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ABSTRACT

Incentivizing Secondary Spectrum Trading: A Profit Perspective

by

Shang-Pin Sheng

Chair: Mingyan Liu

With the ever-increasingly connected mobile devices, demand for mobile broadband

service is likely to outstrip spectrum capacity in the near-term. Without action to

address this spectrum crisis, service quality is likely to suffer and prices are likely to

rise. Fortunately, recent studies show that a large part of licensed spectrum remains

under-utilized, which should allow concepts such as dynamic spectrum access/sharing,

open access, and secondary (spot or short-term) spectrum market to alleviate the

crisis.

From the inception of the open access paradigm, it was clear that for it to work

two issues must be adequately addressed: sensing and pricing. The first refers to the

ability of a (secondary) device to accurately detect channel opportunity and more

generally to acquire information on the spectrum environment. The second refers to

mechanisms that provide license holders with the right incentives so that they will

willingly allow access by unlicensed devices. In this thesis we examine both issues but

in ways that are distinctly different from most of what has been done in the literature.

For the pricing issue, we formulate a contract design problem where a primary

license holder wishes to profit from its excess spectrum capacity by selling it to po-

x



tential secondary users. It needs to determine how to optimally price the excess

spectrum so as to maximize its profit, knowing that this excess capacity is stochastic

in nature, does not come with exclusive access, and cannot provide deterministic ser-

vice guarantees to a buyer. We adopt as a reference a traditional spectrum market

where the buyer can purchase exclusive access with fixed/deterministic guarantees.

We fully characterize the optimal solution in the cases where there is a single buyer

type, and construct an algorithm that generates a set of contracts in the general

case. When multiple primary holders exist, we develop a price competition model

for the license holders selling on a secondary spectrum market. Standard results sug-

gest that under full competition the equilibrium only exists when all sellers have zero

profit. We introduce a regulator which can also be thought of as the sellers forming a

coalition, whose role is to enable money transfer based on partial observations of the

sellers’ actions. We show that by proper design of the transfer mechanism, efficient

equilibrium (profit-maximizing) can be achieved.

On the sensing front, a good channel model can greatly enhance the the ability of

secondary devices to quickly detect spectrum availability and exploit instantaneous

spectrum opportunities. We propose a spectrum utilization model which uses stochas-

tic differential equations (SDE) to model dynamic scattering and multipath fading

channels, in particular, Rayleigh-distributed stationary channels. The SDE model is

in closed form, can generate spectrum dynamics as a temporal process, and is shown

to provide very good fit for real spectrum measurement data. We show how synthetic

spectrum data can be generated in a straightforward manner using this model to

enable realistic simulation studies.

xi



CHAPTER I

Introduction

1.1 Motivation

The first 1G service was launched in early 1980. In the two decades that followed

(1990-2010) the worldwide mobile phone subscription grew from 12.4 million to over

4.6 billion [59]. Recent studies predict that the demand for mobile broadband - driven

by devices like smart phones, such as the iPhone and Google’s Android, and by newly

connected devices, like the iPad and Amazon’s Kindle, will increase 13-fold between

2012 and 2017 [17], with more than 10 billion mobile-connected devices by then.

With the ever-increasingly connected mobile devices, demand for mobile broad-

band service is likely to outstrip spectrum capacity in the near-term. Without action

to address this spectrum crisis, service quality is likely to suffer and prices are likely

to rise. Fortunately, recent studies show that a large part of licensed spectrum remain

under-utilized: for instance, on average only about 5.2% of the available spectrum

from 30MHz to 3GHz was being used at any given time in New York City, and the

peak usage was only 13% [20]. A reasonable conjecture therefore is that unlicensed

access of idle (but licensed) spectrum bands, commonly referred to as secondary spec-

trum access, would avert the impending crisis at least in the new-term. This idea

has led to extensive research and development in recent years in such concepts as

dynamic spectrum access/sharing, open access, and secondary (spot or short-term)
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spectrum market, see e.g., [5, 12].

1.2 Challenges

From the inception of the open access paradigm, it was clear that for it to work

two issues must be adequately addressed: pricing and sensing. The first refers to

mechanisms that provide license holders with the right incentives so that they may

willingly allow access by unlicensed devices. The second refers to the ability of a

(secondary) device to accurately detect channel opportunity and, more generally,

to acquire information on the spectrum environment. These two aspects and the

associated challenges are elaborated below.

Pricing The vision of large-scale secondary spectrum access will not be realized

only through the availability of the enabling technology and the regulatory progress:

secondary access cannot be merely rendered as a regulatory compulsion or even so-

cially desirable, but must also be profitable for the license holders. It is unlikely that

the FCC will compel the license holders to allow secondary access, but it can establish

policies to incentivize such cooperation [60], such as creating a secondary spectrum

market on which secondary users may lease or purchase spectrum usage from primary

license holders.

In this scenario, the goods being traded is the excess capacity of the license holder.

Note that the excess capacity is stochastic in nature, does not come with exclusive

access, and cannot provide deterministic service guarantees to a buyer. Any incen-

tive mechanism much be able to establish the benefit of purchasing non-guaranteed

secondary spectrum. The competition among license holders must also be addressed;

otherwise, the secondary market may be inefficient and the profit of the license holders

might collapse to zero.

2



Sensing Communications over wireless media is generally much more error prone

compared to their wireline counterparts due to the noisier, time-varying and often

unpredictable nature of the wireless channel quality. Consequently, the modeling of

error patterns in wireless communication has been an important tool for evaluating

the performance of wireless communication and networking algorithms, both in anal-

ysis and in simulation. Research in recent years on dynamic (and open) spectrum

access using cognitive radios (CR) [38] has further exemplified the importance of

channel modeling: the ability of wireless devices to quickly detect spectrum avail-

ability and exploit instantaneous spectrum opportunities is greatly enhanced if they

are equipped with a good channel model that accurately captures the stochastic be-

havior of the underlying channel conditions. This is reflected in our ability to derive

better channel sensing and access decisions both in theory and in numerical exper-

iment when good channels models are available. For this reason the sensing aspect

of secondary spectrum access is also simultaneously treated the same as the channel

modeling aspect.

Coupling between pricing and sensing While it may appear that channel mod-

eling and pricing are two separate issues, they are actually closely connected. From

the seller’s point of view, in order to price the spectrum product appropriately they

need to provide a good characterization of their own channel. Without an accurate

description of the spectrum product, the price of the product cannot be justified be-

cause a buyer will not be able to determine whether the channel satisfies their needs.

A precise description of the secondary spectrum product provided by the seller will

enable the buyer to accurately calculate the amount needed to purchase, which in-

creases the incentive of the buyer to participate in the secondary spectrum market.

Thus, an accurate channel model will lead to accurate pricing which strengthens the

incentives of both the primaries and the secondaries to participate in the secondary

3



spectrum market.

1.3 Our Approach in Relation to Prior Work

Our assumption on the relation between the primary and secondary users can

be classified in the hierarchical access model under the spectrum overlay model as

described in [75]. In the hierarchical access structure, the primary users (licensees)

open licensed spectrum to secondary users while limiting the interference perceived by

primary users. Under the spectrum overlay model, the secondary users are restricted

in when and where they can emit power. For example, the secondary users may

only transmit when there exists a temporal white space in the spectrum. Under the

limiting constraint, the primary users does not see the existence of the secondary users

and its transmission quality is not affected at all. In this sense, when participating the

secondary users absorb the entire risk of shared access, that os having non-guaranteed

transmission service due to the strict constraint on transmission rights.

1.3.1 Contract Framework for Spectrum Market

There has been a number of mechanisms proposed to address the incentive issue,

the most often used being the auction mechanism, see e.g., [70, 31, 40]. Auction

is also the primary mechanism used in allocating spectrum on the primary market

[35]. Under an auction, competing buyers submit bids to a license holder to obtain

spectrum access. In selecting winning bids an auction can be designed to maximize the

profit of the license holder [31], or to maximize social welfare [40], or some combination

of both [31].

In this thesis we consider an alternative approach, that is based on contracts

(posted price), to the trading of spectrum access on the secondary market. This

is conceptually like the design of pricing plans by a cellular operator: it presents a

potential user with a set of contract options, each consisting of parameters including

4



the duration of the contract, discount on the device, number of free minutes per

month, price per minute for those over the free limit, window of unlimited calling

time, and so on. In coming up with these calling plans the operator typically studies

carefully the types of callers it wants to attract and their calling patterns/habits; the

subsequent plans are catered to these patterns with the objective of maximizing its

revenue. A caller interested in entering into contract with the operator is expected

to look through these plans and pick one that is the best suited for him/her needs.

Posted price focuses less on the competition among buyers, but more on the de-

signs of products and prices on the part of the license holder to attract potential

buyers. While the two mechanisms (auction and posted price) have been shown to

generate equal profit under ideal conditions [58], they are suitable for different sce-

narios in general. The inherent cost of auction comes from setting up each individual

auction. The processing of the bids, the wait time for the auction to end are all per

auction-based additional costs to the seller [74]. On the contrary, posted price or con-

tract is considered to have a one time cost related to the determination of the efficient

price. This requires thorough understanding of the market which can take time and

money to investigate [69]. The efficient price can be very hard to determine if the

item is rare or the potential buyers are hard to identify. Not surprisingly, auction is

suitable when the items are rare and the unit price is high. When the seller has a

large quantity of identical items, posted price is the better option. As more and more

license holders become interested in the secondary market trading smaller quantities

for shorter duration of time compared to the primary wholesale market, we believe

pricing schemes like the contracts studied in this paper offer a valid alternative to

spectrum auctions.
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1.3.2 Price Competition in Spectrum Market

As more and more license holders participate in the secondary market trading,

price competition between the license holders is inevitable. When the license holders

are competing against each other, the profit each license holder receives will be less

than that from a monopoly market. However, this competition relationship in the

secondary spectrum market is rarely discussed in the literature. When considering

competition in markets, the often used models are the Bertrand and Cournot com-

petition models. The Bertrand model shows that with just two sellers, the market

reaches perfect competition and both sellers sell at marginal price. In the Cournot

model, the results also show that the price approaches marginal price as the number

of seller increases. In the real world, it is unlikely that any firm will sell at their

marginal price. Modification of these two models aim to reflect the real market.

For example, Bertrand-Edgeworth model assumes a production limit of firms in the

Bertrand model. Various other factors can be incorporated in the model to avoid com-

plete competition such as product differentiation, transport and search costs. The

companies can also avoid competing with each other by colluding/side contracting.

1.3.3 Modeling of Spectrum Utilization

The desire to better understand spectrum utilization, especially in the presence

of licensed primary users, has motivated a series of spectrum measurement studies

published recently, see e.g., [56, 55, 41, 16]. These measurement studies, however,

have not in general led to tools that can generate realistic spectrum utilization as a

time process to evaluate spectrum sensing and access algorithms. In [52] a sequence

of probability distributions of spectrum availability were derived using measurement

data. However, these distributions capture only the average behavior of spectrum

rather than describing spectrum activity as a process in time. Our goal in this dis-

sertation is to construct stochastic models that can capture key properties of wireless

6



channels that are important in evaluating opportunistic spectrum access schemes.

1.3.4 Portfolio Optimization of Secondary Spectrum

When multiple secondary spectrum are available in the market, the buyer may

be able to combine multiple purchases of stochastic spectrum products to increase

the quality of transmission, by taking into account the second order statistics of the

spectrum products. In this thesis, we consider a buyer who purchases a portfolio of

spectrum products to maximize the mean throughput while minimizing the variation

of transmission throughput. Although secondary spectrum products, taken sepa-

rately are unreliable and non-guaranteed, the combined quality may be significantly

improved. The pricing can be dynamic depending on the dynamics of the quality of

the secondary spectrum. The buyer in turn decides on the portfolio based on the

instantaneous pricing and channel quality. In this case an accurate channel model

becomes important for both the seller and the buyer so as to have good pricing and

purchasing choices. Work most related to this includes [57], where they consider two

possible metrics, the demand satisfaction rate constraint and the demand satisfaction

probability constraint. We use the Sharpe ratio metric similar to [2] and extend the

buyer’s consideration problem to include pricing.

1.4 Overview of the Thesis and Main Contributions

In this section, we list the main contributions of this thesis.

• Contract Framework for Secondary Spectrum Market

– We proposed a contract design framework where a primary license holder

wishes to profit from its excess spectrum capacity by selling it to potential

secondary users/buyers via designing a set of profitable contracts. We

completely characterize the optimal solution in the cases where there is
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a single buyer type, and when multiple types of buyers share a common,

known channel condition. In the case when each type of buyers have

different channel conditions we construct an algorithm that generates a

set of contracts in a computationally efficient manner, and show that this

set is optimal when the buyer types satisfy a monotonicity condition.

– We generalize the contract design problem to a more general framework.

The cost function of the buyer can be any function that is increasing in the

money spent, while the quality constraint can be any function that can be

mapped to the additional reference spectrum needed. The utility of the

seller can be any form that is increasing in the price per bandwidth. We

characterize the optimal solution where there is a single buyer type. In

the case when more than one buyer types exist, we construct an algorithm

that generates a set of contracts in a computationally efficient manner, and

show that this set is optimal in the discretized grid when the buyer types

satisfy a monotonicity condition.

• Price Competition in Secondary Spectrum Market

– We introduce a competition model suitable for the secondary spectrum

market. The model is a oligopoly model with multiple sellers competing

in multiple markets. We first show that the market will result in full

competition where equilibrium only exists when all sellers have zero profit.

We then introduce a regulator who can facilitate a set of money transfer

based on partial observations of the sellers actions. We show that by the

introduction of this regulator, we can induce the market to have efficient

(profit maximizing) equilibria. The conditions for designing a stable money

transfer were characterized for cases of two-seller and multiple-seller cases,

and how to achieve fair profit share is also discussed.
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• Secondary Spectrum Utilization Model

– We derive a stochastic differential equation (SDE) model to describe the

secondary wireless channel power. We introduce a method to fit the SDE

model to real spectrum measurement data and show that the SDE model

represents the data very well under different measurement regimes. The

SDE model can be used to generate synthesized sample paths whose en-

tropy measure is consistent with the original measurement data. While we

show that the 2-state GE model is a good choice when binary represen-

tation of the channel condition is sufficient, the SDE model is in general

much more accurate and easier to use than an N -state model because we

can derive an N -state model from the SDE model.

• A Portfolio Framework for Dynamic Channel Models

– We consider buyers combine multiple secondary spectrum purchases (spec-

trum portfolio) to obtain better transmission quality. The quality is char-

acterized by both the total transmission throughput and the variation of

the total throughput. We first solve the buyer’s problem of choosing the

optimal spectrum portfolio under a budget constraint. Next, we introduce

a reference market which sells guaranteed spectrum service and solve the

buyer’s problem again. Based on the result of the buyer’s consideration,

we find the optimal pricing plan which maximizes the seller’s total rev-

enue. If the seller has a cost per channel, we find the optimal pricing plan

assuming both the cost and the pricing plan are proportional to the mean

throughput on each spectrum channel.
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1.5 Organization of the Thesis

The organization of the thesis is as follows. Profit of the license holder can be

achieved if (1) the buyers have incentives to purchase the secondary spectrum (2) the

competition between license holders result in a profitable market. For the first prob-

lem, we propose two frameworks that utilize guaranteed reference spectrum to show

that buyers have incentive in participating in the secondary spectrum trading (Chap-

ter II, III). For the second problem, we propose a modified Bertrand model to show

the efficiency of the multiple secondary spectrum markets (Chapter IV). For sensing,

we develop a continuous stochastic differential equation (SDE) model as an alterna-

tive to the commonly used channel model, particularly in the context of opportunistic

and dynamic spectrum access (Chapter V). For connecting pricing frameworks with

channel modeling, we propose a portfolio spectrum framework where the buyer dy-

namically purchases a portfolio of spectrum products to fulfill it’s transmission needs

(Chapter VI).
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CHAPTER II

Trading Secondary Spectrum Through Contract

Design

2.1 Introduction

In this chapter we consider an approach based on contracts, to the trading of

spectrum access on the secondary market (see Section 2.7.4 on a discussion comparing

the two mechanisms). This is conceptually like the design of pricing plans by a cellular

operator: it presents a potential user with a set of contract options, each consisting

of parameters including the duration of the contract, discount on the device, number

of free minutes per month, price per minute for those over the free limit, window

of unlimited calling time, and so on. In coming up with these calling plans the

operator typically studies carefully the types of callers it wants to attract and their

calling patterns/habits; the subsequent plans are catered to these patterns with the

objective of maximizing its revenue. A caller interested in entering into contract with

the operator is expected to look through these plans and pick one that is the best

suited for him/her needs.

We adopt such a contract design approach in the context of the secondary spec-

trum market, where a license holder advertises a set of prices and service plans in

the hope that a potential buyer will find one of them sufficiently appealing to enter
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into contract. The contracts are designed with the goal of maximizing the expected

revenue of the license holder given a set of buyer types (more precisely defined in the

next section).

To make the contracts appealing to a buyer, one must address the issue that

the spectrum offered on the secondary (short-term) market is typically the excess

capacity due to the primary license holder’s own spectrum under-utilization. Its

quality is therefore often uncontrolled and random, both spatially and temporally,

and strongly dependent on the behavior of the primary users. The primary license

holder can of course choose to eliminate the randomness by setting aside resources

(e.g., bandwidth) exclusively for secondary users. This will however likely impinge on

its current users and may not be in the interest of its primary business model. The

alternative is to simply give non-exclusive access to secondary users for a fee, which

allows the secondary users to share a certain amount of bandwidth simultaneously

with its existing licensed users, but only under certain conditions on the primary

traffic/spectrum usage. For instance, a secondary user is given access but can only use

the bandwidth if the current activity by the licensed users is below a certain level, e.g.,

as measured by received SNR, the so-called spectrum overlay. Many spectrum sharing

schemes proposed in the literature fall under this scenario, see e.g., [47, 50, 76, 4].

In this case a secondary user pays (either in the form of money or services in

return) to gain spectrum access but not for guaranteed use of the spectrum. This

presents a challenge to both the primary and the secondary users: On one hand,

the secondary user must assess its needs and determine whether the uncertainty in

spectrum quality is worth the price asked for and what level of uncertainty can be

tolerated. On the other hand, the primary must decide how stochastic service quality

should be priced so as to remain competitive against guaranteed (or deterministic)

services which the secondary user may be able to purchase from a traditional market

or a different primary license holder.
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To address this challenge we adopt a reference point in the form of a traditional

spectrum market from where a secondary user can purchase guaranteed service, i.e.,

exclusive access rights to certain bandwidth, at a fixed price per unit. This makes it

possible for the secondary user to reject the offer from the primary if it is risk-averse

or if the primary’s offer is not attractive. This also implies that the price per unit of

bandwidth offered by the primary user must reflect its stochastic quality.

Work most relevant to the study presented in this chapter includes [24, 57, 43, 32].

In [24] a contract problem is studied where the secondary users help relay primary

user’s data and in return are allowed to send their own data. In [57] an optimal

portfolio problem is studied, where a secondary user can purchase a bundle of different

stochastic channels, with the price of each already determined, and seeks to find the

optimal purchase. In [43] a network revenue management problem is studied, where

the customers arrive according to a Poisson process and the performance of a class of

certainty-equivalent heuristic control policies was studied. In [32], spectrum trading is

modeled as a monopoly market where the primary determines a price-quality contract.

While our problem setting bears similarity to that considered in [32], there are several

major differences, the chief of which is the fact that our model is not monopolistic

due to the existence of a traditional market (exclusive access) mentioned above, that

serves as a reference for the value of spectrum products offered on the secondary

market (non-exclusive access). In addition, we model different buyer types by their

required bandwidth, service quality and loss tolerance. As a result the types can only

be partially ordered.

Main contributions of this chapter are as follows:

1. We formulate a contract design problem where the spectrum license holder seeks

to sell his excess bandwidth to potential buyers. The model captures the follow-

ing essential features: (1) excess bandwidth on the secondary spectrum market

often comes with non-exclusive use and therefore highly uncertain channel con-
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ditions; (2) incentives are built in for both the seller and the buyer to conduct

spectrum trading on the secondary market.

2. We fully characterize the optimal set of contracts the seller should provide in

the case of a single or two types of buyers, and when multiple types of buyers

share the same channel condition due to primary user activities.

3. When there are multiple types of buyers and each experiences different chan-

nel conditions, we construct a computationally efficient algorithm and show

that the set of contracts it generates is optimal when the buyer types satisfy a

monotonicity condition.

4. When the spectrum holder has limited amount of bandwidth, we discuss three

different scenarios and show how to modify our algorithm accordingly.

The remainder of the chapter is organized as follows. We present the contract

design problem in Section 2.2. Section 2.3 characterizes the utility region and the

optimal contract in the single buyer case. Section 2.5 deals with the case when the

channel condition is common knowledge, while Section 2.6 focuses on the case when

channel conditions are private knowledge. Discussion is given in Section 2.7.2, 2.7.4

and 2.7.3 and numerical results in Section 2.8.

2.2 Model and Assumptions

In this section we describe in detail the models for the two parties under the

contract framework: the seller and the buyer, and their considerations in designing

and accepting a contract, respectively. We also illustrate a basic idea underlying

our model to capture the value of secondary spectrum service, which is random and

non-guaranteed in nature, by using guaranteed service as a reference.
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2.2.1 The Seller

There are two parties to a contract, the seller and the buyer. The seller is also

referred to as the owner or the primary license holder, who uses the spectrum to

provide business and service to its primary users, and carry primary traffic. He is

willing to sell underutilized bandwidth he has as long as it generates positive profit

and does not impact negatively his primary business. We will assume that the seller

can pre-design up to M contracts and announce them to potential buyers.

2.2.2 The contract

Each contract is in the form of a pair of real numbers (x, p), where x ∈ R+ and

p ∈ R+.

• x is the amount of bandwidth they agree to trade on (i.e., access to this amount

of bandwidth is given from the seller to buyer).

• p is the price per unit of x; thus a total of xp is paid to the seller if the buyer

purchases this contract.

The seller’s profit or utility from contract (x, p) is given as

U(x, p) = x(p− c)

where c is a predetermined constant that takes into account the operating cost of the

seller. We will assume that any contract the seller presents must be such that p > c;

that is, the seller will not sell at a loss. If none of the contracts is accepted by the

buyer, the reserve utility of the owner is defined by U(0, 0) = 0.
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2.2.3 A reference market of fixed/deterministic service or exclusive use

We next consider what a contract specified by the pair (x, p) means to a potential

buyer. To see this, we will assume that there exists a traditional (as opposed to

this emerging, secondary) market from where the buyer can purchase services with

fixed or deterministic guarantees. What this means is that the buyer can purchase

exclusive use of certain amount of bandwidth, which does not have to be shared with

other (primary) users. This serves as an alternative to the buyer, and is used in

our model as a point of reference. We will not specify how the price of exclusive

use is set, and will simply normalize it to be unit price per unit of bandwidth (or

per unit of transmission rate). The idea is that given this alternative, the seller

cannot arbitrarily set his price because the buyer can always walk away and purchase

from this traditional market. This traditional market will also be referred to as the

reference market, and the service it offers as the fixed or deterministic service. Our

model allows a buyer to purchase from both markets should that be in the interest of

the buyer. Note that even though we have assumed a single seller model, this is not

a monopoly because of the existence of this reference market. However, we do not

explicitly model the competition between multiple sellers on the secondary market,

which remains an interesting subject of future study.

2.2.4 The buyer’s consideration

When the set of M contracts are presented to a buyer, his choices are (1) to

choose one of the contracts and abide by its terms, (2) to reject all contracts and

go to the traditional market, and (3) to purchase a certain combination from both

markets. The buyer’s goal is to minimize his purchasing cost as long as certain quality

constraints are satisfied.

While the framework presented here applies to any meaningful quality constraint,

to make our discussion concrete below we will focus on a loss constraint. Suppose the
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buyer chooses to purchase y units of fixed service from the reference market together

with a contract (x, p). Then its constraint on expected loss of transmission can be

expressed as:

E[(q − y − xB)+] ≤ ε ,where

• q is the amount of data/traffic the buyer wishes to transmit.

• B ∈ {0, 1} is a binary random variable denoting the quality of the channel for

this buyer. We will denote b := P (B = 1).

• ε is a threshold on the expected loss acceptable to the buyer.

• y is the amount of bandwidth the buyer purchases additionally from the refer-

ence market; its price is 1 per unit bandwidth.

Note that quantities x, y and q are of the same unit; this unit can be bit (total

amount of transmission), or rate (bits per second), and so on. Here we have adopted

a simplifying assumption that the purchased service (in the amount of x) is either

available in the full amount (when B = 1) or unavailable (when B = 0), with xb being

the expected availability. If the contract duration is comparable to the time constant

of the primary user activity (e.g., peak vs. off-peak hours) then this model captures

the spectrum condition at the time of contract signing. More sophisticated models

can be adopted here, by replacing xB with another random variable X(x) denoting

the random amount of data transmission the buyer can actually realize. Although the

technical details will become different, the basic ideas are the same. More is discussed

on how to incorporate a general model of B in Chapter III.

With a purchase of (y, (x, p)), the buyer’s cost is given by y + xp. The cost of

the contract (x, p) to this buyer is given by the value of the following minimization
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problem:

C(x, p) = minimize
y

y + xp (2.1)

subject to E[(q − y − xB)+] ≤ ε (2.2)

That is, to assess how much this contract actually costs him, the buyer has to consider

how much additional fixed service he needs to purchase to fulfill his needs.

The buyer can always choose to not enter into any of the presented contracts and

only purchase from the traditional market. In this case, his cost is given by the value

of the following minimization problem:

C(0, 0) = minimize
y

y, subject to E[(q − y)+] ≤ ε

Since every term is deterministic in the above problem, we immediately conclude that

C(0, 0) = q−ε, which will be referred to as the reserve price of the buyer. It is natural

to assume that any buyer must be such that q ≥ ε, for otherwise the buyer does not

need to perform any transmission as it can tolerate the loss of all of its data.

In deciding whether to accept a given contract (x, p), the buyer has to consider

(1) whether the contract would satisfy its quality (loss) constraint, and (2) whether

there is an incentive to enter into this contract, i.e., whether the cost of this contract

is no higher than the reserve price. The latter is also referred to as the individual

rationality (IR) constraint, C(x, p) ≤ C(0, 0) = q−ε. Any contract that satisfies both

constraints of a buyer is referred to as acceptable to that buyer.

If a buyer accepts one of the contracts, the two sides come to an agreement and

have to follow the contract up to a predetermined period of time. We will leave

this duration unspecified as it does not affect our analysis under the current model

assuming the buyer’s need is to transmit a certain amount of data over the entire

contract period. However, the binary channel model would be more reasonable if the
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contract considered is short term.

2.2.5 Buyer types and informational constraints

We will assume that a potential buyer may be one of a number of different types;

each type is characterized by a unique triple (q, ε, b), which is a buyer’s private infor-

mation. That is, a type is characterized by its transmission needs (amount q to be

transferred and loss requirement ε), as well as its perceived spectrum/channel quality

(b). Throughout the chapter we will assume that a type (q, ε, b) is such that there

exists a contract with p > c acceptable to the buyer, for otherwise the seller has no

incentive to sell.

We will further assume two cases, where b is common to all types and where b

may be different for different types. The first case models the scenario where buyers

are relatively homogeneous and their perceived channel quality is largely determined

by the primary user traffic reflected in b. In this case it is also natural to assume

that b is known to the seller. The second case models the scenario where buyers may

differ significantly in their location, quality of transceiver devices, and so on, which

leads to different perceived channel quality, which is only known to a buyer himself.

The seller is assumed to know the distribution of the buyer types but not the

actual type of a particular buyer. The buyer types and their distribution may be

estimated from the seller’s past experience. Specifically, we will assume there are K

types of buyers, and a buyer is of type i with probability ri and is given by the triple

(qi, bi, εi). In subsequent sections we proceed in the following sequence: (1) single

user type, (2) multiple user types; common b, and (3) multiple user types; different

and private b.
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2.3 Optimal contract for a single buyer type

We begin by considering the case where there is only one type of buyer (q, ε, b).

Through this simplified scenario we will introduce a number of concepts key to our

analysis and obtain some basic understanding of the nature of this problem.

Under our assumption that the seller knows the buyer type distribution, having

a single type (i.e., a singleton distribution) essentially means that the triple (q, ε, b)

is known to the seller. Denote by T = {(x, p) : C(x, p) ≤ C(0, 0)} the set of all

acceptable contracts for the buyer, or the acceptance region. This is characterized by

the next result.

Theorem 2.1. When q(1− b) ≤ ε, the buyer accepts a contract (x, p) iff

p ≤

 b if x ≤ q−ε
b

q−ε
x

if x > q−ε
b

. (2.3)

When q(1− b) > ε, the buyer accepts the contract iff

p ≤

 b if x ≤ ε
1−b

bε
x(1−b) if x > ε

1−b

. (2.4)

The above theorem can be proved for each of the cases listed above. For brevity

below we only show the proof for the sufficient condition under q(1 − b) ≤ ε for the

first case in Eqn (2.3); other cases can be done using similar arguments.

Lemma 2.2. When q(1− b) ≤ ε, the buyer accepts the contract (x, p) if x ≤ q−ε
b

and

p ≤ b.

Proof. If both the IR constraint and the loss constraint are satisfied under the stated

conditions, then the buyer accepts the contract. Below we check these two constraints.

Let the buyer supplement this contract with an additional purchase of y = q− ε−xp
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deterministic service. Note that y ≥ 0 under the stated conditions. The total cost of

this contract to the buyer is then given by:

C(x, p) = y + xp = q − ε− xp+ xp = q − ε = C(0, 0).

The IR constraint is therefore satisfied. The buyer’s loss under this combination of

purchases is given by:

E[(q − y − xB)+] = (q − y − x)+b+ (q − y)+(1− b)

= (ε+ xp− x)+b+ (ε+ xp)(1− b)

=



(ε+ xp)(1− b) ≤ (ε+ b q−ε
b

)(1− b)

= q(1− b) ≤ ε, if ε+ x(p− 1) ≤ 0

(ε+ x(p− 1))b+ (ε+ xp)(1− b)

= ε+ x(p− b) ≤ ε, if ε+ x(p− 1) > 0

Thus the loss constraint is also satisfied.

The two acceptance regions given by Theorem 2.1 are illustrated in Figs. 2.1.

Any contract that falls below the boundary is acceptable to the buyer. The two cases

have the following interpretations. In the first case (q(1− b) ≤ ε), the quality of the

stochastic channel is sufficiently good such that the loss constraint (3.2) may be met

without any purchase of the deterministic channel. In this case the buyer is willing

to spend up to the entire reserve price C(0, 0) = q− ε on the contract. In the second

case (q(1− b) > ε), the quality of the stochastic channel is such that no matter how

much is purchased, some deterministic channel is needed (y > 0) in order to satisfy

the loss constraint (note xp ≤ bε
1−b < q− ε because q(1− b) > ε). Consequently, in the

first case, further purchase from the reference market is needed only if the contract

has x < x∗, whereas in the second case, the buyer always has to purchase from the

reference market to satisfy the loss constraint. This observation holds throughout the
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Figure 2.1: The upper curve is when q(1 − b) < ε (q = 5, b = 0.8, ε = 3), the lower
curve is when q(1− b) > ε (q = 5, b = 0.3, ε = 3)

chapter including when we introduce multiple buyer types.

For a given buyer type (q, ε, b), the seller can choose any point in the corresponding

acceptance region T to maximize its utility: max(x,p)∈T U(x, p). We next show that

the optimal contract for the seller is given by the “knee” (the intersection point where

the straight line meets the curve) on the boundary of the acceptance region, denoted

as (x∗, p∗).

Theorem 2.3. The optimal contract for the seller is the intersection point (x∗, p∗)

on the acceptance region boundary of the buyer.

Proof. We prove the optimality in two steps. First we show that the seller’s utility

is strictly increasing in p which implies that the optimal contract must be such that

(2.3) and (2.4) hold with strict equality. Then we show that the intersection point is

strictly better than any other point on the boundary. For any x > 0 and ∀p′ > p, we

have

U(x, p′) = x(p′ − c) > x(p− c) = U(x, p).

Thus U(x, p) is strictly increasing in p. For any x < x∗ (points on the straight line)
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we have

U(x∗, p∗) = x∗(p∗ − c) > x(p∗ − c) = U(x, p∗),

which used the fact that p∗ > c. (Recall we have assumed that for any buyer there

must exist a contract with p > c that it finds acceptable. This implies such a point

must be within the acceptance region, which in turn implies that we must have p∗ > c

since p∗ ≥ p, ∀p in the region.) For any pair (x, p) such that xp = x∗p∗ and x > x∗

(points on the curve),

U(x, p) = x(p− c) = x∗p∗ − xc > x∗(p∗ − c) = U(x∗, p∗).

Thus U(x∗, p∗) is strictly greater than any point U(x, p) on the boundary.

Once the seller determines the optimal contract and presents it to the buyer,

the buyer will accept because it satisfies both the loss and the IR constraints. It

can be easily shown that the buyer’s cost in accepting is exactly C(0, 0). Note that

technically since the cost of the contract is exactly equal to the reserve price, the

buyer is indifferent between getting only deterministic service and getting a mix of

both types of services. In practice the seller can always lower the unit price p∗ by an

arbitrarily small amount to provide a positive incentive so that the buyer will accept

the contract. For this reason even though the costs are equal, for simplicity we will

assume that the buyer will accept this contract. For the same reason, we will also

assume that when there exist multiple contracts of equal cost to the buyer, the seller

can always induce the desired choice from the buyer by introducing a small difference

to the desired contract. We have now a complete characterization of the contract

design for a single type of buyer.

We will now introduce the concept of an equal-cost line of a buyer. Consider a

contract (x′, p′). Denote by P (x′, p′, x) a price such that the contract (x, P (x′, p′ , x))

23



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

bandwidth (x)

pr
ic

e 
(p

)

Equal cost line (Cost of accepting)

 

 

13.5
13.15
12.75
12
11.5
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has the same cost as contract (x′, p′) to a buyer.

Definition 2.4. The equal-cost line E of a buyer of type (q, ε, b) is the set of contracts

within the buyer’s acceptance region T that are of equal cost to the buyer. Thus

(x, p) ∈ E if and only if p = P (x′, p′, x) for some other (x′, p′) ∈ E. The cost of this

line is given by C(x′, p′), ∀(x′, p′) ∈ E.

It should be clear that there are many equal-cost lines, each with a different cost.

Figure 2.2 shows an example of a set of equal-cost lines. The next theorem gives a

precise expression for the equivalent price that characterizes an equal-cost line.

Theorem 2.5. For a buyer of type (q, ε, b) with an intersection point (x∗, p∗) on its

acceptance region boundary, and given a contract (x′, p′), an equal-cost line consists

of all contracts (x, P (x′, p′, x)) such that

P (x′, p′, x) =



b− x′

x
(b− p′) if x, x′ ≤ x∗

x′p′/x if x, x′ ≥ x∗

(b(x∗ − x′) + x′p′)/x if x′ < x∗ < x

b− (x∗b− x′p′)/x if x < x∗ < x′

Proof. We will prove this for the case q(1 − b) ≤ ε; the other case can be shown
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with similar arguments and is thus omitted for brevity. In this case x∗ = q−ε
b

. When

x, x′ ≤ x∗, without buying deterministic service the loss is given by

E[(q − xB)+] = (q − x)+b+ q(1− b)

= (q − x)b+ q(1− b) = q − xb ≥ ε,

where the second equality is due to the fact that q(1−b) ≤ ε⇒ q−ε
b
≤ q ⇒ x ≤ q−ε

b
≤

q. The incentive for the buyer is to purchase y such that the loss is just equal to ε.

E[(q − y − xB)+] = (q − y − x)b+ (q − y)(1− b)

= q − y − xb = ε .

The first equality follows from the fact that q(1 − b) ≤ ε, which implies both (q −

y − x) ≥ 0 and (q − y) ≥ 0. This is true for both (x, p) and (x′, p′). Since (x, p) is

on the equal cost line Ex′,p′ , we know that C(x, p) = C(x′, p′). We also know that

C(x, p) = y + xp and C(x′, p′) = y′ + x′p′,

C(x, p) = q − ε− xb+ xp = q − ε− x′b+ x′p′ = C(x′, p′) .

Rearranging the second equality such that p is a function of x, x′, p′ immediately gives

the result. When x, x′ > x∗, x (x′) alone is sufficient to achieve the loss constraint.

For C(x, p) = C(x′, p′) we must have x′p′ = xp, resulting in the second branch. The

third and fourth branch can be directly derived from the first two branches. When

x > x∗ > x′ (x′ > x∗ < x), we first find the equivalent price at x∗ by the first branch

(second branch), and then use the second branch (first branch) to find P (x′, p′, x).

This gives the third branch (fourth branch)

The form of the equal-cost line is the same regardless whether q(1 − b) ≤ ε or

q(1 − b) > ε. Note that every contract below an equal-cost line is strictly preferable
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to a contract on the line for the buyer. This is an observation we will use in subsequent

sections. We end this section with a property of the equivalent price we will use later.

Lemma 2.6. P (x′, p′, x) is strictly increasing in p′ when x′ > 0.

This lemma is easily shown by noting C(x′, p′) = y + x′p′, where y is only a

function of x′. Thus, p > p′ implies C(x′, p) > C(x′, p′) when x′ > 0.

2.4 Multiple buyer types: preliminaries

We now consider K types of buyers indexed by i = 1, 2, · · · , K, each defined by

the triple (qi, εi, bi) with an associated acceptance region Ti. We will use the notation

maxi = (x∗i , p
∗
i ) = argmax(x,p)∈TiU(x, p)

to denote the optimal contract if type i were the only type existing. Similarly, we

will use Ci(x, p) to denote the cost to a type-i buyer for accepting contract (x, p).

A buyer is of type i with probability ri. We assume that the seller knows only

this distribution of types but not the actual type of a given buyer. Consequently it

has to design the contracts in a way that maximizes its expected payoff. Since the

payoff is measured in expectation, it turns out that it does not matter whether the

seller is faced with a single buyer or multiple buyers as long as they are drawn from

the same, known type distribution and the seller has sufficient bandwidth to honor

its contracts. For this reason throughout our discussion we will take the view of a

single buyer drawn from a certain type distribution. In Section 2.7.2 we discuss the

case when the seller has limited bandwidth to trade.

Consider a set of contracts C = {(x1, p1), ..., (xK , pK)} designed by the seller with

the intention that a buyer of type i prefers (xi, pi). This is true iff Ci(xi, pi) ≤

Ci(xj, pj),∀j 6= i. Let Ri(C) denote the contract that a type-i buyer selects given

a set C. Then Ri(C) = argmin(x,p)∈C Ci(x, p) and the seller’s expected utility for a
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given C is E[U(C)] =
∑

i U(Ri(C))ri. Note that there is no point in offering more

than K contracts. In the case of more than K contracts offered, there will always be

a contract not taken by any buyer type.

2.5 Multiple buyer types: Common channel condition

In this section we consider the case where different types share the same channel

condition bi = b, i = 1, · · · , K, which is also known to the seller. As mentioned

earlier, this models the case where the condition is primarily determined by the seller’s

primary user traffic. An example of the acceptance regions of three buyer types are

shown in Figure 2.3. Note that maxi’s need not be ordered in i; however, in the

interest of simplicity in presentation, we will reindex them in ascending order of the

x∗i s for the remainder of this section. There are two possible cases: (1) the seller can

announce as many contracts as he likes (M = K); (2) the seller is limited to at most

M < K contracts. Below we fully characterize the optimal contract set in both cases.
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Figure 2.3: Three buyer types with common b

Theorem 2.7. When M = K, the contract set that maximizes the seller’s profit is

(max1,max2, ...,maxK).
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As shown in Figure 2.3, with a constant b, the intersection points of all acceptance

regions are on the same line p = b. For a buyer of type i, all points to the left of

maxi on this line cost the same as maxi, and all points to its right are outside the

buyer’s acceptance region. Therefore the type-i buyer will select the contract maxi

given this contract set (see earlier discussion on how the seller can always incentivize

this contract over others with equal cost). Since this is the best the seller can do with

a type-i buyer (see Theorem 2.5) this set is optimal for the seller. It is also relatively

straightforward to obtain a similar results in the case of M < K given next.

Lemma 2.8. When M < K and ∀bi = b, the optimal contract set is a subset of

(max1, ...,maxK).

Proof. Assume the optimal contract C is not a subset of (max1, ...,maxK). Then it

must consists of some contract points from at least one of the Ii regions as demon-

strated in Figure 2.3. Let these contracts be Ai ⊂ Ii and
⋃
iAi = C. For each

non-empty Ai, we replace it by the contract maxi and call this new contract set C′.

The proof is to show that this contract set generates profit at least as large as the

original one. For each type-i buyer that picked some contract (x, p) ∈ Aj from the

optimal contract C, it must had a type greater than or equal to j otherwise (x, p)

is not in its acceptance region. In the contract set C′, type-i will now pick maxj or

maxl with l > j. The choice of each possible type of buyer picks from C′ is at least as

profitable as the one they picked from C. Thus, the expected profit of C′ is at least

as good as C.

This lemma suggests the following iterative way of finding the optimal contract

set without having to solve what would seem like a combinatorial problem. Define

function g(m, i) as the maximum expected profit for the seller by picking contract

maxi and selecting optimally m− 1 contracts from the set (maxi+1, ...,maxK). Note

that if we include maxi and maxj (i < j) in the contract set but nothing else in
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between i and j, then a buyer of type l (i ≤ l < j) will pick contract maxi. These

types contribute to an expected profit of x∗i (b − c)
∑j−1

l=i rl. At the same time, no

types below i will select maxi (as it is outside their acceptance regions), and no types

at or above j will select maxi (as for them maxj is preferable).

The function g(m, i) can be recursively obtained as follows:

g(m, i) = max
j:i<j≤K−m+2

g(m− 1, j) + x∗i (b− c)
j−1∑
l=i

rl,

with the boundary condition g(1, i) = x∗i (b− c)
∑K

l=i rl.

Finally, it should be clear that the maximum expected profit for the seller is given

by max1≤i≤K g(M, i), and the optimal contract set can be determined by going back-

wards: first determine i∗M = arg max1≤i≤K g(M, i), then i∗M−1 = arg max1≤i≤K−1 g(M−

1, i), and so on. In computing the set of MK values of g(m, i), we note that each can

be computed in less than K steps if g(m− 1, i), i = 1, ..., K is already known. These

values can therefore be computed in an increasing order, resulting in a complexity of

O(K2M). By comparison a brute force search on K choose M possible contract sets

is exponential.

Theorem 2.9. The set {maxi∗1 ,maxi∗2 , · · · ,maxi∗M} obtained using the above proce-

dure is optimal and its expected profit is given by g(M, i∗M).

2.6 Multiple buyer types: Private channel condition

We now consider multiple buyer types each with a different channel condition bi,

i = 1, · · · , K. We will start with the special case of K = 2 and characterize the

optimal contracts in this case. Using these results we then construct an algorithm to

compute a set of contracts for the case of K ≥ 2.
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Figure 2.4: (left) max1 /∈ T2 and max2 /∈ T1; (right) max1 ∈ T2

2.6.1 Two buyer types: K = 2

Consider two buyer types (qi, εi, bi), i = 1, 2, with probability ri, r1 + r2 = 1. We

first consider the case that the seller is limited to one contract: M = 1.

Theorem 2.10. The optimal contract when K = 2 and M = 1 is as follows:

1. If max1 /∈ T2 and max2 /∈ T1,

optimal =



max1 if r1U(max1) ≥ r2U(max2)

and r1U(max1) ≥ U(G)

max2 if r2U(max2) ≥ r1U(max1)

and r2U(max2) ≥ U(G)

G if U(G) ≥ r2U(max2)

and U(G) ≥ r1U(max1)

where G denotes the intersecting point between acceptance region boundaries of

the two types.
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2. If max1 ∈ T2.

optimal =

 max1 if U(max1) ≥ r2U(max2)

max2 if r2U(max2) ≥ U(max1)

3. If max2 ∈ T1.

optimal =

 max2 if U(max2) ≥ r1U(max1)

max1 if r1U(max1) ≥ U(max2)

The above result is illustrated in Figure 2.4 and can be argued by showing the

profit of every contract in a particular region (such as I1) is no greater than some

specific contract (such as max1). Take the case max1 /∈ T2 and max2 /∈ T1 for

example, any point in I3 is suboptimal to point G because any contract in I3 is

acceptable by both types of buyers, but G has a strictly higher profit than any other

point in I3.

We now consider the case M = 2. We shall see that providing multiple contracts

can help the obtain higher profits.

Theorem 2.11. In the case of M = 2, max1 /∈ T2 and max2 /∈ T1, the optimal

contract set is {max1,max2}.

Proof. The set C = {max1,max2} gives an expected payoff of

E[U(C)] = r1U(R1(C)) + r2U(R2(C)))

= r1U(R1(max1)) + r2U(R2(max2)).

The second equality holds because max1 /∈ T2 and max2 /∈ T1 and thus type i will

pick maxi. Suppose C is not the optimal set of 2 contracts, then there must exists
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some C′ = {(x1, p1), (x2, p2)} such that

E[U((C′))] = r1U(R1(x1, p1)) + r2U(R2(x2, p2))

> E[U(C)]

= r1U(R1(max1)) + r2U(R2(max2))

This implies either U(R1(x1, p1)) > U(R1(max1)), or U(R2(x2, p2)) > U(R2(max2)),

or both, all of which contradict the definition of maxi. Thus, {max1,max2} is the

optimal contract set.

The proof as well as the intuition behind the above result are straightforward.

The next case, M = 2, max1 ∈ T2 or max2 ∈ T1, is more complicated. Without loss

of generality, we will assume that the type-1 buyer has a smaller b1 (b1 ≤ b2), thus

max1 ∈ T2. We first determine the optimal contract when x∗1 ≤ x∗2; this result is then

used for the case when x∗1 > x∗2. Without loss of optimality we consider only contract

pairs {(x1, p1), (x2, p2)} where type-i buyer picks (xi, pi) instead of the other one.

To find the optimal contract, we 1) first show that for each (x1, p1) we can express

the optimal (x2, p2) in terms of x1 and p1; 2) then we show that (x1, p1) must be on

the boundary of T1 with x1 ≤ x∗1; 3) using 1) and 2) we optimize the expected profit

over possible choices of x1.

Lemma 2.12. When K = 2, if max1 ∈ T2 and x∗1 ≤ x∗2, then given a contract for

type-1 (x1, p1), the optimal contract for type-2 must be (x∗2, P2(x1, p1, x
∗
2)).

Proof. Given a contract (x1, p1), the feasible region for the contract of type-2 buyer

is the area below P2(x1, p1, x) as defined in Theorem 2.5 (see Figure 2.5). Since the

seller’s profit is increasing in both p and x, the contract that generates the highest

profit is at x2 = x∗2 and p2 = P2(x1, p1, x
∗
2).

Lemma 2.13. When K = 2, if max1 ∈ T2 and x∗1 ≤ x∗2, an optimal contract for
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type-1 must be p1 = b1 and x1 ≤ x∗1.

Proof. Assume the optimal contract has (x1, p1) ∈ T1 and given some δ > 0 we still

have (x1, p1 + δ) ∈ T1. By noticing that both U(x, p) and P (x, p, x′) are increasing in

p. We know that both U(x1, p1 + δ) and U(x∗2, P2(x1, p1 + δ, x∗2))) are strictly larger

than U(x1, p1) and U(x∗2, P2(x1, p1, x
∗
2))). This contradicts the assumption that it

was optimal before, thus, we know that the optimal contract for (x1, p1) must be on

the two lines (the upper boundary of T1) defined in Theorem 2.1. Then we exclude

the possibility of having optimal contract with x1 > x∗1. If x1 > x∗1, we can move

(x1, x
∗
1b1/x1) to (x∗1, b1). This will increase the profit from type-1, leaving the profit

from type-2 unchanged.

Using Lemmas 2.12, 2.13 and Theorem 2.5, the expected profit can be expressed

as follows.

E[U(C)] = r1U(x1, p1) + r2U(x2, P2(x1, p1, x
∗
2))

= r1U(x1, b1) + r2U(x∗2, b2 −
x1

x∗2
(b2 − b1))

= r1x1(b1 − c) + r2x
∗
2(b2 −

x1

x∗2
(b2 − b1)− c)

∂E[U(C)]

∂x1

= r1(b1 − c)− r2(b2 − b1)
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The x1 achieving the optimal contract C is given by,

x1 =


0 if r1(b1 − c)− r2(b2 − b1) < 0

x∗1 if r1(b1 − c)− r2(b2 − b1) > 0

C =


{max2} if r1(b1 − c)− r2(b2 − b1) < 0

{max1, (x
∗
2, b2 − x∗1

x∗2
(b2 − b1))} o.w.

This result shows two operating regimes: 1) When r1
r2
< b2−b1

b1−c , type-2 is more profitable

and the seller will offer max2. In this case there is no way to offer another contract for

type-1 without affecting the behavior of type-2. Consequently, the seller only offers

one contract. 2) When r1
r2
> b2−b1

b1−c , type-1 is more profitable and the seller will offer

max1. After choosing max1, the seller can also choose (x∗2, b2 − x∗1
x∗2

(b2 − b1)) for the

type-2 buyer without affecting the type-1 buyer’s choice. As a result, the seller offers

a pair of contracts to get the most profit.

The optimal contract for x∗1 > x∗2 can be determined with a similar argument.

Again, we can prove that the optimal contract must have p1 = b1 and x1 ≤ x∗1. The

difference is that when x∗1 > x∗2, the expression for (x∗2, P2(x1, p1, x
∗
2)) has two cases

depending on whether x1 > x∗2 or x1 ≤ x∗2.

∂E[U(C)]

∂x1

=


r1(b1 − c)− r2(b2 − b1) if x1 ≤ x∗2

r1(b1 − c) + r2b1 if x1 > x∗2

To summarize, when r1(b1−c)−r2(b2−b1) > 0, E[R(C)] is strictly increasing in x1 and

we know that x1 = x∗1 maximizes the expected profit. When r1(b1−c)−r2(b2−b1) < 0,

E[R(C)] is decreasing in x1 if x1 ∈ [0, x∗2] and increasing in x1 if x1 ∈ [x∗2, x
∗
1]. We can
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only conclude that either x1 = 0 or x1 = x∗1 maximizes the expected profit.

x1 =


0 or x∗1 if r1(b1 − c)− r2(b2 − b1) < 0

x∗1 if r1(b1 − c)− r2(b2 − b1) > 0

C =


max2/{max1, (x

∗
2,

x∗1b1
x∗2

)} if r1(b1 − c)− r2(b2 − b1) < 0

{max1, (x
∗
2,

x∗1b1
x∗2

)} if r1(b1 − c)− r2(b2 − b1) > 0

In the first condition, we can calculate the expected profit of the two contract sets

and pick the one with the higher profit.

2.6.2 K buyer types, K > 2

The previous section gives the explicit solution to the contract design problem

when K = 2. When K > 2 we no longer have explicit solutions; even numerically

searching for the optimal contract set becomes very complicated. For instance, even

if we assume that both x and p are from discrete sets, with X and P possible values,

respectively, the search must be done over the space of all possible sets of K different

contracts, on the order of (XP )K . In general X and P both take on real values,

making the search space uncountable. In order to reduce the complexity we will need

to exploit special properties of the problem. We first reindex the buyer types such

that b1 ≤ ... ≤ bK . Then under certain conditions we will determine a procedure

which finds the optimal contract. In the remainder of this section, we will assume

the seller can design up to K contracts.

Definition 2.14. The buyer types are said to satisfy a monotonicity condition (MC),

if ∀i, j, bi ≤ bj implies x∗i ≤ x∗j .

Thus when the types are ordered b1 ≤ ... ≤ bK , we have x∗1 ≤ ... ≤ x∗K . This

monotonicity condition (MC) says that the amount a buyer willing to buy is strictly

35



increasing in the quality it gets from buying the secondary spectrum. This condition

leads to special properties which allows us to construct simpler ways to find the

optimal contracts.

Theorem 2.15. When the MC is satisfied, bi ≤ bj and x < x′ implies Pi(x
′, p′, x) ≥

Pj(x
′, p′, x).

Proof.

Case 1. x′ ≤ x∗i ≤ x∗j

When x′ ≤ x∗i ≤ x∗j , both types have equal utiliy line of the same form.

Pi(x
′, p′, x) = bi −

qi − εi − Ci(x′, p′)
x

Pi(x
′, p′, x) = bj −

qj − εj − Cj(x′, p′)
x

(2.5)

By exactly the same argument as in Theorem. 2.16 we can find out that.
∂Pj(x′,p′,x)

∂x
≥

∂pi(x
′,p′,x)
∂x

, and thus,

Pi(x
′, p′, x) ≤ Pj(x

′, p′, x) ∀x∗i ≥ x ≥ x′

When x∗i < x < x∗j , while Pj(x
′, p′, x) still follows the same formula (Equation. 2.5),

Pi(x
′, p′, x) starts to decrease by following the line Pi(x

′, p′, x) = x′Pi(x
′, p′, x∗i )/x.

Thus,

Pi(x
′, p′, x) ≤ Pj(x

′, p′, x) ∀x∗i ≤ x ≤ x∗j

When x > x∗j , both i, j follow the form P (x′, p′, x) = P (x′, p′, x∗j)/x. But Pi(x
′, p′, x∗j) ≤

Pj(x
′, p′, x∗j), they never cross and Pj(x

′, p′, x) ≥ Pi(x
′, p′, x) ∀x > x∗j .

Case 2. x∗i < x′ < x∗j
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When x∗i < x′ < x < x∗j they are of the form,

Pi(x
′, p′, x) =

x′p′

x

Pj(x
′, p′, x) = bj −

qj − εj − Cj(x′, p′)
x

respectively. By the same argument as in Theorem. 2.16, Pi is decreasing while Pj is

increasing. Thus, Pi(x
′, p′, x∗j) ≤ Pj(x

′, p′, x∗j). When x > x∗j ,

Pi(x
′, p′, x) =

x∗jPi(x
′, p′, x∗j)

x

Pj(x
′, p′, x) =

x∗jPj(x
′, p′, x∗j)

x

Since Pi(x
′, p′, x∗j) < Pj(x

′, p′, x∗j) we know that Pi(x
′, p′, x) < Pj(x

′, p′, x) ∀x > x∗j .

Case 3. x′ > x∗j > x∗i

When x > x∗j , both types have equal cost line as xp = x′p′. Thus, Pi(x
′, p′, x) =

Pj(x
′, p′, x) ∀x > x∗j .

Theorem 2.16. When the MC is satisfied, bi ≤ bj and x > x′ implies Pi(x
′, p′, x) ≤

Pj(x
′, p′, x).

Proof.

Case 1. x′ ≤ x∗i ≤ x∗j

When x′ ≤ x∗i and x′ ≤ x∗j , the equal cost lines for x < x′ are of the form,

Pi(x
′, p′, x) = bi −

qi − εi − δi
x

Pj(x
′, p′, x) = bj −

qj − εj − δj
x

where we let δi = Ci(x
′, p′) and δj = Cj(x

′, p′). Take the derivatives with respect to
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x.

∂Pi(x
′, p′, x)

∂x
= (qi − εi − δi)x−2

∂Pj(x
′, p′, x)

∂x
= (qj − εj − δj)x−2

By definition, Pi(x
′, p′, x′) = p′ = Pj(x

′, p′, x′),

p′ = bi −
qi − εi − δi

x′
= bj −

qj − εj − δj
x′

Considering bi < bj, we know that qj−εj−δj > qi−εi−δi. Which implies
∂Pj(x′,p′,x)

∂x
≥

∂Pi(x
′,p′,x)
∂x

, and thus Pi(x
′, p′, x) ≥ Pj(x

′, p′, x), ∀x < x′.

Case 2. x∗i ≤ x′ ≤ x∗j

The equal cost lines are,

Pi(x
′, p′, x) =


x′p′

x
x∗i ≤ x ≤ x′

bi − qi−εi−δi
x

x ≤ x∗i

Pj(x
′, p′, x) = bj − qj−εj−δj

x
x ≤ x′

Where δi = Ci(x
′, p′) and δj = Cj(x

′, p′). Taking the derivatives,

P ′i (x
′, p′, x) =

 −x
′p′x−2 < 0 xi∗ ≤ x ≤ x′

(qi − εi − δi)x−2 > 0 x ≤ xi∗

P ′j(x
′, p′, x) = (qj − εj − δj)x−2 > 0 x ≤ x′

This implies Pi(x
′, p′, x) > Pj(x

′, p′, x), ∀x x∗i ≤ x ≤ x′.

Pi(x
′, p′, x∗i ) = bi −

qi − εi − δi
x∗i

> Pj(x
′, p′, x∗i ) = bj −

qj − εj − δj
x∗i
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Figure 2.6: Example of a possible optimal contract

Since bi < bj, we conclude that qj − εj − δj ≥ qi − εi − δi. Which indicates that

∂Pj(x′,p′,x)

∂x
≥ ∂pi(x

′,p′,x)
∂x

and Pi(x
′, p′, x) ≥ Pj(x

′, p′, x), ∀x ≤ x∗i .

Case 3. x′ ≥ x∗j ≥ x∗i

When x ≥ x∗j ≥ x∗i , the equal cost line of both types follow x′p′ = xp. Thus,

Pi(x
′, p′, x∗j) = Pj(x

′, p′, x∗j). Then the case falls into Case 2 and Pi(x
∗
j , Pj(x

′, p′, x∗j), x) ≥

Pj(x
∗
j , Pj(x

′, p′, x∗j), x), ∀x < x∗j .

Lemma 2.17. When the MC is satisfied, the optimal contract such that type i buyer

picks (xi, pi) for all i must have x1 ≤ ... ≤ xK.

Proof. Let (xi, pi) denote the contract designed for the type i buyer. Consider now

the contract for the type j buyer where bj < bi and xj > xi. From Theorem 2.16 we

know that Pj(xi, pi, xj) ≤ Pi(xi, pi, xj) when the MC is satisfied. This implies that

whatever pj we determined, if the type j buyer prefers (xj, pj) over (xi, pi) then the

type i buyer must think the same way. From the IC constraint, the type j buyer has

to prefer the (xj, pj) over (xi, pi). Thus, we must have xj ≤ xi in the optimal contract

where each type of buyer selects its own designated contract.

Lemma 2.18. When the MC is satisfied, the optimal contract must have xi ≤ x∗i

∀i = 1...K.
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Proof. Proof by contradiction. Consider some optimal contract having xi > x∗i , we

show that replacing xi = x∗i is actually better. By Theorem 2.19, we know that

pi = Pi(xi−1, pi−1, xi) and by definition of Pi it is better off to the seller by providing

x∗i instead if we only consider the profit from the type i buyer. Now, by Theorem

2.15 Pi+1(xi, pi, x
∗
i ) ≤ Pi(xi, pi, x

∗
i ). Also, because Pi(x

′, p′, x) is a strictly increasing

function in p′. The price pi+1 is strictly higher for assigning x∗i instead of xi. This

results in every pj j > i is strictly increased and the payoff change must be positive.

The only question is whether we can assign x∗i without affecting the contracts (xj, pj)

j < i. The answer is if ∀j < i xj ≤ x∗j we can do it. By mathematical induction, we

can again prove that for all i = 1...K xi ≤ x∗i . An example is illustrated in Figure

2.6.

This result allows us to restrict our search for the optimal contract to the set where

xi ≤ x∗i . We can further simplify our search by expressing the values pi, ∀i = 1...K

as functions of xi ∀i = 1...K, by the following theorem.

Theorem 2.19. Given a set x1 ≤ ... ≤ xK, define (x0, p0) = (0, 0) and find the

contracts (xi, pi) = (xi, Pi(xi−1, pi−1, xi)) in the order i = 1...K. When the MC

is satisfied this procedure produces a contract set that maximizes the seller’s profit,

where each type-i buyer accepts (xi, pi).

Proof. a) Each buyer of type i picks (xi, pi).

Induction hypothesis: At each step, when we pick contract (xi, pi) ∀i = 0...K, each

buyer type-j with j < i prefers contract (xj, pj) and each buyer type-j with j ≥ i

prefers contract (xi, pi).

1. Base Case: When picking (x0, p0) = (0, 0), it is clear that each buyer type is

greater than 0 and each buyer prefers the only contract that is the same as not

buying.
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2. Assume the induction hypothesis is true when picking (xi, pi), we will show that

the hypothesis is also true for (xi+1, pi+1). Assume the hypothesis is true for

step i means we have determined the contracts ((x1, p1), ..., (xi, pi)) and a type-j

buyer (j ≤ i) prefers (xj, pj) over other contracts, while a type-j buyer (j > i)

prefers the ith contract over all contracts. By Theorem. 2.16 and xi+1 > xi,

∀j ≤ i, pi+1 = Pi+1(xi, pi, xi+1) ≥ Pj(xi, pi, xi+1)

The contract (xi+1, pi+1) is above the equal cost line of the contract (xi, pi) for

buyer type less than or equal to i. Which means they prefer the ith contract

over the i + 1th contract. But from step i, they prefer their own contract over

existing contracts. Thus, buyer j (j ≤ i) prefers (xj, pj) over all contracts. By

Theorem. 2.15 and xi+1 > xi,

∀j ≥ i+ 1, pi+1 = Pi+1(xi, pi, xi+1) ≤ Pj(xi, pi, xi+1)

Thus, the contract (xi+1, pi+1) is below the equal cost line of the contract (xi, pi)

for buyer type j > i and they prefer (xi+1, pi+1) over (xi, pi). But from step i,

they prefer the (xi, pi) contract over all existing contracts. This shows that the

hypothesis is true for step i+ 1.

3. By Mathematical Induction, the hypothesis is true for all i ≤ K.

b) This process results in the highest profit.

Since the x′is are fixed, the only way one could increase the buyer’s profit is to increase

one of the pi’s. We will show that this is not possible. Assume there exists some

contract with the contract set (x1, p
′
1)...(xK , p

′
K) with some p′i > pi, by the increasing

property of Pi (Lemma 3.4) we need p′i−1 > pi−1 to insure that type-i buyer picks

(xi, p
′
i). By induction, we can show that it must be that (p′1 > p1). Since p1 = b1,
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(x1, p1) is already on the boundary of acceptance region of the type-1 buyer. Thus,

any contract with some p′i > pi is not a contract where each buyer accepts its own

designated contract.

Figure 2.6 shows an example of applying this theorem with three buyer types:

given x1 = 2, x2 = 4, x3 = 6, pi is sequentially determined on the equal-cost line of

the previous contract. With Lemma 2.18, the equal cost line can be restricted to the

form Pi(xi−1, pi−1, xi) = bi− xi−1

xi
(bi− pi−1). The expected profit of the seller can now

be expressed as:

E[R(C)] = max
x1,..,xK

r1x1(b1 − c) + ...+ rixi(pi − c) + ...+ rKxK(pK − c)

= max
x1≤...≤xK

r1x1(b1 − c) + ...+ rixi(Pi(xi−1, pi−1, xi)− c) + ...

+ ...+ rKxK(PK(xK−1, pK−1, xK)− c)

By plugging in the values of pi = Pi(xi−1, pi−1, xi) = bi − xi−1

xi
(bi − pi−1) recursively.

Each term in the optimization problem can be simplified to

rixi(pi − c) = ri(xi(bi − c)−
i−1∑
j=1

xj(bj+1 − bj))

By simplifying and separate the terms with respect to xi, the expected profit of the

seller can be expressed as,

E[R(C)] = max
x1≤...≤xK

K∑
i=1

xi[ri(bi − c)− (bi+1 − bi)
K∑

j=i+1

rj]

Firstly, we observe that the above expression is linear in every xi. Thus differentiating

with respect to xi we get a constant:

∂E[R(C)]

∂xi
= ri(bi − c)−

K∑
j=i+1

rj(bi+1 − bi)
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Secondly, because the term ∂E[R(C)]
∂xi

does not depend on any xj, the optimizer can

be easily determined. When ∂E[R(C)]
∂xi

> 0 we want to make xi as large as possible

(≤ x∗i ); when ∂E[R(C)]
∂xi

< 0 we want to make xi as small as possible. This leads us

to the following algorithm which finds the optimal set of (x1, ..., xK). The variable

LD (Last Determined) below is used to keep track of the last type for which we have

already determined its value.

Algorithm 1 Optimal contract under monotonicity condition

Let xK ← xK∗, LD ← K . because ∂E[R(C)]
∂xK

> 0
for i = K − 1→ 1 do

π ← (bi − c)
∑LD−1

j=i rj − (bi+1 − bi)
∑K

j=LD rj
if π > 0 then
∀i ≤ j < LD, xj ← x∗i
LD ← i

else if i = 1 then
∀1 ≤ j < LD, xj ← 0

end if
end for

This algorithm works as follows: We start from determining the value of xK , then

we determine xK−1 and so on all the way to x1. At step i we take the derivative with

respect to xi. If it is better to maximize it, we assign it to be x∗i . If it is better to

minimize it, we push the value to xi−1 (which we have not determined). However,

we have to add the probability of occurrence ri to the value (xi−1) we pushed to so

that it reflects the weight of occurrence when determining the value xi−1. Once we

determined the value for some xi, every xj previously pushed to it will be assigned

the same value.

Together with Theorem 2.19 the above algorithm produces a set of (xi, pi)’s that’s

optimal under the monotonicity condition. This algorithm takes exactly K steps to

find the optimal contract set. While calculating the
∑
ri might also takeK steps, with

careful calculation the method can still be completed in O(K) time. By comparison,

an exhaustive search method will take O((XP )K) time to find the optimal contract
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even if we discretize the search space of x and p with X and P possible values. When

x and p are continuous, an exhaustive search might not even be possible.

2.7 Discussions

2.7.1 More general models of channel quality B

Although some of the analysis in this chapter relies on B being a binary random

variable, most of our definitions can be easily generalized to any random variable,

such as the acceptance region, equal-cost line and maxi are general to any B. Take

for instance the notion of acceptance region. Consider any random variable B with

support [0, 1]. By the definition of C(x, p), the reserved cost C(0, 0) = q − ε is

unchanged. The acceptance region of a single buyer type can still be calculated using

T = {(x, p) : C(x, p) ≤ C(0, 0)} with the boundary being f(x) = maxpC(x, p) ∈ T . It

is also easy to show that the optimal contract for the buyer must be on this boundary,

thus optimal = maxx U(x, f(x)). Similarly, the equal-cost line will continue to be

strictly ordered according to the price p. With these set calculated explicitly, the

same process of contract selection can be used. For example, if under some ordered

conditions of B, the equal-cost lines can be shown to satisfy Theorem 2.15, 2.16;

then a process similar to Algorithm 1 can be applied to the problem. An extension

of the contract model which considers general utility functions and channel random

variables is discussed in Chapter III.

2.7.2 A seller with limited resource

Our analysis so far has been based on the assumption that the seller has sufficient

bandwidth to fulfill all accepted contracts. We now discuss what happens when the

seller’s resources are limited. In the full information case when the seller knows the

type of each of a group of potential buyers, it will extract the most by offering (bi, x
∗
i )
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to a buyer of type i. Under a resource constraint, because the seller can offer any

0 < x < x∗i (when p is set to bi), this becomes a form of the continuous (fractional)

knapsack problem [21].

When buyer types are private information, we consider 3 possible scenarios and

methods to determine the optimal contract solution by modifying Algorithm 1 in

Section 3.4. We assume at most X̄ bandwidth can be sold and the monotonicity

condition is satisfied for simplicity.

Case 1: The seller knows that there is only one buyer, does not know its type,

but knows the distribution of the type. This is the same as the case of K > 2

under MC condition except that the maximum bandwidth sold is limited by X̄. If

we have ∀x∗i ≤ X̄, then Algorithm 1 works without modification. But if for some i,

x∗i > X̄, then the algorithm no long works. Note that in determining the optimal set

xi, Algorithm 1 does not explicitly determine the value of each xi but only whether

we need to push the xi value bigger or smaller. Also the analysis does not rely on the

actual values of x∗i , but only that ∀i < j, x∗i ≤ x∗j . This discussion leads to the next

result.

Corollary 2.20. Let ∀i, x̂∗i = min(x∗i , X̄), then running Algorithm 1 on the set (bi, x̂∗i )

will result in the optimal contract for limited bandwidth X̄ with a single customer.

Case 2: The seller knows that there are Ni of each possible type, but cannot

distinguish between the different types. Letting ri = Ni, Algorithm 2 finds the optimal

contract when there is insufficient bandwidth. Note that this algorithm is similar to

Algorithm 1 with two differences: 1) it replaces the distribution in Algorithm 1 by the

actual number of buyers of each type. 2) it designs contracts for higher buyer types.

Changing the distribution of buyers to actual number of buyers will not change the

optimality of Algorithm 1 if the bandwidth is sufficient. If bandwidth is insufficient,

because an optimal contract must have pi ≥ pj for bi ≥ bj, it is preferable to keep

higher buyer types. The step i where the algorithm breaks is the cutoff type that
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should be accepted; any type smaller will not be considered in the contract. All

previous types pushed to the same values of this cutoff type are then recalculated

such that the bandwidth amount satisfies the constraint (X̄). The price determining

process (pi+1 = Pi(xi), pi, xi+1)) is then applied on this set, with price pi = bi as the

first contract.

Algorithm 2 Limited resource

Let xK ← xK∗, LD ← K . because ∂E[R(C)]
∂xK

> 0
for i = K − 1→ 1 do

π ← (bi − c)
∑LD−1

j=i rj − (bi+1 − bi)
∑K

j=LD rj
if π > 0 then
∀i ≤ j < LD, xj ← x∗i
if
∑K

j=LD xj ≥ X̄ then
FLAG← true
break

end if
LD ← i

else if i = 1 then
∀1 ≤ j < LD, xj ← 0

end if
end for
if FLAG then

∀i ≤ k < LD, xk ←
(
∑K

j=i xj)−X̄∑LD−1
j=i Nj

end if

Case 3: Users arrive as a Poisson random process. This is a case that is similar to

that studied in [43], where it is shown that repeatedly solving the expected version of

the stochastic optimization problem will result in a policy with expected revenue lost

upper bounded by a constant which is independent of the size (X̄) of the problem.

Notice that Case 2 is exactly the expected version of this stochastic optimization

problem, thus, we can again use Algorithm 2 to solve the problem.

2.7.3 Learning buyer types

We have assumed in our analysis that the seller knows a priori the buyer distri-

bution which is discrete. If this distribution is unknown, it can be obtained through
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online learning. Consider a stream of arriving buyers and a seller offering contracts

designed not only to make profit (exploit) but also to learn the buyer type distribu-

tion (explore) by observing whether the contract is accepted or rejected. This can be

cast as a multi-armed bandit problem with an independent reward process (assuming

buyers are independently drawn from a distribution), and potentially a continuum

of arms (each contract is an arm under this model). Algorithms exist in the litera-

ture that produce sublinear regret (defined as the profit difference between the best

single contract and the algorithm) in time [8], and logarithmic regret in time when

the number of arms is finite [7]. Although the continuum contract (arm) space might

seem a challenge, we note that Algorithm 1 always generates a set of contracts with

xis a subset of {x∗1, x∗2...x∗K}. From Theorem 2.19, if we know the set of xis, we can

explicitly determine the optimal price. Thus, there are only 2K possible contracts

that can be optimal. Using this observation, one can construct a learning algorithm

like that in [8] to achieve logarithmic regret.

2.7.4 Comparing to auction

Auction has been used extensively for the allocation of spectrum on the traditional,

wholesale market, and has been proposed for the secondary market as well, see e.g.,

[70, 31, 40]. Auction is a mechanism aimed at extracting profit from the sale of

rare goods for which potential buyers’ valuation is unknown and can be very hard to

obtain. The contract mechanism studied in this chapter may be viewed as a form of

sale by posted price. Compared to auction, posted price is more often used in the sale

of multiple (and potentially large quantity of) similar goods, the valuation of which is

obtained through market research [69]. Since the cost spent on market research can

be amortized over multiple goods, posted price sale can be more efficient than auction

which incurs cost in conducting each single auction [74]. It has been shown that under

ideal conditions the two are equivalent in profit generation [58]. As more and more
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license holders become interested in the secondary market trading smaller quantities

for shorter duration of time compared to the primary wholesale market, we believe

pricing schemes like the contracts studied in this chapter offer a valid alternative to

spectrum auctions.

2.8 Numerical Evaluation

In this section, we compare the performance of contracts generated by the follow-

ing methods under limited and unlimited resource constraints.

1. The optimal set of M contracts (denoted OPT(M) in the figures): Finding this

set is done by an exhaustive search over a set of discretized values x and p as an

approximation of the uncountable choices (the step size for x is 0.5 and the step

size for p is 0.1). As discussed earlier in Section 2.6.2, the complexity increases

exponentially in M . This restricts us to run at most M = 2 in our evaluation.

2. The algorithm we introduced in the previous section (Algorithm 1 (Algorithm

2) in the unlimited (limited) resource setting, denoted as ALG1 (ALG2) in the

figures): As previously shown, ALG1/ALG2 is optimal when the monotonicity

condition holds. Since the complexity of this algorithm increases only linearly

in M , M can be on the order of thousands in our numerical evaluation.

3. A K-choose-1 method (denoted as MAX in the figures): This is the method that

selects the contract with the highest expected profit over the set {max1,max2, · · · ,maxK}:

maximize
maxi,i=1...K

E[U(maxi)]. This is done by checking all (bi, x
∗
i ) pairs; the complex-

ity increases linearly in M .

2.8.1 Unlimited resource

The experiments are run by increasing K = 1...7. For each K value the parameters

(qi, bi, εi, ri) are independently and randomly generated from uniform distributions
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(bi ∈ [0, 1], qi ∈ [0, 10], εi ∈ [0, 2] and ri ∈ [0, 1] but normalized such that
∑
ri = 1)

For each K we record the average (in expected profit) over 12000 randomly generated

cases; these are plotted in Figure 2.7. We repeat the same but only for cases that

satisfy the monotonicity condition; results are shown in Figure 2.8.
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Figure 2.7: Simulation results of the sellers profit versus different contracts in the
general case. (The inset is the standard deviation of OPT(2))
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Figure 2.8: Simulation results of the sellers profit versus different contracts when
increasing property holds. (The inset is the standard deviation of ALG1)

Our observations are as follows. Being able to use more contracts is always better

as expected (i.e., OPT(1) ≤ OPT(2) in all cases). When the monotonicity condition
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holds, ALG1 is optimal and thus outperforms all other algorithms. When K = 1, 2

OPT(2) should have been optimal but it falls below ALG1 due to the discretization

error. When K > 2, ALG1 further has the advantage of being able to use more

than 2 contracts. Recall that MAX is the optimal contract when the seller knows

exactly the type; thus, MAX is optimal when K = 1 and outperforms exhaustive

search because it does not suffer from discretization error. In the general case when

the monotonicity does not necessarily hold, although ALG1 is not always optimal it

still outperforms both OPT(1) and OPT(2). Finally, when there are more possible

buyer types (as K increases), the maximum expected profit decreases because it is

harder to put all the contracts right on the buyers’ acceptance boundaries while still

satisfying the incentive compatibility condition.

We show the standard deviation for ALG1 under the monotonicity condition and

OPT(2) under the general case in Figures 2.7 and 2.8, respectively. Other cases

are similar and thus not shown for better readability. We see that the deviation is

decreases as the number of buyer types increases. This is because the amount of profit

depends on the realization of the buyer types (q, b, ε). With fewer buyer types, the

profit changes heavily depends on the realization, e.g., a type with very low channel

quality can lead to low profit. With more buyer types, the profit is averaged out over

the buyer distribution and thus has a smaller variation.

In Figures 2.9, 2.10 and 2.11 we show the results for averaging over 12000 cases

satisfying the monotonicity condition. In Figure 2.9, we show the buyers gain over not

accepting any contract. It shows that as more buyer types exist, the buyer’s average

gain increases as expected. In Figure 2.10, we show the sum of the buyers’ and the

seller’s gains. We see that only in the case of ALG1, the total utility remains constant

as the number of types increases. This shows that ALG1 generates contracts that are

more socially optimal. In Figure 2.11, we show the portion of buyers accepting one

of the contracts. We observe that as the number of buyer types increases, a larger
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Figure 2.9: Buyer utility

1 2 3 4 5 6 7

0.8

0.9

1

1.1

1.2

1.3

Number of types

B
uy

er
+

S
el

le
r 

ga
in

q,ε,b satisfying Increasing Property

 

 

ALG1
MAX
OPT(2)
OPT(1)

Figure 2.10: Total utility of buyer and seller

portion of buyers walk away from all contracts. Note that ALG1 has the highest

participation rate.

2.8.2 Limited resource

We next perform the same experiments under the limited resource condition.

The simulations are done with randomly generated buyer types not satisfying the

monotonicity condition. Algorithm 2 is used to replace Algorithm 1. The possible

buyer type is fixed at K = 3 with 3 buyers of each type. We change the x-axis to the

resource limit and test it from insufficient bandwidth to sufficient bandwidth.
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Figure 2.11: Buyer participation rate
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Figure 2.12: Seller profit per bandwidth limit

Figure 2.12 shows the seller’s profit per unit of bandwidth (y-axis) as a function of

its bandwidth limit (x-axis), while Figure 2.13 shows the amount left unsold. We see

that when the seller has very limited amount of bandwidth, it can sell all of it and

enjoys a high unit profit. When it has more bandwidth than the purchasing need,

its unit profit drops. This happens for two reasons: 1) When it has little to sell,

the seller tends to target the higher type that accepts the contract at higher prices.

When it has more, the seller wants to sell more. In this case, it will have to sell to

lower buyer types which only accept at lower prices. 2) When there is a surplus of

supply, bandwidth left unsold generates no profit. Also from Figure 2.12, we see that
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Figure 2.13: Amount of bandwidth left
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Figure 2.14: Number of buyers participated

ALG2 generates the most profit over all other methods considered. In Figure 2.14 we

observe that ALG2 acquires the most number of buyers to the contract. Although

there is a total of 9 buyers (3 buyers of each of 3 types), all methods on average

sell to much fewer than 9 in the sufficient bandwidth region (4 to 6 buyers). This is

explained by our earlier analysis (in the unlimited case) where it is shown that it may

be in the seller’s interest to not sell to the smaller buyer types in order to increase

profit from the higher types.
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Figure 2.15: Amount of bandwidth purchased from the reference market

2.8.3 Bandwidth purchased from the reference market

We end this section by considering the amount of bandwidth the buyer needs

to purchase from the reference market, shown in Figure 2.15 as a function of the

transmission need q and different tolerance ε. Here we assume a common channel

condition where the seller can sell at the optimal contract (x∗, b). We fix the channel

quality at b = 0.5 and vary the other quantities. We can see that for each ε, the

purchased bandwidth is 0 while q is small. When q increases, the amount needed

starts to increase. Note that this is the minimum amount of guaranteed service the

buyer has to purchase regardless of how much secondary bandwidth already purchased

(see discussion after Lemma 1).

2.9 Conclusion

We considered a contract design problem where a primary license holder wishes to

profit from its excess spectrum capacity by selling it to potential secondary users/buyers

via designing a set of profitable contracts. We completely characterize the optimal

solution in the cases where there is a single buyer type, and when multiple types of

buyers share a common, known channel condition. In the case when each type of
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buyers have different channel conditions we construct an algorithm that generates

a set of contracts in a computationally efficient manner, and show that this set is

optimal when the buyer types satisfy a monotonicity condition.
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CHAPTER III

Generalization of Secondary Trading Using

Contracts

3.1 Introduction

In this chapter, we extend the method developed in Chapter II to a more general

framework where the buyers and the seller are given by more general utility functions.

In particular, we will show that concepts such as the equal-cost line introduced in

Chapter II can be applied beyond the set of specific utility functions assumed. In

what follows we will first restate the problem in a more generalized framework in

Section 3.2, and then analyze the single buyer type in Section 3.3 and characterize the

properties of the optimal contract. We derive the equivalent condition in the multiple

buyer case such that the sequential process introduced in Chapter II produces the

optimal contract in Section 3.4.

3.2 Model and Assumptions

In this section, we describe in detail the generalized model. Although the utility

functions are different, some of the key concepts such as how the two parties consider

their choices follow the assumption of the previous chapter. Thus, we will not repeat

all the definitions that can be extended here.
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3.2.1 The Seller

The seller’s profit or utility from contract (x, p) is given as

U(x, p, c)

where c is a predetermined constant that takes into account the operating cost of

the seller. We will keep this function unspecified and only assume that the utility

of the seller is increasing in the price of the contract p when keeping the amount

of bandwidth sold x at a fixed value. If none of the contracts is accepted by the

buyer, the reserve utility of the owner is given by U(0, 0, c). We will assume that any

contract the seller presents must be such that U(x, p, c) ≥ U(0, 0, c), i.e., the seller

will not sell at a loss.

3.2.2 The buyer’s consideration

For a given contract pair (x, p) where x is the amount of secondary bandwidth

sold and p is the price per bandwidth sold, the total payment to the primary is

xp. Suppose in addition to this contract, the buyer purchases y units of guaranteed

bandwidth from the reference market. Let w(xp + y) denote the cost function of

purchasing contract (x, p) and y guaranteed channels. We do not specify the function

w(.) but only assume that it is increasing in the value xp+y (the total money spent).

The buyer has a constraint on its transmission quality, given by an indicator

function Q(x, y) that characterizes different buyer types:

Q(x, y) =

 0 the combination (x, y) does not satisfy the buyer’s needs

1 the combination (x, y) satisfies the buyer’s needs

The function Q(x, y) captures the buyer’s transmission needs and can take into ac-

count the variability of the secondary channel. Subsequently this function will also
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be referred to as the buyer’s type. Q(x, y) can be of any form, but is assumed to be

such that for any (x, y) pair that satisfies the buyer’s quality of service requirements,

(x′, y′) must also be satisfactory if x′ ≥ x and y′ ≥ y, i.e., getting more bandwidth of

either kind will not make the requirements harder to meet.

The buyer’s consideration is given by the following minimization problem where

we use C(x, p,Q) to denote the cost for the buyer if he chooses to accept the contract

(x, p).

C(x, p,Q) = minimize
y

w(y + xp) (3.1)

subject to Q(x, y) = 1 (3.2)

To assess how much this contract actually costs him, the buyer has to consider how

much additional fixed service he needs to purchase to fulfill his needs. The buyer can

always choose to not enter into any of the presented contracts and only purchase from

the traditional market. In this case, his cost is given by the value of the following

minimization problem:

C(0, 0, Q) = minimize
y

w(y) (3.3)

subject to Q(0, y) = 1 (3.4)

In deciding whether to accept a given contract (x, p), the buyer has to consider

(1) whether the contract would satisfy its quality (loss) constraint, and (2) whether

there is an incentive to enter into this contract, i.e., whether the cost of this contract

is no higher than the reserve price. The first can always be achieved by purchasing

more reference spectrum. The second is also referred to as the individual rationality

(IR) constraint, C(x, p,Q) ≤ C(0, 0, Q). Any contract that satisfies both constraints

of a buyer is referred to as acceptable to that buyer.

Considering the form of the buyer’s optimization problem, the buyer chooses the
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minimum amount of y to minimize cost. Let y(x,Q) denote the minimum additional

y that needs to be purchased given the contracted amount x for a buyer of type Q.

Note that this does not depend on the price p but only depends on the value x and

the buyer type Q.

y(x,Q) = argmin
y

Q(x, y) = 1

Thus, we can rewrite C(x, p,Q) = w(xp + y(x,Q)) as the minimum total cost of

buyer type Q when accepting contract (x, p). The function y(x,Q) depends on the

buyer type Q function, but for a reasonable loss constraint y(x,Q) should be non-

increasing in the value x, i.e., the buyer should need less from the reference market

if he purchases more from the secondary market.

Example 3.1. Taking the model in Chapter II, the function Q(x, y) would be

Q(x, y) := I(E[(q − y − xB)+]− ε ≤ 0) , (3.5)

where B is the binary random variable with probability b of being 1. The constants

(q, b, ε) represent the different types of buyer under the same form of quality con-

straint. The function y(x,Q) would be as follows.

When q(1− b) ≤ ε,

y(x,Q) =

 q − ε− bx if x ≤ x∗

0 if x∗
.

When q(1− b) > ε,

y(x,Q) =

 q − ε− bx if x ≤ x∗

q − ε
(1−b) if x > x∗

.
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3.2.3 Buyer types and informational constraints

We will still assume that a potential buyer may be one of a number of different

types; each type is characterized by a unique function Q, which is a buyer’s private

information. The seller is assumed to know the distribution of the buyer types but

not the actual type of a particular buyer. The buyer types and their distribution may

be estimated from the seller’s past experience. Specifically, we will assume there are

K types of buyers, and a buyer is of type i with probability ri and is given by the

set Qi. In subsequent sections we will first discuss the case of a single user type, then

the case of multiple types.

3.3 Optimal contract for a single buyer type

We begin by considering the case where there is only one type of buyer Q. Denote

by TQ = {(x, p) : C(x, p,Q) ≤ C(0, 0, Q)} the set of all acceptable contracts for the

buyer, or the acceptance region. All possible contracts can be represented by a point

on the x-p plane and the set TQ consists of an area on the x-p plane. Recall that the

buyer will only accept a contract if the cost of accepting the contract is less than or

equal to not accepting the contract. For a fixed x, because the cost of the buyer is

increasing in p, the highest price p such that the buyer will accept the contract is

w(xp+ y(x)) = w(0 + y(0)) .

We can express the highest price t(x,Q) = y(0,Q)−y(x,Q)
x

of an amount of bandwidth x

for a type Q. Let t(x,Q) denote the upper boundary of the area TQ on the x-p plane

and all points below p < t(x,Q) (contracts having lower price) are acceptable to the

buyer.

Similar to the previous chapter, we can derive the equal-cost line of a buyer.

Definition 3.2. The equal-cost line E of a buyer of type Q is the set of contracts
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within the buyer’s acceptance region T that are of equal cost to the buyer. Thus

(x, p) ∈ E if and only if p = PQ(x′, p′, x) for some other (x′, p′) ∈ E. The cost of this

line is given by C(x′, p′), ∀(x′, p′) ∈ E.

Using the function y(x,Q) introduced in Section 3.2 we have:

C(x, p,Q) = C(x′, p′, Q)

⇔ w(xp+ y) = w(x′p′ + y′)

⇔ xp+ y(x,Q) = x′p′ + y(x′, Q)

⇔ PQ(x, p, x′) =
xp+ y(x,Q)− y(x′, Q)

x′

Among the set of equal-cost lines, the line PQ(0, 0, x) = t(x,Q) is equivalent to the

acceptance boundary as defined previously.

For a given buyer type (Q), the seller can calculate the region TQ and choose any

point in the corresponding acceptance region TQ to maximize its utility: max(x,p)∈TQ U(x, p, c),

since U(x, p, c) represents the seller’s profit obtained from selling the contract (x, p).

We will assume that the utility is increasing in p for a fixed x. We can show some of

the properties of the optimal contract in the single buyer case.

Lemma 3.3. The contract that maximizes the primaries profit is on the boundary

t(x,Q).

This is based on the fact that U(x, p, c) is increasing in p. We denote this maximum

point as maxQ for a buyer type Q. Once the seller determines the optimal contract

and presents it to the buyer, the buyer will accept because it satisfies both the loss

and the IR constraints. The buyer’s cost in accepting is exactly the reserved cost

C(0, 0, Q) because the contract is on the boundary. Every contract below an equal-

cost line is strictly preferable to a contract on the line for the buyer. This observation

is true as long as w(.) is an increasing function.
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Lemma 3.4. As p′ increases, P (x′, p′, x) is strictly increasing in the buyer cost.

This lemma is easily shown by noting C(x′, p′, Q) = w(y(x′) + x′p′). Thus, p > p′

implies C(x′, p, Q) > C(x′, p′, Q).

Lastly, after the seller determines the form of the equal-cost line of the buyers

the cost related to each line is no longer important. This is because in designing the

contracts, the seller only has to know which contract is more preferable to the buyer.

Also, the profit of the seller only depends on whether the buyer accepts the contract

but not on the type of the buyer. Thus, the buyer’s cost function w(.) can be of any

form which does not affect any of our analysis further on.

3.4 Multiple buyer types

We discuss two cases in this section: (1) the seller can only give out one contract

(2) the seller can give out as many different contracts needed.

3.4.1 Single Contract

When the seller can only give out one contract, there are two factors that affect

the total profit generated from this single contract. The first is the profit contract

(x, p) generates if it is chosen which is U(x, p, c). The second is the probability that

contract (x, p) will be selected; this depends on the buyer types and the distribution of

the buyer types. The factors depend on the actual realization of the seller/buyer type

and distribution, but we can characterize some properties of the single best contract.

Lemma 3.5. The optimal single contract is on the acceptance boundary of one of the

buyer types.

Proof. Let’s assume that the boundaries of each buyer type divides the plane x-p

plane into n areas. Let’s label these regions as G1, ..., Gn. For each Gi, it must be

either Gi ⊂ Tj or Gi ⊂ TCj for all i, j. (where TCj denotes the complement of the
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region Tj) Thus, all contracts inside a region Gi are accepted by the same set of

buyer types and not accepted by the other buyer types. Since inside each region Gi,

all contracts are accepted with the same probability, the only factor is U(x, p, c). The

contract that has the highest U(x, p, c) must be on the boundary of Gi which implies

it is on the boundary of one Tj. This completes the proof that the optimal single

contract must be on the acceptance boundary of one of the buyer types.

3.4.2 Multiple Contracts

3.4.2.1 maxi /∈ Tj for all i, j

Under the condition maxi /∈ Tj for all i, j, each buyer type prefers different types

of contracts and this does not conflict with the seller’s profit. The optimal set of

contracts will be {max1, ...,maxK}. Because maxi /∈ Tj for all i, j, each buyer type

i considers other maxj as unacceptable contracts. Thus, the seller can use this set

{max1, ...,maxK} and get the profit as if first knowing the buyer type and giving out

the corresponding contract.

3.4.2.2 Generalized Monotonicity Condition

For multiple buyer types in the generalized utility function for buyer and sellers, we

define a similar monotonicity condition as in Chapter II. We say that the monotonicity

condition (MC2) is satisfied if we can find an ordering of the buyer types 1, 2, ..., K

such that the following property is true.

Definition 3.6. The buyer types are said to satisfy a monotonicity condition (MC2),

if ∀i > j, x < x′, Pi(x
′, p′, x) < Pj(x

′, p′, x) and ∀i > j, x > x′, Pi(x
′, p′, x) >

Pj(x
′, p′, x)

This monotonicity condition (MC2) says that there exists an ordering in the buyer

types such that higher types have higher valuation for more bandwidth purchased.
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It can be shown that MC2 is implied by the monotonicity condition (MC) for the

specific utility function in Chapter II. If MC2 is satisfied, then Lemma 2.17 says

that the optimal contract set must have the xi’s ordered. Theorem 2.19 also follows

through because we have assumed that the seller’s profit is increasing in p and from

Lemma 3.4 the equal-cost lines are strictly increasing in the buyer’s cost.

By Theorem 2.19, the generalized problem can be reduced from the space {xi, pi}

to the ordered space {x1, ..., xK}, where we can write the maximization problem as

follows.

E[R(C)] = max
x1,..,xK

r1U(x1, p1)...+ rKU(xK , pK) (3.6)

= max
x1≤...≤xK

r1U(x1, pb1(0, 0, x1)) + ...+ rKU(xK , pbK (xK−1, pK−1, xK)) .

Since we prefer not to specify the function w(.), we cannot proceed as in Chapter II.

However, we note that the procedure in Theorem 2.19 has a special property that

if we fix the contract (xi, pi) for buyer type i, then the optimal set of contracts for

buyer type i+1, ..., K does not depend on the optimal contract set of the buyer types

below i. Thus we discretize the x-p plane into a grid where X and P denote the

number of x and p values. We can utilize a dynamic programming method to reduce

the complexity of finding the optimal contract set. Let g(x, p, i) denote the maximum

profit from giving out contract (x, p) to buyer type i and the optimal contract set

to the buyer types above i. We can easily calculate the values of g(x, p, i − 1) for

the entire x-p plane with the following method. For each grid g(x, p, i− 1), since we

are giving out (x, p) for the buyer type i− 1, we know that the optimal contract for

the buyer type i must be of the form (x′, Pi(x, p, x
′)) from Theorem 2.19. Thus, we

only need to compare at most X different values to determine g(x, p, i − 1). After

determining all (x, p) values for g(x, p, i − 1) we can repeat the same process for

g(x, p, i− 2). Thus, the complexity of the algorithm is KX2P which is polynomial in
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the number of buyer types compared to the (XP )K of the brute force search.

Algorithm 3 Optimal contract using Dynamic Programming

for k = K → 1 do
for i = 1→ X do

for j = 1→ P do
if (x(i), p(j)) /∈ Tk then

g(i, j, k)← 0
else if k == K then

g(i, j, k)← rkU(X(i), P (j))
else

g(i, j, k)← rkU(X(i), P (j)) +max
i′>i

g(i′, [Pk+1(x(i), p(j), x(i′))], k+ 1)

end if
end for

end for
end for
return max

i,j
g(i, j, 1)

We give the pseudo code (Alg. 3) of the described algorithm. The x, p values are

discretized to X,P number of values, and we can iterated them from small to large

by 1, ..., X (1, ..., P ). Here x(i) and p(j) denote the transformation from integer to

the actual real number. We use [p] to denote the mapping from a real number p to

the index of the closest discretized value smaller than p. The algorithm returns the

maximum profit achievable, and the contract set can be determined by back tracking.

Below we list the main differences of the generalized contract design framework

compared with Chapter II.

• Buyer’s quality constraint:

In this chapter the buyer’s quality constraint can be any reasonable indicator

function Q(x, y) that takes x (the amount of secondary bandwidth) and y (the

amount of reference bandwidth) as input. The randomness of the secondary

spectrum can be represented by any type of random variable described by the

indicator function. Since quality should increase by purchasing more bandwidth,

the indicator function is assumed to be increasing in both x and y.
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• Buyer’s cost function:

In Chapter II, the buyer’s utility function was the total amount of money spent

xp+y. In this chapter, we generalized the buyer’s cost function to any function

increasing in the total amount of money spent w(xp+ y).

• Monotonicity condition:

We proposed a generalization of the monotonicity condition defined by the

equal-cost lines. The monotonicity condition requires that we can find an or-

dering of the buyer types where higher types have higher valuation for more

bandwidth.

• Seller’s profit function:

In Chapter II, the seller’s profit function was restricted to a linear form U(x, p) =

x(p − c). The optimal contract could be derived analytically under the mono-

tone condition. In this chapater, we generalized the seller’s profit function to

any function that is increasing in both x and p. Under the generalized mono-

tone condition, we obtain the optimal contract using a dynamic programming

approach.

3.5 Probability of Loss Example

In this section, we show how to apply the general framework derived in this

chapter to specific buyer/seller utility functions. Consider a buyer who may not

have a constraint on the expected transmission loss but on the probability of loss.

This could be the case when partial reception of a packet is not accepted so that an

entire packet needs to be retransmitted due to error, or when there is a strict delay

requirement so that lost packets are not retransmitted (e.g., in the case of real-time

streaming). In such cases the probability of loss is a more relevant measure. We
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express the probability of loss constraint by the following expression:

Qi(x, y) = I(P (qi − y − xbiB > 0) < εi), (3.7)

where B is an uniform random variable between 0 and 1. The constant b ∈ [0, 1]

denotes the channel condition (defined by the buyer type). By purchasing x units

of secondary spectrum, the buyer gets a throughput of xbiB. qi is the transmission

needed and qi − y − xbiB is the amount left untransmitted.

We first derive the function y(x):

P (q − xBb− y > 0) ≤ ε⇔ P (B <
q − y
xb

) ≤ ε (3.8)

⇔ q − y
xb
≤ ε . (3.9)

For the buyer, the minimum amount of additional purchase y is,

y(x) = max(q − xbε, 0) (3.10)

That is, if x > q
bε

there is no need to buy additional reference bandwidth. If x < q
bε

,

the buyer purchases q − xbε. The equal-cost line has two different forms depending

on the different cases.

• Case: x > q
bε

In this region y = 0, the cost of the buyer is of the form u(xp+y) = u(x′p′+y′)⇔

xp+ y = x′p′. The equal-cost line takes the form p(x, p, x′) = xp/x′.

• Case: x ≤ q
bε

In this region y = q−xbε. u(xp+y) = u(x′p′+y′)⇔ xp+q−xbε = x′p′+q−x′bε

The equal-cost line takes the form p(x, p, x′) = bε−p
x′
x+ bε.

To verify whether the monotonicity condition holds, we can take the derivative of the
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equal-cost line with respect to x′. For x > q
bε

,

p′(x, p, x′) =
bε− p
x′2

x. (3.11)

The derivative of the equal-cost line with respect to x′ is always increasing in x′ and

for larger bε the slope is greater. Thus, the higher type here is defined as bε. For

x ≤ q
bε

, the equal cost line is the same for all types, thus, we need that the region for

the second case be larger for higher types. In conclusion, for the buyer types to have

an ordering, we need the following property.

Proposition 3.7. If there exists an ordering in the buyer types 1..K such that b1ε1 ≤

... ≤ bKεK and q1/b1ε1 ≤ ... ≤ qK/bKεK.

If Proposition 3.7 holds, then we know that Algorithm 3 is optimal. We will

use the function U(x, p) = (x(p − 0.1))0.5 as the utility function of the seller in our

simulation. Note that the buyer’s cost function w(x, p) can be of any form as long as

it is increasing in p. Similar to the previous section, we compare contracts derived

from different methods under the monotonicity condition.

1. The optimal set of M contracts (denoted OPT(M) in the figures): Finding this

set is done by an exhaustive search over a set of discretized values x and p as

an approximation of the uncountable choices (the step size for x is 0.5 and the

step size for p is 0.1).

2. The algorithm we introduced in the previous section: Algorithm 3

3. A K-choose-1 method (denoted as MAX in the figures): This is the method that

selects the contract with the highest expected profit over the set {max1, · · · ,maxK}.

This is done by checking all (biεi, qi/biεi) pairs; the complexity increases linearly

in M .
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The experiments are run by increasing K = 1...7. For each K value the parameters

(qi, bi, εi, ri) are independently and randomly generated from uniform distributions

(bi ∈ [0, 1], qi ∈ [0, 10], εi ∈ [0, 2] and ri ∈ [0, 1] but normalized such that
∑
ri = 1)

For each K we record the average (in expected profit) over 12000 cases that satisfy

the monotonicity condition; results are shown in Figure 3.1. Our observations are as

follows. Being able to use more contracts is always better as expected (i.e., OPT(1)

≤ OPT(2) in all cases). ALG is optimal under the monotonicity constraint and

thus outperforms all other algorithms. OPT(1) is optimal for K = 1 and OPT(2) is

optimal for K = 1, 2. Because both OPT and ALG work on the discretized plane,

ALG does not have the advantage as in the previous chapter. When there are more

possible buyer types (as K increases), the maximum expected profit decreases because

it is harder to put all the contracts right on the buyers’ acceptance boundaries while

still satisfying the incentive compatibility condition. Lastly, maxi is not optimal for

K = 1 because it is approximated to the closest discretized grid.
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Figure 3.1: Simulation results of the sellers profit versus different contracts satisfying
monotonicity condition
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3.6 Conclusion

In this chapter, we generalized the contract design problem (Chapter II) where a

primary license holder wishes to profit from its excess spectrum capacity by selling it

to potential secondary users/buyers via designing a set of profitable contracts. The

cost function of the buyer can be any function that is increasing in the money spent,

while the quality constraint can be any function that can be mapped to the additional

reference spectrum needed. The utility of the seller can be any form that is increasing

in the price per bandwidth. We characterize the optimal solution where there is a

single buyer type. In the case when more than one buyer types exist, we construct

an algorithm that generates a set of contracts in a computationally efficient manner,

and show that this set is optimal in the discretized grid when the buyer types satisfy

a monotonicity condition.
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CHAPTER IV

A Regulated Oligopoly Multi-Market Model for

Secondary Spectrum Trading

4.1 Introduction

In this chapter, we examine the effectiveness of posted price sale mechanism in the

context of secondary spectrum trading. Due to spectrum under-utilization and the

emergence of wireless applications requiring a variety of spectrum products in terms

of time duration and bandwidth (e.g., Internet of Things, body-area networks, etc.),

it is increasingly likely that primary spectrum holders will trade unused spectrum in

small pieces, both in terms of bandwidth and time duration. At the same time, as

more applications turn to the secondary market to purchase spectrum, the valuation

of spectrum products also becomes easier to determine. For these reasons, holding

auction for each piece may no longer be the only choice or a good choice, and posted

sale becomes a viable alternative.

A number of studies have looked into spectrum trading using contract design by

a primary holder. In [25] a contract based framework was proposed for cooperative

spectrum sharing, whereby the primary offers certain amount of spectrum access to

secondary users in exchange for help in relaying data for the primary. Both [32, 63]

studied a monopoly market where a single primary designs contracts that maximize its
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profit when selling to different secondary types each having different communication

needs. [46] considered the contract between a single primary and a single secondary

and examined different outcomes when either dominates the contract form. In [77],

the interference between simultaneous secondary buyers was considered in the model,

and heuristics were introduced in solving the profit maximization and spectrum allo-

cation problem.

However, in most of existing works the competition among sellers is rarely dis-

cussed with the notable exception of [26], where a two-stage game in a duopoly setup

was studied. Under this model, the two primaries choose the amount of spectrum

they will lease in the first stage, and then compete in the second stage. Their results

show that there exists a threshold in the difference of their respective leasing costs

which determines where either player will remain in the market.

Our goal in this study is to analyze the resulting spectrum market where multiple

sellers participate in the posted sale of multiple spectrum products, each catered to

the needs of a different type of secondary user, and determine whether profit-efficient

equilibria can be achieved.

4.1.1 Our approach and modeling perspective

We consider the sellers’ competition with a goal of extracting profit. In this sense

our analysis takes the view of the primary license holders and seeks to understand

how they can be incentivized to participate in secondary spectrum trading.

When considering competition in markets, the often used models are the Bertrand

and Cournot competition models [10, 22]. The Bertrand model shows that with

just two sellers, the market reaches perfect competition and both sellers sell at the

marginal price. Specifically, it assumes that competing firms produce a homogeneous

product; thus products from different firms are interchangeable, the result being that

customers will always purchase from the firm that sets the lowest price. It follows
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that the only equilibrium point is when all firms set their price at the unit cost of

production. Under the Cournot model, firms compete by choosing the amount of

output they produce. Although they can choose their production quantity at will,

the total amount all firms produce affects the market price of that product, the result

being that the price approaches the marginal price as the number of sellers increases.

In reality we do not often see perfect competition where firms sell at marginal

prices. Modification of these models thus typically aim to reflect the real market.

For example, Bertrand-Edgeworth model [64] assumes a production limit of firms in

the Bertrand model. Various other factors can also be incorporated to avoid perfect

competition such as product differentiation, transport and search costs. Firms can

also avoid competing with each other by colluding/side contracting, which has often

been shown to improve the outcome, i.e., increase the sellers’ collective profit. Ex-

amples include Coase [19], which showed that bargaining leads to an efficient (profit-

maximizing) outcome in a trade with fully symmetric information and no transaction

cost, Jackson [42], which considered a two stage game where by firms first agree

on utility transfers that effectively rewrite the payoff functions, and then play the

price competition game in the second stage, and Ferreia[29], which considered cross-

ownership as a form of side contracting. Other examples can be found in [30, 28, 51].

Following this line of thought, in this chapter we consider the setting where mul-

tiple primary spectrum holders (also referred to as sellers) compete with each other

on the secondary market over multiple spectrum products. This market in its unreg-

ulated form is inefficient: all primaries will sell at marginal prices as discussed above.

We introduce a regulator who coordinates the sellers so that they avoid competition

by each focusing on different spectrum products/markets. This may be equivalently

viewed as forming an alliance/association of sellers who agree to abide by certain rules

without violating privacy and individual rationality. Specifically, we propose a money

transfer scheme where the seller transfers part of its profit each time it completes a
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transaction to other sellers, resulting in a profit sharing mechanism. The regulator

is not assumed to fully observe the sellers’ strategies (the details of the transactions

that have occurred such as the price, the bandwidth or duration sold, etc.), but only

assumed to know each time that a transaction has occurred. In other words, its role

is to simply to register/certify each transaction and facilitate the money transfer that

follows.

Under this model, we will discuss the conditions under which such a money ex-

change scheme could enforce efficient equilibria, i.e., profit maximizing. We will

specify the equilibrium region for both the special of two sellers and the more general

case of multiple sellers. In the first case we also identify the fairness region (in terms

of profit sharing) within the equilibrium region.

There is an interesting connection between our model and the class of coalition

games, which has been used in spectrum access context, see e.g., [61] that modeled

the collaborative spectrum sensing problem as a coalition game and showed that

through coalition, the secondary users can greatly reduce the average miss probability.

Under our model, the presence of the regulator may be viewed as forcing a coalition,

though ours is a non-cooperative game while coalition games belong to the family of

cooperative games. Moreover, since any kind of competition will result in zero profit

for all sellers, there is no other efficient equilibrium other than the grand coalition in

our context.

The remainder of this chapter is organized as follows. We introduce the model for

spectrum market in Section 4.2. In Section 4.3 we show that with two sellers and two

buyer types, the equilibrium only exists when price equals marginal cost. With the

introduction of a regulator, we show that an efficient equilibrium with fairness can be

achieved in certain conditions and fully characterize the conditions. In Section 4.4,

we extend the result of Section 4.3 to more than two buyer types. In Section 4.5 we

characterize the conditions for an efficient equilibrium to exist in the multiple seller
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case.

4.2 Model

The model we present next is similar to the Bertrand model but extended to

multiple products catered to different buyer types with different spectrum needs. We

assume the sellers all have sufficient supply to support the buyers’ needs. Under this

assumption, similar to the Bertrand model the result would end in a price competition

and the only equilibrium point is when all sellers sell at their marginal prices. In

order to move the equilibrium to a more efficient (profitable) point, we introduce a

regulator who can force money transfers among sellers. This transfer is only based

on the occurrence of each transaction but not on the details of the transaction; thus

the resulting game is one of partial information.

4.2.1 Sellers

There are K sellers, each with sufficient spectrum resource to supply all products

if they want to. We assume there are N different types of buyers – as each type seeks

a distinct spectrum product, a buyer type is equated to a product in our exposition

– each having different spectrum needs. The different spectrum products can differ

in their leasing durations, bandwidths or access rights. We assume that this set of

products are known and well defined. A seller’s strategy then concerns the price at

which it sets for each product. Formally, its strategy space on RN is defined by the

set of prices corresponding to each spectrum product. The sellers’ goal is to maximize

the total profit generated from all products. If a spectrum product i is sold at price

pi, then its profit is pi − ci where ci is the unit cost of the i-th product.
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4.2.2 Buyers

There are N types of buyers each corresponding to a spectrum product. A buyer i

will always choose to buy from the seller who offers the lowest price for product i given

that it is below some Mi. This amount Mi reflects buyer i’s price tolerance/upper

limit, beyond which the buyer will simply walk away. Mi can also be viewed as the

monopoly price for if there is only one seller, then the optimal price for the seller

would be Mi. Since there is a cost ci for each product i sold, the monopoly profit

from buyer type i is defined as Θi = Mi − ci. Let ri denote the number of buyers

of type i among the buyer population. Equivalently ri can also be the probability

of a random arriving buyers being of type i; this will not affect our analysis. Note

that the values Mi and ri are market information assumed known to the seller prior

to entering the market (this would be part of the market research done by the seller

mentioned earlier).

Throughout the chapter we will also often refer to a particular buyer type as

a distinct “market” featured with a distinct spectrum product, whenever there is

no ambiguity. This should not be confused with the more generic use of the word

“market” as in spectrum market.

4.2.3 Regulator

We define a third party in the sellers’ game, referred to as the regulator. This

regulator need not be imposed by entities outside the group of sellers; it could be

self-imposed by an alliance or coalition of sellers sharing the common goal of profit

maximization. The regulator can enforce money transfer based on partial information

of the actions of the sellers. Specifically, the regulator observes a signal each time

a transaction takes place (a buyer completing the purchasing of a spectrum product

from a seller). This signal contains no information of which product was sold and

what price it was sold at. The money transfer takes the following form. When seller
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i sells a product, he has to give another sellers j an amount tij (e.g., in dollars), for

each j 6= i. This amount tij is a real nonnegative number. Although we have set

up the regulator as a third party in the game, the role of the regulator can also be

viewed as a collusion between the sellers.

4.2.4 Efficiency

The intention in introducing the regulator is to force the sellers to avoid compe-

tition and attain higher profits. In this context, efficiency is measured by the total

profit of all sellers. Accordingly, at an efficient equilibrium the price that a buyer

pays for is the same as one commanded in a monopoly market. Thus, an efficient

equilibrium in our formulation maximizes the total profit of all sellers.

4.3 2 sellers, 2 buyer types

4.3.1 Unregulated

We begin with a simplified version of the spectrum market with only 2 sellers

and 2 buyer types, of population r1, r2, and monopoly profit Θ1,Θ2, respectively. As

already discussed in relation to the Bertrand model, under perfect competition, the

market will not exist with both sellers driven to selling for zero profit.

We next show that with some constraint on the sellers’ strategy space we can

achieve efficient (positive profit) equilibria. Specifically, assume that each seller can

only set one of the product prices below Mi meaning that they each can only choose

one of the products to sell. Let seller 1 (2) be assigned to take product 1 (2). Let’s also

include a third product which can attract both buyer types with less profit Θ3, i.e.,

(r1 + r2)Θ3 < r1Θ1 + r2Θ2. For this single-contract setup, deviation is not profitable
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for seller 1 if,

r1Θ1 ≥ r2Θ2 (4.1)

r1Θ1 ≥ (r1 + r2)Θ3 (4.2)

Equation (4.1) is for seller 1 to not take the market of seller 2, Eqn. (4.2) is for seller

1 to not choose to acquire both types of buyers by the third product (note that it

will not make sense for seller 1 to offer both product 1 and product 3 as a buyer, no

matter the type, will prefer product 3 as it is cheaper). Similarly,

r2Θ2 ≥ r1Θ1 (4.3)

r2Θ2 ≥ (r1 + r2)Θ3 (4.4)

would ensure seller 2 does not deviate. We don’t have to consider other cases because

if these conditions are satisfied, any price lower will not be beneficial to offer. For

these 4 equations to be satisfied, the set of parameters much satisfy the following

condition:

r1Θ1 = r2Θ2 ≥ (r1 + r2)Θ3 . (4.5)

If we assume r1 = r2 = 0.5, Θ3 = 1 and plot it on the Θ1-Θ2 plane, then the only

values for Θ1,Θ2 that satisfy this condition lie on the 45 degrees line starting from

Θ1 = Θ2 = 2. This will also be referred to as the stability or stable region of these

parameters. This example suggests that when each seller is limited to selling only

one product, it is possible for the market to exist whereby the sellers make non-zero

profit. However, such existence depends on very restrictive selections of the problem

parameters, e.g., a line out of a 2D plan in this example. In other words, it is all

but impossible for sellers to not compete, or to make a profit, in an unregulated
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environment.
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Figure 4.1: Stable region without regulation

4.3.2 With Regulation

Suppose that a seller, upon each completed sale, pays a certain amount of money

to its rival. Let’s denote by t1 (t2) the money given from seller 1 to 2 (2 to 1) when

seller 1 (2) sells. Then the incentive compatibility condition for staying with its

assigned market/product is rewritten as follows for seller 1:

r1(Θ1 − t1) + r2t2 ≥ r2(Θ2 − t1) (4.6)

r1(Θ1 − t1) + r2t2 ≥ r1(Θ1 − t1) + r2(Θ2 − t1) (4.7)

r1(Θ1 − t1) + r2t2 ≥ (r1 + r2)(Θ3 − t1) (4.8)

r1(Θ1 − t1) + r2t2 ≥ r2t2 (4.9)
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and for seller 2:

r2(Θ2 − t2) + r1t1 ≥ r1(Θ1 − t2) (4.10)

r2(Θ2 − t2) + r1t1 ≥ r1(Θ1 − t2) + r2(Θ2 − t2) (4.11)

r2(Θ2 − t2) + r1t1 ≥ (r1 + r2)(Θ3 − t2) (4.12)

r2(Θ2 − t2) + r1t1 ≥ r1t1 (4.13)

Note that we discarded the constraint where each seller can only sell to one buyer

type. Thus, there are 4 different scenarios for each seller: (i) to switch to the other

seller’s market (Eqn. (4.6)); (ii) to take the other seller’s market (Eqn. (4.7)); (iii) to

switch to the third product (Eqn. (4.8)); and (4) to give up its own market and just

receive money from the other seller (Eqn. (4.9)). We want to show that by choosing

appropriate t1 and t2, we can make staying with the assigned market the best strategy

of both sellers. Consider the extreme case where t1 = Θ1 and t2 = Θ2, then Eqns.

(4.6), (4.7), (4.10) and (4.11) are satisfied.

r1(Θ1 −Θ1) + r2Θ2 ≥ r2(Θ2 −Θ1) (4.14)

r2(Θ2 −Θ2) + r1Θ1 ≥ r1(Θ1 −Θ2) (4.15)

Also, note that Eqns. (4.8) and (4.12) can be rearranged as follows where maximizing

t1 and t2 makes the inequality the least binding/restrictive.

r2(t1 + t2) ≥ (r1 + r2)Θ3 − r1Θ1 (4.16)

r1(t1 + t2) ≥ (r1 + r2)Θ3 − r2Θ1 (4.17)

Θ1 and Θ2 are the largest values t1 and t2 can be. This is because they would rather

not give any contract if ti > Θi and Eqns. (4.9) and (4.13) will not be satisfied. This

means that if setting t1 = Θ1, t2 = Θ2 cannot allow all equations be satisfied, any other
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values of t1, t2 cannot allow the equations be satisfied. By setting t1 = Θ1, t2 = Θ2, we

know that the following equations are the conditions to check whether it is possible

to have any money transfer to cause both sellers to follow the assignment:

r1Θ1 − (r1 + r2)Θ3 + r2(Θ1 + Θ2) ≥ 0 (4.18)

r2Θ2 − (r1 + r2)Θ3 + r1(Θ1 + Θ2) ≥ 0 (4.19)

Solving for these two inequalities we have,

Θ2 ≥ max(Θ3 −
r1

r1 + r2

Θ1,
r1 + r2

r2

(Θ3 −Θ1)) (4.20)

Taking the same example as in the previous subsection, r1 = r2 = 0.5 and Θ3 = 1,

we get Θ2 ≥ max(1− 0.5Θ1, 2(1−Θ1)) as shown in Fig. 4.2. The stable region now

contains all points above both lines.
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Figure 4.2: Stable region under regulation

Comparing Figures 4.1 and 4.2, we observe that the stable region expanded from

a line to a plane, not to mention the elimination of the one-contract constraint. In

Figure 4.1, only the Θ values exactly on the line were possible for the market to exist

with positive profit, significantly limiting the type of spectrum products the market

can profitably sustain. By contrast, Figure 4.2 suggests that for a majority of the
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spectrum products there exists a money transfer mechanism that can separate the

markets between the sellers and enable positive and indeed, maximum profit.

4.3.3 Fairness

We have shown that the stable region can be expanded by introducing a regulating

money exchange without knowing what the sellers actually did. However, we have not

specified any constraints on the resulting profit share. It is conceivable that sellers

will only agree to this money transfer scheme if the profit earned is fair in some sense.

In what follows we consider not only the stability region but also the region where

fairness is achieved. Without loss of generality, we will assume r1 ≥ r2. Let’s consider

the additional fairness condition where both sellers obtain the same profit under the

money transfer t1, t2:

r1(Θ1 − t1) + r2t2 = r2(Θ2 − t2) + r1t1 (4.21)

The reason for using equality as the fairness criteria stems from the assumption that

all sellers have enough supply on their own so they have the same profit extraction

power.

Similar as before, if we maximize both t1 and t2 then Eqns. (4.6-4.13) become less

restrictive. Previously the maximums were Θ1,Θ2; however, now we cannot simply

use the maximum because t1 and t2 are coupled. We consider 2 cases.

1. Θ2 ≤ r1
r2

Θ1: In this case, if we set t2 = Θ2, then t1 = Θ1/2 + r2
2r1

Θ2 ≤ Θ1 from

Eqn. (4.21). Since t1 ≤ Θ1, this is a valid choice that maximizes t1 and t2.

Using Eqns. (4.6) and (4.10), the following conditions have to be satisfied:

1 + r1/r2

1− r2/r1

Θ1 ≥ Θ2 ≥
1

(2 + r1/r2)
Θ1 . (4.22)

Because we assumed r1 ≥ r2, we have 1+r1/r2
1−r2/r1 Θ1 ≥ r1

r2
Θ1. The region is thus
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given by the following condition:

r1

r2

Θ1 ≥ Θ2 ≥
1

(2 + r1/r2)
Θ1 . (4.23)

2. Θ2 ≥ r1
r2

Θ1: Similarly we set t1 = Θ1 and obtain t2 = Θ2/2 + r1
2r2

Θ1 ≤ Θ2 from

Eqn. (4.21). Since t2 ≤ Θ2, this is a valid choice that maximizes t1 and t2.

Using Eqns. (4.6) and (4.10), we find the following condition:

(2 + r1/r2)Θ1 ≥ Θ2 ≥
1− r1/r2

1 + r2/r1

Θ1 (4.24)

Because 1−r1/r2
1+r2/r1

≤ 0, the right hand side of the inequality is always satisfied.

We can conclude that fairness can be achieved in the region

(2 + r1/r2)Θ1 ≥ Θ2 ≥
r1

r2

Θ1 . (4.25)

Combining Eqns. (4.23) and (4.25), we conclude that the region where fairness is

achievable is,

(2 + r1/r2)Θ1 ≥ Θ2 ≥
1

(2 + r1/r2)
Θ1 . (4.26)

Next consider the condition given by Eqns. (4.8) and (4.12).

1. Θ2 ≤ r1
r2

Θ1: Let t1 = Θ1/2 + r2
2r1

Θ2, t2 = Θ2,

Θ2 ≥
(r1 + r2)Θ3 − r1Θ1/2

3r2/2 + r1

(4.27)

Θ2 ≥
(r1 + r2)Θ3 − (r1 + r2/2)Θ1

r2 + r2
2/(2r1)

(4.28)
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2. Θ2 ≥ r1
r2

Θ1: Let t1 = Θ1, t2 = Θ2/2 + r1
2r2

Θ1,

Θ2 ≥
(r1 + r2)Θ3 − (3r1/2 + r2)Θ1

r2/2
(4.29)

Θ2 ≥
(r1 + r2)Θ3 − (r1 + r2

1/(2r2)Θ1

r2 + r1/2
(4.30)

Eqns. (4.26) and (4.27-4.30) characterize the entire region where fairness is achievable

by at least one (t1,t2) pair that also results in an efficient equilibrium.

Using the same example r1 = r2 and Θ3 = 1, we plot the region in Figure 4.3.

Here the solid lines correspond to Eqn. (4.26). Between the two solid lines is the
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Figure 4.3: Fairness region

area where both fairness and efficiency can be achieved through money transfer. The

dashed lines correspond to Eqns. (4.27-4.30). If there exists the third product Θ3,

then the Θ1 and Θ2 values have to be above these lines. In Fig. 4.4 we further

show how the regions compare between efficient equilibrium and fair and efficient

equilibrium.

In this section, we showed that an efficient market can exist by introducing a

regulator. The money transfer provides the incentive for a seller not to steal her

rival’s market in two aspects: (i) money in-flow from the rival whenever she completes

a transaction, and (ii) additional money out-flow to the rival when the seller completes
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Figure 4.4: Comparing different regions

more transactions. We have shown that the stable/equilibrium region is maximized

when we maximize the money transfer. This is not to suggest that sellers should give

away all proceeds from a transaction; this is only done so as to reveal the largest

stable region. When conditions are less strict (given by the Θ1, Θ2 values), the

money transfer amount can be reduced. We compute the minimum transfer required

for each point on the Θ1-Θ2 plane and Fig. 4.5 shows the ratio between the minimum

transfer over the total profit ( t1+t2
Θ1+Θ2

). Note that this value is 1 at the boundary of

the achievable stable region and decreases in the middle where the value becomes 0.5,

meaning that half of the money earned is transferred.
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Figure 4.5: Minimum transfer for fairness
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4.4 More than 2 buyer types

We now extend the result from the previous section and assume that there are

more than 2 buyer types but still with 2 sellers. The first problem we have to address

is how the buyer types might be divided among the sellers so that they can avoid

competition by selling in different markets as previously done.

4.4.1 Predetermined contract dividing sets

Theoretically, we could assign all contract types to one of the seller (say seller

1) and then transfer profit to the other seller (seller 2). Assume the contracts will

generate profits Θ1, ...ΘN respectively with type distribution r1, ..., rN . We can let

seller 1 have all the contracts and let t2 = ∞ such that seller 2 will never try to

sell any spectrum product. By assigning t1 =
∑N

i=1 Θiri/2∑N
i=1 ri

the profit is divided equally

among the sellers. However, it is hardly reasonable or practical to let one seller do

all the work while the other does nothing and just collects money. We thus consider

whether it is possible to achieve an equilibrium if we have a pre-assigned dividing

rule for the contracts. Assume it is already determined that seller 1 should sell to

buyer types 11, 12, ..., 1N1 with profit Θ11,Θ12, ...,Θ1N1 and seller 2 should sell buyer

types 21, 22, ..., 2N2 to Θ21,Θ22, ...,Θ2N2 . Where N1, N2 are 2 positive integers with

N1+N2 = N The buyer distribution is r11, r12, ..., r1N1 and r21, r22, ..., r2N2 respectively.

Again, the transfer payment is incurred when a seller sells a spectrum product. The

transfer amounts are t1/t2 from seller 1/2 to seller 2/1. The following equations are

the profit of both sellers if they stick to the assigned contract allocations:

N1∑
i=1

r1i(Θ1i − t1) +

N2∑
i=1

r2it2 (4.31)

N2∑
i=1

r2i(Θ2i − t2) +

N1∑
i=1

r1it1 (4.32)
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If we write out all the deviations possible for each seller, there will be 2N12N2

possible strategies for each seller. We can however reduce the action space by the

following Lemma.

Lemma 4.1. Seller 1/2 will follow the contract assignment if and only if it is neither

valuable to drop one of her own contacts nor valuable to add one of her rival’s contracts

to her own contract set.

Proof. Changing from a set of contracts to another set of contracts can be viewed as

dropping some contracts and adding some contracts. The effects of these changes are

linear in the profit; thus, if changing the whole set is profitable then there must be

at least one profitable single change action. That also means if none of these changes

increases the total profit, the total profit cannot be increased by any combination of

these changes.

Lemma 4.1 says that if we want to check whether the assigned contract is a Nash

equilibrium, we only have to check dropping or adding one contract; we don’t have

to verify all possible strategies for the seller.

1. Drop a contract: The condition for seller 1 to not drop a contract 1j is

N1∑
i=1

r1i(Θ1i − t1) +

N2∑
i=1

r2it2 ≥

N1∑
i=1

r1i(Θ1i − t1)− r1j(Θ1j − t1) +

N2∑
i=1

r2it2

which can be simplified to Θ1j ≥ t1. This means that seller 1 should needs to

have positive profit from selling this contract.

2. Adding a contract: The condition for seller 1 to not want to add a contract 2j
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is

N1∑
i=1

r1i(Θ1i − t1) +

N2∑
i=1

r2it2 ≥

N1∑
i=1

r1i(Θ1i − t1) + r2j(Θ2j − t1) +

N2∑
i=1

r2it2i − r2jt2

which can be simplified to t2 ≥ Θ2j − t1.

As previously mentioned, we analyze these condition as if a seller could take over the

rival’s market at the exact same price set by the rival, while in reality in order to

steal from the other’s market a seller needs to offer slightly lower prices. However,

the intention is that if the seller has no incentive to take over the rival’s market at the

same price, then she will have no incentive at any lower prices. Repeating the same

analysis for seller 2, the conditions that need to be satisfied such that an equilibrium

assignment exists are

Θ1j ≥ t1,∀j = 1, ..., N1 (4.33)

Θ2j ≥ t2,∀j = 1, ..., N2 (4.34)

t2 ≥ Θ2j − t1,∀j = 1, ..., N2 (4.35)

t1 ≥ Θ1j − t2,∀j = 1, ..., N1 (4.36)

If we just consider Eqns. (4.35) and (4.36), maximizing both t1 and t2 will relax

these two constraints. However, t1, t2 are restricted by Eqns. (4.33) and (4.33). Let

t1 = Θ1 = mini=1,...,N1 Θ1i and t2 = Θ2 = mini=1,...,N2 Θ2i be the maximum values of

t1 and t2. Then constraints Eqns. (4.35) and (4.36) can be simplified to:

Θ2 ≥ Θ2j −Θ1,∀j = 1, ..., N2 (4.37)

Θ1 ≥ Θ1j −Θ2, ∀j = 1, ..., N1 . (4.38)
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Let Θ1 = maxi=1...N1 Θ1i and Θ2 = maxi=1...N2 Θ2i. Then these constraints can be

further simplified to:

Θ2 ≥ Θ2 −Θ1 (4.39)

Θ1 ≥ Θ1 −Θ2 (4.40)

or

Θ1 + Θ2 ≥ max(Θ1,Θ2) = max Θ (4.41)

where max Θ is the highest profit among all contracts. In conclusion, the pre-

determined assignment of buyer types to the 2 sellers has to satisfy the condition

where the sum of the least profitable customer of each seller has to be greater than

the profit from the most profitable type. If this is satisfied, then an equilibrium where

both sellers follow the assignment is possible.

Figure 4.6: Stable regions for Θi separated to one of the sellers

In Fig. 4.6 we plot the regions where money exchange can force an efficient and

equal-share equilibrium in a 3-buyer type case. Here we fix Θ1 = 1 and vary Θ2 and

Θ3. Since there are 2 sellers dividing the 3 types, one of the sellers is assigned to

one buyer while the other is assigned to two buyers. We plot the possible regions of
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the 3 different assignments. The plot indicates which buyer type is assigned to be

the only buyer type for one of the sellers. The triangle is the area where there exists

an assignment that equal share is possible. The 3 assignments are all possible in the

middle area while only one assignment is possible in each corner of the triangle.

4.4.2 Proportional fairness

Now we generalize the results where we consider whether it is possible to achieve

a stable money transfer where the profit is divided among the sellers such that seller

1 gets p times the profit of seller 2. The proportional fairness is written as

∑
i

r1i(Θ1i − t1) +
∑

r2jt2

= p(
∑
j

r2j(Θ2j − t2) +
∑

r1it1) (4.42)

Since t1 and t2 are coupled by Eqn. (4.42), only one of them can be set to Θi. Thus,

we have 2 cases,

1.
∑

i r1i(Θ1i−Θ1) +
∑
r2jΘ2 > p(

∑
j r2j(Θ2j −Θ2) +

∑
r1iΘ1). Under this case,

t1 reaches Θ1 first when we increase t1 and t2. Thus, t2 cannot be set to Θ2.

t1 = Θ1 (4.43)

t2 =
p
∑
r2jΘ2j −

∑
r1i(Θ1i − (p+ 1)Θ1)

(p+ 1)
∑
r2j

(4.44)

t2 is determined by Eqn. (4.42). For this to be a valid choice, the conditions in

Eqns. (4.35) and (4.36) have to hold. That is t1 + t2 > Θ.

2.
∑

i r1i(Θ1i − Θ1) +
∑
r2jΘ2 < p(

∑
j r2j(Θ2j − Θ2) +

∑
r1iΘ1). Similarly, we
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have

t1 =

∑
r1iΘ1i −

∑
r2j(pΘ2j − (p+ 1)Θ2)

(p+ 1)
∑
r1i

(4.45)

t2 = Θ2 (4.46)

and the same condition t1 +t2 > Θ has to hold to guarantee that an equilibrium

is feasible.

The calculated t1 and t2 will maximize the stable region; this means that if these

values cannot result in an equilibrium where both sellers follow the assignment, there

will be no other money transfer that can achieve an equilibrium.

4.4.3 Limited bandwidth/supply

Our assumption so far has been that both sellers have unlimited bandwidth to

compete in all markets at the same time. If the sellers have limited bandwidth,

their strategy spaces become subsets of the unlimited bandwidth condition. Thus, if

they do not deviate with unlimited bandwidth, they will not deviate when they have

bandwidth limit. Thus, we can apply our results to the following setup.

Assume that the bandwidth of the 2 sellers are limited at X1 and X2, respectively,

and they want to share profit proportional to the bandwidth each of them has. Since

the bandwidth is limited, if they want to collaborate they will only sell to the set of

markets with the highest profit per bandwidth. From a centralized view point, a water

filling algorithm can find the optimal set of markets in which they should sell. Then,

the problem becomes a subset sum problem to determine two subsets where each

subset of market requires X1 and X2 bandwidth. The subset sum problem is known

to be NP-complete. However, there are polynomial time approximating algorithms

that can get close to optimal solutions, see e.g., [33]. After determining the subset,

we can use Eqns. (4.43-4.46) to check whether there exists money exchange that is
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stable and achieves proportional fairness. If there is such a point, we then also know

what value the money transfer should be from the same set of equations.

This mechanism however requires the sellers to report truthfully about their band-

width (X1 and X2) at the beginning. There are a number of ways to address this

requirement.

1. We can show that the sellers do not have incentives to under report. Since the

share of the profit is proportional to the amount of bandwidth they reported, if

a seller under reports, she will get less profit for sure. The only possible scenario

is to under report and then sell the excess bandwidth to buyers not assigned

to her. Since the algorithm already assigns the most profitable buyer types to

either seller and there is no incentive to sell to the rival’s buyer types, the only

possible buyers are the ones that are not assigned, which means they present

lower profits. Thus, there is no incentive to under report the bandwidth.

2. Since the profit share is proportional to the bandwidth limit each of them re-

ports, the sellers may hope to increase her profit share by reporting higher than

the true bandwidth. However, this can be easily caught because the actual

transactions occurred will not match the assigned amount of contracts.

3. Another way of achieving truthful sharing is to use a VCG-like mechanism.

By designing the shared portion to be only related to the rival’s reported value.

However, without other side information (such as the sum of X1 +X2) the result

will become equally dividing the profit.

4.5 Multiple Sellers, Multiple Buyer Types

We now consider the more general case of multiple sellers with multiple buyer

types. Let the sellers be i = 1, ..., K, each assigned with Ni buyer types indexed

by i1, i2, ..., iNi. With regulation, a seller is forced to transfer tij to seller j if she
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completed a transaction. Accordingly, the profit of seller i can be written as follows:

Ni∑
l=1

ril(Θil −
∑
j 6=i

tij) +
∑
j 6=i

Nj∑
l=1

rjltji . (4.47)

Similar as in the previous sections, we only need to consider two types of devia-

tions, i.e., adding an additional contract or removing a contract. The condition for a

buyer/contract allocation rule being a Nash equilibrium for seller i is:

Θil −
∑
j 6=i

tij ≥ 0, ∀l = 1, ..., Ni (4.48)

tji ≥ Θjl −
∑
m 6=i

tim, ∀j 6= i,∀l = 1, ..., Nj (4.49)

The most restrictive condition in the first equation is the smallest Θil. We define Θi =

minl=1,...,Ni
Θil and observe that

∑
j 6=i tij ≤ Θi is a necessary condition. Substituting

the maximum Θi into the second equation,

tji ≥ Θjl −Θi, ∀j 6= i,∀l = 1, ..., Nj . (4.50)

Similarly, tji has to be at least Θj − Θi for Eqn. (4.49) to be satisfied for all l. But

we have to check again whether the first equation is satisfied, which is

Θil −
∑
j 6=i

(Θi −Θj) ≥ 0, ∀l = 1, ..., Ni . (4.51)

Rearranging the above equation and taking account for all l = 1, ..., Ni, we conclude

that,

Θi ≥
∑
j 6=i

(Θi −Θj), ∀i (4.52)
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is the necessary and sufficient condition such that there exists money transfers for the

regulation to ensure an efficient equilibrium corresponding to the contract allocation.

The money transfer from seller i to j, tji = Θj −Θi will maximize the stable region.

By the condition Eqn. (4.52) above, we notice a few factors that affect whether a

stable money transfer is possible: (i) large Θi is better; (ii) small Θi is better; (iii)

less number of sellers K is better. Combing (i) and (ii) we see that the it would be

desirable for most of the products to have profits close to each other and the products

assigned to each seller to have similar profits. From (iii) we note that as the number

of sellers increases, the summation on the right hand side of Eqn. (4.52) increases.

4.5.1 Limiting the money transfer tij = tij′

In this subsection, we consider the special case of limiting the money transfer

to be identical tij = tij′ ∀j, j′, ∀i. We get a similar set of equations on individual

rationality:

Θil − ti ≥ 0, ∀i, ∀l = 1, ..., Ni (4.53)

tj/(K − 1) ≥ Θjl − ti, ∀j 6= i, ∀l = 1, ..., Nj (4.54)

As before we get ti ≤ Θi and taking it into the second equation gives us

Θj/(K − 1) ≥ Θjl −Θi, ∀j 6= i,∀l = 1, ..., Nj (4.55)

Taking into account all possible l, we can rearrange and get the following necessary

and sufficient condition.

Θi ≥ (K − 1)(Θi −Θj), ∀i,∀j 6= i (4.56)
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Not surprisingly, the stability region shrinks compared to the previous subsection. As

we discussed in the previous section, the conditions are satisfied if profits of different

products are close to each other and the number of sellers are small.

4.5.2 Multiple seller each with one buyer type

From the previous results, we immediately obtain the result for the special case

where each seller is assigned with exactly one buyer type. The results can be obtained

by substituting all Θ and Θ by Θ. The conditions are as follows,

Θi ≤
∑

j 6=i Θj

K − 2
∀i (4.57)

Θi ≤
K − 1

K − 2
Θj ∀i, j (4.58)

Equation (4.57) is for any tij, while Eqn. (4.58) is for restricting tij = tij′ . We can

see that similar to the two-seller case, the conditions are that the profit differences

are not too far.

4.5.3 Multiple sellers with fairness

If we would also like to achieve fairness in a multiple seller setting, this would

require an additional set of equations to be satisfied. For example, if the proportional

fairness is that the profit ratio is p1 : p2... : pK−1 : pK . This would introduce a set of

equations given by

∑Ni

l=1 ril(Θil −
∑

j 6=i tij) +
∑

j 6=i
∑Nj

l=1 rjltji∑Ni′
l=1 ri′l(Θi′l −

∑
j 6=i ti′j) +

∑
j 6=i′
∑Nj

l=1 rjltji′
=
pi′

pi

We note that combined with the set of conditions to not drop a contract or add a

contract (Eqns. (4.48), (4.49)), this is a feasibility problem of whether there exists a

set {tij} that can satisfy all constraints. Although there are no polynomial algorithm
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that can solve this problem, this is a simplified version of a linear programming

problem for which we do not have the maximization term. There are many existing

algorithms that could be used to solve this problem, see e.g., [23].

4.6 Conclusion

In this chapter we introduced a competition model suitable for the secondary

spectrum market. We first show that the market will result in full competition where

equilibrium only exists when all sellers have zero profit. We then introduce a regulator

who can facilitate a set of money transfer based on partial observations of the sellers

actions. We show that by the introduction of this regulator, we can induce the market

to have efficient (profit maximizing) equilibria. The conditions for designing a stable

money transfer were characterized for cases of two-seller and multiple-seller cases,

and how to achieve fair profit share is also discussed.
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CHAPTER V

Data-Driven Channel Modeling Using Spectrum

Measurement

5.1 Introduction

Dynamic spectrum access has been a subject of extensive study in recent years.

The increasing volume of literature calls for better understanding of the character-

istics of current spectrum utilization as well as better tools for analysis. A number

of measurement studies have been conducted recently, revealing previously unknown

features. On the other hand, analytical studies largely continues to rely on stan-

dard models like the two-state Markov (Gilbert-Elliot) model. In this chapter we

present an alternative, stochastic differential equation (SDE) based spectrum utiliza-

tion model that captures dynamic changes in channel conditions induced by primary

users’ activities.

The SDE model is in closed form, can generate spectrum dynamics as a temporal

process, and is shown to provide very good fit for real spectrum measurement data.

We show how synthetic spectrum data can be generated in a straightforward manner

using this model to enable realistic simulation studies. Moreover, we show that the

SDE model can be viewed as a more general modeling framework (continuous in

time and continuous in value) than commonly used discrete Markovian models: it
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is defined by only a few parameters but can be used to obtain the transition matrix

of any N -state Markov model. This is verified by comparing the 2-state GE model

generated by the SDE model and that trained directly from the data. We show that

the GE model is a good fit for the (quantized) data, thereby a fine choice when binary

descriptions of the channel condition is sufficient. However, when high resolution (in

channel condition) is needed, the SDE model is much more accurate than an N -state

model, and is much easier to train and store.

5.1.1 Related work

One commonly used category of channel models that obtain the time process

property is based on Markov chains, where each state often represents a different

condition of the channel, with dynamic changes described by the state transition

probability matrix. Sometimes a mixture of Markov models with other models is

used to capture characteristics of the error patterns, see e.g., the chaotic maps [49]

and the MTA [48].

Within this category, the Gilber-Elliott (GE) model [34, 27] is the simplest Markov

model consisting of only two states. Perhaps due to its simplicity (and often the

associated analytical tractability), the GE model is widely used as the underlying

model for wireless channels both in analysis and in simulation. Under this model,

the channel is given by a two-state Markov chain with state G (good) and B (bad),

see Figure 5.6. In state G, transmission is assumed error-free, while in state B the

channel has a probability h of transmitting the packet correctly1. These two states

are used to model a burst-noise channel. A more general variation of this model

includes a probability k (usually k > h) such that both good and bad states have a

chance to generate an error bit.

A lot of studies have been conducted on these two-state Markov models. Mc-

1The GE model is very often used in a simplified version where h = 0, which is the version we
focus on in this paper.
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Figure 5.1: The Gilbert-Elliott (2-state) model

Dougall et al. [54] showed that at low SNR, the two-state Markov model does not

generate an adequate frame error process because it lacks the ability to match higher-

order block error statistics. Hartwell et al. [37] showed that using the higher-order

state hidden Markov models provides a better fit of measured data than the tradi-

tional 2-state GE models. However, high-order state Markov models require high

computational complexity to train the parameters of the Markov model. Yu et al.

[73] proposed a four-state Markov model and showed how to analytically establish

the transition probability. Konrad et al. [48] proposed a Markov based model aimed

at capturing the non-stationary behaviors of wireless channels.

5.1.2 Our approach and main contributions

We introduce a stochastic differential equation (SDE) model derived partly based

on the physics of electromagnetic wave propagation. This SDE model is continuous

both in time and in value, and falls under the category of diffusion models, which

is more commonly used in queuing analysis when dealing with large systems, e.g.,

those with heavy loads [36]. The main idea is that when queue sizes are large, the

increments over a single discrete step become relatively small by comparison. Thus

under such operating regimes, it is reasonable to model the discrete change in the

queue occupancy by a continuous flow, resulting in diffusion models. The analytical

advantage of using a diffusion model is that it is amenable to both transient and
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steady state analysis and can be used to derive queue size distributions which is hard

to do using a discrete model when the state space is large. We shall see that the

SDE model introduced here holds similar advantages over discrete, GE-type models.

We therefore conclude that the SDE model serves as a valuable alternative to the

commonly used GE-type models.

5.1.3 Organization

The remainder of the chapter is organized as follows. We introduce the SDE

model and show how to estimate its parameters in Section 5.2. In Section 5.3 we

verify the model by using spectrum measurement data from CRAWDAD [39] as well

as our own study [16]. In Section 5.4 we show how to synthesize data from the trained

SDE model and compare the spectral entropy of the synthesized data to the spectral

entropy of the collected data. Then in Section 5.5 we show that we can obtain the

2-state GE model from the synthesized data and compare it with the GE model

trained directly from the quantized measurement data. In Section 5.6 we compare

the channel prediction performance of the SDE model and an N -state Markov model,

both trained from the measurement data. We conclude the chapter in Section 5.7.

5.2 The SDE model

5.2.1 Constructing the model

The spectrum utilization model presented here uses stochastic differential equa-

tions (SDE) to model dynamic scattering and multipath fading channels, in particular,

Rayleigh-distributed stationary channels. This is a technique developed and used in

a number of studies, see e.g., [66, 13].

Specifically, our model is derived from a dynamic wireless channel model developed

in [65] using similar techniques. Underlying this model is the assumption of either a
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single transmitter or many non-dominant transmitters stationary in space and in time.

The model describes the complex signal received by a stationary receiver (thus with

zero Doppler’s effect) Building upon this work, our contribution lies in (1) extracting

the received energy as a random process expressed as an SDE and the construction

of the subsequent spectrum model, and (2) developing a method to estimate the

unknown parameters of the model.

In this model the signal detected at a receiver is viewed as a collection of a large

number of reflected waves, and thus exhibits a multipath propagation phenomenon.

This makes the received signal’s phase random and hard to predict, and can possibly

lead to large fluctuation in the received power. Assuming that the received signal

on each path is random, the model developed in [65] is based on a continuous time

description of the scattered electric field received at a stationary receiver with multi-

path reception along N paths, expressed as ε
(N)
t =

∑N
k=1 akexp[iϕ(k)(t)], where ak is

the amplitude of the received signal along path k and i is the square root of -1. The

phase factors exp[iϕ(k)(t)] are independent and uniformly distributed on a unit circle

in the complex plane and for each t. In addition, it is assumed that the phase ϕ(k)(t)

satisfies the following SDE: dϕ(k)(t) = B
1
2dW (k)(t), where ϕ(k)(0) are uniformly dis-

tributed on [0, 2π), W (k) are independent Weiner processes, and B is a constant that

represents the rate of change in the phase of the received signal. By integrating the

above SDE it is readily seen that VAR(ϕ(k)(t)− ϕ(k)(0)) = Bt.

Using stochastic calculus, it was established in [65] that the amplitude process is

given by Ψ(t) = I(t) + iQ(t), where I(t) and Q(t) are the in phase and quadrature

components of the incoming waves received at time t, and can be represented by the

following two SDEs:

dI(t) = −1

2
BI(t)dt+

√
2

2
σB

1
2dW (I)(t) ; (5.1)

dQ(t) = −1

2
BQ(t)dt+

√
2

2
σB

1
2dW (Q)(t) , (5.2)
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with I(0) = 0, Q(0) = 0, and W (I)(t) and W (Q)(t) two independent standard Wiener

processes. The parameter B makes these two SDEs mean-reverting, i.e., the pro-

cess, in equilibrium, approaches the mean [9]. Such processes are also referred to

as Ornstein-Uhlenbeck processes [9]. The parameter σ2 represents the stationary

magnitude of the scattering power averaged over an asymptotically large number

of propagation paths [65], and is shown to be the asymptotic (in t) variance of εt

and satisfies: σ2 =
∑∞

k=1 a
2
k, which is assumed to be finite, assuming no single path

dominates: limN→∞
a2j∑N

k=1 a
2
k

= 0.

The above summarizes what was developed in [65]. We now proceed to derive

the power process received at the receiving antenna at time t. This is given by

R(t) =
√
I2(t) +Q2(t). Assuming processes (5.1) and (5.2), and using standard

arguments from stochastic calculus [9], we have the following lemma:

Lemma 5.1. Let Ī(t) = e
1
2
BtI(t) and Q̄(t) = e

1
2
BtQ(t). Then

dĪ(t) =

√
2

2
σB

1
2 e

1
2
BtdW (I)(t) , (5.3)

dQ̄(t) =

√
2

2
σB

1
2 e

1
2
BtdW (Q)(t). (5.4)

Furthermore, both Ī(t) and Q̄(t) are normally distributed, with mean 0 and variance

σ2

2
(eBt − 1).

Proof. Let f(x, t) = e
1
2
Btx. Then ft = ∂f

∂t
= 1

2
Be

1
2
Btx, fx = ∂f

∂x
= e

1
2
Bt and fxx =

∂2f
∂2x

= 0. Using Ito’s formula (Theorem 4.2.3 [9]) and replacing x with I(t), we have

dĪ(t) = ftdt+ fxdI(t) +
1

2
fxx(dI(t))2

=
1

2
Be

1
2
BtI(t)dt+ e

1
2
Bt(−1

2
BI(t)dt

+

√
2

2
σB

1
2dW (I)(t))

=

√
2

2
σB

1
2 e

1
2
BtdW (I)(t)
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where we have substituted Eqn (5.1) for dI(t). The second, Eqn (5.4), can be obtained

by the same argument. Integrating, say the equation for Ī(t), we see that

Ī(t) = Ī(0) +

√
2

2
B

1
2σ

t∫
0

e
1
2
BsdW (I)(s) .

Using the facts that the mean of the Ito’s integral∫ t
0
e

1
2
BsdW (I)(s) is zero and its variance

∫ t
0
eBsds we get the result.

An immediate consequence of the above lemma is that

R̄(t) =
√
Ī(t)2 + Q̄(t)2 (5.5)

has a Rayleigh distribution with parameter
√

σ2

2
(eBt − 1). The main theorem is given

as follows:

Theorem 5.2. The power process R(t) satisfies the following SDE:

dR(t) = −BR(t)

2
dt+

1

4

Bσ2

R(t)
dt+

1√
2
σB

1
2dW (t) (5.6)

with R(0) = r0, some constant, and W a standard Wiener process.

Proof. Consider R̄(t) as in Eqn (5.5) and note that R̄(t) = e
1
2
BtR(t). Now, consider

the function f(x, y) =
√
x2 + y2, for which we have the following first and second
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order partial derivatives:

fx =
x√

x2 + y2

fy =
y√

x2 + y2

fxx =
1√

x2 + y2
− x2

(
√
x2 + y2)3

fyy =
1√

x2 + y2
− y2

(
√
x2 + y2)3

fxy = − xy

(
√
x2 + y2)3

Substituting the above into Ito’s formula when differentiating (5.5), and using stan-

dard results on Wiener processes: dW (I)(t)2 = dt, dW (Q)(t)2 = dt, dW (I)(t)dW (Q)(t) =

0, we get

dR̄(t) =
Ī(t)dĪ(t)

R̄(t)
+
Q̄(t)dQ̄(t)

R̄(t)
+

1

4
σ2BeBt

1

R̄(t)
dt. (5.7)

Consider the first two terms in the above expression. It is seen

Ī(t)dĪ(t)

R̄(t)
+
Q̄(t)dQ̄(t)

R̄(t)
=

√
2

2
σB

1
2 e

1
2
Bt[
I(t)dW (I)(t) +Q(t)dW (Q)(t)

R(t)
] .

We have that

I(t)dW (I)(t) +Q(t)dW (Q)(t)

R(t)
=

1

R(t)
[I(t), Q(t)]

 dW (I)(t)

dW (Q)(t)
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and by the definition of R(t)

1

R(t)2
[I(t), Q(t)]

 I(t)

Q(t)

 = 1 .

Therefore, using Theorem 8.4.2 of [9] we conclude that
∫ t

0
I(s)dW (I)(s)+Q(s)dW (Q)(s)

R(s)
ds

has the same law as a Wiener process, denoted as W (t), independent of W (I) and

W (Q). This means that we can write

Ī(t)dĪ(t)

R̄(t)
+
Q̄(t)dQ̄(t)

R̄(t)
=

√
2

2
σB

1
2 e

1
2
BtdW (t) .

Substituting the above into (5.7) we obtain:

dR̄(t) =

√
2

2
σB

1
2 e

1
2
BtdW (t) +

1

4
σ2BeBt

1

R̄(t)
dt. (5.8)

Since R(t) = e−
1
2
BtR̄(t), we have

dR(t) = −1

2
Be−

1
2
BtR̄(t)dt+ e−

1
2
BtdR̄(t) . (5.9)

Replacing dR̄(t) with (5.8) in the above equation gives the desired result.

The power process we propose to use in this chapter is (5.6) with a modified mean

reverting term:

dR(t) =
B

2
(µ−R(t))dt+

1

4

Bσ2

R(t)
dt+

1√
2
σB

1
2dW (t) . (5.10)

The additional term Bµ
2
dt on the RHS, which is now part of the mean reverting term,

has the effect of steering the mean of the process to approximately µ (at t→∞). To

summarize, our model given in (5.10) consists of three terms: first a “mean reverting”
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process (or the O-U process) with mean µ, the second the “radial” term, and the third

a volatility term (together a Bessel process). Using the terminology of [1], we will

call this process a Radial Ornstein-Uhlenbeck process.

Three unknown parameters uniquely define this model: µ, B, and σ. µ will be

referred to as the mean. B will be referred to as the phase constant; it corresponds

to the rate at which the received signal phase changes. σ2 will be referred to as the

power constant (not to be confused with the received power); it is the sum of signal

magnitudes over all paths. The value Bσ2 determines the volatility of this process.

In the next section, we will show how these three parameters can be estimated using

spectrum measurement data for training.

5.2.2 Parameter estimation

In order to estimate the three unknowns µ, B and σ from real measurement data,

we first rearrange terms in (5.10) to obtain the following:

dW (t)√
dt

=

√
2

σB
1
2

{
dR(t)√
dt
− B

2
(µ−R(t))

√
dt− Bσ2

4R(t)

√
dt

}
. (5.11)

Note that the left hand side of the above equation is now a zero-mean, unit-variance

normally distributed random variable. The idea behind our parameter estimation

procedure is to use real measurement data to generate data points corresponding to

the right hand side of Eqn (5.11), and then match the first two (or more) sample

moments to that of the 0-mean unit-variance normal distribution, thereby solving

three unknowns (µ,B, σ).

Specifically, for a given frequency band our measurements are in the form of a

time series of power readings, denoted as R̂(ti), i = 0, 1, 2, · · · , N . From these mea-

surements we can now obtain successive differences between these readings, denoted

as dR̂(ti) = R̂(ti) − R̂(ti−1), i = 1, 2, · · · , N . We can also obtain the differences in
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sampling times, denoted as dti = ti−ti−1, i = 1, 2, · · · , N . For our measurement data,

sampling times are evenly spaced. Therefore in our case dti is treated as a constant.

Following this, the original measurement data may be viewed as a collection of

N triples (R̂(ti), dR̂(ti), dti), i = 1, 2, · · · , N . Each such triple will now be referred

to as a sample within the context of estimation and testing. From this collection of

samples, we now select a random subset Nest of size Nest for estimation. We plug in

each selected sample into the RHS of Eqn (5.11) and obtain the following data point

ŵi for i ∈ Nest:

ŵi =

√
2

σB
1
2

{
dR̂(ti)√
dti
− B

2
(µ− R̂(ti))

√
dti −

Bσ2

4R̂(ti)

√
dti

}
. (5.12)

This gives us a total of Nest data points {ŵi, i ∈ Nest}, each a function of µ, B

and σ. We also obtain an estimate of the mean by µ̂ = 1
Nest

∑
i∈Nest

R̂(ti). These

three unknown parameters can now be estimated by matching (1) the sample mean

of the data set {ŵi, i ∈ Nest} to 0; (2) its sample variance to 1; (3) the parameter µ

to the mean estimate µ̂; That is, the parameters are estimated by matching the first

two sample moments to the first two moments of the 0-mean unit-variance normal

distribution and matching the parameter µ to the estimated mean of the received

power.

In our experiments, we obtain the estimates by solving the following minimization

problem:

min
µ,B,σ

(m1 − 0)2 + (m
1/2
2 − 1)2 +

(µ− µ̂)2

µ2
+ P + (m

1/3
3 − 0)2 + (m

1/4
4 − 31/4)2

where mi denotes the i-th sample moment of the data set {ŵi, i ∈ Nest}, and 0 and 1

are the first two moments of the standard Normal distribution. P is a penalty term

designed to penalize the minimization when the parameter B is negative or too close

to zero (note that in the process R(t), B is a positive term). The term is in the form
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of P = C(B − δ)2 when B < δ and P = 0 when B ≥ δ (where δ is a small number

and δ, C > 0).

Once these parameters are estimated, we use the remaining N −Nest samples for

testing and model verification. This is done in a very similar way as in estimation.

Specifically, the testing samples are also plugged into the RHS of Eqn (5.11). However,

this time the computation is done with the estimated values of µ, B and σ. This gives

us N − Nest data points, also commonly referred to as the residual of the test data.

The model verification test lies in checking whether the residual follows the standard

normal distribution.

5.2.3 Analytical expression of SDE distribution

An immediate application of the SDE model is to derive received power distri-

bution in a channel. As mentioned earlier, the SDE model belongs to the family of

diffusion models. Diffusion models are often used in large-scale queuing systems as

good alternatives to the discrete valued Markov chains. Specifically, by allowing the

queue to have continuous values, the discrete valued Markov chain can be approxi-

mated by a diffusion model with the appropriate parameters. This makes it feasible

to derive the steady state distribution of the queue analytically, which is otherwise

impossible under a discrete model. Below we use similar techniques to obtain the

steady state distribution of the power process.

For any stochastic differential equation of the form

dXt = U(Xt, t)dt+
√

2D(Xt, t)dWt, (5.13)

the distribution of the process f(x, t), where f(x, t) denotes the probability P (Xt =
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x), satisfies the following equality by using the Fokker-Planck equation [36]:

∂

∂t
f(x, t) = − ∂

∂x
[U(x, t)f(x, t)] +

∂2

∂x2
[D(x, t)f(x, t)] . (5.14)

In our SDE model, R(t), the power process, takes the role of Xt in Eqn (5.13).

Recalling for convenience the model:

dR(t) =
B

2
(µ−R(t)))dt+

Bσ2

4R(t)
dt+

σ
√
B√
2
dW (t) , (5.15)

we then have the following mapping between (5.13) and (5.15):

U(Xt, t) =
B

2
(µ−Xt) +

Bσ2

4x

D(Xt, t) = σ2B/4

Assuming that the process reaches a steady state, i.e., ∂
∂t
f(x, t) = 0. Then integrating

the right hand side and suppressing the argument t will give us,

B

2
(µ− x+

σ2

2x
)f(x) =

σ2B

4
f ′(x) , (5.16)

or

2

σ2
(µ− x) +

1

x
=
f ′(x)

f(x)
. (5.17)

Integrating the above over x we get

2

σ2
(µx− x2/2) + log x = log f(x) + c . (5.18)
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Rearranging to solve for f(x) we get,

f(x) = c · x · exp(
2

σ2
(µx− x2/2)) , (5.19)

and the normalizing constant value c = 1/
∫∞

0
x · exp( 2

σ2 (µx − x2/2)). This gives us

the complete description of the steady state distribution function of the power process

R(t).

5.3 Model verification using spectrum measurement data

The model verification uses spectrum data from two sources: (1) The first is

our measurement study reported in [16], which was done over a period of multiple

days continuously, and simultaneously at multiple locations. The resolution of the

measurement is such that one energy reading (in µV) is produced for each band of

width 200KHz, for roughly every 75 seconds of sweep time over the range of 20MHz

to 3GHz. (2) The second is a dataset obtained from crawdad.org [39]. Compared to

the first data set, this set consists of readings for a larger band (10MHz), but over

a much smaller sweep time of roughly 80 nano seconds. These two sets of data thus

represent two very different measurement regimes: the first has low time resolution

(sampling rate) but high spectral resolution (narrow bandwidth) while the second has

a much higher sampling rate but wider bandwidth.

From these two data sets we selected the bands of TV Digital and TV Analog

for training and verifying the SDE model. The center frequencies of these bands

are listed in table 5.1. For each data set (note that each set is now a collection of

samples (triples) as described in the previous section), we randomly select 50% to be

the estimation/training data set and the remaining 50% the testing data set2.

To check whether the residual follows a standard normal distribution, and in

2Randomly selecting a set for estimation is a standard procedure in statistical analysis; the
resulting estimation represents the data better in case the underlying process is non-stationary.
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Data Set MHz Primary user Source
1 518 TV measurement study [16]
1 738 TV measurement study [16]
1 1842 GSM measurement study [16]
2 551 TV CRAWDAD [39]
2 629 TV CRAWDAD [39]
2 665 TV CRAWDAD [39]

Table 5.1: Data sets for model verification

particular to check how far it is from the standard normal distribution, we employ

the Quantile-Quantile(Q-Q) plot, a commonly used graphical statistical tool, see e.g,

[11, 14, 18]. The quantiles are points taken at regular intervals from the cumulative

distribution function (CDF) of a random variable. The p-quantile for a random

variable X is the value x such that Prob(X < x) = p. A Q-Q plot shows the

quantiles of the first data set against the quantiles of the second data set, and is

therefore an intuitive (as well as visual) and efficient way to determine if two data

sets follow a common distribution.

For two random data sets S1 and S2, the Q-Q plot is generated by first sorting

each set in increasing order, and then sequentially placing points on the plot. The

i-th point is placed at coordinates (s1
i , s

2
i ), where s1

i and s2
i are the values of the i-th

data point in the sorted sets S1 and S2, respectively.

In order to check whether a data set follows a standard normal distribution, we will

make the first data set the theoretical quantiles of the standard normal distribution

and the second data set the residual of the test data on the Q-Q plot. If the points fall

along a 45-degree reference line, then it is strong evidence that the residual follows

the standard normal distribution. If the points fall along a line, but not the reference

line, then this suggests that the residual follows normal distribution but is not exactly

standard.

In Figure 5.2 we show results on the first data set [72]. As noted earlier, this data

set has a much coarser time resolution, with 72 seconds between two consecutive
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Figure 5.2: Q-Q plot, location 2, 10-11am: 518MHz (top), 738MHz (middle), and
1842MHz (bottom) from [72]

data points (as apposed to 78 nano seconds of the second data set). The dashed

line represents the best linear fit of the points (the residual) – the closer the points

are to the dashed line, the more normally distributed the residual is. The solid line

represents the 45-degree reference line.
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Figure 5.3: Q-Q plot, 551MHz (top), 629MHz (middle), 665MHz (bottom)

Figure 5.3 shows the above normality test results for the three frequencies in the

second data set. It can be seen that in all three cases the points have very good linear

fit, indicating strong normality of the residuals. In addition, all three dashed lines

are very close to the reference line, indicating the residuals follow close-to-standard

normal distributions.
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We observe that the data acquired from CRAWDAD and in [72] both fit really

well but the CRAWDAD data fits better because the residuals in Fig. 5.3 fall more

linearly on the 45-degree reference line. The reason is likely due to the fact that the

second data set has a better time resolution. For the first data set, the fit is also good

with the exception of 1842MHz The reason that the model fails in this case is because

when calibrating the data, we assumed that the whole set (Monday-Friday) comes

from the same process which has the same three parameter values. Unfortunately,

this set contains an out-lier – one of the days has a mean significantly lower than the

other four (see Section 5.4 for more detail). Overall, these results verify that the SDE

model can be applied to both sparse and fine sampling rates of data.

Along with the fitting result, Table 5.2 shows the values of the estimated param-

eters; these values can be used in synthesizing spectrum utilization data, described

in the next section.

Data Set MHz µ b σ
1 518 0.3785 0.0391 0.0327
1 738 0.9661 0.0383 0.0732
1 1842 3488.0 0.0297 894.29
2 551 144.5060 1.2606e+07 93.1635
2 629 234.4078 1.5509e+07 124.3106
2 665 226.9313 1.7845e+07 145.8981

Table 5.2: Trained parameters

5.4 Synthesizing spectrum data

An important reason for developing any channel model is to provide a way to

generate synthetic channel data (sample paths of energy levels in a channel) that

are statistically close to variations observed in a real channel, so that one can easily

generate a realistic “spectrum environment” in which to test and evaluate various

algorithms and protocols. Below we show such synthetic data can be easily generated

under our SDE model.
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Taking Eqn (5.10) and integrating over a small interval ε,

R(t+ ε)−R(t) =
Bµ

2
(t+ ε− t)− B

2

t+ε∫
t

R(τ)dτ

+
1

4
Bσ2

t+ε∫
t

1

R(τ)
dτ

+σ
1√
2
B

1
2 (W (t+ ε)−W (t))

≈ Bµ

2
ε− B

2
R(t)ε+

1

4
Bσ2 1

R(t)
ε

+σ
1√
2
B

1
2 (W (t+ ε)−W (t)) (5.20)

where the approximation holds when ε is sufficiently small. Assuming we start from

some initial condition R(to) at time to, we can generate a sequence of data R(to + kε)

at times to + kε for k = 1, 2, · · · with time resolution (or time step) of ε as follows.

Note that W (t+ ε)−W (t) is normally distributed with zero mean and variance ε.

1. Generate a random sample from the 0-mean ε-variance normal distribution;

denote it by W (to + ε)−W (to).

2. Take this sample value into Eqn (5.20), replacing the corresponding part in the

last term on the RHS.

3. Compute the RHS, which gives the difference between R(to+ε) and R(to), hence

we have generated a value for R(to + ε).

4. Now repeat the above procedure indefinitely to produce a time series of desired

length.

The end result of this procedure is a sequence of synthesized R(t) values, representing

a particular realization.

To verify the validity of the above approach, one needs to verify that sample paths

(i.e., the synthesized R̃(t) process) generated by the above synthesis procedure follow
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the same distribution as the actual sample paths collected (i.e., the measured R̂(t)

process). However, directly comparing sample paths is not a very meaningful exercise.

It is also not clear how to extract the underlying distribution from these sample paths

since we are dealing with random processes.

To overcome these difficulties, we take the following approach. We first use the

synthesis procedure to generate a large number of sample paths and from these we

calculate the x% quantiles for each time t, where x = 5, 40, 60, 95. We then inspect

how well the real measurement traces fit into these quantiles.

Figure 5.4 shows this comparison result for the one-hour traces collected during

10-11am at location 2. The synthetic sample paths are generated using parameters

estimated by randomly selecting 50% of the data collected during this hour on the first

five days (Monday-Friday), and the actual sample path is whole set of data collected

during this hour. In these figures the dense curves represent (from bottom up) the

5%, 40%, 60%, and 95% quantiles from the synthetic data3. The narrow lines running

in between are where the real data points lie. In the case of 518MHz and 738MHz,

almost all the real observations are within the range between 5−95% quantiles. This

shows that the synthesized data and the collected data are more or less consistent.

In the case of 1842MHz, there is one path of data lying below the 5% quantile.

This observation tells us that the synthetic data does not describe the data correctly,

which agrees with the Q-Q plot analysis in the previous chapter (Figure 5.2). The

reason that the model fails is because when calibrating the data, we assumed that

the whole set(Monday-Friday) comes from the same process which has the same three

parameters. Unfortunately, one of the days has a mean obviously lower than the other

four. This tells us that we have to be cautious when the Q-Q plot analysis does not

result in straight line.

3These quantile curves are much denser (higher temporal resolution) than the actual measurement
because in synthesis we are able to choose very small time steps ε, at 1 second; indeed the smaller
this step the more accurate the approximation in (5.20). On the other hand, the actual measurement
has a time resolution around one reading per 70 seconds, as mentioned earlier.
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Figure 5.4: Location 2, 10-11am, 518MHz (top), 738MHz (middle) and
1842MHz(bottom). In each figure the dense curves represent (from
bottom up) the 5%, 40%, 60%, and 95% quantiles from the synthetic
data.

We can also compare the entropy of the two sample paths as an additional, indirect

means of validating the SDE model.. The experiment is done by choosing a sliding

window of size 10000 (samples). Within this window, we compute the power spectral
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density of the samples, from which we then compute the entropy of the samples within

this window. We do this over the entire sequence with overlapping of 50% between

windows.
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Figure 5.5: Entropy of synthesized SDE and data (551MHz top, 629MHz middle,

665MHz bottom)

Figure 5.5 shows the results of the above comparison with measurement data. It

can be seen that the entropy measures of the two are very close in all cases (they also
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both remain steady throughout the entire sequence).

5.5 SDE as a generalization of the GE model

In this section we show that the SDE model can be used to generate a 2-state GE

model; furthermore, this GE model is virtually identical to that generated directly

from the data. This in some sense validates the synthetic data generated by the SDE

model through yet another means, and at the same time shows that the SDE model

may be viewed as a more general modeling framework.

5.5.1 Generating the GE model

Given a sample path (measured or synthesized) of continuous power levels, the

discrete GE model may be generated by quantizing/discretizing the data into binary

values (where 0 represents a bad channel condition/state and 1 a good channel con-

dition/state). Using guidelines from [15], this discretization is done by viewing the

channel as occupied when the received power exceeds the minimum received power

(observed in the same sample path) by more than 3dB. Both the measurement data

and the synthetic data are already discrete in time, but can be easily down-sampled

to obtain a desired time resolution.

We then compute the ratio between how many times BB and BG (respectively

GG and GB) transitions occurred over the quantized sample paths, and use this as

the estimate for the transition probability ratio PBB/PBG (respectively PGG/PGB).

This ratio together with the fact the PBG = 1 − PBB (respectively PGB = 1 − PGG)

lead to the values of the transition probabilities for the 2-state GE model, illustrated

in Figure 5.6.
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Figure 5.6: The Gilbert-Elliott (2-state) model

5.5.2 Comparison between data-generated GE and SDE-generated GE

The following experiment is performed on the sample paths collected at 551, 629,

and 665 MHz, respectively:

1. Train the parameters of the SDE using this data set.

2. Synthesize data from this trained SDE model.

3. Quantize the synthesized data trace to 0-1 binary value as described above.

4. Obtain a GE model from the discretized synthetic data also as described above.

5. Obtain a second GE model directly from the original set of sample paths, sim-

ilarly quantized.

We then compare these two GE models, the idea being that if the two are similar,

then the SDE model can also be used to generate a valid GE model. The comparison

results are listed in Table 5.3.

Data Set MHz GE from data GE from SDE
PBG PGG PBG PGG

1 551 0.6489 0.6494 0.6350 0.6201
2 629 0.6506 0.6499 0.6427 0.6221
3 665 0.6151 0.6439 0.6615 0.5970

Table 5.3: Data sets for model verification
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We see that the two GE models share very similar parameters. This indicates

two things. Firstly, since the two GE models are generated from the synthetic and

the measurement data, respectively, this similarity suggests that the synthetic and

the measurement data are very similar in nature, thereby validating the SDE model

as a means of generating realistic synthetic data. Secondly, this means that we can

use the SDE model to generate essentially equivalent GE models without having to

rely on the original measurement data, i.e., once the SDE model has been trained,

we only need to record the three parameters µ, b, σ for future use. In this sense the

SDE model may be viewed as a more general modeling framework.

It is also worth noting that the GE model, i.e., its parameters, can be calculated

directly from the SDE model, given the threshold, Th, used to quantize the data.

Specifically, since we know the steady state distribution from Section 5.2.3, by ob-

serving that the SDE model consists of a deterministic term and a normal distribution,

we can obtain the following expression for the transition probability:

PGG =

∫ Th
0

f(x)Φ(
√

2
σ
√
B

(Th−x
dt

+ B
2

(x− µ)− Bσ2

4x
))dx∫ Th

0
f(x)dx

, (5.21)

i.e., PGG is calculated by integrating the distribution of the power process being

below the threshold multiplied by the probability that the next step falls below the

threshold. The same can be done for PBB. This method allows us to directly obtain

the GE model from the SDE model without having to go through the synthetic data.

This method can be extended to any N -state Markov model and will be used in

Section 5.6.

5.5.3 Fitting performance of the GE model

Following the previous section, it would be natural to question how well the GE

model fits the data if we only consider the quantized, binary description of the channel.
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In this section we examine this by comparing (1) the autocorrelation of the sample

paths generated by the GE model and the quantized actual data, and (2) the run

length distribution of error and error-free runs/sequences observed in these samples.

We first compare the autocorrelation and power spectrum density of the actual

data (data set 1, quantized) and the sample paths generated by the GE model. The

estimated GE transition probabilities from good state to bad state and good state

staying in good state are PGB = 0.3506 and PGG = 0.6494. The transition probabili-

ties starting from the bad state are PBB = 0.3511 and PBG = 0.6489. Results for the

autocorrelation and power spectral density are shown in Figure 5.7 and 5.8.

−200 0 200

0

0.2

0.4

0.6

0.8

1

1.2
Real Data 300s duration

τ (seconds)
−200 0 200

0

0.2

0.4

0.6

0.8

1

1.2
2−state Model 300s duration

τ (seconds)

Figure 5.7: The autocorrelation of real data and the GE model over a 300-second
duration.

The figures show that the autocorrelation and power spectral density of the GE

model matches the actual discretized data samples very well with similar maximum

values and similar shapes.

Next we examine the length of consecutive available states (consecutive ‘1’s) and

consecutive unavailable states (consecutive ’0’s). Figure 5.9 (left) shows the distri-

bution of consecutive runs of availability. The x-axis is the run length plotted in

logarithm scale, and the y-axis is the proportion of runs of that length. We observe
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Figure 5.8: The power spectral density of real data and the GE model over a 300-
second duration.

that the GE model generates run lengths of both error and error-free close to the

actual data.

The autocorrelation and the error length show that the GE model fits the actual

data really well, suggesting that the GE model is a good choice when the discretized

binary representation of the channel condition is sufficient. In other words, if an

application only needs to observe whether the channel is in a good quality, the GE

model is more or less adequate. This however is no longer the case if we require higher

resolution. In the next section, we demonstrate that when we need more information

than just discretized binary values, the SDE model provides much more richness.

5.6 Predictive performance of the SDE model

One obvious advantage of having a continuous model like SDE is the richness

of the data it provides compared to a discrete (esp. binary) model like GE. In this

section we take a closer look at this aspect within the context of the respective model’s

ability to predict channel conditions. In many applications including channel-aware

transmission scheduling [3] and opportunistic spectrum access [6, 68], collecting and
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Figure 5.9: Comparison between the SDE and GE models: consecutive available run
length (left) and consecutive occupied run length (right)

predicting channel condition (or channel side information (CSI) in some contexts) is

often critical to the effectiveness of the overall mechanism. For these applications, we

often wish to obtain information more than just the binary value representing whether

the channel is occupied. This is so that we could, for instance, more accurately

calculate the SNR from the interference power to estimate the achievable transmission

throughput.

Below we examine a channel model’s ability to predict, in a discrete-time setting,

the received power of the next step given the current power level. We do so for the

SDE model, and an N -state Markov model, a more general version of the 2-state GE

model which allows us to adjust the resolution (the size of the state space N) and

the corresponding quantization error.

We use the data-generated SDE model as a channel prediction model and compare

it with the prediction of anN -state Markov model. Since both models have Markovian

behavior, knowing the current state is sufficient to predict the next state. The error

of the prediction model is defined as the absolute value of the difference between the

prediction and the actual value. Given the past values of a process, the SDE model
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satisfies the Markovian property and predicts the next time step purely on the current

power value:

R(t+ ε) ≈ R(t) +
Bµ

2
ε− B

2
R(t)ε+

1

4
Bσ2 1

R(t)
ε

+σ
1√
2
B

1
2 (W (t+ ε)−W (t)) . (5.22)

Notice that only the last term contributes to a stochastic value with mean 0 and vari-

ance ε; all other terms are deterministic. If our metric is the absolute loss |prediction

value − actual value|, then the best prediction is to predict the expected value. The

expected value is obtained by discarding the stochastic terms and leaving only the

deterministic terms. Thus, in this comparison we will use eqn. 5.23 as the SDE model

prediction.

R(t+ ε) = R(t) +
Bµ

2
ε− B

2
R(t)ε+

1

4
Bσ2 1

R(t)
ε (5.23)

For the N -state Markov model, we take the first 200000 sample points from the

CRAWDAD data for training. The N -state Markov model requires a quantization

of different power levels. The quantization level is determined by dividing the sorted

200000 sample points into N levels; all points are quantized into the mean value of

the level it is placed in. We can then construct the N -state transition probability

matrix from the transitions of the 200000 data points between the quantile levels.

It is worth noting that the SDE model only requires several hundred of sample

points for training to obtain the 3 parameters (µ, b, σ) while the N -state Markov

model requires at least two orders of magnitude (100x) more in the number of train-

ing samples. Also, the N -state Markov model requires N × N storage to hold the

transition probability matrix.
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Figure 5.10: Average error obtained using Markov models of different number of

states compared with SDE
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Figure 5.11: Average error obtained using Markov models of different number of

states compared with SDE

Figure 5.10 shows the average prediction error of the N -state Markov model for

N ∈ [1, 10000]. Compared with the SDE model, we can see that the N -state Markov
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model is not very useful in prediction when N is small, but can achieve predictions

close to the SDE model by trading space for accuracy. Figure 5.11 shows the same

result but replacing CRAWDAD data by SDE generated sample path. As expected,

since it is actually generated from the SDE model, the SDE model predicts the power

levels even more accurately. This error value is actually the average deviation of the

last term in equation 5.22.

We next show the prediction performance over multiple time steps. We fix the

number of states for the Markov model, but vary the prediction steps n from 1 to

37. The prediction of the Markov model is done by multiplying the transition matrix

of the Markov model by it self for n times. Assuming the trained transition matrix

is correct, this will give the correct n step transition probability matrix. Prediction

under the SDE is done by recursively plugging in Equation 5.23 for n times. The

results are shown in Fig. 5.12.
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Figure 5.12: Average error obtained using a 1000-state Markov model and SDE for
n-step prediction.

We see that the SDE clearly outperforms under all step sizes. The error accu-

mulates when we increase the prediction steps, but this saturates to a near-constant
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value when the step is larger than 5. This is most likely because after 5 steps the

dependency of the future power level on the current value becomes negligible, so that

the prediction of both models become the steady state value.

It should be mentioned that one of the main reasons that contributed to the error

under the Markov prediction model is the training process it takes to obtain the

transition matrix – the measurement data we have appears insufficient in volume for

this purpose when N is large. We thus conduct the following, improved experiment.

We first use the SDE model to directly calculate the transition probabilities as shown

earlier, so as to minimize this training error. This would be equivalent to training

the Markov model using very long data traces. We then compare the prediction

performance of the SDE and this more accurateN -state model over a synthetic sample

path; the results are shown in Figure 5.13. We see that the error of the Markov

model is reduced even with small state space N . Note that when N is sufficiently

large, the Markov model can predict slightly better than the SDE does. This is

because under the Markov model we are truly calculating the probability of multi-

step transitions whereas under the SDE model we recursively calculate the mean

which is only an estimate. The improvement is, however, very minor, and comes at

enormous computational expense4

We end this section by highlighting a further advantage of the SDE model, which

is flexibility. This can be seen in two aspects: (1) suppose the training data have

measurements measured at nonuniform or random times. In this case it would be

hard or even impossible to use this data to train a simple N -state Markov model

because the transition of the Markov model is at a fixed time step. (2) If the we

want to change the discrete time unit of the Markov model, we would need to either

retrain the model (in the case of upsampling), or perform matrix multiplication (in

the case of down-sampling and only feasible when the new time unit is an integer

4Again, note that we actually had to use the SDE model to generate the N -state model for lack
of sufficient training, so this comparison would not have been possible without the SDE model!
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Figure 5.13: Markov model obtained from SDE model

multiple of the current one). In contrast, the SDE model does not require a uniformly-

sampled training data. Recall that in Section 5.2.2, the training is done with the triple

(R̂(ti), dR̂(ti), dti) where dti can be any real number. In addition, once we obtain the

SDE model it is very easy to select/adjust the desired time resolution by choosing

the Brownian motion term with the corresponding ε in Equation 5.20 without having

to retrain the model.

5.7 Conclusion

In this chapter we introduced a stochastic differential equation (SDE) model to

describe the secondary wireless channel power and compared it with N -state Markov

models. We show that the SDE model fits spectrum measurement data very well

under different measurement regimes. The SDE model can easily generate synthesized

sample paths whose entropy measure is consistent with the original measurement

data. The SDE model is a more general modeling framework that can be used to
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obtain an N -state Markov model. While we show that the 2-state GE model is

a good choice when binary representation of the channel condition is sufficient, the

SDE model is in general much more accurate and easier to use than an N -state model.
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CHAPTER VI

Trading Secondary Spectrum Through Spectrum

Portfolio

6.1 Introduction

In Chapter II and III, the buyer only considers purchasing one type of secondary

spectrum product and the rest from the reference market to satisfy the transmission

quality constraint. When multiple secondary spectrum products are available on the

market, the buyer may be able to combine multiple purchases of stochastic spectrum

products to increase the quality of transmission. In this chapter, we consider a buyer

who purchases a portfolio of spectrum products to maximize the mean throughput

while minimizing the variation of transmission throughput. The buyer’s consideration

will rely on the understanding of the channel statistics and the channel statistics can

change when more information of the channel is gathered. A precise channel dynamics

model will be important for the buyer and seller to have good purchase and pricing

plans.

6.2 Model

In this section we describe in detail the models for the two parties under the

framework: the seller and the buyer, and their considerations in designing and choos-
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ing the purchase, respectively. The basic idea underlying our model is that the buyer

purchases a mixture of secondary spectrum products, which are random and non-

guaranteed. By a careful selection of the different secondary spectrum products,

the buyer minimizes the variation of the service by considering the statistics of each

spectrum product. Another important idea is the reference spectrum which provides

guaranteed spectrum product, this gives the buyer an alternative if the secondary

spectrum products are all undesirable or overpriced.

6.2.1 The Seller

There are two parties, the seller and the buyer. The seller who uses the spectrum

to provide business and service to its primary users, and carry primary traffic. The

seller is willing to sell underutilized bandwidth as long as it generates positive profit

and does not impact negatively it’s primary business. We will assume that the seller

has N types of spectrum products each running a different primary service. Based on

the primary services running on each type of spectrum, the throughput obtained by

the buyer is different. The seller measures the statistics of each channel and announces

the measurements; in this case we will primarily consider the first and second order

statistics of the throughput (the mean and the variance of throughput).

The seller can decide a price corresponding to each type of spectrum product,

the goal is to obtained as much profit as possible from the secondary market. The

seller has to design the prices carefully, let the vector C = [C1...CN ] denote the

price vector of the spectrum and G = [G1...GN ] denote the mean throughput of the

spectrum. Σ denotes the correlation matrix of the N spectrum products in terms of

their throughputs. We will assume that the throughput obtained from the spectrum

products are independent random variables so Σ would be a diagonal matrix. The

analysis in this chapter is not necessarily limited to this independent assumption and

we will mention when it can be applied to dependent spectrum setups.
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6.2.2 The Buyer

The buyer purchases a portfolio of different secondary spectrum products for it’s

own use. The buyer has a fixed amount of money and wants to maximize the mean

throughput while minimizing the variation of the throughput obtained from the spec-

trum products. Assume the random variable X denotes the throughput of the sum

throughput of the spectrum portfolio purchased. The utility of the buyer is captured

by the following expression:

maxE[X]− ηV ar[X],

where η represents the risk the buyer is willing to take. For risk averse buyer, η will be

a large number. For a risk neutral buyer, η would be 0 and the buyer only cares about

maximizing expected throughput. Let the vector P = [P1...PN ] denote the amount

of each channel purchased by the buyer. Then E[X] = PTG and V ar[X] = PTΣP.

The budget constraint of the buyer is denoted by a scalar t. We assume the buyer

will spend all of the money so that PTC = t.

6.2.3 Reference Spectrum

We include a reference spectrum market as a third party to the buyer and seller.

The buyer can choose any portion of the budget t to purchase from the reference

market and spend the rest in the secondary market. The spectrum bought from

the reference market is assumed to have exclusive access right and will generate a

fixed amount of throughput with 0 variance. The reference spectrum only serves as

a comparison to find the fair price of the secondary spectrum, thus, we normalize it

to unit price per bandwidth.
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6.3 Analysis

We first consider the problem where the buyer only purchases from the secondary

spectrum market given prices set by the seller. Based on the result, we find the

optimal portion that the buyer will put into the secondary spectrum market, which

allows us to derive the pricing strategy of the seller.

6.3.1 Buyer’s consideration without the reference channel

The buyer’s consideration can be written as an optimization problem over the

vector P, while subject to the budget constraint.

max
P

PTG− ηPTΣP (6.1)

subject to PTC = t (6.2)

Pi ≥ 0, (6.3)

where each Pi has to be nonnegative. If we first ignore the inequality constraint, the

problem can be solved by standard matrix calculus where the solution is as follows,

P =
1

η
Σ−1[G + C(

ηt−CTΣ−1G

CTΣ−1C
)] (6.4)

If there are entries less than zero, the solution can be obtained by iterative elimination

of entries less than zero then reapplying Equation 6.4 [53]. The channels that are left

un-eliminated depends on the amount of money t the buyer wants to purchase. Note

that the iterative elimination process does not require the spectrum products being

independent.
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6.3.2 Buyer’s consideration with the reference channel

We now include the reference market, which sells guaranteed spectrum with price

1 and 1 unit power per bandwidth in the buyer’s problem. Consider that the buyer

uses a portion of t − t0 to invest in the reference market. The buyer’s problem

is to choose the optimal amount between the reference market and the secondary

market. Now we will assume that the channels have independent quality and the

covariance matrix is a diagonal matrix. In this case, Σ−1 is a diagonal matrix with

diagonal entries being the inverse of each variance and are nonnegative. The entry Pi

is negative only if Gi−Ci(ηt0−CT Σ−1G
CT Σ−1C

) is negative. Note that because this expression

is increasing in t0, the channels uneliminated will not be eliminated when we increase

t0. The buyer’s problem can be expressed as the following maximization problem

where P = 1
η
Σ−1[G + C(ηt−CT Σ−1G

CT Σ−1C
)].

max
t0

PTG + (t− t0)− ηPTΣP (6.5)

= max
t0

1

η
[G + C(

ηt0 −CTΣ−1G

CTΣ−1C
)]TΣ−1G + t− t0 (6.6)

− η[G + C(
ηt0 −CTΣ−1G

CTΣ−1C
)]TΣ−1ΣΣ−1[G + C(

ηt0 −CTΣ−1G

CTΣ−1C
)] (6.7)

= max
t0

1

η
[G + C(

ηt0 −CTΣ−1G

CTΣ−1C
)]TΣ−1G + t− t0 (6.8)

− η[G + C(
ηt0 −CTΣ−1G

CTΣ−1C
)]TΣ−1[G + C(

ηt0 −CTΣ−1G

CTΣ−1C
)] (6.9)

= max
t0

η

CTΣ−1C
(t20 −

1

η
CTΣ−1(G−C)t0 + ...) + ..., (6.10)

which has a quadratic form and the t0 that maximizes the expression can be calculated

as follows,

t0 =
1

2η
CTΣ−1(G−C). (6.11)

If t0 > t, the buyer will invest all money t in the secondary spectrum market and
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the iterative elimination process Equation 6.4 will determine the optimal portfolio.

If t0 ≤ t, the buyer will only invest t0 in the secondary spectrum market and the

remaining t − t0 will be invested in the reference market. Note that in the latter

case, the money PiCi invested in each spectrum product be at the value such that

the marginal gain of investing in the ith product equal to the gain of investing in the

reference market. In this case, the choices for each spectrum product are decoupled

and are only compared with the price of the reference spectrum. We will see this in the

next section where the pricing of each spectrum product can be decided independently.

6.3.3 Optimal pricing for the seller

We assume the primary knows the buyer’s preference and wants to maximize total

revenue obtained from the buyer. Because t0 is exactly the amount the buyer spends

in the secondary market, the seller wants to maximize t0 with the choice of C. (The

revenue is capped at t = t0 because the buyer has budget t.)

max
C

1

2η
CTΣ−1(G−C) (6.12)

Because Σ is a diagonal matrix, the amount each spectrum product contributed to

the seller’s revenue is additive and does not depend on the other spectrum products.

In order to maximize the revenue, the seller will set the price such that all products

are not eliminated from the buyers choice. The maximum choice is C = G/2 where

the total revenue is GT Σ−1G
8η

. We substitute this result into the buyer’s consideration
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and verify that each Pi > 0. For any constant 0 ≤ b < 1, if C = bG,

P =
1

η
Σ−1[G + (

ηt−CTΣ−1G

CTΣ−1C
)] =

1

η
Σ−1[G + bG(

ηt− bGTΣ−1G

b2GTΣ−1G
)] (6.13)

=
1

η
Σ−1[G−G +

ηt

bGTΣ−1G
] (6.14)

=
1

η
Σ−1[G

ηt

bGTΣ−1G
] (6.15)

≥ 0. (6.16)

This says that if the seller designs the price of each channel proportional to the mean

throughput, the buyer will have an incentive to purchase non-zero amount of each

secondary spectrum product.

6.3.4 Optimal pricing for seller with channel cost

If the primary has a cost per bandwidth for each channel C̄, then the maximum

profit can be expressed as.

max
C

PT (C− C̄)⇔ max
C

(
1

η
Σ−1[G + C(

ηt0 −CTΣ−1G

CTΣ−1C
)])T (C− C̄)

⇔ max
C

(
1

η
Σ−1[G + C(

η 1
2η

CTΣ−1(G−C)−CTΣ−1G

CTΣ−1C
)])T (C− C̄)

⇔ max
C

CTΣ−1CCTΣ(G−C + C̄)− 2CTΣCGTΣC̄ + CTΣC̄C
T
ΣG

2ηCTΣ−1C

This expression is non-convex and t0 depends on the design of C. Assuming that the

cost C̄ = aG is a fraction of the mean G and the seller designs C = bG. Then we
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can simplify the problem to,

max
b

b3GTΣ−1GGTΣ(G− bG + aG)− 2b2GTΣGGTΣaG + b2aGTΣGGTΣG

2ηb2GTΣ−1G

(6.17)

⇔ max
b

b3(1− b+ a)− 2b2a+ b2a

2ηb2
GTΣ−1G (6.18)

⇔ max
b

−b2 + (1 + a)b− a
2η

GTΣ−1G (6.19)

Since C = bG, the buyer will purchase from all channels. Under the assumption, the

optimal pricing plan is C = 1+a
2

G and the total profit is (1−a
4

)2 GT Σ−1G
2η

. As one would

expect, the profit is higher with low cost (small a), small η, large G (high channel

mean throughput) and small Σ (good quality spectrum).

6.4 Simulation

In this section, we test the resulting throughput of the buyer’s portfolio derived

in this chapter. The seller has 10 channels each modeled by an independent Gaussian

random variable with mean (µ = 144) ± 50% and standard deviation 15 ± 50%

uniformly generated. The price per channel is set to 90 ± 10% of the channel mean

throughput. The buyer is assumed to have 100 units of money, which can purchase

111 units of throughput from the secondary market on average. The reference market

is set at 1 unit price per bandwidth so the buyer can get 100 units of throughput at

0 variation. The parameter η is set to 1 in this particular case.

In Fig. 6.1 we show the throughput obtained by the portfolio optimization pro-

posed in this chapter compared with an uniform purchasing of each channel. As

shown in Fig. 6.1, the throughput bought from the portfolio has a smaller variation

compared with the uniform purchasing. The variance of the portfolio method obtains

a mean 117 and standard deviation 1.37 while the uniform purchase obtains mean 113
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Figure 6.1: Independent Gaussian random variables

and standard deviation 4.2. This shows that the portfolio method effectively reduces

the risk.
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Figure 6.2: Mean throughput for different η

Next, we plot the mean and variance of the obtained throughput over different

values of η = [0, 8]. The results are shown in Figure 6.2 and 6.3. We can see that with

small η, the portfolio acquires more throughput because the variance term is weighted

with a small value. However, the standard deviation of the portfolio is very high. This

would be the case when the buyer only cares about the expected throughput. On the

other hand, when η = 8, the average throughput is low and the standard deviation is
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also very close to zero. This would be the case of a risk averse buyer.
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Figure 6.3: Throughput variance for different η
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We also test the efficiency of the proposed pricing plan for the seller. For indepen-

dent channels, the optimal price of each channel is C = G/2. We keep the simulation

setups the same, but set C = G/2. We compare the result with an uniform price

setting Ci = µ/2 = 72 shown in Figure 6.4. When η is low, the buyer will prefer to

spend all the money in the secondary market because the prices are lower. Thus, both

pricing plans receive 100% of the buyer’s money. When η is high, we can see that

there is a gap between the optimal pricing plan (blue) compared with the suboptimal
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pricing plan (red).

6.4.1 Prospect Theory

Prospect theory [44, 67, 45] is a method to describe the way people choose between

probabilistic alternatives that involve risk. In particular, individuals decide which

outcomes they consider equivalent, set a reference point and then consider lesser

outcomes as losses and greater ones as gains. We use the prospect theory utility

function to model the risk-averse buyer. To be more precise, let x be the value

compared to the reference point a common utility function is as follows,

v(x) =

 xβ x ≥ 0

λ(−x)β x < 0
(6.20)

The utility changes most rapidly around the reference point which the person con-

siders the normal outcome. In our problem, we consider investing all money in the

reference market as the reference point. Spending 100 will result in guaranteed 100

throughput, thus, the gain (or loss) is x = X − 100. We let β = 0.5 and vary λ from

1 to 4. (higher λ means the buyer is more loss averse)
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Figure 6.5: Buyer’s utility for different λ
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Figure 6.5 shows the result. Because the channel set selected by the proposed

portfolio method has a smaller standard deviation, it performs consistently regardless

of how bad the buyer considers the loss. On the contrary, a uniform channel selection

would have lower utility when λ is increased.

6.4.2 Dynamic Spectrum Access

Lastly, we apply the portfolio selection method to a dynamic channel model. We

use the stochastic differential equation (SDE) model developed in Chapter V, where

the SDE channel statisitcs of the next state depends on the current channel observa-

tion. The SDE model can be discretized to discrete time slots and each SDE channel is

driven by an independent Brownian motion. Based on the channel condition and the

price of each channel, the user can optimize the allocation power on these channels to

get a higher combination of throughput. We will fix the price to the optimal pricing

C = G/2. In particular use a SDE model with µ = 144± 20%, b = 1.26e+ 07± 20%

and σ = 93± 20%.
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Figure 6.6: SDE channels

The results are shown in Figure 6.6. We compare the proposed portfolio method

with an uniform allocation on all channels. As shown in Figure 6.6, the proposed

portfolio method obtains a combined throughput with smaller variation compared to

142



the uniform channel selection.

6.5 Related Work

The work in this chapter uses the Sharpe ratio metric [2] for the buyer’s consid-

eration problem. The mean-variance based analysis is often used in finance because

the variance of return is as important as the mean returns [62]. Work most related

to that presented here includes [71] where the authors considered the QoS manage-

ment in cognitive radio using portfolio selection theory. The main difference is that

we include the pricing of channel products in the secondary users’ consideration and

include a reference market which sells guaranteed spectrum. We also consider the

optimal pricing plans for the primary user. In [57], Muthuswamy et. al. consid-

ered two different metrics, the demand satisfaction rate constraint and the demand

satisfaction probability constraint for the buyer’s objective (we borrowed these two

metrics as the expected loss and probability of loss constraint considered in Chapter

II and III). The authors showed that the buyer’s objective is a convex problem which

can be solved numerically.

6.6 Conclusion

In this chapter, we consider the buyer’s problem of combining multiple secondary

spectrum to obtained more stable transmission. The buyer maximizes a combina-

tion of mean throughput and negative of throughput variance. We solve the buyer’s

optimization problem with and without the reference market. Base on the result of

the buyer’s consideration, we find the optimal pricing plan for the seller if the seller

maximizes total revenue. If the seller has a cost per channel, we find the optimal

pricing plan assuming both the cost and the pricing plan are proportional to the

mean throughput.
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CHAPTER VII

Conclusion

In this dissertation, we studied the pricing and sensing issues that arise in as-

sociation with concepts such as dynamic spectrum access/sharing, open access, and

secondary (spot or short-term) spectrum markets. For the pricing issue we proposed

a contract design framework, and then studied two related problems: portfolio design

and oligopoly market. For the sensing issue we proposed a spectrum utilization model

which uses stochastic differential equations.

Specifically, we first formulate a contract design problem where a primary license

holder wishes to profit from its excess spectrum capacity by selling it to potential

secondary users. It needs to determine how to optimally price the excess spectrum

so as to maximize its profit, knowing that this excess capacity is stochastic in na-

ture and cannot provide deterministic service guarantees to a buyer. We adopt as a

reference a traditional spectrum market where the buyer can purchase exclusive ac-

cess with fixed/deterministic guarantees. The model captures the following essential

features: (1) excess bandwidth on the secondary spectrum market often comes with

non-exclusive use and therefore highly uncertain channel conditions; (2) incentives

are built in for both the seller and the buyer to conduct spectrum trading on the

secondary market. We fully characterize the optimal set of contracts the seller should

provide in the case of a single buyer. When there are multiple types of buyers and

144



each experiences different channel conditions, we construct a computationally efficient

algorithm and show that the set of contracts it generates is optimal when the buyer

types satisfy a monotonicity condition.

When multiple primary holders exist, we formulate a price competition model for

the primary licensees selling on a secondary spectrum market. Standard results sug-

gest that under full competition the equilibrium only exists when all sellers have zero

profit. We introduce a regulator which can also be thought of as the sellers forming a

coalition, whose role is to enable money transfer based on partial observations of the

sellers’ actions. We show that by proper design of the transfer mechanism, efficient

equilibrium (profit-maximizing) can be achieved.

For the sensing issue, we propose a spectrum utilization model which uses stochas-

tic differential equations (SDE) to model dynamic scattering and multipath fading

channels, in particular, Rayleigh-distributed stationary channels. The SDE model

is in closed form, can generate spectrum dynamics as a temporal process, and is

shown to provide very good fit for real spectrum measurement data. We use real

data collected from spectrum measurement studies to verify the SDE model and it is

shown to fit the data very well. By using this model we can synthesize sample paths

(temporal power process) of a wireless channel, thereby creating a realistic spectrum

environment which can be used for simulation studies. The SDE model can be used to

generate the 2-state Markov (GE) model (and also can generate an N -state Markov

models) through time-discretization and value-quantization. This SDE-generated GE

model also matches closely the GE model generated directly from the quantized data.

Therefore the SDE model may be viewed as a continuous generalization of the discrete

GE model (and more broadly a discrete N -state model), and while the former can be

used to obtain the latter the reverse is not true. The SDE model is defined by only 3

parameters and is thus very easy and inexpensive to train with much less data com-

pared to a discrete N -state model. It is also much more robust to imperfections in the
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data, e.g., when samples are not exactly collected at constant intervals. Furthermore,

once the SDE model is trained, it can be used to at any desired time resolution due

to its continuous-time nature, whereas an N -state Markov model would need to be

retrained if one wants to reduce the size of the discrete time step (i.e., increase the

time resolution).

Next, we consider the problem where the buyer purchases a portfolio of secondary

spectrum services. By combining multiple secondary spectrum purchases with dif-

ferent randomness, the quality of transmission over the combined spectrum can be

improved. The seller has a number of different spectrum channels each running its

own primary service. Based on the different services, each channel has different

quality measures when sold the secondary user. The seller can decide the price per

bandwidth of each channel. The buyer’s utility metric is a combination of mean

throughput weighted with throughput variance of the portfolio purchased. We again

use a reference market that sells guaranteed service to the buyer, with which a buyer

can compute its optimal portfolio. Based on the knowledge of the buyer’s optimal

portfolio selection, we show how to calculate the optimal pricing for each secondary

spectrum channel.

In Chapter V, we developed an accurate model for describing the usage of primary

users viewed by the secondaries in the same channel. To connect pricing with the

sensing model, we used the SDE model in Chapter VI for the channel condition in

testing the performance of the channel portfolio selection as a spectrum access policy.

It would be interesting to see how the incentives of the secondary users are affected

if we replace the binary/uniform random variable models we used in Chapter II-III

with the SDE model. The SDE model can be used in different forms that are suitable

for different needs. One approach would be using it directly in the continuous time

continuous valued form. If the stochastic differential equation is too hard to analyze

in the differential form, the other approach would be to use the N-state Markov model
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derived from the SDE. The Markov model is easier to analyze and inheres the same

characteristics for state evolution of the SDE model.

Describing the incentives of the secondary user will require the channel access

policies used by the user because we need to know the policy in order to estimate the

utility obtained by the user. The SDE model has the Markovian property because

knowing the current state, the next time step of the channel does not depend on

the previous states of the channel. Thus, we know that there exists a state based

strategy that is optimal. If we could find the optimal channel access policy, we can

better estimate the throughput/utility obtained by the secondary user in the SDE

model. Then, the incentive studies of the secondary user in the SDE model would be

more meaningful and accurate.
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