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CHAPTER 1 

INTRODUCTION 

1.1Goals 

Membrane associated peptides and proteins with unique biological functions have drawn 

extensive attention due to their enormous therapeutic potentials. Being an intrinsic surface-

sensitive technique, Sum Frequency Generation (SFG) Vibrational Spectroscopy has the 

capability to elucidate both structural and orientational information of biomolecules at 

biointerfaces, e.g., peptides and proteins associated with cell membranes. However, there are 

significant experimental and theoretical challenges in adapting this application from simple 

model peptides to more complex systems like proteins associated with cell membranes. My Ph.D. 

research started with elucidating structure and orientation of a simple linear helical peptide. Then 

I developed orientation analysis methodology to extend the work to study peptides with more 

complicated structures and also to proteins. Furthermore, in order to obtain site-specific 

structural information on peptides, we successfully detected and analyzed signals from an 

isotope-labeled amide unit in a peptide embedded at the polymer interface. Finally we applied 

this new technique, isotope-labeled SFG, to observe subtle structure characteristic of a peptide in 

a single lipid bilayer and the experimental results have been correlated to those obtained from the 

molecular dynamics simulation work. 

1.2Sum Frequency Generation and its Biological Application 
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1.2.1 SFG Surface Sensitivity 

Sum Frequency Generation (SFG) vibrational spectroscopy can be used to study many 

types of surfaces and interfaces
1-5

, but this chapter will focus on studies related to biology. 

Understanding biointerfaces is the key to understanding diverse topics such as biomedical 

materials, marine antifouling coatings, biosensors, antimicrobial peptides and membrane proteins. 

Many analytical techniques have been developed to examine various biointerfacial phenomena 

such as surface plasmon resonance spectroscopy, neutron reflection, atomic force microscopy, 

ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 
6
. 

However, no single technique is capable of elucidating molecular structure of buried interfaces in 

situ (e.g., a solid/liquid interface) with a submonolayer surface specificity. 

SFG has been developed into a powerful analytical technique to investigate surfaces and 

interfaces since 1987
7
. It has been widely applied to identify functional groups, deduce 

molecular orientation distribution, and investigate dynamics of various molecules at different 

interfaces including liquid-liquid, air-liquid, and liquid-solid interfaces. In a typical SFG 

experimental set-up, two pulsed laser beams (a frequency fixed visible and a frequency tunable 

infrared beams) are overlapped in space and time at the sample interface to generate an output 

beam at the sum frequency. (Figure 1.1A) The simplified energy level diagram of a SFG process 

is shown in Figure 1.1B. Using specific polarizations of each of the three beams, it is possible to 

probe specific components of the second order nonlinear optical susceptibility χ
(2)

of the sample. 

This quantity determines the contribution P(2) to the polarization of matter that is induced by the 

product of the input electric fields of the visible and IR beams Evis(t) and Eir(t): P
(2)
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=χ
(2)

Evis(t)Eir(t). Under the electric-dipole approximation, when inversion symmetry is broken 

(as occurs at surfaces and interfaces), χ
(2)

 is nonzero, and signals can be detected; this selection 

rule is the basis for the intrinsic surface specificity for SFG. Thus, SFG can distinguish 

interfacial species (with inversion symmetry broken) from the bulk molecules (with average 

inversion symmetry – no signal), eliminating the need to perform background subtraction of bulk 

signals. Also, SFG signal can be enhanced when the input IR beam frequency is tuned over the 

vibrational resonances of interfacial molecules, yielding peaks that correspond to vibrational 

spectra of interfaces. These peaks are characteristic of specific functional groups, and therefore 

SFG signals can be detected without any fluorescent labels that might change the chemical 

properties of the sample. 

In the following text, SFG studies involving phospholipid bilayers (serving as model cell 

membranes) will be presented first. Then methods for quantifying the ordering and orientations 

of peptides and proteins associated with lipid bilayers will be discussed. Lastly, SFG research on 

proteins at polymer surfaces, with a focus on conformational change and surface immobilization, 

will be introduced.  

 

Figure 1.1 SFG experimental geometry and energy diagram. (A) Total reflection geometry. 

(B) Simplified energy level diagram of SFG process. (Reproduced from ref 17, with 

permission) 
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1.2.2 Phospholipids Flip-flop in Model Cell Membranes 

Extensive SFG research has been performed on fatty acids and lipid monolayers/bilayers
8-

11
. In the literature, some previous research showed that the exchange of lipids between the distal 

and proximal leaflets of cellular membranes was mediated by proteins named “flipases” or 

“flopases”. Although other techniques such as NMR, fluorescence and EPR have shown that the 

movement is also possible in the absence of proteins, these studies address labelled lipid species 

instead of native ones, possibly changing the lipid chemical properties. Conboy and coworkers 

used SFG to observe the slow translocation movement (“flip-flop”) of 1,2-distearoyl-sn-glycero-

3-phosphocholine (DSPC) in a planar supported lipid bilayer system,  in the absence of protein in 

situ
12

.  As shown in Figure 1.2, their model system has a hydrogenated leaflet and a deuterated 

leaflet in order to induce asymmetry of the sample for SFG study. As the two leaflets underwent 

flip-flop and “mixed”, the intensity of the SFG signal from the terminal CH3 symmetric 

stretching mode of the inner leaflet decreased. Later, the authors measured the phase transition 

temperatures of different lipids 
9
. Unlike the previous work, the bilayer used was symmetric 

(Figure 1.3) which produced no SFG signal when the sample is uniform in the gel phase and the 

liquid phase. When the temperature approached the phase transition temperature, heterogeneities 

arose that resulted in a break in symmetry along the bilayer normal (and, consequently, 

detectable SFG signals). Together, these bilayer studies showed that SFG can be used to detect a 

biological process that changes the symmetry. As in the flip-flop study, this was done by 

introducing isotope labelled lipids to break the original symmetry of the lipid bilayer and study 

each leaflet of the bilayer simultaneously. Later on, other research groups used similar isotope 

labelled lipid models to study the interactions between various molecules and the model cell 
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membrane. For example, molecular interactions between an antibiotic oligomer and a lipid 

bilayer have been investigated using SFG, showing that the molecule can cut into the lipid 

bilayer like a knife 
11

. When the molecular structure of the oligomer is altered, the interactions 

with bilayers can be markedly varied 
13

. SFG studies also showed that when melittin molecules 

interact with the lipid bilayer, the two leaflets are disrupted differently, one after the other. When 

tachyplesin I molecules interact with the bilayer, two leaflets were disrupted simultaneously 
14

. 

 

Figure 1.2 SFG spectrum of a DSPC/DSPC-d83 bilayer recorded with s-polarized sum-

frequency, s-polarized visible, and p-polarized IR. Insert: schematic of asymmetric lipid 

bilayer structure. (Reproduced from ref 8, with permission) 
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Figure 1.3 Representation of gel (blue) to liquid-crystalline (red) phase transition 

illustrating domain dislocation and domain size disparity which could give rise to 

membrane asymmetry. Also shown is the cancellation of the terminal CH3 symmetric 

stretching mode in case of symmetric leaflets, i.e. before and after the phase transition 

(Reproduced from ref 9, with permission) 

 

1.2.3 Peptides with α-helical or β-sheet Secondary Structure in Lipid Bilayers 

Analogous to IR spectroscopy, the amide I band in SFG spectra provides information 

about the secondary structure of peptides and proteins
15,16

. Moreover, polarized SFG 

spectroscopy can be adopted to deduce the average orientation and orientation distribution.
15-18

 

For an orientation angle θ, e.g., the tilt angle between an α-helical principal axis and the surface 

normal, ATR-FTIR can relate the signal intensity ratio measured using different polarized IR 

beams to <cos
2
θ> (the ensemble average of cos

2
θ).

19
 SFG spectroscopy measures different 

parameters, <cosθ> and <cos
3
θ>, making it possible to characterize the average orientation and 

orientation distribution in more detail.
19 

In addition to providing more measurements than ATR-
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FTIR, SFG has a much lower detection limit due to its intrinsic sensitivity. It can be used to 

study peptides with a low surface coverage and under conditions where ATR-FTIR could not 

detect any signal.
16

 

Zhan Chen group has developed systematic methodologies for orientation analysis on 

interfacial α-helical, 310-helical and β-sheet structures using SFG 
15,18

. Based on the methodology 

for α-helical peptides, Zhan Chen and his colleagues have measured the average tilt angle of 

magainin 2 peptides in lipid bilayers, and found that on the negatively charged (POPG/POPG) 

lipid bilayer, magainin 2 molecules adopt a transmembrane orientation whereas on the 

zwitterionic (POPC/POPC) lipid bilayer, a parallel orientation is preferred 
16

. These results 

provided important molecular understanding on the antimicrobial activity and selectivity of 

magainin 2. Since SFG and ATR-FTIR measure different orientation parameters, the 

combination of SFG and ATR-FTIR studies can be used to determine complicated orientation 

distributions.
20

 For example, combined SFG and ATR-FTIR studies on α-helical melittin indicate 

that melittin molecules adopt two distinct orientations, with ~30% roughly standing up while ~70% 

lie down and tilt slightly on the membrane surface. Such a complicated orientation distribution 

could not have been determined using only a single technique or measurement alone
20

.With the 

developed data analysis methodology for β-sheet peptides, Zhan Chen group successfully 

determined the tilt and twist angles of a β-sheet peptide tachyplesin I in DPPG/dDPPG lipid 

bilayers. Interestingly, unlike linear α-helical peptides, the chiral SFG signals of the β-sheet can 

be obtained in addition to the signals detected using normal laser polarizations of ssp and ppp. 
18

. 

SFG has also been applied to investigate the membrane orientation of alamethicin, which adopts 

a mixed α-helical and 310-helical structure. It was found to adopt a transmembrane orientation in 

fluid-phase lipid bilayers. 
21
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1.2.4 Peripheral Proteins 

 Extensive efforts have been made to understand the structure and function of proteins 

associated with cellular membranes.
22,23

 Such functions are often dependent on the protein 

adopting a certain orientation, with is difficult to measure in situ with most structural 

determining techniques. By extending the data analysis methods from simple peptides to larger 

proteins, SFG was used to study the membrane orientation of Gβγ. This orientation was found to 

depend on the composition of the lipid bilayer, due to differences in how the protein interacts 

with each type of lipid 
24

. 

1.2.5 Proteins and peptides at other interfaces 

 Biomedical technologies commonly involve artificial surfaces that protein can interact 

with. For example, the first body reaction to a biomedical implant is protein adsorption. The 

protein-surface interaction determines finally whether the biomaterial can be accepted or rejected 

by the body. The blood protein Factor XII can be activated on negatively charged surfaces, but 

not on neutral surfaces.
25

 The activation of Factor XII leads to blood coagulation through the 

intrinsic pathway.
25 

Factor XII has been investigated using polarized SFG spectroscopy along 

with some other techniques. The results showed that a negatively charged polymer surface can 

cause Factor XII activation by orienting the protein molecules on the surface. 
25

  

 Another important blood protein, fibrinogen, has been investigated comprehensively by 

Zhan Chen group to understand its molecular behaviour at polymer interfaces. It was shown that 

fibrinogen changes its conformation over time after adsorption onto various surfaces, including a 

polyurethane, a silicone-polyurethane copolymer and a fluorinated polymer.  After the initial 

adsorption, fibrinogen adopts a “bent” structure. On the polyurethane surface, fibrinogen slowly 
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lies down and becomes linear. On the other two surfaces, fibrinogen becomes even more “bent” 

26
. SFG has also been used to study fibrinogen on polystyrene surfaces. Orientation analysis on 

the SFG spectra along with maximum entropy function method supports that fibrinogen exhibits 

a broad distribution of orientations on polystyrene surfaces 
27,28

. 

 Molecular orientation is also important to the understanding of biosensors based on 

immobilized peptides and proteins like enzymes, for which performance is mediated by the 

molecular structure (e.g. orientation) of the active site. SFG can be used to directly observe 

differences in molecular orientation when a variety of immobilization methods are used. SFG 

results showed that C-terminus cysteine modified cecropin P1 peptides stand up when 

chemically immobilized onto a polystyrene maleimide (PS-MA) surface but adopt a multiple-

orientation distribution when physically adsorbed on the polystyrene surface 
29

. SFG results also 

showed that cecropin P1 immobilized on a maleimide terminated self-assembled monolayer 

(SAM) via C-terminus ans N-terminus adopt varied conformation/orientation,
30

 SFG has been 

also used to deduce surface orientation of enzyme β-glucosidase immobilized on the surface.
31

 In summary, SFG has been demonstrated to be a powerful tool to study interfacial 

biological molecules such as lipids, peptides and proteins. It has been shown that SFG studies 

can provide unique knowledge on lipid flip-flop, lipid phase transition, orientation of peptides 

and protein associated with model cell membranes, as well as orientations of peptides and 

proteins physical adsorbed and chemically immobilized on various surface. 

1.3 In-depth SFG Data Analysis 

1.3.1 SFG Data Analysis Methodology on Linear α-helical Peptides 
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The orientation determination methodology for an ideal linear α-helical peptide has been 

reported by our group using the bond additivity model.
15

 In this section, we will explain in detail 

how this methodology can provide us information on the peptide orientation. 

First, we generated an orientation curve plotting     
   

     
   

 as a function of the tilt angle 

(which is defined as the angle between the helix axis and the surface normal of the supported 

lipid bilayer). Second, we measured     
   

     
   

 experimentally. The intensity of experimental 

SFG spectra is proportional to the square of the effective second order nonlinear optical 

susceptibility         
   

. 

    
   

    
   

  
  

         
               (1) 

where    
   

 denotes the nonresonant background,    denotes the signal strength,    and    are 

frequencies of the tunable IR beam and a specific vibration mode (the peak center), and    is the 

damping coefficient. Thus, we can obtain the ratio of the effective second order nonlinear optical 

susceptibility         
   

         
   

 value by collecting and fitting the ppp and ssp spectra of the 

amide I region. After that, the experimental     
   

     
   

 can be derived from         
   

         
   

 

value after taking consideration of the Fresnel coefficients.  

        
   

         
   

                      (2) 

        
   

         
   

         
   

         
   

         
   

                     (3) 

 

The experimental     
   

     
   

 can be used to determine the tilt angle with the theoretical 

orientation curve. 

An ideal α-helix has a C18/5 symmetry. The character table for a C18/5 point group shows 

that there are two types of SFG-active (both IR- and Raman-active) molecular vibrations. 
36

 The 

A mode is polarized along the z axis (the principal axis of the helix) and the ε1 and ε1* vibrations 
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are circularly polarized down the z-axis. The linear combination of ε1 and ε1* vibrations forms 

the degenerate E1 mode, which is polarized perpendicular to the z-axis. In this paper, we 

calculated the SFG hyperpolarizability tensor for the A and E1 (ε1 and ε1* modes and combined 

them to the E1) modes. 

The SFG hyperpolarizability tensor, β, is described as a product of the IR transition 

dipole moment and the Raman polarizability tensor.  

                                                                          
    

 

   

    

   
                                                          (1) 

where l, m, and n denote the molecular coordinates and ( α  
     ) and (        ) are 

Raman polarizability and IR dipole moment derivatives with respect to the normal mode 

coordinate of the qth vibrational mode, respectively. In this paper, these derivatives simply mean 

the components of the Raman polarizability tensor and IR transition dipole moment. Here in a 

bent helix, to obtain ( α  
     ), we need to sum the Raman polarizability for the two segments. 

A similar approach was adopted to calculate (        ). 

 

 1.3.2 Limitations 

The methodology above will prove to be very useful in next chapters. In Chapter 2 we 

will show that we use this methodology to elucidate the orientation of the α-helical segment of 

peptide Pep-1 at different concentrations when associated with liquid-phase lipid bilayers. In 

Chapter 4, we calculated the orientation information on the α-helical segment of GRK5 protein 

terminal peptide under different buffer conditions. However, this method is not valid in some 

circumstances and thus efforts will be made to address this challenge. In Chapter 3, we will 
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develop data analysis methodology to study LL-37, which adopt different bent structures when 

associated with different types of vesicles. In Chapter 5 and 6, when we incorporate isotope 

labels into the peptide backbone to obtain site-specific information, the symmetry of the peptide 

is broken and the above-mentioned methodology is not valid anymore. Therefore, we will use the 

Hamiltonian approach instead to calculate the hyperpolarizability for the α-helical peptide.  

1.4 Site-specific Information Obtained by SFG 

Early experiments which utilize vibrational spectroscopy technique to study peptides and 

proteins focus mainly on a few peptide backbone vibrations such as amide I, II, III and A modes. 

32
 However, because the neighboring vibrational modes are highly coupled within the peptide, 

the vibrational spectra cannot resolve site-specific information.
33

 More recently, researchers have 

incorporated infrared probes such as 
13

C=O, 
13

C=
18

O, -CD, -CN, -SCN and –N3 into peptides 

and proteins to deduce site-specific structural and dynamics information. While IR absorption 

and Raman Spectroscopy can access the solvent accessibility of a particular site within a peptide 

or protein in different solvent, 2D IR and Time-resolved IR is able to monitor site-specific 

conformational charge of biomolecules with different substrates or binding ligands
34

. In 2010, 

Castner group has incorporated C-D into peptide side chains and measure the SFG signal from a 

particular site chain of a peptide
35

. In my dissertation chapter 5 and 6, for the first time we 

incorporated 13C=O into peptide backbones and obtained site-specific orientation from the 

isotope labeled carbonyl groups in the backbone. This suggested more infrared probes should be 

introduced to the SFG community for more site-specific structural and dynamic information 
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CHAPTER 2 

MOLECULAR INTERACTIONS BETWEEN CELL 

PENETRATING PEPTIDE PEP-1 AND MODEL CELL 

MEMBRANE 

 

2.1. Introduction 

The cell penetrating peptide (CPP) family has drawn increasing interest in the field of 

drug delivery because it is one of the most efficient tools for intracellular access.
1-7 

CPPs are 

usually short peptides with 11 to 34 amino acids. Being highly hydrophilic and cationic, they are 

able to translocate across the cell membranes carrying various types of cargos, such as peptides, 

proteins, plasmid DNAs, oligonucleotides and liposome nanoparticles.
8-10 

Two main mechanisms 

for cellular uptake of CPPs have been proposed. One is physically driven to directly interact with 

and penetrate through the cell membranes and the other is the endocytosis pathway.
11 

Although 

numerous studies have been carried out on the therapeutic effects of CPPs, the molecular-level 

interactions between cell membranes and CPPs remain largely unknown.
12

 

Synthetic peptide carrier Pep-1 is one of the most widely studied peptides in the CPP 

family. Pep-1 is stable in physiological buffer with high delivery efficiency and low toxicity.
13,14 

While many other CPPs must be covalently bound to their cargo, Pep-1 can form non-covalent 

complexes with a broad spectrum of peptides, proteins, and nanoparticles.
15

 A Pep-1 molecule 

has three segments: a hydrophobic tryptophan-rich motif (KETWWETWWTEW), a spacer 
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domain (SQP) and a hydrophilic lysine-rich domain (KKKRKV).  Previous research using model 

membranes has shown that Pep-1 appears to directly penetrate through the cell membrane via a 

physically-driven rather than an endocytosis pathway.
16

 This peptide has a high affinity for both 

neutral and negatively charged cell membranes. NMR and CD experiments have shown that the 

membrane environment can induce the Pep-1 hydrophobic motif to form an α-helical structure.
16

 

By measuring the orientation of Pep-1 in bilayers during the process of translocation, it is 

possible to understand the molecular mechanism of Pep-1/lipid interactions. However, to date 

inconsistent orientation distributions have been reported for Pep-1 from studies that use a variety 

of techniques and model systems.
16, 17

 

As discussed in the previous chapter, SFG spectroscopy is an intrinsically surface-

sensitive technique. It has been widely applied to investigate various types of biointerfaces 

including those where peptides are associated with model cell membranes.
18-40

 With the use of 

SFG, we can observe the process of peptide adsorption onto the lipid bilayer, monitor changes in 

the lipid bilayer when the peptide interacts, and obtain conformation and orientation information 

for peptides with a variety of different secondary structures.
18,41

 We have extensively 

investigated molecular interactions between model cell membranes and various antimicrobial 

peptides (AMPs) using SFG. The AMPs investigated include magainin 2,
26

 MSI-78,
42  

alamethicin,
43

 melittin
44

 and tachyplesin I.
27

  But to the best of our knowledge, no CPPs have yet 

been investigated by SFG. CPPs and AMPs are different classes of peptides. AMPs disrupt 

bacteria cell membranes via one of several possible modes of action (such as barrel stave, 

toroidal pore formation or a carpet model) above some threshold concentration, while CPPs 

usually enter the cell through a physically-driven or endocytosis pathway without disrupting the 

membranes. The concentration of CPPs required for translocation to occur is usually lower than 
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that required for AMPs to disrupt the cell membranes and therefore a technique with high 

sensitivity to study CPPs is necessary. In fact, previous research has shown that when increasing 

the concentration of Pep-1 molecules, they will exhibit toxicity and behave similar to AMPs 

towards cell membranes.
45

 Also, it may be challenging to observe the translocation process of 

CPPs into cells using the simple model cell membranes (e.g., solid supported lipid bilayers) often 

used for SFG. For example, the endocytosis pathway may require non-lipid components (such as 

caveolars) to be present in the membrane.
46

 The transmembrane potential, which is believed to 

be a driving force for Pep-1 translocation also adds to the difficulty of the use of model 

systems.
45, 47 

As a technique with a high sensitivity as well as the ability to obtain orientation 

information, SFG spectroscopy was applied to study cell penetrating peptide Pep-1 for the first 

time in this work. The results revealed that SFG spectroscopy is sensitive enough to detect Pep-1 

associated with lipid bilayers and can be used to deduce the orientation of Pep-1 at low  

concentrations suitable for the study of peptide translocation. The different behaviors of CPPs on 

gel-phase and liquid-phase lipid bilayers observed explain why the fluidity of the membrane 

plays an important role in CPP translocation. In addition, attenuated total reflectance - Fourier 

transform infrared spectroscopy (ATR-FTIR) was used as a supplemental technique to confirm 

the conclusions drawn from the SFG study. This study is the first step towards fully 

understanding how CPPs deliver cargo. Studies on the interactions of CPPs with more advanced 

cell model systems and the translocation process of CPPs with drugs into cells will be carried out 

in the future.                                                                                            

2.2 Experimental Details 
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Pep-1 (sequence H-KETWWETWWTEWSQPKKKRKV-OH) was purchased from 

Anaspec with >95% purity. Hydrogenated and deuterated 1,2-dipalmitoyl(d62)-sn-glycero-3-

phosphoglycerol (DPPG and dDPPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG) were purchased from Avanti Polar Lipids Inc (Alabaster, AL). 

Lipid bilayers were deposited on CaF2 right angle prisms (Altos Photonics, Bozeman, 

MT). Langmuir-Blodgett and Langmuir-Schaefer (LB/LS) methods were used to deposit the 

proximal and then the distal leaflets of the lipid bilayers, respectively.
26, 44

 The first layer is 

deposited on one of the square faces of the right-angle CaF2 prism with A KSV2000 LB system: 

The plasma-cleaned prism was first immersed in the LB trough. Then a certain amount of lipid 

chloroform solution, typically 5 drops of 10 mg/ml, was spread on the water surface until the 

surface tension reaches ~5 mN/m. Two barrier arms were suppressed so that the surface tension 

remains 34 mN/m, while the CaF2 prism was lifted from the subphase. A layer of lipids was 

deposited on the face perpendicular to the water surface in this way. After aligning the laser 

beams to find the monolayer signal, a 2 ml reservoir filled with water were placed beneath the 

prism. Lipids were added to the surface of the water in the reservoir so that the surface tension is 

around 34 mN/m. The reservoir was elevated so that the water surface contacts with the first 

layer deposited on the prism to form a lipid bilayer. A KSV2000 LB system and ultrapure water 

from a Millipore system (Millipore, Bedford, MA) were used throughout the experiments for 

bilayer preparation. The bilayer was immersed in 50 μM pH=7.2 phosphate buffer inside of a 2 

mL reservoir during the experiment. 80, 16 and 3.2 μL of 0.5 mg/mL Pep-1 was injected into the 

reservoir for concentration-dependent experiments. A magnetic microstirrer was used at a rate of 

100 rpm to ensure a homogeneous concentration distribution of peptide molecules in the 
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subphase below the bilayer. The final concentrations of the peptide solutions are 7.0 μM, 1.4 μM 

and 0.28 μM.  

The details of SFG theory, our SFG setup and our experimental design have been 

described previously and Chapter 1.
26, 48-62

 Spectra were collected from peptides associated with 

the lipid bilayers in ssp (s-SFG, s-visible, p-IR) and ppp polarization combinations using our 

previously reported near total reflection geometry.
26,44

 ATR-FTIR experiments were performed 

with a Nicolet Magna 550 FTIR spectrometer using a detachable ZnSe total internal reflection 

crystal (Specac Ltd. RI, U.K.).
44 

 The substrate surface was cleaned with methanol, Contrex AP 

solution, and deionized water, followed by a treatment in a glow discharge plasma chamber for 2 

min to remove residual hydrocarbon contamination. The lipid bilayer was deposited on the 

crystal surface with a procedure previously reported.
44 

 The appropriate volume of a Pep-1 stock 

solution (in D2O phosphate buffer) was injected into the subphase of 1.6 mL to achieve the above 

mentioned concentrations. The s- and p-polarized ATR-FTIR spectra were recorded 1h, followed 

by a return to the s polarization to ensure that samples were equilibrated and did not change 

during the timescale of the experiments. 

2.3 Results 

2.3.1 SFG Results on Pep-1 Interacting with Gel-phase Lipid Bilayers 

SFG spectra were collected with dDPPG/DPPG bilayers in contact with Pep-1 solutions 

with different peptide concentrations. At the low Pep-1 concentration of 0.28 μM, no SFG amide 

I signal from Pep-1 in the lipid bilayer was observed. When the Pep-1 concentration was 

increased to 1.4 μM, SFG amide I signals centered at 1677 cm
-1

 was detected from Pep-1 

associated with the lipid bilayer, as shown in Fig. 2.1a. This peak center indicates that Pep-1 
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likely forms β-sheet type structures on the gel-phase membrane interfaces. The SFG amide signal 

is quite broad, showing a high degree of structural heterogeneity. This peak center shifted to 

1663 cm
-1 

when the Pep-1 concentration was increased to 7.0 μM (Fig. 2.1b), which may indicate 

a change in secondary structure to β-turns and/or disordered structure. 

 

Figure 2.1 The ssp and ppp SFG amide I spectra of Pep-1 associated with a dDPPG/DPPG 

bilayer at the peptide concentrations of 1.4 μM (a) and 7.0 μM (b). 

 

The adsorption and association of Pep-1 to the dDPPG/DPPG bilayer can also be 

confirmed by the SFG signals collected in the O-H stretching frequency region. Such SFG 

signals are contributed by ordered water molecules associated with the charged lipid head groups 

of the dDPPG/DPPG lipid bilayer. As shown in Fig. 2.2, at the low peptide concentration of 0.28 

μM, the detected SFG signal from water decreased upon addition of the peptides, but the spectral 
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feature did not differ substantially. The water SFG signals at 3200 cm
-1

 and 3500 cm
-1

 greatly 

decreased when the peptide concentration was increased to 1.4 μM and completely disappeared 

at the high concentration of 7.0 μM. We believe that the positively charged Pep-1 molecules 

interact with and neutralize the negatively charged head group of the dDPPG/DPPG bilayer, 

therefore disordering the water molecules originally associated with the bilayer. The SFG signals 

observed in the O-H stretching frequency region indicate that water molecules on the bilayer 

surface were removed and/or disordered by the adsorption of Pep-1 molecules. When combined 

with the amide I signals, these results confirm that Pep-1 molecules at a variety of concentrations 

interact with dDPPG/DPPG bilayers. 
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Figure 2.2 The ssp SFG spectra in the O-H stretching frequency range detected when the 

dDPPG/dDPPG bilayer is in contact with Pep-1 solutions with different concentrations. 

 

We also studied the behavior of the lipid bilayer when interacting with Pep-1. To avoid a 

potential overlap of signals from the peptide and the lipids in the C-H stretching frequency 

region, we also used a fully deuterated lipid bilayer (dDPPG/dDPPG). Amide I spectra from the 
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peptide were found to be the same as when dDPPG/DPPG bilayers were used. No C-D stretching 

signal was observed from the lipids before the addition of Pep-1 to the subphase, showing that 

the dDPPG/dDPPG bilayer was symmetric (as expected). After the introduction of Pep-1 into the 

subphase, at the concentration of 7.0 μM, no SFG C-D stretching signal was detected (Fig. 2.3). 

This implies that Pep-1 binds to the lipid headgroups rather than inserting into the gel- phase 

lipid bilayers. This observation is different from the peptides that disrupt the gel-phase lipid 

bilayers we investigated previously.
63 

 

Figure 2.3 The ssp SFG spectra in the C-D stretching frequency range detected before, and 

two hours after, the dDPPG/DPPG bilayer is in contact with the Pep-1 solution with a  

concentration of 7.0 μM. 

 

2.3.2 SFG Results on Pep-1 Interacting with Liquid-phase Lipid Bilayers 

Concentration-dependent Pep-1 experiments were also performed using liquid-phase lipid 

bilayers (POPG/POPG), and the results were compared to those from gel-phase bilayers. Unlike 
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the asymmetric dDPPG/DPPG bilayer, the disruption of the POPG bilayer could not be 

monitored directly by SFG. This is because POPG bilayers are prone to rapid flip-flop, and this 

rapid exchange of lipids between leaflets prevents the use of deuterated lipids to create 

asymmetry. Thus in this section we mainly focus on the SFG signals generated from the peptides. 

It is found that the SFG spectra collected from Pep-1 in fluid phase bilayers were significantly 

different from the gel phase bilayer results.  

Fig. 2.4 shows the SFG amide I signals collected from Pep-1 interacting with a 

POPG/POPG bilayer with the same peptide concentrations as used previously. At the low 

concentration of 0.28 μM, a prominent peak at 1653 cm
-1 

was detected in both the ssp and ppp 

spectra, suggesting that some peptide molecules associated with the POPG/POPG bilayer 

adopted an α-helical structure. Additional peak shoulders at 1634 cm
-1

 and 1670 cm
-1

 indicate the 

coexistence of a β-sheet structure. At the intermediate concentration of 1.4 μM, in addition to the 

dominant 1651 cm
-1 

peak, shoulders at 1630 cm
-1 

and 1673 cm
-1 

were also detected. Therefore, at 

these two concentrations, Pep-1 adopts a mix of α-helical and -sheet structures when associated 

with the POPG/POPG bilayer. SFG spectra were also collected from Pep-1 molecules associated 

with the POPG/POPG bilayer when the peptide concentration was increased to 7.0 μM. 

Interestingly, for a high solution concentration of Pep-1, the observed peak intensities in the SFG 

spectra were much weaker than signals detected at lower peptide concentrations. It is well known 

that the SFG intensity is affected by molecular ordering/orientation as well as the number of 

molecules, and a drop in signal as peptide concentration increases suggests that the Pep-1 

molecules were either lying down on the surface or else adopted a more random orientation 

distribution. 
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Figure 2.4 The ssp and ppp SFG amide I spectra of Pep-1 associated with a POPG/POPG 

bilayer at the peptide concentrations of 0.28μM (a), 1.4 μM (b) and 7.0 μM (c). 

 

 The orientation information could be further quantified with the methodology our 

group has recently developed.
26, 65 

We want to emphasize here that the 1653 cm
-1

 peak is solely 

due to the α-helical structure based on the following reasons. (a) Due to the lack of a high-

resolution three-dimensional structure, we were unable to calculate the SFG signal contributed 

by the random coil section of Pep-1. However, in other cases such as cytochrome-b5,
71

 we found 

that the random coil part of the peptide would contribute less than 2% of the SFG signal 

generated from the α-helical components, even if they could have a somewhat ordered structure. 

This means that unlike linear vibrational spectroscopic techniques (e.g., FTIR), SFG is much 

more sensitive to α-helices than random components. (b) It was reported in ref. 64 that the 

structure of Pep-1 calculated by DYANA has free C and free N termini (referred to as PepW in 

the paper). The random coil parts in this structure are very dynamic and have no preferred 

ordering. Therefore even if the random coil part contributes a small SFG signal from one peptide 

molecule, those signals would be averaged out as an ensemble. (c) The width for the SFG α-

helical peak (e.g., at 1.4 μM peptide concentration) is 12 cm
-1 

with a peak center of 1653cm
-1

. 
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These parameters are similar to those of the purely α-helical peptide magainin-2.
26

 If random coil 

signals contributed to the overall lineshape, we would expect to see a larger peak width and a 

lower peak center frequency. 

 To relate the expected signal intensities to molecular orientation (also see Chapter 1 for 

calculation details), we first generated a theoretical curve by plotting the ratio between the two 

susceptibility tensor elements     
   

     
   

  for the α-helix peak as a function of the tilt angle of -

helical component (residues 4-13)
16, 64

 of the Pep-1 molecules associated with the lipid bilayer.
65

 

Here we define the molecular c axis as along the α-helical backbone and the tilt angle θ is the 

angle between the backbone and the surface normal of the bilayer. Then we calculate the 

experimental value of     
   

     
   

 from the fitted signal strength ratio     
   

     
   

 , which includes 

a correction for the Fresnel coefficients. Lastly, we find the corresponding orientation 

information of the experimentally measured     
   

     
   

 from the generated theoretical curve. If 

we assume that the molecules adopt a Gaussian orientation distribution, the relationship between 

the ratio     
   

     
   

 and the tilt angle θ of the α-helix relative to the bilayer normal is plotted in 

Fig. 5, for various distribution widths. For Pep-1 in fluid-phase lipid bilayers, the ratio     
   

     
   

 

was found to depend on the peptide concentration: 1.81±0.03 for Pep-1 in the lipid bilayer at the 

intermediate peptide concentration of 1.4 µM, and 1.75 ±0.07 at the low concentration of 0.28 

µM.  The larger error bar in the measurement from the low peptide concentration is because the 

lower SFG signal led to a weaker signal to noise ratio.  The deduced tilt angles (relative to the 

membrane normal) for the two peptide concentrations are  15  and  18  , respectively, if we 

assume that all molecules adopt the same orientation (  is 0  , a δ-distribution). If the distribution 

width is assumed to be 10 degrees, the tilt angles for the two concentrations are  3  and  12  , 
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respectively. Based on the experimental data and the curves in Figure 2.5, a Gaussian distribution 

of 20
o
 or greater would be unlikely. This implies that for both concentrations, the helical 

components in the Pep-1 molecules in the POPG/POPG bilayer orient more or less perpendicular 

to the membrane surface with a narrow distribution. If we assume that the molecules at both 

concentrations adopt a -distribution, we can further deduce from the fitted SFG signal strengths 

that the ratio of the number of Pep-1 molecules in lipid bilayers for 0.28 μM and 1.4 μM cases is 

about 1:2 (although the ratio of the numbers of peptide molecules in the bulk solutions is 1:5). At 

higher concentration 7.0 μM, although the overall spectral lineshape was reproducible, the 

reduced signal intensity hindered efforts to reliably determine molecular orientation.  

 

Figure 2.5 Dependence of the measured SFG     
   

     
   

 ratio of a 10-residue α-helix on the 

helix tilt angle relative to the surface normal. 

 

Helices interacting with lipid membranes sometimes unravel in the end. In a previous 

publication, we reported the calculated SFG responses of alpha helices with different numbers of 

amino acids
65

 (11, 10 and 9 residues), but these curves are quite similar especially in the region 
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of interest. Therefore a slight unraveling would not affect the conclusion that the peptides mainly 

adopt a perpendicular orientation.  

The SFG spectra collected in the O-H stretching frequency region show that the O-H 

stretching signals decreased after the Pep-1 molecules were introduced to the subphase of the 

fluid-phase bilayer (Fig. 2.6). This is similar to what was observed when a gel-phase 

dDPPG/DPPG bilayer was used. However, for the fluid phase bilayer, the drop in signal intensity 

is accompanied by a change in the overall lineshape the O-H stretching frequency region. We 

believe that this change is due to the SFG signal generated from the N-H stretching mode at 3300 

cm
-1

. Previous NMR studies showed that residues 4-13 could form a well-defined amphipathic α-

helix, resulting in a hydrophobic face built by five Trp residues.
64 

The 3300 cm
-1

 peak therefore 

could come from the N-H groups of these Trp residues in the side chains. It has shown 

previously that SFG signals in this region are contributed by amino acid side chains.
38, 70

 No peak 

at 3300 cm
-1

 peak was seen for Pep-1 in gel-phase lipid bilayers, suggesting that lipid bilayer 

phase has an effect on peptide conformation or side chain ordering. We can conclude that Pep-1 

adopts different conformations when associated with the gel-phase and liquid-phase bilayers. For 

the intermediate Pep-1 concentration of 1.4 µM, the 3300 cm
-1 peak became more distinct due to 

the further decrease in the water O-H stretching signal. For the higher peptide concentration of 

7.0 µM, the signal in the O-H stretching region decreased further, indicating the bilayer 

associated water molecules were even more disordered. However, no N-H stretching signals 

were observed at this higher concentration, suggesting that the Pep-1 molecules associated with 

the lipid bilayer adopt a different orientation (or orientation distribution) at the high peptide 

concentration compared to that at the intermediate concentration. Again, this agrees with the 

results obtained from studies on the amide I frequency region.  
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Figure 2.6 The ssp SFG spectra in the O-H stretching frequency range detected when the 

POPG/POPG bilayer is in contact with Pep-1 solutions with different concentrations. 

 

 

2.3.3 ATR-FTIR Results on Pep-1 Interacting with Liquid-phase Lipid Bilayers 

We also performed ATR-FTIR experiments to supplement our SFG studies on Pep-1 

interacting with lipid bilayers. Whereas SFG is more sensitive to α-helices than β-sheets or 
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random coils due to the dependence of SFG signals on molecular ordering, ATR-FTIR can 

readily detect amide I signals from many different secondary structures, but it is not able to 

detect very low concentrations of peptides. 

No discernible ATR-FTIR signal was detected from Pep-1 associated with the 

POPG/POPG bilayer at low (0.28 µM) and intermediate (1.4 µM) peptide concentrations. At the 

high peptide concentration of 7.0 μM, ATR-FTIR signals were observed (Fig. 2.7). The fitting 

results for the ATR-FTIR spectra collected using the s- and p-polarized light are shown in Table 

2.1. From the signal strength ratio of the s and p polarized spectra, the tilt angle of the α-helical 

component with respect to the membrane normal was determined to be 52  , assuming a  

orientation distribution (Fig. 2.8). However, as we discussed in Section 4.2, very weak SFG 

signals were detected from 7.0 μM Pep-1 in the POPG/POPG lipid bilayer, suggesting that the -

distribution is not a good assumption here. In fact, this orientation angle deduced by polarized 

ATR-FTIR is close to the “magic” angle (54.7  ) that would be predicted for a random orientation 

of molecules.  From the combination of SFG and ATR-FTIR we believe that the helical sections 

of Pep-1 molecules adopt a random orientation distribution.  

 

Frequency Assignment Peak Width A (S polarization) A (P polarization) 

1673 Turn and β-sheet 9.72 0.007 0.014 

1656 α-helix 6.46 0.0205 0.0308 

1640 Random coil 6.97 0.0229 0.033 

1628 Intermolecular β-sheet 6.87 0.0065 0.0091 

1613 Side chains 10.59 0.012 0.020 

 

Table 2.1 Fitting parameters for s and p polarized ATR-FTIR spectra. 
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Figure 2.7 Polarized ATR-FTIR amide I spectra of Pep-1 in a POPG/POPG bilayer in 

contact with the peptide solution with a concentration of 7.0 μM. 
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Figure 2.8 Dependence of the ATR-FTIR measured p to s spectral intensity ratio of an α-

helix on the helix tilt angle vs. the surface normal. 

 

2.4 Further Discussion and Conclusion 

Previous studies using surface plasmon resonance (SPR) showed that Pep-1 - lipid 

interactions are modulated by membrane fluidity.
66

 When the fluidity increases, more Pep-1 

molecules bind and insert into the membrane. This is in agreement with our results from SFG 

and ATR-FTIR, but our results provide a way to reveal molecular level information about Pep-1 

conformation and orientation while interacting with lipid bilayers. 

While ATR-FTIR has been proven to be a powerful tool to study the conformations of 

peptides associated with membrane lipids, previous work focused on samples that were semi-

dehydrated. As a result, Pep-1 molecules not inserted into the membrane could precipitate as 

aggregates and contribute to the ATR-FTIR spectrum.
17 

By contrast, SFG is uniquely sensitive to 
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interfaces, and therefore can selectively monitor the structures of peptides associated with the 

lipid bilayer without contributions from peptide molecules in the bulk environment (e.g., in 

solution or as aggregates). Also, compared to ATR-FTIR, SFG is more sensitive. Whereas no 

ATR-FTIR signals were observed from Pep-1 in a POPG/POPG bilayer at peptide concentrations 

of 0.28 and 1.4 µM, SFG signals were detected at those concentrations. By using different 

polarization combinations of the laser beams, we are able to deduce the orientation of the -

helical component of Pep-1. Our results clearly show that Pep-1 can interact with both gel-phase 

(DPPG) and fluid-phase (POPG) lipid bilayers, as indicated by a decrease in the water O-H 

stretching signal from water molecules at the lipid-water interface. In gel-phase lipid bilayers, 

Pep-1 generated very weak signals centered around 1670 cm
-1

 in the amide I frequency range, 

suggesting a random coil or β-sheet conformation. By contrast, for fluid-phase bilayers at low 

and intermediate Pep-1 concentrations, a strong peak around 1653 cm
-1 

could be detected from, 

indicating an α-helical conformation. 

2.4.1 Orientation Information 

Elucidating the orientation of the α-helical component in Pep-1 is essential to understand 

the process of membrane translocation. Previous studies on this process have produced various 

results. For example, based on fluorescence results, Heitz et al.
 
first proposed that translocation 

involves the construction of a transient transmembrane pore-like structure.
16

 They concluded that 

the tryptophan residues in the α-helix are embedded in a hydrophobic environment, which would 

be consistent with Pep-1/ membrane interactions that place the helical axis perpendicular to the 

membrane plane. Further support for this claim came from electrophysiological measurements.
67

 

However, spin-label studies by Weller and coworkers revealed a three-amino acid periodicity in 

signal attenuation, leading them to conclude that CPP lies parallel with the surface of DPC/SDS 
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micelles.
64 

ATR-FTIR has also been applied to measure the in situ orientation of Pep-1 with 

respect to the membrane normal in various types of lipids, and without the need for exogenous 

labels.
17 

In POPC and mixed POPC/Cholesterol multilayers, the angles were measured to be 

46.5   and 44.5  , respectively. These values are not very different from the average orientation 

angle expected for randomly oriented peptides. It was suggested from such measurements that 

the cyto-toxicity of Pep-1 is due to a “carpet-like” mechanism. Their study
17

 used high 

concentrations of Pep-1. Translocation activity at lower peptide concentrations was not studied, 

possibly due to the limited sensitivity of ATR-FTIR spectroscopy.  

The combined SFG and ATR-FTIR studies reported in this paper showed that the 

behavior of Pep-1 associated with POPG/POPG bilayers is concentration-dependent (schematic 

in Fig. 2.9). At the highest concentration of 7.0 µM, results lead to a random orientation of Pep-1 

helical component, in agreement with the previous ATR-FTIR studies.
17

 At the low and 

intermediate peptide concentrations, SFG results showed that the Pep-1 helical component is 

more or less perpendicular to the lipid bilayer surface, indicating that Pep-1 inserts into the 

membrane in this concentration range.  
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Figure 2.9 Schematics showing the interactions between lipid bilayers and Pep-1 with low 

or intermediate (a) and high (b) peptide concentrations.  

 

2.4.2 The Effect of Lipid Bilayer Phase 

SFG results show that on gel-phase lipid bilayers, Pep-1 molecules are loosely adsorbed 

on the surface with random or β-sheet type structures. On fluid-phase lipid bilayers, new peaks 

around 1653 cm
-1 

indicate the existence of α-helices. Previous CD studies have shown that in the 

range between 0.1 and 0.3 mg/mL, Pep-1 molecules in aqueous solution are poorly ordered,
16 

but 

that range is three orders of magnitude larger than the concentrations studied in our experiments. 

Interestingly, here even at the low concentration of 0.28 μM, β-sheet type structures were 

detected on the POPG/POPG lipid bilayers. This implies that these β-sheet type structures are not 

a consequence of peptide aggregation, but rather perhaps an intermediate species in the 
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absorption process. It is the high fluidity of the lipid bilayer rather than the headgroups that will 

induce the formation and insertion of α-helices. Our results demonstrate that with SFG, it is 

possible to examine the translocation process from a molecular level.  

2.4.3 Difference between CPPs and AMPs 

CPPs and AMPs are both membrane-active peptides. The two classes of peptides share 

several characteristics such as charge, amphipathicity, helicity and length. CPPs have the 

capability to translocate biological membranes in a non-disruptive way, whereas AMPs can 

induce membrane permeabilization. The molecular mechanisms that underlie these differences in 

membrane interactions remain unclear.
68, 69

 Our SFG studies on both types of peptides can shed 

light on how they differ in their interactions with membranes. 

MSI-78 is a synthetic analog of magainin 2 with high antimicrobial activity. SFG 

results
42 

showed that at the low concentration of 400 nM, MSI-78 molecules lie down on the 

surface of the negatively-charged gel-phase DPPG bilayer with ~70  deviation from the 

membrane surface normal. When the concentration is increased to 600 nM, MSI-78 inserts into 

the membrane with a ~25  tilt from the lipid bilayer normal. Multiple orientations were observed 

for an even higher peptide concentration, possibly indicating a toroidal-pore mechanism. This is 

an interesting contrast to studies on Pep-1, for which even at a low concentrations of 280 nM, the 

molecules were observed to insert into the fluid-phase POPG bilayer with -helical structure. In 

gel-phase DPPG bilayers, Pep-1 does not form α-helices. This different performance from MSI-

78 suggested that formation of α-helical structure in Pep-1 is induced by the fluid lipid chains in 

the hydrophobic interior of the bilayer rather than by interactions with the charged PG lipid 

headgroups. This agrees with the claim from previous research that CPPs are generally less 

amphipathic than AMPs.
12
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Alamethicin is an antibiotic peptide that can form voltage-gated ion channels in 

membranes. It interacts with cell membranes through the barrel-stave mode. SFG results
43

 

indicated that alamethicin molecules lie down on gel-phase bilayers but adopt a mixed α-helical 

and 310-helical structure in the fluid-phase bilayers. The α-helical component at the N-terminus 

tilts ~63   while 310-helical component at the C-terminus tilts ~43   versus the surface normal. 

Similar to Pep-1, alamethicin selectively forms α-helices in fluid-phase lipid bilayers, but not  

gel-phase lipid bilayers. However, there are also key differences. For Pep-1, signals from α-

helical and β-sheet structures were observed simultaneously, although the magnitude of the β-

sheet signals decreased as we increased the concentration of Pep-1. This shows that there is an 

equilibrium from the β-sheet type to the α-helical component in the Pep-1-membrane interface. 

However for alamethicin, such coexistence has not been observed. 

2.5 Conclusion 

In this study we expand the application of SFG studies on AMPs to CPPs. This work is 

our first step towards understanding the molecular interactions between CPPs and cell 

membranes. The effect of a membrane potential on CPP translocation will be investigated using 

SFG in the future. In addition, molecular interactions between cell membranes and CPPs with 

various molecular cargos (including small molecules, nanoparticles, proteins and DNAs) will be 

examined.  

 

 

  



38 

 

2.6 References 

(1) Fernández-Carneado, J.; Kogan, M. J.; Pujals, S.; Giralt, E. Biopolymers 2004, 76, 196-203. 

(2) Magzoub, M.; Gräslund, A. Quart. Rev. Biophys. 2004, 37, 147-195.  

(3) Patel, L. N.; Zaro, J. L.; Shen, W.-C. Pharmaceut. Res. 2007, 24, 1977-1992. 

(4) Vivès, E.; Schmidt, J.; Pèlegrin, A. Biochim. Biophys. Acta 2008, 1786, 126-138.  

(5) Heitz, F.; Morris, M. C.; Divita, G. Brit. J. Pharmacol. 2009, 195-206.  

(6) Fonseca, S. B.; Pereira, M. P.; Kelley, S. O. Adv. Drug Deliver. Rev. 2009, 61, 953-964. 

(7) Chugh, A.; Eudes, F.; Shim, Y.-S. IUBMB Life 2010, 62, 183-193. 

(8) Moore, M. J.; Rosbash, M. Adv. Sci. 2001, 294, 1841-1842.  

(9) Kumar, P.; Wu, H.; McBride, J. L.; Jung, K. -E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; 

Shankar, P.; Manjunath, N. Nature 2007, 448, 39-43.  

(10) Muñoz-Morris, M. A.; Heitz, F.; Divita, G.; Morris, M. C. Biochem. Biophys. Res. Commun. 

2007, 355, 877-882.  

(11) Räägel, H.; Säälik, P.; Pooga, M. Biochim. Biophys. Acta 2010, 1798, 2240-2248. 

(12) Herce, H. D.; Garcia, A. E. J. Biol. Chem. 2007, 33, 345-356. 

(13) Morris, M. C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. Nature Biotech. 2001, 19, 1173-

1176. 

(14) Deshayes, S.; Plénat, T.; Charnet, P.; Divita, G.; Molle, G.; Heitz, F. Biochim. Biophys. Acta 

2006, 1758, 1846-1851.  

(15) Gros, E.; Deshayes, S.; Morris, M. C.; Aldrian-Herrada, G.; Depollier, J.; Heitz, F.; Divita, 

G. Biochim. Biophys. Acta 2006, 1758, 384-393.  

(16) Deshayes, S.; Heitz, A.; Morris, M. C.; Charnet, P.; Divita, G.; Heitz, F. Biochemistry 2004, 

43, 1449-1457. 

(17) Henriques, S. T.; Quintas, A.; Bagatolli, L. A; Homblé, F.; M. A. R. B. Mol. Membr. Biol. 

2007, 24, 282-293. 

(18) Ye, S.; Nguyen, K. T.; Le Clair, S. V.; Chen, Z. J. Struct. Biol. 2009, 168, 61-77. 



39 

 

(19) Wang, J.; Buck, S. M.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124, 13302-13305. 

(20) Wang, J.; Clarke, M. L.; Zhang, Y.; Chen, X.; Chen, Z. Langmuir 2003, 19, 7862-7866. 

(21) Wang, J.; Even, M. a; Chen, X.; Schmaier, A. H.; Waite, J. H.; Chen, Z. J. Am. Chem. Soc.  

2003, 125, 9914-9915. 

(22) Chen, X.; Wang, J.; Sniadecki, J. J.; Even, M. A.; Chen, Z. Langmuir 2005, 2662-2664.  

(23) Wang, J.; Clarke, M., L.; Chen, X.; Even, M., A.; Johnson, W., C.; Chen, Z. Surf. Sci. 

2005, 587, 1-11. 

(24) Wang, J.; Paszti, Z.; Clarke, M. L.; Chen, X.; Chen, Z. J. Phys. Chem. B 2007, 111, 6088- 

6095.  

(25) Wang, J.; Lee, S.-H.; Chen, Z. J. Phys. Chem. B 2008, 112, 2281-2290.  

(26) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12358-12363.  

(27) Nguyen, K. T.; King, J. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 8291-8300. 

(28) Boughton, A. P.; Andricioaei, I.; Chen, Z. Langmuir 2010, 26, 16031-16036. 

(29) Chen, Z.; Ward, R.; Tian, Y.; Malizia, F.; Gracias, D. H.; Shen, Y. R.; Somorjai, G. A.  

J. Biomed. Mater. Res. 2002, 62, 254-264. 

(30) Mermut, O.; Phillips, D. C.; York, R. L.; McCrea K., R.; Ward, R. S.; Somorjai, G. A.  

J. Am. Chem. Soc. 2006, 128, 3598-3607. 

(31) Phillips, D. C.; York, R. L.; Mermut, O.; McCrea, K. R.; Ward, R. S.; Somorjai, G. A. J.  

Phys. Chem. C 2007, 111, 255-261. 

(32) York, R. L.; Browne, W. K.; Geissler, P. L.; Somorjai, G. A. Isr. J. Chem. 2007, 47, 51-58. 

(33) Weidner, T.; Apte, J. S.; Gamble, L. J.; Castner, D. G. Langmuir 2010, 26, 3433-3440. 

(34) Baugh, L.; Weidner, T.; Baio, J. E.; Nguyen, P. C.; Gamble, L. J.; Stayton, P. S.; Castner,  

D. G. Langmuir 2010, 26, 16434-16441.  



40 

 

(35) Fu, L.; Ma, G.; Yan, E. C. J. Am. Chem. Soc. 2010, 132, 5405-5412. 

(36) Anglin, T. C.; Liu, J.; Conboy, J. C. Biophys. J. 2007, 92, L01-L03. 

(37) Anglin, T. C.; Brown, K. L.; Conboy, J. C. J. Struct. Biol. 2009, 168, 37-52. 

(38) Jung, S.-Y.; Lim, S.-M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. D.; Holden, M. 

A.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 12782-12786.  

(39) Chen, X.; Sagle, L. B.; Cremer, P. S. J. Am. Chem. Soc. 2007, 129, 15104-15105. 

(40) Hall, S. A.; Jena, K. C.; Trudeau, T. G.; Hore, D. K. J. Phys. Chem. C 2011, 113, 15364-

15372. 

(41) Chen, X.; Chen, Z. Biochim. Biophys. Acta 2006, 1758, 1257-1273. 

(42) Yang, P.; Ramamoorthy, A.; Chen, Z. Langmuir 2011, 27, 7760-7767. 

(43) Ye, S.; Nguyen, K. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 3334-3340. 

(44) Chen, X.; Wang, J.; Boughton, A. P.; Kristalyn, C. B.; Chen, Z. J. Am. Chem. Soc. 2007, 

129, 1420-1427.  

(45) Henriques, T.; Castanho, M. A. R. B. J. Pept. Sci. 2008, 1, 482-487.  

(46) Fittipaldi, A.; Ferrari, A.; Zoppé, M.; Arcangeli, C.; Pellegrini, V.; Beltram, F.; Giacca, M. 

J. Biol. Chem. 2003, 278, 34141-34149. 

(47) Henriques, S. T.; Castanho, M. A. R. B. Biochemistry 2004, 43, 9716-9724. 

(48) Shen, Y. Nature. 1989, 337, 519–525. 

(49) Zhuang, X.; Miranda, P. B.; Kim, D.; Shen, Y. R. Phys. Rev. B. 1999, 59, 12632-12640. 

(50) Chen, Z.; Shen, Y. R.; Somorjai, G. A. Ann. Rev. Phys. Chem. 2002, 53, 437-465. 

(51) Eisenthal, K. B. Chem. Rev. 1996, 96, 1343-1360. 

(52) Chen, Z. Prog. Polym. Sci. 2010, 35, 1376-1402. 

(53) Chen, Z. Polym. Inter. 2007, 56, 577-587. 

(54) Li, G.; Ye, S.; Morita, S.; Nishida, T.; Osawa, M. J. Am. Chem. Soc. 2004, 126, 12198 

12199. 



41 

 

(55) Voges, A. B.; Al-Abadleh, H. A.; Musorrariti, M. J.; Bertin, P. A.; Nguyen, S. T.; Geiger, F. 

M. J. Phys. Chem. B 2004, 108, 18675-18682. 

(56) Li, Q. F.; Hua, R.; Chea, I. J.; Chou, K. C. J. Phys. Chem. B 2008, 112, 694-697. 

(57) Ye, H. K.; Gu, Z. Y.; Gracias, D. H. Langmuir 2006, 22, 1863-1868. 

(58) Yatawara, A. K.; Tiruchinapally, G.; Bordenyuk, A. N.; Andreana, P. R.; Benderskii, A. V. 

Langmuir 2009, 25, 1901-1904. 

(59) Moad, A. J.; Simpson, G. J. J. Phys. Chem. 2004, 108, 3548-3562. 

(60) Moad, A. J.; Moad, C. W.; Perry, J. M.; Wampler, R. D.; Goeken, G. S.; Begue, N. J.; Shen, 

T.; Heiland, R.; Simpson, G. J. J. Comp. Chem. 2007, 28, 1996-2002. 

(61) Tong, Y. J.; Li, N.; Liu, H. J.; Ge, A. L.; Osawa, M.; Ye, S. Angew. Chem. Int. Ed. 2010, 49, 

2319-2323. 

(62) Paszti, Z.; Guczi L. Vib. Spectro. 2009, 50, 48-56. 

(63) Chen, X.; Wang, J.; Kristalyn, C. B.; Chen, Z. Biophys. J.  2007, 93, 866-875.  

(64) Weller, K.; Lauber, S.; Lerch, M.; Renaud, a; Merkle, H. P.; Zerbe, O. Biochemistry 2005, 

44, 15799-15811. 

(65) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12169-12180. 

(66) Henriques, S. T.; Castanho, M. A. R. B.; Pattenden, L. K.; Aguilar, M.-I. J. Pept. Sci. 2010, 

94, 314-322. 

(67) Deshayes, S.; Morris, M. C.; Divita, G.; Heitz, F. Biochim. Biophys. Acta 2006, 1758, 328-

335. 

(68) Henriques, S. T.; Melo, M. N.; Castanho, M. A. R. B. Biochem. J. 2006, 399, 1-7.  

(69) Bobone, S.; Piazzon, A.; Orioni, B.; Pedersen, J. Z.; Nan, Y. H.; Hahm, K.-S.; Shin, S. Y.; 

Stella, L. J. Pept. Sci. 2011, 335-341. 

(70) Weidner, T.; Breen, N. F.; Drobny, G. P.; Castner, D. G. J. Phys. Chem. B 2009, 113, 

15423-6. 

(71) Unpublished data. 

(72) Nguyen, K. T.; Soong, R.; Lm, S.-C.; Waskell, L.; Ramamoorthy, A.; Chen, Z. J. Am. Chem. 

Soc. 2010, 132, 15112-5. 

 



42 

 

 

CHAPTER 3 

PHYSIOLOGICALLY-RELEVANT MODES OF 

MEMBRANE INTERACTIONS BY THE HUMAN 

ANTIMICROBIAL PEPTIDE, LL-37, REVEALED BY SFG 

EXPERIMENTS 

 

The previous chapter studied a linear α-helical peptide, Pep-1. A previously developed 

SFG data analysis method was used to determine the Pep-1 membrane orientation.  Many α-

helices in peptide and large proteins may not be linear, but instead contain structural distortions. 

Unlike the linear peptide Pep-1, LL-37 is a bent α-helix that adopts different structures on 

different kinds of lipid membranes. LL-37 is an antimicrobial peptide (AMP), regarded as a 

potential source to solve bacterial antibiotic drug resistance issues.
1-9

 In this chapter we 

developed SFG orientation analysis methodology to address the bend issue. Results from SFG 

experiments showed that LL-37 interacted with different lipid bilayers with different orientations. 

The conclusion was complemented by Surface Plasmon Resonance (SPR) experiments. This 

work shows that SFG can be used to study membrane orientations of bent helical structures. The 

work in this chapter has been published as: Ding, B.; Soblosky, L.; Nguyen, K.; Geng, J.; Yu, X.; 

Ramamoorthy, A.; Chen, Z. Scientific Reports 2013, 3, 1854. Z. C., A. R. and B. D. designed the 

project, analyzed the data and wrote the manuscript. B.D. performed SFG experiments and 

developed the data analysis method. L. S. prepared the cholesterol-related bilayer and 



43 

 

participated in cholesterol-related SFG experiments. K. N. did some initial SFG experiments on 

LL-37. J. G. and X. Y designed SPR experiments and collected SPR data. 

3.1 Introduction 

The development of drug resistance by many bacteria against traditional antibiotics poses 

an important challenge in curing infectious disease. Extensive research has been performed to 

develop antimicrobial peptides into powerful antibiotics to kill bacteria.
1-7

 Because most 

antimicrobial peptides disrupt the cell membranes of bacteria, it is difficult for bacteria to 

develop drug resistance against antimicrobial peptides. However, the detailed interaction 

mechanisms between many antimicrobial peptides and bacterial cell membranes remain unclear.  

LL-37, the only cathelicidin member in humans, plays an important role in human innate 

immunity system.
8,9

 LL-37 exhibits a broad-spectrum antimicrobial activity and 

lipopolysaccharide-neutralizing effects. There is considerable therapeutic interest in utilizing LL-

37 to overcome the bacterial resistance against traditional antibiotics and therefore there is 

significant interest in understanding its mechanism of antimicrobial action. Studies have reported 

the biological effects of LL-37 as well as the interactions of LL-37 with various types of lipid 

membranes. It was found that LL-37 readily disrupts the negative charged 1,2-dipalmitoyl-sn-

glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG) monolayer but exerts no effect on 

neutral charged 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine (DPPE) monolayers by specular X-ray reflectivity.
10

 NMR 

techniques have been used to determine 3D structures of LL-37 associated with neutral n-

dodecylphosphocholine (DPC)
11

 and negative-charged sodium dodecyl sulfate (SDS) micelles.
12 

Although the peptide structures are not completely the same in these two environments, they 
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both feature a kink in the middle of the peptide. Solid-state NMR studies revealed the 

oligomerization
13

, membrane orientation and carpet mechanism action for the peptide.
14

 While 

solid-state NMR and calorimetric studies have provided insights into the mechanism of 

antimicrobial action for LL-37, obtaining such information at very low, physiologically relevant 

concentrations have not been achieved due to the low sensitivity of the two techniques. Methods 

to overcome this low concentration limitation not only can be used to study other AMPs but also 

other membrane active peptides/proteins including cell penetrating peptides and amyloid proteins.  

In this chapter, we demonstrate the power of the sum frequency generation (SFG) 

vibrational spectroscopic technique to study the interactions between LL-37 and a single lipid 

bilayer containing different ratios of negative-charged 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoglycerol (POPG), neutral-charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC), and cholesterol for various peptide concentrations. As discussed in the previous 

chapters, SFG spectroscopy is an intrinsic surface-sensitive technique
15-22

 and has been widely 

used to study the structure and orientation of peptides and proteins at bio-interfaces
23-27

. Because 

of the excellent sensitivity, SFG can be used to investigate peptide-membrane interactions in the 

physiologically-relevant peptide concentration range, which cannot be done using most other 

biophysical techniques.
28-31  

Most of the previous orientation studies on -helical peptides using SFG were focused on 

the linear α-helical structure.
32,33

 For peptides that are not linear, data analysis on linear peptides 

was still used to determine orientation.
34

 Here, we studied a non-linear -helical structure using 

SFG and for the first time developed approaches to analyze SFG data detected from such bent 

helical structures. We considered two types of non-linear -helical structures in this study: a bent 

structure and a disrupted structure. The bent structure changes in the helix axis direction with all 
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the residues remaining helical, an example of which is LL-37 associated with SDS vesicles.
11

 

The disrupted structure also bears a change in the axial direction but with a loss of the helical 

character of the residues around the kink location, such as melittin, alamethicin and LL-37 

associated with DPC vesicles
12
. For both “bend and disruption” models, we treat the helical part 

of the peptide as two adjacent segments. The way we treat the first segment is the same as for an 

ideal linear helix previously reported,
32,33

 but the calculation for the second segment is different 

for the above two models. For the bend model, since there is no random structure between the 

two segments, we ought to consider that the entire helical LL-37 structure is continuous. 

Especially, there is a phase term involved in the calculation of the E1 vibrational mode which 

should also be continuous for the entire LL-37 helical structure. On the contrary, the phases for 

the vibrations of the two segments in the disrupted structure are unrelated and we do not consider 

the phase continuation. More calculation details (i.e. the values for the dipole moments and the 

Raman tensors) are included in section 3.2 below. The peptide membrane orientation deduced 

using SFG has been compared to results from NMR studies. Our results demonstrate that at the 

high peptide concentrations, SFG results are compatible to the NMR data. Different from NMR, 

SFG has the capability to investigate very low concentrations of complex α-helical structures and 

their membrane orientations. 

3.2. Experimental Procedure 

3.2.1 Experimental Details 

LL-37 (sequence: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) was 

purchased from Anaspec with >95% purity. The POPC and POPG lipids were purchased from 

Avanti Polar Lipids Inc. (Alabaster, AL). 
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Lipid bilayers were deposited on CaF2 right angle prisms (Altos Photonics, Bozeman, 

MT) by Langmuir-Blodgett and Langmuir-Schaefer (LB/LS) methods and the CaF2 substrates 

were cleaned as described in Chapter 2 before use. Ultrapure water from a Millipore system 

(Millipore, Bedford, MA) was used throughout the experiments for bilayer and sample 

preparation. The bilayer was immersed in water inside a 2 mL reservoir during the experiment. 4 

μL and 14 μL of 1 mg/mL LL-37 aqueous solutions were injected into the reservoir to achieve 

final peptide concentrations of 460 nM and 1.6 μM respectively. A magnetic microstirrer was 

used at a spinning rate of 100 rpm to ensure the peptide bulk solution is homogeneous below the 

bilayer. The absorption time for the POPG system at 460 nM is  1500 s and at 1.6 μM is  250 s.  

The details of our SFG setup with near-total reflection geometry have been previously 

described and will not be repeated.  SFG Spectra were collected from the lipid bilayer in contact 

with the LL-37 solution in ssp (s-SFG, s-visible, p-IR) and ppp polarization combinations in the 

amide I frequency region (1500 cm
-1

 to 1800 cm
-1

), and in the ssp polarization combination only 

in the high frequency region (2700 cm
-1

 to 4000 cm
-1

). 

3.2.2 Two Models for Calculating the Hyperpolarizability 

Turns and kinks are ubiquitous in α-helical and β-sheet structures. 
39

 They cause 

structural complexities while at the same time contribute to the diversity of biological functions. 

Although it is well-known that membrane-associated α-helices may be kinked, there is 

disagreement in the nature and underlying causes of the kinked structures.
40

 It was shown in the 

literature that kinks in α-helical transmembrane regions facilitate the conformational 

rearrangement and structural variability which make kinks important in biological functions. 
3
 

Recently Rainey et al. developed a Monte Carlo method based simulation algorithm to determine 
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the angles of the kinks by finding the helical axes. They categorized kinks as either bends or 

disruptions.
40

 As we discussed above, bent structure changes in the helix axis direction with all 

the residues remaining helical, an example of which is LL-37 associated with SDS vesicles.
12

 

Disrupted structure also bears a change in the axial direction but with a loss of helical character 

of the residues around the kink location, such as melittin, alamethicin and LL-37 associated with 

DPC vesicles
11

. Here we illustrate how we perform SFG data analysis on these two models 

3.2.2.1 The Bend Model 

Here we first discuss the calculation of the IR transition dipole moment. For the first 

segment of LL-37 which is a linear helix, we adopted the same model to do the calculation as we 

did in a previous paper.
33

 The results as well as the calculation equation for the A mode and E1 

mode are listed below. It is more complicated to calculate the second -helical segment of LL-37. 

Firstly, we need to consider the bent angle between the two segments. Secondly, since there is no 

random structure between the two segments, we ought to consider that the entire helical LL-37 

structure is continuous. Especially, there is a phase term involved in the calculation of the E1 

mode, which should also be continuous for the entire LL-37 structure. The overall IR transition 

dipole of the bent LL-37 was calculated with the first segment of 16 residues and the second 

segment of 14 residues, and with 143 degrees between the two segments, as an example.  

Similar to the calculation of the IR transition dipole, the Raman polarizability tensor for 

the first segment can be calculated with the same parameters as discussed in Chapter 1. The 

Raman polarizability tensor results for both A and E1 modes are also listed below. For the 

second segment, also similar to the IR transition dipole calculation, we need to consider the 

structure and phase continuation. 
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For the bend model (LL-37 on POPG lipid bilayers), the details on calculating the LL-37 

IR dipole transition moment and Raman polarizability tensor are shown below: 

The dipole transition moment for the first segment: 

A mode: 

                                         (2)  

E1 mode: 

                (3)    

              (4) 

 

The dipole transition moment for the second segment is: 

A mode: 
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                                                                                                                                                      (5) 

E1 mode:  

 

                                                                                    (6) 

 

                                                                                                    (7) 

The Raman tensor for the first segment is: 

A mode: 
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                                                                                                                       (8) 

E1 mode: 

 

                             (9) 
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                   (10) 

The Raman tensor for the second segment is: 

A mode: 

 

(11) 

 

E1 mode: 
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                             (12) 
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                  (13) 

3.2.2.2 The Disruption Model 

The difference between a disrupted kink and a bent structure is that there is a random-coil 

structure between the two α-helical segments of a disrupted kink structure while the bent 

structure is continuous. We can adopt the similar method to deduce the orientation dependent 

second order nonlinear optical susceptibility components for disrupted LL-37 structure with 

some variations. The variation is that in a disrupted kink structure, the phases for the vibrations 

of the two segments are unrelated and we do not consider the phase continuation. 

For the disruption model (LL-37 on POPC lipid bilayers), the overall transition dipole 

moment and Raman Polarizability with 21 residues for the first segment and 7 residues for the 

second segment can then be calculated and listed below. 

The dipole transition moment for the first segment is: 

A mode: 

                                         (14) 
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E1 mode: 

               (15) 

             (16)   

 

The dipole transition moment for the second segment is: 

A mode: 

 

                  (17) 

 

E1 mode: 
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         (18)  

 

                                                               (19) 

The Raman tensor for the first segment is: 

A mode: 

 

              (20) 

E1 mode: 
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                     (21) 

 

                  (22) 

The Raman tensor for the second segment is: 

A mode: 
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(23) 

 

E1 mode: 
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                  (24) 

 

 

 

                  (25) 
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Figure 3.1 Structures of LL-37 (a) associated with SDS vesicles
 
(PDB: 2K6O) (b) associated 

with SDS vesicles
 
(PDB: reported by Ramamoorthy group) (c) A cartoon representation of 

the LL-37 molecular structure and the rotation axis. 

 

3.2.3 Details in Orientation Calculation 

 First of all, we summarize the assumptions in deducing the orientation information. 

1. SFG is surface sensitive only when the inversion symmetry is broken, therefore we 

assume that the SFG signal only comes from the peptides absorbed on the lipid 

bilayer rather than those in the bulk.  

2. We assume a single δ-distribution for the tilt angles of the peptides. 

3. In both models, we average the twist angle of the second segment as shown in Figure 

6 when obtaining the SFG hyperpolarizability tensor for the peptide molecule. 

4. When the LL-37 peptide is absorbed on POPC lipid bilayer, we assume it adopts the 

NMR structure in DPC vesicles. When the LL-37 peptide is absorbed on POPG lipid 

bilayer, we assume it adopts the NMR structure in SDS vesicles.  
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The SFG hyperpolarizability tensor is a third-rank tensor, a Kronecker product of the 

Raman polarizability tensor and the IR transition dipole moment. This microscopic 

hyperpolarizability tensor is associated with the macroscopic second-order nonlinear optical 

susceptibility by the Euler angle projection: 

                                                                                                                 (26) 

Experimentally, the SFG signals from the A (peak center: ~1650 cm
-1

) and E1 modes 

(peak center: ~1652 cm
-1

) cannot be resolved due to the spectral resolution of our SFG system. 

Thus the SFG signal is considered as arising from the contributions of both the A and E1 modes. 

                                                                                                                                           (27) 

Assuming the orientation angle distribution of the first segment to be a δ-distribution, if 

we average the twist angle of the second segment as shown in Figure 3.1, we can calculate 

different elements of the second order nonlinear optical susceptibility as a function of the 

orientation angle (of the first segment) . 

3.2.4  Surface Plasmon Resonance (SPR) Measurements 

In this research, we applied SPR to compare the adsorption amounts of LL-37 onto single 

substrate supported POPG and POPC bilayers using a home-built SPR equipment.  The substrate 

surface for the lipid bilayers is SiO2 deposited on gold. The lipid bilayers were prepared by 

vesicle fusion. The detailed SPR experiments and results are presented below. 

3.2.4.1 Instrument Configuration 

The configuration of a homemade SPR biosensing system is shown in Figure 3.2. Briefly, 

a 670 nm laser beam was incident upon the sample, driven by a galvo scanner which can be 
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scanned for about 10˚. The reflected beam was collected by a cylindrical lens pair. By detecting 

the resonance angle shift of the reflection beam, the binding process occurring on the sensing 

surface could thus be monitored. A two-channel flow chamber was used and all solutions were 

handled by two syringe pumps. In an actual experiment, one of the two channels was used as the 

reference to compensate the temperature drift.  

 

Figure 3.2 Optical schematic of our galvo scanner based SPR sensing setup: (0) 2 mW 670 

nm laser diode (1) fiber collimator, (2) powell lens, (3) cylindrical lens, (4) polarizer, (5) 

galvo scanner, (6), (7) cylindrical lens pairs, (8) 1-D photodiode array, (9) 2-channel flow 

chamber, (10) sensing chip and (11) prism. 

 

3.2.4.2 Sensing Chip Fabrication 

A 50 nm-thick gold film was deposited on a BK7 glass slide with 1 nm Ti as the adhesion 

layer by sputtering. Then a 10 nm-thick SiO2 film was deposited on top of the gold film with 1 

nm Ti as the adhesion layer. Before every experiment, the chip was cleaned by piranha solution 

(98% H2SO4 and 30% H2O2, 7:3, v/v) and plasma cleaner.  

3.2.4.3 Lipid Vesicle Preparation 
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3 mg phospholipid(s) dissolved in chloroform were dried under a stream of nitrogen gas 

in a glass test tube and then stored in a vacuum chamber for 1 h to evaporate all the residual 

solvent. The dried lipids were re-suspended in 1 mL PBS by vigorous vortexing. Large 

unilamellar vesicles (LUVs) were prepared by extruding the lipids suspension through a 100 nm 

pore size polycarbonate filter for 19 times.  

3.2.4.4 Supported Lipid Bilayer Formation 

150 μL vesicle suspension was injected to pass over the SiO2 surface at a flow rate of 5 

on the hydrophilic surface. In order to wash away unattached vesicles and multi lipid bilayers, 

200 μL 100 mM NaOH aqueous solution was injected at 100 μL/min. After washing the NaOH 

solution, a stable baseline of the SPR signal can be acquired, indicating that a stable lipid bilayer 

was formed on the sensing surface. The peptide solution was injected at a flow rate of 50 μl/min. 

During the whole process, Millipore water was used as the running buffer.  

 

3.3. Results 

3.3.1 SFG Results of LL-37 Associated with a POPC/POPC and POPG/POPG Lipid Bilayer at 

Different Concentrations 

Structures of LL-37 in SDS
12

 and DPC
11 

micelles were reported based on solution NMR 

studies (Figure 3.1). The continuous helical region includes the residues 2-31 in SDS with a bend 

between residues 14-16. The bend is caused by the hydrophobic interaction between residues 

Ile13 and Phe17 and the membrane. The angle between the two helical segments connected by 

the bend is about 143° (Figure 3.1a). We developed the “bend model” to determine the peptide 

orientation in POPG lipid bilayers for our SFG study (Figure 3.3). The structure of LL-37 
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associated with zwitterionic DPC micelles was also reported based on a solution NMR study.
4
 

The well-structured region is from residues 4 to 33 and the helix-break-helix motif was 

highlighted with a break at residue Lys-12 (Figure 3.2b). Both structural studies suggest a tight 

cluster formed by residue Ile13 and Phe17.  In contrast to the LL-37 structure in SDS vesicles, 

where the N-terminal region is rigid, the N terminus of LL-37 was found to be dynamic in DPC 

micelles. Since there is a disruption in LL-37 helicity when associated with zwitterionic lipid 

vesicles, we adopt the “disruption model” to address the disruption in the LL-37 helical structure 

for SFG data analysis. Since the N terminus is dynamic, we calculated the orientation 

dependence of the nonlinear optical susceptibility components for structures with different 

residue numbers in the N terminal α-helical region to ensure that our model is reliable (Figure 

3.3). A schematic of the LL-37 molecule and the molecular axes used for SFG data analysis is 

shown in Figure 3.1c. The details of the bend and disrupted mode have been described in Section 

3.2. 



64 

 

 

Figure 3.3 (a) Dependence of the calculated SFG     
   

     
   

 ratio of LL-37 associated with a 

POPC/POPC bilayer on the helix tilt angle (first segment) relative to the bilayer surface 

normal. The first segment has 21 amino acid residues, and the second segment has 6, 7, and 

8 amino acid residues respectively (the disruption model). (b) Dependence of the calculated 

SFG     
   

     
   

 ratio of LL-37 associated with a POPG/POPG bilayer on the helix tilt angle 

(first segment) relative to the surface normal. 18-12, 17-14, 16-14, and 15-15 refer to the 

peptides with the first -helical segment of 18, 17, 16, and 15 amino acid residues and the 

second -helical segment of 12, 13, 14, and 15 amino acid residues respectively (the bend 

model). 

 

Since LL-37 has a random coil structure for the N-terminal residues, we need to ensure 

that the detected SFG amide I signal is dominated by the contributions from the -helical 

component. Contribution to the entire SFG signal from the unstructured region of the peptide 
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was calculated by NLOPredict developed by the Simpson group
35

 for both the bent and disrupted 

structures of LL-37. We found that for both the membrane-surface and transmembrane 

orientations, the SFG signal contribution from random coil structured regions is less than 5% of 

the total SFG signal (even under the assumption that the peak of the random coil overlaps with 

that of the α-helical components). Therefore, it is reasonable to assume that the signal attributed 

to the a-helical structured region of the peptide is the main contributor to the measured SFG 

signal in the amide I region.  

SFG spectra collected with ssp and ppp polarization combinations from LL-37 associated 

with POPC/POPC bilayers in the amide I frequency region at 0.46 µM and 1.6 μM 

concentrations are shown in Figure 3.4a. Here, for the SFG signals in the amide I frequency 

range, we collected spectra using two polarization combinations, ssp and ppp, in order to deduce 

the LL-37 orientation from the spectral fitting result χeff,ppp/χeff,ssp. The SFG spectra in Figure 3.4a 

exhibit a single peak centered around ~1647 cm
-1

, indicating an -helical structure. The SFG 

spectral intensities for the two studied concentrations are very similar, and the fitting results of 

χeff,ppp and χeff,ssp are displayed in Table 3.1a. Using the spectral fitting results and the “disruption 

model” (Figure 3.3a), the orientation analysis shows that the LL-37 peptide lies more or less 

parallel to the membrane surface with a tilt angle between 56° and 90° relative to the lipid 

bilayer normal at the peptide concentration of 0.46 µM and 68° to 90° at the peptide 

concentration of 1.6 μM. The similar orientation and SFG spectral intensities indicate that the 

adsorption amounts of LL-37 at 0.46 µM and 1.6 µM are similar. 

(a) 

POPC/POPC Polarization peakcenter  

(cm
-1

) 

Peak 

Width 

(cm
-1

) 

χeff Ratio Tilt 

angle 

Adsorption 

amount 
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0.46Μm ssp 1649 7.9 14.8 1.94±0.13 56-90 1.1 

 ppp 1647 9.7 23.7 

1.6μM ssp 1649 13.5 14.3 1.96±0.06 68-90 1.1 

 ppp 1647 11.3 24.2 

 

(b) 

POPG/POPG Polarization Peak 

center  

(cm
-1

) 

Peak 

Width 

(cm
-1

) 

χeff Ratio tilt 

angle 

Adsorption 

amount 

0.46μM ssp 1648 13 33.6 1.92±0.04 44-58 1.0 

 ppp 1650 12 56.5 

1.6 μM ssp 1649 11 45.3 2.06±0.07 62-90 2.8 

 ppp 1649 12 78.3 

 

 (c) 

POPC:POPG=7:3 Polarization Peak 

center  

(cm
-1

) 

Peak 

Width 

(cm
-1

) 

χeff Ratio tilt angle 

0.46μM ssp 1645 13.8 17.11 2.02±0.01 63-80 

 ppp 1648 13.7 30.6 

1.6 μM  ssp 1646 11.2 26.9 1.68±0.07 0-25 

 ppp 1649 13.9 42.1 

 

(d) 

POPC:POPG=3:7 Polarization Peak 

center  

(cm
-1

) 

Peak 

Width 

(cm
-1

) 

χeff Ratio tilt angle 

0.46μM ssp 1648 14.0 20.3 1.72±0.01 0-15 

 ppp 1646 11.5 30.8 

1.6 μM  ssp 1651 13.8 28.0 2.07±0.05 65-90 

 ppp 1651 10.6 51.6 

 

Table 3.1 Fitting parameters of the SFG amide I spectra of LL-37 associated with (a) 

POPC/POPC, (b) POPG/POPG, (c) POPC:POPG=7:3, and (d) POPC:POPG=3:7 bilayers.  
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Figure 3.4 (a) SFG amide I spectra of LL-37 associated with POPC/POPC bilayer; (b) SFG 

O-H/N-H stretching signals collected from the POPC (top) and POPG (bottom) bilayers in 

contact with LL-37 solution (1.6 μM); SFG amide I spectra of LL-37 associated with (c) 

POPG/POPG bilayer, (d) 3:7 POPC:POPG and (e) 7:3 POPC:POPG lipid bilayers. 

 

 

SFG signals detected in the frequency range of 3000-3600 cm
-1 

before and after the 

addition of LL-37 to the POPC/POPC bilayer are shown in Figure 3.4b. Since the POPC 

headgroup is neutral, the POPC/POPC bilayer associated water molecules do not have a 

preferred orientation, therefore no water O-H stretching SFG signal was detected prior to the 
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addition of the LL-37 stock solution into the subphase. After the addition of LL-37, a broad SFG 

signal in this frequency range was detected, which is mostly attributed to the water O-H 

stretching mode and the N-H stretching peak (centered at 3280 cm
-1

) of LL-37. Because LL-37 is 

positively charged, the ordered LL-37 molecules associated with the POPC/POPC bilayers can 

induce ordering of surrounding water molecules that generate the SFG O-H stretching signal. 

Since the POPC/POPC bilayer is neutral, the observed SFG signal in this range suggests that LL-

37 potentially interacts with the POPC/POPC bilayer by hydrophobic interaction instead of 

electrostatic interaction.  

The membrane surface orientation of LL-37 associated with the POPC bilayer deduced 

by the SFG amide I signal in this study is in excellent agreement with solid-state NMR 

results.
8,14

   

The amide I signals observed for LL-37 associated with POPG/POPG lipid bilayers 

(Figure 3.4c) feature a single peak at ~1649 cm
-1

, similar to the POPC/POPC case. The SFG 

intensities for the high and low peptide concentrations are similar in both polarization 

combinations in a POPC/POPC system. However, there is a significant increase in the SFG 

intensity when the concentration is increased in the POPG/POPG system. The spectra were fitted 

with parameters displayed in Table 3.1b and the ratios of χeff,ppp and χeff,ssp were used to deduce 

the orientation angles. Since previous NMR studies indicated that LL-37 has a bend in the 

middle when associated with negatively charged vesicles, we adopt the “bend model” discussed 

above to examine LL-37’s orientation associated with POPG/POPG lipid bilayers (Figure 3.3b). 

This model considers the phase continuity between the vibrational modes of the two segments in 

the data analysis; details can be found in the section 3.2. Our analysis shows that LL-37 orients 

with a tilt angle of 44° to 58° relative to the POPG/POPG surface normal for the 0.46 µM 
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peptide concentration case and 62° to 90° for the 1.6 μM concentration case. These results reveal 

that the membrane orientation of LL-37 in POPG/POPG bilayer is dependent on the peptide 

concentration and, at low concentrations, the peptides tilt to form a transmembrane orientation. 

This change in the peptide orientation could be attributed to the oligomerization of the peptide as 

observed from solid-state NMR experiments.
13

 

SFG signals collected in the frequency range of 3000-3600 cm
-1

 before and after the 

addition of LL-37 (with the final concentration of 1.6 μM) to the POPG/POPG bilayer subphase 

are shown in Figure 3.8b. Before the addition of the LL-37, the spectra showed two broad peaks 

at ~3200 cm
-1

 and ~3500 cm
-1

 which can be explained as follows: the negatively charged lipid 

headgroups of the POPG/POPG bilayer facilitate the ordering of the associated water molecules, 

resulting in prominent water O-H stretching SFG signals. However, after LL-37 was added to the 

subphase, the two broad peaks diminished and a new peak centered at 3300 cm
-1

 appeared 

(Figure 3.4b). With LL-37 added, we expect the cationic peptide molecules associated with the 

negatively-charged POPG/POPG bilayer partially neutralized the bilayer charge. The originally 

ordered water molecules induced by the charged lipids would be less ordered, leading to a 

substantial decrease or even disappearance of the SFG water signal as shown in Figure 3.8b. The 

new 3300 cm
-1

 is likely from the N-H stretching mode of the peptide molecules due to the 

existence of ordered LL-37 molecules on the membrane surface.  

3.3.2 SFG Results of LL-37 Associated with a Mixed Lipid Bilayer at Different Concentrations 

In order to better simulate the real cell membrane which contains mixed lipids, we also 

investigated LL-37 interacting with mixed lipid bilayers with different negatively charged and 

zwitterionic lipid ratios. For a POPC: POPG= 3:7 bilayer, the interaction result with LL-37 has a 

similar trend as that with the pure POPG system (Figure 3.8d). After increasing the LL-37 
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peptide concentration from 0.46 µM to 1.6 μM, the peptide orientation changed from 

perpendicular to the membrane surface (0~15° vs. the surface normal) to parallel to the surface 

(70~90° vs. the surface normal) if we assume the peptide adopts the same structure as in negative 

charged SDS vesicles. This shows that when LL-37 interacts with the mixed bilayer, LL-37 

molecules target the POPG component. The peptides inserted into the bilayer at low 

concentrations and previous research has shown that LL-37 has a tendency to oligomerize
8
. It is 

likely the inserted peptides can be pulled out from the bilayer by other peptide molecules at a 

higher peptide concentration via hydrophobic-hydrophobic interaction. 

For a POPC: POPG= 7:3 lipid bilayer, the orientation information deduced is somewhat 

complicated (Figure 3.4e). When the peptide concentration is 0.46 µM, the peptide molecules 

show a parallel orientation to the surface (65~75° relative to the bilayer normal) if we assume 

that the peptide adopts the same structure as in the neutral charged DPC vesicles. Interestingly, at 

1.6 μM peptide concentration, the peptide molecules have a transmembrane orientation (0~15° 

relative to the bilayer normal). After increasing the peptide concentration to 4.8 μM, 6.4 μM and 

7.9 μM, the peptide molecules resumed the parallel orientation, nearly lying down on the bilayer 

surface.  

3.3.3 SFG Results of LL-37 Associated with a Cholesterol-containing Lipid Bilayer at Different 

Concentrations 

We further investigated interactions between LL-37 and two lipid bilayers containing 

cholesterol (CHO). 1:1 POPC:CHO lipid bilayer was used and we monitored the SFG signal in 

the amide I and O-H stretching frequency regions in the same way as in the above studies 

without cholesterol. The experimental results showed that after adding LL-37 peptides to the 

subphase, the SFG water signal increases (Figure 3.5a), but it is not as substantial as that 

observed from the pure POPC lipid bilayer system (Figure 3.4b). The SFG water signal is 
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induced by the positive charge of the adsorbed LL-37 molecules and therefore it is reasonable to 

believe it is related to the amount of adsorbed LL-37 molecules regardless of the ordering of 

these LL-37 molecules. With the presence of cholesterol in the lipid bilayer, fewer LL-37 

molecules interact with the lipid bilayer. In addition to the much weaker water signal, there is a 

striking difference in the spectral feature since there is no 3300 cm
-1 

peak in the cholesterol-

containing system. No amide I signal was detected in ssp or ppp spectrum (Figure 3.5b). 

Although we believe that the POPC/CHO system has fewer LL37 molecules adsorbed, we could 

not assess the ordering of the adsorbed LL-37 molecules due to the low SFG amide I signal we 

detected. 

 

Figure 3.5 (a) SFG O-H/N-H stretching signals collected from the 1:1 POPC:CHO (top) 

and 0.3: 0.7:1 POPG:POPC:CHO (bottom) bilayers in contact with LL-37 solution (1.6 

μM); (b) SFG amide I spectra of LL-37 associated with 1:1 POPC:CHO (top) and 0.3: 0.7:1 

POPG:POPC:CHO (bottom) bilayers in contact with LL-37 solution (1.6 μM). 
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We also investigated the incorporation of cholesterol into a lipid bilayer containing an 

anionic lipid: POPG: POPC: CHO=0.3:0.7:1. After the injection of the LL-37 peptide solution 

into the subphase, neither discernible SFG N-H stretching signal (Figure 3.5a) nor SFG amide I 

ssp signal (Figure 3.5b) was detected. However, a small ppp SFG signal for the amide I band was 

observed. Compared to the 1:1 POPC:CHO lipid bilayer, this shows that the addition of 

negatively charged POPG to the lipid bilayer increases the surface coverage of associated LL-37 

peptides. Still, the LL-37 surface coverage is significantly lower than that of LL-37 associated 

with the 3:7 POPG:POPC bilayer without CHO, suggesting that cholesterol suppresses the 

interaction of LL-37 with lipid bilayers. These results are in excellent agreement with solid-state 

NMR studies. 
14,36 

3.4 Discussion 

We compared the relative adsorption amounts of LL-37 molecules on POPC and POPG 

bilayers according to the observed SFG signal intensities, as summarized in Table 3.1a. The 

number of adsorbed molecules is proportional to         
 , where      is deduced from the 

experimental SFG ssp spectrum (related to signal intensity) and 
   

 is the microscopic 

hyperpolarizability component of the amide I signal of LL-37. The amount of LL-37 adsorption 

on the POPG bilayer is comparable to that on the POPC bilayer at 0.46 µM but it is ~2.6 times 

larger compared to that on the POPC bilayer at 1.6 μM. The adsorption amount of LL-37 

interacting with POPG/POPG increased as the peptide concentration was raised, which can be 

attributed to the electrostatic interaction between the anionic lipid and the cationic peptide. The 

different adsorption amounts of LL-37 on POPG and POPC lipid bilayers were confirmed by 

surface plasmon resonance (SPR) experiments (Figure 3.6). It was shown by SPR that at the 

concentration of 1.6 μM, the initial adsorption amount of LL-37 on POPG is ~3 times larger than 
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that on POPC. Also, the peptides experience a certain degree of desorption on POPC but the 

adsorption amount remains stable on POPG. This indicates a weaker interaction between LL-37 

and POPC compared to POPG. Since POPC is neutral, LL-37 only interacts with POPC via 

hydrophobic interactions. However, POPG is negatively charged and electrostatic interactions 

between the positively charged peptides and the membrane induce more peptide adsorption when 

the peptide concentration increases.  

 

Figure 3.6 Time-dependent SPR signals observed before and after LL-37 peptide solutions 

with 1.6 M concentration in water were injected at 50 μL/min into the flow chambers to 

interact with the POPG (blue) and POPC (green) bilayers. For the POPG bilayer, the 

adsorption curve will reach a plateau at around 220 s. While for the POPC bilayer, 

peptides start to desorb from the lipid bilayer after 150 s, indicating a weaker interaction 

between LL-37 and the POPC bilayer compared to that with the POPG lipid bilayer. 

 

The differences in the membrane orientation of LL-37 on POPC and POPG lipid bilayers 

facilitate the understanding of its membrane interaction mode. It was reported that lipid 

headgroup perturbation induced by LL-37 is larger in bilayers containing a negatively charged 

lipid (DMPG:DMPC=4:1) than in the zwitterionic DMPC bilayer, but the LL-37 molecules 
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adopt the same parallel orientation when associated with the lipid bilayers deduced using NMR 

spectroscopy.
38

 It was proposed that LL-37 exhibits a non-pore formation carpet mode on 

zwitterionic DPC vesicles.
11

 Our results for LL-37 associated with the POPC/POPC and 

POPG/POPG lipid bilayers with a high peptide concentration of 1.6 μM supports the above 

conclusions: for both cases, the peptides adopt an approximately parallel orientation. As we 

discussed above, the unique advantage of SFG study is that SFG can be used to study the 

interactions between LL-37 and model cell membranes at much lower (physiologically relevant) 

peptide concentrations. At a lower peptide concentration of 0.46 µM, SFG results indicate that 

the LL-37 molecules associated with the POPG/POPG bilayer tilted towards the membrane 

normal. Previous LL-37 research revealed that at ~0.5 and 1.5 μM, LL-37 molecules have both 

monomer and dimer forms in aqueous solution.
38

 Trimers were detected when peptide 

concentration is increased to 50 μM. At our experimental condition, i.e. 0.46 µM and 1.6 μM, 

which is similar to 0.5 and 1.5 μM, it is most likely that LL-37 dissolve in water as monomers 

or/and dimers. We believe that for the POPC/POPC bilayer, the peptide molecules saturated at a 

low concentration of 0.46 µM as monomers/dimers and remain so at a higher peptide 

concentration of 1.6 μM. However, for the POPG/POPG bilayer, the peptides penetrate into the 

membrane at a low concentration. While at a higher peptide concentration, the domination of the 

peptide-peptide interaction could drag the initially inserted peptide molecules out of the 

membrane, which not only changes the overall membrane orientation of the peptides, but also 

induces the increase of the peptide adsorption amount. 

For the systems with mixed lipids, we believe that the concentration-dependent behavior 

can be explained as follows: Initially, at a low peptide concentration, most of the LL-37 

molecules interact with the POPC lipid, which is the major component of the POPC:POPG=7:3 
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bilayer. Therefore, the overall orientation of LL-37 is similar to that for the associated LL-37 

with a pure POPC bilayer. At a slightly higher peptide concentration, more peptides can interact 

with the POPG lipids, which is the minor component in the bilayer. In this case, the interaction 

between LL-37 with the POPC:POPG=7:3 bilayer is similar to the situation when a pure POPG 

bilayer interacts with a lower  concentration of LL-37 in which  LL-37 can insert into the bilayer. 

At higher peptide concentrations, additional peptides that associated with the bilayer pulled the 

inserted LL-37 out of the membrane, as in the pure POPG bilayer case which leads to a parallel 

orientation.  

3.5. Conclusion 

In summary, we have examined the molecular interaction of the LL-37 peptide with a 

variety of lipid bilayers using SFG (Figure 3.7), and have developed a SFG orientation analysis 

methodology for bent and disrupted α-helices. We have demonstrated that SFG is sensitive 

enough to study peptide-lipid molecular interaction at low-peptide concentrations, which is 

beyond other techniques such as NMR. LL-37 is shown to saturate the pure POPC lipid bilayer 

at a low concentration (0.46 µM) with an orientation parallel to the membrane surface. However, 

in pure POPG or POPC/POPG mixed lipid bilayers, LL-37 exhibits a reorientation upon 

changing the peptide concentration, suggesting the peptide aggregation process. In cholesterol-

containing systems, SFG results demonstrate that cholesterol has a significant suppression effect 

on the peptide-membrane interaction. We strongly believe that the experimental and data 

analysis approaches developed in this study would be highly applicable in studying other 

membrane active systems including other AMPs, cell penetrating peptides, fusion peptides and 

amyloid proteins.  
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Figure 3.7 Schematics showing interactions between LL-37 and different lipid bilayers: (a) 

POPC bilayer at a low concentration (left) and a high concentration (right); (b) POPG 

bilayer at a low concentration (left) and a high concentration (right); (c) 3:7 POPC:POPG 

lipid bilayer at a low concentration (left) and a high concentration (right); (d) 7:3 

POPC:POPG lipid bilayer at a low concentration (left) and a high concentration (right) 

and even higher concentrations (bottom); (e) 1:1 POPC:CHO lipid bilayer at a low 

concentration (left) and a high concentration (right); (f) 0.3: 0.7:1 POPG:POPC:CHO lipid 

bilayer at a low concentration (left) and a high concentration (right) 
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CHAPTER 4 

UNVEILING THE MEMBRANE-BINDING PROPERTIES OF 

N-TERMINAL AND C-TERMINAL REGIONS OF G 

PROTEIN-COUPLED RECEPTOR KINASE 5 BY 

COMBINED OPTICAL SPECTROSCOPIES 

 

In Chapters 2 and 3, both wild-type LL-37 and the entire length of Pep-1 were 

investigated. However, in peptides, different segments may play different roles according to the 

properties of the consisted amino acids which exist within the segments. In this chapter, in order 

to distinguish the different roles of the segments in the GRK5 N-terminal peptide, we truncated 

the peptide into two parts and investigated their membrane adsorption property and conformation 

under different conditions by using both SFG and ATR-FTIR spectroscopies. This work was 

completed in collaboration with Prof. John J. G. Tesmer, Alisa Glukhova, Prof. Henry I. 

Mosberg and Katarzyna Sobczyk-Kojiko. The peptide samples were provided by Mosberg lab 

and Prof. Tesmer and Alisa contributed tremendously in data interpretation. The work is 

published as: Ding, B.; Glukhova, A.; Sobczyk-Kojiro, K.; Mosberg, H. I.; Tesmer, J. J. G.; 

Chen, Z. Langmuir  2014, 30, 823–31. 

4.1 Introduction 

G protein-coupled receptors (GPCRs) are integral membrane proteins that transduce 

extracellular signals such as light, hormones and chemoattractants to downstream signal 
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pathways.
1
 Activated GPCRs are phosphorylated by a family of serine/threonine kinases named 

G protein-coupled receptor kinases (GRKs), a process that initiates their desensitization. The 

ability to interact with membranes in which GPCRs are found is essential for GRK’s function.
2
 

Various GRKs have different ways of associating with lipid bilayers.
3
 GRK1 and GRK7 are 

post-translationally modified by prenyl groups at their C-termini. GRK2 and GRK3, on the other 

hand, bind to membranes by virtue of their C-terminal pleckstrin homology (PH) domains, which 

bind to acidic phospholipids and interact with heterotrimeric Gβγ subunits, which are prenylated. 

GRK4, GRK5, and GRK6 constitute a subfamily of GRKs that have 2-3 membrane-binding 

motifs. The first is a basic segment near the N-terminus that is believed to be responsible for 

binding phosphatidylinositol-4,5-bisphosphate (PIP2). The second is an amphipathic helix 

located at the extreme C-terminus that is believed to interact with anionic lipid bilayers. GRK4 

and GRK6 are in addition palmitoylated on cysteines immediately C-terminal to this helix.  

Proposed roles for these residues include either direct interaction with activated receptors
4
 or 

with the phospholipid bilayer
5,6

, either of which is proposed to induce helical character in this 

region and promote the formation of an activated form of the kinase domain. 

Over the past several years, crystallographic studies have yielded new insights into the 

molecular mechanism for regulation of GRKs by their interactions with receptors and 

membranes.
4
 However crystallographic analysis requires the removal of protein complexes from 

their native membrane environment and cannot provide direct information on how these 

molecules are arranged on the membrane surface in situ. Sum frequency generation (SFG) 

vibrational spectroscopy is a powerful tool to examine peptides and proteins at biointerfaces,
7-14

 

and in particular, associated with cell membranes.
15-21

 For example, orientations of peptides with 

different secondary structures, such as linear α-helices, 
22,23

 bent α-helices,
24,25

 β-sheets
26

 and 310 
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helices
27

 associated with solid substrate supported lipid bilayers were deduced using polarized 

SFG studies. SFG has also been applied to investigate the membrane orientations of G, the 

G-GRK2 complex, and G heterotrimers in situ.
28,29

 Recently, we showed that the use of 

both SFG and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy 

can determine orientations of complex proteins with greater certainty.
30

 In this research, we used 

SFG and ATR-FTIR to study the membrane interactions of the N-terminal and C-terminal 

segments of GRK5 to gain insight into which regions were most important for membrane 

binding and what structure and orientation they adopt while interacting with membranes. 

GRK5 residues 2–31 (GRK52–31) are highly conserved in the GRK4 subfamily of GRKs 

(Figure 4.1), which includes GRK4, GRK5 and GRK6. In previous literature, it was suggested 

that residues 22–29, which include basic amino acids Lys22, Arg23, Lys24, Lys26, Lys28, and 

Lys29, bind to PIP2.
31

 An overlapping region (residues 20–39) has also been implicated in 

binding to calmodulin·Ca
2+

 (CaM·Ca
2+

).
32

 The structure of GRK6 (a close homolog of GRK5) 

determined by X-ray crystallography suggests that the N-terminal portion of the peptide 

(residues 2 to 23) is disordered when the enzyme is in an inactive state,
33

 but residues 2–18 

become ordered when the enzyme assumes a more active, presumably receptor-bound 

conformation.
4
 However, it is not known if this region forms a platform for binding to lipid 

membranes or activated GPCRs. Therefore, elucidating the ability of different segments of the 

GRK5 N-terminus with the membrane is the key to understand how the membrane influences 

GRK5 function.  
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Figure 4.1  Sequences of the human GRK5 N-terminal and C-terminal peptides used in this 

study. Residues highlighted in red adopt an  helical conformation in the structure of the 

GRK6·sangivamycin complex.
 

 

The C terminal residues 552–562 of GRK5 are believed to be another region that 

interacts with phospholipids. Deletion of these residues results in a 100-fold loss in membrane 

binding affinity.
34

 Residues 549–557 are predicted to form an amphipathic helix when bound to 

membranes.
35

 In the active conformation of the GRK6 crystal structure, an amphipathic helix 

(residues 548–557) is observed that docks to the core of the enzyme, but is far removed from the 

predicted membrane surface and the N-terminal segment believed to bind PIP2.
4
 Thus, either this 

structural element does not bind to membranes, or it only binds to membranes when GRK6 is in 

a more inactive state, or the structure represents a soluble form of the enzyme, such as when it is 

believed to translocate to the nucleus to phosphorylate transcription factors.
36

 

By combining data from two complementary optical spectroscopic techniques, SFG and 

ATR-FTIR, we are seeking to answer the following questions. First, do peptides representing the 

N-terminal (GRK52–31) and C-terminal (GRK5546–565) regions bind to membranes on their own, 

and, if so, what structure do they adopt? Second, does PIP2 affect the binding properties of these 

two peptides? Finally, is CaM·Ca
2+ 

able to dissociate these GRK5 peptides from the membrane, 

as proposed to be required for nuclear translocation? 

 

4.2 Experimental Details 

4.2.1. Materials 

Peptides GRK52–31, GRK52–24 and GRK5546–565 (Figure 4.1) were synthesized by 

Mosberg lab at the University of Michigan. Protected amino acids and N-methylpyrrolidone 
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(NMP), 1-hydroxybenzotriazole (HOBt), and O-benzotriazole-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate (HBTU) were purchased from Creosalus. Acetonitrile, HPLC grade water, 

trifluoroacetic acid (TFA), diethyl ether, and phenol were from Fisher Scientific. Piperidine, 

N,N-diisopropylethylamine (DIPEA), dimethylformamide (DMF), thioanisole, and 

triisopropylsilane (TIPS), and calmodulin were from Sigma/Aldrich. Solid-phase synthesis resin 

NovaPEG Rink Amide Resin (0.5 mmol/g) was purchased from Novabiochem. Analytical HPLC 

analysis was done using an Alliance system with 250 x 5 mm C18 3 μm column (Vydac). Mass 

spectrometry analysis was done using a 6130 Quadrupole LC/MS (Agilent Technologies). 

Semipreparative HPLC purification was performed using a Delta 600 system (Waters) with 150 

x 19 mm XBridge
TM

  Prep C18 10 μm OBD column (Waters). HPLC analysis and purification 

were done using solvent system 0.1 % TFA in water and 0.1% TFA in acetonitrile. Peptides 

GRK52–24 and GRK52–31 were synthesized using 9-fluorenylmethoxycarbonyl (FMOC) 

chemistry. The syntheses of C-terminal sequences up to Ala
15

 were carried out on a CS336X 

automated synthesizer (C.S. Bio Co.) and the syntheses were then continued on a Discover SPS 

single mode manual microwave synthesizer (CEM Corp.) (power = 20 W,  5 min per coupling 

and power 20 W, 1.5 min per deprotection; temps. 70-75 ˚C). The synthesis scale was 0.2 mmol. 

The general protocol included double coupling and double deprotection as well as acetylation of 

the un-reacted amino groups. Coupling cycles were performed using 4 eq. of incoming amino 

acid, HOBt/HBTU in DMF and DIPEA in NMP. Fmoc deprotection was accomplished using 20% 

piperidine solution in NMP. Cleavage of the peptide from the resin and side-chain deprotection 

was performed using 10 ml of the mixture: D.I. water:phenol:thioanisole:TIPS:TFA (0.5 ml:0.7 

g:0.5 ml:0.25 ml:8.75 ml). The reaction was left running at room temperature for 2 h. After 

filtration of the resin, crude peptide was precipitated with cold ethyl ether. The resulting crude 
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peptides were purified by semipreparative HPLC, as described above. The purity of the final 

peptide was analyzed using HPLC and molecular weight confirmed by MS. Peptide GRK525–31 

was synthesized by Peptide 2.0 Inc by a similar approach. POPC (1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine) and PIP2 were purchased from Avanti Polar Lipids. 

4.2.2. SFG Experiments 

SFG theory
39-43

, our experimental design and data analysis method
23,44

 has been reported 

before. Supported POPC/POPC lipid bilayers were constructed on CaF2 prisms by Langmuir-

Blodgett/Langmuir-Schaefer method, as described in Chapter 2.
37,38

 The concentration of each of 

the four peptides was 3.8 μM and the peptides were dissolved in 10 mM potassium phosphate 

buffer (pH 7.4). Because CaF2 prisms were used as substrates to prepare the lipid bilayers, small 

amounts of Ca
2+

 may be dissolved in the subphase. 2 mM EDTA was added to the above buffer 

solution to minimize any influence of the Ca
2+

 released from the CaF2 substrates. For each of the 

three N-terminal peptides studied here, we added the peptide into the subphase in contact with 

the substrate supported bilayer and after equilibration recorded the SFG signal in the water O-H 

stretching frequency range as well as in the peptide amide I frequency region. For all peptides we 

studied, the adsorption time on the POPC lipid bilayer in either 10 mM phosphate buffer or PBS 

buffer was less than 200 s. For the second step, we substituted the peptide solution subphase with 

potassium phosphate buffer (~6 ml in total) to wash off the loosely associated peptides and 

recorded the SFG signal in the water O-H stretching frequency range again. For the last step, we 

substituted the phosphate buffer subphase with a solution of buffer containing 40% TFE and 

again collected SFG spectra in the water O-H stretching frequency range and the amide I 

frequency range. For the C-terminal peptide, we only perform the first two steps of the above 

procedure. PIP2 experiments were performed in the same way as POPC experiments except that 
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when making bilayers, lipids with a 9:1 molar ratio of POPC:PIP2 were used. Because peptides 

were used at the same concentration in these experiments yet likely have different affinities, and 

because water signals are also strongly affected by net charge as well as charge distribution in 

the peptides (and other effects), we defined peptides as weakly membrane associated if the water 

signal recovered after the buffer wash, as opposed to direct comparison of changes in the SFG 

signals from water O-H stretching after addition of peptide. 

4.2.3 ATR-FTIR Spectroscopy 

ATR-FTIR experiments were performed on a Nicolet Magna 550 FTIR spectrometer. 

Lipid bilayers were deposited on a ZnSe crystal (Specac Ltd. RI, U.K.) with vesicle fusion 

method. One ml POPC toluene solution (5 mg/ml) was dried with nitrogen flow and then in 

vacuum for 2 h. The POPC power was then dissolved in 10 mM phosphate D2O buffer pH 7.4 

and the mixture was vortexed for 5 min before addition to the surface of the detachable ZnSe 

crystal to form bilayers. After 30 min, the vesicles floating in the subphase were washed away by 

excessive buffer. GRK5 peptides were then injected into the subphase (1.6 ml) to achieve a 

concentration of 11.4 μM. After the system reached equilibrium, spectra before and after 

extensive wash with D2O buffer were recorded. For GRK5546-565, s- and p- polarized spectra were 

taken so that data analysis on the peptide orientation can be performed. In the CaM·Ca
2+

 

experiments, after peptides were associated with the lipid bilayers equimolar CaM (11.4 μM) and 

50 μM CaCl2 solution were added. 

 

4.3 Results 

4.3.1 SFG Studies on N-terminal Peptides 
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 We first investigated molecular interactions between the GRK5 N-terminal peptides 

GRK52–31, GRK52–24, and GRK525–31 and a POPC/POPC lipid bilayer. The POPC/POPC bilayer 

is zwitterionic, and the electrostatic potential across the bilayer induces the water dipoles to 

orient near the bilayer surface.
45,46

 The water region (detected between 2700 and 3700 cm
-1

)
 47,48

 

monitored by SFG spectroscopy can be used to determine the binding properties of ions
49,50

 or 

peptides.
25

 In our experiments, we observed two broad water O-H stretching peaks centered at 

~3200 cm
-1

 and 3400 cm
-1

 in the SFG spectrum from the lipid bilayer/potassium phosphate 

buffer interface (Figure 4.2a). Peptides were then added into the subphase and the system was 

allowed to reach equilibrium. The water OH stretching signal decreased upon addition of the 

GRK52–31 or GRK525–31 peptides to the subphase, consistent with their interaction with the 

POPC/POPC bilayers (Figures 4.2a and 4.3a). SFG spectra were also collected after extensive 

washing, but no substantial changes were observed, suggesting that both GRK52–31 and GRK525–

31 peptides are strongly associated with the bilayer. However, the SFG water O-H stretching 

signal only decreased slightly after the addition of the GRK52-24 peptide to the subphase, and the 

SFG water signal recovered after washing the interface with buffer (Figure 4.3c), consistent with 

GRK52–24 only being loosely associated with the POPC/POPC bilayer. Thus, the highly charged 

residues spanning residues 25–31 are primarily responsible for membrane binding in these 

peptides. 
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Figure 4.2 SFG signals from GRK52–31 indicate strong association with model membranes 

and helical character in a more hydrophobic environment. (a) Spectra in the C-H and O-H 

stretching frequency region detected from the interface between the POPC/POPC bilayer 

and buffer alone (black), GRK52–31 in 10 mM phosphate buffer pH 7.4 (red), after washing 

(blue), and in a mixture of 60% buffer/40% TFE (dark cyan). (b) SFG spectra of GRK52–31 

associated with a POPC/POPC bilayer in contact with peptide solution in 60% 10 mM 

phosphate buffer pH 7.4/40% TFE in the amide I frequency region. (c) SFG spectra of 

GRK52–31 associated with a POPC/POPC bilayer in contact with 60% PBS/40% TFE. 

 

For all the three GRK5 N-terminal peptides, no discernible SFG amide I signal could be 

detected from the lipid bilayer interfaces after their addition to the subphase solution. This 

suggests that the membrane associated peptides form either ordered structures but with random 

orientations, or essentially random structures. After replacing the subphase with a 40% TFE 

solution, a strong SFG amide I signal was detected from the GRK52–31 peptide (Figure 4.2b), but 

not from GRK525–31 or GRK52–24 (Figures 4.3b and 4.3d), consistent with only GRK52–31 

forming -helical structure when the subphase becomes more hydrophobic. This conclusion is 

also consistent with spectral features detected in the water O-H stretching frequency range after 

the subphase buffer was replaced by the TFE mixture. Figure 4.2a shows that only for GRK52–31, 

a negative peak at ~3300 cm 
-1

 appeared, originating from the interference between the N-H 

stretching signals of well-ordered -helices and the broad water background. This N-H stretch 

signal can be attributed to the backbone N-H stretch or/and the side chains such as Lys NH3
+
.
51

 

Although predicted helical propensity of GRK52-24 is the same as of - GRK52–31, no changes in 

the spectra upon addition of TFE were detected likely because the peptide was not strongly 

associated with the membrane and washed off in the previous step. 
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Figure 4.3 SFG ppp signals detected from the GRK525–31 and GRK52-24 peptides indicate 

that the latter peptide only weakly associates with model membranes. (a) SFG spectra in C-

H and O-H stretching frequency region from the interface between the POPC/POPC 

bilayer and buffer alone (black), GRK525–31 in 10 mM phosphate buffer pH 7.4 (red), after 

washing (blue), and in a mixture of 60% buffer/40% TFE (dark cyan). (b) SFG spectra in 

the amide I frequency region from GRK525-31 associated with a POPC/POPC bilayer in 60% 

10 mM phosphate buffer pH 7.4/40% TFE. (c) SFG spectra in C-H and O-H stretching 

frequency region from the interface between the POPC/POPC bilayer and buffer alone 

(black), GRK52–24 in 10 mM phosphate buffer pH 7.4 (red), after washing (blue), and in a 

mixture of 60% buffer/40% TFE. (d) SFG spectra in the amide I frequency region from 

GRK52-24 associated with a POPC/POPC bilayer in contact with peptide solution in 60% 10 

mM phosphate buffer pH 7.4/40% TFE. 

 

4.3.2 Orientation Analysis of the α-helical Segment in GRK52–31 
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After substituting the subphase with 40% TFE, a prominent -helical signal centered at 

~1655 cm
-1 

arises from GRK52–31. This could be interpreted as residues 2-18 adopting an -

helical conformation, consistent with a prior crystal structure of GRK6
4
 and secondary structure 

predictions. This phenomenon also highlights that SFG, as a second order nonlinear spectroscopy, 

is much more sensitive to ordered structure (such as -helices) than disordered molecules (such 

as random coils), which is not the case for linear vibrational spectroscopy such as ATR-FTIR. 

SFG spectra collected from amide I modes of peptides and proteins using different 

polarization combinations can be used to determine membrane orientations of peptides and 

proteins, as shown in a previous publication.
22

 The calculation details were described in Chapter 

1. Using the measured signal strength ratio of the -helical contribution in the ppp and ssp 

spectra, we deduced that in 40% TFE, the orientation angle of the helical segment (presumed to 

be residues 2-18) of GRK52–31 is ~46±1˚ relative to the membrane surface normal (with χppp/ χssp 

=2.08±0.01) if we assume the peptides adopt a single orientation distribution. Interestingly, this 

orientation angle increases to ~78±11˚ (with χppp/ χssp =2.43±0.06) when the ionic strength of the 

subphase is increased by use of PBS instead of phosphate buffer (Table 4.1). This result suggests 

that the increase in ionic strength does not change the conformation of the GRK52–31 but rather 

changes the charge distribution on the peptide surface and thus facilitates the interaction of 

helical elements of the peptide with the lipid head groups. 

Subphase Polarization Peak center  
(cm

-1
) 

Peak Width 
(cm

-1
) 

χeff Ratio Tilt angle 

60% phosphate 
buffer/40% TFE 

ssp 1657 14.2 14.8 2.09±0.01 46±1 ˚ 

ppp 1657 14.7 51.1 

PBS buffer/40% 
TFE 

ssp 1650 11.0 8.8 2.43±0.06 78±11 ˚ 

ppp 1652 14.0 17.6 

Errors represent standard deviations of four replicates obtained in each of two individual 

experiments. 

Table 4.1 Fitting results for SFG spectra shown in Figure 4.2. 
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4.3.3 SFG Studies on the C-terminal Peptide 

The SFG spectrum of GRK5546–565 (Figure 4.4) is similar to that of GRK52–31, in that the 

two broad peaks at 3200 cm
-1

 and 3400 cm
-1

 decreased and remained so even after extensive 

washing, indicating strong interaction of GRK5546–565 with the lipid bilayer. However, two new 

peaks centered at 2876 cm
-1

 and 2940 cm
-1

 appeared. These were also observed for GRK52–31, 

but were not as significant. These two peaks could be attributed to amino acid side chains
51

, 

disruption of the lipid bilayer
52

, or both. The SFG amide I spectra of GRK5546–565, however, is 

very different from those of the N-terminal peptides. Without changing the subphase into 40% 

TFE, an amide I signal was readily detected. In the spectra, the peak at 1655 cm
-1

 is attributed to 

-helical structure and the shoulder at ~1600 cm
-1

 is likely from amide groups of side chains.
53

 

The peak at 1720 cm
-1

 is from carbonyl groups in the disrupted lipid bilayer. This agrees with the 

CH stretching signal change mentioned above, supporting the hypothesis that the lipid bilayer is 

disrupted. Because the intensity is not as high as that of GRK52-31 in 40% TFE with 10 mM 

phosphate buffer, no discernible NH peak (~3300 cm
-1

) in the water range (3000-4000 cm
-1

) was 

detected. Orientation analysis was not performed here due to the low signal-noise ratio of the 

SFG spectra and because there are multiple contributions to the spectra. In summary, the main 

difference between GRK5546-565 and GRK52–31 is that the former is partially -helical when 

associated with lipid bilayers without need for TFE to induce helical structure. 



92 

 

 

Figure 4.4 SFG ppp signals detected from GRK5546–565 indicate strong binding to model 

membranes and helical character. (a) SFG spectra in the C-H and O-H stretching 

frequency region from the interface between the POPC/POPC bilayer and buffer alone 

(black), and GRK5546–565 associated in 10 mM phosphate buffer pH 7.4 (red). (b) SFG 

spectra in the amide I frequency region from GRK5546–565 associated with a POPC/POPC 

bilayer in 10 mM phosphate buffer pH 7.4. 

 

4.3.4 SFG Studies on the Effect of PIP2 

 PIP2 is known to enhance the GRK5-mediated phosphorylation of GPCRs.
31

 In order to 

test whether this enhancement is related to the membrane binding of the peptides we are studying 

herein, we constructed (9:1) POPC:PIP2 lipid bilayers and studied its interaction with GRK52–31, 

GRK52–24 and GRK5546–565. These results (see Figure 4.5) were then compared to those obtained 

when using a pure POPC lipid bilayer. The SFG intensities and signal strength ratios of the 

amide I signals detected in the amide I frequency range using different polarization combinations 

of the GRK52–31 associated with the two types of bilayers exposed to the solution with 40% TFE 

were observed to be similar, indicating that PIP2 did not enhance the adsorption of GRK52–31 to 

the lipid bilayer. The interactions of GRK52–24 and GRK5546–565 with (9:1) POPC:PIP2 bilayers 

were also similar to those with the pure POPC system. This is reminiscent of protein MARCKS: 

neither the native protein nor a peptide representing its positive charged cluster requires PIP2 for 
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binding to the membrane. However, PIP2 is laterally sequestered in the presence of MARCKS 

and the peptide.
54

 How PIP2 can increase the autophosphorylation of GRK5 and phosphorylation 

of activated GPCRs calls for further investigation. However, it should be noted that residues 24-

31 are well ordered in both available crystal structures of GRK6,
4,33

 and that formation of a high 

affinity site for PIP2 may require the assumption of tertiary structure by this polypeptide, as 

mandated by the fold of the enzyme. The study on the effect of PIP2 suggests that the conclusions 

on peptide affinity drawn from our previously spectroscopy results doesn’t require the existence 

of PIP2. 

 

Figure 4.5 Influence of PIP2 on membrane binding properties of GRK5 peptides. (a) SFG 

signals in the C-H and O-H stretching frequency region detected from the interface 

between the POPC:PIP2 (9:1) lipid bilayer and buffer alone (black), upon addition of 

GRK52–31 in 10 mM phosphate buffer pH 7.4 (red), after washing (blue), and in 60% 

buffer/40% TFE (dark cyan). (b) SFG signals in the amide I frequency region from 

GRK52–31 associated with a POPC:PIP2 (9:1) bilayer in contact with peptide solution in 10 

mM 60% phosphate buffer pH 7.4/40% TFE. (c) SFG signals in the amide I frequency 

region from GRK52–31 associated with a POPC:PIP2 (9:1) bilayer in contact with 60% PBS 
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buffer/40% TFE. (d) SFG signals in the C-H and O-H stretching frequency region from the 

interface between the POPC:PIP2 (9:1) lipid bilayer and buffer alone (black), in the 

presence of GRK52–24 (red), and 10 mM phosphate buffer after washing (blue) (e) SFG 

amide I spectra for GRK5546–565 associated with a POPC:PIP2 (9:1) bilayer in 10 mM 

phosphate buffer pH 7.4. 

 

4.3.5 ATR-FTIR Studies 

Because SFG is sensitive to ordered structures, the signals generated from ordered -

helices are normally much stronger than those detected from random coil. On the other hand, 

ATR-FTIR spectroscopy detects amide I (1600 cm
-1

 to 1700 cm
-1

) signals with similar 

sensitivities from different secondary structural motifs, such as α-helices, random coils and β-

sheets from peptides and proteins.
55-59

 We used ATR-FTIR spectra to confirm the peptide 

adsorption behavior detected by SFG. For the ATR-FTIR experiments, the concentrations of all 

peptides used were 11.4 μM, dissolved in 10 mM phosphate D2O buffer (pD 7.1). For all the N 

terminal peptides, the amide I peak center is around 1642 cm
-1 

(Figure 4.5), indicating that the 

peptides are most likely random coils. For GRK52–31 and GRK525–31, the amide I peak intensities 

did not change after wash with buffer, but for GRK52–24 the amide I signal decreased to about 

half, again suggesting a weaker interaction between GRK52–24 and the lipid bilayer, as suggested 

by the SFG studies. The reason that membrane associated GRK52–24 did not disappear after 

washing, as observed in SFG, is likely because the peptide concentration is three times higher 

than that used in SFG measurements. 
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Figure 4.5 ATR-FTIR spectra of GRK5 N-terminal peptides confirm weak binding of 

GRK52–24. Spectra of (a) GRK52–31, (b) GRK52–24, (c) GKR525–31 associated with a 

POPC/POPC lipid bilayer in presence of 10 mM phosphate buffer pH 7.4 before (black) 

and after (red) buffer wash. 

 

Figure 4.6 ATR-FTIR spectra of GRK5546-565 associated with a POPC/POPC lipid bilayer 

in contact with 10 mM phosphate buffer pH 7.4. 

By taking secondary derivatives of the ATR-FTIR spectra for GRK5546-565 (Figure 4.6), 

we found two peaks centered at 1646 cm
-1 

and 1653 cm
-1

, respectively. The average band 

position in D2O is reported to be ~1652 cm
-1

 for α-helix and ~1645 cm
-1

 for disordered 

secondary structure.
57

 Therefore, the peak centered at 1646 cm
-1 

is assigned to be contributed by 

random coil and the other at 1653 cm
-1

 is attributed to -helices, consistent with SFG results 

indicating that the GRK5 C-terminal peptide forms an -helical structure. After extensive 

washing, the ATR-FTIR signal remained, suggesting a strong interaction with the lipid bilayer, 

also compatible with the SFG data. 
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4.3.6  ATR-FTIR Studies of CaM·Ca
2+

 Interactions with N-terminal and C-terminal Peptides 

ATR-FTIR was further used to investigate the molecular interactions of GRK52-31 with 

calmodulin. CaM·Ca
2+

 itself has very weak binding with the membrane. As shown in Figure 4.6a, 

the addition of equimolar amounts of CaM·Ca
2+ 

and GRK52-31 to the subphase decreased the 

ATR-FTIR amide I signal by about 50%. Further extensive washing with buffer led to a more 

substantial decline of the random coil ATR-FTIR signal. This clearly shows that CaM·Ca
2+ 

facilitates the extraction of GRK52-31 from the lipid bilayer. However, CaM·Ca
2+ 

could not 

extract GRK525-31 from the membrane (Figure 4.7), suggesting that the helix formed by residues 

2-24 is important for high affinity binding to CaM·Ca
2+

.
60

 CaM·Ca
2+ 

also was able to extract 

GRK5546-565 from our model membranes (Figure 4.6b). The initial increase in the signal after 

addition of CaM·Ca
2+

 to GRK5546-565 was unexpected. However, this may simply reflect that 

when CaM·Ca
2+ 

forms a complex with this peptide, it remains associated with the membrane to a 

greater extent than when in complex with the GRK52-31 peptide. Notably, in either case, the 

subsequent buffer wash eliminates binding, indicating weak binding. 

 

Figure 4.7 CaM·Ca
2+

 decreases the association of GRK5 N and C-terminal peptides. ATR-

FTIR signals detected before and after the addition of equimolar CaM·Ca
2+ 

to the 
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subphase for peptides a) GRK52–31 and b) GRK5546–565. The spectra correspond to before 

(black), and after (red) washing, to the addition of CaM·Ca
2+ 

to the subphase (blue), and 

after subsequent washing (dark cyan). 
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Figure 4.8 ATR-FTIR signals detected before and after the addition of equimolar 

CaM·Ca
2+

 to the subphase for GRK525–31. ATR-FTIR spectra represent signals collected 

from peptides associated with the lipid bilayer before (black), after washing (red), after the 

addition of CaM·Ca
2+ 

to the subphase (blue), and after subsequent washing (dark cyan). 

 

4.4. Discussion 

Our study is a clear example of how SFG and ATR-FTIR spectroscopies complement 

each other as methods for interrogating the structure of proteins/peptides at membrane surfaces. 

Because SFG is a second order nonlinear optical technique, under the electric dipole 

approximation, it only detects signal where inversion symmetry is broken. Thus, SFG can 

minimize the interfering effects of proteins in the bulk solution. For example, in our studies, we 

measured well-defined amide signals using SFG from the GRK52–31 peptide associated with lipid 

bilayers in contact with solutions with 40% TFE, which generates a high background signal in 

ATR-FTIR spectroscopy. Another advantage of SFG is that measurements do not require D2O, 

which is used in ATR-FTIR to minimize interference by H2O absorption at ~1650 cm
-1

. SFG is 
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also more sensitive to ordered secondary structures than disordered ones. We observed a drastic 

change of the amide I signal of GRK52–31 when its subphase was altered to contain 40% TFE. 

This change was more subtle in the ATR-FTIR spectra because random coils and -helices have 

peak centers close to each other (~1647 cm
-1

 and ~1653 cm
-1

 respectively) and usually they make 

similar contributions to the spectra. For large proteins (e.g., GRK5), sometimes the switch from 

the active state to the inactive state is accompanied by conformational changes. The unique 

ability of SFG to distinguish random coils from -helices might shed light on unveiling the 

mechanisms of these processes, which may not be easily distinguishable using ATR-FTIR 

spectra. On the other hand, ATR-FTIR can directly monitor the adsorption of unstructured 

peptides and proteins simply by inspecting the amide I signals. Because unstructured domains 

(e.g., random coils) cannot be readily detected by SFG spectroscopy, the adsorption of such 

molecules cannot be directly assessed using the SFG amide I signal. However, this goal can be 

achieved indirectly by monitoring the ordered water signal change in SFG spectra. 

4.5 Conclusion 

In this chapter we combined SFG and ATR-FTIR spectroscopies to study the in situ 

membrane binding potential of two regions of GRK5 previously implicated in binding to 

phospholipid bilayers. The uniform orientation of water molecules near the bilayer surface was 

exploited first, as the disappearance of SFG water signal suggests their displacement by peptide 

molecules. Whether or not the water signal would resume after washing the system with buffer 

was used to determine if the peptide molecules are weakly or strongly adsorbed. It was shown 

that of the three N-terminal peptides, only GRK52–24 binds weakly to the lipid bilayer, suggesting 

that GRK52–24 alone does not play a significant role in GRK5 membrane binding and that 

residues 25–31 of the GRK52–31 peptide, which are exceptionally basic and include a large 
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hydrophobic tryptophan residue, are primarily responsible for membrane binding in this region. 

This conclusion is also supported by monitoring the changes in the amide I signal from the 

peptides before and after washing with buffer using ATR-FTIR. From the amide I SFG signals, 

we found that the segment containing amino acid residues 2–24 of peptide GRK52–31 undergoes a 

conformational change from a random coil into a well-ordered -helix when the hydrophobicity 

of the environment increases (in our experiment by substituting the buffer subphase with a 

solution containing 40% TFE). It is possible that TFE emulates what happens when this region 

encounters either an activated GPCR or its own activated kinase domain. Furthermore, the 

interaction of this region, or of an adjacent region (i.e. residues 25–31), with membranes is not 

enough to induce order in this segment. Our results are consistent with those reported previously 

that residues 2 to 18 play an important role in protein-protein interactions, such as those with 

activated GPCRs or with the catalytic core of the enzyme to stabilize a more active state.
4, 2

 

Polarization-dependent SFG measurements were used to determine the angle of the helical 

segment of this peptide to the surface normal. This angle was found to increase substantially 

upon an increase in ionic strength of the surrounding buffer solution. With a similar approach, 

both SFG and ATR-FTIR results showed that GRK5546–565 was partially helical on POPC lipid 

bilayers, even in the absence of a helix-inducing agent such as TFE. A model summarizing the 

membrane interactions of the peptides is shown in Figure 4.8. 
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Figure 4.9 Schematic showing proposed membrane interaction mechanisms of the GRK5 N 

terminal peptide GRK52–31 and the GRK5 C terminal peptide GRK5546–565. 

 

Therefore, both N-and C-terminal peptide segments of GRK5 contribute to bilayer 

binding, and likely account for the constitutive localization of GRK5 on cell membranes, even 

though it lacks the palmitoylation found in the closely related enzymes GRK4 and GRK6. Both 

residues 25-31 and 546–565 bind strongly to membranes, as evidenced by their persistence even 

after exhaustive washing. However, residues 2–24 at the extreme N-terminus do not represent a 

strong membrane binding determinant. Instead, our results are most consistent with this highly 

conserved region only becoming ordered when it forms protein–protein interfaces, such as when 

in complex with an activated GPCR or when it interacts with the small lobe of the GRK kinase 

domain. Unexpectedly, PIP2 does not affect the binding properties of the peptides we studied. It 

is possible that the N-terminal peptide does not fully recapitulate the binding site for this lipid 

because the peptide is unstructured when bound to membranes, as opposed to the analogous 

peptide in the context of the full-length enzyme, where its structure is imposed by the fold of the 

enzyme. The membrane interaction mechanisms of the N-terminal and C-terminal peptides are, 
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however, different. Previous biochemical studies showed that the C-terminal peptide likely forms 

an amphipathic helix that enhances GRK5 membrane binding.
35

 The analogous C-terminal 

region has only been observed in one structure of GRK6 in a relatively active state,
4
 wherein it 

forms the expected amphipathic helix. However, the hydrophobic residues bind to the catalytic 

core of the enzyme, and the helix seems too far from the predicted membrane surface to directly 

engage lipids. As phospholipids are not present in this crystal structure, the C-terminal structure 

could represent a crystallographic artifact. Alternatively, because the interactions of the C-

terminus of GRK6 with the core of the enzyme are extensive (buried accessible surface area of 

2400 Å
2
), the packing of this helix could represent the situation when GRK6 is in a cytoplasmic 

and/or autoinhibited state. Because PIP2 is believed to bind to the 25-31 region in the N-terminal 

region and this site is a structured part of the catalytic core in prior crystal structures, this 

interaction may be more important for achieving proper orientation of the enzyme at the 

membrane, whereas the C-terminal amphipathic helix, which is connected to the rest of the 

enzyme by a 21-amino acid linker, is merely important for maintaining its association at the 

membrane. CaM·Ca
2+

 is able to dissociate GRK52-31 and GRK5546–565 peptides from the 

membrane, consistent with the ability of this protein to drive GRK5 off the membrane of cells 

and consequently to the nucleus, where it is believed to phosphorylate transcription factors 

controlling hypertrophic genes.
36
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CHAPTER 5 

SITE-SPECIFIC ORIENTATION OF AN α-HELICAL 

PEPTIDE OVISPIRIN-1 DEDUCED FROM ISOTOPE 

LABELED SFG SPECTROSCOPY 

 

In Chapter 4, we used a method to study the interfacial behaviors of different segments 

within one peptide by investigating each peptide segment using SFG and ATR-FTIR. Now we 

further ask whether SFG is sensitive enough to detect structural information, such as the 

orientation of one single amino acid segment in a peptide backbone, so that we can probe local 

structures of biomolecules at interfaces. We will address this question by examining a peptide 

ovisprin-1 by combining SFG and isotope labeling techniques. Ovisprin-1 is an 18-residue α-

helix with antimicrobial activity and serves as a model molecule to demonstrate that SFG has the 

ability to elucidate the interfacial orientation of a single-residue within a peptide. I have 

successfully detected SFG signal from a 
13

C=O labeled residue of ovisprin-1 on polymer 

surfaces. This is the first time that signal contributed by a single 
13

C=O group in an amino acid 

residue within a peptide was detected by SFG. This work will greatly enhance SFG’s capability 

for site-specific orientation determination and will be a powerful tool in studying the local 

environment of small peptides as well as large proteins at interfaces. This work has been 

published as: Ding, B.; Laaser, J. E.; Liu, Y.; Wang, P.; Zanni, M. T.; Chen, Z. The Journal of 
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Physical Chemistry. B 2013, 117, 14625–34. Z.M.T. ,C.Z and B.D. designed the project. B.D. 

carried out the experiment. L. J. E. and B. D performed data analysis. W. P and L. Y. 

participated in the sample preparation. 

5.1. Introduction 

Isotope labeling and vibrational spectroscopy provides site-specific structural information 

on polypeptides and proteins.
1,2

 Of the intrinsic vibrations inherent to proteins, the amide I band 

(mainly contributed by the backbone C=O stretching mode) is most often utilized in structural 

studies because its frequency and line shape are characteristic of the secondary structures and 

solvent environments of the backbone. Residue specific structural and environmental 

information can be obtained using isotope labeling.  Labeling the backbone carbonyl with 
13

C, 

the amide I band is shifted by ~40 cm
-1

. A shift of ~66 cm
-1 

can be achieved with 
13

C=
18

O 

labeling. 
1,3 

Isotope labeling has been used in conjunction with 1D (FTIR) and 2D IR studies to 

obtain residue-by-residue backbone structural information about soluble proteins,
4-6

 

protein/peptide folding kinetics,
7-9

 and amyloid aggregation and structure,
10, 11 

to name only a 

few studies. 

Isotope labeling and vibrational spectroscopy are particularly valuable for studies of 

membrane proteins since they do not easily crystallize and are difficult to study with solution 

NMR. Solid-state NMR is a powerful technique but it is challenging to study membrane 

interactions of proteins and peptides in real time. The samples for solid state NMR studies are 

pre-mixed lipids and proteins/peptides and usually contain multiple layers of lipids, not a single 

lipid bilayer. Vibrational spectroscopy has been used to probe the structure of membrane bound 

alpha-helical bundles
12

, ion channels
4
, transmembrane alpha-helices 

13-15
 and helical dimers 

5
. In 

fact, the polypeptide that is the focus of this study, ovispirin, was previously 
13

C
18

O labeled for 
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2D IR experiments on its membrane bound structure. In that experiment, residue-by-residue 

structural resolution revealed the backbone orientation, tilt and secondary structure of each 

residue along nearly its entire length. 
3
 Another approach is to measure the angles of individual 

transition dipoles relative to the normal of the bilayer, which is done by macroscopically aligning 

the bilayers on an FTIR sample cell. Polarized light is then used to measure the linear dichroism 

of the isotope labels to back out the absolute angles. By isotope labeling a series of amino acids, 

this approach was used to obtain the structure of the CD3-ζ helical bundle 
12

 and to study the 

conformation gating of the M2 ion channel from the Influenza viral protein.
4
 
 

While orientational constraints derived from FTIR spectroscopy are very valuable, as 

solid state NMR, FTIR dichroism studies cannot be performed on single monolayers because the 

signal is too small to deduce accurate angles. For adequate signal strength, hundreds or 

thousands of bilayers are stacked on top of one another. Lipid bilayer stacking works well for 

equilibrated structures, but precludes experiments involving kinetics, drug binding, applied 

potentials, or systems that cannot be stacked such as solid interfaces. Moreover, since linear 

dichroism is attenuated by disorder, x-ray-reflectivity must be used to independently assess the 

disorder of the lipid stacks.
16

 Thus, it would be quite beneficial to have a technique that is 

sensitive enough to measure the transition dipole angles of isotope labeled peptides associated 

with a single monolayer.   

  In contrast to FTIR, sum-frequency generation (SFG) vibrational spectroscopy has the 

sensitivity to observe peptides at sub-monolayer surface coverages, which has been discussed in 

the previous chapters. Since 2003, SFG has been successfully used to study biological molecules 

with various secondary structures and on different types of surfaces, including α-helices
17-20

, 310 

helices,
21, 22

 anti-parallel β-sheets
23,24

 and extended β sheets 
25,26

.  However, there are often many 
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approximations that go into the interpretation of the SFG spectra of a peptide. For example, to 

back out the tilt of an alpha-helix at an interface, one often assumes that the peptide has a 

rotational freedom about its helical axis.
17-20

 This is possible for peptides which insert 

perpendicularly into a cell membrane because the interior of the membrane lipid bilayer is quite 

homogeneous (hydrophobic), but this is certainly unlikely for amphipathic and many other types 

of peptides at a hydrophobic substrate/aqueous solution interface. This assumption is required 

because there are not enough SFG observables to obtain unique tilt and internal rotation angles 

of the peptides. Other assumptions are also common, such as that random coil regions generate 

weak SFG signals or have different peak centers in SFG spectra and that the vibrational modes 

follow symmetry rules.
17-20

 In this chapter, we show that a single residue can be resolved using 

13
C isotope labeling in the 18-residue antibiotic ovispirin at a polystyrene/peptide solution 

interface. The additional observables that this label provides eliminate the need for rotational 

averaging.  We also learn that coupling to the isotope label may need to be considered. 

Previously, SFG spectroscopy was used in conjunction with NMR spectroscopy to provide a 

structural model of the synthetic LKα14 peptide, by measuring isotope labeled side chains. 
27, 28

 

Here, we demonstrate for the first time that SFG spectroscopy can also be used to site-selectively 

probe the backbone carbonyl groups themselves, thereby providing a more direct measure of  

peptide secondary structure. 

Ovispirin-1 is an ideal target for our initial SFG experiments because its structure has 

been studied extensively in solution and on model phospholipid membranes.  Solution NMR 

experiments showed that in 33% 2,2,2-trifluoroethanol (TFE)/67% PBS buffer at pH 6.5 

ovispirin-1 forms a slightly curved α-helix over residues 4 to 16, with random coil outside of this 

region.
29

 Solid-state NMR experiments showed that on membrane bilayers, ovispirin-1 is still 
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predominantly α-helical, but lies primarily in the plane of the bilayer, with the helix tilted 

approximately 84° from the surface normal 
30

.  Two-dimensional infrared spectroscopy (2DIR) 

and molecular dynamics (MD) simulations similarly support the α-helical structure and planar 

orientation, and additionally showed that its hydrophobic residues face into the membrane 

interior, consistent with its amphipathic sequence 
3
.   

However, it is unknown what structure ovispirin-1 will take or how it will interact with a 

purely hydrophobic surface such as the polystyrene surface we utilize here. As mentioned above, 

in 33% TFE/67% PBS buffer at pH 6.5 ovispirin-1 forms an α-helix over residues 4 to 16 
29

. 

Similarly, our choice of solvent (40% TFE and 60% 10 mM PBS buffer of pH=7.1) should 

promote helix formation similar to the solution structure (which will be confirmed later), but the 

tilt angle relative to the substrate surface may be considerably different than in the membrane 

bilayer systems, and interaction with the highly hydrophobic surface may perturb the overall 

peptide secondary structure. In this research, we find that the peptide backbone is tilted 138° 

with respect to the surface normal and the hydrophobic residues face polystyrene. Thus, the 

combination of isotope labeling and SFG spectroscopy brings new light to this system and 

enables many new systems to be studied that were not previously possible. 

 

5.2 Experimental Details 

5.2.1 Materials and Methods 

SFG theory and experimental details have been reported previously
31-35

 and discussed in 

the previous chapters. SFG has been applied to study peptides and proteins at interfaces by 

several research groups.
36-39

 In our experiment, two laser beams, one visible beam at 532 nm and 
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an infrared beam with tunable frequency (1300 to 4300 cm
-1

) are overlapped spatially and 

temporally at the bottom of a right-angled prism.
40

 The polystyrene (PS) thin film on the prism 

surface was prepared by spin coating 1 wt% PS solution in toluene on the CaF2 prism surface at 

2500 rpm with a spin coater from Specialty coating systems. During every SFG experiment, the 

PS film was initially in contact with a 2 mL reservoir filled with 40% TFE and 60% 10 mM 

phosphate buffer (pH=7.1) in H2O or D2O. Then 20 μL ovispirin-1 peptide stock solution 

(1mg/mL in the same solvent) was injected into the 2 mL reservoir. The final subphase peptide 

solution concentration in the reservoir was 10 μg/mL and the equilibration time for the peptide-

PS interaction was about 1.5 hrs. In order to ensure the homogeneously distributed peptides in 

the subphase in contact with PS, a magnetic stirrer was used during the data collection process. 

SFG ssp (s-SFG, s-IR, p-visible) and ppp spectra in the amide I frequency range were collected 

from ovispirin-1 peptide molecules at the PS/subphase peptide solution interface using a near 

total reflection geometry.
23

 Regular ovispirin-1 (with the sequence of KNLRRIIRKIIHIIKKYG) 

and isotope labeled ovispirin-1 (with the α-carbonyl group of residue 11 Ile being isotope labeled 

into 
13

C=
16

O) were synthesized by Peptide 2.0 Inc. PS, toluene, TFE, PBS, D2O were obtained 

from Sigma-Aldrich.  

 A Nicolet 550 spectrometer (Thermo Fisher Scientific. Inc., MA) was used to collect 

ATR-FTIR spectra of isotope-labeled and regular ovispirin-1 adsorbed on PS surfaces. A thin PS 

polymer was deposited on the ZnSe crystal surface by casting 1 wt% polymer solution in toluene 

and then drying it under a nitrogen gas flow. 160 μL 1 mg/mL ovispirin-1 peptide solution in 

D2O was injected into the ATR-FTIR trough (~1.6 mL) and the final concentration of the 

ovispirin-1 peptide solution is ~100 μg/mL (ten times larger than that used in the SFG 

experiment). The spectra with P and S polarizations were collected at ~2 hrs after the injection of 
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the peptide stock solution to the ATR-FTIR trough. The ATR-FTIR sample chamber was purged 

with nitrogen before and through the measurements.  

 SFG spectra were simulated using the transition dipole coupling model and an excitonic 

Hamiltonian, as described in Section 5.2.2.  Briefly, peptide or ideal helix structures were loaded 

from a protein databank file.  A transition dipole and Raman polarizability were assigned to each 

amide I local mode. Transition dipole coupling was used to calculate couplings between all pairs 

of local amide I modes. The resulting Hamiltonian was diagonalized to yield the eigenstates of 

the system
41

, whose coefficients were used to calculate the normal modes by taking appropriate 

linear combinations of the local mode of the transition dipoles and Raman polarizabilities.  These 

responses were rotated to the laboratory frame, and summed to give overall SFG intensities for 

the labeled and unlabelled peaks.
42

  

                    

 

5.2.2 Calculation Details of Hamiltonian approach 

5.2.2.1 Definition of the Molecular Response for a Single Amide-I unit 

The molecular axes for an individual amide-I unit are defined such that the C(O)N bond 

lies in the bc-plane (molecular yz plane), with the CO bond tilted 34 degrees from the c axis, as 

shown in Fig. 5.1. 
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Figure 5.1 Diagram illustrating the orientation of the molecular response with respect to 

the amide-I bond.  The red arrow indicates the direction and effective location of the 

transition dipole; the blue axes indicate the principle axes of the Raman polarizability. 

 

In this frame, the transition dipole is defined as 

  

 

 
 

 

    
    

   

    
    

    

 
 

 

such that it is oriented 27.5 degrees from the CO bond.  This angle was chosen to ensure that the 

angle of a single amide-I transition dipole relative to the axis of an ideal alpha helix was 42 

degrees (see below), consistent with prior calculations. 

The molecular-frame transition polarizability is defined as 
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as reported
19

. Thus the chromophore is most polarizable along the molecular c-axis, 34 degrees 

from the CO bond, and least polarizable along the molecular a-axis, out of the plane of the 

C(O)N bond. 

The “center”, or effective position, of the vibrational mode is defined to be  

                                  

where     is the position of the carbon atom,      is the unit vector along the CO bond, and      is 

the unit vector along the CN bond, with all positions given in Angstroms
41

. This position is used 

to calculate the distance between coupled modes, as necessary for the transition dipole coupling 

calculations as described below. 

 

5.2.2.2 Transition Dipole Coupling and Normal Mode Calculations 

For each C(O)N bond in the peptide structure, the single-residue response defined above 

was rotated and translated into the helix (or peptide) molecular frame, as described previously
42

. 

For the ideal helix structure, with the helix axis oriented along the z-axis and the transition dipole 

of the first mode lying in the xz plane, the single-residue response in the helix frame is 

   
    
 

    
  

corresponding to a transition dipole tilted 42 degrees from the helix axis, and 

   
            
             
            

  

which corresponds closely to previous reports
19

. 

Once each local mode was rotated into the peptide frame, their couplings were calculated 

using the transition dipole coupling model, 
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where     is the coupling between modes i and j, the   ’s are the transition dipoles of the two 

modes, and      is the vector connecting the center positions of the two modes.  Coupling values 

for         were multiplied by a factor of 0.73 to give better agreement with typical coupling 

constants for alpha helices
41

. 

The Hamiltonian was then constructed in the local mode system, using the calculated 

couplings for the off-diagonal elements and the local mode frequencies for the on-diagonal 

elements.  We used a local mode frequency of 1645 cm
-1

 for unlabeled (
12

C=
16

O).  For the 

labeled mode, we used a frequency of 1600 cm
-1

.  This frequency is slightly lower than the 1608 

cm
-1

 frequency observed in the experimental spectra, but the larger frequency separation was 

necessary to easily distinguish the labeled peak from the unlabeled peak in the ensuing 

calculations, and did not seem to significantly affect our analysis. 

The Hamiltonian was diagonalized, and the normal mode transition dipoles were 

calculated using 

         

 

 

where   is the local mode transition dipole,    is the normal mode transition dipole, and     is 

the element of the eigenvector giving the contribution of local mode m to normal mode N.  The 

normal mode Raman tensors were calculated using an analogous formula (replace   with  ).  

The normal mode hyperpolarizabilities   were then calculated by taking the outer product of   

and  : 
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The normal mode hyperpolarizabilities were then rotated into the lab frame to calculate the lab-

frame responses  , as has been described previously
42

. 

To calculate simulated spectra, we summed a series of Lorentzians centered at the normal 

mode frequencies and multiplied by the mode’s   value.  To calculate the total   value for the 

labeled peak, we summed over all normal modes with frequencies less than 1610 cm
-1

.  The 

unlabeled peak   values were correspondingly determined by summing over all normal modes 

with frequencies >= 1610 cm
-1

.  A more accurate method would be to fit the simulated spectra to 

a pair of peaks, but applying a simple cutoff was computationally much faster and did not yield 

significantly different results. 

 

5.3 Results  

 In what follows, we will begin by presenting the experimental data. The data will then be 

interpreted with detailed orientation analyses. First, we will use conventional formulas to 

determine the tilt of the alpha-helix from the SFG polarization dependence of the unlabeled 

spectral region of the amide I band, assuming that the helix is isotropic (with a free rotation with 

the helix principal axis).  Second, a similar analysis will be applied to the isotope labeled region. 

But as we will show, these two analyses are incongruent. To understand this dilemma, our third 

analysis will use the ratio of the unlabeled to labeled amide I bands which provides an additional 

observable that improves the structural analysis, suggesting that the peptide has a preferred 

orientation on the surface without free rotation. Finally, we will highlight that the Hamiltonian 

approach can address the coupling effect and structural disorder issues. 
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5.3.1 Experimental Spectra 

SFG spectra in the amide I frequency range (1500-1800 cm
-1

) were collected from both 

isotope labeled and unlabeled ovispirin-1 adsorbed at the PS/peptide solution interface. (Figure 

5.2) A strong peak at ~1650 cm
-1

 was detected from both systems at the interface when a peptide 

H2O/TFE buffer solution was used to contact PS. With a peptide D2O/TFE buffer solution for a 

separate experiment, the amide I band appears at 1642 cm
-1

, with a similar intensity. The 8 cm
-1

 

difference is typical for an amide I band detected from proteins/peptides in H2O and in D2O 
43, 44

 

because the amide I vibrational mode involves the N-H stretch to a small degree. Although SFG 

signal in this spectral frequency range overlaps with that contributed by the vibrational mode of 

random coils, we believe here random coils have little contribution to the SFG signal because 1) 

SFG signal requires the ordering of the chemical groups and thus the amide I signals from the 

random coils likely cancel with each other. In other words, SFG spectroscopy is much more 

sensitive to α-helices than random coils.
45

 In fact, to the best of our knowledge, amide I signal 

from a peptide with random coiled structure on the surface has not been observed by SFG 

spectroscopy. 2) In both H2O and D2O cases, the main amide I peak has a symmetric feature with 

a similar bandwidth. If the 1650 cm
-1

 peak in the H2O case contained two different components 

with comparable SFG signal intensity contributed from the α-helical structure and the random 

coiled structure, the deuteration of the peptide solvent would lead to a different spectral feature 

for the 1642 cm
-1

 peak,
44

 which was not observed experimentally here. 3) We used NLOPredict
46

 

developed by Simpson group to estimate the contribution of the α-helical structure and the 

random coiled structure to the SFG amide I signal and found that the contribution of the random 

coiled structure is minimal for two typical orientations and thus can be ignored in the analysis. 

For the isotope labeling case in H2O, a well-separated and weak peak at ~1607 cm
-1

 was also 
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detected, which is the Ile11 isotope labeled amide I band (Figure 5.2b). Interestingly, the peak 

center of the isotope labeled C=O appears at ~1607 cm
-1

, appearing to be a shoulder to the 1642 

cm
-1

 amide I main peak when D2O was used in the solvent (Figure 5.2d). Previous research on a 

helical dimer showed that 
13

C=O Leu in a solvent protected region exhibited a peak at ~1606 cm
-

1 
whereas the 

13
C=O of a solvent exposed Ala absorbed at ~1585 cm

-1
. 

47
 For ovispirin-1 on 

polystyrene, we found that the 
13

C=O of Ile11 remains at ~1607 cm
-1

 regardless of solvent. Thus, 

Ile11 is not exposed to the solvent, which we will discuss below is because this residue faces the 

polystyrene surface.  

 

Figure 5.2 The ssp and ppp SFG amide I spectra of (a) regular ovispirin-1 adsorbed at the 

PS/peptide solution (with H2O) interface; (b) isotope labeled ovispirin-1 adsorbed at the 

PS/peptide solution (with H2O) interface; (c) regular ovispirin-1 adsorbed at the PS/peptide 

solution (with D2O) interface; (d) isotope labeled ovispirin-1 adsorbed at the PS/peptide 

solution (with D2O) interface.  
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We fit the SFG spectra shown in Figure 5.2 to extract out the intensities of the isotope 

labeled peak, since there exist interferences with the unlabeled amide I band. The experimentally 

deduced           is 2.03±0.03 for the 1650 cm
-1

 band in H2O for the regular ovispirin-1. For 

the isotope labeling case, we fit the spectra considering two peaks with peak centers at 1650 cm
-1

 

and 1607 cm
-1

, respectively. The fitting result of the 1650 cm
-1

 peak shows a           ratio of 

1.95±0.09. For the 1607 cm
-1

 peak, we obtained an experimentally measured           ratio of 

3.7±0.2. The spectral fitting results obtained from peptides at the PS/peptide D2O solution 

interface are similar to the H2O cases (Table 5.1): 2.08±0.02 (regular) and 1.97±0.06 (isotope 

labeled) for the 1650 cm
-1

 signal; 4.1±0.1 for the 1607 cm
-1

 peak. To take both solvent cases into 

consideration, we averaged           ratios for the main backbone amide I peak of ovispirin-1 

(2.00±0.10) and for the isotope labeled peak (3.85±0.35). Comparing the relative helix and 

labeled peak signal strength, we find that χzzz
 
(helix)/χzzz (label) = 6.18. 

 Amide I Single residue 

                     

C12 in H2O 2.03±0.03 N/A 

C12 in D2O 2.08±0.02 N/A 

C13 in H2O 1.95±0.09 3.7±0.2 

C13 in D2O 1.97±0.06 4.1±0.1 

 

Table 5.1 Fitting results for SFG spectra shown in Figure 5.2 
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5.3.2 Orientational Analysis of the Helix 

Having acquired the data above, the standard approach (see Chapter 1) is to interpret the 

χzzz/χxxz ratio as a measure of the tilt angle of the helix at the surface.  For an ideal helix, the 

transition dipole of each amide I local mode points 42 degrees from the helix axis, there is a 100 

degree rotation about this axis from one reside to the next, and each local mode has a Raman 

tensor associated with it. 
19

. Using this ideal structure, one generates the normal modes of the 

helix by diagonalizing a vibrational Hamiltonian built from the local modes of the coupled amide 

I oscillators. The χzzz/χxxz ratio is then calculated from the transition dipoles of the normal modes 

as a function of the tilt (θ) and twist (ψ) angles (defined in Figure 5.3). Doing so for a 13-residue 

ideal helix produces the χzzz/χxxz ratio shown in Figure 5.3(a) when  ψ is rotationally averaged 

around the helix axis. Rotationally averaging around ψ is necessary because there is only one 

experimental observable (the χzzz/χxxz ratio), but two unknowns (θ and ψ). For a perfect and 

infinitely long helix, one obtains the same θ-dependence whether or not ψ is averaged.  For a real 

helix longer than a few turns one can in practice treat the structure as fully symmetric around the 

helix axis. Here we chose 13 residues for the helix because that is the length of the ovispirin-1 

alpha-helix in solution. As discussed above, we believe that the peptide retains its -helical 

structure at the polymer/solution interface because the SFG spectra are dominated by a single -

helical characteristic peak at ~1650 cm
-1

. This can be further confirmed by the intensity ratio of 

the main peak and the signal detected from the isotope labeled unit, which will be discussed in 

detail in section 5.4. With these considerations in mind, the experimental ratio of           = 

2.00 gives a helix tilt angle of θ =43 (or 137) +/- 5 degrees relative to the polystyrene surface 

normal. 
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Figure 5.3 χzzz/χxxz ratios for (a) the unlabeled segment of an ideal alpha helix and (b) the 

isotope labeled peak, assuming full rotational averaging around the helix axis.  (c) 

Contours indicating ψ/θ pairs giving the experimentally-measured values for the unlabeled 

and labeled peak χzzz/χxxz ratios.  In this figure, the tilt angle θ indicates the angle between 

the helix axis and the surface normal.  

 

5.3.3  Orientational Analysis of the Isotope Label 

 One could apply a similar analysis to that above for just the independent isotope label.  In 

this case, the analysis is much simpler, because one does not need to construct or diagonalize a 

Hamiltonian. One would use the same transition dipole and Raman polarizability tensors as 

above to calculate the tilt-angle dependence of the χzzz/χxxz ratio for a single amide-I residue, as 

shown in Figure 5.3(a).  Here, we have defined θlabel as the angle between the transition dipole 

and the surface normal and we rotationally average around the label transition dipole, ψlabel. Note, 
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that averaging around ψlabel is not equivalent to averaging around ψ for the helix or around the 

labeled C=O bond because the rotation axis is different.  The tilt-angle dependence for both the 

ψ-averaged and the individual ψlabel=0 and ψlabel=90 deg. cases are very similar,  because the 

Raman tensor’s major axis points almost directly along the transition dipole with much smaller 

(though unequal) components along the perpendicular axes (see Section 5.2). The consequence is 

that there is a maximum of about 10 degrees difference in tilt angles calculated from ψ-fixed or 

ψ-averaged curves. Thus, while ψ averaging is necessary to eliminate an unknown variable just 

as for the helix analysis, it does not influence the θlabel more than a few degrees.  Using this curve 

and the experimentally-measured χzzz/χxxz ratio of 3.85 +/- 0.35 for the isotope-labeled peak, we 

find θlabel = 26 or 154 degrees from the surface normal.  In order to do this analysis, we have to 

use the ψ average because otherwise there are too many unknowns.  However, that 

approximation is not physically reasonable because rotating around the label’s axis swings the 

entire peptide structure, since ψhelix is not equal to ψlabel.  Taking the internal rotational average 

about ψhelix for the unlabeled band (as done in the last section) makes sense if the helix is long 

and perfect, because ψ averaging is equivalent to the symmetry modes.  Thus, the analysis of a 

single label by itself makes no physical sense, and what needs to be done is to solve for tilt and 

twist angles that simultaneously give the correct ratios for the both the labeled and unlabeled 

peaks. 
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Figure 5.4 Tilt-angle dependence of the χzzz/χxxz ratio for a single amide-I residue, for (a) the 

ψ-averaged case and two fixed-ψ cases (ψ=0 corresponds to the C(O)N bond lying in the yz 

plane) and (b) the ψ-averaged case for Gaussian distributions of tilt angles with different 

full-width-at-half-maxima (indicated).  In (a) and (b), the tilt angle θ is defined as the angle 

between the transition dipole and the surface normal. 

 

 While ψ averaging an unlabeled helix is acceptable because of the symmetry, including 

the isotope label destroys the rotational symmetry, and the rotational average is no longer a valid 

approximation. This can be shown by calculating the χzzz/χxxz ratio for the label predicted by a 

fully internally rotationally-averaged helix. When applied to the label, the orientational analysis 

above predicts that the χzzz/χxxz ratio of the label should match that of the unlabeled amide I band 

(Figure 5.3b), because symmetry dictates that in helical molecules the responses of the parallel 

and perpendicular normal modes (A and E1 modes) are closely related to the parallel and 

perpendicular components of a single local mode’s response. 
52, 53

 Thus, for a ψ-averaged helix 

tilted at 43 (or 137) degrees from the surface normal, one would also predict that a χzzz/χxxz ratio 
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of 2.00 would be measured for the label. But the experimentally-measured ratio is actually 3.85, 

which far exceeds the experimental uncertainty. In fact, a χzzz/χxxz ratio of 3.85 cannot be 

matched by a rotationally averaged helix at any tilt angle. That is, the ratios of the unlabeled and 

labeled amide I bands are incongruous for an analysis that requires rotational averaging around 

the helix axis.  

 

5.3.4  Orientational Analysis of the Entire Peptide including Structural Disorder and Coupling 

How does one reconcile the ratios of the labeled and unlabeled amide I bands? We need 

to consider the possibility that the helix is not isotropic about ψhelix. That is to say, the helix does 

not have a free rotation around the principal axis. In order to determine the orientation of such an 

-helix, we need to determine both the tilt angle and the twist angle. We retain a perfect helix 

with the label uncoupled from the rest of the helix and simultaneously calculate the χzzz/χxxz 

ratios for both the labeled and unlabeled peaks as a function of tilt and twist angles.  Using the 

two measured χzzz/χxxz ratios for the labeled and unlabeled peaks, we can deduce two unknowns: 

the tilt angle and the twist angle. As shown in Figure 5.5(c), we find that our measured χzzz/χxxz 

ratios are consistent with helix tilt/twist angles of (θ, ψ) = (41°, 5°), (57°, 297°), (123°, 117°), or 

(138°, 184°). Homodyne-detected SFG cannot distinguish between the 90+x and 90-x degree tilt 

angles
27

, though future phase-sensitive or heterodyne-detected experiments may resolve this 

difficulty 
48-51

. However, we can narrow the possibilities using physical intuition and the 

experimentally observed solvent accessibility of Ile11. Before rotation, our ideal helix is defined 

such that the hydrophilic region extends from -60 to +120 degrees around the helix axis.  Thus 

the (41°, 5°) orientation corresponds predominantly to having the hydrophilic region of the 
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peptide facing the polystyrene surface, while the (138°, 184°) orientation corresponds to having 

the hydrophobic region of the peptide facing the polystyrene surface; in the remaining two 

orientations, the hydrophobic and hydrophilic regions have roughly the same extent of 

interaction with the surface.  Of these tilt-angle possibilities, the (138°, 184°) pair is most 

physically reasonable, since the solvent dependence of the peak center of the labeled unit 

indicates that the residue is buried at the hydrophobic interface and the interaction of the 

hydrophobic side of the peptide with the hydrophobic polystyrene surface should inherently be 

more favorable than the interaction of the hydrophilic side of the peptide with this surface.  The 

following reasons further support that the (138°, 184°) orientation is the most likely orientation 

(Figure 5.5): First, this helix orientation also gives a χzzz
 
(helix)/χzzz (label) ratio of approximately 

6.2, consistent with our experimental value of 6.18, a criterion which is not met by the (57°, 297°) 

and (123°, 117°) orientations (which both yield χzzz
 
(helix)/χzzz (label) ratios of less than 5). 

Second, at this orientation, the transition dipole of the isotope labeled unit is calculated to be 

tilted 23 degrees relative to the surface normal, in good agreement with the value calculated from 

our preceding analysis of the isolated label. To further clarify the final orientation of (138°, 184°), 

we also present the reference peptide orientation (0°, 0°) along with the final orientation in 

Figure 5.5. 

 

Figure 5.5 Schematic (right panel) showing the final deduced orientation of ovispirin (tilt 

angle = 138
o
, twist angle = 184

o
) at the polystyrene/water interface. Left panel defines the 

reference orientation (tilt angle = 0
o
, twist angle = 0

o
) where the hydrophilic region (blue) 

extends from -60 to +120 degrees around the helix axis. θ1 is the angle between the 
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transition dipole of 
13

C=O chemical group (purple arrow) and the z axis and θ2 is the angle 

between the peptide helix axis (from N to C terminus) (red arrow) and the z axis. For the 

reference orientation, θ1=138˚ and θ2=0˚ and for the final deduced orientation, θ1=23˚ and 

θ2=138˚ 

 

Thus, analyzing the labeled and unlabeled peaks within the framework of an ideal helix 

provides insight into the overall orientation of the ovispirin peptide at the solution/polystyrene 

interface.  However, perhaps analyzing the angles alone is not sufficient, because ovispirin is far 

from an ideal helix at the interface, which we learn from the observations listed below and leads 

to additional considerations about the interpretation of the spectra. First, comparing the 

intensities of the labeled and unlabeled amide I bands reveals that only a subset of the residues 

can contribute to the helical structure. For the (138°, 184°)  tilt/twist angles calculated above, in 

which the angular dependence of the labeled and unlabeled peaks were considered independently, 

a full 18- residue helix would give a χzzz(helix)/χzzz(label) value of 7.0, which deviates by almost 

15% from the experimental value of 6.18.  Reducing the length of the helical section to anywhere 

between 13 to 15 residues gives the χzzz(helix)/χzzz(label) value between 6.1 and 6.3.  Further 

reducing the length of the helical section causes the χzzz(helix)/χzzz(label) ratio to drop far below 

the experimentally measured value.  While this result is consistent with the 13-residue helix 

analyzed above, it reveals that the entire 18-residue ovispirin peptide cannot form a perfectly 

ordered helix, because if it did, then the intensity of the isotope label would be much smaller as 

compared to the unlabeled amide I band (Intensity is proportional to the square of the χ value). 

We want to highlight here that the Hamiltonian approach we present in this chapter can 

be used to calculate the coupling between the label and the rest of the peptide, including these 

couplings in the Hamiltonian disrupts the transition dipoles of the helix, which changes the 

strength of many of the SFG-active normal modes.  Shown in Figure 5.6(a, b) are spectra for a 
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13-residue labeled helix at the (138°, 184°) tilt/twist angle.  Figure 5.6(a) shows the response of 

an isolated label added to that of an un-disrupted helix, while Figure 5.6(b) shows the spectrum 

when the isotope label is incorporated into and coupled with the rest of the helix.  The stick 

spectrum shows significant contributions from new SFG-active modes, indicating that the label 

and the helix cannot be treated as independent vibrational modes. In this regard, 
13

C=
18

O isotope 

labeling is preferable, because the labeled amide group has better decoupling, although both 

13
C=

16
O and 

13
C=

18
O labels will affect the unlabeled spectrum about the same amount. This 

effect will be important when the isotope labeled unit is incorporated into different sites of the 

peptide or more than one isotope labeled units are incorporated. 
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Figure 5.6 Simulated spectra showing (a) a 13-residue ideal helix, with the isotope label 

calculated independently of (or uncoupled from) the rest of the helix, (b) a 13-residue ideal 

helix with the isotope label incorporated into and coupled with the other residues in the 

helix, and (c) a 13-residue ideal helix summed over 50 spectra with 16 cm
-1

 random 

disorder in the local mode frequencies.  Spectra were simulated using a 15 cm
-1

 Lorentzian 

for each mode.  Stick spectra (purple) are also included to emphasize how the normal mode 

structure changes as the couplings are broken. 

 

Second, the Hamiltonian approach can be used to access the effect of the structural 

disorder. Random disorder along the diagonal of the Hamiltonian occurs in many systems where 

the individual chromophores have different local mode frequencies due to different local 

environments in different molecules, for example if the local solvation environment of the 

amide-I modes varies from amide to amide bond 
54, 55

.  In Figure 5.6(c), we show the spectrum 

expected for a 13-residue labeled helix with 16 cm
-1

 standard deviation random variation in the 

local mode frequencies added before diagonalizing the Hamiltonian, averaged over 50 different 

disordered Hamiltonians. 16 cm
-1

 is about the disorder one expects due to differences in 

hydrogen bonding for soluble polypeptides.  We see that the SFG spectrum of the disordered 

helix is broader and less intense than that of the ordered helix, because all different members of 

the ensemble now have slightly different normal modes. The overall calculated tilt angle from 

the labeled and unlabeled peaks does not change significantly with this added disorder, but the 

helix/label ratio increases.  Thus, disorder that is created by the typical environment surrounding 

a polypeptide does not change the interpretation of the angular measurements, but does alter the 

relative intensities of the labeled and unlabeled amide I modes. However, the spectrum shown in 

Figure 5.6 (c) is not very similar to the spectra we observed in Figure 5.2. Therefore in this study, 

we believe that the effect of the structural disorder is not substantial. At this stage, we cannot 

quantify this effect in our current measurements because it requires dynamic knowledge of the 

linewidths, which will be the subject of future work.  Nonetheless, the point being made is that 
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disorder breaks the symmetry of the helix, and so in real systems one can no longer think of the 

normal modes purely as the fully symmetric A and E1 modes. 

Interestingly, the tilt angles deduced in this work (138 degrees) indicate that the ovispirin 

is much more steeply angled away from the plane of the polystyrene surface than it is when 

adsorbed to a planar lipid bilayer. Using multiple label sites in future experiments will provide 

residue-by-residue structural information that can be used to obtain a complete backbone 

structure through constrained molecular dynamics simulations, as has been done with oriented 

polypeptides and FTIR spectroscopy.
56

 

Last but not least, we want to mention a few other considerations that should be taken 

into account in future simulations. As revealed by previous NMR, 2D IR, and MD studies, 

ovispirin exhibits significant structural disorder as well.  For example, in the solution NMR 

studies it is found that the helical portion of the peptide is somewhat curved, and the N- and C-

terminal ends disordered. The curve breaks the symmetry of the helix and adds off-diagonal 

disorder to the Hamiltonian. The disordered ends will have both diagonal and off-diagonal 

disorder. Therefore such structures may contribute to SFG signals. In the future, we will 

calculate such contributions and validate the calculation method using multiple label sites in 

experiments. Also, we calculated the transition dipole and Raman response of a single amide-I 

mode using values derived from polarized FTIR and Raman experiments
23

. However, some 

models use slightly different molecular responses for a single amide-I mode 
55,56

, which will 

yield slightly different single-residue tilt angles. We have also assumed a delta-function 

orientational distribution.  If the residues or peptides are instead distributed over a wider range of 

tilt angles, the tilt-angle dependence flattens out, as shown in Figure 5.4(b) for a series of 

Gaussian tilt-angle distributions of varying widths for a single vibrationally isolated label.  This 
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flattening of the tilt-angle dependence means that the same experimental χzzz/χxxz ratio yields a 

center tilt angle closer to the surface normal as the distribution gets broader. Developments 

underway on modeling SFG spectra of peptides will help to better define these parameters. 
57-59

  

 

5.3.5 ATR-FTIR Experiments 

For comparison purposes, we also performed ATR-FTIR experiments. The concentration 

of ovisiprin-1 is 10 times higher because no signal was detected from the isotope labeled group 

when lower peptide solution concentrations were used. The ATR-FTIR spectra collected from 

the PS/peptide solution interface are shown in Figure 5.7. We found that the PS polymer can 

generate a strong background ATR-FTIR signal at ~1602 cm
-1

 from one of the benzene ring 

modes
60

, appearing as either a positive or negative peak. For both isotope labeled and regular 

ovispirin-1 samples, there is a broad peak at around ~1647 cm
-1 

(Figure 5.7),
 
indicating the 

existence of both α-helical and random coil components. For isotope labeled sample, besides the 

negative peak at ~1602 cm
-1

, an additional peak at ~1612 cm
-1

 can be assigned to the isotope-

labeled C=O chemical group. Data analysis shows that this C=O is ~38 degree vs. the surface 

normal (Figure 5.7c) given that the dichroic ratio R of the isotope labeled C=O stretching peak is 

~4.13.
61

 Interestingly the 1602 cm
-1

 background signal of the PS polymer is silent in SFG spectra 

because this benzene ring mode is Raman inactive and thus SFG inactive. Besides, ATR-FTIR 

spectra have multiple contributions from the α-helix, the random coil and the polymer 

background which made the orientation determination of the single C=O chemical group by 

ATR-FTIR subject to large errors. Even so and even at a larger peptide concentration, the 

deduced orientation is not substantially different from the SFG result. 
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Figure 5.7 (A) ATR-FTIR spectra of isotope labeled ovispirin-1 molecules at the PS/peptide 

solution interface. (B) ATR-FTIR spectra of regular ovispirin-1 molecules at the PS/peptide 

solution interface. (C) The relationship between the dichroic ratio R of the isotope labeled 

C=O stretching peak and the tilt angle of the C=O bond direction relative to the surface 
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normal. The dichroic ratio R of the isotope labeled C=O stretching peak detected at the 

PS/peptide solution interface is shown as a horizontal line.  

 

5.4. Discussion 

Compared to ATR-FTIR, SFG studies on the C=O isotope labeled peptides have several 

advantages: 1) SFG spectra are free of background contribution from the polymer substrate as 

well as other media in our study. For peptides and proteins, SFG spectra have minimum 

contributions from random coils. Unlike in IR spectra, where H2O absorption band overlaps with 

the peptide/protein amide I band, SFG spectra has minimum H2O signal contribution and thus 

the experiment could be performed in H2O and separate the signals from the isotope unit and the 

main amide I peak.  2) SFG is more sensitive than ATR-FTIR for detecting well-oriented α-

helices, thus can detect signals from peptides from a single monolayer instead of bilayer stacks.  

While solid-state NMR (e.g. PISEMA) is a well-established technique in obtaining 

orientation restraints for membrane bound peptides 
62

, isotope labeled SFG has some unique 

advantages: 1. SFG can monitor the interaction process in situ (~several minutes per spectrum) 

while NMR techniques such as PISEMA suffer from long-time data accumulation (~several 

hours per experiment), therefore the isotope labeled SFG technique can be used to monitor the 

dynamics of a single residue in biological processes such as ligand titration, fibril formation, 

GPCR-G protein interaction, ion channel opening and so on. 2.  Only one bilayer is required, 

which allows very precise difference experiments, such as with ligand binding. 3. A typical 

solid-state NMR experiment on short peptides requires  100 μg sample while an SFG 

experiment only needs  10μg sample.  
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In this chapter we demonstrated the approach on a synthesized polypeptide that is isotope 

labeled using commercially available compounds. But the method is also applicable to proteins 

using exciting methods developed in the past few years. One set of approaches is native chemical 

ligation and expressed protein ligation.
63, 64 

In these techniques, proteins are semi-synthesized 

from fragments using a thiol-ene chemistry. Thus, one can isotope label a fragment (e.g., a helix 

instead of a single peptide unit) in the same manner as we did here for ovispirin, and then ligate 

it to another fragment to form the full protein. Expressed protein ligation has recently been used 

in conjunction with 2D IR spectroscopy.
65

 It is also possible to arbitrarily isotope label amino 

acids in proteins by using a cell free expression system and a stop codon that matches an isotope 

labeled t-RNA.
66

 It is now also possible to put in non-natural isotope labels which might be SFG 

chromophores, such as nitriles, by using a tRNA synthetase pair system, like has been developed 

for phenylalanine.
67

 With these new and exciting methods in hand, it is now possible to isotope 

label and thus monitor the structures of precise locations in nearly arbitrarily sized proteins. It is 

also important to point out that SFG spectroscopy requires a tiny amount of sample. For example, 

in the ovispirin-1 case, one SFG experiment only requires 20 μg sample.  As a result, 

experiments are possible even on poorly expressing proteins or systems in which the ligation is 

inefficient. Furthermore, heterodyne detection can also improve signal-to-noise ratio, 
46-49

 and 

thus we believe that in the future, this technique will shed lights on larger protein systems. 

5.5. Conclusion 

We have shown that isotopic labeling enables SFG spectroscopy to detect polarized 

amide I signals from a single peptide unit in an α-helical peptide at buried polymer/solution 

interface. Such SFG signals can be used to study the microenvironment and interfacial 

orientation of the isotope labeled residue. If we assume a single distribution, the backbone helix 
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of ovispirin-1 on PS surface is 138 degrees relative to the surface normal with a twist angle of  

184 degrees, and the transition dipole of the isotope labeled C=O group is tilted 23 degrees 

relative to the surface normal. Our result show that using the 
13

C=O isotope labeling, SFG can be 

used to obtain residue-specific orientation information. In the future, using multiple label 

locations will allow us to measure the exact structure and orientation of surface-bound peptides 

without requiring assumptions about the expected secondary structure.  This capability makes 

SFG a powerful technique for structural analysis and will bring new insight to many biophysical 

systems. 
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CHAPTER 6 

UNIQUE SITE-SPECIFIC STRUCTURAL INFORMATION 

OF A BIOMOLECULE AT MODEL MEMBRANE 

INTERFACE BY INCORPORATING ISOTOPE-LABELED 

SUM FREQUENCY GENERATION PROBES 

Membrane structures of polypeptides and proteins are of essential importance to the 

biological scientific society. However, microscopic structure determination at the interface in 

situ is difficult due to the lack of appropriate analytical techniques. In this work, we 

demonstrated for the first time that, the isotope-labeled SFG technique we developed in Chapter 

5 can serve as a new route for structure determination of a peptide associated with a single lipid 

bilayer in situ. 

6.1. Introduction 

Interfacial properties and functions of peptides and proteins are determined by molecular 

structures of peptides and proteins at the interfaces. It is important to obtain structural 

information of peptides and proteins at interfaces, which of biologically relevant research fields 

such as enzyme engineering, drug delivery and membrane biology 
1-3

. 

Vibrational spectroscopic studies on isotope labeled samples have been successfully used 

to obtain site-specific structural knowledge on peptides and proteins. Because the peak frequency 

and linewidth are indicators for protein secondary structure and backbone solvation, the amide I 

band which mainly consists of the C=O stretching mode is often analyzed in the vibrational 
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spectroscopy. Isotope labeling 1-
12

C=
16

O group into 
13

C=
16

O or 
13

C=
18

O isolates an amide I 

oscillator by a frequency shift of ~40 cm
-1

 or  ~66 cm
-1

, respectively 
4
. One-dimensional infrared 

spectroscopy has utilized the amide I peak centers of the isotope labeled segment to study a 

variety of topics: α-helix stability, amyloid formation and local environmental differences in the 

hydrogen bonding for coiled-coil peptides.
4
 Two-dimensional infrared spectroscopy can measure 

both the homogeneous and inhomogeneous linewidths of isotope labeled amino acids in the 

peptides, thus providing information about backbone disorder and local environment fluctuations. 

5-8
 By comparing the coupling constants between various isotope labeled vibrational pairs, 2DIR 

has been proved with a capability to shed light on the 3D tertiary structure of a transmembrane 

protein. 
9
 Besides the information provided by frequency and linewidth analysis, the intensities 

of the signal generated by the isotope labeled unit (we will refer it to isotope peak throughout 

this chapter) detected using light with different polarizations can be used to calculate the angles 

of individual amino acid dipole moment relative to the surface normal of the stacked bilayer in a 

FTIR cell. 
10

 

As described in the previous chapters, SFG is a vibrational spectroscopy based on the 

second-order nonlinear optical process. It measures the second-order nonlinear optical 

susceptibility χ
(2)

, which is nonzero only when the inversion symmetry of the sample is broken. 

This makes SFG an intrinsically surface-sensitive technique excluding the contribution from the 

bulk. During the past decade, SFG has been used to investigate the conformation and orientation 

of peptides and proteins at the biointerface. 
11-16

 More recently, assisted by deuterium isotope 

labeling on the side chains of a model peptide LKα14 and calculation of the individual side chain 

orientation, Castner, Weidner and their colleges showed that isotope labeling SFG has the 

potential to serve as a new route for structural determination at the interface, such as on an 



140 

 

inorganic surface, which is difficult to do using traditional X-ray diffraction or NMR 

spectroscopy.
17,

 
18

 

Previously we have successfully demonstrated the feasibility of detecting SFG signal 

from a single isotope-labeled 
13

C=O unit in the α-helical region of peptide ovispirin-1 (Figure 

6.1) at the polystyrene/peptide solution interface. We showed that the amplitude of isotope peak 

can be used to obtain the twist angle of the peptide backbone. 
19

 In this chapter, we will focus on 

a more biological-relevant system than the polystyrene surface: ovispirin-1 associated with a 

lipid bilayer (serving as a model cell membrane). Solid-state NMR results showed that ovispirin-

1 lies primarily in the plane of the POPC/POPG bilayer with a tilt angle of ~84 degrees relative 

to the surface normal.
20

 2DIR, combined with molecular dynamics simulation, similarly 

suggested the α-helical structure and planar orientation of ovispirin-1 associated with 

POPC/POPG vesicles. The trend in the 2DIR linewidths of different isotope labeled residues in 

the peptide provided the additional information that the hydrophilic residues of ovisprin-1 were 

facing the lipid headgroups.
6
 

Here we used ten different ovispirin-1 mutants, each isotope labeled at a specific site in 

the α-helical region of the peptide. We investigated the variations of the SFG signal generated 

from these mutants, including linewidth, frequency and intensity as a function of the residue 

number. The unique site-specific information from SFG results was compared with the 

subsequently performed molecular dynamics simulations. We found that the dependence of the 

SFG peak linewidths and frequencies on the isotope labeled amino acid residue number indicated  

that ovispirin-1 is lying beneath the headgroups of the DPPG/dDPPG bilayer, and the positive 

\constructive interference of all the isotope peaks suggests that the peptide tilts more towards the 

surface normal in the DPPG/dDPPG bilayer than in the POPC:POPG=3:1 vesicles previously 
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reported 
6
. The MD simulation results suggested that the C terminus of peptide was tilted 

towards the lipid headgroups due to the electrostatic interaction between the negative charged 

headgroups and the positive Lys 15 and Lys 16 amino acids. 

 

Figure 6.1 Helical wheel diagram of ovispirin-1. The polar amino acids are circled by red 

while the nonpolar one by black. 

 

6.2. Experimental Details 

6.2.1 Materials 

Regular ovispirin-1 (with the sequence H2N-KNLRR IIRKI IHIIK KYGCOOH) and 

isotope labeled samples were synthesized by Peptide 2.0 Inc. We isotope labeled the 1-
12

C=O of 

I6, I7, I10, I11, I13 and I14 into 
13

C=O. For R4, R5, R8, H12, we mutated them into 
13

C=O 

isotope labeled G4, G5, G8 and G12 to reduce the synthesis expense. Previously research with 

MD simulations has shown that the mutation will not change the property and behavior of 

ovispirin-1 peptide 
21

. 

6.2.2 SFG Spectroscopy 

Details on SFG theory 
22

 and our near-total-reflection SFG experimental geometry 
23,24

 

have been presented in previous publications and previous chapters. In the SFG experiment, we 
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overlap two laser beams (i.e. one visible beam at 532 nm and one frequency tunable infrared 

beam from 1300 cm
-1

 to 4300 cm
-1

) spatially and temporally at the bottom side of a right-angle 

CaF2 prism. The DPPG/dDPPG bilayer was deposited on the CaF2 prism with Langmuir-

Blodgett and Langmuir-Schaefer method for the outer and inner leaflets, respectively 
24,25

. After 

the deposition, the lipid bilayer was immersed in a 2 mL reservoir throughout the SFG spectra 

collection process. The water subphase was changed into 0.2 mM pH= 7.1 buffer before adding 

ovisipirin-1 peptide. 20 μL ovisipirin-1 stock solution (1 mg/mL) was added into the subphase to 

achieve a final concentration of 10 μg/mL. A magnetic microstirrer was used to facilitate the 

homogenous distribution of the ovispirin-1 molecules in the subphase in contact with the lipid 

bilayer. The experiments were carried under room temperature (~20 ˚C) and the DPPG/dDPPG 

bilayer remained in the gel phase. Time dependent SFG signal at 1655 cm
-1

 was used to monitor 

the in situ adsorption time-scale of the ovispirin-1 to the lipid bilayer. SFG spectra in the amide I 

range were subsequently collected in the ppp polarization of the sum frequency, visible and IR 

beams with a step of 1 cm
-1

. The optics set-up was placed in a nitrogen chamber to minimize the 

sharp spectra dips in the amide I range resulted from the absorption of the IR beam in the optical 

pathway by water vapor. The SFG spectrometer we used is picosecond (YAG-based) from Altos. 

Inc. The pump laser is Nd:YAG at 1064 nm and the pulse width is 20ps with a repetition rate of 

20Hz. The spectra resolution is 4 cm
-1

 ensuring the accuracy in the frequency and lineshape 

observation of the isotope labeled peaks. 

6.2.3 Calculation with the Hamiltonian Approach 

The parameters in the calculation with the Hamiltonian approach were described in detail 

Chapter .
19

 The one exciton Hamiltonian is constructed with the amide I vibrational modes of 

each residue as the local oscillators. The couplings between local modes were calculated by 
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transition-dipole coupling model. The transition dipole is defined to oriented 27.5 degrees while 

the Raman tensor is 34 degrees away from the CO bond of a local mode. The vibrational 

frequency for an isolated un-labeled oscillator is~1650 cm 
-1

 which corresponds to a diagonal 

force constant (DFC) of 1.605 mdyn Å
-1

 cm
-1 26

. The frequency for the isotope labeled mode is 

set to be 1600 cm
-1

 to better distinguish the isotope peak. This frequency is slightly lower than 

the observed frequencies of the isotope peaks in the SFG experiment but the sinusoidal trend of 

the isotope label mode amplitude does not change when shifting the labeled oscillator frequency 

and does not change the conclusion of our analysis. 

6.2.4  SFG Signal from Lipid Bilayers 

2700 2800 2900 3000 3100 3200
-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

N
o

rm
a
li

z
e
d

 S
F

G
 I

n
te

n
si

ty

Wavenumber (cm
-1
)

 bilayer

 bilayer-peptide

 



144 

 

2000 2050 2100 2150 2200 2250 2300

0

50000

100000

150000

N
o

rm
al

iz
ed

 S
F

G
 I

n
te

n
si

ty

Wavenumber (cm
-1
)

 bilayer

 bilayer-peptide

 

0 100 200 300 400 500 600 700 800 900

0

20

40

60

80

100

N
o

rm
a
li

z
e
d

 S
F

G
 I

n
te

n
si

ty

time (s)

 1655 cm
-1

 2070 cm
-1

G5

Add peptide

 

Figure 6.2 SFG spectra in ssp polarization collected from lipid bilayers a) for the inner 

layer DPPG in the CH stretching frequency region b) for the outer layer dDPPG in the CD 

stretching frequency region when after adding isotope labeled peptide G5 into the 

subphase and equilibrating for 2hrs. c) Time-dependent SFG signal in ssp polarization at 

1655 cm
-1

 (from the peptide) and 2070 cm
-1

 (from the outer layer dDPPG) after the 

addition of the peptide stock solution. 

6.2.5  SFG Signal from Amide I Range 
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Figure 6.3 SFG spectra collected from ovispirin-1 isotope labeled at different sites (G5, I6, 

I10, I11, G12 and I13 - from top to bottom) and non-isotope labeled ovispirin (NA) in the 

amide I frequency range when associated with a DPPG/dDPPG bilayer in the ppp 

polarization. 

6.2.6 Simulation Details 

The starting structure of the ovispirin-1 was obtained from PDB entry 1HU5. The starting 

configuration of the DPPG bilayer was constructed by the CHARMM-GUI membrane builder. 

The initial XY dimensions of the DPPG bilayer were 65 Å  65 Å, which are large enough to 

accommodate the ovispirin-1 peptide. Each of the top and bottom leaflets of the DPPG bilayer 

consists of 64 lipids (total 2  64 = 128 lipids). To match our SFG spectra observations, the 

model of the ovispirin-1 was initially buried near the lipid head group of the DPPG bilayer.  

In the presented work, all MD simulations were performed using NAMD2.8 package  

with CHARMM36 force field. For our MD simulations, the CHARMM36 lipidforce field 

parameters were used for the DPPG bilayer system, CHARMM27 force field parameters  were 

used for ovispirin-1 peptide, and the modified TIP3P force field were used to model water 

molecules.. In the initial equilibrium stage, the MD runs were done using the NPT ensemble 
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(constant number of atoms, pressure, and temperature). Production simulations were performed 

for 35 ns using the NPγT (Scott E. Feller &  Richard W. Pastor 1999) ensemble (constant 

number of atoms, pressure, surface tension, and temperature). The Nose-Hoover method was 

applied to maintain a constant temperature of 303.15 K, in which the DPPG (transition 

temperature is 314 K) bilayer can exist in a gel phase.  The Langevin-piston algorithm was 

employed to maintain a constant pressure at 1 atm along the Z direction, while the XY area 

varied with a constant surface tension of γ = 34.0 dyn/cm for NPγT ensemble.The short-range 

van der Waals interactions were smoothly switched off by a force-switching function at a twin 

range cutoff between 10 Å and 12 Å. The long-range electrostatic interactions were calculated 

using the Particle Mesh Ewald method, with a mesh of 727290 grid points for fast Fourier 

transformation and a sixth-order B-spline interpolation to compute the potential and forces 

between grid points. All covalent bonds involving hydrogen atoms were constrained using the 

RATTLE method. The velocity Verlet method was used to integrate Newton's equations with a 

time step of 2.0 fs. 

 

6.3. Results 

6.3.1 SFG spectra of isotope labeled ovispirin-1 samples 

After adding the ovispirin-1 peptide stock solution into the subphase in contact with the 

bilayer, the SFG signal at 1655 cm
-1

 contributed by the α-helical component increases for 200 s 

and remains stable for the next few hours (for the full duration of SFG experiments). SFG 

spectra collected in the CH and CD stretching frequency ranges, which are generated by the lipid 

chains of the hydrogenated inner leaflet and deuterated outer leaflet, respectively, were collected 

before adding peptides to the subphase and after the 1655 cm
-1 

signal became stable. For both 
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lipid leaflets, the SFG spectra have minimal changes (Figure 6.2). Since ovispirin-1 is an 

antimicrobial peptide, above a certain solution concentration, it would disrupt the model lipid 

bilayer severely. In that case, the ovispirin-1 molecules are likely to adopt multiple 

orientations
27,15

, making our site-specific observations difficult to interpret. In that situation, the 

bilayer leaflets would undergo fast flip-flop and result in the decrease of SFG signals detected 

from each leaflet. Clearly, this is not the case here which suggested that during the peptide 

interaction process, the lipid bilayer remains largely intact. We showed previously, when the 

peptide solution concentration is low, the peptides are more likely to adopt a relatively uniform 

orientation than in the case where the peptides disrupt the membrane lipid bilayer 
27,15

. 

 

SFG spectra in the amide I range were collected from ten isotope-labeled ovispirin-1 mutants 

as well as the non-isotope-labeled ovispirin sample associated with the lipid bilayer (Figure 6.3 

and 6.4). The fitting parameters for these SFG spectra are summarized in Table 6.1. For all the 

peptide samples, the peaks are centered at ~1660 cm
-1

 which agrees with the typical peak center 

for α-helices
28

. The isotope peak appears as a shoulder to the main peak. The isotope peak center 

varies from 1606 cm
-1 

to 1620 cm
-1

 and the peak width spans from 6 cm
-1

 to 24 cm
-1 

with isotope 

labels at different amino acid postions. Also the intensity of the isotope peak changes with 

different isotope labeling sites. In order to quantify this effect, we fit the spectra with two peaks 

and calculated the χisotope peak/χmain peak ratio (Table 6.1). Next we will explain what the peak center, 

peak width and χisotope peak/χmain peak ratio variations imply in terms of peptide location, structural 

disorder and site-specific orientation. 
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Figure 6.4 SFG spectra collected from ovispirin-1 isotope labeled at different sites (G4, I7, 

G8, I14- from top to bottom) in the amide I frequency range when associated with a 

DPPG/dDPPG bilayer in the ppp polarization. 

 

 Isotope peak 

center(cm
-1

) 

Isotope 

peakwidth 

(cm
-1

) 

Main peak 

center (cm
-1

) 

Main peak 

width (cm
-1

) 

χisotope 

peak/χmain peak 

NA NA NA 1660.5±0.5 13.4±0.6 0 
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G4 1618±3 23±8 1659±1 15.1±0.6 0.20±0.03 

G5 1608±2 14±6 1661.8±0.5 13.0±0.1 0.068±0.005 

I6 1614±3 8±6 1662.7±0.5 25.6±0.6 0.059±0.004 

I7 1618±2 8±3 1660.7±0.7 19.8±0.8 0.148±0.006 

G8 1610±2 15±5 1659.3±0.7 16.8±0.7 0.184±0.002 

I10 1616±2 8±4 1657.9±0.6 15.5±0.6 0.135±0.001 

I11 1620±1 6±3 1659.3±0.6 12.8±0.5 0.16±0.01 

G12 1607±1 18±8 1658.7±0.9 16.3±0.7 0.18±0.02 

I13 1616±3 7±5 1659.7±0.6 14.4±0.5 0.13±0.02 

I14 1606±7 23±9 1655.6±1.7 23.0±5.0 0.21±0.03 

Table 6.1 Fitting parameters of SFG spectra collected from ovispirin-1 without and with 

isotope labeled units at different sites 

6.3.2 The implications of the isotope peakcenters and peakwidths 
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Figure 6.5 The a) widths and b) central frequencies of the collected SFG isotope peaks as a 

function of isotope labeled amino acid residue number 

 

It is well known that the homogeneous linewidth of a vibrational peak is largely 

determined by the coupling between the vibrational modes, whereas the inhomogeneous 

broadening is caused by the environment. For example, previously 2D-IR linewidths study 

indicates that the homogeneous linewidth of a specific isotope labeled residue is an intrinsic 

property of the peptide and the inhomogeneous broadening, on the other hand, is a probe of the 

structure disorder (measured by hydrogen-bond length) and the environment (measured by 

electrostatic interactions) around that residue.
6,8

 Similarly, FTIR and one dimensional SFG, 

which measures the total linewidth, can also be used to reflect the different environment of 

various peptide amino acid residues. Recently, the total linewidth information was extracted 

from FTIR spectra to map the environmental polarity in proteins. 
29

 Here, as shown in Figure 

6.5a, SFG isotope peaks of the amino acids that are on the hydrophilic face of the α-helix, G4, 

G5, G8 and G12 have wider linewidths than those of the residues on the hydrophobic face, I6, I7, 

I10 and I11. It was shown previously that the region from G4 to I16 in ovispirin-1 forms well-
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defined α-helical structure 
6,30

 associated with lipids or lipid-mimic agent TFE and thus the 

differences of the linewidth in Figure 6.5a are mainly due to the electrostatic interactions rather 

than the structural disorder. This linewidth variation trend agrees with previous 2D-IR diagonal 

linewidth (total and inhomogeneous linewidth) study and implicates that the peptides is buried 

beneath the lipid headgroups. Large frequency fluctuations of the isotope peak centers 

contributed by the G4, G5, G8 and G12 amino acid residues are induced by the lipid headgroups 

and water while the smaller frequency fluctuations for I6, I7 I10 and I11 are caused by the 

hydrophobic lipid interior. 

The linewidth of the SFG signal detected from I14 using SFG is very different from what 

was measured by 2DIR 
6
. I14 is on the hydrophobic face of the peptide helical wheel and 

exhibited a narrow diagonal line width in the 2DIR study of  ~12 cm
-1

. But in SFG measurement, 

the linewidth is ~24 cm
-1

. It is worth noting that in the 2DIR experiment, ovispirin-1 was studied 

when associated with POPG bilayer, while SFG experiments were carried out on DPPG bilayer. 

In the aforementioned 2DIR experiments, signals detected from the isotope labeled peaks of K15 

and K16 have an abrupt increase in linewidth which was attributed to the denaturation of the 

peptide starting from those two amino acids. Here, it is likely due to the large negative-charge 

density of DPPG, the peptide denaturation starts earlier at residue I14 and the larger linewidth of 

the SFG signals detected form I14 is an indicator of the structure disorder. 

Figure 6.5b displays the peakcenter frequencies of different isotope labeled peaks, which 

have a similar sinusoidal variation trend to that of linewidth. The isotope peakcenter frequencies 

for G5, G8 and G12 are lower, while the peakcenter frequencies of the signals detected from I6, 

I7, I10 and I11 are higher. This indicates that inside the core α-helical structure, the peakcenter 

frequency of the isotope labeled 
13

C=O group is a probe to the local electrostatic interaction. As 
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indicated above, the G5, G8 and G12 are interacting with lipid head groups, while I6, I7, I10 and 

I11 are facing the hydrophobic lipid interior. 

However, although G4 has a wide linewidth, similar to that of G5, G8 and G12, its 

peakcenter remains at a higher frequency, different from G5, G8 and G12. The fact that both the 

SFG signal peakcenters from G4 and I14 have the highest frequency suggested that the 

sinusoidal trend breaks down at the ends where the α-helix unravels. This agrees with the results 

obtained from previous 2DIR study that the frequency is correlated with the hydrogen-bond 

length 
8
. While the linewidth reflects the dynamics of hydrogen-bond length and electric fields, 

frequency prediction requires the absolute hydrogen-bond length and electric fields. Therefore 

their varation trends are correlated but not the same. 

6.3.3 The intensities of the isotope peaks are related to peptide orientation 
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Figure 6.6: Experimentally measured SFG signal strength ratio χlabel/χmain as a function of 
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b) [0,0,60] 

 

c) [0,0,80] 
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Figure 6.7 Simulated heterodyne SFG spectra for an ideal helix tilting from surface normal 

at different tilt angles a) 0 b) 60 c) 80 degrees. The x axis is the wavenumbers (cm
-1

) and the 

y axis is χzzz (a.u). 

 

The intensity of an SFG signal detected from a chemical group is sensitive to the 

orientations of this chemical group. In order to gain some insight into the isotope labeled 

carbonyl group orientations, we fitted the spectra with two peaks (Table 6.1) and observed a 

sinusoidal variation trend of χlabel/χmain ratio and found that all the isotope peaks have positive 

interferences with the main peak. In order to understand what this implies we simulated SFG 

spectra corresponding to an ideal helix (with one amino acid isotope labeled at a different site) 

that tilting different angles from the surface normal with the Hamiltonian approach. 

Previously, SFG spectra from different polarization combinations have been utilized to 

deduce orientations of different secondary structures such as α-helices 
31,32

, 310 helices 
31,33

 and 

β-sheets 
34

. Such studies require the knowledge of the molecular hyperpolizabilities for those 

secondary structures. To calculate the hyperpolarizability, a perturbation treatment which has 
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been used to calculate IR response for infinite regular polypeptide chains was adopted. 
35

 In this 

treatment, amplitudes of peptide SFG-active groups (e.g. the A mode and E1 mode for the α- 

helix) were calculated from the symmetry relations between local modes generated by individual 

amino acid residues. In this study, because an isotope label was incorporated into different sites 

of an α-helix, the symmetry of the local modes was severely disrupted. Thus, we adopt the 

Hamiltonian approach to solve the eigenvalue problem for the Hamiltonian matrix. In other 

words, when an isotope label was incorporated into the Hamiltonian matrix of an α-helix, there 

might not be two eigenvalues (namely A mode and E1 mode) only but instead, the new 

Hamiltonian matrix generates several new delocalized modes (for example, I11 in Figure 6.7a). 

As shown in Figure 6.7a, for an ideal helix, when the tilt angle of the helix axis is 0 

degree relative to the surface normal (i.e. standing up on the surface), all the amide I transition 

dipoles have the same orientation relative to the surface normal and the χlabel/χmain ratios are the 

same for samples with different residue isotope labeled. However, when the peptide has a tilt 

angle as 60 degrees (Figure 6.7b), the z projection of the amide I modes has a sinusoidal 

variation as a function of the residue number that matches the χlabel/χmain ratio with a 3.6 residue 

pitch. When the peptide has an even bigger tilt angle as 80 degrees (Figure 5c), some of the 

isotope peaks start to have a different phase from the main peak (destructive interference). This 

is because while the helical axis is 80 degrees relative to the surface normal which still points to 

the positive directions of the z axis (i.e. pointing up), some C=O transition dipoles point to the 

negative direction of the z axis (i.e. pointing down). Due to the different absolute orientations, 

SFG signals exhibit different phases. 
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The comparison between the experimental and simulated data suggests that different 

from the POPC:POPG=3:1 case where the peptide almost lies flat in the membrane, the peptide 

axis has a smaller tilt relative to the surface normal (less than 80 degrees) associated with a 

DPPG lipid bilayer. G4, G8, G12 are tilted up more than I6, I7, I10, I11 and I13. For the two 

possible absolute orientations with C-terminus or N-terminus tilting up, combining with the 

conclusion that G4, G8 and G12 are facing towards the hydrophilic lipid headgroups from the 

isotope peakwidth and peakcenter study, we deduce that the current scenario is the C terminus is 

more tilting up towards the lipid headgroups. 

6.3.4 Site-specific orientation of G8 and I11 

 χzzz/χxxz θδ/˚ θGaussian/˚ θ0ns/˚ θ10ns/˚ θ25ns/˚ θ35ns/˚ 

G8 3.1 ±0.2 149±3 151±3 137 126 58 54 

I11 2.28 ±0.08 142±2 142±2 140 147 81 93 

 

Table 6.2: χzzz/χxxz is the SFG susceptibility ratio derived from the spectra taken with 

different polarization combinations for the isotope peak collected from samples G8 and I11. 

θδ and θGaussian are calculated tilt angles of C=O transition dipole moment relative to the 

surface normal, assuming a δ distribution and Gaussian distribution with 15 degrees of 

full-width-at-half-maxima, respectively, in a Ψ-averaged case (Ψ is the rotational angle 

around the isotope labeled peptides). θ0ns ,θ10ns ,θ25ns and θ35ns are tilted angles derived from 

the MD simulation snapshots at different moments. 

Previously we have shown that the χzzz/χxxz ratio of a single amide-I unit can be derived 

from the SFG isotope peak taken with different polarization combinations: ssp and ppp 
19

. By 

correlating the experimental χzzz/χxxz ratio with the theoretical tilt-angle dependence curve, the tilt 

angle of the isotope labeled transition dipole relative to the membrane surface normal can be 

deduced.  In this work, we successfully obtained quantitative fitting parameters from the isotope 

peak in the ssp spectra for two isotope labeled peptides: G8 and I11. The tilt-angle dependence 
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of χzzz/χxxz for both the Ψ-averaged and Ψ=0˚ and Ψ=90˚ case, where Ψ is the rotational angle 

around the isotope labeled transition dipole, was reported 
19

. There is less than 10˚ difference for 

the calculated tilt angles between the Ψ-averaged and Ψ-fixed cases and thus here we only show 

the result for the Ψ-averaged cases (Table 6.2) assuming a δ distribution and Gaussian 

distribution with 15 degrees of full-width-at-half-maxima. We need to emphasize that the 

method here cannot distinguish the difference of a transition dipole pointing to the positive z axis 

(θ) and the negative z axis (180-θ) with the same tilt angle. For instance, the θδ for G8 is derived 

to be either 31±3 or149±3, however in section 6.3.2 and 6.3.3, we concluded all the amide I 

transition dipoles are more or less pointing to the positive z aixs, and thus all the corresponding 

θδ is in the range of 90~180 degrees. Therefore, 31±3 is excluded in the calculation result of the 

θδ for G8. 

6.3.5 MD simulation results 

(a) 
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(b) 

 

(c) 
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(d) 

 

Figure 6.8 Snapshots and simulated SFG signal strength ratio χlabel/χmain of the ovispirin-1 

conformation and orientation at a) 0 ns b) 10 ns c) 25 ns d) 35 ns 

 

Starting from a completely flat geometry, the peptide time-dependent trajectory shows a 

characteristic of the C terminus tilting up. As a result, the helix axis of ovispirin associated with 

a DPPG/dDPPG bilayer is not as parallel to the surface as in the case when associated with a 

POPC/POPG bilayer. Physically this might due to the increased negative charge density of  the 

DPPG lipid which facilitates the interaction between the positive charged amino acids K15, K16 

and the slightly charged H12 at the C terminus. This tilt-up characteristic is well captured by the 

isotope labeled SFG as discussed in section 6.3.2 and 6.3.3. 

In order to compare with the variation trend of the experimental SFG signal strength ratio 

χlabel/χmain, we simulated the SFG signal strength ratio χlabel/χmain of ovispirin-1 at different 

snapshot times with the Hamiltonian approach outlined in section 6.3.2 and 6.3.3. We can 

compare the results from two aspects. First, the relative intensity trend of the SFG signal strength 
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ratio χlabel/χmain is related to the peptide secondary structure. Comparing the 0 ns snapshot, 10 ns 

snapshot has a similar signal strength ratio trend up to residue I13, which suggests that at 10 ns 

the peptide largely maintains its original α-helical structure. However, this trend breaks down 

from G8 for the 25 ns and 35 ns snapshots. This suggests that the α-helical structure was 

disrupted around G8 for the 25 ns and 35 ns snapshots. In the MD simulation the peptide 

unravels its α-helical structure starting from G8 for the 25 ns and 35 ns snapshots and this is 

reflected in the variation trend of the simulated SFG signal strength ratio χlabel/χmain. Second, the 

sign of the SFG signal strength ratio χlabel/χmain is related to the helical axis orientation. As 

discussed in section 6.3.2 and 6.3.3, when the helix is more or less lying down on the surface, 

some of the C=O groups start to point to the negative direction of the z axis (i.e. pointing down) 

and thus the isotope peak has destructive interference with the main peak. In the 0 ns, 25 ns and 

35 ns snapshots, several amino acids exhibit a strength ratio χlabel/χmain less than -0.1, but for 10 

ns snapshot, because the helical axis have a smaller tilt angle relative to the surface normal than 

the other snapshots, all the isotope peaks either have a constructive interference or a very small 

destructive interference (χlabel/χmain > 0.02). 

The experimental SFG signal strength ratio χlabel/χmain (Figure 6.6) has a similar variation 

trend to the simulated one at the 10 ns (up to G12). This disruption in α-helix from G8 to I11for 

the 25 ns and 35 ns snapshots is not reflected in the experimentally observed variation trend. 

This suggests that in the current experimental condition, the α-helical structure is largely 

maintained. However, the breakdown of the similarity to the 10 ns snapshot from G12 suggests 

the denaturation starting from I14 affects the α-helical structure in the C terminus. Interestingly, 

all the experimental SFG signal strength ratios of χlabel/χmain have positive signs, indicating the 
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helix axis has a relatively small tilt angle relative to the surface normal similar to the case in the 

10 ns snapshot. 

The tilt angles of the C=O transition dipole relative to the surface normal for G8 and I11 

of different snapshots were shown in Table 2. It is clear that 10 ns better agrees with the 

experimentally derived angles than 25 ns and 35 ns. This again demonstrates that the α-helical 

unraveling starting from G8 for the 25 ns and 35 ns snapshots is not captured in the current 

experiment. 

6.4. Discussion 

In this chapter, for the first time, we have reported that 
13

C=O can be used as a SFG probe 

for studying the site-specific structural information of peptides in model cell membranes. Very 

recently, a review paper on IR probes by Kim and Cho has summarized the criteria for useful IR 

probes 
36

 and one important requirement is that the probe should have large transition dipole 

strength for detection. It is more challenging to look for SFG probes in this regard: the second-

order nonlinear susceptibility χ
(2)

 is a Kronecker product of the oscillator’s Raman tensor and the 

transition dipole moment thus in order for the SFG signal of the probe to be detected, both the 

transition dipole moment and Raman tensor should have fairly large strength. Our work 

presented here has shown that with homodyne detection SFG, the isotope labeled 
13

C=O signal 

can be detected and the peak center frequency, linewidth and intensity can be quantified in the 

ppp polarization combination for peptides associated with model cell membranes. Besides, the 

intrinsic SFG principle overcomes two limitations of isotope labeling infrared spectroscopy 

mentioned in the above review 
36

: 1. The spectra window of the isotope labeling amide I 

vibrations overlaps with the infrared band of peptide side chains and this causes a problem in 

case of large proteins. For SFG, the contribution from side chains is minimized because, in large 
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proteins, side chains likely point to different directions, which leads to the cancellation of the 

SFG signal. 2. The broad combination band (2000-2500 cm
-1

) of water bending and librational 

mode brings significant water background contribution in infrared spectroscopy. In SFG, water 

background comes from the interfacial water and when the protein molecule replaces the 

interfacial water molecules, the water background in SFG is largely suppressed. 

With the advances in heterodyne detection SFG 
37, 38,39

, the SFG signal to noise ratio of the 

isotope peaks will be improved and more accurate orientation information can be extracted with 

SFG signal measured using more polarization combinations such as ssp and sps. The recent 

advance of the two dimensional SFG 
40,

 
41

will greatly extend the application of isotope labeling 

SFG and provides insights into the peptide dynamics and mode coupling at the interface. 

6.5 Conclusion 

In this chapter, ten ovispirin-1 mutants, each isotope labeled at a specific site in the α-

helical region of the peptides were used. The dependence of the SFG peak linewidths and 

frequencies on the isotope labeled amino acid residue number revealed that ovispirin-1 is lying 

beneath the headgroups of the DPPG/dDPPG bilayer. The positive\constructive interference of 

all the isotope peak indicated that the peptide backbone tilts around 60 degrees relative to the 

surface normal in the DPPG/dDPPG bilayer with the C terminus closer to the headgroup region. 

The MD simulation performed suggested that the C terminus of peptide was tilted towards the 

lipid headgroup region due to the electrostatic interaction between the negative charged 

headgroups and the positive charged Lys 15 and Lys 16 amino acids. 
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CHAPTER 7 

SUMMARY AND OUTLOOK 

Membrane associated peptides and proteins with unique biological functions have drawn 

extensive attention due to their enormous therapeutic potential. Being an intrinsic surface-

sensitive technique, Sum Frequency Generation (SFG) Spectroscopy has the capability to 

elucidate both structural and orientational information of biological molecules at biointerfaces, 

e.g., cell membranes. However, there are significant experimental and theoretical challenges in 

adapting this application from simple model peptides to more complex systems associated with 

cell membranes. Thus, my dissertation aimed at developing SFG data analysis and experimental 

methods in order to answer biological questions. 

In Chapter 2, we elucidated structure and orientations of a simple linear helical peptide, 

Pep-1. Lipid bilayers prepared using hydrogenated and deuterated 1,2-dipalmitoyl-sn-glycero-3-

phosphoglycerol (DPPG and dDPPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG), were used in the experiments to represent gel-phase and fluid-phase lipid 

bilayers, respectively.  Our SFG results indicated that Pep-1 molecules adopted a β-sheet 

conformation when adsorbed to the surface of gel-phase DPPG lipid bilayers. When interacting 

with fluid-phase POPG lipid bilayers, Pep-1 adopted a mix of α-helical and β-sheet structures 

over a broad range of peptide concentrations. The orientation distribution of the α-helical Pep-1 

segment associated with the fluid-phase bilayers was found to depend on the peptide 
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concentration. SFG orientation analysis showed that Pep-1 molecules adopted an orientation 

nearly perpendicular to the plane of the bilayer for peptide concentrations of 0.28 μM and 1.4 

μM. When the Pep-1 concentration was increased to 7.0 μM, combined SFG and ATR-FTIR 

measurements showed that Pep-1 molecules were associated with the bilayer with a broad 

orientation distribution. Our results demonstrated that both lipid bilayer phase and peptide 

concentration affect the conformation and orientation of Pep-1 molecules associated with model 

cell membranes, which is crucial to the translocation process of CPPs. A combination of SFG 

and ATR-FTIR studies can be used to determine the conformation and orientation of CPPs 

interacting with model cell membranes in situ. 

A previously developed SFG data analysis method was used in Chapter 2 to determine 

the membrane orientation of the linear α-helical structure of Pep-1.  Many α-helices in peptides 

and large proteins may not be linear, but instead, they show structural distortions. In Chapter 3, 

we demonstrated the power of SFG by studying non-linear helical peptides. We successfully 

developed and applied data analysis methods to determine the membrane orientation of two 

types of bent helices (with or without a disruption between the two helical segments). The 

observed SFG signal changes capture the aggregating process of LL-37 on membrane. In 

addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of 

cholesterol on peptide-induced membrane permeation process.  

In Chapters 2 and 3, both wild-type (full-length) LL-37 and Pep-1 peptides were 

investigated. However, in peptides or proteins, different segments may play different roles 

according to the properties of the consisted amino acids within these segments. G protein-

coupled receptor kinase 5 (GRK5) is thought to associate with membranes in part via N and C-

terminal segments that are typically disordered in available high resolution crystal structures. In 
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Chapter 4 we investigated the interactions of these regions with model cell membranes using 

combined SFG and ATR-FTIR techniques. It was found that both regions are associated with 

POPC lipid bilayers but adopt different structures when doing so: GRK5 residues 2–31 (GRK52–

31) was in random coil whereas GRK5546–565 was partially helical. When the subphase for the 

GRK52–31 peptide was changed to 40% TFE/60% 10 mM phosphate pH 7.4 buffer, a large 

change in the SFG amide I signal indicated that GRK52–31 became partially helical. By 

inspecting the membrane behavior of two different segments of GRK52–31, namely, GRK52–24 

and GRK525–31, we found that residues 25–31 are responsible for membrane binding, whereas the 

helical character is imparted by residues 2-24. With SFG, we deduced that the orientation angle 

of the helical segment of GRK52–31 is 46±1˚ relative to the surface normal in 40% TFE/60% 10 

mM phosphate pH=7.4 buffer but increases to 78±11˚ with higher ionic strength. We also 

investigated the effect of PIP2 in the model membrane and concluded that the POPC:PIP2 (9:1) 

lipid bilayer did not change the behavior of either peptide compared to a pure POPC lipid bilayer. 

With ATR-FTIR, we also found that Ca
2+

·calmodulin is able to extract both peptides from the 

POPC lipid bilayer, consistent with the role of this protein in disrupting GRK5 interactions with 

the plasma membrane in cells. 

In Chapter 4, we studied interfacial behavior of different peptide segments (N-terminus 

peptide and C-terminus peptide) in a protein (GRK5) as well as different segments (GRK52–24 

and GRK525–31) within one peptide (GRK52–31) using SFG and ATR-FTIR. Now we further ask a 

question whether SFG is sensitive enough to detect structural information such as orientation of 

one single amino acid segment in the peptide backbone to probe local structure of biomolecules 

at interfaces. In Chapter 5 we addressed this question by examining a peptide ovisprin-1 by 

combining SFG and isotope labeling technique. To interpret the spectral intensities, we simulated 
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the SFG spectra using an excitonic Hamiltonian approach. We showed that the polarization 

dependence of either the label or the unlabeled amide I band alone does not provide sufficient 

structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid 

interface, but that both can be determined from the polarization dependence of the complete 

spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that 

the helix axis is tilted at roughly 138 degrees from the surface normal, and the transition dipole 

of the isotope labeled C=O group is tilted at 23 degrees from the surface normal, with the 

hydrophobic region facing the polystyrene surface. We further demonstrated that the 

Hamiltonian approach is able to address the coupling effect and the structural disorder. For 

comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which 

reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide 

surfaces. Our study provides insight into how structural and environmental effects appear in SFG 

spectra of the amide I band and establishes that SFG of isotope labeled peptides will be a 

powerful technique for elucidating secondary structures with residue-by-residue resolution. 

Understanding membrane structures of polypeptides and proteins is of essential 

importance to the biology society. However, the structure determination at the interface in situ is 

difficult due to the lack of an appropriate technique. In Chapter 6 we demonstrated for the first 

time that, the isotope-labeled SFG technique we developed in Chapter 5 can serve as a new route 

for structure determination in situ of a peptide associated with a single lipid bilayer. In Chapter 6, 

ten ovispirin-1 mutants, each isotope labeled at a specific site in the α-helical region of the 

peptides were used. The dependence of the SFG peak linewidths and frequencies on the isotope 

labeled amino acid residue number revealed that ovispirin-1 is lying beneath the headgroups of 

the DPPG/dDPPG bilayer. The positive\constructive interference of all the isotope peak 
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indicated that the peptide backbone tilts around 60 degrees relative to the surface normal in the 

DPPG/dDPPG bilayer with the C terminus closer to the headgroup region. The MD simulation 

performed suggested that the C terminus of peptide was tilted towards the lipid headgroup region 

due to the electrostatic interaction between the negative charged headgroups and the positive 

charged Lys 15 and Lys 16 amino acids. 

Taken together, the work presented in my dissertation has shown that SFG spectroscopy 

is able to reveal both global and site-specific information on peptide backbone, especially when 

combining with other techniques. Looking beyond, our work could be extended in several 

directions. 

First, the study of cell penetrating peptide Pep-1 could be extended to the investigation of 

other cell penetrating peptides and peptides associated with cargos. In particular, the delivery of 

nanoparticles into cells could be facilitated by surface immobilized cell penetrating peptides and 

the detailed mechanisms may be able to be elucidated by SFG. 

Second, the combination of isotope labeling and SFG spectroscopy can be used to reveal 

site-specific structural information of interfacial biological molecules. In my dissertation, we 

mainly focus on an α-helical peptide ovispirin-1, yet this approach can be applied to other 

peptides, amyloids and proteins. For example, researchers are interested in how different 

segments of an amyloid molecule undergo conformation transition during the formation of 

amyloids. This can be examined in detail by the combination of isotope labeling and SFG 

spectroscopy. 
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Third, as the structure of ovispirin-1 has been well characterized in Chapters 5 and 6, this 

molecule can be used as a model to study the effect of more complicated lipid bilayer systems on 

peptide-membrane interactions.  

Finally infrared probes (
13

C=O,
 13

C=
18

O, CN, N3, SCN) have been widely used by 

vibrational spectroscopic techniques such as ATR-FTIR and 2D-IR to reveal abundant structural 

and dynamic information on peptides and proteins. Probes other than 
13

C=O need to be explored 

by SFG spectroscopy so that those infrared probes could be applied to study biological molecules 

on surfaces and at interfaces. 

 


