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Returns∗

Serhiy Kozak§, Shrihari Santosh‡

November 19, 2014

Abstract

We propose a one state variable ICAPM that rationalizes the size, value, and mo-
mentum “anomalies” observed in stock returns. Our main insight is that differential
covariance with news about future market discount rates drives the observed cross-
sectional variation in expected returns. We find that in response to an increase in
expected future market discount rates, large, growth, and recent losers company stocks
outperform small, value, and recent winner stocks, respectively. Our interpretation is
that such an increase in discount rates represents “bad” news for the representative
investor, increasing his marginal utility of wealth. We further show that ignoring this
state variable leads to drastic underestimation of the equilibrium price of “level risk”
measured using bond returns. An augmented model which adds a “level” factor jointly
prices both stock and bond returns.

∗We thank John Cochrane, Eugene Fama, Stefano Giglio, Valentin Haddad, Lars Hansen, John Heaton,
Bryan Kelly, Ralph Koijen, Diogo Palhares, Harald Uhlig for helpful comments and suggestions.
§Ross School of Business, University of Michigan. Email: sekozak@umich.edu.
‡R.H. Smith School of Business, University of Maryland. Email: shrihari@umd.edu.
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1 Introduction

The logic of Merton (1973) suggests there exists a representation for the stochastic discount
factor1 which is a linear combination of the return on the aggregate wealth portfolio and
state variables which capture changes in the investment opportunity set and “outside income”
(non-tradable wealth)2. We propose and test an equilibrium model in which shocks to risk
aversion (sentiment) generate time-varying expected equity returns. We find support for the
model’s prediction that such shocks represent “bad” news for the representative investor and
manifest in the cross-section of expected asset returns.

We find that augmenting the one-factor CAPM3 with a single additional factor, the
shock to expected future excess market returns, is sufficient to rationalize the cross-section of
expected returns of portfolios formed on size, book-to-market ratio, and recent performance
(momentum). Since the CAPM completely fails in fitting the cross-section of portfolio sorts
we analyze, the success of our model comes entirely from the expected market return factor.
This result is similar to Campbell and Vuolteenaho (2004) but with an important difference.
Instead of the typical VAR (vector auto-regression) approach, we use future realized returns
to proxy for expected future returns (see Section 2.4). This provides a consistent estimate
of expected returns under any information set. Both approaches yield consistent results
but under different assumptions. Our methodology produces a very different cross-sectional
patterns in factor loadings. We find that growth stocks and large firm stocks outperform
value stocks and small firm stocks, respectively, in response to an increase in market expected
returns.

The pattern in loadings we find results in an opposite conclusion about the compensation
an investor requires for bearing the risk of time-varying expected returns. We conclude that
an increase in the expected market return corresponds to a drop in the investor’s utility and
hence an increase in his marginal utility of wealth. This implies the investor is willing to
pay in order to eliminate this risk from his portfolio. In Appendix A we solve a general
equilibrium model that delivers exactly this prediction. In the model, expected market
returns are high when the representative investor’s risk aversion is high. These states of the
world correspond to times of high marginal utility.

The second contribution of our paper is decomposing the average return differential between
1Also called a state-price density. Equivalently, no arbitrage implies the existence of a present-value

function and of an equivalent martingale measure.
2Under loose restrictions, even with trading constraints, the absence of arbitrage implies the existence of

a stochastic discount factor,Mt+1, such that the relationship 1 = Et [Mt+1Ri,t+1] holds for all assets Skiadas
(2009, Chapter 1)

3See Sharpe (1964), Treynor (1961)
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Figure 1: Covariances of stock portfolios and bonds with the expected returns factor
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(b) Portfolios formed on Book-to-Market
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long and short term government bonds into a large positive return differential due to loadings
on “level risk” (change in long-term yields) and a large negative return differential due to
loadings on our expected market return factor. These net to a slightly upward sloping
term structure of expected bond returns. Koijen et al. (2010) find a similar decomposition of
bond risk premia using time-varying expected bond returns instead of stock returns. Figure 1
shows the loadings of bonds and portfolios formed on size, book-to-market, and prior 1-year
return on our expected return factor. Large stocks, growth stocks, recent losers, and long-
term bonds have higher covariance with innovations in the expected excess market return
than small stocks, value stocks, recent winners, and short-term bonds, respectively. These
patterns are consistent with a “flight-to-quality” interpretation where effective investor risk
aversion rises, stock prices fall, bond prices rise, and “good” companies outperform “bad”
companies.

Finally, we document that returns on the Fama-French factors smb, hml, and mom

are useful forecasters of the future market excess return, significant both statistically and
economically. In our sample from 1963 to 2010, the three combined greatly outperform the
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dividend price ratio, D/P , in terms of R2. This confirms the spreads in covariances seen in
Figure 1 are of economically relevant magnitudes, aleviating concerns that our asset pricing
exercise is simply a regression of “noise on noise.”

2 The Model

2.1 Specification

Following Duffie and Epstein (1992a), we define a stochastic differential utility by two prim-
itive functions, f (Ct, Jt) : R+ × R → R and A (Jt) : R → R. For a given consumption
process C, the utility process J is the unique Ito process that satisfies the stochastic differ-
ential equation,

dJt =
[
−f (Ct, Jt)−

1
2A (Jt) ‖σJ,t‖2

]
dt+ σJ,tdZt, (1)

where σJ,t is an R2-valued square-integrable utility-”volatility” process, Jt is the continuation
utility for C at time t, conditional on current information, f (Ct, Jt) is the flow utility, A (Jt)
is a variance multiplier that penalizes the variance of the utility “volatility” ‖σJ,t‖ ≡ σJ,tσ

′

J,t,
and Zt is a vector of shocks. A pair (f, A) is called an aggregator. We use a Kreps-Porteus
(Epstein-Zin-Weil) aggregator, defined as

f (C, J) = δ

ρ

Cρ − Jρ

Jρ−1 = δ

ρ
J

[(
C

J

)ρ
− 1

]
(2)

A (J) = −α
J
, (3)

where ρ = 1 − 1
ψ

and ψ is the elasticity of intertemporal substitution; δ is a subjective
discount factor, and α is the risk-aversion parameter.

We consider a simple endowment with a dividend process given by:

dD

D
= gtdt+ σDdZ

where gt is the mean consumption growth,

dg = φg (ḡ − g) dt+ σgdZ.

We further extend the utility specification when the parameter α is stochastic,

dα = φα (ᾱ− α) dt+ σαdZα, (4)
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This parameter can be interpreted as either time-varying risk aversion (Campbell and Cochrane
(1999), Dew-Becker (2011)) or time-varying ambiguity aversion with respect to model spec-
ification (Drechsler (2013), Hansen and Sargent (2008))4.

Finally, agent’s wealth evolves according to:

dW

W
= (θλ+ r − C) dt+ θσRdZ

where θ is the share invested in the risky asset, λ is the excess return on the risky assets, r
is the risk-free rate.

2.2 Solution

Market clearing requires C = D, W = P , and θ = 1. For simplicity, we further assume that
the elasticity of intertemporal substitution is equal to unity. We solve the Hamilton-Jacobi-
Bellman equation corresponding to the above problem in the Appendix A.

Theorem 1. Equilibrium SDF corresponding to the problem in equations (1), (2), (3), and
(4) is given by:

dΛ
Λ = −rdt− αdRM − (α− 1) aα︸︷︷︸

<0

σαdZ − (α− 1) ag︸︷︷︸
>0

σgdZ (5)

where RM is the return on the market portfolio, aα and ag are constants provided in the
Appendix A. When risk aversion is higher than 1, the price of risk-aversion risk is negative.

Equity Risk premium is given by

λ = λ0 + α× σDσ
′

D

where λ0 is a constant defined in the Appendix A. Finally, the risk-free rate is:

r = g − λ.

Proof. See Appendix A.

Theorem 2. The price of the (market) discount rate risk is negative when investor’s risk
aversion is higher than unity. Investors dislike assets that pay off poorly in states when the
discount rate is high, and command high risk premium on those assets.

4Variability in α generates time-varying prices of risk in the model. Our main results survive if we
model time-varying quantity of risk (through time-varying volatility of consumption growth) instead and are
therefore not exclusive to the preference specification chosen.
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Proof. The result follows immediately from the fact that the coefficient aα in (5) is negative,
aα < 0 (see Appendix A).

Theorem 3. Given the results in Theorem 1, the three-factor model holds:

Re
i,t = α× covt−1

(
Re
i,t, R

e
M,t

)
+ ag (α− 1)× covt−1

(
Re
i,t, dg

)
(6)

+ (α− 1) aα × covt−1
(
Re
i,t, dλ

)
where Re

i,t is the excess return on any test asset, Re
M,t is the excess return on the market

portfolio, dλ are shocks to the equity risk premium, and dg are shocks to the growth rate.
The term in square brackets is negative for all plausible parameter values.

Proof. See Appendix A.

2.3 Unconditional Pricing

We further proceed with the discrete version of the model and define rxi,t+1 as the log return
on an asset i over time period t→ t+1. When instanteneous excess returns Re

i,t are normally
distributed, corresponding discrete-time excess returns rxi,t+1 are log-normally distributed.

The model above is specified conditionally with “shocks” as factors. With two assump-
tions, we derive an unconditional representation in terms of “levels”.

Assumption 1. Covariances with market and expected returns factors ciM ≡ covt (rxi,t+1, rxM,t+1),
ciλ ≡ covt (rxi,t+1, λt+1), and variances Vi = vart (rxi,t+1) are constant in time.

Our goal is to capture time variation in Sharpe ratios. Empirical evidence that links
conditional volatilities and conditional means is weak (Welch and Goyal, 2008). We therefore,
use this assumption to focus on time variation in Sharpe ratios that is driven entirely by
variation in expected returns.

Assumption 2. Expected log market excess returns λt+1 = Et+1rxM,t+2 follow an AR(1)
process.

This assumption, while quite restrictive, serves primarily the purpose of deriving closed-
form solutions and quantifying the effects discussed below. It allows us to capture persistence
in the risk premium while keeping the model very tractable. The assumption is similar in na-
ture to those made in the literature, which typically assume that the vector of state variables
follows a VAR(1) process (see, for example, Campbell (1996), Campbell and Vuolteenaho
(2004)).
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Assumption 3. Consumption growth rate is constant, σg = 0.

Assumption 3 serves solely for expositional purposes in this chapter and will be relaxed
in Section 4.

Theorem 4. Given Assumption 1, Assumption 2, Assumption 3, and conditional model in
Eq. 6, we obtain the following linear pricing relation:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̂M (7)

+ cov (rxi,t+1, λt+1)× δ̂λ

where δ̂M and δ̂λ are two constant unconditional prices of market and expected returns risk,
respectively. Section B.2 derives the link between these prices and the conditional ones in
Appendix, Eq. 23.

Proof. Refer to the proof of a more general Theorem 9 with the arbitrary number of factors
and risk prices in Appendix, Section B.2.

Two aspects about this relation are worth emphasizing. First, all moments in the formula
are unconditional and hence can be easily estimated using time-series regressions. Second, the
formula involves the covariances with levels rather than shocks. This result is an implication
of homoskedasticity and the AR(1) structure imposed above.

2.4 Expected Returns Factor

2.4.1 Using Future Realized Returns

The unconditional model in Eq. 7 involves the expected return factor λt+1 which is not
directly observable by an econometrician. Empirical literature that faces this issue typi-
cally uses the residual from predictive regressions instead. Campbell (1996), Campbell and
Vuolteenaho (2004) uses the VAR approach with macroeconomic and financial variables that
have been shown to be good forecasters of expected returns and thus changes in investment
opportunity set. This approach narrows the information set that is used to make predictions
about future returns and therefore can be potentially biased. Moreover, the information that
is being used is limited to a small set of forecasters that have limited ability in forecasting
returns.

We employ a novel methodology designed to circumvent the issue. We use future realized
returns as an unbiased estimator of current risk premia required by investors. Future realized
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returns as an estimate of expected returns rxM,t+2 = Et+1rxM,t+2+εt+2 is indeed an unbiased
estimator, since for any information set Ft+1 at time t+ 1,

Et+1 (εt+2) = Et+1 (εt+2|Ft+1) = 0

True (population) conditional covariances are also equal

covt (rxi,t+1, rxM,t+2) = covt (rxi,t+1, Et+1rxM,t+2)

and thus an unbiased and consistent estimator of the covariance on the RHS is also an
unbiased and consistent estimator of the covariance on the LHS. See Section B.4 for a more
formal argument.

Our empirical approach allows us to test the model without directly estimating expected
market returns. We require a restrictive AR(1) assumption, but we make no assumptions
about investors’ information set. Instead, our approach is based on the agent’s ability to
forecast returns rather than econometrician’s. Unlike previous work, we do not rely on any
forecasting regressions.

2.4.2 Moving Average of Future Realized Returns

One issue with using one period ahead realized returns is that the signal-to-noise ratio of
such proxy is very low. If expected returns are persistent, we could cumulate sufficiently
long series of future returns in order to improve the ratio. There is an obvious trade-off
here: increasing the length of the cumulative sum will improve the signal-to-noise ratio at a
decreasing rate. We will determine the horizon length empirically in later sections.

We now show that the cumulative sum of future realized returns can be used as a proxy
for market risk premium in Eq. 7.

Theorem 5. When the expected returns factor is measured over long horizon, the uncondi-
tional relation in Eq. 7 still holds, with the new prices of risk that are a linear transform of
the ones in Eq. 7:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̃M (8)

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ

where λt+1:t+T = Et+1rxM,t+2:t+T+1 denotes expected market returns (risk premia) starting
one period ahead for T ≥ 1 periods, δ̃M and δ̃λ are two constant unconditional prices of
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market and expected returns risk, respectively. Section B.2 in the Appendix derives the link
between these prices and the conditional ones in Eq. 6 and Eq. 26.

Proof. Refer to the proof of a more general Theorem 10 with an arbitrary number of factors
and risk prices in Appendix, Section B.2.

In the case when the moving average of future returns is used as an estimator of the
expected market returns factor, we can still show its unbiasedness. See Section B.2.1 for
more details.

2.5 Price of Expected Returns Risk

We now make the following assumption that will allow us easily compare the sign on price
of expected returns risk in conditional and unconditional models.

Assumption 4. Price of the expected returns (discount rate) risk is constant, var (δλ,t) = 0.

This assumption states that the time-variation in expected returns is driven exclusively
by the price of market risk. This implies that the expected return on a long-short portfolio
of two assets that have the same loading on the market factor is not time-varying.

Assumption 4 delivers the following result:

Theorem 6. When Assumptions 1, 2, and 4 hold, the sign of the price of expected returns
risk is preserved:

sign {E [δλ,t]} = sign
{
δ̃λ
}

where δλ,t is the price of expected returns risk in conditional model (6) and δ̃λ is the price of
expected returns risk in either of conditional models in (7) or (8).

Proof. See the proof in Appendix, Section B.3.

2.6 Empirical Relation

Equipped with the results in Theorem 4 and Theorem 5, we proceed with approximating
the unconditional relation in Eq. 8 to facilitate the empirical tests in the following Section 3.
Section B.5 in the Appendix shows, that with daily data, the unconditional pricing relation
in Eq. 8 can be approximated by the following relation:

∀i, t : E
(
Re
i,t+1

)
= cov (rxi,t+1, rxM,t+1)× δ̃M (9)

+ cov
(
rxi,t+1, λ̂t+1:t+T

)
× δ̃λ̂

9



where Re
i ≡ Ri

Rf
is the level of excess returns and λ̂t+1:t+T ≡ rxM,t+2:T = ∑T

j=2 rxM,t+j. In
deriving this relation, we use the fact that future realized returns can be used as an unbiased
and consistent estimate of market risk premia (see Eq. 27).

All the variables in Eq. 9 are observed by an econometrician. We can use the level of
excess returns, Re

i , on the LHS, and the covariances of log excess returns rxi with the market
rxM and the future realized excess returns, rxM,t+2:T = ∑T

j=2 rxM,t+j on the RHS.
In the Appendix, Section 3.4 we compare the empirical specification in Eq. 9 to a similar

one in Campbell and Vuolteenaho (2004).

3 Empirical Link Between Cross-Sectional and Aggre-
gate Expected Returns

We estimate and test the expected return relation of Eq. 9 using two sets of test assets. The
first is the canonical 25 portfolios formed by a two-way sort of firms on market capitalization
(SIZE) and book-to-market ratio (BE/ME), available at Ken French’s website 5.

Lewellen et al. (2010) highlight a key issue in estimating and testing asset pricing models.
When the test assets have a strong factor structure that captures much of the time-series
variation as well as the cross-sectional variation in expected returns, a spurious model with
many factors may still produce a remarkably good cross-sectional fit as long as the spurious
factors are correlated with the “true” factors. This result is not due to sampling varia-
tion; it holds in population. A solution they propose is to add assets which increase the
“dimensionality” of the test asset space.

Therefore, in addition to the canonical 25 portfolios sorted on size and book-to-market
ratio, we construct an alternative set of test assets. We include fifteen portfolios consisting of
five value-weighted quintile portfolios each from independent sorts on size, book-to-market
ratio, and momentum (PRIOR) 6. Fama and French (2008) show that sorting firms based
on prior performance produces a reliable spread in average returns subsumed by neither the
size effect or the book-to-market effect. Furthermore, the momentum factor, MOM (Mark
M. Carhart, 1997), is nearly uncorrelated with the size factor, SMB, and is negatively corre-
lated with the book-to-market factor, HML (Fama and French, 1996). Therefore, including
momentum sorted portfolios as test assets makes it decidedly more difficult for a model to fit
the cross-section of expected returns. Our preferred estimation uses these fifteen portfolios;
for robustness and for comparison with the literature, we perform all estimation and testing
on the Fama-French 25 portfolios as well.

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
6Also available at Ken French’s website.
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Following the spirit of Merton (1973) and the continuous-time model in Section 2, we
use portfolio returns measured at daily frequency7. All returns are measured over the period
July 1963 to December 2010. Though monthly returns are available going back to 1927, we
choose to use the shorter sample of daily returns. Using daily returns reduces the approxi-
mation error due to linearization of the exponential function that we rely on in deriving the
estimation equation.

As noted in Campbell and Vuolteenaho (2004), “July 1963 is when COMPUSTAT data
become reliable and because most of the evidence on the book-to-market anomaly is obtained
from the post-1963 period”. Furthermore, in the pre-1963 sample, the “CAPM explains the
cross-section of stock returns reasonably well” (Campbell and Vuolteenaho, 2004). Since
inflation estimates are not available daily (and inflation is not well measured even at monthly
frequency (Cecchetti, 1997), we use only excess log returns, which, by construction, are real
returns.

As a proxy for the excess return on the wealth portfolio, rxm,t, we use RmRf, the excess
return on the value-weight portfolio of all common equity traded on the NYSE, AMEX,
and NASDAQ. Of course the standard critique applies that there exist many assets, both
traded (foreign securities) and non-traded (real-estate, human capital) that are not included
in this portfolio (Roll, 1977). As discussed above, we construct λ̃t = ∑H

i=1 rxm,t+i. For our
preferred specification, we set H = 126 trading days, or one-half year. Though the theory of
Section 2.4 implies the model should fit for all choices of H, finite length of the historic data
series means that increasing H comes with a loss of precision in estimating Cov

(
rxi,t, λ̃t

)
.

Our results are quantitatively robust across various choices of H, from 3 months to 2 years.
Table 1 below shows the estimated covariances of asset returns with the factors. Panel

A shows Cov (rxi,t, rxm,t) with GMM standard errors in parentheses. Quintile 1 represents
large firms, growth firms, and recent losers in relation to the dimensions, size, book-to-
market, and momentum, respectively. Analogously, Quintile 5 represents small firms, value
firms, and recent winners. The column to the right of Quintile 5 represents the Q5-Q1 spread
portfolio. The last column give the estimates for the canonical Fama-French factors, SMB,
HML, and MOM. The covariances match the well known pattern in market betas.

Panel B reports Cov
(
rxi,t, λ̃t

)
for the same portfolios. In all three dimensions (size,

book-to-market, and momentum), Cov
(
rxi,t, λ̃t

)
decreases from left to right. That is to say,

when the “risk premium”, λt, rises, small stocks are expected to fall more than large stocks,
value stocks are expected to fall more than growth stocks, and recent winners are expected to
fall more than recent losers. Though realized returns in place of expected returns produces
consistent and unbiased covariances estimates, they will be less precisely estimated due to

7We also replicated the analysis at monthly frequency and obtain very similar results.
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Table 1: Covariances

Q1 Q2 Q3 Q4 Q5 FF Q5-Q1
Panel A: Ci,M

ME 10.25 9.62 9.26 9.20 7.82 -1.00 -2.39
BE/ME 10.66 9.63 9.21 8.99 9.31 -1.59 -1.38
Prior2-12 12.17 10.07 9.45 9.34 10.80 -0.91 -1.42

Panel B: Ci,λ
ME 2.14 1.99 1.31 0.46 0.03 -1.22 (1.5) -2.11 (1.5)
BE/ME 2.42 1.71 1.36 1.14 0.20 -1.96 (2.4) -2.23 (2.3)
Prior2-12 4.82 3.02 1.86 1.27 1.24 -2.29 (1.5) -3.02 (1.7)

Panel C: E [Re
i ]

ME 2.94 5.11 5.52 5.51 5.23 1.63 1.40
BE/ME 2.48 3.71 4.20 5.88 7.54 4.55 4.23
Prior2-12 -2.19 3.05 3.02 5.11 7.62 7.86 7.71

Notes: This table shows covariances and annualized mean returns estimated over 1963:07:01-
2010:12:31. Panel A lists the covariances of portfolio returns with the market return, Ci,M . Panel
B depicts the covariances of portfolio returns with the expected returns factor, Ci,λ. Panel C
shows the the expected excess returns on each portfolio, E [Rei ]. The column "FF" represent the
Fama-French factors, smb, hml, and mom. Moving-block bootstrap t-statistics in parentheses.

the extra noise present in realized returns. Still, the covariances of the spread portfolios
with λ̃ are statistically significantly different from zero and the covariances follow a reliable
pattern, suggesting that we are not just “regressing noise on noise.”

The model in Section 2 suggests these covariances could result from a “flight-to-quality”
phenomenon, where the overall risk premium rises and the risk premium on “low quality”
assets rises by even more. When risk aversion rises, demand for all risky assets falls, in-
creasing their risk premia. Our model is only one such motivation for time-varying expected
returns. Indeed, as noted in (Shefrin, 2008, Chapter 30.3.3), the stochastic discount factor
in a habit formation model (Campbell and Cochrane, 1999) is of the same general form as
one based on a model of investor sentiment. Both deliver time-varying expected returns
through an effectively time-varying risk-aversion parameter for the representative agent. We
choose to directly model time-varying risk aversion. As we discuss below, the negative sign of
δλ, suggests that even if these covariances are produced sentiment driven “flight-to-quality”
episodes, these are likely to be amplifications of fundamental shocks so that the risk-premium
rises during aggregate “bad times”.

Panel C shows the sample average returns, which are monotonically increasing from left
to right across quintiles, consistent with the well known size, value, and momentum premia.
Panels B and C suggest a strong relationship between Cov

(
rxi,t, λ̃t

)
and E [rix,t], which can
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Figure 2: Univariate fit
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(b) Fama-French 25 Portfolios
Notes: The left plot shows sample values of E [rix,t] vs Cov

(
rxi,t, λ̃t

)
for the 15 quintile portfolios:

5 size (me), 5 book-to-market (bm) and 5 momentum (m) sorted portofios. The plot in the right
panel depicts same results for the 25 Fama-French portfolios.

be clearly seen in Figure 2. Figure 2 (a) plots sample values of E [rix,t] vs Cov
(
rxi,t, λ̃t

)
for

the 15 quintile portfolios. Figure 2 (b) is the same plot for the 25 Fama-French portfolios.
The graphs confirm the suspicion that Cov

(
rxi,t, λ̃t

)
and E [rix,t] line up fairly well in the

cross-section of assets, suggesting an additional risk factor that captures the size, value, and
momentum effects.

3.1 Estimation Results

We estimate risk price vector δ = [δM δλ]
′
using GMM with a prespecified block-diagonal

weighting matrix Cochrane (2001, Chapter 11.5). It is equivalent to the standard two-stage
estimation procedure. Cov

(
rxi,t, λ̃t

)
and Cov (rxi,t, rxM,t) are estimated in the first stage

by just-identified GMM, which yields the standard formulas for sample covariance. In the
second stage, we minimize the mean-squared model pricing errors of the test assets. This
is equivalent to and OLS regression of sample mean returns on the covariances estimated
from the first stage. In addition to our two-factor ICAPM, we estimate the Sharpe-Lintner
CAPM and well as the Fama-French model, augmented with the mom (momentum) factor
of Mark M. Carhart (1997). For comparison, all models are written and estimated in terms
of covariances instead of regression βs. Below is a summary of the pricing equations of the
relevant models, where δs are interpreted as risk prices (coefficients in the SDF):
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2-Factor ICAPM: E [Rei ] = Ci,MδM + Ci,λδλ

2-Factor ICAPM (free intercept): E [Rei ] = α+ Ci,MδM + Ci,λδλ

CAPM, Restricted: E [Rei ] = Ci,MδM

4-Factor FF, Unrestricted: E [Rei ] = α+ Ci,MδM + Ci,smbδsmb + Ci,hmlδhml + Ci,momδmom

4-Factor FF, Restricted: E [Rei ] = Ci,MδM + Ci,smbδsmb + Ci,hmlδhml + Ci,momδmom

where Ci,X ≡ Cov [rxi,t, Xt] .

Estimated risk prices are given in Table 2 along with sample R2 and mean absolute pricing
errors8. Quantitatively, our two-factor ICAPM fits the cross-section of average returns nearly
as well as the augmented 4-factor Fama-French model. The estimated intercept is nearly
zero, both statistically and economically. Though Cov

(
rxi,t, λ̃t

)
is not very well estimated

for any individual test asset, the cross-sectional spread in covariances is strong enough to
yield precise estimation of δλ. H0 : δλ = 0 is rejected for all conventional significance
levels. Covariance with the expected return factor is able to capture a large portion of the
cross-sectional variation in average returns due to the size, book-to-market, and momentum
effects. Standard errors are calculated using the moving block bootstrap methodology (Joel
L. Horowitz, 2001) and are consistent across various choices of block size.

The cross-sectional fit of the ICAPM and 4-factor Fama-French models are given graph-
ically in Figure 3. The graphs plot model implied average excess returns on the horizontal
and sample average returns on the vertical axis. The 45◦ line represents a model with perfect
in-sample fit (100% R2).

3.2 The Sign of δλ
Campbell and Vuolteenaho (2004) perform a similar pricing exercise but with different em-
pirical methodology and theoretic motivation. They find a positive price of expected returns
risk, though the estimate isn’t statistically significant. From our estimation, the probability
that the price of risk is positive is P [δλ > 0] = 0.002% (one-sided t-test of H0 : λ ≥ 0 easily
rejects the null). The alternative approaches therefore reach very different conclusions.

We find that growth stocks and large firm stocks outperform value stocks and small firm
stocks, respectively, in response to an increase in market expected returns, opposite to the
pattern in Campbell and Vuolteenaho (2004). The different pattern in loadings produces
a different conclusion about the compensation an investor requires for bearing the risk of

8For the 4-factor model, we don’t impose the GLS restriction that the model exactly prices the factors.
Imposing the restriction predictably reduces R2 and increases MAPE.
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Table 2: Risk Price Estimates

Model α δM δλ δsmb δhml δmom R2 MAPE

2-Factor ICAPM - 3.48 -10.21 - - - 75% 0.95%
(3.01) (-4.08)

0.26% 3.31 -9.83 - - - 76% 0.96%
(0.23) (3.02) (-4.00)

CAPM - 1.53 - - - - -150% 2.86%
(1.56)

4-Factor FF - 3.90 - 2.54 10.22 7.06 90% 0.61%
(2.73) (0.71) (2.83) (3.74)

0.13% 3.79 - 2.42 10.00 6.95 90% 0.61%
(0.46) (2.83) (0.67) (2.83) (3.78)

Notes: This table shows premia estimated from the 1963:07:01-2010:12:31 for the two-
factor ICAPM, the CAPM, and the augmented Fama-French model. The test assets are
value-weighted quintile portfolios sorted on ME, BE/ME, and Prior2-12. α is annual-
ized and "-" indicates that the intercept is restricted to zero. MAPE is average absolute
pricing error, annualized. Moving block bootstrap t-statistics are in parentheses

time-varying expected returns. We conclude that an increase in the expected market return
corresponds to a drop in the investor’s utility and hence an increase in his marginal utility
of wealth. This implies the investor is willing to pay in order to eliminate this risk from his
portfolio, as predicted by our model. In contrast, Campbell and Vuolteenaho (2004) find
that an investor is willing to pay to increase his exposure to this risk.

3.3 Factor Mimicking Portfolio

The two-stage OLS procedure for estimating stochastic discount factors suffers from many
problems related to samples size and factor structure in the covariance of test asset returns.
Lewellen et al. (2010) highlight these concerns and offer some suggestions:

1. Increase the dimensionality of the test assets relative to the dimension of the SDF.

2. Impose theoretic restrictions: “zero-beta rates should be close to the risk-free rate, the
risk premium on a factor portfolio should be close to its average excess return”. This
is essentially using GLS instead of OLS with the factor included as a test asset.

3. Report GLS R2 since (a) it “is completely determined by the factor’s proximity to
the minimum-variance boundary ... but the OLS R2 can, in principle, be anything”

15



Figure 3: Performance of the ICAPM and 4-Factor Fama-French models

Ê[Re

i
] (%)

-2 0 2 4 6 8

E
[R

e i
]
(
%
)

-2

0

2

4

6

8

S

H

M

smb

hml

mom

me1

me2
me3 me4

me5

bm1

bm2
bm3

bm4

bm5

m1

m2 m3

m4

m5

2 FACTOR ICAPM

Actual vs Predicted Mean Excess Ret. (Annualized), Restricted intercept
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Notes: 2-Factor ICAPM with restricted intercept on the left, and 4-factor Fama-French
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(losers to winners). bm1-bm5 correspond to book-to-market quintiles (growth to value).
me1-me5 correspond to size quintiles (large to small). smb, hml, and mom are the canonical
Fama-French-Carhart factors. S, H, and M are 5-1 quintile spread portfolios.

and (b) “in practice, obtaining a high GLS R2 represents a more stringent hurdle than
obtaining a high OLS R2.”

4. Report confidence intervals for the cross-sectional R2.

We already addressed issue (1) by having only one factor to “explain” three dimensions of
average returns. Table 2 shows that estimates with and without restrictions on the zero-
beta rate are nearly identical. Since our expected return factor is not an excess returns, we
cannot directly include it as a test asset and check the restriction in (2). We can however,
include a maximally correlated (mimicking) portfolio, i.e., regress the factor on the space
of excess returns and use the fitted values. As shown in Cochrane (2001, Ch. 4), this
yields identical OLS estimates of covariances, risk prices, pricing errors, and R2. Because
our test assets are highly correlated, in small sample the mimicking portfolio will have
unrealistic extreme long/short positions. To mitigate concern of overfitting, we alternatively
construct λ̂t = proj

(
λt
∣∣∣[ mrktt smbt hmlt momt

])
. This is the linear combination

of the four Fama-French-Carhart factors which has maximal correlation with our original
expected return factor. Since it is an expected return we can include it as a test asset and
use GLS methods.

If the 2-factor ICAPM is literally true we can derive the following restriction on the SDF
loadings, assuming proj

(
λt
∣∣∣[ mrktt smbt hmlt momt

])
is the true mimicking portfolio
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(including other assets doesn’t improve model fit9).

mt = δ̃M ·mrktt + δλλt

= δ̃M ·mrktt + δλproj
(
λt
∣∣∣[ mrkt smb hml mom

])
+ εt

∀ i, cov (ri, ε) = 0 ⇒ equivalently

mt = δ̃M ·mrktt + δλproj
(
λt
∣∣∣[ mrkt smb hml mom

])
= δ̃M ·mrktt + δλ [bM ·mrktt + bsmb · smbt + bhml · hmlt + bmom ·momt]

The unrestricted four-factor SDF is mt = δM ·mrktt+ δsmb ·smbt+ δhml ·hmlt+ δmom ·momt.
If the 2-factor model is strictly true, then we should have δM = δ̃M + δλ · bM and δi =
δλ · bi for i ∈

{
smb hml mom

}
. Table 3 shows the implied and direct coefficients on[

mrkt smb hml mom
]
in the SDF. The unrestricted coefficient on SMB is smaller

than the ICAPM implied value and the coefficient on MOM is larger than its implied value.
The implied and direct coefficients on HML and Market are nearly identical. This is a
manifestation of the αs (pricing errors) seen in the left panel of Figure 3. SMB has a lower
average return than predicted by it’s covariance with λ and MOM has a positive ICAPM α.
Since SDF weights are proportional to average returns when the factors are uncorrelated10

the ICAPM αs translates directly into the difference SDF coefficients. Still, it is reassuring
that the restriction isn’t drastically violated.

Table 3: SDF Restriction

Restricted ZB-rate Unrestricted ZB-rate
Implied 4-Factor Implied 4-Factor

Market 4.13 3.90 3.94 3.79
SMB 4.90 2.54 4.72 2.42
HML 10.67 10.22 10.28 10.00
MOM 5.97 7.06 5.75 6.95

Notes: Implied coefficients for market are δ̃M + δλ · bM where δs are from the first row of
Table 2 and bM is from proj

(
λt
∣∣[ mrkt smb hml mom

])
. The remaining implied

coefficients are δi = δλ · bi with δλ and bi from the same source.

With the factor mimicking portfolio, we can address points (2) and (3) above. For the
remainder of this section, we treat the mimicking portfolio as the factor and address OLS vs

9This assumption is approximately true in the data.
10Market, SMB, HML, and MOM are nearly uncorrelated.
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GLS11. GLS restricts the model to exactly fit the market and the mimicking portfolio’s aver-
age in-sample returns, ignoring pricing errors on other assets. Table 4 shows the estimated
SDF using both. E [rM ] and E [rλ] are the model implied annualized expected excess returns
on the market and mimicking portfolios, respectively. For GLS these are, by construction,
equal to annualized sample averages.

The results are similar across methods. In particular, the model implied expected returns
on the two factors (market and λ mimicking portfolio) are similar for OLS and GLS. This
addresses point (2) from Lewellen et al. (2010). The GLS R2 is mechanically lower than OLS
R2 but not substantally so. Bootstrap simulation rejects the null of R2 = 0 with p ≈ 0.1%.
Recall from Table 2 that the CAPM has a negative R2 due to the restricted zero-beta rate
and the well known issue that average returns among these assets are negatively correlated
with market betas. For comparison, the 4-factor GLS R2 is 79% (not shown).

Table 4: GLS Estimation

δM δλ E [rM ] E [rλ] R2 MAPE

OLS 3.30 -10.25 3.26 -8.01 72% 0.91%
(2.86) (-3.81)

GLS 3.78 -12.26 3.46 -9.58 62% 1.03%
(2.90) (-4.54)

Notes: OLS estimates are from the standard two-step FM procedure. GLS restricts the
model to exactly fit the market and the mimicking portfolio’s average in-sample returns,
ignoring pricing errors on other assets. E [rM ] and E [rλ] are the model implied annualized
expected excess returns on the market and mimicking portfolios, respectively. For GLS these
are, by construction, equal to annualized sample averages.

3.4 Campbell-Shiller Decomposition

Assumption 2 implies that the expected returns factor can be any finite linear combination of
expected future returns. In particular, it can be∑∞j=1 ρ

jrt+1+j from the return decomposition
given in Campbell and Shiller (1988) . Our empirics do not uniquely identify which one it
is.

11When only a subset of test assets are used to construct the mimicking portfolio, there is no guarantee
that estimated risk prices, etc will remain unchanged. The ICAPM R2 drops from 73% to 69% and risk
prices, δs, are similar (±10%). We ignore sampling uncertainty in bSMB , bHML, bMOM when reporting
test statistics using the factor mimicking portfolio. This likely does not bias our results greatly since the
Newey-West t-statistics on bSMB , bHML, bMOM are between 2 and 3.
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We now compare our model to a similar one in Campbell and Vuolteenaho (2004). Camp-
bell and Vuolteenaho (2004) starts with exploiting the Campbell and Shiller (1988) decom-
position:

rt+1 − Etrt+1 = (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j

− (Et+1 − Et)
∞∑
j=1

ρjrt+1+j

= NCF,t+1 −NDR,t+1

where NCF denotes news to future cash flows and NDR denotes news about future discount
rates.

By relying on homoskedasticity assumption and linear approximations, Campbell (1993)
derives an approximate discrete-time version of Merton (1973) ICAPM:

Et (ri,t+1)− rf,t+1 +
σ2
i,t

2 = γ × covt (ri,t+1, rM,t+1 − EtrM,t+1) (10)

+ (1− γ)× covt (ri,t+1,−NDR,t+1)

= γ × covt (ri,t+1, NCF,t+1)

− covt (ri,t+1, NDR,t+1)

In Theorem 5 we showed that the sum of future returns over arbitrary horizon can be
used as an expected returns factor. In fact, it can be easily shown that the statement holds
for any weighted sum as well with market risks being scaled by a constant. In this way,
the sum of discount rates in Eq. 10, ∑∞j=1 ρ

jrt+1+j, is directly comparable to our expected
returns factor factor λ. The formulation (10) therefore is similar to the conditional model in
Eq. 6. It implies however a positive price of risk on discount rate factor (which is a scaled
version of our expected returns factor with positive scaling factor).

Eq. 10 can be rewritten in terms of risk prices in Table 2:

Et (ri,t+1)− rf,t+1 +
σ2
i,t

2 = δM × covt (ri,t+1, NCF,t+1)

+ (δλ − δM)× covt (ri,t+1, NDR,t+1) (11)

The essence of Campbell and Shiller (1988) decomposition is that unexpected stock mar-
ket returns could be mechanically decomposed into a positive cash-flow news component and
a negative discount-rate component, resulting in positive and negative betas, respectively.
Further, Campbell and Vuolteenaho (2004) find that with Epstein-Zin (or power utility)
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preferences, CAPM does not hold because the discount rate effect in Eq. 11 is weakened as
compared to the CAPM (which holds with exponential utility, for instance). The effect is
not, however, fully reversed: the price of cash-flow risk is still positive and the price of the
discount-rate risk is negative. In this paper we find that the discount-rate effect is, in fact,
greatly amplified when investor’s risk aversion increases in bad states of the world. Table 2
shows that the loading on the discount-rate risk, δλ, in presence of the market returns as
a second factor in the SDF is significantly negative. The price of the discount-rate risk in
Eq. 11, δλ − δM , is therefore also strongly negative and higher in magnitude than the price
of the cash-flow risk.

4 Pricing Bonds

Figure 4: Pricing Bonds
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Notes: We plot the fitted and sample mean values of expected returns in the model Eq. 8.
Test assets include the stock portfolios we used before as well as 5 bonds with maturities
from 3 to 7 years, labeled B3-B7, respectively.

Whereas there are numerous papers which explore risk premia separately for equities and
fixed income securities, few study these important assets in a unified framework12. We extend
our analysis to include risk-free government bonds and interest rate risk.Figure 4 illustrates
that the unconditional model in Eq. 8 fails to price bond excess returns of maturities from
3 to 7 years. Pricing errors are big and the slope is completely wrong. Clearly, the market

12Recent work in this area includes Koijen et al. (2010).
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and expected returns factors are not sufficient to explain the risk compensation required for
holding these securities.

We use Eq. 6 to motivate a third factor – the growth rate of the economy. The factor
helps price bonds and stocks jointly. To proxy for the changes in the growth rate of the
economy, we use the return on a long-maturity government bond. The yield on a long-term
bond is related to the “level” factor in bonds, which has been shown to to be the only priced
factor in the cross-section of nominal bonds (Cochrane and Piazzesi, 2008).

The extended model from Section 2 is:

Et (rxi,t+1) + 1
2σ

2
t (rxi,t+1) = covt (rxi,t+1, rxM,t+1)× δM,t

+ covt (rxi,t+1, λt+1)× δλ,t
+ covt (rxi,t+1, rxB,t+1)× δB,t (12)

where rxB is the excess return on a long maturity bond. With the same assumptions as
before, the model conditions down as follows:

Theorem 7. Given Assumption 1 and Assumption 2 and conditional model in Eq. 12, we
obtain the following linear pricing relation:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̂M (13)

+ cov (rxi,t+1, λt+1)× δ̂λ
+ cov (rxi,t+1, rxB,t+1)× δ̂B (14)

where δ̂M ,δ̂λ, and δ̂B are three constant unconditional prices of market, expected returns, and
bond risk, respectively. Section B.2 derives the link between these prices and the conditional
ones in Operationalizing the Model.

Proof. This is a straightforward application of Theorem 9 in Operationalizing the Model,
Section B.2 with two factors (market and bond) and zero price of bond risk.

Theorem 5 carries over to this case in a natural fashion:

Theorem 8. When the expected returns factor is measured over long a horizon, the uncon-
ditional relation in Eq. 13 still holds, with the new prices of risk that are a linear transform
of the ones in Eq. 13:
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∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̃M (15)

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ
+ cov (rxi,t+1, rxB,t+1)× δ̃B (16)

where λt+1:t+T = Et+1rxM,t+2:t+T+1 denotes expected market returns (risk premia) starting
one period ahead for T ≥ 1 periods, δ̃M ,δ̃λ, and δ̃B are three constant unconditional prices
of market, expected returns, and bond risk, respectively. Section B.2 in the Operationalizing
the Model derives the link between these prices and the conditional ones in Eq. 12.

Proof. Refer to the proof of a more general Theorem 10 with an arbitrary number of factors
and risk prices in Operationalizing the Model, Section B.2.

Using Theorem 8 and Section B.5 in the Operationalizing the Model we can show in the
same way as in Section 2.6 that the following approximate relation holds:

∀i, t : E
(
Re
i,t+1

)
= cov (rxi,t+1, rxM,t+1)× δ̃M (17)

+ cov
(
rxi,t+1, λ̂t+1:t+T

)
× δ̃λ̂

+ cov (rxi,t+1, rxB,t+1)× δ̃B

where Re
i ≡ Ri

Rf
is the level of excess returns and λ̂t+1:t+T ≡ rxM,t+2:T = ∑T

j=2 rxM,t+j. With
these results in hand, we proceed with empirical tests of the model in Eq. 17.

5 Bond Risks and Risk Premia

5.1 “Level” factor

Most popular term structure models feature factors typically labelled “level”, “slope”, and
“curvature” Ang and Piazzesi (2003), Diebold and Li (2006), Diebold et al. (2005), Litterman
and Scheinkman (1991). In these models, the level factor induces parallel shifts in the
log-yield curve. In the estimated affine term structure model of Cochrane and Piazzesi
(2008), unconditional expected bond excess returns are described by E

(
rx

(i)
t+1

)
= δB ×

cov
(
rx

(i)
t+1, (Et+1 − Et) levelt+1

)
13. The single factor driving expected returns is the shock

to the “level” of yields.
13rxit+1 is the log excess return on an i year bond for period t+ 1
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By construction, the yield on a hypothetical bond of infinite maturity is proportionate
to the level factor. Approximating the long-end of the yield curve to be flat we can write

ln
(
PT−1
t+1 /PTt

)
= T − 1

T

(
yTt − yT−1

t+1

)
≈ T − 1

T

(
yLTt − yLTt+1

)
where P T

t is the price of a T year bond at time t, and yLTt is the log yield-to-maturity of a
“long-term” bond at time t. The left hand side is the log return on the long-term bond and
the right hand side is a multiple of the change in the level factor (change in the long-term
yield). This shows that the return on a long-term bond is essentially perfectly negatively
correlated with the level factor.

Written in terms of shocks we have,

(Et+1 − Et)
[
ln
(
PT−1
t+1 /PTt

)]
≈ (Et+1 − Et)

[
T − 1
T

(
yLTt − yLTt+1

)]

where we have equated the unexpected return on the long-term bond with the shock to
the level factor. The model of Cochrane and Piazzesi (2008) can be recast as

E
(
rx

(i)
t+1

)
= δ̃B × cov

(
rx

(i)
t+1, (Et+1 − Et) r(LT )

t+1

)
.

Since the model is written in real terms but we only observe nominal bond returns, we
substitute14 rx

(LT )
t+1 , the excess return on the long-term bond, in place of r(LT )

t+1 , yielding

E
(
rx

(n)
t+1

)
= δ̃B × cov

(
rx

(i)
t+1, (Et+1 − Et) rx(LT )

t+1

)
= δ̃BCn,B (18)

5.2 Data

We use zero-coupon treasury yields from Gürkaynak et al. (2006) (GSW), which provides
a daily constant maturity yield curve from 1961 onward. Though the data are smoothed,
the yields are usually very close to the unsmoothed yields derived using the methodology
of Fama and Bliss (1987) and “for many purposes the slight smoothing in GSW data may
make no difference” (Cochrane and Piazzesi, 2008). The advantage of GSW yields is the
daily observation frequency, which we have argued in Section 3 is important to our empirical

14This assumes the Fisher identity holds for short-term bonds.
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strategy. Prior to 1971, the GSW yields only include maturities up to seven years. Post
1971 they includes maturities to 30 years, though there is some question of the reliability of
the very long maturity yields. To match the timing of our stock data, we use maturities up
to seven years, starting in 1963.

To construct daily zero-coupon bond returns from the GSW yields, we must interpolate
between the given maturities. We use linear interpolation though this is technically incon-
sistent with the functional form used by GSW. For daily (or even monthly) returns, this
introduces negligible error since the GSW function is smooth and the weight given to the
nearest whole year maturity is essentially 1 (actually 251/252). Finally, we must choose how
to deal with timing. We use the convention of 252 trading days per year and treat each trad-
ing day as being 1 “day” after the previous trading day. This means that we have essentially
eliminated weekends and trading holidays from the calendar. This introduces measurement
error in the returns that is reduced as the measurement horizon increases (from daily to
monthly to quarterly, etc). Excess returns just subtract the log return on a one month t-bill,
the same procedure we use for stock excess returns.

5.3 Estimating the price of “level risk”

With daily excess log bond returns in hand, we estimate the model of using the same two-
stage procedure of Section 3.1. δ̃B is estimated to be 3.6. The cross-sectional R2 is 95% with
an annualized mean absolute pricing error of 0.09%. Figure 5 shows graphically the good fit
of the model.

In the context of Eq. 8, we argue that δ̃B, the price of “level risk”, is commonly underes-
timated when using Eq. 18 and bond excess returns. It is a classic case of “omitted variable
bias”15. Eq. 8 and the results of Section 3.1 suggest at least two such missing variables,
Ci,λ = 106×Cov

[
rx

(i)
t+1, Et

(∑k
i=1 rxM,t+i

)]
and Ci,M = 106×Cov

[
rx

(i)
t+1, rxM,t+1

]
. Table 5

shows Ci,B, Ci,λ and Ci,M across maturities. First note that Ci,M ≈ 0 for all maturities.
More importantly, ∀i, Ci,λ ≈ 1.4Ci,B. Cross-sectionally, corr (Ci,B, Ci,λ) ≈ 1. Since we
know Section 3.1 that δλ 6= 0, the univariate level model suffers greatly from omitted vari-
ables bias. Using the estimate of δλ = 10.3 , a back-of-the-envelope calculation suggests the
true δB = 3 + 1.4× 10.3 = 17.4. In other words, the required compensation for bearing level
risk is much higher than is estimated from a univariate model of bond expected returns.
Treasury bonds, in addition to loading positively on level risk, also provide investors a hedge
against increases in the expected return on stocks. Thus, bonds earn lower average returns
than in the hypothetical economy where the expected market return is constant.

15See Wooldridge (2002, Chapter 4.4)
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Figure 5:
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Table 5: Covariances

2Y 3Y 4Y 5Y 6Y 7Y
Ci,B 0.29 0.60 0.92 1.22 1.51 1.78
Ci,λ 0.51 0.92 1.29 1.63 1.95 2.26
Ci,M 0.01 0.03 0.07 0.12 0.17 0.24

Ci,B = 105 × Cov
[
rx

(i)
t+1, (Et+1 − Et) rx(LT )

t+1

]
Ci,λ = 105 × Cov

[
rx

(i)
t+1, Et

(
Σki rxM,t+i

)]
Ci,M = 105 × Cov

[
rx

(i)
t+1, rxM,t+1

]

This intuition is formalized by estimating the 3-factor ICAPM given by Eq. 15. Table 6
gives estimated risk prices (δs) from the following models:

2-Factor ICAPM: E [Re
i ] = Ci,MδM + Ci,λδλ

Univariate Level Risk: E [Re
i ] = Ci,BδB

3-Factor ICAPM: E [Re
i ] = Ci,MδM + Ci,λδλ + Ci,BδB

where Ci,X ≡ Cov [rxi,t, Xt]
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Table 6: Risk Price Estimates

Model δM δλ δB R2 MAPE

2-Factor ICAPM 3.48 -10.21 - 2% 1.75%
(3.01) (-4.03)

Level Risk - - 3.01 94% 0.07%
(1.21)

3-Factor ICAPM 3.10 -9.60 15.12 88% 0.73%
(2.84) (-3.97) (3.47)

Notes: This table shows premia estimated from the 1963:07:01-2010:12:31 for the 2
ICAPM (estimated using stock portfolios), the Level Risk model (estimated using bond
returns), and the 3-factor ICAPM (estimated using both stocks and bonds). Model
intercepts are restricted to zero. MAPE is average absolute pricing error, annualized.
Moving block bootstrap t-statistics are in parentheses

Table 7: Bond Expected Returns

Maturity Sample Mean Level Risk 3-Factor ICAPM
2 0.32 0.22 -0.12
3 0.57 0.46 0.08
4 0.78 0.70 0.42
5 0.96 0.93 0.79
6 1.12 1.15 1.15
7 1.26 1.36 1.49

Notes: Annualized percent returns by maturity.

. All models are estimated with the intercept restricted to zero. The 2-factor ICAPM is
estimated using only the stock portfolios from Section 3 and hence the risk price estimates
are the same as in Section 3.1. The univariate Level Risk model is estimated using only
the bond excess returns. The 3-factor ICAPM is estimated using all assets, stock portfolios
as well as bonds. Estimated values for δM and δλ are essentially unchanged in the 3-factor
ICAPM (relative to the 2-factor estimates). The R2 of the 2-factor ICAPM is so low because
bonds are included as test assets though they are excluded from the estimation of risk prices
(see Figure 4). Importantly, δB in the 3-factor ICAPM is ≈ 16 � 3. This is similar to the
back of the envelope prediction given above.

Table 7 gives annualized percent returns by maturity in sample, implied by the univariate
Level Risk model, and implied by the 3-factor ICAPM. Both models imply as larger term
premium (spread between long and short maturity average returns) than is observed in the
data, with the 3-factor model performing somewhat worse, but still quite well.

26



Figure 6 shows average returns vs 3-factor ICAPM expected returns for bonds and stock
portfolios. The graphs plot model implied average excess returns on the horizontal and
sample average returns on the vertical axis. The 45◦ line represents a model with perfect
in-sample fit (100% R2). Stocks fit as well as in Figure 3 (using the 2-factor ICAPM) and
bonds fit quite well.
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Figure 7 decomposes the expected excess return on the various bonds. The premium
due to market risk, Ci,M , is excluded since it is negligible for bonds. Bonds earn a large
premium for loading on level risk, whereas they command a large negative premium for
loading on the expected return factor. This is consistent with a “flight-to-quality” Caballero
and Krishnamurthy (2008) interpretation where investors’ appetite for risk falls and they
attempt to rebalance their portfolios towards safer securities (like U.S. government debt and
“good companies”). Since it is impossible for everyone to rebalance in this way at the same
time, prices adjust instead of quantities. The prices of “risky” assets fall relative to the prices
of “safer” assets.

Koijen et al. (2010) have a seemingly similar decomposition, albeit with a very different
interpretation. Our 3-factor ICAPM as well as their model both feature a level factor and a
market factor. Instead of our expected stock return factor, they use an expected bond return
factor (CP from Cochrane and Piazzesi (2005)). Whereas bond returns load positively on
our factor, λ, they load negatively on CP . Koijen et al. (2010) find a positive price of CP
risk whereas we find a negative price of λ risk. The product of loading × risk price yields a
negative number in both cases, and hence the pictures look quite similar, but with opposite

27



interpretation. We find that bonds hedge against increases in expected stock returns but
Koijen et. al. find that bonds respond negatively to increases in expected bond returns. Fi-
nally, our estimated model produces a term structure of expected returns which is somewhat
steeper than in the data. In contrast, the estimates in Koijen et al. (2010) results in a flat
term structure (no term premium).

Figure 7: Decomposition of Bond Risk Premia
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6 Predicting the Future Market using Cross-Section

In our empirical methodology, we used the future realized excess returns as a proxy for
today’s market expectation of future excess returns. We further showed that this proxy
was key in explaining the cross section of stock returns. The motivation came from Merton
(1973) ICAPM, who documented that when investment opportunity set, or expected returns,
in particular, are time varying, investors hedge the risk with regard to the source of variation.
If test assets have differential loadings on these hedging factors, the corresponding investors’
hedging demands get reflected in the cross-section of asset returns.

This observation can be viewed from the opposite perspective. If expected returns man-
ifest in the cross-section, the cross-section of stock returns can itself provide information
about future expected returns. Indeed, “Priced factors ... are innovations in state variables
that predict future returns.” (Brennan et al., 2004). It is therefore natural to ask a ques-
tion whether cross-sectional variables can predict future returns and to what extent. Few
recent papers have looked at this question. Kelly and Pruitt (2011) uses the cross-section
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Table 8: Predictability
ReM,t+1:t+k = a+ [DPt MRKT t−90:t SMBt−90:t HMLt−90:t MOMt−90:t] b+ εM,t+1

Horizon (k) DP MRKT SMB HML MOM R2

3 months 1.43 0.79 1.23
6 months 1.39 0.26 1.86
9 months 1.39 0.08 2.51
12 months 1.41 -0.30 3.05
3 months 1.58 0.67 -3.04 -2.72 -3.23 8.48
6 months 1.58 0.08 -2.57 -2.17 -2.13 8.21
9 months 1.56 -0.37 -2.29 -1.98 -2.25 8.50
12 months 1.56 -0.46 -1.68 -1.45 -2.43 8.18

Notes: t-statistics and R2 from predictive regressions at various horizons

of dividend-price ratios to show that they indeed predict the future returns well beyond
the aggregate dividend-price ratio variable. They develop a statistical procedure that uses
information from the cross-section to predict aggregate returns.

Our paper does not aim to construct the optimal predictor; we merely want to show
that predictability is indeed present and use it as a robustness check of our methodology.
In particular, we want to make sure the covariances reported in Table 1 and Figure 2 are
economically significant. As such, we use the returns on SMB, HML, andMOM portfolios
to forecast future market returns. If future returns help to explain the cross-section, the
cross-sectional returns themselves mechanically should predict future returns. An important
question is whether this predictability is economically significant and thus can be credibly
exploited in the cross-sectional tests. We test this with the following regression:

Re
M,t+1:t+k = a+ [DPt MRKT t−90:t SMBt−90:t HMLt−90:t MOMt−90:t] b+ εM,t+1 (19)

Each of the MRKT, SMB,HML,MOM factors is computed using the past 90 calendar
days. Results are robust to varying the lag length.

The top panel of Table 8 reports the t-statistics of estimated coefficients in Eq. 19 and
R2 at various horizons (3, 6, 9, and 12 months) with only the market and dividend-price
ratio included as predictors. There is little evidence of return predictibility at horizons up
to one year, as evidence by the insignificant t-statistics and low R2. The bottom panel
shows results when including SMB,HML, and MOM as additional predictors. We find
that all of the coefficients for each variable at 3-9 months horizon are highly significant and
negative. This means that each of SMB, HML, and MOM predict future market return
independently. Also, when either of them tank, the market is predicted to go up. Recall
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that SMB, HML, and MOM typically fall in times of high marginal utility, when the risk
premium is high. The results in Table 8 fully support this interpretation. The table shows
that the R2 improves substantially by including the SMB, HML, and MOM predictors.
We therefore conclude that SMB, HML, andMOM are economically significant predictors
of future market returns. Similar evidence of predictability was documented by Liew and
Vassalou (2000). They show that SMB and HML help forecast future rates of economic
growth.
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Appendix

A The Model
Utility function Duffie and Epstein (1992a,b) show finding an ordinally equivalent aggre-

gator
(
f̄ , Ā

)
is possible such that Ā = 0, a normalized aggregator. Most papers that employ

Epstein-Zin-Weil preferences use this type of aggregator.
We take a different approach and use an unnormalized aggregator as defined explicitly in Eq. 2

and Eq. 3. Although such a representation requires computing an additional variance term in Eq. 1,
it allows us to separate the effect of elasticity of intertemporal substitution (EIS) and risk aversion
in the stochastic differential utility. In particular, the first term, f (C, J), depends only on EIS,
whereas the second term, 1

2
α
J ‖σJ,t‖

2 depends only on risk aversion and is linear in it (it might
depend on the EIS indirectly through the σJ,t term, however).

HJB equation Assume complete markets. A representative investor in this economy max-
imizes his utility over consumption,

Jt = Et
(ˆ ∞

t

[
f (Cτ , Jτ ) + 1

2A (Jτ ) ‖ JX (Xτ , τ)σX (Xτ ,Wτ , τ) ‖2
]
dτ

)
, (20)

where X = (α, g, W ) is a vector of aggregate state variables.

U (Cτ ) = f (Cτ , Jτ )− 1
2
α

J
‖JXσX‖2

The Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem is given by

0 = supC,θ
{
U (C, J) + JWE (dW ) /dt+ JαE (dα) /dt+ JgE (dg) /dt+

+1
2JWWE

(
dW 2

)
/dt+ 1

2JααE
(
dα2

)
/dt+ 1

2JggE
(
dg2

)
/dt

+JWαE (dWdα) /dt+ JWgE (dWdg) /dt+ JαgE (dαdg) /dt
}
.

First-order conditions

[C] : fC = JW

[θ] : 0 = α

J
J2
WW

2θσRσ
′

R + JWWλ+ JWαWσRσ
′

α

+JWgWσRσ
′

g + JWWWθ2σRσ
′

R

Value function guess Find a solution of the form J(W, α, g) = W × F (α, g). Partial
derivatives are: JW = F , JWW = 0, Jα = J FαF , Jg = J

Fg
F , JWα = Fα, JWg = Fg, Jαα = J FααF ,

Jgg = J
Fgg
F , Jαg = J

Fαg
F .

The first order-condition with respect to consumption implies constant consumption-to-wealth
ratio:

fC = δ
J

C
= F =⇒ C

W
= δ

and hence σR = σD. Market clearing requires C = D, W = P , and θ = 1.
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Further assume EIS=1, then f (C, J) = δ (lnC − lnJ) J = Jδ [lnδ − lnF ]. Guess the solution
of the form

F (α, g) = exp (a0 + aαα+ agg) .

Plug everything in:

δ [lnδ − (a0 + aαα+ agg)]− 1
2α ‖σD + aασα + agσg‖2 + (g − δ)

+aαφα (ᾱ− α) + agφg (ḡ − g) + aαθσRσ
′

α + agθσRσ
′

g

+1
2a

2
1σασ

′

α + 1
2a

2
2σgσ

′

g + a1a2σασ
′

g = 0

Equalize coefficients near α, g, and const:

const: 0 = δlnδ − δa0 − δ + aαφαᾱ+ agφg ḡ + aασDσ
′

α + agσDσ
′

g

+1
2a

2
1σασ

′

α + 1
2a

2
2σgσ

′

g + a1a2σασ
′

g

α: 0 = −aα (δ + φα)− 1
2 ‖σD + aασα + agσg‖2

g: 0 = 1− ag (δ + φg)

The second equation immediately implies that aα < 0 and the third equations implies ag =
1

δ+φg > 0.

Asset prices Excess return:

λ = ασDσ
′

D −
(
aασDσ

′

α + agσDσ
′

g

)
= const + α× σDσ

′

D

Risk-free rate:

r = 1
dt
E
[
dC

C

]
− λ = g − λ

= const + g − α× σDσ
′

D

SDF The SDF is given by (Duffie and Epstein, 1992b):

dΛ
Λ ≡ f̄V

(
C, J̄

)
dt+

df̄C
(
C, J̄

)
f̄C
(
C, J̄

) .

dΛ
Λ = −rdt+ L (dlnfC (C, J)− αdlnJ) dZ

= −rdt− αdRM − (α− 1) aα︸︷︷︸
<0

σαdZ − (α− 1) ag︸︷︷︸
>0

σgdZ

where operator L (·) denotes a vector of loading on shocks and dRM ≡ σRdZ.
When risk aversion α ≥ 1, the price of α risk is negative and the price of g risk is positive.
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The SDF implies a three-factor model:

Rei,t = α× covt−1
(
Rei,t, R

e
M,t

)
+ aα (α− 1)× covt−1

(
Rei,t, dα

)
+ ag (α− 1)× covt−1

(
Rei,t, dg

)
Given the expression for λ and r above, this can be rewritten as:

Rei,t = α× covt−1
(
Rei,t, R

e
M,t

)
+ (α− 1)

[
aα
(
σDσ

′

D

)−1
+ ag

]
× covt−1

(
Rei,t, dλ

)
+ ag (α− 1)× covt−1

(
Rei,t, dr

)
Note that since λ and r are negatively correlated, the sign of λ risk may change due to inclusion

of factor r instead of g.

B Operationalizing the Model
B.1 SDF
We assume that asset returns are log normally distributed and specify an SDF of the form

−mt+1 = rft + 1
2Λ′tΣΛt + Λ′tεt+1

where mt is a log of an SDF, rft is the log nominal risk free rate, εt+1 is a N × 1 vector of shocks,
and Λt is the N × 1 vector of market prices of risk associated with these shocks at time t. Errors
εt+1 are assumed to be i.i.d. and standard normally distributed.

No-arbitrage implies

1 = Et [Mt+1Rt+1] = Et
[
emt+1+rt+1

]
0 = Et [mt+1] + Et [rt+1] + 1

2σ
2
t (mt+1)

+ 1
2σ

2
t (rt+1) + covt (rt+1,mt+1)

where r = log (R). Since Et [mt+1] + 1
2σ

2
t (mt+1) = −rft , we get

Et [rxt+1] + 1
2σt (rxt+1) = covt (rxt+1, εt+1) Λt

where rx = r − rf is excess return on an asset.
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B.2 Unconditional Pricing Relation
Let the conditional model be

Et (rxi,t+1) + 1
2vart (rxi,t+1) = covt (rxi,t+1, ft+1)× δf,t (21)

+ covt (rxi,t+1, λt+1)× δλ,t

where ft+1 =
[
f

(1)
t+1, f

(2)
t+1, ...f

(k)
t+1

]′
denotes k factors that are log excess returns, λt+1 = Et+1ft+2

denotes expected log returns (risk premia) on those returns starting one period ahead; δf,t and δλ,t
are of size k × 1 and denote corresponding factor risk prices.

Assumption 5. All covariances c′if ≡ covt (rxi,t+1, ft+1), c′iλ ≡ covt (rxi,t+1, λt+1), and variance
Vi = vart (rxi,t+1) are constant in time.

With this notation in hand, we can rewrite

Et (rxi,t+1) + Vi
2 = c

′
if × δf,t + c

′
iλ × δλ,t (22)

≡ Ci ×Dt

where Ci =
[
c
′
if c

′
iλ

]
and Dt =

[
δf,t
δλ,t

]
.

Assumption 6. Risk premia λt+1 = Et+1ft+2 follow a VAR(1) process:

λt+1 = Λ0 + Λλt + Ωλ,t+1

where Ωλare mean-zero errors uncorrelated with λt.

Theorem 9. Given the assumptions 1 and 2 and the conditional model (21), we obtain the following
linear pricing relation:

E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× δ̂f

+ cov (rxi,t+1, λt+1)× δ̂λ

≡ cov

(
rxi,t+1,

[
ft+1
λt+1

])
× D̃ (23)

where D̃ = Θ−1E [Dt]
Θ = I2k + Φfλ ×

[
Ik Λ′

]
Φfλ =

[
ΓfΣf + ΓfλΣ′fλ
ΓλΣ′fλ + ΓfλΣf

]

where I2k denotes an identity matrix of size 2k×2k, Σf = var [ft+1], Σfλ =
[
cf1λ cf2λ ... cfkλ

]′
,

Γfλ = cov [δf , δλ], Γf = var [δf ], Γλ = var [δλ].

Proof. Take expectations and apply the law of total covariance to the RHS of ?? to get
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E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× E [δf,t] + cov (rxi,t+1, λt+1)× E [δλ,t]

− cov (Etrxi,t+1, Etft+1)× E [δf,t] + cov (Etrxi,t+1, Etλt+1)× E [δλ,t] (24)

Using Assumption 5, we can write Etλt+1 = Λ0 + Λλt. Then

E (rxi,t+1) + Vi
2 = Ci ×D = cov

(
rxi,t+1,

[
ft+1
λt+1

])
×D

− cov (Etrxi,t+1, Etft+1)×
[
Ik Λ′

]
×D (25)

where D = E

[
δf,t
δλ,t

]
.

We now use Eq. 22 to substitute the expressions for two covariates in cov (Etrxi,t+1, Etft+1)
term

cov

(
c
′
if × δf,t + c

′
iλ × δλ,t −

Vi
2 ,Σf × δf,t + Σfλ × δλ,t −

1
2Vf

)
= c

′
ifvar [δf ] Σf + c

′
iλvar [δλ] Σ′fλ + c

′
ifcov [δf , δλ] Σ′fλ + c

′
iλcov [δf , δλ] Σf

= Ci ×
[

ΓfΣf + ΓfλΣ′fλ
ΓλΣ′fλ + ΓfλΣf

]
≡ Ci × Φfλ

where Vf = [Vf1 , Vf2 , ..., Vfk ]
′
.

Plugging this back in Eq. 25 and collecting terms on the LHS and RHS gives

Ci ×
[
I2k + Φfλ ×

[
Ik Λ′

]]
×D

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
×D

Denote
Θ = I2k + Φfλ ×

[
Ik Λ′

]
and assume that Θ is invertible. Then

Ci = cov

(
rxi,t+1,

[
ft+1
λt+1

])
×Θ−1

and hence

E (rxi,t+1) + Vi
2 = Ci ×D

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
×
{

Θ−1D
}

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
× D̃
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Theorem 10. When factor risk premia is measured over long horizon

E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× δ̃f

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ

the unconditional relation in Eq. 23 holds with Θ given by

Θ = I2k + Φfλ ×
[
Ik L

]
(26)

where λt+1:t+T = Et+1ft+2:t+T+1 denotes expected returns (risk premia) on factors f starting one
period ahead for T ≥ 1 periods, L = Λ× (Ik − Λ)−1 (Ik − Λ)T .

Proof. Using Assumption 616,

Etλt+1:t+T =
T∑
i=1

Etλt+i

= const+
T∑
i=1

Λiλt

= const+ Λ× (Ik − Λ)−1 (Ik − Λ)>

Plugging this into Eq. 24, the proof of Theorem 9 carries over with Λ replaced by L = Λ ×
(Ik − Λ)−1 (Ik − Λ)>.

B.2.1 Unbiasedness of the moving average estimator

For any information set Ft,

rxM,t+2:T =
T∑
j=2

rxM,t+j = E

 T∑
j=2

rxM,t+j |Ft

+
T∑
j=2

εM,t+j

and E
[∑T

j=2 εM,t+j |Ft
]

= 0.
Similarly, true unconditional covariances are equal,

cov (rxi,t+1, rxM,t+2:T ) = cov

rxi,t+1, E

 T∑
j=2

rxM,t+j |Ft

+ cov

rxi,t+1,
T∑
j=2

εM,t+j


︸ ︷︷ ︸

=0

(27)

and thus an unbiased and consistent estimator of the covariance on the RHS is also an unbiased
and consistent estimator of the covariance on the LHS.

16AR(1) assumption is sufficient condition but by no means necessary. Given sufficient persistence of risk
premia, moving average of future realized returns is a good non-parametric proxy for today’s risk premium.
Therefore, Etλt+1 will be approximately proportional to Etft+1 and the the proof of Theorem 1 carries over
without the AR(1) assumption. The assumption was made primarily for expositional reasons and in order
to quantify the factor of proportionality.
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B.3 Price of Expected Returns Risk
Theorem 11. When Assumptions 1, 2, and 4 hold, the sign of the price of expected returns risk
is preserved:

sign {E [δλ,t]} = sign
{
δ̂λ
}

where δλ,t is the price of expected returns risk in conditional model in ?? and δ̂λ is the price of
expected returns risk in either of conditional models in Eq. 7 and Eq. 8.

Proof. Apply Theorem 9 to this special case as follows:

Φfλ =
[

ΓfΣf + ΓfλΣ′fλ
ΓλΣ′fλ + ΓfλΣf

]
=
[
var [rxM ] var [δM ]

0

]

Therefore,

Θ = I2k + Φfλ ×
[
Ik Λ′

]
=

(
1 0
0 1

)
+
[
var [rxM ] var [δM ]

0

]
×
[

1 Λ
]

=
[

1 + var [rxM ] var [δM ] Λvar [rxM ] var [δM ]
0 1

]

Θ−1 =
[

(1 + var [rxM ] var [δM ])−1 − Λvar[rxM ]var[δM ]
1+var[rxM ]var[δM ]

0 1

]

where Λ is an AR(1) coefficient on the lagged price of market risk.
The derivation implies that the transformation D̃ = Θ−1D preserves the sign and the magnitude

of the price of expected returns risk.

B.4 Covariances
Conditional Covariances are Equal:

cov (Ri,t, E [Rm,t+1 |It ] |It−1 ) =
E {Ri,t · E [Rm,t+1 |It ] |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } =
E {E [Ri,t ·Rm,t+1 |It ] |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } =

E {Ri,t ·Rm,t+1 |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } =
E {Ri,t ·Rm,t+1 |It−1 } − E {Ri,t |It−1 } · E {Rm,t+1 |It−1 } =

cov (Ri,t, Rm,t+1 |It−1 )

Unconditional Covariances are Equal
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cov (Ri,t, E [Rm,t+1 |It ]) =
E {cov (Ri,t, E [Rm,t+1 |It ] |It−1 )} − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } =

E {cov (Ri,t, Rm,t+1 |It−1 )} − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } =
E {cov (Ri,t, Rm,t+1 |It−1 )} − E {Ri,t |It−1 } · E {Rm,t+1 |It−1 } =

cov (Ri,t, Rm,t+1)

B.5 Empirical Relation
Assume that the log excess returns are normally distributed, with constant variance and constant
risk free rate,

rxt ≡ log (Ret ) v N
(
µt, σ

2
)

where Re ≡ R
Rf

. Then conditional expected excess returns are given by

Et−1 (Ret ) = exp

(
µt + σ2

2

)

' µt + σ2

2

Relative errors of this approximation when using daily returns are negligible (less than 0.03% for
typical test assets used). Taking the unconditional expectations, this conditions down to

ERe = µ+ σ2

2

So when estimating a pricing equation, we use log returns to estimate covariances and simple
returns to estimate the LHS of Eq. 23, E (rxi,t+1) + Vi

2 .

C Bootstrap
We construct standard errors for risk prices using the moving block bootstrap procedure as follows.
There are N test assets, k factors, and T periodic observations. All moments are sample moments
taken as expectations across T . The general model is rt = C

′
λ + εt. C is an N × k matrix of

univariate covariances, Cov (rt, ft), where ft are the k factors. Notice the model is homoskedastic.
λ is the vector of risk prices, and εt is the vector of pricing errors. The null hypothesis is that λ = 0
and E [εt] = 0. The alternative is λ 6= 0.

Bootstrap procedure:

1. Estimate Ĉ and λ̂ via usual two-stage regression

2. Construct r̃t = rt − E [rt]

(a) r̃t is satisfies the null hypothesis of risk-neutrality and maintains all other properties of
the true dgp which are shared with the null. In particular, Cov (r̃t, ft) = Cov (rt, ft)
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3. Let L be the bootstrap window width. Let X =



r̃
′
1 f

′
1

...
...

r̃
′
T f

′
T

r̃
′
1 f

′
1

...
...

r̃
′
L f

′
L


. To generate bootstrap sample

i, randomly draw j from U [1, T ]. Let sj = X (i : i+ L, :) in Matlab’s indexing convention.
Append sj to Xi, which is initialized as [∅]. Repeat until Xi is of length T . Unless T/L is
an integer, the process yields a bootstrap sample of incorrect length. Build Xi to be at least
length T then trim.

4. Estimate the two-stage regression on sample Xi and save the estimate λ̂i

5. Repeat B times (we use 100,000 replications). The estimated λ̂i should be approximately
mean zero, and Std

(
λ̂i
)
≈ SE

(
λ̂
)

6. Perform usual asymptotic tests
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D Robustness
D.1 Alternative measure of expected returns
We show that our results are robust to using volatility of stock returns instead of future realized
returns as a factor.

Table 9: Risk Price Estimates

Model α δM δλ δsmb δhml δmom R2 MAPE

2-Factor ICAPM - 3.37 -197.45 - - - 45% 1.39%
(3.30) (-3.56)

2.57% 2.23 -137.07 - - - 63% 1.18%
(2.36) (1.98) (-2.30)

CAPM - 2.84 - - - - -238% 3.36%
(2.99)

4-Factor FF - 5.65 - 3.86 11.88 8.43 88% 0.65%
(4.32) (1.09) (3.49) (4.66)

1.80% 4.31 - 2.24 8.88 6.95 94% 0.48%
(4.45) (3.15) (0.62) (2.57) (3.68)

Notes: This table shows premia estimated from the 1963:07:01-2010:12:31 for the two-
factor ICAPM, the CAPM, and the augmented Fama-French model. The test assets are
value-weighted quintile portfolios sorted on ME, BE/ME, and Prior2-12. α is annual-
ized and "-" indicates that the intercept is restricted to zero. MAPE is average absolute
pricing error, annualized. Moving block bootstrap t-statistics are in parentheses

We use rolling one month daily volatility as our factor λ. Table 9 shows estimated risk prices and
Figure 8 depicts the overall fit of the model. Even though the fit deteriorates, it is still significant
and potent in explaining the cross-section of portfolio sorts.

We also estimated volatility using GARCH(1,1) model and perform the same analysis. The
results are essentially identical.
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Figure 8: Performance of the ICAPM and 4-Factor Fama-French models
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Notes: 2-Factor ICAPM with restricted intercept on the left, and 4-factor Fama-French
with restricted intercept on the right. m1-m5 correspond to momentum quintile portfolios
(losers to winners). bm1-bm5 correspond to book-to-market quintiles (growth to value).
me1-me5 correspond to size quintiles (large to small). smb, hml, and mom are the canonical
Fama-French-Carhart factors. S, H, and M are 5-1 quintile spread portfolios.
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