates of PAHs and NPAHs (Chapter 6).  The source apportionment 

(Chapter 3) identified vehicle exhaust as the most important PAH source, which motivated the 

analyses of diesel exhaust emissions (Chapter 4), and the developed emission profiles helped to 

confirm apportionment.  The investigation of filter processing and storage (Chapter 5) was 

needed to confirm sampling protocols from the engine bench tests (Chapter 4). Finally, the 

multimedia models (Chapter 6) helped to integrate the study’s findings, and they presented an 

overall picture of the environmental behavior of PAHs and NPAHs.  

7.2 Major findings of each specific aim 

7.2.1 Distribution of target compounds in Lake Michigan fish 

The concentrations of PAHs, NPAHs, hopanes and steranes in Lake Michigan lake trout 

were presented in Chapter 2. A total of 74 lake trout were collected in two seasons (spring and 

fall) at three offshore sites along a north-south transact of the lake. Whole-fish Σ9PAH 

concentrations averaged 546 ± 244 pg/g wet weight (ww). The concentrations and profiles were 

similar across season, site and gender. The 3-ring compounds, such as phenanthrene, were the 

most abundant PAH compounds. PAH concentrations in lake trout were low compared to those 

in small prey fish (10 to 100 ng/g ww) (Levengood and Schaeffer 2011) and aquatic 

invertebrates (100-1000 ng/g ww) (Eadie et al. 1982b; Eadie et al. 1982a; Metcalfe et al. 1997) 

reported previously, suggesting “biodilution” of PAHs in aquatic food web, as observed in 

marine organisms (Baumard et al. 1998; Takeuchi et al. 2009). This is probably due to the rapid 
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metabolism of PAHs in higher trophic-level organisms (Hahn et al. 1994). However, metabolites 

of parent PAH compounds may persist in the fish tissue and have toxicological importance. 

Σ9NPAH concentrations averaged 7.2 ± 7.0 pg/g ww in whole fish. Literature data for 

Great Lakes fish is not available for NPAHs.  However, mussels and oysters from Japan showed 

ΣNPAH concentrations ranging from 400 to 4000 pg/g ww, levels much higher than those in 

lake trout, so biodilution of NPAHs might also be possible. NPAH concentrations in fall samples 

were extremely low at the Waukegan site, and NPAH profiles differed among sites; in spring, 

concentrations and profiles were similar across sites. This could be in part attributed to lake 

trout’s homing behavior in the fall; other factors may include local emission sources and 

localized water and sediment contamination. 

Σ2Hopane and Σ5Sterane concentrations averaged 37 ± 23 pg/g ww and 269 ± 111 pg/g 

ww, respectively. Abundances of individual hopanes and steranes did not vary by season, site or 

gender, suggesting exposure to a similar and widespread source. However, spatial differences 

were seen for hopane and sterane concentrations in fall, indicating the impact of sources in the 

Chicago/Gary area. Hopane and sterane concentrations in fall were ten times higher than levels 

in spring, indicating substantial differences in uptake and/or clearance rates. 

Fifteen female fish collected in fall contained eggs. SVOC concentrations in eggs were 

similar to those in the corresponding female fish for NPAHs, hopanes and steranes, but were 

significantly lower for PAHs. 

The toxic equivalency (TEQ) approach was used to estimate the human health risks from 

PAHs and NPAHs associated with the consumption of Lake Michigan lake trout. Upper bound 

worst-case estimates of lifetime human cancer risks due exceeded 10 per million, but generally 

PAHs and NPAHs in lake trout seem to pose a minimum threat to human health. However, since 

many NPAHs lack toxic equivalent factors (TEFs), true risks may be underestimated. It is also 

notable that even using the existing TEFs, NPAHs contributed a significant portion (40-80%) of 

the toxicity in some samples. Thus, further assessment of NPAH contamination in Lake 

Michigan fish, and effects on fish and ecological health, is warranted. 
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7.2.2 Distribution and sources of target compounds in Lake Michigan sediments 

Bottom sediments are the habitats of benthic-dwelling organisms. In Lake Michigan, a 

large reservoir of persistent organic pollutants, including PAHs, exists in bottom sediments, 

which is taken up by benthic organisms and enter the aquatic food web.  The distribution and 

sources of PAHs, NPAHs, hopanes and steranes in southern Lake Michigan sediments were 

presented in Chapter 3.  

Sediment sampling and analyses showed that 14 of 16 target PAHs, 5 of 11 target 

NPAHs, and all target hopanes and steranes were detected above MDLs at all of 24 sites 

sampled. Fluorene was detected in 37% of the samples, and the remaining compounds were 

undetected at all sites.  

ΣPAH15 concentrations ranged from 213 to 1291 ng/g dry weight (dw), similar to 

concentrations in general areas and background sites in other Great Lakes and around the world, 

but slightly lower than those measured in highly polluted areas. PAH levels in Lake Michigan 

sediments have been declining for the past three decades. Currently, PAH levels fall below 

consensus-based sediment quality guidelines (SQGs) and thus pose very low risks to benthic 

organisms. ΣNPAH5 concentrations ranged from 3 to 19 ng/g dw, similar to levels reported in 

other areas of the world.  No SQGs are available for NPAHs, but several highly toxic compounds 

were detected, including 6-nitrochrysene.  ΣHopane5 and ΣSterane6 concentrations ranged from 

98 to 355 ng/g and 6 to 36 ng/g dw, respectively.  

The estimated (2011) loading rates of ΣPAH15, ΣNPAH5, ΣSterane6 and ΣHopane5 to 

open water sediments of Lake Michigan are 10.9, 0.16, 0.25 and 3.6 MT/yr, respectively, which 

agree well with prior estimates obtained using different and independent methods (Helfrich and 

Armstrong 1986; Simcik et al. 1996).  SVOC concentrations were significantly correlated with 

the sediment’s organic carbon (OC) content. OC-adjusted SVOC concentrations were elevated at 

locations near AOCs and the larger urban/industrial areas. Abundances of individual compounds 

were similar across sites, indicating that common source types affected sediments across 

southern Lake Michigan.  

Diagnostic molecular ratios indicated that PAHs in Lake Michigan sediment were 

dominated by pyrogenic (i.e., combustion) sources. Chemical mass balance (CMB) modeling 

identified diesel engine (representing traffic, 56%), coal-fired power plant (27%) and coal-tar 
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based pavement sealants (16%) as the major PAH sources in Lake Michigan sediments, while 

coke oven was identified as a minor source (7%).  Diagnostic ratios and abundances of 

individual NPAH compounds also indicated contributions from diesel engine emissions and coal 

combustion.  Based on hopane biomarkers, both petroleum-derived and biogenic sources are 

important contributors of hydrocarbons (including aliphatics and aromatics) in southern Lake 

Michigan sediments.  Knowledge of major sources of these contaminants is useful for identifying 

the targets for pollution reduction efforts.  

7.2.3 Emissions in diesel engine exhaust using different fuels and after-treatment 

systems 

As indicated in Chapter 3, the dominant source of PAHs in surficial Lake Michigan 

sediments was diesel engine exhaust. Chapter 4 investigated the emissions of PM2.5, PAHs, 

NPAHs, hopanes and steranes from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 

and 900 kPa BMEP) with three types of fuel (ULSD, Swedish diesel and B100), and with and 

without exhaust after-treatment (DOC+DPF). Results demonstrated that Swedish diesel and 

B100 significantly reduced emissions of PM2.5, PAHs, NPAHs, hopanes and steranes, and 

biodiesel resulted in larger reductions. However, during idling emissions of PM2.5 and 5-

nitroacenaphthene increased with B100, and emissions of benzo[k]fluoranthene increased with 

Swedish diesel. These results are important given the recent attention to exposures from idling 

vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The after-treatment 

system (DOC+DPF) caused large (>99%) reductions of PM2.5 and Σ16PAHs, Σ11NPAHs, 

Σ2Hopanes, Σ2Steranes and individual compounds.  Emissions of PM2.5 and SVOCs increased 

with increasing engine load, with the notable exception of PM2.5 emissions with B100 during 

idling. The toxicity of diesel exhaust, in terms of the estimated human carcinogenic risk, was 

greatly reduced by Swedish diesel, B100 and the DOC+DPF.  These results suggest that the use 

of alternative fuels and exhaust after-treatment systems are effective ways to reduce PM2.5, PAHs 

and NPAHs emissions and pollution.  

A PAH/NPAH profile for diesel exhaust was developed by combining emissions 

measurements during idle and under load, and by accounting for variability.  The PAH profile 

showed high abundances of three and four ring compounds, as well as naphthalene; the NPAH 

profile showed high abundances of nitronaphthalenes, 1-nitropyrene and 9-nitroanthracene. 
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These profiles can be used in receptor models to apportion PAHs and NPAHs.  Based on a 

comparision of profiles in the literature, certain compounds are suggested for use as fitting 

species in source apportionments since abundances remained similar.  In contrast, compounds 

with large variability among studies may not be suitable for source apportion purposes. 

Emissions of biomarkers hopanes and steranes were significantly correlated with PAHs, 

NPAHs and PM2.5, but abundances varied considerably among different studies.  This suggests 

that the use of these compounds as PAH/NPAH/PM tracers should be limited to qualitative and 

diagnostic purposes. 

7.2.4 Integrity of target compounds in diesel exhaust particulate matter 

A number of filter and extract processing steps are needed to analyze target compounds 

in the PM samples collected from diesel engine exhaust, and the integrity of samples and the 

accuracy of measurements are non-trivial concerns.  Chapter 5 investigated the effects of filter 

conditioning, filter storage and extract storage on the integrity of target compounds in diesel 

exhaust PM samples.  Three cases were evaluated: conditioning filters in clean air at 25 °C and 

33 % relative humidity for 24 h, storing filter samples (without extraction) wrapped in aluminum 

foil at 4 °C for up to 1 month, and storing filter extracts in glass vials capped with Teflon crimp 

seals at 4 °C for up to 6 months.  All filters used were loaded filters using ULSD and no after-

treatment.  

Conditioning filters for 24 h did not significantly change the concentrations of NPAHs, 

hopanes and steranes; however, approximately 30% of the more volatile PAHs was lost.  The 

tests showed that filters loaded with PM can be stored for at least 1 month without appreciable 

losses of target compounds if the filter is wrapped in aluminum foil and held at 4 °C.  Filter 

extracts (PAHs in hexane/acetone, NPAHs in methanol, hopanes/steranes in hexane) can be 

stored at 4 °C for at least 1 month without significant losses.  Storage for 5 or more months may 

be acceptable for hopane and sterane extracts, but losses of PAHs and NPAHs may be 

significant.  

The laboratory tests show that even relatively brief periods used to condition filters 

(needed for gravimetric measurements of PM), can underestimate PAH concentrations. To 

reduce potential biases, conditioning protocols might be altered by lowering temperatures (e.g., 

from 25 to 10 °C) and/or reducing conditioning times (e.g., from 24 to 12 h). Additionally, 
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SVOC sampling and analysis protocols might utilize performance checks and criteria aimed at 

identifying and limiting potential biases occurring during filter and extract processing, e.g., PM 

samples on glass fiber filters should be sealed appropriately, extracted within 30 days of 

collection, and analyzed within 1 month. 

7.2.5 Multimedia fate modeling 

Emissions of PAHs/NPAHs (e.g., from diesel exhaust) were related to concentrations in 

environmental compartments, such as fish and sediment, using fugacity-based multimedia 

models for the Lake Michigan basin in Chapter 6. The study area was modeled as four 

compartments: air, water (including aquatic biota), soil and sediment; the aquatic biota was 

further modeled as an 8-species food web.  

A steady-state model with air emission data was used to predict the concentrations of 

target PAHs in air, water, soil, sediments and aquatic biota. For NPAHs, emission rates were 

unavailable and were estimated using measured concentrations in sediments and inverse 

modeling; then their concentrations in biota were predicted using the estimated emission rates. 

For example, the model predicted that most benzo[a]pyrene (BAP) emitted into the atmosphere 

were lost by advection downwind and reaction, and only a small fraction is deposited to the lake 

and the surrounding land; most BAP was distributed in soil (55%) and sediment (37%).  Overall, 

predicted and measured PAH concentrations in air agreed, but PAH concentrations in water and 

sediments were generally under-predicted, which may be caused by underestimate of the 

degradation half-lives. Concentrations in lake trout were accurately predicted for high-

molecular-weight PAHs, but greatly overestimated for low-molecular-weight PAHs and NPAHs, 

possibly due to an overestimate of the metabolic half-life and/or gut/gill absorption efficiencies. 

Certain model parameters which work well for persistent organic pollutants (such as PCBs, 

PBDEs and high-molecular-weight PAHs), may not be appropriate for low-molecular-weight 

PAHs and NPAHs.  Additional measurements, especially for NPAHs, are needed to evaluate 

model parameters.  Moreover, for highly reactive chemicals like the NPAHs, a more 

sophisticated model structure (not just short half-lives) might be needed to more accurately 

describe environmental fate. 

A dynamic model reconstructed historical emission rates of two representative PAHs 

(BAP and PHE) using their concentration records in Lake Michigan sediment cores.  Time-
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dependent bioaccumulation profiles were calculated using a dynamic food web model and the 

estimated emission rates.  Predicted trends of BAP and PHE emission rates and concentrations in 

aquatic biota followed those of the sediment concentrations: a gradual increase beginning about 

1850 to a peaked in the 1950s, followed by rapid decreased after the 1960s.  The results suggest 

that PAH emission rates may be underestimated in the (official) Great Lakes emissions 

inventory. The modeling results provide information on historical PAH and NPAH emissions for 

a (long) period without an emission inventory.  The results also can be used to improve the 

accuracy of current inventories.  

7.3 Significance 

This dissertation provided new information regarding the concentrations, distribution and 

risks of PAHs, NPAHs and petroleum biomarkers in the Great Lakes basin, and included the first 

reports of NPAHs in sediment and biota of Lake Michigan. The measurement data here can 

provide reference data for understanding PAH dynamics in other Great Lakes. This research 

improved our understanding of the behavior of these compounds in Lake Michigan, and 

identified several major sources that can be targeted for pollution prevention and reduction. 

These results are essential in moving towards the virtual elimination of these toxic substances in 

the basin. Moreover, the multimedia and food web modeling is easily transferable to understand 

the behavior of these compounds in other Great Lakes or large lake ecosystems. 

Chapter 2 presented the first report of NPAHs in Lake Michigan fish. Since NPAHs are 

direct-acting mutagens and are potentially more toxic than PAHs (Tokiwa et al. 1987), their 

concentrations in fish are important in assessing the health risks to humans and wildlife.  These 

data can also serve as baseline data for future monitoring.  This study is also the first to report 

PAHs in top predator fish of Lake Michigan since 1990s (Zabik et al. 1996).  The PAH and 

NPAH data, as well as the risk estimates, can inform policy and risk communication regarding 

fish advisories and other health-related actions.  The study design facilitates a comprehensive 

understanding of the behavior of these compounds in top predator fish across Lake Michigan, 

including the effects of location, season and gender.  The results can also be compared to PAH 

and NPAH levels in lower-trophic-level organisms to assess biomagnification.  

Chapter 3 presented the first report of NPAHs, hopanes and steranes in Lake Michigan 

sediments, and the first data on PAH sediment concentrations since the 1990s (Su et al. 1998; 

215 
 



 

Zhang et al. 1993).  The PAH levels can be compared to literature data to assess the temporal 

trend, and the NPAH data can serve as baseline data for future monitoring.  The hopane and 

sterane data can be used to identify the sources of hydrocarbon contamination.  PAH and NPAH 

concentrations in surficial sediments provide important information for evaluating potential 

health effects on benthic-dwelling organisms.  This study sampled a relatively large number (N = 

24) of sites across southern Lake Michigan, making it possible to assess the spatial distribution 

pattern of these contaminants, which highlighted the impact of AOCs and industrial/urban areas. 

Finally, this study proposed a way of estimating the loading of SVOCs into Lake Michigan based 

on their concentrations in surface sediments, which showed remarkable agreement with prior 

estimates (Helfrich and Armstrong 1986; Simcik et al. 1996).  Compared to methods that 

compile loadings from various routes (Helfrich and Armstrong 1986; Melymuk et al. 2014), the 

method used is relatively simple and accounts for all possible routes of inputs.  The source 

identification and apportionments in Chapter 4 identified the key PAH and NPAH sources as 

vehicle emissions, coal combustion and coal-tar based sealants.  Again, these can be targeted for 

emission reduction. 

Chapter 4 investigated PAH, NPAH, hopane and sterane emissions from a major source -

-- diesel engine exhaust.  Vehicle emissions depended strongly on fuel types, engine operating 

conditions and exhaust after-treatment technologies.  Information regarding NPAH emissions 

with alternative fuels and after-treatment systems is limited and inconsistent (Zou and Atkinson 

2003; Karavalakis et al. 2010; Ratcliff et al. 2010; Heeb et al. 2010, 2008), and no information is 

available regarding hopane and sterane emissions with these new fuels and technologies.  This 

study was unique in examining and comparing emissions with three types of fuels, three different 

engine operating conditions, and two after-treatment systems.  The study also examined idle 

emissions, which have received considerable attention recently, but which remain poorly 

characterized.  The significant reduction of target SVOC emissions observed suggest that the use 

of alternative fuels and after-treatment technologies should be promoted.  

Filter and extract processing are necessary procedures in the analysis of target 

compounds in diesel exhaust PM samples. These procedures involve multiple, sequential and 

complex steps, during which target SVOCs can volatize, decompose, or transform.  However, 

sample integrity for NPAHs, hopanes and steranes during filter and extract processing have not 

been characterized.  This study is unique in examining the effects of filter conditioning, filter 
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storage and extract storage using real diesel exhaust PM samples.  The results have important 

implications on SVOC sampling and analysis protocols, which should utilize stringent criteria 

and performance checks to limit possible biases during filter and extract processing and storage.  

Chapter 6 used multimedia models and provided a comprehensive picture of the 

environmental fate of PAHs and NPAHs, essential information for understanding the behavior of 

these contaminants in Lake Michigan and its aquatic food web.  While concentrations of high-

molecular-weight PAHs were accurately predicted, improved parameters and possibly more 

sophisticated model structures are needed to accurately predict low-molecular-weight 

compounds.  Using the models in an inverse fashion to estimate emission rates of PAHs and 

NPAHs from environmental concentrations provided information on historical emissions, and 

can help improve existing emission inventories, which are compiled only every several years, 

and which may not include all of the many sources of PAHs/NPAHs. 

7.4 Limitations 

The environmental behavior of PAHs, NPAHs, hopanes and steranes is complex, and the 

limitations of this research are recognized. In Chapter 2, only whole-fish homogenates were 

analyzed, as analyses were aimed at assessing the whole body burden of the fish and the health 

risks to other wildlife.  However, organ-specific analysis, e.g., analysis of fillets, would be more 

appropriate for evaluating human health risks.  In addition, only parent PAHs were measured, 

which may ignore the potential persistence and toxicity of PAH metabolites.  Concentrations 

were measured in only a top predator fish (lake trout), and levels in prey fish and aquatic 

invertebrates would be useful to permit a direct analysis of trophic level effects. 

In Chapter 3, the 24 sites sampled for sediments were all open-water sites with water 

depths greater than 10 m.  No samples were taken at or very near potential source areas (e.g., 

AOCs, urban and industrial discharges), making it difficult to assess the impact of these sources.  

In addition, only surficial sediments were analyzed.  Sampling and analysis of sediment cores 

can provide information regarding historical trends.  Only sites in the southern portion of Lake 

Michigan were sampled.  Ideally, sediment samples would be collected across the lake, and also 

at sites where fish collection occurred.  Finally, only a subset of potential target compounds were 

measured.  Sampling of additional compounds potentially would provide more information on 

sources.  
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Chapter 4 used bench tests of a heavy-duty diesel engine with three fuels, two after-

treatment systems and three engine operating conditions.  However, bench tests may not reflect 

real road conditions, and the limited sample cannot represent the full range of emissions resulting 

from different engines, model years, displacements, calibrations, after-treatment systems, fuel 

compositions, etc.  Moreover, the tests used only steady-state conditions, rather than dynamic 

driving cycles.  

For the integrity tests in Chapter 5, the number of samples in each filter conditioning and 

storage test was small, and thus statistical hypothesis testing was not feasible. Only borosilicate 

glass fiber filters were examined, and other filter types such Teflon filters were not evaluated. 

The model in Chapter 6 applied the same (and often) default values of certain model 

parameters for all target PAHs and NPAHs. These included mass transfer coefficients and gut 

absorption efficiencies, sensitive variables for many model outputs. These defaults had been 

developed for persistent organic pollutants (e.g., PCBs, PBDEs and high-molecular-weight 

PAHs), and may not have been appropriate for less persistent NPAHs and low-molecular-weight 

PAHs.  Only air emission data were available, and emissions to other compartments were 

estimated or ignored.  Background concentrations in water were also ignored. Measurements in 

water and air were unavailable for NPAHs, so model evaluation was not attempted for these 

compounds. For the dynamic model application, there is a large data gap in PAH sediment 

concentrations (1990 to 2011), and concentrations were interpolated. For these reasons, the 

estimated emission rates may be inaccurate, and additional measurements would be helpful for 

confirming the results.  

7.5 Recommendations for further study 

7.5.1 Future studies on aquatic biota 

Although the results in Chapter 2 showed that PAH and NPAH levels in Lake Michigan 

lake trout were low, the detection of highly carcinogenic NPAHs (e.g., 6-nitrochrysene) still 

highlighted the need for additional assessment or monitoring. Concentrations of PCBs and 

organochlorine pesticides have been monitored in Great Lakes predator fish (lake trout and 

walleye) since 1970s by the Great Lake Fish Monitoring and Surveillance Program (GLFMSP) 

(Chang et al. 2012; De Vault et al. 1996). This program could be extended to include PAHs and 

NPAHs due to the toxicity of these compounds.  More continuous monitoring would also 
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provide trend information.  The GLFMSP only samples two sites in each of the Great Lakes 

(Sturgeon Bay and Saugatuck in Lake Michigan).  The number of sites could be increased to 

cover areas near AOCs, large cities and industrial centers, e.g., Green Bay, Milwaukee, 

Waukegan and Chicago/Gary for Lake Michigan.  The monitoring program for sediments could 

also be extended, since sediments form the largest reservoir of contaminants and are a direct 

source of contaminants to benthic organisms.  

The “biodilution” suggested in this research suggests the value of monitoring PAH and 

NPAH levels in prey fish and aquatic invertebrates.  Future studies might sample predator fish, 

prey fish, invertebrates and sediments at the same sites, analyze them for PAH and NPAH 

concentrations, and determine the exact trophic level of the organisms using stable carbon and 

nitrogen isotope analysis.  This would evaluate the direct impacts of sediments, and better 

estimate the relationship between trophic level and PAH/NPAH concentration. 

7.5.2 Future studies on sediments 

Chapter 3 investigated the target compounds in southern Lake Michigan sediments. 

Future studies might examine sediments from other areas of the lake (e.g., central and northern 

portion, Green Bay, Grand Traverse Bay), thus obtaining a more comprehensive picture across 

the whole Lake Michigan.  Further, sampling and analysis of sediment cores would provide more 

information regarding historical trends.  Additional compounds (e.g., alkylated PAHs, certain 

NPAHs and hopanes) might be measured to gain more insight regarding hydrocarbon sources.  

7.5.3 Advanced source apportionment 

Chapter 3 used CMB modeling to apportion PAH sources.  This technique cannot be used 

for NPAHs due to the lack of source profiles.  Thus, NPAH emissions and profiles from various 

sources (e.g., vehicle exhaust, power plants, coke ovens, wood burning, etc.) should be 

developed to facilitate CMB modeling.  In addition to the diagnostic ratios and CMB modeling 

presented in Chapter 4, other techniques might be used to identify and apportion sources.  These 

include factor analysis (FA) (Christensen and Arora 2007) and principal component analysis 

(PCA) (Stout and Graan 2010).  Multiple techniques used together might help confirm results.  

219 
 



 

7.5.4 Future studies on vehicle emissions 

This study demonstrated that different engine loads, fuel types and after-treatment 

systems produced large differences in diesel engine exhaust emissions.  It is recommended to 

perform additional tests with various engine brands, model years, displacements, calibrations, 

after-treatment systems, and fuels.  In addition to steady-state conditions, the EPA transient cycle 

and other driving cycles could be examined. 

7.5.5 Improved multimedia modeling 

For many NPAH compounds, experimentally-obtained physiochemical properties are 

unavailable, and these parameters were estimated (EPA 2012). Experimentally-determined 

values of NPAH parameters, such as vapor pressure, water solubility and log Kow , would be 

preferred. Other parameters, such as bioavailability and gut absorption efficiencies, could also be 

studied to better understand NPAH fate in the food web. The food web can be further extended 

to consider zebra and quagga mussels and their impacts in contaminant cycling. Measurements 

of NPAH concentrations in air, water and biota of Lake Michigan are needed to validate the 

model. Lastly, improved and more comprehensive emission inventories, especially for emissions 

to water and soil and including NPAHs, would be valuable for multimedia modeling.  
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