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Analysis of transplant urgency and
benefit via multiple imputation
Fang Xiang,a Susan Murrayb*† and Xiaohong Liuc

Missing (censored) death times for lung candidates in urgent need of transplant are a signpost of success for allo-
cation policy makers. However, statisticians analyzing these data must properly account for dependent censoring
as the sickest patients are removed from the waitlist. Multiple imputation allows the creation of complete data
sets that can be used for a variety of standard analyses in this setting. We propose an approach to multiply impute
lung candidate outcomes that incorporates (i) time-varying factors predicting removal from the waitlist and (ii)
estimates of transplant urgency via restricted mean models. The measures of transplant urgency and benefit for
individual patient profiles are discussed in the context of lung allocation score modeling in the USA. Marginal
survival estimates in the event that a transplant does not occur are also provided. Simulations suggest that the
proposed imputation method gives attractive results when compared with existing methods. Copyright © 2014
John Wiley & Sons, Ltd.

Keywords: dependent censoring; multiple imputation; restricted mean life; survival; transplant benefit; trans-
plant urgency

1. Introduction

In the USA, lung transplant candidates are placed on a waiting list until a donor lung becomes available.
Donor lungs are allocated using a lung allocation score (LAS), with the highest scored candidate getting
the next available lung [1]. The LAS is based upon measures of transplant benefit as well as clinical
urgency over the next year. In particular, clinical urgency is defined as the expected number of days that
a person would live without a transplant during the following year (1-year restricted mean). Transplant
benefit is defined as the days in life gained during the next year if a transplant is offered immediately
(difference in 1-year restricted means). LAS values are calculated by subtracting urgency days from
benefit days and normalizing the score to produce a range from 0 to 100. The scoring system rewards
those who have limited days of life without transplant and a high transplant benefit, while avoiding futile
transplants where urgency and benefit are essentially the same.

With the LAS prioritizing lung offers, urgent patients who may benefit from transplant are more likely
to be removed from the waiting list for transplant. Their death times without transplant are not observed
and, in fact, are very dependently censored by the allocation algorithm in place. Traditional survival anal-
ysis methods [2–5] are subject to bias in such cases. To counteract this type of bias, authors including
Robins and Finkelstein [6], Robins [7], Robins and Rotnizky [8], Satten et al. [9], and Scharfstein et al.
[10], among others, have developed inverse probability of censoring weighted (IPCW) methods for many
traditional analyses. Xiang and Murray [11] used an IPCW-adjusted method for modeling the restricted
mean via pseudo-observations (POs). As successful as IPCW methods have been in correcting useful
survival analyses for dependent censoring issues, one drawback to this approach is the need to develop
inverse weighted analysis methods to address each separate statistical analysis of interest. As new statis-
tical analyses become of interest for a particular data set, the appropriate IPCW-adjusted method must
be identified from the statistical literature or newly developed if not currently available.
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More and more, censoring is being viewed in the context of missing data literature as something that
can be multiply imputed. Taylor et al. [12] linked a nonparametric multiple imputation (MI) procedure
to results using traditional Kaplan–Meier (KM) and logrank analyses. Hsu et al. [13] incorporated aux-
iliary variables into MI of censored observations. Faucett et al. [14] used auxiliary variables to recover
information from censored observations based on MI with a joint model of a hierarchical change-point
model and a time-dependent proportional hazards model. Wei and Tanner [15] applied MI to the analysis
of censored regression data, using two general algorithms for the analysis of missing-data problems: the
iterative poor man’s data augmentation algorithm and the asymptotic data augmentation algorithm. Liu
et al. [16] proposed an MI method based on semiparametric selection of residuals from a restricted mean
model. The advantage of MI approaches to the analysis of censored data is that widely available com-
plete case analyses may then be used on the imputed data sets. This advantage is especially attractive in
the context of dependent censoring where IPCW methods may have limited availability in mainstream
statistical software.

The MI approaches based on selecting failures from an appropriate risk set are attractive in the case
of dependent censoring, the idea being that survival within the risk set is homogeneous enough to pro-
vide an unbiased impute. In the case where lung allocation causes removal from the waitlist, candidates’
time-dependent LAS values are available to group surviving candidates with a similar score for impute
selection. Heterogeneity within this risk set may further be reduced by grouping on restricted mean esti-
mates of survival as in Liu et al. [16]. However, even within this selected risk set, daily LAS changes
give differing probabilities of transplant over time linked to patient progression that may cause bias. To
account for this, our MI approach incorporates an IPCW weight based on the probability of transplant in
the final stage of imputation from the risk set.

The rest of the manuscript is structured as follows. In Section 2, we briefly describe our proposed MI
method that accounts for dependent censoring linked to daily changing allocation scores. Section 3 gives
simulation studies of analyses based on the multiply imputed data sets, in particular, parameter estimates
from a restricted mean model used to estimate patients urgency and point estimates of marginal survival.
In Section 4, we conduct an analysis of the lung transplant data, providing transplant urgency and benefit
estimates that would be appropriate for building a revised LAS based on this more recent cohort of data.
Discussion follows in Section 5.

2. Estimating restricted mean life via multiple imputation

2.1. Background and notation

For subject i, i = 1,…, n, let Ti denote the true failure time, Ci be the corresponding censoring time, 𝐙i
be a vector of covariates affecting Ti, and �̄�i(t) = {𝐕i(u); 0 ⩽ u ⩽ t} be the subject’s recorded history
up to time t of a vector of possibly time-dependent covariates 𝐕i that predict the censoring time Ci. If Ci
is less than Ti, then we would not be able to observe the failure time for subject i. Let Xi = min(Ti,Ci)
denote the observable random variable and Δi = I(Ti ⩽ Ci) be the failure indicator variable. In cases
where 𝐕i influences Ti through Ci, we have dependent censoring, and traditional survival analyses are no
longer unbiased.

Imputation approaches often select imputes from an appropriate model (parametric) or risk set (semi-
parametric). When the risk set is selected solely based on being at risk at time Ci, Taylor et al. [12] give
an imputation strategy that corresponds to the KM estimate in expectation. The idea mimics the inverse
transform method often used to simulate outcomes from a particular distribution. Recall the inverse trans-
form method result that for U ∼ Uniform(0,1), S−1

T (U) will follow the distribution of T when ST (t) is the
survival function for T . For a person censored at Ci, Taylor et al. sample T|T > Ci from Ŝ−1

T|T>Ci
(Ui), where

Ŝ−1
T|T>Ci

(t) is the conditional KM estimate among those at risk at Ci and Ui is a random Uniform(0, 1)
value. The sampled T is always one of the observed failures occurring beyond Ci with probability of
being sampled equal to the size of the drop in the conditional KM curve at T .

In the case where censoring is dependent, this imputation strategy is biased, because the KM estimate
does not adequately stand in for S−1

T|T>Ci
(t) in the inverse transform relationship. Selecting a risk set for a

patient censored at Ci based upon T > Ci and additional covariate information can substantially reduce
bias. In a follow-up paper, Hsu et al. [13] further restrict the risk set, Ri, to those with similar hazards
estimated from covariates measured up to Ci, so that the impute is sampled from Ŝ−1

T|T>Ci,Ri
(Ui).

We introduce several useful modifications to the inverse transform strategy for imputation to accom-
modate the features of the lung candidate data. First, instead of estimating survival with the KM estimate,
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we estimate Ŝ−1
T|T>Ci,Ri

(Ui) using an IPCW strategy that incorporates time-dependent LAS values after Ci,
adjusting for additional dependent censoring within the risk set. We review inverse weight methodology
for this purpose in Section 2.2. In Section 2.3, we describe how our risk set, Ri, is chosen. Part of this
selection is based on a restricted mean model that decomposes log(T) into a piece depending on a linear
predictor 𝛽T𝐙 and a residual term 𝜖. This model conveniently provides residuals for each observed fail-
ure time that we use subsequently in the imputation procedure described in Section 2.4. That is, once T
is sampled from the modified inverse transform imputation approach, we use the restricted mean model
residual corresponding to the sampled T and the linear predictor 𝛽T𝐙i from the censored individual to
create the final impute, rather than using T directly. A similar strategy of selecting residuals from a lin-
ear model was considered by Schenker and Taylor [17] within a complete case risk set as well as by Liu
et al. [16]. The goal of sampling residuals is to base the variability of the impute on the selected failure
time while using a mean failure time attributed to the patient censored at Ci, that is, the mean predicted
from the censored patient’s particular risk factors.

2.2. Inverse probability of censoring weighted estimate of survival

A popular method to account for dependent censoring is to estimate S(t) using ŜW (t) = e−Λ̂
W (t), where

Λ̂W(t) is as described by Robins and Finkelstein [6] and obtained as follows.
Each subject at time t is given a weight, Wi(t), inversely proportional to his or her probability of getting

censored after time t, K𝐕
i (t). That is,

Wi(t) = 1∕K𝐕
i (t) = 1∕P

(
Ci > t|�̄�i(t)

)
.

A common strategy, which we also employ, is to estimate the censoring probabilities using a Cox model
with time-dependent covariates,

𝜆Q

{
t|�̄�(t)} = 𝜆Q0

(t)exp{𝛾 ′𝐕(t)}. (1)

In the case of the lung candidate data, time-dependent covariates in 𝐕(t) include the LAS at time t as
well as active or inactive waiting status at t. Time-independent predictors in 𝐕(t) include race, gender,
blood type, and height at listing. Let NQi

(u) = I(Xi ⩽ u,Δi = 0) be the observable counting process for
censoring, NTi

(u) = I(Xi ⩽ u,Δi = 1) be the observable counting process for death, and Yi(u) = I(Xi ⩾ u)
be the at-risk indicator for subject i at time u. Then, a consistent estimate of KV

i (t) is

K̂V
i (t) = exp

{
−

n∑
k=1

∫
t

0

e�̂�
′𝐕i(u)dNQk

(u)∑n
j=1 Yj(u)e�̂�

′𝐕j(u)

}
,

the subject specific weight becomes

Ŵi(t) = 1∕K̂V
i (t) = exp

{
n∑

k=1
∫

t

0

e�̂�
′𝐕i(u)dNQk

(u)∑n
j=1 Yj(u)e�̂�

′𝐕j(u)

}
,

and an IPCW estimator for Λ(t) is calculated using

Λ̂W (t) =
n∑

i=1
∫

t

0

dNTi
(u) ⋅ Ŵi(u)∑n

j=1 Yj(u) ⋅ Ŵj(u)
.

Although we estimate S(t) using ŜW (t) = e−Λ̂
W (t), alternative inverse weight survival estimates developed

by Satten et al. [9] would also be appropriate. A conditional survival estimate among those in the risk
set, Ri, at time Ci is given by

ŜW
T|T>Ci,Ri

(t) =
ŜW

T|Ri
(t)

ŜW
T|Ri

(Ci)
= e−Λ̂

W
T|Ri

(t)

e−Λ̂
W
T|Ri

(Ci)
,

where ŜW
T|Ri

(t) and Λ̂W
T|Ri

(t) are IPCW estimates calculated within the risk set, Ri.
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2.3. Risk set selection

Selection for the risk set used to estimate the appropriate failure time distribution typically incorpo-
rates information from covariates, 𝐙i as well as longitudinal information pertaining to survival in 𝐕i(t).
Although it is often possible to select individuals based on a limited number of risk factors, the presence
of many covariates related to survival makes grouping based on a model with a linear predictor more
attractive. In the censored data setting, with typically finite follow-up, a common regression model is the
restricted mean model

E[log{min(𝜏,T)}] = 𝛽T𝐙, (2)

where 𝜏 is a time window of interest and 𝐙 is a vector of time-independent predictors. In the case of the
lung candidate data, 𝜏 is 1 year, and this model allows for estimation of the days lived in a year based on
an individual’s risk factors.

When there is no censoring, standard linear model software is available to fit model (2). When cen-
soring is dependent, Xiang and Murray [11] developed an IPCW-modified PO approach for obtaining
estimates 𝛽POW

for model (2) that we use in constructing a risk set, Ri, for a candidate censored at Ci.
In particular, the risk set is composed of those with T > Ci and 𝛽POW T𝐙 within a window of 𝛽POW T𝐙i,
where 𝐙i is the vector of predictors for the individual censored at Ci. In the lung candidate data, we
further restrict the risk set Ri to those in the same diagnosis group (categorical component of 𝐙i) with
similar LAS values at time Ci to the candidate censored at Ci (longitudinal component of Vi(t) pertain-
ing to urgency as well as transplant). When there are many individuals surviving beyond 𝜏, it is rare to
obtain a risk set where the final observation for min(𝜏,T) is a censored value. In the few cases where this
occurs, we recommend expanding the window size about 𝛽POW T𝐙i until the last observation for min(𝜏,T)
is observed.

2.4. Multiple imputation of censored observations

The detailed steps of the algorithm are as follows.

Step 1: For each censored observation Ci, we select an appropriate risk set Ri as described in
Section 2.3.

Step 2: Within this risk set, we then calculate the conditional survival probabilities ŜW
T|T>Ci,Ri

as
described in Section 2.2.

Step 3: Generate a Uniform(0, 1) random variable, and identify the smallest observed failure time Tj,
where ŜW

T|T>Ci,Ri
(Tj) ⩽ U.

Step 4: Identify the residual 𝜖j from the model log{min(Tj, 𝜏)} = 𝛽POW T𝐙j + 𝜖j corresponding to the
Tj value selected in step 3.

Step 5: If Tj = 𝜏, we impute Ti by 𝜏; otherwise, we add the residual of the jth subject, 𝜖j, to Ê[log(Ti)] =
𝛽POW T𝐙i, and use this as the imputed value for log(Ti). If the imputed log(Ti) < log(Ci), then
repeat from step 3 until the imputed value is greater than log(Ci).

Step 6: Repeat steps 1–5 until all the censored observations from the observed data set are imputed.
Step 7: Repeat steps 1–6 M times so that we have M completed versions of the observed data set.

Once M completed data sets are obtained, we may perform analyses using the formulaic approach
given by Little and Rubin [18]. We summarize two analyses of interest in Sections 2.5 and 2.6.

2.5. Restricted mean model analysis on completed data sets

For each complete data set, fit model (2) with respect to the covariates 𝐙 = (Z1,Z2,… ,Zk) to obtain the
parameter estimates 𝛽𝐦 =

(
𝛽m0, 𝛽m1,… , 𝛽mk

)
with associated variance matrix Ŵm, m = 1, 2,…,M.

Our final vector of estimated MI coefficients for the restricted mean model that adjusts for dependent
censoring is 𝛽MIW =

∑M
m=1 𝛽𝐦∕M. The variability associated with the parameter estimates is composed

of two parts: the average within-imputation variance �̄�M =
∑M

m=1 �̂�m∕M and the between-imputation

variance 𝐁M =
∑(

𝛽m − 𝛽MIW)2 ∕(M − 1). The variance of 𝛽MIW
is then 𝐕 = �̄�M + (1 − M−1)𝐁M .
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2.6. Marginal survival analysis on completed data sets

For each complete data set, we calculate the sample proportions corresponding to the survival esti-
mates Ŝ1(t), Ŝ2(t),…, ŜM(t), and their sample proportion variances V̂1(t), V̂2(t),…, V̂M(t), where V̂m(t) =
Ŝm(t)

(
1 − Ŝm(t)

)
∕n, m = 1, 2,…,M. Our final MI survival estimate that adjusts for dependent cen-

soring is ŜMIW (t) =
∑M

m=1 Ŝm(t)∕M with estimated variance V̂MIW (t) = M−1 ∑M
m=1 V̂m(t) + (1 +

M−1)
∑M

m=1

[
Ŝm(t) − ŜMIW (t)

]2 ∕(M − 1).

3. Simulation study

To study our MI method in finite sample sizes, we conducted a simulation study where a time-dependent
variable influences censoring and survival and the mean structure follows (2). Parameter estimates for (2)
are calculated in cases when (i) log[min(𝜏,T)] is uncensored; (ii) log[min(𝜏,T)] is subject to censoring
and is replaced by log-transformed POs defined by Andersen et al. [19]; (iii) log[min(𝜏,T)] is subject to
censoring and is imputed using only baseline covariates as in Liu et al. [16]; (iv) log[min(𝜏,T)] is subject
to censoring and is replaced by IPCW POs as described by Xiang and Murray [11]; and (v) log[min(𝜏,T)]
is subject to censoring and is imputed as described in Section 2.4. Imputation strategies in (iii) and (v)
are also conducted with an additional bootstrap step, where each of the M imputed data sets is produced
from a different bootstrap sample from the original observed data. Incorporating a bootstrap step in this
manner is consistent with the recommendations from Rubin and Schenker [20], Heitjan and Little [21],
Taylor et al. [12], and others in approximating a parameter draw from a posterior distribution as part of
a ‘proper’ imputation procedure.

The MI approach allows for more possible analyses than merely fitting model (2); hence, as an example
of an additional analysis of interest, the various MI strategies for computing point estimates for survival
are compared with the KM estimate.

In each simulation, we perform the following:

Step 1: We generate Z0 from a Bernoulli(0.5) distribution, Z1 from a Bernoulli(0.5), and Z2 from a
Uniform(0,1), where Z0 and Z2 are measured at time 0 and Z1 is a time-dependent covariate
measured at time t1 = 0.2.

Step 2: Failure times, Ti, are generated from piecewise exponential distributions; that is, Ti has a con-
stant hazard 𝜆z0

before time t1 that changes to 𝜆z0z1
after time t1, where 𝜆0 = 0.3, 𝜆1 = 0.2,

𝜆01 = 0.1, and 𝜆11 = 0.5 are fixed and 𝜆00 and 𝜆10 are solved so that the mean structure
E[log{min(𝜏,T)}] = 𝛽0 + 𝛽1Z0 + 𝛽2Z2 is satisfied for a pre-specified 𝛽 = (𝛽0, 𝛽1, 𝛽2). That
is, although Ti is influenced by the time-dependent covariate, Z1, the restricted mean of inter-
est is captured by baseline predictors Z0 and Z2. Further details on solving for parameters that
satisfy the mean structure can be found in the appendix of Xiang and Murray [11], where a
similar simulation strategy is used.

Step 3: Piecewise constant hazards leading to dependent censoring times, Ci, are based on the Cox
model 𝜆C

(
t|�̄�(𝐭)) = 𝜆C

0 (t) exp{𝛾0Z0 + 𝛾1I[Z0 = 0,Z1 = 1, t > t1] + 𝛾2I[Z0 = 1,Z1 = 0, t >
t1] + 𝛾3I[Z0 = 1,Z1 = 1, t > t1] + 𝛾4Z2}, where 𝜆C

0 (t) = 0.15 for t ⩽ t1 and 𝜆C
0 (t) = 0.4 for

t > t1, 𝛾0 = 0.3, 𝛾1 = −1.4, 𝛾2 = 0.5, 𝛾3 = −1.5, and 𝛾4 = 1. This causes censoring to be
influenced by both the first and second covariates in the mean structure, Z0 and Z2. And Z1,
while not directly influencing the form of the mean structure, is very much tied to both the
time-to-event and censoring mechanisms.

We consider two scenarios: 𝛽 = (𝛽0 = 0.8, 𝛽1 = 𝛽2 = 0) (i.e., true baseline covariate effects are zero)
and 𝛽 = (𝛽0 = 1, 𝛽1 = −0.8, 𝛽2 = −0.5) (i.e., non-zero baseline covariate effects). Figures 1(a) and
1(b) show the examples of the assumed piecewise exponential survival curves for these two scenarios,
assuming Z2 = 0.5. A vertical line indicates that the time Z1 is measured. Piecewise hazards driving
mortality are displayed over the piecewise exponential curves used in simulation, and overall survival
curves for Z0 = 0 and Z0 = 1 are superimposed in bold for this case with Z2 = 0.5. Because Z1 is simulated
from a Bernoulli(0.5), the overall curves shown for Z0 = 0 and Z0 = 1 are arithmetic averages of the
two piecewise exponential curves sharing the same value of Z0. In Figure 1(a), because there is no effect
of Z0 on the restricted mean, the restricted means corresponding to Z0 = g, g = 0, 1 are algebraically

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4655–4670
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(a)

(b)

Figure 1. Survival curves under two simulation settings.

identical. Areas under the bold curves in Figure 1(b) capture the predictive value of Z0 used in simulation
for scenario 2.

In interpreting results, it is useful to consider the degree of bias. In the first scenario, modest bias is
produced overall with censored individuals, approximately 50%, tending to have longer times to event.
In the second scenario, overall bias is reduced from scenario 1 with censored individuals, approximately
36%, tending to have shorter times to event. Methods that ignore potential bias based on any covariates
(i.e., unadjusted PO method, KM) will suffer in either setting 1 or 2. For each scenario, 1000 simulations
are run with n = 150 subjects and 𝜏 = 5 years.

We begin by summarizing the results under scenario 1. The results for fitting model (2) under scenario
1 (𝛽0 = 0.8, 𝛽1 = 𝛽2 = 0) are located in part (A) of Table I. The PO method that does not adjust for depen-
dent censoring gives biased estimates for all parameters, with bias

(
𝛽PO

0

)
> bias

(
𝛽PO

1

)
> bias

(
𝛽PO

2

)
.
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Table I. Comparison of estimates using uncensored observations (Uncensored), unad-
justed pseudo-observation (PO), unadjusted MI (MI), unadjusted MI with bootstrap
(MIb), IPCW-adjusted PO (POW ), IPCW-adjusted MI (MIW ), and IPCW-adjusted MI
with bootstrap

(
MIW

b

)
under two scenarios.

Parameters Method Bias SEa ESDb CPc (%)

(A) Covariate effects are zero.

𝛽0 = 0.8 Uncensored 0.016 0.210 0.216 94.1
PO −0.651 0.421 0.569 69.9
MI 0.088 0.213 0.229 88.5
MIb 0.082 0.214 0.223 91.0
POW −0.091 0.245 0.229 94.8
MIW 0.039 0.215 0.234 91.0
MIW

b 0.043 0.223 0.226 94.1

𝛽1 = 0 Uncensored −0.001 0.188 0.183 95.4
PO −0.291 0.376 0.374 88.8
MI −0.234 0.193 0.203 74.5
MIb −0.229 0.193 0.209 75.3
POW 0.043 0.219 0.208 96.3
MIW −0.017 0.193 0.204 93.5
MIW

b −0.022 0.202 0.210 93.7

𝛽2 = 0 Uncensored −0.015 0.326 0.325 94.1
PO 0.135 0.652 0.681 69.9
MI −0.087 0.333 0.356 88.5
MIb −0.091 0.336 0.350 91.0
POW −0.019 0.380 0.364 94.8
MIW −0.044 0.335 0.370 91.0
MIW

b −0.078 0.359 0.369 94.1

(B) Covariate effects are non-zero.

𝛽0 = 1 Uncensored 0.007 0.202 0.205 95.0
PO −0.230 0.308 0.320 90.9
MI 0.002 0.211 0.220 93.6
MIb −0.011 0.212 0.213 94.0
POW −0.100 0.239 0.223 94.7
MIW 0.004 0.206 0.223 92.5
MIW

b −0.011 0.207 0.214 93.7

𝛽1 = −0.8 Uncensored −0.008 0.181 0.185 94.8
PO −0.230 0.276 0.349 85.7
MI 0.004 0.191 0.205 93.1
MIb 0.011 0.191 0.200 93.3
POW −0.006 0.214 0.199 97.2
MIW −0.013 0.186 0.201 92.2
MIW

b −0.001 0.187 0.196 93.4

𝛽2 = −0.5 Uncensored −0.007 0.313 0.320 93.3
PO 0.038 0.478 0.496 93.9
MI 0.087 0.332 0.353 93.1
MIb 0.107 0.333 0.341 93.8
POW 0.058 0.372 0.351 95.3
MIW 0.007 0.321 0.367 90.5
MIW

b 0.026 0.326 0.350 93.7
aAverage standard error based on individual analysis.
bEmpirical standard deviation of parameter estimates across 1000 simulations.
cEmpirical coverage probability.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4655–4670
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Parameter estimates, 𝛽POW
, using the IPCW-adjusted PO method, labeled POW , have comparably small

bias, with a slight tendency to underestimate 𝛽0. When conducting MI using only baseline covariates,
bias in estimating 𝛽1 is on the order of a standard error, with more modest bias seen in estimating 𝛽0
and 𝛽2. The IPCW-adjusted MI methods, labeled MIW and MIW

b , overall have the best track records of
removing bias.

The empirical standard deviations were comparable with the standard errors averaged across simula-
tions with the exception of the intercept term for the PO method. The results are comparable with and
without a bootstrap step incorporated into the MI algorithms to the degree that we are comfortable rec-
ommending inference either with or without this step. In particular, only very minor differences are seen
in the average standard errors based on individual analyses (SE column) and the coverage rates (CP col-
umn) of Table I. If we consider that the number of simulation iterations is 1000, then an approximate 95%
confidence interval for a 0.95 coverage rate is (0.936, 0.964). MIW and MIW

b coverage estimates from
Table I run slightly low, observed between 0.905 and 0.941. The added bootstrap step pushed coverage
rates slightly above the 0.936 threshold in all but one case, whereas without the bootstrap step, the esti-
mated coverage rates fell below the 0.936 threshold. This gives some support to the idea that adding the
bootstrap step improves undercoverage slightly and may be preferred, at least in principle, as a ‘proper’
imputation strategy.

Recall that in setting 1, censored individuals tend to have longer times to event so that the methods
struggling with bias will tend to underestimate restricted lifetimes. In the case with no censoring, that is,
no bias, the proportion of times that model (2) estimates a lower restricted lifetime than the true time to
event is 31%. This percentage increases as bias from estimation of model (2) increases. The proportion
of times that estimated restricted means undershoot the observed times to event is highest for PO (55%),
followed by MI, POW , and MIW (34%, 34%, and 31%, respectively).

For an individual with Z0 = 1 and Z2 = 0.5, the PO, MI, and POW methods underestimate the time
lived during the 5-year period by 10 months, 2 months, and 21 days on average, respectively, while the
MIW method is off by less than 1 day on average over the 5-year period.

In addition to fitting model (2), the MIW procedure can perform other traditional analyses of inter-
est. For instance, MIW and its counterpart that incorporates a bootstrap step, MIW

b , give nearly unbiased
estimates for survival for all t shown in part (A) of Table II for scenario 1. This table gives marginal
survival probability estimates at years 1, 2, 3, 4, and 5 for all imputation methods as well as the cen-
sored version of the data using KM survival. At 5 years, the KM underestimates the 5-year survival by
7%, and the imputation methods using only baseline covariates (MI and MIb) underestimate survival by
approximately 10%.

Recall that in scenario 2, (𝛽0 = 1, 𝛽1 = −0.8, 𝛽2 = −0.5), censored patients tend to have shorter times to
event. The PO method that does not properly adjust for dependent censoring once again gives strong bias
for 𝛽0 and 𝛽1 (Table I(B)). MI methods incorporating information from only baseline covariates (MI and
MIb) show lingering bias primarily for the 𝛽2 term. For the remaining procedures

(
POW ,MIW and MIW

b

)
,

the magnitude of bias is minimal.
The average bias for estimating the time lived during the 5-year period was approximately 5 months

for the PO method, 1 month for the POW method, 18 days for the MI method, and 2 days for the MIW

method over the 5-year period for a patient with Z0 = 1, Z2 = 0.5. Table II(B) shows that the bias in
survival estimates based on KM as opposed to MIW does not exceed a roughly 5% overestimate of S(t)
in this case.

4. Example

We now return to the Organ Procurement and Transplantation Network (OPTN) lung transplant setting.
Several analyses are of interest. For instance, physicians treating patients typically want to know the
survival distribution of listed lung candidates as they await transplantation. Transplant urgency and benefit
by individual risk factors are also of interest, and lung allocation scores based on these.

4.1. Lung candidate analysis and urgency

Our lung waitlist cohort consists of 3701 candidates aged 12 or older. During the first year after listing,
the censoring percentage is 73% overall, with differing rates by diagnosis. Group D, made up of inter-
stitial pulmonary fibrosis and other restrictive lung disease, has the highest censoring percentage (77%),
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Table III. Proportional hazards censoring model; 3701 candidates. Inverse weights based
on this model are capped at 20.

Parameter Hazard ratio 95% CI p-value

Characteristic at listing

Female (vs. male) 0.72 (0.63, 0.82) < 0.0001
Race: Black (vs. White) 0.81 (0.68, 0.95) 0.0116
Race: Other (vs. White) 0.91 (0.77, 1.08) 0.3016

Height: < 5′3′′ (vs. > 5′9′′) 0.54 (0.45, 0.65) < 0.0001
Height: 5′3′′ to 5′6′′ (vs. > 5′9′′) 0.73 (0.62, 0.86) 0.0001
Height: 5′6′′ to 5′9′′ (vs. > 5′9′′) 0.80 (0.71, 0.90) 0.0001

Blood type: B (vs. A) 1.06 (0.91, 1.23) 0.4801
Blood type: O (vs. A) 0.92 (0.84, 1.02) 0.1118
Blood type: AB (vs. A) 1.07 (0.85, 1.33) 0.5669

Time-dependent patient condition and listing status

LAS = 0 (vs. LAS > 0) 0.16 (0.02, 1.18) 0.0728
LAS: linear spline for 30+ 1.12a (1.06, 1.19) < 0.0001
LAS: linear spline for 35+ 0.98b (0.91, 1.06) 0.6779
LAS: linear spline for 40+ 0.95c (0.91, 0.99) 0.0070
LAS: linear spline for 60+ 0.97d (0.95, 0.98) < 0.0001

Inactive status (vs. active) 0.00 (0, > 1000) 0.8780
Off the waitlist (vs. active) 0.00 (0, > 1000) 0.9410

LAS, lung allocation score; CI, confidence interval.
aHazard ratio (HR) corresponding to one unit increase for LAS 30+ relative to those with 0 <

LAS < 30.
bHR corresponding to spline term for LAS 35+, giving HR due to one unit increase in LAS in the
range 35 ⩽ LAS < 40 of 1.12 ∗ 0.98 = 1.10 relative to 0 < LAS < 30.
cHR corresponding to spline term for LAS 40+, giving HR due to one unit increase in LAS in the
range 40 ⩽ LAS < 60 of 1.12 ∗ 0.98 ∗ 0.95 = 1.04 relative to 0 < LAS < 30.
dHR corresponding to spline term for LAS 60+, giving HR due to one unit increase in LAS in the
range LAS ⩾ 60 of 1.12 ∗ 0.98 ∗ 0.95 ∗ 0.97 = 1.01 relative to 0 < LAS < 30.

followed by group A (primarily obstructive pulmonary disease, 70% censoring), group C (cystic fibrosis,
69% censoring), and group B (primarily idiopathic pulmonary arterial hypertension, 58% censoring).

Inverse weights used in our MI procedure are based on a time-dependent Cox model for time to trans-
plant including patients’ daily updated LAS, sex, race, blood type, status (active, inactive, offlist), and
height, as given in equation (1). Parameter estimates are displayed in Table III. Although one might
suppose that the probability of transplant should increase monotonically with higher LAS value, the
parameter estimates from Table III suggest otherwise, likely because patients with high LAS values are
also more likely to die before an organ offer manifests.

The imputation risk set for the ith censored candidate is found by choosing candidates at risk at time
Ci who have a similar LAS value at Ci and are in the same diagnosis group as the censored patient. The
risk set is further restricted to having a similar urgency estimate based on 𝛽POW

as shown in the second
column of Table IV. The predictors used in this model precisely match those proposed by the OPTN
Thoracic Committee [22]; some predictors are included based on significant association with survival
seen in previously studied cohorts.

Ten imputed data sets are built from the MI procedure outlined in Section 2.4. Estimates, 𝛽MIW
, based

on the imputed data sets are shown in the rightmost column of Table IV. Differences seen in parameter
estimates using the POW and MIW methods are typically minor with the exception of the intercept term,
which is lower using the POW method than the MIW method. This pattern was also observed to some
degree in the simulation section, where the MIW method was seen to estimate the true intercept with
less bias.

Parameters in the restricted mean model act multiplicatively on the number of days lived in a year. For
instance, the estimated number of days lived is 467.34 × 0.78 × 1.0125 × 1.01 × 1.023 × 0.922 × 0.9950 ×
0.860.8 = 227 days based on MIW , and 102.15 × 0.57 × 1.0725 × 1.08 × 1.073 × 0.872 × 0.600.8 = 210
days based on POW for a 55-year-old diagnosis group C patient, who has a body mass index of 25, has no

4664
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Table IV. Lung waitlist models using two different methods for 3701 lung candidates.

POW MIW

e𝛽 a (95% CI), p-value e𝛽 (95% CI, p-value)

(Intercept) 102.15 467.34
(15.96, 653.55), < 0.0001 (326.04, 669.89), < 0.0001

Diagnosis group (ref = group A, primarily COPD)
Group B (primarily iPAH) 0.19 0.54

(0.05, 0.73), 0.0158 (0.42,0.70), < 0.0001
Group C (primarily CF) 0.57 0.78

(0.17, 1.90), 0.3267 (0.62, 0.99), 0.0418
Group D (primarily IPF) 0.11 0.57

(0.03, 0.38), 0.0004 (0.45, 0.72), < 0.0001

Diagnosisb

Bronchiectasis 0.76 0.94
(0.21, 2.72), 0.6694 (0.75, 1.17), 0.5730

Lymphangioleiomyomatosis 1.25 1.03
(0.10, 16.41), 0.8639 (0.69, 1.55), 0.8729

Obliterative bronchiolitis 0.25 1.14
(0.03, 1.86), 0.1744 (0.79, 1.65), 0.4892

Pulmonary fibrosis other 0.77 0.97
(0.37, 1.59), 0.4741 (0.85, 1.11), 0.6570

Sarcoidosis and PA mean 0.46 1.18
> 30 mmHg (0.16, 1.37), 0.1641 (0.95, 1.46), 0.1280
Sarcoidosis and PA mean 0.84 0.85
⩽ 30 mmHg (0.22, 3.13), 0.7893 (0.69, 1.06), 0.1454

Physiologic reserve
Age (years) 1.00 1.00

(0.98, 1.02), 0.9919 (0.99, 1.00), 0.3583
BMI (kg/m2) 1.07 1.01

(1.03, 1.11), 0.0011 (1.01, 1.02), 0.0010
Diabetes 0.49 0.90

(0.33, 0.73), 0.0005 (0.84, 0.97), 0.0035
No assistance with ADLc (ref = 1.08 1.01
some/total assistance with ADL) (0.65, 1.80), 0.7609 (0.93, 1.10), 0.8762
Six-minute walk (per 100 ft) 1.07 1.02

(1.03, 1.12), 0.0012 (1.01, 1.03), < 0.0001

Severity
FVC for group D 1.25 1.05

(per 10% predicted) (1.08, 1.43), 0.0019 (1.02, 1.08), 0.0003
O2 requirement for groups A, C, and D 0.87 0.92

(L/min) (0.83, 0.91), < 0.0001 (0.91, 0.93), < 0.0001
PA systolic (per 10 mmHg) 0.91 0.99
for group A (0.71, 1.16), 0.4331 (0.95, 1.04), 0.6922
PCO2 increase of ⩾ 15% 1.03 1.13

(0.41, 2.59), 0.9449 (0.95, 1.35), 0.1733
PCO2 (mmHg) 1.00 0.99

(0.99, 1.02), 0.6560 (0.99, 1.00), 0.0010
Ventilator 0.07 0.16

(0.03, 0.20), < 0.0001 (0.13, 0.20), < 0.0001
Creatinine (mg/dL) 0.60 0.86

(0.32, 1.12), 0.1111 (0.76, 0.96), 0.0078
Cardiac index < 2.0 (L/min/min2) 0.48 0.81

(0.25, 0.94), 0.0315 (0.72, 0.92), 0.0007

CI, confidence interval; COPD, chronic obstructive pulmonary disease; iPAH, idiopathic pulmonary arterial
hypertension; CF, cystic fibrosis; IPF, interstitial pulmonary fibrosis; PA, pulmonary artery; BMI, body mass
index; FVC, force vital capacity.
aFor risk factors, e𝛽 acts multiplicatively on the number of days lived in a year.
bThese diagnoses were grouped into larger diagnosis groups (A, B, C, and D) by the OPTN Thoracic Committee
for the purpose of modeling risk factors that may vary by diagnosis group. Bronchiectasis, lymphangioleiomy-
omatosis, and sarcoidosis and PA mean ⩽ 30 mmHg share risk factor parameters with diagnosis group A;
Eisenmenger with group B; and obliterative bronchiolitis, pulmonary fibrosis other, and sarcoidosis and PA mean
> 30 mmHg with group D.
cADL, activities of daily living.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4655–4670
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diabetes, requires no assistance with ADL, walks 300 ft in 6 minutes, requires 2 L/min of O2 at rest, has
PCO2 of 50 mmHg, is not on a ventilator, has a stable creatinine of 0.8 mg/dL, and has a cardiac index
> 2 L/min/min2.

The POW method seems to estimate less waitlist days lived in a year compared with the MIW method.
For comparison, we also include urgency estimates built from an integrated IPCW Cox model [7, 8],
where the partial likelihood score function incorporating censoring weights becomes

𝐔(𝛽) =
n∑

i=1

Wi(Xi)Δi

{
𝐙i(Xi) −

∑n
i=1 Wi(Xi)Yi(Xi)e𝛽𝐙i(Xi)∑n

i=1 Wi(Xi)Yi(Xi)e𝛽𝐙i(Xi)𝐙i(Xi)

}
.

Parameter estimates for the IPCW Cox model are located in Table V. Boxplots of patient urgency by
diagnosis group are located in Figure 2(a). Although all three methods account for dependent censoring,

Table V. Lung waitlist models using Cox proportional hazards model with
inverse weight for 3701 lung candidates.

Parameter Hazard ratio 95% CI p-value

Diagnosis group (ref = group A, primarily COPD)

Group B (primarily iPAH) 2.47 (1.78, 3.44) < 0.0001
Group C (primarily CF) 1.46 (1.09, 1.95) 0.0105
Group D (primarily IPF) 2.39 (1.75, 3.25) < 0.0001

Diagnosisa

Bronchiectasis 1.19 (0.86, 1.65) 0.3027
Lymphangioleiomyomatosis 0.93 (0.44, 1.93) 0.8358
Obliterative bronchiolitis 1.39 (0.89, 2.16) 0.1429
Pulmonary fibrosis other 0.80 (0.67, 0.96) 0.0180
Sarcoidosis and PA mean > 30 mmHg 0.89 (0.73, 1.10) 0.2803
Sarcoidosis and PA mean ⩽ 30 mmHg 1.03 (0.76, 1.39) 0.8513

Physiologic reserve

Age (years) 1.00 (1.00, 1.01) 0.4194
BMI (kg/m2) 0.97 (0.96, 0.98) < 0.0001
Diabetes 1.38 (1.25, 1.52) < 0.0001
No assistance with ADLb (ref = some/ 1.00 (0.88, 1.14) 0.9882
total assistance with ADL)
Six-minute walk (per 100 ft) 0.97 (0.96, 0.98) < 0.0001

Severity

FVC for group D 0.94 (0.90, 0.97) 0.0003
(per 10% predicted)
O2 requirement for groups A, C, and D 1.10 (1.09, 1.11) < 0.0001
(L/min)
PA systolic (per 10 mmHg) 1.05 (0.99, 1.12) 0.0924
for group A
PCO2 increase of ⩾ 15% 1.38 (1.08, 1.75) 0.0095
PCO2 (mmHg) 1.01 (1.01, 1.01) < 0.0001
Ventilator 4.29 (3.49, 5.28) < 0.0001
Creatinine (mg/dL) 1.68 (1.43, 1.98) < 0.0001
Cardiac index < 2.0 (L/min/min2) 1.30 (1.11, 1.52) 0.0010

CI, confidence interval; COPD, chronic obstructive pulmonary disease; iPAH, idio-
pathic pulmonary arterial hypertension; CF, cystic fibrosis; IPF, interstitial pulmonary
fibrosis; PA, pulmonary artery; BMI, body mass index; FVC, force vital capacity.
aThese diagnoses were grouped into larger diagnosis groups (A, B, C, and D) by the
OPTN Thoracic Committee for the purpose of modeling risk factors that may vary by
diagnosis group. Bronchiectasis, lymphangioleiomyomatosis, and sarcoidosis and PA
mean ⩽ 30 mmHg share risk factor parameters with diagnosis group A; Eisenmenger
with group B; and obliterative bronchiolitis, pulmonary fibrosis other, and sarcoidosis
and PA mean > 30 mmHg with group D.
bADL, activities of daily living.
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(a)

(b)

(c) Legend

Figure 2. Estimated transplant urgency, benefit, and lung allocation score (LAS) at time of listing by diagnosis
group and estimation method for 3701 lung transplant candidates.

Figure 3. Survival curves for group D patients using KM and MIW .
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differences in urgency are seen based on the method used. The methods based on restricted mean models
seem to give a broader range of estimates than urgency estimated via integrated IPCW Cox model hazards.
The IPCW Cox urgency estimates also tend to give the highest number of days lived during the first year
of listing.

A few model diagnostics are performed to assess the value of the different methods used. For instance,
for censored candidates, we would hope to predict a larger number of days lived than the observed cen-
soring time for an individual. POW urgency estimates undershoot the observed Ci 35% of the time, while
the proportions are 20% and 16% for the Cox and MIW methods, respectively. Among observed failures,
the sum of squared residuals between the observed (restricted) failure times and the predicted days lived
during the first year of listing is smallest (10,501,085) for the MIW-based estimates, followed by the Cox
urgency estimates (15,373,491) and the POW estimates (17,921,077). We also look at the concordance
index [23, 24], which is the percent of times that a model predicts two pairs of data (Xi,Δi), (Xj,Δj) in
the correct order, where the correct ordering is observable. The numbers are 80%, 77%, and 79% for the
MIW , POW , and Cox methods, respectively.

Table VI. Lung post-transplant model for 4784 transplant recipients (no censored data).

e𝛽 a 95% CI p-value
(Intercept) 344.42 (303.96, 391.03) < 0.0001

Diagnosis group (ref = group A, primarily COPD)
Group B (primarily iPAH) 0.65 (0.52, 0.81) 0.0002
Group C (primarily CF) 0.92 (0.82, 1.04) 0.1713
Group D (primarily IPF) 0.84 (0.73, 0.96) 0.0107

Diagnosisb

Bronchiectasis 0.96 (0.78, 1.17) 0.6796
Eisenmenger 0.32 (0.11, 0.91) 0.0331
Lymphangioleiomyomatosis 1.24 (0.89, 1.74) 0.2060
Obliterative bronchiolitis 1.25 (0.93, 1.69) 0.1437
Pulmonary fibrosis other 1.01 (0.89, 1.15) 0.8734
Sarcoidosis and PA mean > 30 mmHg 0.90 (0.74, 1.08) 0.2561
Sarcoidosis and PA mean ⩽ 30 mmHg 1.00 (0.79, 1.26) 0.9927

Physiologic reserve
Age > 45 splinec (years) 0.99 (0.99, 1.00) 0.0139
No assistance with ADLd 1.02 (0.94, 1.11) 0.6648
Six-minute walk (per 100 ft) 1.01 (1.01, 1.02) 0.0002

Severity
Creatinine at transplant (mg/dL) 0.89 (0.83, 0.96) 0.0017
FVC for Dgn groups B and D (per 10% predicted) 1.01 (0.99, 1.03) 0.4567
Continuous mechanical ventilation at transplant 0.72 (0.63, 0.83) < 0.0001
Cardiac index < 2.0 (L/min/min2) 0.86 (0.74, 1.00) 0.0496
O2 at rest for Dgn group A (L/min) 0.97 (0.96, 0.99) 0.0063
O2 at rest for Dgn groups B, C, and D (L/min) 0.99 (0.98, 1.00) 0.2129
Change in creatinine ⩾ 150% 0.78 (0.65, 0.95) 0.0132

CI, confidence interval; COPD, chronic obstructive pulmonary disease; iPAH, idiopathic pul-
monary arterial hypertension; CF, cystic fibrosis; IPF, interstitial pulmonary fibrosis; PA,
pulmonary artery; BMI, body mass index; FVC, force vital capacity.
aFor risk factors, e𝛽 acts multiplicatively on the number of days lived in a year.
bThese diagnoses were grouped into larger diagnosis groups (A, B, C, and D) by the OPTN
Thoracic Committee for the purpose of modeling risk factors that may vary by diagnosis group.
Bronchiectasis, lymphangioleiomyomatosis, and sarcoidosis and PA mean ⩽ 30 mmHg share risk
factor parameters with diagnosis group A; Eisenmenger with group B; obliterative bronchiolitis,
pulmonary fibrosis other, and sarcoidosis and PA mean > 30 mmHg with group D.
cAge > 45 spline: the maximum of 0 and age-45.
dADL, activities of daily living.
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Marginal survival analysis shows lower survival curve estimates in group D using MIW versus the KM
(Figure 3). This group also experiences the shortest average times to transplant (71 days for group D,
versus 126 days for group C, 170 days for group A, and 221 days for group B [25]).

4.2. Lung recipient analysis, transplant benefit, and lung allocation score

Recall that transplant benefit is calculated by subtracting the estimated days lived without transplant in a
year (candidate urgency) from the estimated days lived in a year following transplant. Our lung transplant
cohort consists of 4784 patients aged 12 or older. All patients were followed for at least 1 year from
the time of transplant, that is, no censoring of the 1-year restricted mean, with 816 (17%) deaths within
that first year. The results from fitting model (2) in this uncensored case are shown in Table VI. For the
same group C waitlist patient described in Section 4.1, the estimated days lived in the first year following
transplant is 266 days based on the model in Table VI. So the POW method estimates 266 − 210 = 56
days gained during the first year after a transplant for this patient, while the MIW method estimates a gain
of 266 − 227 = 39 days during that year.

Figure 2(b) shows the boxplots of estimated transplant benefit for all 3701 patients in our waitlist cohort
by diagnosis group using MIW ,POW and IPCW Cox methods. Patient transplant benefit calculations
incorporating the POW method tend to estimate higher benefit, going along with their lower estimates
of waitlist days lived without transplant. LAS values using the MIW , POW and IPCW Cox methods are
shown in Figure 2(c).

5. Discussion

The LAS system has been successful in prioritizing candidates for a lung transplant; however, the fact that
more urgent patients are more likely to be selected for transplant has led to a statistical issue of dependent
censoring. Hence, all analyses based on the waitlist cohort must have some adjustment to avoid bias. We
provide a useful approach for creating multiply imputed data sets that adjust for dependent censoring.
Availability of these completed data sets, along with the standard ways of combining the results from
complete case analyses, allows convenient and quick additional analyses to be conducted as they arise.

Simulations indicate that marginal estimates of survival and estimates of restricted means, both very
commonly explored in the lung candidate cohort, perform well using the imputation strategy proposed.
Our example also indicates improved model prediction over both an existing IPCW PO approach and an
IPCW Cox approach.

Our analyses indicate that the choice of modeling paradigm strongly influences LAS values and, there-
fore, a patient’s chances of receiving an organ offer opportunity in time. The use of the IPCW Cox method
gives a more narrow distribution of LAS values, while MIW and POW approaches give a broader range of
scores. The POW approach seems to inflate LAS scores somewhat compared with the others. Whenever
any one model influences public policy to this degree, model comparisons similar to those performed in
Section 4, where the POW method gave consistently improved results, are important. A personal favorite
for comparing model fit across vastly different modeling paradigms in the organ allocation setting is the
index of concordance approach [23,24]. This metric captures the spirit of correctly ordering urgency for
any two patients being considered for an organ.

The LAS affects roughly 1000 lung candidates at any one time. The ability to update the score appro-
priately is critical in providing fairness to candidates as concomitant care continues to evolve and new
markers are discovered that are worthy of inclusion in the LAS algorithm. Our MIW approach can suc-
cessfully navigate dependent censoring issues on the lung waitlist and is also appropriate in other settings
where longitudinal factors influence dropout as well as survival over time.
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