
=

rkfsbopfqv=lc=jf`efd^k=

=

 

Working Paper 
=
=

 
Adaptive Parametric and Nonparametric Multi-product 

Pricing via Self-Adjusting Controls 
 

Qi (George) Chen 
Stephen M. Ross School of Business  

University of Michigan 
 
 

Stefanus Jasin 
Stephen M. Ross School of Business  

University of Michigan 
 
 

Izak Duenyas 
Stephen M. Ross School of Business  

University of Michigan 

 
 

 
Ross School of Business Working Paper 

Working Paper No. 1258 
December 2014 

 
 
 

This work cannot be used without the author's permission.  
This paper can be downloaded without charge from the  

Social Sciences Research Network Electronic Paper Collection: 
ÜííéWLLëëêåKÅçãL~Äëíê~ÅíZORPPQSU=
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We study a multi-period network revenue management (RM) problem where a seller sells multiple products

made from multiple resources with finite capacity in an environment where the demand function is unknown

a priori. The objective of the seller is to jointly learn the demand and price the products to minimize his

expected revenue loss. Both the parametric and the nonparametric cases are considered in this paper. It is

widely known in the literature that the revenue loss of any pricing policy under either case is at least Ω(
√
k).

However, there is a considerable gap between this lower bound and the performance bound of the best

known heuristic in the literature. To close the gap, we develop several self-adjusting heuristics with strong

performance bound. For the general parametric case, our proposed Parametric Self-adjusting Control (PSC)

attains a O(
√
k) revenue loss, matching the theoretical lower bound. If the parametric demand function

family further satisfies a well-separated condition, by taking advantage of passive learning, our proposed

Accelerated Parametric Self-adjusting Control achieves a much sharper revenue loss of O(log2 k). For the

nonparametric case, our proposed Nonparametric Self-adjusting Control (NSC) obtains a revenue loss of

O(k1/2+ϵ logk) for any arbitrarily small ϵ > 0 if the demand function is sufficiently smooth. Our results

suggest that in terms of performance, the nonparametric approach can be as robust as the parametric

approach, at least asymptotically. All the proposed heuristics are computationally very efficient and can be

used as a baseline for developing more sophisticated heuristics for large-scale problems.

Key words : Revenue management; learning; self-adjusting control; maximum likelihood estimation; spline

approximation; asymptotic analysis

1. Introduction

Revenue management (RM), which was first implemented in the 1960s by legacy airline compa-

nies to maintain their edge in the competitive airline market, has recently become widespread in

many industries such as hospitality, fashion goods, and car rentals (Talluri and van Ryzin 2005).

The sellers in these industries face the common challenge of using a fixed capacity of perishable

resources to satisfy volatile demand of products or services. If the seller fails to satisfy the demand

appropriately, a considerable amount of profit1 is at stake either due to the zero salvage value of

unused capacity or the loss of potential revenue. Given the high stakes, RM is aimed at helping

firms to make optimal decisions such that the right products are sold to the right customer at the

right time and at the right price. One type of operational leverage often employed by the sellers

is dynamic pricing: By adjusting the prices over time, the seller can effectively control the rate at

which the demand arrives so that he can better match volatile demand with the available capacity.

1
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Despite its potential benefits (Talluri and van Ryzin 2005), the efficacy of dynamic pricing hinges

upon knowledge of how market demand responds to price adjustment, i.e., the knowledge of the

underlying demand as a function of price; this is not always accessible to the sellers. Although

many sellers have adopted sophisticated statistical methods, the estimated demand functions are

inevitably subject to estimation error, which in turn affects the quality of the sellers’ pricing

decisions. The negative impact of inaccurate demand function estimation is further magnified in

practice because typical RM industries tend to have an enormous sales volume; so, small error can

potentially lead to a huge loss in revenue in absolute term. Given this limitation, the key issue

faced by most RM practitioners is how to price dynamically when the demand function is either

not perfectly known or completely unknown a priori.

This paper studies joint learning and pricing problem in a general network RM setting with mul-

tiple products and multiple capacitated resources for both the parametric and the nonparametric

demand cases. For each case, we develop a heuristic that is not only easy to implement for large

scale problems but also has a provable analytical performance bound. Our bounds significantly

improve the performance bounds of existing heuristics in the literature.

Literature review. Our research draws on two streams of literature: the RM literature and

the statistics literature. A large body of RM literature has investigated the traditional dynamic

pricing problem when the seller knows the underlying demand function. The prevailing view is

that, even in this simple case where learning is not in play, computing an optimal pricing policy is

already computationally challenging. This is because the common technique for solving sequential

decision problems, the so-called Dynamic Program (DP), suffers from the well-known curse of

dimensionality. This curse of dimensionality is exacerbated in most RM industries because the

sellers typically have to manage thousands of prices on a daily basis.2 Due to this challenge, instead

of finding the optimal pricing policy, a considerable body of existing literature has focused on

developing computationally implementable heuristics with provably good performance. (See Bitran

and Caldentey (2003) and Elmaghraby and Keskinocak (2003) for a comprehensive review of the

literature.)

Within the RM literature, some papers develop heuristics based on solving a deterministic pricing

problem, i.e., the deterministic counterpart of the original stochastic problem, which is computa-

tionally much easier to solve than the DP. This approach was first proposed by Gallego and van

Ryzin (1994, 1997). They develop a static price control by first solving the deterministic pricing

problem at the beginning of the selling season and then using its optimal solution throughout

the selling season subject to the available capacity. Although the proposed heuristic is easy to

implement, its drawback is also obvious: It does not utilize the progressively revealed demand real-

ization, which leaves an open room for further improvement. Indeed, one intuitively appealing idea
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that has been studied in the literature involves re-optimizing the deterministic pricing problem in

order to incorporate the progressively revealed demand realization. Maglaras and Meissner (2006)

show that the re-optimized static control (RSC) cannot perform worse than static price control

without re-optimization. However, it is not clear whether re-optimization guarantees a much better

performance. A more recent study by Jasin (2014) shows that RSC actually performs much better

than static price control. Despite this, there are still computational challenges to implement RSC

in practice. Although solving the deterministic pricing problem is much easier than solving the

DP, frequent re-optimizations of the deterministic pricing problem may not be practically feasi-

ble in some industries such as airlines and hotels. To address this concern, Jasin (2014) proposes

a self-adjusting heuristic called Linear Rate Correction (LRC) that requires only a single opti-

mization at the beginning of the selling season and autonomously updates the prices according

to some pre-specified re-optimization-free update rules throughout the remaining selling season.

Surprisingly, this simple heuristic guarantees the same performance as RSC in an asymptotic sense.

Motivated by this result, in this paper, we develop self-adjusting heuristics akin to LRC when the

demand function is unknown and show that the proposed self-adjusting heuristics achieve the best

achievable performance bounds.

To develop a joint learning and pricing heuristic, we need to incorporate a demand learning

mechanism. This requires us to use and generalize some of the standard results in the statistics

literature. The statistics literature is replete with studies that attempt to estimate an unknown

function from a family of candidate functions based on noisy observations. Depending on the

assumptions being made about the candidate function family, this research area can be further

categorized into two subfields, the parametric case and the nonparametric case, both of which

have wide applications in practice. In the parametric case, researchers typically assume that the

candidate function family can be fully characterized by a fixed, finite, number of parameters (i.e.,

a parameter vector). Popular examples include the linear, exponential, and logit function fami-

lies with unknown parameters. Commonly used parametric estimation techniques include Least

Squares, Generalized Least Squares, and Maximum Likelihood (ML). (See Borovkov (1999) for

details.) Parametric models are widely used in industries where historical data is readily available

to the sellers to infer the structural form of the demand function. Unlike the parametric case, in

the nonparametric case, no information on the functional form is available. As one can imagine,

the estimation problem becomes much harder because now the seller may need to estimate the

function value at an infinite number of points (i.e., all points in the domain of the function) to fully

characterize the underlying function. As the dimension of the domain increases, the estimation dif-

ficulty increases exponentially, which leads to another type of curse of dimensionality. Despite this

technical challenge, there are applications where the nonparametric approach is more appropriate
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than the parametric approach, e.g., the case of new product introduction where market response

to the innovative product cannot be easily inferred from historical data of similar products.

Recent works on joint learning and pricing for the capacitated RM have combined statistical

learning method with dynamic pricing heuristic. In this stream of research, the central trade-off

is between the cost of learning the demand function (exploration) and the reward of using the

optimal price computed based on the estimated demand function (exploitation). The longer the

time the seller spends on learning the demand function, the less opportunity there is for the seller

to exploit the knowledge of the newly learned demand function. On the flip side, if the exploration

time is too short, it will result in poor demand estimation, which yields highly sub-optimal prices.

The important question is how to properly balance the exploration and exploitation to yield the

maximum possible expected revenue. As mentioned earlier, even in the simpler setting with known

demand function, determining the optimal policy is already difficult, let alone finding the optimal

policy when the demand function is unknown. Hence, a more reasonable goal is to find heuristics

that may not necessarily be optimal, but have provable good performance.

Following the standard convention in the literature, we use the revenue earned by a clairvoyant

who knows the demand function and faces no variability in demand arrival as a benchmark. Since

both the variability in demand realization and the informational uncertainty of the demand function

are not present, we can easily imagine that this benchmark always serves as an upper bound for

the expected revenue under any heuristic (e.g., Besbes and Zeevi (2012)). Indeed, it has been

shown in the literature that the revenue difference between the benchmark and any feasible pricing

heuristic is at least Ω(
√
k) for both the parametric and the nonparametric cases, where k represents

the size of the problem (see the last paragraph in §2 for more details). This result naturally

raises the following questions: (1) Is the lower bound on revenue loss actually tight? (2) Does

knowing the functional form of demand have a big impact on revenue performance (i.e., is there

a performance difference between the parametric and the nonparametric approaches)? We want

to highlight here that most existing literature on joint learning and pricing has focused primarily

on the setting of a single-leg RM (single product and single resource). Besbes and Zeevi (2009)

is among the first to investigate this problem under both the parametric and the nonparametric

cases. Their heuristic for the parametric case yields a revenue loss of O(k2/3 log0.5 k) whereas their

heuristic for the nonparametric case guarantees a revenue loss of O(k3/4 log0.5 k). This suggests

that there is a considerable gap between the performance of the parametric approach and the

nonparametric approach. Recent works by Wang et al. (2014) and Lei et al. (2014) have managed

to significantly shrink this gap; they develop sophisticated nonparametric heuristics that guarantee

a O(
√
k log4.5 k) and O(

√
k) revenue loss, respectively. Thus, for the setting of single-leg RM,

existing works in the literature have not only managed to completely close the gap between the
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performance of the parametric and the nonparametric approaches, at least in the asymptotic sense,

but also shown that the theoretical lower bound of Ω(
√
k) is tight.

The network RM problem with multiple products and multiple resources is significantly more

challenging than the single-leg RM. To the best of our knowledge, the only existing literature

that addresses the joint learning and pricing problem in the setting of network RM is Besbes and

Zeevi (2012). They consider the nonparametric case only and show that the performance bound

of their proposed heuristic is O(k(n+2)/(n+3) log0.5 k), where n is the number of products. Observe

that the fraction (n+ 2)/(n+ 3) in the bound highlights the curse of dimensionality for network

RM since the performance bound quickly deteriorates as the number of products n increases.

If, however, the true demand function is sufficiently smooth (e.g., infinitely differentiable), they

show that it is possible to construct a nonparametric heuristic that guarantees a O(k2/3+ϵ log0.5 k)

revenue loss for some ϵ > 0 that can be arbitrarily small. Thus, the best known nonparametric

heuristic for the general network RM setting in the literature has a performance guarantee no

better than O(k2/3 log0.5 k). As one can see, there is still a considerable gap between the lower

bound of Ω(
√
k) and the performance bound of O(k2/3 log0.5 k). It is then not clear whether, in

the general network RM, the lower bound can actually be attained by any heuristic (including the

parametric approach), and whether there is an inevitable performance gap between the parametric

approach and the nonparametric approach. We address these questions in our paper.

Proposed heuristics and our contributions. In this paper, we develop several heuristics for

the capacitated joint learning and pricing problem for both the parametric and the nonparametric

cases. Our heuristics combine statistical demand learning with a self-adjusting heuristic that is

based on a heuristic in Jasin (2014) for the known demand setting. Our contributions are as follows:

1. For the parametric case, we develop a heuristic called Parametric Self-adjusting Control (PSC)

that combines Maximum Likelihood (ML) estimation with self-adjusting price updates, and derive

an analytical performance bound. To the best of our knowledge, this is the first paper that develops

a joint learning and pricing heuristic in the network RM setting with parametric demand model.

We show that PSC is rate-optimal. To be precise, the revenue loss of PSC is O(
√
k) (Theorem

1), which matches the theoretical lower bound. In addition, we also show that if the parametric

demand function family satisfies the so-called well-separated condition, then we can outperform

the Ω(
√
k) lower bound. We develop an Accelerated Parametric Self-adjusting Control (APSC), a

variation of PSC, that attains a much sharper performance bound of O(log2 k) (Theorem 2).

2. For the nonparametric case, we develop a heuristic called Nonparametric Self-adjusting Con-

trol (NSC) that combines Spline Estimation with demand linearization and self-adjusting price
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updates. We also provide an analytical performance bound. To the best of our knowledge, this is

the first paper that introduces Spline Approximation Theory to the literature of joint learning and

pricing. We show that if the underlying demand function is sufficiently smooth, the revenue loss

of our heuristic is O(k1/2+ϵ logk) for some ϵ > 0 that can be arbitrarily small (Theorem 3). This is

the tightest bound of its kind (i.e., it significantly improves the O(k2/3+ϵ log0.5 k) bound of Besbes

and Zeevi (2012)) and is only slightly worse than the theoretical lower bound of Ω(
√
k).

3. From the operational perspective, our results indicate that, if demand is sufficiently smooth,

not knowing the functional form of demand function should not hurt the performance by too

much. Since the parametric approach is subject to model mis-specification, it can potentially hurt

performance (see Figure 6 for an illustration). Thus, if the seller is not very confident about the

functional form of the demand, using a nonparametric approach may yield a more robust revenue.

In addition, we want to point out that our heuristics are computationally very easy to implement

because they only require one (or two) deterministic optimization(s) throughout the selling season.

Given the enormous complexity and scale of typical RM applications, this is an obviously appealing

feature. Needless to say, if desirable, the firms can also incorporate occasional re-optimizations

during the exploitation stage to further improve the performance of our heuristics.

4. On the technical side, aside from the analysis of self-adjusting heuristics mentioned above, our

results also contribute to the broader literature in several ways. First, for the parametric estima-

tion, we employ a geometric argument to derive a large deviation bound for multidimensional ML

estimation with non-i.i.d. observations (Lemma 4). This expands our understanding on the behav-

ior of ML estimator in non-i.i.d. observation framework. Second, for nonparametric estimation, we

approximate the demand function using a linear combination of spline basis functions and derive

a large deviation bound for this estimated demand function and its Jacobian matrix (Lemma 7).

This result extends the application of Spline Approximation Theory to the case where observations

are subject to stochastic errors. Finally, we derive a nonparametric Lipschitz-type stability result

for a class of optimization problems (Lemma 8). The proof techniques used here are of independent

interest for the perturbation analysis of potentially other classes of optimization problems.

The remainder of the paper is organized as follows. We first formulate the problem in §2. We then

introduce our heuristics and evaluate their performances for the parametric and the nonparametric

case in §3 and §4 respectively. Finally, we conclude the paper in §5. All the proofs of the results

can be found in the online appendix.
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2. Problem Formulation

Notation. The following notation will be used throughout the paper. (Other notation will be

introduced when necessary.) We denote by R, R+, and R++ the set of real, nonnegative real, and

positive real numbers respectively. For column vectors a= (a1; . . . ;an) ∈ Rn, b = (b1; . . . ; bn) ∈ Rn,

we denote by a ≽ b if ai ≥ bi for all i, and by a ≻ b if ai > bi for all i. Similarly, we denote by

Z, Z+, and Z++ the set of integers, nonnegative integers, and positive integers respectively. We

denote by · the inner product of two vectors and by ⊗ the tensor product of sets or linear spaces.

We use a prime to denote the transpose of a vector or a matrix, an I to denote an identity

matrix with a proper dimension, and an e to denote a vector of ones with a proper dimension.

For any vector v = [vj] ∈ Rn, ||v||p := (
∑n

j=1 |vj|p)1/p is its p-norm (1 ≤ p ≤∞) and, for any real

matrix M = [Mij]∈Rn×n, ||M ||p := sup||v||p=1 ||Mv||p is its induced p-norm. For example, ||M ||1 =

max1≤j≤n
∑n

i=1 |Mij|, ||M ||2 = the largest eigenvalue of M ′M , and ||M ||∞ =max1≤i≤n
∑n

j=1 |Mij|.

(Note that ||M ||1 = ||M ′||∞.) For any function f :X→ Y , we denote by ||f(.)||∞ := supx∈X ||f(x)||∞
the infinity-norm of f . We use ∇ to denote the usual derivative operator and use a subscript to

indicate the variables with respect to which this operation is applied to. (No subscript ∇ means

that the derivative is applied to all variables.) If f :Rn →R, then ∇xf = ( ∂f
∂x1

; . . . ; ∂f
∂xn

); if, on the

other hand, f = (f1; . . . ;fn) :Rn→Rn, then

∇xf =


∂f1
∂x1

· · · ∂fn
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fn
∂xn

 .
Finally, we introduce some commonly used functional spaces. We denote by Cs(S) the set of

functions whose first sth order partial derivatives are continuous on its domain S, by Ps([a, b]) the

set of single variate polynomial functions with degree s on an interval [a, b]⊆R, e.g., P1([0,1]) is

the set of all linear functions on the interval [0,1].

The model. We consider the problem of a monopolist selling his products to incoming customers

during a finite selling season and aiming to maximize his total expected revenue. There are n

types of products, each of which is made up of a combination of a subset of m types of resources.

For example, in the airline setting, a product refers to a multi-flight itinerary and a resource

refers to a seat in a single-leg flight; in the hotel setting, a product refers to a multi-day stay and

a resource refers to a one-night stay at a particular room. We denote by A = [Aij] ∈ Rm×n the

resource consumption matrix, which characterizes the types and amounts of resources needed by

each product. To be precise, a single unit of product j requires Aij units of resource i. Without

loss of generality, we assume that the matrix A has full row rank. (If this is not the case, then
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one can apply the standard row elimination procedure to delete the redundant rows. See Jasin

(2014).) We denote by C ∈Rm the vector of initial capacity levels of all resources at the beginning

of the selling season. Since, in many industries (e.g., hotels and airlines), replenishment of resources

during the selling season is either too costly or simply not feasible, following the standard model in

the literature (Gallego and van Ryzin 1997), we will assume that the seller has no opportunity to

procure additional units of resources during the selling season. In addition, we also assume without

loss of generality that the remaining resources at the end of the selling season have zero salvage

value.

We consider a discrete-time model with T decision periods, indexed by t = 1,2, ..., T . At the

beginning of period t, the seller first decides the price pt = (pt,1; . . . ;pt,n) for his products, where pt

is chosen from a convex and compact set P =⊗n
l=1[pl, p̄l]⊆Rn of feasible price vectors. The posted

price pt, in turn, induces a demand, or sale, for one of the products with a certain probability. Here,

we implicitly assume that at most one sale for one product occurs in each period. This is without loss

of generality since we can always slice the selling season fine enough to guarantee that at most one

customer arrives in each period. Let ∆n−1 := {(x1; . . . ;xn) ∈ Rn|
∑n

i=1 xi ≤ 1, and xi ≥ 0 for all i}

denote the standard (n − 1)-simplex. Let λ∗(.) : P → ∆n−1 denote the induced demand rate or

purchase probability vector; we also call λ∗(.) the underlying demand function3. Contrary to most

existing RM literature where it is assumed that the seller knows λ∗(.) a priori, in this paper, we

simply assume that this function can be estimated using statistical learning approaches. (In §3, we

consider the parametric case where the seller knows the functional form of λ∗(.) but its parameters

are unknown. In §4, we consider the nonparametric case where the functional form of λ∗(.) is also

not known to the seller.) Let Λλ∗ := {λ∗(p) : p∈P} denote the convex set of feasible demand rates

and let Dt(pt) = (Dt,1(pt); . . . ;Dt,n(pt)) denote the vector of realized demand in period t under

price pt. It should be noted that, although demands for different products in the same period are

not necessarily independent, demands over different periods are assumed to be independent (i.e.,

Dt only depends on the posted price pt in period t). By definition, we have Dt(pt) ∈ D := {D ∈

{0,1}n :
∑n

j=1Dj ≤ 1} and E [Dt(pt)] = λ∗(pt). This allows us to write Dt(pt) = λ∗(pt) + ∆t(pt),

where ∆t(pt) is a zero-mean random vector. For notational simplicity, whenever it is clear from

the context which price pt is being used, we will simply write Dt(pt) and ∆t(pt) as Dt and ∆t

respectively. The sequence {∆t}Tt=1 will play an important role in our analysis later. Define the

revenue function r∗(p) := p · λ∗(p) to be the one-period expected revenue that the seller can earn

under price p. It is typically assumed in the literature that λ∗(.) is invertible (see the regularity

assumptions below). By abuse of notation, we can then write r∗(p) = p ·λ∗(p) = λ ·p∗(λ) = r∗(λ) to

emphasize the dependency of revenue on demand rate instead of on price. We make the following

regularity assumptions about λ∗(.) and r∗(.).
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Regularity Assumptions. There exists positive constants r̄, v, v̄ such that:

R1. λ∗(.) :P →Λλ∗ is in C2(P) and it has an inverse function p∗(.) : Λλ∗ →P that is in C2(Λλ∗);

R2. There exists a set of turn-off prices p∞j ∈ R ∩ {∞} for j = 1, . . . , n such that for any p =

(p1; . . . ;pn), pj = p∞j implies that λ∗
j (p) = 0.

R3. ||r∗(.)||∞ ≤ r̄ and r∗(.) is strongly concave in λ, i.e., −v̄I ≼∇2
λλr

∗(λ)≼−vI for all λ∈Λλ∗.

Assumption R1 is fairly natural and is easily satisfied by many demand functions, e.g., linear

demand, logit demand, and exponential demand. Assumption R2 is common in the literature. (See

Besbes and Zeevi (2009) and Wang et al. (2014).) In particular, the existence of turn-off prices p∞j

allows the seller to effectively shut down the demand for any product whenever needed, e.g., in the

case of stock-out. As for Assumption R3, the boundedness of r∗(.) follows from the compactness

of Λλ∗ and the smoothness of r∗(.). The strong concavity of r∗(.) as a function of λ is a standard

assumption in the literature and is satisfied by many commonly used demand functions such as

linear, exponential, and logit functions. It should be noted that although some of these functions,

such as logit, do not naturally correspond to a concave revenue function when viewed as a function

of p, they are nevertheless concave when viewed as a function of λ. This highlights the benefit of

treating revenue as a function of demand rate instead of as a function of price. Additional regularity

assumptions will be provided later.

Admissible controls and the induced probability measures. Let D1:t := (D1,D2, . . . ,Dt)

denote the history of the demand realized up to and including period t. Let Ht denote the σ-field

generated by D1:t. We define a control π as a sequence of functions π = (π1, π2, . . . , πT ), where πt

is a Ht−1-measurable real function that maps the history D1:t−1 to ⊗n
j=1[pj, p̄j]∪ {p∞j }. This class

of controls is often referred to as non-anticipating controls because the decision in each period

depends only on the accumulated observations up to the beginning of the period. Under policy π,

the seller sets the price in period t equal to pπt = πt(D1:t−1) almost surely (a.s.). Let Π denote the

set of all admissible controls. That is,

Π :=

{
π :

T∑
t=1

ADt(p
π
t )≼C and pπt = πt(Ht−1) a.s.

}
.

In this paper, we will often suppress the dependency of Π on λ∗ for notational brevity. Note

that even though the seller does not know the underlying demand function, the existence of the

turn-off prices p∞1 , . . . , p
∞
n guarantees that this constraint can be satisfied if the seller applies p∞j

for product j as soon as the remaining capacity at hand is not sufficient to produce one more unit

of product j. Let Pπt denote the induced probability measure of D1:t = d1:t under an admissible

control π ∈Π, i.e.,
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Pπt (d1:t) =
t∏

s=1

(1− n∑
j=1

λ∗
j (p

π
s )

)(1−∑n
j=1 ds,j) n∏

j=1

λ∗
j (p

π
s )
ds,j

 ,
where pπs = πs(d1:s−1) and ds = [ds,j] ∈ D for all s = 1, . . . , t. (By definition of λ∗(.), the term

1−
∑n

j=1 λ
∗
j (p

π
s ) can be interpreted as the probability of no-purchase in period s under price pπs .)

For notational simplicity, we will write Pπ := PπT and denote by Eπ the expectation with respect to

the probability measure Pπ. The total expected revenue under π ∈Π is then given by:

Rπ = Eπ
[

T∑
t=1

pπt ·Dt(p
π
t )

]
.

The deterministic formulation and performance metric. It is common in the literature to

consider the deterministic analog of the dynamic pricing problem as follows:

(P) JD := max
pt∈P

{
T∑
t=1

r∗(pt) :
T∑
t=1

Aλ∗(pt) ≼ C

}
,

or equivalently, (Pλ) JD := max
λt∈Λλ∗

{
T∑
t=1

r∗(λt) :
T∑
t=1

Aλt ≼ C

}
.

By assumption R3, Pλ is a convex program and is computationally easy to solve. (To avoid

triviality, we assume that Pλ has a feasible solution.) It can be shown that JD is in fact an upper

bound for the total expected revenue under any admissible control. That is, Rπ ≤ JD for all π ∈Π.

(See Besbes and Zeevi (2012) for more details.) This allows us to use JD as a benchmark to quantify

the performance of any admissible pricing control. In this paper, we follow the convention and

define the expected revenue loss of an admissible control π ∈Π as ρπ := JD−Rπ. Let λD denote the

optimal solution of Pλ and let pD = p∗(λD) denote the corresponding optimal deterministic price.

(Since r∗(λ) is strongly concave with respect to λ, by Jensen’s inequality, it can be proved that

the optimal solution is static, i.e., λt = λD for all t.) Also, let µD denote the optimal dual solution

corresponding to the capacity constraints in Pλ. Let Ball(x, r) be a closed Euclidean ball centered

at x with radius r. We state our fourth regularity assumption below:

R4. (Interior Assumption) There exists ϕ> 0 such that Ball(pD, ϕ)⊆P.

Assumption R4 is sufficiently mild. Intuitively, it states that the static price should neither be

too low that it attracts too much demand nor too high that it induces no demand. A similar interior

assumption has also been made in Jasin (2014) and Chen et al. (2014).

Asymptotic setting. As discussed in §1, most RM applications can be categorized as either

moderate or large size, i.e., the seller is selling a lot of products. Motivated by this, following the
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standard convention in the literature (e.g., Besbes and Zeevi (2009) and Wang et al. (2014)), in this

paper, we will consider a sequence of increasing problems where the length of the selling season and

the initial capacity levels are both scaled by a factor of k > 0. (One can interpret k as the size of the

problem. For example, k= 500 could correspond to a flight with capacity 500 seats and k= 5,000

could correspond to a large hotel with capacity 5,000 rooms.) To be precise, in the kth problem,

the length of the selling season and the initial capacity are given by kT and kC, respectively. The

optimal deterministic solution is still λD and the optimal dual solution is still µD. Let ρπ(k) denote

the expected revenue loss under an admissible control π ∈ Π for the problem with scaling factor

k. We are primarily interested in identifying the order of ρπ(k) for large k. (Intuitively, one would

expect that a better-performing control should have a revenue loss that grows relatively slowly

with respect to k.) The following notation will be used throughout the remainder of the paper. For

any two functions f : Z++ → R and g : Z++ → R+, we write f(k) = Ω(g(k)) if there exists M > 0

independent of k such that f(k)≥Mg(k). Similarly, we also write f(k) = Θ(g(k)) if there exists

M,K > 0 independent of k such that Mg(k) ≤ f(k) ≤Kg(k), and write f(k) = O(g(k)) if there

exists K > 0 independent of k such that f(k)≤Kg(k).

3. Parametric Demand Case

In this section, we consider the parametric demand case and develop two heuristics: Parametric

Self-adjusting Control (PSC) and Accelerated Parametric Self-adjusting Control (APSC). For the

general family of parametric demand, we show that PSC is rate-optimal, i.e., it guarantees a O(
√
k)

revenue loss. Thus, we have completely closed the gap with the theoretical lower bound of Ω(
√
k).

If the parametric family of demand satisfies a so-called “well-separated” condition, we show that

it is possible to further improve the O(
√
k) bound via APSC. In what follows, we discuss the

parametric function family and its estimation procedure first before describing the heuristics.

Parametric demand function family. Let Θ be a compact subset of Rq where q ∈ Z++ is

the number of unknown parameters. Under the parametric demand case, the seller knows that

the underlying demand function λ∗(.) equals λ(.;θ) for some θ ∈Θ. Although the function λ(.;θ)

is known, the true parameter vector θ∗ is unknown and needs to be estimated from the data.

Let Λθ := {λ(p;θ) : p ∈ P} denote the set of feasible demand rates under some parameter vector

θ ∈ Θ. We assume that Λθ is convex. (It can be shown that, under the most commonly used

parametric function families such as linear, logit, and exponential demand, Λθ is convex for all

θ ∈Θ.) The one-period expected revenue function is given by r(p;θ) := p ·λ(p;θ). We assume that

R1 and R3 hold not only for θ∗, but also for all θ ∈Θ. (See parametric family assumptions below.)

This means that the demand function λ(p;θ) is invertible; so, by abuse of notation, we can write
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r(p;θ) = p · λ(p;θ) = λ · p(λ;θ) = r(λ;θ). In addition to the regularity assumptions R1-R4, we also

need further assumptions on the parametric demand function family given below. These are all

standard assumptions in the literature and are immediately satisfied by commonly used demand

function families such as linear, logit and exponential.

Parametric Family Assumptions. There exist positive constants ω,v, v̄ such that for all p∈P

and for all θ ∈Θ:

P1. λ(p; .) : Θ→∆n−1 is in C1(Θ). For all λ,λ′ ∈Λθ, ||p(λ;θ)− p(λ′;θ)||2 ≤ ω||λ−λ′||2.

P2. For all 1≤ i, j ≤ n, ||λ(p;θ)−λ(p;θ∗)||2 ≤ ω||θ− θ∗||2, |
∂λj
∂pi

(p;θ)− ∂λj
∂pi

(p;θ∗)| ≤ ω||θ− θ∗||2.

P3. R1 and R3 hold for all θ ∈Θ.

Similar to P and Pλ defined in §2, we define a deterministic pricing problem for any θ ∈Θ as

(P(θ)) JDθ :=max
p∈P

{
T∑
t=1

r(pt;θ) :
T∑
t=1

Aλ(pt;θ)≼C

}
,

or equivalently, (Pλ(θ)) JDθ := max
λt∈Λθ

{
T∑
t=1

r(λt;θ) :
T∑
t=1

Aλt ≼C

}
.

We denote by pD(θ) (resp. λD(θ)) the optimal solution of P(θ) (resp. Pλ(θ)). In addition, we

also denote by µD(θ) the optimal dual solution corresponding to the capacity constraints of P(θ).

(Note that µD(θ) is also the optimal dual solution corresponding to the capacity constraints of

Pλ(θ).) Observe that P(θ∗) is equivalent to P defined in §2 in the sense that λD(θ∗) = λD, pD(θ∗) =

pD, µD(θ∗) = µD, and JDθ∗ = JD.

Maximum likelihood estimator. As noted earlier, the seller does not know the true parameter

vector θ∗. But, he can estimate this parameter vector using statistical methods. In this paper, we

will focus primarily on Maximum Likelihood (ML) estimation. (The analysis of other statistical

methods is beyond the scope of this paper.) The behavior of ML estimator has been intensively

studied in the statistics literature. It not only has certain desirable theoretical properties, but is

also widely used in practice. To guarantee the regular behavior of ML estimator, certain statistical

conditions need to be satisfied. To formalize these conditions, it is convenient to first consider the

distribution of a sequence of demand realizations when a sequence of q̃ ∈ Z++ fixed price vectors

p̃= (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ P q̃ have been applied. For all d1:q̃ ∈Dq̃, we define the distribution Pp̃,θ as

follows:

Pp̃,θ(d1:q̃) =
q̃∏
s=1

(1− n∑
j=1

λj(p̃
(s);θ)

)(1−∑n
j=1 ds,j) n∏

j=1

λj(p̃
(s);θ)ds,j

 .
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Let Ep̃θ denote the expectation with respect to Pp̃,θ. The PSC and APSC that we will develop

later use a set of “exploration prices” p̃ in the first L periods and then use maximum likelihood

estimation to estimate the demand parameters. The exploration prices that we use need to satisfy

the following conditions to guarantee the regular behavior of ML estimator:

Statistical Conditions on Exploration Prices. There exist constants 0< λmin < λmax < 1,

cf > 0, and a sequence of prices p̃= (p̃(1), . . . , p̃(q̃))∈P q̃ such that:

S1. Pp̃,θ(.) ̸= Pp̃,θ′(.) whenever θ ̸= θ′;

S2. For all θ ∈Θ, 1≤ k≤ q̃ and 1≤ j ≤ n, λj(p̃
(k);θ)≥ λmin and

∑n

j=1 λj(p̃
(k);θ)≤ λmax.

S3. For all θ ∈Θ, I(p̃, θ)≽ cfI where I(p̃, θ) := [Ii,j(p̃, θ)]∈Rq×q is a q by q matrix defined as

Ii,j(p̃, θ) = Ep̃θ
[
− ∂2

∂θi∂θj
logPp̃,θ(D1:q̃)

]
.

We call p̃ the exploration prices. Some comments are in order. S1 and S2 are crucial to guarantee

that the estimation problem is well-defined, i.e., the seller is able to identify the true parameter

vector by observing sufficient demand realizations under the exploration prices p̃. (If this is not

the case, then the estimation problem is ill-defined and there is no hope for learning the true

parameter vector.) The symmetric matrix I(p̃, θ) defined in S3 is known as the Fisher information

matrix in the literature, and it captures the amount of information that the seller obtains about the

true parameter vector using the exploration prices p̃. S3 requires the Fisher matrix to be strongly

positive definite; this is needed to guarantee that the seller’s information about the underlying

parameter vector strictly increases as he observes more demand realizations under p̃. All the results

in this section require assumptions P1-P3 and S1-S3 to hold.

Remark 1. We want to point out that, given the demand function family, it is easy to find such

exploration prices. For example, for linear and exponential demand function families, any q̃= n+1

price vectors p̃(1), . . . , p̃(n+1) constitute a set of exploration prices if (a) they are all in the interior

of P and (b) the vectors (1; p̃(1)), . . . , (1; p̃(n+1))∈Rn+1 are linearly independent. For logit demand

function family, any q̃ = 2 price vectors p̃1, p̃2 constitute a set of exploration prices if (a) they are

both in the interior of P and (b) p̃
(1)
i ̸= p̃

(2)
i for all i= 1, . . . , n. The choice of exploration prices is

related to the literature of optimum experimental design. Although it is possible to “optimally”

choose the exploration prices using techniques in optimal experiment design, it is beyond the scope

of this paper. Interested readers are referred to Pzman (2013) for more details.
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3.1. General Demand Function Family

We are now ready to discuss our heuristic for the general family of parametric demand. Our main

result in this section is to show that PSC is rate-optimal, i.e., it attains the performance lower

bound. It has been repeatedly shown in the literature (e.g., Besbes and Zeevi (2012), Broder and

Rusmevichientong (2012), Wang et al. (2014)) that, in the most general setting, no admissible

pricing control can have a better performance than Ω(
√
k), i.e., ρπ(k) = Ω(

√
k) for all π ∈ Π.

This obviously poses a fundamental limitation on the performance of any pricing control that we

could hope for. An important question of both theoretical and practical interest is whether this

lower bound is actually tight and whether there exists an easily implementable pricing control that

guarantees a O(
√
k) revenue loss. In the general parametric setting with only a single product and

without capacity constraints (i.e., the uncapacitated setting), this question has been answered by

Broder and Rusmevichientong (2012). If, on the other hand, the resources have limited capacity

(i.e., the capacitated setting), Lei et al. (2014) recently propose a hybrid heuristic that guarantees

a O(
√
k) revenue loss. Thus, the question of the attainability of the lower bound in the single-

product setting has been completely resolved. As for the general parametric setting with multiple

products and capacity constraints, we are not aware of any result that guarantees a O(
√
k) revenue

loss. The heuristics analyzed in Wang et al. (2014) and Lei et al. (2014) are not easily generalizable

to multiproduct setting. (This is because their heuristics exploit the structure of the optimal

deterministic solution in the single-product setting. Unfortunately, no analogs of such structures

exist in the multiproduct setting.) Moreover, the analysis of multiproduct setting with capacity

constraints introduce new subtleties that do not previously exist in the uncapacitated setting. A

family of self-adjusting controls, i.e., Linear Rate Correction (LRC), has been shown to perform

very well in the capacitated multiproduct setting when the demand function is known to the seller

(Jasin (2014)). Motivated by this result, we will adapt LRC and develop a family of self-adjusting

controls called Parametric Self-adjusting Control (PSC) that can be employed in the unknown

demand setting. We will show that PSC attains the best achievable revenue loss bound for the

joint learning and pricing problem. We explain PSC below.

Parametric Self-adjusting Control. The idea behind PSC is to divide the selling season into

two stages: the exploration stage, where we do price experimentations using the exploration prices,

and the exploitation stage, where we apply LRC using the parameter estimate computed at the end

of the exploration stage. The exploration stage lasts for L periods (L itself is a decision variable to

be optimized) while the exploitation stage lasts for T −L periods. Let Q ∈Rn×n be a real matrix

satisfying AQ=A and let θ̂L denote the ML estimate of θ∗ computed at the end of the exploration

stage. For all t≥ L+ 1, define ∆̂t :=Dt − λ(pt; θ̂L). Let Ct denote the remaining capacity at the

end of period t. The complete PSC procedure is given below.
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Parametric Self-adjusting Control (PSC)

Tuning Parameter: L

Stage 1 (Exploration)

a. Set exploration prices {p̃(1), p̃(2), ..., p̃(q̃)}. (See below.)

b. For t= 1 to L, do:

- If Ct−1 ≻ 0, apply price pt = p̃(⌊(t−1)q̃/L⌋+1) in period t.

- Otherwise, for product j = 1 to n, do:

- If product j requires any resource that has been depleted, set pt,j = p∞j .

- Otherwise, set pt,j = pt−1,j.

Stage 2 (Exploitation)

a. Compute the ML estimate θ̂L given p1:L and D1:L.

b. Solve the deterministic optimization Pλ(θ̂L).

c. For t=L+1 to T , do:

- If Ct−1 ≻ 0, apply the following price in period t

pt = p

(
λD(θ̂L)−

t−1∑
s=L+1

Q∆̂s

T − s
; θ̂L

)
.

- Otherwise, for product j = 1 to n, do:

- If product j requires any resource that has been depleted, set pt,j = p∞j .

- Otherwise, set pt,j = pt−1,j.

Please note that in the PSC the exploration prices that satisfy conditions S1-S3 are set as

described in Remark 1 and, as we will show below, an optimal tuning parameter for L is to set

L= ⌈
√
kT ⌉. In comparison to the original LRC, which uses pt = p(λD(θ∗)−

∑t−1

s=1
Q∆s

T−s ;θ
∗)4, since

the underlying parameter vector θ∗ is not known and the sequence {∆s} is not observable, we

use θ̂L and {∆̂s} as their substitute in PSC. Intuitively, one would expect that if θ̂L is sufficiently

close to θ∗, then PSC should retain the strong performance of LRC. This intuition, however, is

not immediately obvious. It should be noted that while LRC only deals with the impact of natural

randomness due to demand fluctuations, as captured in {∆s}, PSC also introduces a sequence of

systematic biases due to estimation error as captured in {∆̂s} (by definition, Eπ[∆̂s] ̸= 0). Thus,

despite the strong performance of LRC, it is not a priori clear whether linear rate adjustments

alone, without re-optimizations and re-estimations, is sufficient to reduce the impact of estimation

error on revenue loss. Interestingly, the answer is yes. In fact, PSC is rate-optimal.

Theorem 1. (Rate-Optimality of PSC) Suppose that we use L= ⌈
√
kT ⌉. Then, there exists

a constant M1 > 0 independent of k≥ 1 such that ρPSC(k)≤M1

√
k for all k≥ 1.
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As a comparison, if we apply the same static price pt = pD(θ̂L) throughout the exploitation

stage, subject to capacity constraints, then the optimal length of exploration stage is of the order

k2/3 and the resulting revenue loss is O(k2/3 log0.5 k) (Besbes and Zeevi 2009). This underscores an

important point that a simple and autonomous price update is sufficient to reduce the revenue loss

from O(k2/3 log0.5 k) to O(k1/2). Let E(t) := ||θ∗− θ̂t||2 and define ϵ(t) :=Eπ[E(t)2]1/2. The proof of

Theorem 1 depends crucially on the following lemmas.

Lemma 1. (Continuity of the Optimal Solutions) There exist constants κ > 0 and δ̄ > 0

independent of k > 0, such that for all θ ∈Ball(θ∗, δ̄),

a. pD(θ)∈Ball(pD(θ∗), ϕ/2), Ball(pD(θ), ϕ/2)⊆P and ||λD(θ∗)−λD(θ)||2 ≤ κ||θ∗ − θ||2,

b. µD(.) : Θ→Rm+ is continuous at θ∗;

c. The capacity constraints of Pλ(θ) that correspond to the rows {i : µDi (θ∗)> 0} are binding.

Lemma 2. (Bounds for ML Estimator with I.I.D Observations) There exist positive con-

stants η1, η2, η3 independent of k > 0, such that for all δ > 0, we have Pπ(E(L)> δ)≤ η1 exp(−η2Lδ2)

and ϵ(L)≤ η3/
√
L.

Lemma 3. (Exploitation revenue under PSC) Let δ̄ be as defined in Lemma 1. Let R̂PSC(k)

denote the revenue under PSC during the exploitation stage. There exists a constant M0 > 0 inde-

pendent of L> 0 and k≥ 3 such that for all k≥ 3,

kT∑
t=L+1

r(λD(θ∗);θ∗)−Eπ
[
R̂PSC(k)

]
≤M0

[
ϵ(L)2k +

logk

1−Pπ(E(L)> δ̄)
+ L +

1+ kPπ
(
E(L)> δ̄

)
1−Pπ(E(L)> δ̄)

]
.

Some comments are in order. Lemma 1 tells us that the deterministic problem P(θ̂L) is similar to

the deterministic problem P(θ∗) as long as the estimate θ̂L is sufficiently close to θ∗. In particular,

the Lipschitz continuity of λD(θ) is useful to quantify the size of perturbation in the deterministic

solution as a function of the estimation error. Lemma 2 is a typical statistical result that is needed

to bound the size of the estimation error at the end of the exploration stage. Lemma 3 is the key.

It characterizes the trade-off between exploration and exploitation by establishing the impact of

the length of the exploration stage on the total revenue loss incurred during the exploitation stage;

this, in turn, helps us to determine the optimal length of the exploration stage. We want to stress:

The result of Lemma 3 is rather surprising. To see this, note that, if the true parameter vector

is misestimated by a small error ϵ, then λD(θ̂L) is roughly ϵ away from λD(θ∗) as suggested by

Lemma 1(a). If the seller simply uses the static price pD(θ̂L) throughout the exploitation stage, then

the one-period revenue loss is roughly r(λD(θ∗);θ∗)− r(λD(θ̂L);θ
∗) ≈∇λr(λ

D(θ∗);θ∗) · (λD(θ∗)−
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Table 1 Performance comparison of STA and PSC

Revenue STA PSC
k upper bd. RL(Std.) % of RL RL(Std.) % of RL

100 24970 9876 (48) 39.5% 7711 (82) 30.9%
300 74911 20133 (169) 26.9% 14323 (205) 19.1%
1000 249702 45817 (443) 18.3% 29587 (437) 11.8%
3000 749107 97342 (1080) 13.0% 55633 (896) 7.4%
10000 2497023 223564 (2855) 9.0% 110542 (2012) 4.4%
30000 7491069 459024 (6274) 6.1% 205426 (4683) 2.7%
100000 24970230 1035790 (14572) 4.1% 371655 (9497) 1.5%
300000 74910689 2174142 (31567) 2.9% 702589 (21923) 0.9%

In this numerical example, we set n= 2,m= 2, A= [1,1; 0,2],C = [1; 1]. The demand model
is a logit function, and [λ1(p1, p2);λ2(p1, p2)] = (1 + exp(4− 0.015p1) + exp(8− 0.02p2))−1

[exp(4− 0.015p1); exp(8− 0.02p2)]. For each heuristic, we vary the scale k from 100 to 300000
and run 1000 trials for each k.

λD(θ̂L)) ≈Θ(ϵ), which leads to a total revenue loss of O(ϵk). This is in contrast to the analysis

in the uncapacitated setting where ∇λr(λ
D(θ∗);θ∗) = 0 (because in this case λD(θ∗) is the global

unconstrained optimizer of r(λ;θ∗)), and thus a smaller revenue loss of order ϵ2 is incurred in each

period, which yields a total revenue loss of O(ϵ2k) (see Broder and Rusmevichientong (2012)). This

explains why the results in the uncapacitated setting are not directly applicable to the capacitated

setting. In PSC, we use a feedback correction mechanism (i.e., the term −
∑t−1

s=L+1
∆̂s
T−s) that has

the ability to mitigate the impact of systematic error ϵ on revenue loss. To further highlight the

strength of self-adjusting price update, we report a numerical simulation in Table 1. Let STA

denote the control that uses the deterministic price in the exploitation stage instead of adjusting

prices using PSC’s price update formula. (This control is the network RM version of the control

in Besbes and Zeevi (2009).) Table 1 displays the revenue loss (RL) for PSC and STA and shows

that PSC significantly outperforms STA. Finally, it should be noted that, although our analysis

holds for all Q satisfying AQ= A, different choices of Q may lead to a different non-asymptotic

performance. In particular, from the proof of Lemma 3, it can be seen that the constant M0 is

O(1 + ||Q||22). Therefore, one approach to determine Q is to solve min{||Q||2 : s.t. AQ=A}. Note

that this optimization is a convex program and A is known to the seller before the selling season;

thus, the seller can solve the optimal Q off-line very efficiently.

3.2. Well-Separated Demand Function Family

The joint learning and pricing problem studied in §3.1 is very general: It allows both a general

parametric demand form and an arbitrary number of unknown parameters. In this general case,

the problem is naturally hard not only because active price experimentations are costly but also

because, as it turns out, not all prices are equally informative. An example of the so-called unin-

formative price can be seen in Figure 1. Intuitively, if the seller experiments with an uninformative
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Figure 1 Illustration of uninformative prices (left) and well-separated demand family (right)

Note. For a general demand function family (left), there may be uninformative prices at which the true demand

curve and some alternative demand curves intersect. If the seller happens to use that price, he cannot statistically

distinguish the true demand function from the alternative demand functions. This pathological phenomenon does not

occur in well-separated demand function family (right).

price, then he will not be able to statistically distinguish the true demand curve from the wrong

one regardless of the choice of the estimation procedure. Indeed, as pointed out by Broder and

Rusmevichientong (2012), this is the reason why we cannot improve on the Ω(
√
k) lower bound

for revenue loss in general. To guarantee a stronger performance bound than Θ(
√
k), we need to

impose additional assumptions on the demand model. One condition that has been studied in the

literature is the so-called well-separatedness of the family of demand functions proposed by Broder

and Rusmevichientong (2012) (see Figure 1). They show that, for the case of the uncapacitated

single-product RM, if the demand function family is well-separated, the Ω(
√
k) lower bound on rev-

enue loss can be reduced to Ω(logk). This is a significant improvement in terms of the potentially

achievable performance of an admissible pricing control. It is not, however, a priori clear whether

a similar result also holds in the more general network RM setting with multiple products and

capacity constraints. In what follows, we first provide the definition of well-separatedness condition

in multidimensional parameter space, and then we discuss a heuristic called Accelerated Parametric

Self-adjusting Control (APSC), which is specifically designed to address this setting.

Well-separated demand. To formalize the definition of well-separated demand, it is convenient

to first consider the distribution of a sequence of demand realizations D1:t = d1:t under a sequence

of prices pπ1:t ∈Pt generated by an admissible control π, which is defined as

Pπ,θt (d1:t) = Pp
π
1:t,θ
t (d1:t) =

t∏
s=1

(1− n∑
j=1

λj(p
π
s ;θ)

)(1−
∑n

j=1 ds,j) n∏
j=1

λj(p
π
s ;θ)

ds,j

 .
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Define W(λ̃min, λ̃max) := {p ∈ P :
∑n

j=1 λj(p;θ)≤ λ̃max, λj(p;θ)≥ λ̃min, j = 1, . . . , n, for all θ ∈Θ},
for some 0 < λ̃min < λ̃max < 1. We state the well-separated assumptions below. All the results in

this subsection require these additional assumptions to hold.

Well-Separated Assumptions. For any 0< λ̃min < λ̃max < 1, there exists cf > 0 such that:

W1. For all p∈W(λ̃min, λ̃max), Pp,θ(.) ̸= Pp,θ′(.) whenever θ ̸= θ′;

W2. For all θ ∈Θ, p∈W(λ̃min, λ̃max), I(p, θ)≽ cfI for I(p, θ) := [Ii,j(p, θ)]∈Rq×q defined as

[I(p, θ)]i,j =Epθ
[
− ∂2

∂θi∂θj
log Pp,θ(D)

]
=Epθ

[
− ∂

∂θi
log Pp,θ(D)

∂

∂θj
log Pp,θ(D)

]
.

W3. For any p1:t = (p1, . . . , pt)∈W(λ̃min, λ̃max)
t, log Pp1:t,θt (D1:t) is concave in θ on Θ.

Assumptions W1 and W2 are the multiproduct multiparameter analogs of the well-separated

condition given in Broder and Rusmevichientong (2012). A necessary condition for W1 to hold

is that there is no “redundancy”. This means that the number of products must be at least as

many as the number of the unknown parameters. If the number of products is strictly smaller

than the number of unknown parameters (i.e. n < q), then we are essentially trying to solve a

system of n equations with q unknowns, which may result in the non-uniqueness of θ. Note that

W2 is analogous to condition S3 and it ensures that seller’s information about the parameter

vector strictly increases as he observes more demand realizations under any p∈W(λ̃min, λ̃max). The

last condition W3 requires the log-likelihood function to behave nicely. This is easily satisfied by

many commonly used demand functions such as linear, logit, and exponential demand functions.

Note that this well-separatedness condition is not overly restrictive as it permits, for example

general demand functions with unknown additive market size (i.e., for each product j, its demand

is λj(p) = aj + gj(p) where the market size aj is unknown and gj : P → [0,1] is a known function)

and general demand functions with unknown multiplicative market size (i.e., for each product j,

its demand is λj(p) = ajgj(p) where the market size aj is unknown and gj : P → [0,1] is a known

function). For more examples of well-separated demand in the single-product/single-parameter

setting, see Broder and Rusmevichientong (2012).

Passive learning with APSC. Estimating the unknown demand parameters from a family

of well-separated candidate functions is considerably much easier than estimating the unknown

parameters in the general setting. As discussed earlier, in the general parametric case, not all prices

are equally informative. In contrast, under the well-separated condition, all prices are informative.

This means that the demand data under any price will help improve the estimation, and the seller

can continue to passively learn the demand parameter vector during the exploitation stage. The

following result on ML estimation is the analog of Lemma 2 for non-i.i.d observations when the

demand function family is well-separated.
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Lemma 4. (Estimation Error of ML Estimator with Non-I.I.D Observations) Fix some

0< λ̃min < λ̃max < 1. Suppose that an admissible control π satisfies ps = πs(D1:s−1)∈W(λ̃min, λ̃max)

for all 1 ≤ s ≤ t. Then, under W1-W3, there exist constants η4, η5, η6 > 0, such that ∀δ >

0,Pπ(E(t)> δ)≤ η4t
q−1 exp(−η5tδ2) and ϵ(t)≤ η6

√
[(q− 1) log t+1]/t.

Remark 2. The result derived in Broder and Rusmevichientong (2012) (Theorem 4.7) can be

viewed as a special case of ours. In particular, their result holds for the single product and single

parameter setting whereas our result holds for a multidimensional setting with multiple products

and multiple parameters. Although Hellinger distance and likelihood ratio are the common argu-

ments used in deriving bounds in both results, we want to point out that the multidimensional

parameter space is more complicated. To be precise, in the single dimension case, all candidate

parameters lie on a line. Therefore, if ML estimator θ̂t is δ away from θ∗, then there are only two

possibilities: Either θ̂t > θ∗ + δ or θ̂t < θ∗ − δ. Thus deriving the tail bound reduces to bounding

the probability that, given the observations, the likelihood of θ∗ is smaller than either of the two

points: θ∗ − δ and θ∗ + δ. In contrast, in the multidimensional parameter case, if ML estimation

error is larger than δ, one needs to bound the probability that the likelihood of θ∗ is smaller than

any of an infinite number of points that lie on the boundary of a multidimensional ball. This makes

our extension nontrivial. Another observation is that as the dimension of the parameter space

increases, the bounds deteriorate. This results in the different orders of regret bounds for the single

parameter and the multiple parameters cases. However, since the bounds do not deteriorate too

much, we are still able to attain a sharp performance bound for APSC when multiple parameters

need to be estimated.

Accelerated Parametric Self-adjusting Control (APSC) divides the selling season into two stages

similar to PSC: the initial exploration stage, which lasts L periods, and the exploitation stage,

which lasts T −L periods. However, unlike PSC, which stops learning the value of the underlying

parameter vector once it exits the exploration stage, APSC continues to incorporate passive learning

during its exploitation stage. To do this, APSC further divides the exploitation stage into small

segments with increasing length (see Figure 2). Let tz, z = 1, . . . ,Z + 1, be a sequence of strictly

increasing integers satisfying t1 =L, t2 =L+1, tZ+1 = T , tz =
⌈
tz+1−L

2

⌉
+L for all z = 2, . . . ,Z, and

let segment z contains all the periods in (tz, tz+1] := {tz + 1, tz + 2, ..., tz+1}. (Note that when T

and L are given, the sequence of integers is uniquely determined. It is not difficult to see that Z,

the number of segments obtained under the procedure mentioned above, satisfies Z ≤ ⌈log2(T −

L + 1)⌉ ≤ ⌈log2 T ⌉.) The idea is to re-estimate the parameter vector at the beginning of each

segment and use the new estimate to update the deterministic solution over time. The re-estimation
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Figure 2 Illustration of APSC

Note. In this example, the first L periods are dedicated to exploration and the remaining periods are divided into

five exploitation segments. The seller estimates the demand parameters and optimizes for the deterministic solution

at the beginning of period t1 + 1. The demand parameters are then re-estimated and the deterministic solution is

updated accordingly at the beginning of periods t2 +1, t3 +1, t4 +1, t5 +1.

periods are spaced in a way that updates occur more frequently during the early part of the selling

season, when our estimate is still highly inaccurate, and gradually phase out as the estimation

accuracy improves. Once the parameter estimate is updated, ideally, the seller can update his

deterministic solution by re-optimization. However, recall that frequent re-optimizations may still

be computationally challenging for large-scale RM applications. To address this concern, we propose

a re-optimization-free subroutine to update the deterministic solution at re-estimation points:

(1) At the beginning of segment 1 (i.e., the beginning of period L+ 1), solve the deterministic

optimization problem P(θ̂1) to obtain the exact deterministic solution λD(θ̂1); (2) At the beginning

of segment z ≥ 2 (i.e., the beginning of period tz + 1), use Newton’s method (see more details

below) to obtain an approximate solution of P(θ̂z). Since this procedure involves some subtleties,

we discuss this subroutine below before laying out the full description of APSC.

To better explain the intuition behind the subroutine, we first briefly review Newton’s method

for the multi-variate equality constrained problem. Let X be a convex set in Rn, f be a strongly

concave function, and F and G be a matrix and a vector, respectively, with a proper dimension.

We write down a nonlinear programming (NP) problem with equality constraints and its Karush-

Kuhn-Tucker (KKT) conditions below:

(NP) max
x∈X

{f(x) : Fx=G} , (KKT) {∇xf(x
∗) = F ′µ∗,Fx∗ =G} ,

where (x∗;µ∗) is the optimal pair of primal and dual solution. Since KKT conditions are both

necessary and sufficient for the prescribed setting, to solve NP, we only need to solve the system

of equations characterized by the KKT to which we will apply iterative Newton’s method. To be

precise, suppose that we have an approximate pair of primal and dual solution (xz;µz). Then, our
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next pair of solution is given by (xz+1;µz+1) = (xz;µz)+(∆x;∆µ), where the Newton steps ∆x and

∆µ are characterized by the following:

∇f(xz +∆x) = F ′(µz +∆µ)
F (xz +∆x) = G

≈ ∇f(xz)+∇2f(xz)∆x = F ′µz +F ′∆µ

Fxz +F∆x = G

⇔
[
∆x

∆µ

]
=

[
−∇2f(xz) F

′

F 0

]−1 [∇f(xz)−F ′µz
G−Fxz

]
.

The key result for Newton’s method is that it has a locally quadratic convergence rate, i.e., there

exists some positive constants γ and ξ such that if ||xz−x∗||2 ≤ γ, then ||xz+1−x∗||2 ≤ ξ||xz−x∗||22
(see Boyd and Vandenberghe (2004) for details). Our idea is to tap into this locally quadratic

convergence of Newton’s method, coupled with the convergence result of ML estimator in Lemma 4,

to develop a procedure for obtaining a sequence of solutions {λNTz }Zz=1 that closely approximates

{λD(θ̂tz)}Zz=1. To implement this, we need to approximate Pλ(θ̂tz) with an equality constrained

problem ECP(θ̂tz) (to be defined shortly) so that Newton’s iteration can be properly applied. Let

Ci − (AλD(θ̂t1))i denote the amount of slack for the ith capacity constraint in Pλ(θ̂t1) and define

B := {i :Ci/T − (AλD(θ̂t1))i ≤ η} to be the set of potential binding constraints in Pλ(θ
∗), where η

is a threshold level to be chosen by the seller. (Since we do not know which constraints are actually

binding in Pλ(θ
∗), we use B as our estimate. It can be shown that the constraints in B coincide with

the binding constraints in Pλ(θ
∗) with a very high probability as k→∞ if η is properly chosen.

We address how η should be chosen in Theorem 2 below.) Let B and CB denote the submatrix of

A and subvector of C with rows corresponding to the indices in B respectively. Similarly, let N

and CN denote the submatrix of A and subvector of C with rows corresponding to the indices not

in B respectively. Define the Equality Constrained Problem (ECP) as follows:

ECP(θ) max
x∈Rn

{
r(x;θ) : Bx=

CB
T

}
We denote by xD(θ) the optimal solution of ECP(θ). Note that if B coincides with the set of

binding constraints of Pλ(θ
∗) at the optimal solution λD(θ∗), then not only xD(θ∗) coincides with

λD(θ∗), but also a stability result similar to Lemma 1(a) holds: there exist positive constants δ̃, κ̃

such that for all ||θ− θ∗||2 ≤ δ̃, ||xD(θ)− λD(θ∗)||2 = ||xD(θ)− xD(θ∗)||2 ≤ κ̃||θ− θ∗||2. This means

that ECP(θ) closely approximates Pλ(θ
∗) when θ is close to θ∗. We define the Newton iteration for

ECP(θ̂tz) in segment z as follows:

Newtonz(x,µ) :=

[
x+∆x

µ+∆µ

]
=

[
x
µ

]
+

[
−R−1 B′

B O

]−1 [
G−B′µ
CB −Bx

]

=

[
x
µ

]
+

[
−R+RB′S−1BR RB′S−1

S−1BR S−1

][
G−B′µ
CB −Bx

]
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where R= [∇2
λλr(x; θ̂tz)]

−1, G=∇λr(x; θ̂tz), and S =BRB′. (This formula is derived using the for-

mula for Newton step in multi-variate equality constrained problem and the block matrix inversion

formula.) Let Sz := Λθ̂tz ∩ {λ ∈ Rn : Nλ ≤ CN ,Bλ = CB} for z = 1, . . . ,Z. We can now state the

Deterministic Price Update Procedure (DPUP) below which will be a part of the APSC described

later.

Deterministic Price Update Procedure

Tuning Parameter: η

For z = 1, do:
a. Solve Pλ(θ̂t1) and obtain λD(θ̂t1)
b. Identify B := {i :Ci/T − (AλD(θ̂t1))i ≤ η}
c. Set xNT1 := λD(θ̂t1), µ

NT
1 = (BB′)−1B∇λr(x

NT
1 ; θ̂t1), and let λNT1 := xNT1 .

For z ≥ 2, do:
a. Set (xNTz ;µNTz ) :=Newtonz(x

NT
z−1, µ

NT
z−1)

b. Let λNTz be the projection of xNTz on Sz, i.e., λNTz := argminλ∈Sz
||xNTz −λ||2

We briefly explain the intuition behind DPUP. Recall that our goal is to obtain an approximate

solution for each Pλ(θ̂tz), z = 1, . . . ,Z, without re-optimization. Since ECP(θ̂tz) and Pλ(θ̂tz) are

similar, the projection of xD(θ̂tz) on Sz should be a very good approximation of λD(θ̂tz). Therefore,

if we can find a good approximation of xD(θ̂tz), say xz, then by projecting xz on Sz, we can attain

a good feasible approximation of λD(θ̂tz). This is where we need to apply Newton’s method to

approximately solve each ECP(θ̂tz). In particular, segment 1 carries out two objectives: (1) We

want to find the set of potential binding constraints B and (2) we need to compute an initial pair of

approximate primal and dual solution (xNT1 ;µNT1 ) to ECP(θ̂t1). We use λD(θ̂t1) as our initial primal

solution xNT1 . The approximate dual solution µNT1 is computed using the formula proposed in Boyd

and Vandenberghe (2004). (Naturally, since ∇λr(x
D(θ̂t1); θ̂t1) =B′µD(θ̂t1) must hold at the optimal

primal and dual solution of ECP(θ̂t1), this suggests that we use µNT1 = (BB′)−1B∇λr(x
NT
1 ; θ̂t1).)

For any later segment z > 1, we first use (xNTz−1;µ
NT
z−1) as an initial feasible point for ECP(θ̂tz) and

apply a single iteration of Newton update to obtain a much better (due to the locally quadratic

convergence of Newton’s method) approximate solution (xNTz ;µNTz ) of ECP(θ̂tz). Then, we project

xNTz to Sz to obtain a feasible solution, λNTz , to Pλ(θ̂tz). By doing this, we manage to replace

the full-scale re-optimization of Pλ(θ̂tz) into one Newton update and one projection. It should

be noted that, although it is theoretically possible to apply two (or more) iterations of Newton

update, it is asymptotically unnecessary due to the locally quadratic convergence of Newton’s

method. Indeed, we show that ||xNTz − λD(θ∗)||2 =Θ(||θ̂tz − θ∗||2). Thus, in light of Lemma 1(a),
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Figure 3 Geometric illustration of DPUP for segment z = 2

Note. In segment 2, step (a) is to apply Newton’s method to the previous approximate solution xNT
1 to obtain a

better solution to ECP(θ̂t2), i.e., x
NT
2 . This solution may not be feasible to Pλ(θ̂t2), so in step (b), xNT

2 is projected

on S2, which is a ray in this example, to obtain λNT
2 .

xNTz approximates λD(θ∗) as well as λD(θ̂tz) in terms of the order of approximation error. (See

Figure 3 for an illustration of DPUP.) Below, we provide the full description of APSC heuristic.

Accelerated Parametric Self-adjusting Control (APSC)

Tuning Parameters: L,η

Stage 1 (Exploration)
a. Set exploration prices {p̃(1), p̃(2), ..., p̃(q̃)}. (See below.)
b. For t= 1 to L, do:

- If Ct−1 ≻ 0, apply price pt = p̃(⌊(t−1)q̃/L⌋+1) in period t,
- Otherwise, for product j = 1 to n, do:

- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

Stage 2 (Exploitation)
For time segment z = 1 to Z, do:

a. At the beginning of period tz +1, compute ML estimate θ̂tz
b. Use DPUP(η) to obtain λNTz .
c. For t= tz +1 to tz+1, do:

- If Ct−1 ≻ 0, apply the following price in period t

pt := p

(
λNTz −

t−1∑
s=t1+1

Q∆̂s

T − s
; θ̂tz

)
,

- Otherwise, for product j = 1 to n, do:
- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.
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Please note that in APSC the exploration prices that satisfy conditions S1-S3 are set as described

in Remark 1. Moreover, under the choice of L,η described in the following theorem, APSC has a

strong revenue performance as stated in the theorem below.

Theorem 2. Fix any ϵ > 0. Suppose that we use L= ⌈ log1+ϵ(kT ) ⌉ and η= log−ϵ/4 k. There exists

a constant M2 > 0 independent of k ≥ 3 such that ρAPSC(k)≤M2 [log
1+ϵ k+ (q − 1) log2 k] for all

k≥ 3.

Remark 3. Broder and Rusmevichientong (2012) has established that, under the well-separated

case with one unknown parameter, the best achievable lower bound on the performance of any

admissible pricing control in the uncapacitated single product case is Ω(logk) and this bound is

achievable by a heuristic called MLE-GREEDY. An open research question is whether this bound

is also achievable in the more general case of capacitated network RM with well-separated demand.

Our result gives a partial answer. We show that the revenue loss of APSC is worse than O(logk) by

a factor of log k. However, in the case where there is only one parameter to estimate, the revenue

loss of APSC is O(log1+ϵ k). Since ϵ can be chosen to be arbitrarily small, APSC almost attains

the best achievable performance bound for the special case with a single unknown parameter.

4. Nonparametric Demand Case

The results of §3 assume that the seller has a good prior knowledge of the functional form of the

demand function. Although this is a justifiable assumption in many cases, in other cases such as

new product launch where no historically relevant data is available, the seller is unlikely to know

the structural form of demand. Blindly assuming a parametric demand model may be inappropriate

and could potentially result in significant revenue loss if the parametric form is misspecified, e.g., a

seller who uses linear model to fit the data generated by a logit model (see the numerical simulation

in Besbes and Zeevi (2012)). This has motivated the study of the nonparametric approach in the

literature. Recently, Wang et al. (2014) and Lei et al. (2014) propose novel nonparametric heuristics

for the single-leg RM with O(
√
k log4.5 k) and O(

√
k) revenue loss, respectively. It is, however, not

clear whether their heuristics can be extended to the network RM setting because the proposed

nonparametric controls in both Wang et al. (2014) and Lei et al. (2014) heavily exploit the simple

structure of the optimal deterministic solution for the single-leg RM problem, which cannot be

generalized to the network setting. To the best of our knowledge, the only existing work in the

literature that studies the nonparametric approach in the network setting is Besbes and Zeevi

(2012). But, the performance of their heuristic quickly deteriorates when the number of products

n is large due to the curse of dimensionality. This is a bad news for practitioners who have a
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large number of products to sell. Fortunately, not all is lost: It is known in the literature that if

the underlying demand function has some additional properties, then the curse of dimensionality

can be mitigated. For example, by exploiting the smoothness property, Besbes and Zeevi (2012)

develop a heuristic based on Local Polynomial Approximation that attains a performance bound

of O(k2/3+ϵ log0.5 k) for any ϵ > 0. Although this bound does not deteriorate when n is large, there

is still a considerable gap with the Ω(
√
k) lower bound on revenue loss. Is it actually possible to

close this gap? Motivated by this question, in this section, we develop a nonparametric heuristic

that uses spline estimation and demand linearization for the exploration stage and then uses self-

adjusting control for the exploitation stage to further close the gap. It turns out that, if the

underlying demand function is sufficiently smooth, our heuristic guarantees a performance bound

of O(k1/2+ϵ logk) for any ϵ > 0, which almost attains the best achievable performance lower bound.

Nonparametric demand function and assumptions. Recall that we denote by λ∗(.) the

unknown demand function for the nonparametric case. Let s̄ denote the largest integer such that∣∣∣∂a1,...,anλ∗i (p)
∂p

a1
1 ...∂pann

∣∣∣ is uniformly bounded for all 0≤ a1, . . . , an ≤ s̄. We call s̄ the smoothness index. We

make the following smoothness condition.

Nonparametric Function Smoothness Assumptions.

N1. s̄≥ 2.

N2. There exists a constant W > 0 such that for all i = 1, . . . , n and p ∈ P and integers 0 ≤

a1, . . . , an ≤ s̄,
∣∣∣∂a1,...,anλ∗i (p)
∂p

a1
1 ...∂pann

∣∣∣≤W .

The above assumptions are fairly mild and are satisfied by most commonly used demand func-

tions, e.g., linear demand, polynomial demand with higher degree, logit demand, and exponential

demand with a bounded domain of feasible prices. Note that the smoothness index reveals how dif-

ficult it is to estimate the corresponding demand function: The larger the value of s̄, the smoother

the demand function is, and it is easier to estimate its shape because the function value cannot

have a drastic change locally.

Spline approximation of a deterministic function. To estimate a nonparametric function

from noisy observations, we first study a simpler problem of approximating a deterministic function.

To that end, we will use the results developed in Spline Approximation. (Although the Local Poly-

nomial Approximation used in Besbes and Zeevi (2012) also utilizes the smoothness of the demand

function to mitigate the curse of dimensionality in estimating multi-variate functions, we instead

choose to use Spline Approximation method because this approach yields a differentiable demand

function unlike the Local Polynomial Approximation. This differentiability not only enables a more
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efficient and stable computation for solving the deterministic optimization problem, but also facil-

itates the stability analysis of the deterministic optimization problem.) Spline functions have been

widely used in engineering to approximate complicated functions, and their popularity is primarily

due to their flexibility in effectively approximating complex curve shapes. This flexibility lies in

the piecewise nature of spline functions – a spline function is constructed by attaching piecewise

polynomial functions with a certain degree, and the coefficients of these polynomials are com-

puted in a way such that a sufficiently high degree of smoothness is ensured in the places where

the polynomials connect (the points where two piecewise polynomials are attached are called the

knots). More formally, for all l ∈ {1, . . . n}, let p
l
= xl,0 < xl,1 · · ·< xl,d < xl,d+1 = p̄l be a partition

that divides [p
i
, p̄i] into d+ 1 subintervals of equal length. Let G :=⊗n

l=1Gl denote the knots grid

where Gl = {xl,i}d+1
i=0 . We define the function space of tensor-product polynomial splines of order

(s; . . . ;s)∈Rn with knots at points in G as S(G, s) =⊗n
l=1Sl(Gl, s) where Sl(Gl, s) := {f ∈ Cs−2[p

l
, p̄l] :

f is a single-variate polynomial of degree s− 1 on each subinterval [xl,i, xl,i+1), i= 0, . . . , d.}.

One of the key questions that the theory of Spline Approximation addresses is the following:

given an arbitrary function f that satisfies N1-N2 and S(G, s), find a spline function g∗ ∈ S(G, s)

that approximates f well. Among the various approaches, one of the most popular approximations

is using the tensor-product B-Spline basis functions. This approach is based on the key observation

that S(G, s) is a linear space of dimension (d+ s)n. This implies that there exists a set of (d+ s)n

basis functions (this set is not unique), and any function in S(G, s) can be represented as a linear

combination of the basis functions. We propose to use tensor-product B-Spline basis functions,

denoted by {Ni1,...,in(x1, . . . , xn)}s+d,...,s+di1=1,...,in=1, as the set of basis functions. These functions are defined

formally in the Technical Details part (a) below, and are illustrated in Figure 4. Given the basis

functions, for any spline function g ∈ S(G, s), there exists a set of coefficients {ci1,...,in}
s+d,...,s+d
i1=1,...,in=1

such that g(x) =
∑s+d

i1=1 · · ·
∑s+d

in=1 ci1,...,inNi1,...,in(x) for all x∈P. Therefore, the problem of finding

g∗ is reduced to the problem of computing the coefficients for representing g∗, which we address

below in the Technical Details part (b). Since the procedure of spline approximation essentially

takes f as an input and outputs a function g∗, it can be viewed as a linear operator L : C0(P)→

S(G, s). Lemma 5 highlights some useful properties of L.

Technical Details for Spline Approximation: The B-Spline Approach

(a) Tensor-product B-Spline Basis Functions.

Step 1: For each l= 1, . . . , n, define an extended partition Gel := {yl,i}2s+di=1 , where

yl,1 = · · ·= yl,s = xl,0, yl,s+1 = xl,1, . . . , yl,s+d = xl,d, yl,s+d+1 = · · ·= yl,2s+d = xl,d+1.
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Step 2: For 1≤ i1, . . . , in ≤ s+ d, l= 1, . . . , n, define the tensor-product B-Spline basis function as

Ni1,...,in(x1, . . . , xn) =
∏n

l=1N
s
l,il

(xl), where

N s
l,i(xl) =

 (−1)s(yl,i+s− yl,i)[yl,i, . . . , yl,i+s](xl− y)s−1
+ , if xl,i ≤ xl <xl,i+1

0, otherwise

for all xl ∈ [p
l
, p̄l] for all l= 1, . . . , n and for all i= 1, . . . , d+ s, where (xl− y)+ =max{0, xl− y},

and [t1, . . . , tr+1]f(y) :=
∑r+1

i=1 f(ti)
∏r+1

j=1,j ̸=i(ti− tj)
−1 is the rth order divided difference of a single

variate real function f over the points t1, . . . , tr+1.

(b) Calculating the Linear Coefficients.

Step 1: For l= 1, . . . , n, i= 1, . . . , d+ s, let

τl,i,j = yl,i+(yl,i+s− yl,i)
j− 1

s− 1
and βl,i,j =

j∑
v=1

ξ
(v)
l,i ψ

(v−1)
l,i,j (0)

(v− 1)!
, for j = 1, . . . , s,

where

ξ
(v)
l,i =

(−1)v−1(v− 1)!

(s− 1)!
ϕ
(s−v)
l,i,s (0) and

ϕl,i,s(t) =
s−1∏
r=1

(t− yl,i+r), ψl,i,j(t) =

j−1∏
r=1

(t− τl,i,r), ψl,i,1(t)≡ 1.

Step 2: For any f = (f1; . . . ;fn)∈ C0(P), let {γl,i : C0([p
l
, p̄l])→R}n,s+dl=1,i=1 be a set of linear

functionals defined as follows:

γl,ifl =
s∑
j=1

βl,i,j[τl,i,1, . . . , τl,i,j]fl.

Define another set of linear functionals {γi1,...,in}
s+d,...,s+d
i1=1,...,in=1 such that

γi1,...,inf = γ1,i1 ◦ γ2,i2 · · · ◦ γn,inf,

where γl,il is understood as being applied to f as a function of xl. By the construction of γl,il and

the definition of divided differences, basic algebra yields:

γi1,...,inf =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

∏n

l=1 βl,il,jl∏n

l=1

∏jl
sl=1,sl ̸=rl

(τl,il,rl − τl,il,sl)
f(τ1,i1,r1 , . . . , τn,in,rn).

Step 3: Define a linear operator Ll : C0([p
l
, p̄l])→ Sl(Gl, s) as Llf(xl) =

∑s+d

i=1 (γl,if)N
s
l,i(xl), for all

l= 1, . . . , n. Similarly, define a linear operator L : C0(P)→ S(G, s) as

Lf(x1, . . . , xn) =
s+d∑
i1=1

· · ·
s+d∑
in=1

(γi1,...,inf)Ni1,...,in(x1, . . . , xn).
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Figure 4 Illustration of tensor-product B-Spline basis functions
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Note. In this example, the domain is [80,500]× [80,500], and s= 3, d= 1. The knots grid G consists of (d+2)n = 32 = 9

points, i.e., (80,80), (80,290), (80,500), (290,80), (290,290), (290,500), (500,80), (500,290), (500,500), which slice

the domain into 4 pieces (rectangles). A spline in S(G,3) is a biquadratic function on each piece, and is continuously

differentiable on the places where different pieces connect. Per our construction, there are (s+ d)n = 42 = 16 basis

functions. These hill-like basis functions are the building blocks for spline approximation.

Note that L=L1 ◦L2 ◦ · · · ◦ Ln, where this composition of linear operators is understood as Ll
being applied to a function of xl.

Step 4: Set g∗ =Lf .

Lemma 5. L is a bounded linear operator mapping C0(P) to S(G, s). Also, Lf = f for all f ∈

⊗n
l=1P

s−1([p
l
, p̄l]).

Spline approximation with noisy observations.We will now discuss the estimation of demand

function λ∗(.) by spline approximation with noisy observations. Let G̃ := {(τ1,i1,j1 ; . . . ; τn,in,jn) : 1≤

i1, . . . , in ≤ s+d,1≤ j1, . . . , jn ≤ s}. Note that the constants {γi1,...,inλ∗
j}
s+d,...,s+d
i1=1,...,in=1 depends on λ

∗
j (.)
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only via λ∗
j (p), p ∈ G̃. So, if the seller could observe the demand rate of product j under prices

in G̃, he could construct an approximation of λ∗
j (.) using a linear combination of tensor-product

B-splines. In our problem, the seller cannot observe λ∗
j (p) for p∈ G̃, but only its noisy observation

Dj(p) = λ∗
j (p) +∆j. To address this, we use empirical mean as a surrogate of λ∗

j (p) and propose

the following Spline Estimation algorithm to estimate the demand.

Spline Estimation

Input Parameters: L̃0, n, s; Tuning Parameter: d

Algorithm:

Step 1: Estimate λ∗(p) at points p∈ G̃. Set L0 = L̃0s
−n(s+ d)−n. For each p∈ G̃

a. Apply price p L0 times

b. Let λ̃(p) be the sample mean of the L0 observations.

Step 2: Construct spline approximation.

a. Calculate coefficients cji1,...,in ,1≤ i1, . . . , in ≤ s+ d, j = 1, . . . , n as:

cji1,...,in =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

λ̃j(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il,jl∏n

l=1

∏jl
sl=1,sl ̸=rl

(τl,il,rl − τl,il,sl)
.

b. Construct a tensor-product spline function λ̃(p) = (λ̃1(p); . . . ; λ̃n(p)), where

λ̃j(p) =
s+d∑
i1=1

· · ·
s+d∑
in=1

cji1,...,inNi1,...,in(p).

Note that L̃0 =L0(s+d)
nsn is the duration of the Spline Estimation algorithm. Let a∧ b denote

min{a, b}. The following important lemma states the errors of approximating λ∗(p) and ∇λ∗(p)

using λ̃(p) and ∇λ̃(p) respectively. (Note that by choosing s≥ 3, ∇λ̃ is well-defined.)

Lemma 6. Set d= (L̃
1/2
0 log−1 k)1/(s+n). If L̃0 ≥ log3 k and s≥ 3, then there exist positive constants

M4 and M5 independent of k≥ 3 such that for all k≥ 3,

Pπ
(
||λ∗(.)− λ̃(.)||∞ ≥M4(L̃

−1/2
0 logk)

s∧s̄
s+n

)
≤ 2

k
and

Pπ
(
||(∇λ∗(.)−∇λ̃(.))′||∞ ≥M5(L̃

−1/2
0 logk)

(s∧s̄)−1
s+n

)
≤ 2

k
.

Exploration algorithm. Using spline approximate λ̃(p), we formulate an approximate determin-

istic problem as follows:

(P̃) r̃D := max
p∈P

{
r̃(p) : Aλ̃(p)≼ C

T

}
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Figure 5 Illustration of locally linear approximation

Note. We propose to linearize the true nonparametric demand function λ∗(.) at pD and use this linear demand

function λ(.;θ∗) as a surrogate for the true demand function. By doing this, we “transform” the nonparametric case

into a parametric case with linear demand function family. Then, we linearize the estimated spline function λ̃(.) at p̄

to attain a linear demand function λ(.; θ̂), and view θ̂ as an estimate of the “true” θ∗.

where r̃(p) = p · λ̃(p). Let p̄ denote an optimal solution of P̃. Although p̄ does not equal pD =

argmaxp∈P{r(p) : s.t.Aλ(p)≼ C/T} due to estimation error, p̄ lies in close proximity of pD when

demand estimation error is small. The following lemma gives a Lipschitz-type “nonparametric”

perturbation result for the deterministic pricing problem.

Lemma 7. There exists a positive constant M6 independent of ||λ∗(.) − λ̃(.)||∞ and ||(∇λ∗(.) −

∇λ̃(.))′||∞, such that ||pD− p̄||∞ ≤M6max{||λ∗(.)− λ̃(.)||∞, ||(∇λ∗(.)−∇λ̃(.))′||∞}.

Since PSC is developed for the parametric demand case, to apply self-adjusting price update, we

need to find an appropriate parametric demand family to approximate λ∗(.). Note that we cannot

use the spline function λ̃(.) because its inverse function may not exist. A natural candidate is to use

the linear function family λ(p;θ) = a+Bp where a∈Rn,B ∈Rn×n. Let B′
1, . . . ,B

′
n be the columns in

B′, and define θ= (a;B′
1; . . . ;B

′
n)∈Rn(n+1). Under the linear function family, the most proper candi-

date for the “true parameter vector” is θ∗ = (λ∗(pD)−∇λ∗(pD) ·pD;∇λ∗
1(p

D); . . . ;∇λ∗
n(p

D)), which

corresponds to the linearization of λ∗(.) at pD (i.e., λ(.;θ∗)). Note that replacing λ∗(.) with λ(., θ∗)

in the deterministic problem will not change the deterministic solution, i.e., pD = pD(θ∗), due to the

KKT optimality condition. Therefore, as one may conjecture, if we can estimate θ∗ well and use the

corresponding estimated linear demand function to approximate the true demand function, we may

be able to apply self-adjusting update and guarantee a strong revenue performance. However, we

cannot simply use (λ̃(pD)−∇λ̃(pD);∇λ̃1(p
D); . . . ;∇λ̃n(pD)) as an estimate of θ∗. This is because,

even though λ̃(.) can approximate λ∗(.) well, we do not know pD. That said, Lemma 7 tells us that
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p̄ lies in close proximity of pD. This suggests that we use θ̂= (λ̃(p̄)−∇λ̃(p̄) · p̄;∇λ̃1(p̄); . . . ;∇λ̃n(p̄))
to approximate θ∗. (See Figure 5 for an illustration.) We state a lemma.

Lemma 8. There exists a constant M7 independent of k and L̃0 such that if L̃0 ≥ log3 k and s≥ 3,

then

Pπ
(
||θ∗ − θ̂||2 >M7ϵ(L̃0)

)
≤ 8

k

where ϵ(L̃0) = (logk/
√
L̃0)

((s∧s̄)−1)/(s+n).

Nonparametric self-adjusting control. We now introduce a heuristic that combines the self-

adjusting price update with the aforementioned exploration algorithm. Since the duration of Spline

Estimation is L̃0 periods, the self-adjusting price updates will be applied starting from period

L̃0 + 1. Let ∆̃t := ∆t + λ∗(pt) − λ(pt; θ̂). Let p
0(θ) denote the optimal solution to the following

optimization problem

(P0(θ)) r0 := max
p∈P

{
r(p;θ) : Aλ(p;θ)≼

CL̃0

T − L̃0

}
where r(p;θ) = p · λ(p;θ), CL̃0

is the capacity level at the end of period L̃0. Denote by λ0(θ) =

λ(p0(θ);θ). The heuristic is outlined below.

Nonparametric Self-adjusting Control (NSC)

Input parameters: n, s, Tuning Parameters: d,L0

Stage 1 (Exploration Phase 1 - Spline Estimation)

Apply Spline Estimation L̃0 periods to get λ̃(.).

Stage 2 (Exploration Phase 2 - Demand Linearization)
a. Solve P̃ and obtain the optimizer p̄.
b. Set θ̂= (λ̃(p̄)−∇λ̃(p̄) · p̄;∇λ̃1(p̄); . . . ;∇λ̃n(p̄)).
c. Let λ(p; θ̂) = â− B̂p, for all p∈P, where (â; B̂′

1; . . . ; B̂
′
n) = θ̂.

Stage 3 (Exploitation)

a. Solve P0(θ̂) for its static price p0(θ̂)
b. For t= L̃0 +1 to T , do:

- If Ct−1 ≻ 0, apply

pt = p0(θ̂)−∇pλ(λ0(θ̂); θ̂) ·
t−1∑

s=L̃0+1

Q∆̃s

T − s

- Otherwise, for product j = 1 to n, do:
- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.
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Table 2 Performance comparison of NSC and Misspecified PSC

Revenue NSC Misspecified
k upper bd. RL(Std.) % of RL RL(Std.) % of RL

100 24970 10034 (29) 40.2% 17774 (52) 71.2%
300 74911 27441 (56) 36.6% 53489 (93) 71.4%
1000 249702 41106 (483) 16.5% 178192 (175) 71.4%
3000 749107 78433 (553) 10.5% 535224 (298) 71.4%
10000 2497023 167193 (794) 6.7% 1785524 (560) 71.5%
30000 7491069 349278 (1668) 4.7% 5359727 (989) 71.5%
100000 24970230 744175 (4938) 3.0% 17865978 (1725) 71.5%
300000 74910689 1532658 (7808) 2.0% 53593646 (2973) 71.5%

The setting of this numerical example is the same as in the one in Table 1. NSC is the NSC
developed in this section with s= 3. Misspecified refers to the case where the seller uses PSC but
wrongly assumes that the demand model comes from the linear function family whereas in fact it is
a logit demand.

The following result states that when the tuning parameters are selected optimally, the perfor-

mance of NSC is close to the best achievable performance.

Theorem 3. (Near Rate-Optimality of NSC) Let L̃0 = k(s+n)/(2s+n−1)(logk)2(s−1)/(2s+n−1).

In addition, we set d= (L̃
−1/2
0 logk)−1/(s+n) = (

√
k log−1 k)1/(2s+n−1). Then, there exists a constant

M3 independent of k > 3 such that for all s≥ 3, we have

ρNSC(k) ≤ M3k
1
2+ϵ(n,s,s̄) logk, where ϵ(n, s, s̄) = 1

2

(
2s−2(s∧s̄)+n+1

2s+n−1

)
.

Note that unlike the heuristic proposed in Besbes and Zeevi (2012) which requires knowing s̄ as

input, our heuristic does not require the knowledge of the smoothness index s̄. More interestingly,

since most commonly used demand functions such as polynomial demand with arbitrary degree,

logit demand, and exponential demand are infinitely differentiable (i.e., s̄ can be arbitrarily large),

for any fixed ϵ > 0, we can select integers s≥ (n+1)/(4ϵ)− (n− 1)/2 such that the performance

under NSC is O(k1/2+ϵ logk). Since ϵ can be chosen to be arbitrarily small, the performance of

NSC is very close to the best achievable performance lower bound Ω(
√
k).

Per our discussions in §2, one drawback of the parametric approach is that the assumed demand

function family may be misspecified; in particular, if the seller chooses the wrong functional form

of the demand function and then blindly applies the parametric approach, the revenue loss can be

huge. Given this drawback, our result provides an important insight: Since the asymptotic revenue

loss gap between PSC and NSC is not too large when the demand function behaves nicely (i.e.,

the demand function is sufficiently smooth), if the seller is not very confident about the functional

form of the demand function, he may be better off using the nonparametric approach. Indeed, our

numerical illustration in Table 2 and Figure 6 show that model misspecification can potentially

have a great impact on revenue.
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Figure 6 Comparing the parametric approach and the nonparametric approach
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Note. Using the data in Table 1-2, this log-log plot of revenue loss over scaling factor k compares the parametric and

the nonparametric approaches. Note that the slope of the line represents the order of the revenue loss. The slopes for

Misspecified, PSC and NSC are 1.0, 0.56 and 0.61 respectively in this graph.

5. Closing Remarks

We study the joint learning and pricing of the capacitated network RM problem. We develop

heuristics for both the parametric and the nonparametric cases and evaluate their asymptotic

performances. For the general parametric case, we develop the PSC heuristic, which first learns

the demand function parameters by price experimentation and ML estimation, and then adjusts

the price over time according to the realized demand. The heuristic is computationally easy to

implement since it only requires one estimation and one optimization. Most strikingly, the heuristic

achieves the best achievable asymptotic performance as its revenue loss rate is exactly O(
√
k). This

is the first known heuristic that attains the exact revenue loss lower bound for the capacitated

network RM problems with general parametric demand. We also study the case where the family of

the candidate demand functions satisfies the so-called “well-separatedness” condition. Under this

condition the parameter estimation becomes much easier, and the seller can do exploitation while

at the same time passively learn demand function. We develop the APSC heuristic, a modification

of PSC, that reduces the revenue loss to O(log2 k). APSC is also a practical heuristic as it requires

one optimization and Θ(log2 k) re-estimations.

Finally, we study the nonparametric case where the seller lacks the information of the functional

form of demand. We develop a heuristic called NSC that uses Spline Estimation and demand lin-

earization during the exploration stage to construct a linear demand function that closely approx-

imates the nonparametric demand function around the optimal deterministic price. During the

exploitation stage, we apply self-adjusting price updates. Although it is well-known that nonpara-

metric learning in multidimensional problems suffers from the so-called “curse of dimensionality”,

we show that if the demand function is sufficiently smooth, then the performance under NSC is
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O(k1/2+ϵ logk) for any fixed ϵ > 0. Since the family of most commonly used demand functions are

infinitely differentiable, this result highlights an important point that not knowing the functional

form of the demand function should not affect the revenue as much as one initially think.

In conclusion, two gaps in the literature have been significantly closed. By developing PSC with

O(
√
k) revenue loss bound, we close the gap between the revenue loss lower bound Ω(

√
k) and

the best revenue loss upper bound for existing heuristics under the general parametric case. By

developing NSC with O(k1/2+ϵ logk) revenue loss bound with arbitrarily small ϵ > 0, we close the

gap between the best performance bounds of the parametric case and the nonparametric case when

the underlying demand function is sufficiently smooth. Our results suggest the wide applicability

of self-adjusting controls in dynamic pricing problem. These simple self-adjusting controls can be

used as a baseline for companies to develop more sophisticated dynamic pricing policies.

Endnotes

1. For example, in the airline industry, the benefit of using RM is roughly comparable to the

airline’s annual total profit, which is about 4%-5% of total revenue (Talluri and van Ryzin 2005).

2. A typical major US airline operates more than a thousand flights daily, each of which has more

than ten different booking classes that are characterized by different combinations of service level

and purchase restriction. Since passengers book tickets in advance, the airline needs to price not

only the tickets for the same-day flights but also those with departure dates several months in the

future. All these factors put together can easily translate into a daily pricing decision for millions

of itineraries.

3. Although we implicitly assume that the demand function is stationary, our heuristics can be

extended to accommodate some time-varying demand scenarios if the time-dependence of demand

function has certain structural form. For example, in the fashion industry, irrespective of the

condition of the market, the seller usually knows the fractions of the total sales that will be

realized at multiple milestones over the selling season. This can be captured by incorporating in our

demand model additively a time factor which is a known time-dependent fraction of an unknown

total market size. Note that this model can be handled under the current stationary estimation

framework by treating the unknown total market size as an additional parameter.

4. Jasin (2014) uses Q=HA for some H satisfying AH = I.
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EC.1. Proof of Results in Section 3.1

In this section, we first prove Theorem 1 in §EC.1.1 using Lemma 1-3 and then we prove these

lemmas in §§EC.1.2-EC.1.4 respectively. The proofs of other supporting lemmas which are used to

prove Lemma 3 are deferred to §EC.1.5.
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EC.1.1. Proof of Theorem 1

Throughout the proofs of this section, we fix π= PSC and assume without loss of generality that

T = 1. Let L= ⌈
√
k⌉. For k≥ 3, the total expected revenue loss under PSC is:

ρπ(k) ≤ Lr̄+M0

[
ϵ(L)2k+

logk

1−Pπ(E(L)> δ̄)
+L+

1+ kPπ
(
E(L)> δ̄

)
1−Pπ(E(L)> δ̄)

]
where the inequality follows because the revenue function in each period is bounded between 0 and

r̄ and also by Lemma 3. Since, by Lemma 2, kPπ(E(L)> δ̄)≤ kη1 exp(−η2δ̄2⌈
√
k⌉)→ 0 as k tends

to infinity, there exists a constant K ≥ 3 such that for all k >K, we have kPπ(E(L)> δ̄)< 1
2
and

(1−Pπ(E(L)> δ̄))−1 < 2. So, for all k >K, we can bound

ρπ(k) ≤ ⌈
√
k⌉r̄+M0 η

2
3 k

⌈
√
k⌉

+2M0 logk+M0⌈
√
k⌉+3M0

≤ 2
√
kr̄+M0 η

2
3

√
k+2M0

√
k+2M0

√
k+3M0

√
k

≤ (2r̄+M0η
2
3 +7M0)

√
k,

where η3 is as in Lemma 2. As for k < K, we have ρπ(k) ≤ Kr̄. The result of Theorem 1 then

follows by letting M1 =max{Kr̄,2r̄+M0η
2
3 +7M0}. This completes the proof. �

EC.1.2. Proof of Lemma 1

We will prove each part of the lemma in turn. Let δ̄ = min{δ1, δ2} where δ1 and δ2 are strictly

positive constants to be defined shortly.

Proof of part (a). This is an immediate corollary of Lemma 7 in §4. Note that, by assump-

tion P2, we have ||λ(p;θ∗) − λ(p;θ)||∞ ≤ ||λ(p;θ∗) − λ(p;θ)||2 ≤ ω||θ∗ − θ||2 and ||(∇λ(p;θ∗) −
∇λ(p;θ))′||∞ = max1≤i≤n

∑n

j=1 |
∂λi
∂pj

(p;θ) − ∂λi
∂pj

(p;θ∗)| ≤ nω||θ∗ − θ||2 for all θ ∈ Θ, p ∈ P. Hence,

||λ(.;θ∗)− λ(.;θ)||∞ = supp∈P ||λ(p;θ∗)− λ(p;θ)||∞ ≤ ω||θ∗ − θ||2 and ||(∇λ(.;θ∗)−∇λ(.;θ))′||∞ =

supp∈P ||(∇λ(.;θ∗) −∇λ(.;θ))′||∞ ≤ nω||θ∗ − θ||2. Therefore, by Lemma 7, ||pD(θ∗) − pD(θ)||∞ ≤
nM6ω||θ∗−θ||2. Let δ1 = ϕ(2n3/2M6ω)

−1. For all θ satisfying ||θ−θ∗||2 ≤ δ̄≤ δ1, we have ||pD(θ∗)−
pD(θ)||2 ≤ n1/2||pD(θ∗) − pD(θ)||∞ ≤ n3/2M6ωδ1 ≤ ϕ/2. Hence, pD(θ) ∈ Ball(pD(θ∗), ϕ/2). Since

Ball(pD(θ∗), ϕ)⊆P by R4, we conclude that Ball(pD(θ), ϕ/2)⊆P.

Since λ(.;θ∗) is continuously differentiable with respect to p ∈ P as implied by P3, and P is

compact, there exists a constant K > 0 independent of k > 0 such that

||λD(θ∗)−λD(θ)||2 = ||λ(pD(θ∗);θ∗)−λ(pD(θ);θ)||2

≤ ||λ(pD(θ∗);θ∗)−λ(pD(θ);θ∗)||2 + ||λ(pD(θ);θ∗)−λ(pD(θ);θ)||2

≤ K||pD(θ∗)− pD(θ)||2 +ω||θ∗ − θ||2

≤ (ω+n3/2KM6ω)||θ∗ − θ||2,
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where the second inequality also follows by P2. The result follows by letting κ= ω+ n3/2KM6ω.

Part (a) is proved.

Proof of part (b). Since Pλ(θ) is a convex program for all θ ∈Θ, by the Karush-Kuhn-Tucker

optimality condition, ∇λr(λ
D(θ);θ) = A′µD(θ). By our assumption, A has full row rank. Thus,

there exists some m by n matrix Ā such that µD(θ) = Ā∇λr(λ
D(θ);θ). Since the right hand side is

continuous at θ∗, we conclude that µD(.) is continuous at θ∗ as well. Part (b) is proved.

Proof of part (c). Let µ = min1≤i≤n{µDi (θ∗) : µDi (θ∗) > 0}. Since µD(.) is continuous at θ∗ by

part (b), there exists δ2 > 0 such that ||µD(θ)−µD(θ∗)||2 <µ for all θ ∈Ball(θ∗, δ2). This means for

θ ∈ Ball(θ∗, δ̄), we also have µDi (θ)> 0 whenever µDi (θ
∗)> 0, which implies that the corresponding

constraints in P(θ) are binding due to Karush-Kuhn-Tucker condition. Part (c) is proved. �

EC.1.3. Proof of Lemma 2

The proof of Lemma 2 is a multiproduct extension of Lemma 3.7 in Broder and Rusmevichientong

(2012), and is based on a well-known result in Maximum Likelihood Theory. We state this result

in Theorem EC.1 (see §EC.4.1).

To apply Theorem EC.1 to our setting, we simply need to verify conditions (i)-(iv). First, note

that Θ is a compact subset of Rq and Dq̃ is a discrete-valued sample space. Conditions (i) and (iv),

they are immediately satisfied because of S1 and S3. As for conditions (ii) and (iii), recall that

∣∣∣∣∇θ logPp̃,θ(D1:q̃)
∣∣∣∣

2
=

∣∣∣∣∣
∣∣∣∣∣
q̃∑
s=1

[(
1−

n∑
j=1

Ds,j

)
∇θ log

(
1−

n∑
j=1

λj(p̃
(s);θ)

)
+

n∑
j=1

Ds,j∇θ logλj(p̃
(s);θ)

]∣∣∣∣∣
∣∣∣∣∣
2

≤
q̃∑
s=1

∣∣∣∣∣
∣∣∣∣∣∇θ log

(
1−

n∑
j=1

λj(p̃
(s);θ)

)∣∣∣∣∣
∣∣∣∣∣
2

+
n∑
j=1

∣∣∣∣∇θ logλj(p̃
(s);θ)

∣∣∣∣
2

 .

By Assumption P1 and S2, for all 1 ≤ s ≤ q̃ and 1 ≤ j ≤ n, λj(p̃
(s); .) ∈ C1(Θ) and is bounded

away from zero, and
∑n

j=1 λj(p̃
(s); .) ∈ C1(Θ) is also bounded away from one. These imply that

||∇θ log
(
1−

∑n

j=1 λj(p̃
(s); .)

)
||2 and ||∇θ logλj(p̃

(s); .)||2, j = 1, . . . , n, are both continuous functions

of θ for s= 1, . . . , q̃ and are, due to compactness of Θ, bounded. So, (ii) follows. As for (iii), note

that Pp̃,θ(D1:q̃) is continuous in θ and it is also bounded away from zero. (In fact, Pp̃,θ(D1:q̃) ≥

[λnmin(1−λmax)]
q̃ by S2.) So, θ→

√
Pp̃,θ(D1:q̃) is differentiable on Θ for all D1:q̃ ∈Dq̃. We have thus

verified all the conditions of Theorem EC.1.

We will now use Theorem EC.1 to prove Lemma 2. A direct application of Theorem EC.1

leads to Pπ(E(L) > δ) ≤ η1 exp(−η2Lδ2). Also, since ϵ(L)2 = Eπ [E(L)2] =
∫∞
0

Pπ(E(L)2 ≥ x)dx =∫∞
0

Pπ(E(L)≥
√
x)dx≤

∫∞
0
η1e

−η2Lxdx= η1/(η2L), the result follows by taking η3 =
√
η1/η2. �
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EC.1.4. Proof of Lemma 3

Fix π = PSC. Without loss of generality, we assume that T = 1. Let A denote the event that

E(L)≤ δ̄. We first define a stopping time and show some useful properties of this stopping time

on the event of A. Let λL > 0 be such that AλLe ≺ C. Define ψ = min{ϕ,2λL}
max{2,4ω||Q||2}

and define the

cumulative demand at the end of period t as St :=
∑t

s=1Ds. Let τ be the minimum of k and the

first time t≥L+1 the following condition is violated:

(C1) ψ >

∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣SL−LλLe

k− t

∣∣∣∣∣∣∣∣
2

.

Let Ct denote the available capacity level at the end of period t. We denote by λ̂t := λD(θ̂L)−∑t−1

s=L+1
Q∆̂s

k−s the demand rate that the seller believes he induces in period t, and by λt :=

λ(p(λ̂t; θ̂L);θ
∗) the actual induced demand rate upon applying price p(λ̂t; θ̂L) in period t. Note that,

by definition, we can also write λ̂t = λ(p(λ̂t; θ̂L); θ̂L). We state two useful lemmas.

Lemma EC.1. For sample paths in A, we have Ct ≻ 0 and λ̂t ∈Λθ̂L for all L+1≤ t < τ .

Lemma EC.2. There exists K0 > 0 independent of k≥ 3 such that for all k≥ 3

Eπ[k− τ |A] ≤ K0

[
logk

1−Pπ(E(L)> δ̄)
+ ϵ(L)2k+L

]
.

Lemma EC.1 essentially says that, on A, the remaining capacity Ct is always positive and the

price p(λ̂t; θ̂L) is always feasible before τ , and Lemma EC.2 establishes a bound for the expected

remaining time after τ . Define rD(θ∗) := r(λD(θ∗);θ∗) and let Rπ
t denote the revenue earned during

period t under policy π. Let ∆̄t :=Rπ
t − r(λt;θ

∗). We have:

k∑
t=L+1

rD(θ∗)−Eπ
[
R̂π(k)

]
= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)−Rπ

t

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]

= Eπ
[

τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]
−Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ
[

τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
Pπ(A)+ r̄kPπ(Ac)−Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ
[

τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄kPπ(Ac)+ r̄

= Eπ
[

τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄+ r̄kPπ(E(L)> δ̄). (EC.1)
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The first inequality follows because r̄ is the upper bound on revenue rate for each period, which is

also the maximum possible revenue loss for a single period on average. As for the second inequality,

note that {∆̄t}k−1
t=L+1 is a martingale difference sequence with respect to {Ht}k−1

t=L+1. Thus, by the

Optional Stopping Time Theorem, we have −Eπ
[∑τ−1

t=L+1 ∆̄t

]
= −Eπ

[∑τ

t=L+1 ∆̄t

]
+ Eπ

[
∆̄τ

]
≤ r̄,

so the second inequality holds. We now analyze the first two terms in (EC.1). By Taylor expansion

and R3,

Eπ
[

τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄

≤Eπ
[

τ−1∑
t=L+1

∇r(λD(θ∗);θ∗) · (λD(θ∗)−λt)

∣∣∣∣∣A
]
+
v̄

2
Eπ
[

τ−1∑
t=L+1

||λD(θ∗)−λt||22

∣∣∣∣∣A
]

+r̄ (Eπ[k− τ |A] + 2) (EC.2)

By Lemma EC.1, λ̂t = λD(θ̂L)−Q
∑t−1

s=L+1
∆̂s
k−s ∈ Λθ̂L before τ . Also, recall that, by definition,

∆̂t =Dt− λ̂t =∆t+λt− λ̂t. So, we can write the first term in (EC.2) as follows:

Eπ
[

τ−1∑
t=L+1

∇r(λD(θ∗);θ∗) · (λD(θ∗)−λt)

∣∣∣∣∣A
]

=Eπ
[

τ−1∑
t=L+1

µD(θ∗)
′
A
(
λD(θ∗)− λ̂t+ λ̂t−λt

)∣∣∣∣∣A
]

=Eπ
[

τ−1∑
t=L+1

µD(θ∗)
′

(
AλD(θ∗)−AλD(θ̂L)+

t−1∑
s=L+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]

=Eπ
[

τ−1∑
t=L+1

µD(θ∗)
′
(
AλD(θ∗)−AλD(θ̂L)

)∣∣∣∣∣A
]

+Eπ
[

τ−1∑
t=L+1

µD(θ∗)
′

(
t−1∑

s=L+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]
. (EC.3)

By Lemma 1(c), for all sample paths on A, the set of constraints of P(θ∗) that have nonzero

optimal dual variables also have nonzero optimal dual variables in P(θ̂L) and are thus binding at

the optimal solution λD(θ̂L). This implies that the first expectation in (EC.3) is zero because, for

all i, either we have µDi (θ
∗) = 0 or (AλD(θ∗))i− (AλD(θ̂L))i = 0. As for the second term of (EC.3),

we can further write:

Eπ
[
µD(θ∗)′

τ−1∑
t=L+1

(
t−1∑

s=L+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]

= Eπ
[

τ−1∑
t=L+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]
+Eπ

[
τ−1∑
t=L+1

(
τ − t− 1

k− t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣A
]
.
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Since {∆t}k−1
t=L+1 is a martingale difference sequence with respect to {Ht}k−1

t=L+1, we can bound:

Eπ
[

τ−1∑
t=L+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]

=
µD(θ∗)′A

Pπ(A)

{
Eπ
[

τ−1∑
t=L+1

∆t

]
−Eπ

[
τ−1∑
t=L+1

∆t

∣∣∣∣∣Ac

]
Pπ(Ac)

}

≤ µD(θ∗)′Ae
1+ kPπ(E(L)> δ̄)

1−Pπ(E(L)> δ̄)
,

where the inequality follows because Eπ[
∑τ−1

t=L+1∆t] = Eπ[
∑τ

t=L+1∆t]− Eπ[∆τ ] ≺ e (by Optional

Stopping Time Theorem) and the fact that |∆t| ≺ e. As for the second term, note that, by (C1) in

the definition of τ ,

Eπ
[

τ−1∑
t=L+1

(
τ − t− 1

k− t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣ A
]

≤ Eπ
[
(k− τ +1)

∣∣∣∣∣µD(θ∗)′
τ−1∑
t=L+1

A∆̂t

k− t

∣∣∣∣∣
∣∣∣∣∣ A
]

≤ Eπ
[
(k− τ +1)

∣∣∣∣µD(θ∗)∣∣∣∣
2
||A||2

∣∣∣∣∣
∣∣∣∣∣
τ−1∑
t=L+1

∆̂t

k− t

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ A
]

≤ ψ
∣∣∣∣µD(θ∗)∣∣∣∣

2
||A||2 (Eπ [k− τ |A] + 1) .

Putting this together with Lemma EC.2, for the first term in (EC.2), we have:

Eπ
[

τ−1∑
t=L+1

∇λr(λ
D(θ∗);θ∗) · (λD(θ∗)−λt)

∣∣∣∣∣ A
]

≤ K1

[
logk

1−Pπ(E(L)> δ̄)
+ ϵ(L)2k + L +

1+ kPπ(E(L)> δ̄)

1−Pπ(E(L)> δ̄)

]
,

where the constant K1 = µD(θ∗)′Ae+(1+K0)ψ||µD(θ∗)||2||A||2 is independent of k≥ 3.

We now bound the second term in (EC.2). Note that

v̄

2
Eπ
[

τ−1∑
t=L+1

||λD(θ∗)−λt||22

∣∣∣∣∣ A
]

≤ v̄Eπ
[

τ−1∑
t=L+1

∣∣∣∣∣∣λ̂t−λt

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]

+ v̄Eπ
[

τ−1∑
t=L+1

∣∣∣∣∣∣λD(θ∗)− λ̂t

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]
. (EC.4)

Since λt = λ(p(λ̂t; θ̂L);θ
∗) and λ̂t = λ(p(λ̂t; θ̂L); θ̂L), by P2, we have

v̄Eπ[
τ−1∑
t=L+1

||λ̂t−λt||22|A] ≤ v̄ω2kEπ[||θ∗ − θ̂L||22 |A] ≤ v̄ω2kEπ[||θ∗ − θ̂L||22] ≤ v̄ω2ϵ(L)2k.
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(By definition of A, Eπ[||θ∗ − θ̂L||22 |A]≤Eπ[||θ∗ − θ̂L||22].) As for the second term in (EC.4),

v̄Eπ
[

τ−1∑
t=L+1

∣∣∣∣∣∣λD(θ∗)− λ̂t

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]

= v̄Eπ
 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣λD(θ∗)−λD(θ̂L)+Q

t−1∑
s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A


≤ 2v̄kEπ
[∣∣∣∣∣∣λD(θ∗)−λD(θ̂L)

∣∣∣∣∣∣2
2

∣∣∣∣ A] + 2v̄ ||Q||22E
π

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A


≤ 2v̄κ2ϵ(L)2k + 2v̄ ||Q||22E
π

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A
 (EC.5)

where the second inequality follows by Lemma 1(a). Using ∆̂t =Dt − λ̂t = ∆t + λt − λ̂t, we can

bound the second term in (EC.5) as follows:

Eπ
 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2Eπ
 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+2Eπ

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

λs− λ̂s
k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2

Pπ(A)
Eπ
 k−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

+2Eπ
 k−1∑
t=L+1

(
t−1∑

s=L+1

ωE(L)

k− s

)2
∣∣∣∣∣∣A


≤ 2

Pπ(A)
Eπ
 k−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

+2
k−1∑
t=L+1

[
t−1∑

s=L+1

√
Eπ [ω2E(L)2|A]

k− s

]2

≤ 2

Pπ(A)
Eπ
[

k−1∑
t=L+1

t−1∑
s=L+1

||∆s||22
(k− s)2

]
+2

k−1∑
t=L+1

(
t−1∑

s=L+1

ωϵ(L)

k− s

)2

≤ 16

1−Pπ(E(L)> δ̄)
logk+6ω2ϵ(L)2k (EC.6)

where the second inequality holds by the law of total expectation and P2, the third inequality

follows by first expanding the square of the sum and then applying Cauchy-Swartz inequality to the

cross-terms, the fourth inequality follows by the orthogonality of martingale differences {∆s} and

Eπ[E(L)2|A]≤ ϵ(L)2, and the fifth inequality holds by integral approximation. In particular, the

first term after the fourth inequality can be bounded using ||∆s||2 = ||Ds−λs||2 ≤ ||Ds||2+ ||λs||2 ≤ 2

and
∑k−1

t=L+1

∑t−1

s=L+1
1

(k−s)2 ≤
∑k−1

t=L+1
1
k−t ≤ 1+ logk≤ 2 logk (recall that k≥ 3) whereas the second

term can be bounded using the following integral comparison:

k−1∑
t=L+1

(
t−1∑

s=L+1

1

k− s

)2

≤
k−1∑
t=1

(
t−1∑
s=1

1

k− s

)2

≤
k−1∑
t=1

(∫ t

1

1

k− s
ds

)2

≤
k−1∑
t=1

log2
(

k

k− t

)
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≤ log2 k+

∫ k−1

1

log2
(

k

k− t

)
dt ≤ log2 k+2k ≤ 3k, (EC.7)

where the last inequality follows because log2 k < k for k≥ 1.

Thus, for the second term in (EC.2), we have

v̄

2
Eπ
[

k−1∑
t=L+1

||λD(θ∗)−λt||22

∣∣∣∣∣ A
]

≤ K2

[
logk

1−Pπ(E(L)> δ̄)
+ ϵ(L)2k

]
,

where K2 = v̄ω2+2v̄κ2+32v̄||Q||22+12ω2v̄||Q||22. Combining all results together, we conclude that

k∑
t=L+1

rD(θ∗)−Eπ
[
R̂π(k)

]
≤ M0

[
logk

1−Pπ(E(L)> δ̄)
+ ϵ(L)2k+L+

1+ kPπ
(
E(L)> δ̄

)
1−Pπ(E(L)> δ̄)

]
,

where M0 =K1 +K2 + r̄K0 + 3r̄. (Note that the last term in (EC.1) can be bounded by r̄(1 +

kPπ(E(L)> δ̄))/(1−Pπ(E(L)> δ̄)).) This completes the proof of Lemma 3. �

EC.1.5. Proof of Supporting Lemmas

Proof of Lemma EC.1. As in the proof of Lemma 3, we assume without loss of generality that

T = 1. First, note that λ̂t ∈Λθ̂L is equivalent to pt ∈P. Consider sample paths on A. If τ ≤L+1,

then there is nothing to prove. Suppose that τ > L + 1, we will use an induction argument to

establish the result. Since E(L) ≤ δ̄ on A, by Lemma 1(a), Ball(pD(θ̂L),
ϕ
2
) ⊆ P. For t = L + 1,

||pL+1 − pD(θ̂L)||2 = 0< ϕ
2
, so pL+1 ∈P and hence λ̂L+1 ∈Λθ̂L . In addition, we also have:

CL+1 =CL−ADL+1 = kC −ASL−A
(
λ̂L+1 +∆̂L+1

)
= kC −LC +LC −ASL−A

(
λD(θ̂L)+ ∆̂L+1

)
≽ (k−L− 1)C +LC −ASL−A∆̂L+1

≽ (k−L− 1)AλLe+LAλLe−ASL−A∆̂L+1

= (k−L− 1)A

(
λLe−

SL−LλLe

k−L− 1
− ∆̂L+1

k−L− 1

)

≽ (k−L− 1)A

(
λLe−

∣∣∣∣∣∣∣∣SL−LλLe

k−L− 1

∣∣∣∣∣∣∣∣
2

e−

∣∣∣∣∣
∣∣∣∣∣ ∆̂L+1

k−L− 1

∣∣∣∣∣
∣∣∣∣∣
2

e

)
≻ (k−L− 1) (λL−ψ)Ae

≽ 0

(recall that St =
∑t

s=1Ds) where the first inequality follows because AλD(θ̂L) ≼ C, the second

inequality follows because AλLe≼ C by definition of λL, the fourth (strict) inequality follows by
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(C1) and Ae≻ 0, and the last inequality follows by the definition of ψ. This is our base case. Now,

suppose that Cs ≻ 0, λ̂s ∈ Λθ̂L for all s = L+ 1,L+ 2, . . . , t− 1, and t− 1 < τ . If t ≥ τ , we have

finished the induction. If, on the other hand, t < τ ,

∣∣∣∣∣∣pt− pD(θ̂L)
∣∣∣∣∣∣

2
≤ ω||Q||2

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

< ω||Q||2ψ ≤ ϕ

4

where the first inequality follows by pt = p(λ̂t; θ̂L), p
D(θ̂L) = p(λD(θ̂L); θ̂L) and P1, the second

inequality follows by (C1) and the last inequality follows by the definition of ψ. So, by Lemma 1(a),

we still have pt ∈P and hence λ̂t ∈Λθ̂L . As for the remaining capacity level Ct, by similar argument

as before, we have

Ct =CL−
t∑

s=L+1

ADs = kC −ASL−
t∑

s=L+1

A
(
λ̂s+∆̂s

)
= kC − tC + tC −ASL−

t∑
s=L+1

A

(
λD(θ̂L)−Q

s−1∑
v=L+1

∆̂v

k− v
+∆̂s

)

≽ (k− t)C +LC −ASL−
t∑

s=L+1

(
A∆̂s−

s−1∑
v=L+1

A∆̂v

k− v

)

≽ (k− t)AλLe+LAλLe−ASL−
t∑

s=L+1

(
A∆̂s−

s−1∑
v=L+1

A∆̂v

k− v

)

= (k− t)A

(
λLe−

SL−LλLe

k− t
−

t∑
s=L+1

∆̂s

k− s

)

≽ (k− t)A

(
λLe−

∣∣∣∣∣∣∣∣SL−LλLe

k− t

∣∣∣∣∣∣∣∣
2

e−

∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

e

)
≻ (k− t)A(λL−ψ)e

≽ 0.

This completes the induction. �

Proof of Lemma EC.2. As in the proof of Lemma 3, we assume without loss of generality that

T = 1. Because τ is non-negative, we can write Eπ[k− τ |A] = k−
∑k−1

t=0 Pπ(τ > t|A) =
∑k−1

t=1 Pπ(τ ≤

t|A). We now bound Pπ(τ ≤ t|A). By the union bound, we have

Pπ(τ ≤ t|A) = Pπ
(

max
L+1≤s≤t

{∣∣∣∣∣∣∣∣SL−LλLe

k− s

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

}
≥ψ

∣∣∣∣∣A
)

≤ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣∣A
)
+Pπ

(
max

L+1≤s≤t

∣∣∣∣∣∣∣∣SL−LλLe

k− s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A) .
(EC.8)
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We first bound the first term in (EC.8) below.

Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣∣A
)

≤ Pπ
 max

L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

2

≥ ψ2

16

∣∣∣∣∣∣A
+Pπ

(
max

L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||2
k− v

≥ ψ

4

∣∣∣∣∣A
)

≤ 1

Pπ(A)
Pπ
 max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

2

≥ ψ2

16

+Pπ
( t∑

s=L+1

||λs− λ̂s||2
k− s

)2

≥ ψ2

16

∣∣∣∣∣∣A


≤ 16

ψ2Pπ(A)
Eπ
∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

+
16

ψ2
Eπ
( t∑

s=L+1

||λs− λ̂s||2
k− s

)2
∣∣∣∣∣∣A


≤ 16

ψ2Pπ(A)
Eπ
[

t∑
s=L+1

||∆s||22
(k− s)2

]
+

16

ψ2

 t∑
s=L+1

√
Eπ[||λs− λ̂s||22|A]

k− s

2

≤ 16

ψ2Pπ(A)

[
4

(k− t)2
+

4

k− t

]
+

16

ψ2

[
2ω2ϵ(L)2

(k− t)2
+2ω2ϵ(L)2

(
log

(
k

k− t

))2
]
,

where the first inequality follows by the definition of ∆̂v, the triangle inequality of the norms and

union bound, the second inequality follows by the law of total probability for the first term and

the monotonicity of max-operator for the second term, the third inequality follows by the Doob’s

sub-martingale inequality for the first term and Markov’s inequality for the second term, the fourth

inequality follows by the orthogonality of martingale differences for the first term and Cauchy-

Schwartz inequality for the second term, and the last inequality follows by Eπ[E(L)2|A] ≤ ϵ(L)2

and the same integral approximation bound as in (EC.6).

As for the second term in (EC.8), we can apply Markov’s inequality and get:

Pπ
(
max
1≤s≤t

∣∣∣∣∣∣∣∣SL−LλLe

k− s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A) ≤ Pπ
(

||SL−LλLe||22
(k− t)2

≥ ψ2

4

∣∣∣∣∣A
)

≤ max

{
1,

4

ψ2
Eπ
[
||SL−LλLe||22

(k− t)2

∣∣∣∣∣A
]}

≤ max

{
1,

4n(1+λL)
2L2

ψ2(k− t)2

}
,

where the last inequality follows because ||SL−LλLe||2 ≤ ||Le+LλLe||2 =
√
n(1 + λL)L. Putting

all the bounds together, we have for all k≥ 3:

Eπ[k− τ |A] ≤
k−1∑
t=1

{
16

ψ2Pπ(A)

[
4

(k− t)2
+

4

k− t

]
+

16

ψ2

[
2ω2ϵ(L)2

(k− t)2
+2ω2ϵ(L)2 log2

(
k

k− t

)]}

+
k−1∑
t=1

max

{
1,

4n(1+λL)
2L2

ψ2(k− t)2

}
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≤ 128

ψ2Pπ(A)

k−1∑
t=1

1

k− t
+

32ω2ϵ(L)2

ψ2

k−1∑
t=1

1

(k− t)2
+

32ω2ϵ(L)2

ψ2

k−1∑
t=1

(
log

(
k

k− t

))2

+
k−L−1∑
t=1

4n(1+λL)
2L2

ψ2(k− t)2
+L

≤ 128

ψ2Pπ(A)
(1+ logk)+

64ω2

ψ2
ϵ(L)2 +

96ω2

ψ2
ϵ(L)2k+

(
4n(1+λL)

2

ψ2
+1

)
L

≤ 256

ψ2

logk

1−Pπ(E(L)> δ̄)
+

160ω2

ψ2
ϵ(L)2k+

(
4n(1+λL)

2

ψ2
+1

)
L

where the third inequality follows by integral approximation. The result follows by letting K0 =

256
ψ2 + 160ω2

ψ2 + 4n(1+λL)2

ψ2 +1. �

EC.2. Proof of Results in Section 3.2

In this section, we first prove Lemma 4 in §EC.2.1, followed by the proof of Theorem 2 in §EC.2.2.
All the supporting lemmas which are used to prove Lemma 4 and Theorem 2 are proved in §EC.2.3.

EC.2.1. Proof of Lemma 4

We first illustrate the idea using Figure EC.1. Note that E(t)> ϵ is equivalent to the event that

ML estimator θ̂t is in the outside of the ball V := Ball(θ∗, ϵ). In addition, under the concavity

assumption of the log-likelihood, θ̂t ̸= Ball(θ∗, ϵ) implies that at least one point on the surface of

a hypercube S, which is centered at θ∗ and is a subset of V , has a larger log-likelihood than the

log-likelihood at θ∗. The probability of this event is a valid upper bound of Pπ(E(t)> ϵ). However,

the challenge is that there are a continuum of such potential points. The idea of the proof is to

consider a grid of points on the surface of that hypercube S, and the granularity of the grid is set

to be fine enough so that any point on the surface of that hypercube can be closely approximated

by one point on the grid. We will show that the existence of a point on the surface of S with a

higher log-likelihood than the true parameter vector θ∗ is extremely unlikely. We now rigorously

prove this lemma.

Step 1

Fix some 0 < λ̃min < λ̃max < 1. First, we will show that for all D ∈ D, for all p ∈ W(λ̃min, λ̃max)

and for all θ ∈ Θ, ∇θ logPp,θ1 (D) is jointly continuous in θ and p. Recall that ∇θ logPp,θ1 (D) =

((∂/∂θ1) logPp,θ1 (D); . . . ; (∂/∂θn) logPp,θ1 (D)) where for all 1≤ k≤ n,

∂ logPp,θ1 (D)

∂θk
=−

(1−
∑n

j=1Dj) log
(
1−

∑n

j=1 λj(p;θ)
)

1−
∑n

j=1 λj(p;θ)

(
n∑
j=1

∂λj(p;θ)

∂θk

)
+

n∑
j=1

Dj log (λj(p;θ))

λj(p;θ)

∂λj(p;θ)

∂θk
.

Since λj(p; .) ∈ C1(Θ) by P1, λ(.;θ) ∈ C2(P) by P3 and the denominators are strictly greater than

zero, ∇θ logPp,θ1 (D) is jointly continuous in θ and p.
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Figure EC.1 Geometric illustration of Lemma 4

Note. This illustrates the case when there are two parameters to estimate (q= 2). V denotes the disk (ball) centered

at θ∗ with radius ϵ. Note that the event of ||θ∗ − θ̂t||2 > ϵ corresponds to the event when θ̂t lies in the exterior of V .

In this example, the surface of the rectangle(hypercube) S consists of four edges.

Step 2

Since Θ and W(λ̃min, λ̃max) are compact, D is finite and ∇θ logPp,θ1 (D) is jointly continuous in

θ and p for all D ∈ D, there exists a constant cg > 0 independent of θ, p,D such that for all

θ ∈Θ, p∈W(λ̃min, λ̃max), and v ∈Rq satisfying ||v||2 = 1, ∇θ logPp,θ1 (D) · v < cg. Therefore, for any

v, ||v||2 = 1, if pπs ∈W(λ̃min, λ̃max) for 1≤ s≤ t, then we have:

∇θ logPπ,θt (D1:t) · v=
t∑

s=1

∇θ logP
pπs ,θ
1 (Ds) · v < cgt. (EC.9)

Now, fix ϵ > 0 and consider a hypercube S ∈ Rq centered at the origin with edge 2ϵ/
√
q. Let

∂S denote the surface of S, its area is given by cq(ϵ/
√
q)q−1 for a constant cq that depends only

on q. Cover ∂S with a set of identical hypercubes in Rq−1 with edge 2η (see Figure EC.1 for an

illustration) and denote by N the number of cubes needed to cover ∂S. Then, N = (ϵ/(
√
qη))q−1.

Let vj ∈ ∂S, j = 1, . . . ,N denote the center of those 2η−cubes. These points constitute a set of grid

points on the surface. Then for any x∈ ∂S, minj=1,...,N ||x− vj||2 ≤
√
qη. By W3, we have that for

any θ′ ∈ S+ θ∗ and any j = 1, . . . ,N ,

logPπ,θ
′

t (D1:t)− logPπ,θ
∗+vj

t (D1:t)≤∇θ logP
π,θ∗+vj
t (D1:t) · (θ′ − θ∗ − vj)

Let j∗(θ) = argminj=1,...,N ||θ− θ∗ − vj||2. We then have

logPπ,θ
′

t (D1:t)− logP
π,θ∗+vj∗(θ′)
t (D1:t)≤ cgt||θ′ − θ∗ − vj∗(θ′)||2 ≤ cg

√
qηt. (EC.10)

where the first inequality follows by (EC.9). The following is the key argument for this proof:{
||θ̂t− θ∗||2 > ϵ

}
⊆
{
||θ̂t− θ∗||∞ >

ϵ
√
q

}



e-companion to Chen, Jasin, Duenyas: Learning ec13

⊆
{
logPπ,θ

∗+v
t (D1:t)≥ logPπ,θ

∗

t (D1:t), for some v with ||v||∞ = ϵ√
q

}
⊆
{
logP

π,θ∗+vj∗(θ∗+v)

t (D1:t)+ cg
√
qηt≥ logPπ,θ

∗

t (D1:t), for some v with ||v||∞ = ϵ√
q

}
⊆ ∪Nj=1

{
logPπ,θ

∗+vj
t (D1:t)+ cg

√
qηt≥ logPπ,θ

∗

t (D1:t)
}

= ∪Nj=1 {Zπt (vj,D1:t)≥ exp(−cg
√
qηt)} ,

where Zπt (u,D1:t) := Pπ,θ
∗+u

t (D1:t)/Pπ,θ
∗

t (D1:t) is the likelihood ratio for any u ∈Θ− θ∗. The first

inclusion follows by norm inequality, the second inclusion follows by the concavity of the log-

likelihood function and the definition of ML estimator, the third inclusion follows by (EC.10), the

fourth inequality follows because by definition j∗(θ∗ + v) ∈ {1, . . . ,N} for all v. We state a lemma

below.

Lemma EC.3. Fix some 0< λ̃min < λ̃max < 1. Suppose that an admissible control π satisfies ps =

πs(D1:s−1)∈W(λ̃min, λ̃max) for all 1≤ s≤ t. Then there exists a constant ch > 0 such that for all π

and for all u∈Θ− θ∗, Eπ[
√
Zπt (u,D1:t)]≤ exp(−ch||u||22t/2).

By Lemma EC.3, the following holds

Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤

N∑
j=1

Pπ (Zπt (vj,D1:t)≥ exp(−cg
√
qηt))

≤
N∑
j=1

exp

(
cg
√
qηt

2

)
Eπ
[√

Zπt (vj,D1:t)

]

≤
N∑
j=1

exp

(
cg
√
qηt

2
− ch||vj||22t

2

)

≤
(

ϵ
√
qη

)q−1

exp

(
−chϵ

2t

2q
+
cg
√
qηt

2

)
,

where the second inequality follows by the Markov’s inequality, the third inequality follows by

Lemma EC.3, and the last inequality follows because N = (ϵ/(
√
qη))q−1 and minj=1,...,N ||vj||2 ≥

minj=1,...,N ||vj||∞ ≥ ϵ/
√
q. Now, let η= ϵ/t, then we have

Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤min

{
1, q−

q−1
2 tq−1 exp

(
−chϵ

2t

2q
+
cg
√
qϵ

2

)}
.

Note that when ϵ ≤ 1, exp((−chϵ2q−1t + cg
√
qϵ)/2) ≤ exp(cg

√
q/2) exp(−chϵ2q−1t/4). Note also

that when ϵ > 1, there exists M > 0 independent of ϵ such that exp((−chϵ2q−1t + cg
√
qϵ)/2) ≤

exp(−chϵ2q−1t/4),∀t >M . With these two observations, we consider two cases below.

Case 1: t >M . In this case, we have Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤ η̃4t

q−1 exp(−η5tϵ2), where η̃4 =

q−(q−1)/2max{1, exp(cg
√
q/2), and η5 = chq

−1/4.
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Case 2: t≤M . Let θ̄ be the largest distance between any two points in Θ. (θ̄ <∞ because Θ is

bounded.) Then, we claim that for this case, Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤ η̄4t

q−1 exp(−η5tϵ2) where η5 is

defined as in Case 1 and η̄4 = exp(η5Mθ̄2). The claim is true because: if ϵ > θ̄, Pπ
(
||θ̂t− θ∗||2 > ϵ

)
=

0, so the bound holds; if ϵ≤ θ̄, Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤ 1 = η̄4 exp(−η5Mθ̄2)≤ η̄4t

q−1 exp(−η5tϵ2).

Combining the two cases above, we conclude that Pπ
(
||θ̂t− θ∗||2 > ϵ

)
≤

min{1, η4tq−1 exp(−η5tϵ2)} where η4 =max{η̃4, η̄4}. Hence,

Eπ
[
||θ̂t− θ∗||22

]
=

∫ ∞

0

Pπ
(
||θ̂t− θ∗||22 ≥ x

)
dx

=

∫ ∞

0

min
{
1, η4t

q−1 exp (−η5tx)
}
dx

≤
∫ 2(q−1) log t

η5t

0

dx+

∫ ∞

2(q−1) log t
η5t

[
η4t

q−1 exp

(
−η5tx

2

)]
exp

(
−η5tx

2

)
dx

≤ 2(q− 1) log t

η5t
+ η4

∫ ∞

2(q−1) log t
η5t

exp

(
−η5tx

2

)
dx

≤ 2(q− 1) log t

η5t
+

2η4
η5t

≤ 2max{1, η4}
η5

(q− 1) log t+1

t

where the fourth inequality holds because for all x≥ 2(q−1) log t

η5t
, η4t

q−1 exp
(
−η5tx

2

)
≤ 1. We complete

the proof by letting η6 =
√

2max{1, η4}/η5. �

EC.2.2. Proof of Theorem 2

We first state an analog of Lemma 1(a) for ECP(θ) below.

Lemma EC.4. Suppose that B coincides with the set of binding constraints of P (θ∗) at the optimal

solution. There exist δ̃ > 0 and κ̃ > 0 independent of k > 0 such that for all θ ∈Ball(θ∗, δ̃), ||xD(θ∗)−

xD(θ)||2 ≤ κ̃||θ∗ − θ||2.

The proof of Lemma EC.4 is similar to the proof of Lemma 1 and so is omitted. We now proceed

to prove Theorem 2 in several steps.

Step 1

Fix π = APSC and let k ≥ 3 throughout the proof. Throughout this section, we will assume that

T = 1. (This is without loss of generality.) Set L= ⌈(logk)1+ϵ⌉ and η = (logk)−ϵ/4. We first show

that the set of binding constraints of P(θ∗) at the optimal solution can be correctly identified with

a very high probability. Let Ei := {Ci = (AλD(θ∗))i, i /∈ B} ∪ {Ci > (AλD(θ∗))i, i ∈ B} denote the

event that the ith capacity constraint is wrongly classified. (The event Ei is a union of two events:
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either the ith constraint is actually binding but not included in B or it is not binding but is included

in B.) By definition of η,

Pπ
(
Ci = (AλD(θ∗))i, i /∈B

)
= Pπ

(
Ci = (AλD(θ∗))i, Ci− (AλD(θ̂t1))i > η

)
= Pπ

(
(AλD(θ∗)−AλD(θ̂t1))i > η

)
≤ Pπ (κ||A||2E(t1)> η)

≤ η1 exp

(
−η2t1

η2

κ2||A||22

)
≤ η1 exp

(
− η2
κ2||A||22

(logk)1+
ϵ
2

)
,

where the first inequality follows by Lemma 1(a), the second inequality follows by Lemma 2, and the

last inequality holds by definition of t1 and η. Define s :=min{Ci− (AλD(θ∗))i :Ci− (AλD(θ∗))i >

0, i= 1, . . . ,m}. Since s does not scale with k, there exists a constant Ω0 > 0 such that η < s/2 for

all k≥Ω0. So, for k≥Ω0, by Lemmas 1(a) and 2, we can bound:

Pπ
(
Ci > (AλD(θ∗))i, i∈B

)
= Pπ

(
Ci ≥ (AλD(θ∗))i+ s, Ci− (AλD(θ̂t1))i ≤ η

)
≤ Pπ

(
(AλD(θ̂t1)−AλD(θ∗))i ≥ s− η

)
≤ Pπ (κ||A||2E(t1)≥ s− η)

≤ η1 exp

(
−η2t1

(s− η)2

κ2||A||22

)
≤ η1 exp

(
− η2 s

2

4κ2||A||22
log1+ϵ k

)
.

Putting the above two bounds together, for k ≥ Ω0, the probability of wrongly identifying the

binding constraints can be bounded as follows:

Pπ (∪mi=1Ei) ≤
m∑
i=1

[
Pπ
(
Ci = (AλD(θ∗))i, i /∈B

)
+Pπ

(
Ci > (AλD(θ∗))i, i∈B

)]
≤ mη1

[
exp

(
− η2
κ2||A||22

(logk)1+
ϵ
2

)
+exp

(
− η2 s

2

4κ2||A||22
(logk)1+ϵ

)]
. (EC.11)

Step 2

Let τ be the minimum of k and the first time t ≥ t1 + 1 such that the following condition

(C1) is violated: ψ > ||
∑t

s=t1+1
∆̂s
k−s ||2 + ||SL−LλLe

k−t ||2, where ψ is as defined in the proof of

Theorem 1 and ∆̂s = Ds − λ(ps; θ̂tz) for s ∈ (tz, tz+1] and 1 ≤ z ≤ Z. Define A := {∩mi=1Eci } ∩{
E(tz)≤min{δ̂, (log tz)−ϵ/4}, for all tz < τ

}
, where δ̂ = min{δ̄, δ̃, ϕ/(2ωκ)} and δ̄ and δ̃ are as

defined in Lemma 1 and Lemma EC.4 respectively. (Event A can be interpreted as the event where

all binding constraints are correctly identified and the size of all subsequent estimation errors are

sufficiently small.)

Note that for tz < τ , λD(θ∗) ∈ Λθ̂tz on A. This is because ||p(λD(θ∗); θ̂tz)− p(λD(θ̂tz); θ̂tz)||2 ≤

ω||λD(θ∗)− λD(θ̂tz)||2 ≤ ωκ||θ∗ − θ̂tz ||2 ≤ ϕ/2, where the first inequality follows by P1, the second
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inequality follows by Lemma 1(a) and the fact that δ̂ ≤ δ̄, and the last inequality follows since

δ̂ ≤ ϕ/(2ωκ). We then have λD(θ∗) ∈ Λθ̂tz since p(λD(θ∗); θ̂tz) ∈ Ball(pD(θ̂tz), ϕ/2)⊆ P, where the

last inclusion follows by Lemma 1(a). The two important lemmas below establish the approximation

error of DPUP and some important properties of the stopping time τ .

Lemma EC.5. There exist positive constants γ and ξ independent of θ ∈Θ such that if ||xD(θ)−

xNTz−1||2 ≤ γ, then ||xD(θ)−xNTz ||2 ≤ ξ||xD(θ)−xNTz−1||22.

Lemma EC.6. There exist positive constants 0 < λ̃min < λ̃max < 1, Ω1, and constants Γ1 and Γ2

independent of k≥Ω1, such that λ̃min ≤ λmin, λ̃max ≥ λmax, and for all k≥Ω1 and all sample paths

on A:

(a) ||xD(θ̂tz)−xNTz ||22 ≤ Γ1(log tz)
−ϵ/2 for tz < τ .

(b) Ct ≻ 0, pt ∈Ball(pD(θ∗),7ϕ/8)⊆W(λ̃min, λ̃max) and λ̂t ∈Λθ̂tz for all t∈ (tz, tz+1]∩ [t1, τ).

(c) Eπ[||xD(θ̂tz)−xNTz ||22 1{tz<τ} | A]≤ Γ2/tz

Lemma EC.5 essentially establishes a uniform locally quadratic convergence of the Newton’s

method for solving ECP(θ̂tz) for all z, which is used for proving Lemma EC.6(a) and (c).

Lemma EC.6(a) and (c) establish the approximation errors between xNTZ and the deterministic opti-

mal solution xD(θ̂tz). Note that Lemma EC.6(b) states that pt ∈Ball(pD(θ∗),7ϕ/8)⊆W(λ̃min, λ̃max)

for all t1 ≤ t < τ . In addition, for t ≤ t1, pt ∈ {p̃(1), . . . , p̃(q̃)} ⊆ W(λ̃min, λ̃max) due to λ̃min ≤ λmin,

λ̃max ≥ λmax and S2. Therefore, the condition for Lemma 4 is satisfied. There exists a constant

Ω2 ≥max{Ω0,Ω1} such that, for all k≥Ω2,

kPπ(Ac) ≤ k
Z∑
z=1

[
Pπ(E(tz)> δ̂)+Pπ(E(tz)> (log tz)

− ϵ
4

]
+ kPπ (∪mi=1Ei)

≤ k
Z∑
z=1

η4t
q−1
z

[
exp

(
−η5tz δ̂2

)
+exp

(
− η5tz
(log tz)

ϵ
2

)]
+ kPπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(logk)

1+ϵδ̂2

2

)
+exp

(
−η5(logk)

1+ϵ

2(logk)
ϵ
2

)]
+ kPπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(logk)

1+ϵδ̂2

2

)
+exp

(
−η5(logk)

1+ ϵ
2

2

)]

+ mη1k

[
exp

(
− η2
κ2||A||22

(logk)1+
ϵ
2

)
+exp

(
− η2 s

2

4κ2||A||22
(logk)1+ϵ

)]
≤ 1

2
,

where the second inequality follows by Lemma 4, the third inequality follows by a combination of

η4t
q−1
z exp(−η5tz δ̂2/2)→ 0 and η4t

q−1
z exp(−η5tz(log tz)−ϵ/2/2)→ 0 as k→∞, tz ≥ t1 ≥ (logk)1+ϵ for

z ≥ 1, and Z ≤ ⌈log2 k⌉ ≤ 2 log2 k, the fourth inequality follows by (EC.11), and the last inequality
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follows because the formula after the fourth inequality goes to zero as k→∞. Note that the above

inequality also implies Pπ(A) > 1
2
when k ≥ Ω2. Define Ψϵ :=

∑k−1

t=t1+1

(∑t−1

s=t1+1
ϵ̄(s)

k−s

)2

and Φϵ :=∑k−1

t=t1+1 ϵ̄(s)
2, where ϵ̄(s) := η6

√
[(q− 1) log tz +1]/tz for all s ∈ (tz, tz+1]. By Lemma 4, Eπ[||θ̂t −

θ∗||221{t<τ}|A]≤ ϵ̄(t)2. The following result is useful to derive our bounds later.

Lemma EC.7. Under APSC, there exists a constant K3 > 0 independent of k ≥ 1 such that Ψϵ <

K3(1+ (q− 1) logk) and Φϵ <K3[1+ logk+(q− 1)(logk)2].

Step 3

Let K = max{Ω0,Ω1,Ω2,3}. If k < K, the total expected revenue loss can be bounded by Kr̄.

So, we will focus on the case k ≥K. By the same arguments as in (EC.1) and (EC.2), ρπ(k) ≤

Lr̄+
∑k

t=t1+1 r
D(θ∗)−E [R̂π(k)] and

k∑
t=t1+1

rD(θ∗)−E
[
R̂π(k)

]
≤ Eπ

[
τ−1∑

t=t1+1

µD(θ∗)′A(λD(θ∗)−λt)

∣∣∣∣∣A
]
+
v̄

2
Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λt||22

]
+ r̄Eπ[k− τ |A] + 2 r̄ + r̄ kPπ(Ac) (EC.12)

Note that on A we have µD(θ∗)′AλD(θ∗) = µD(θ∗)′AλNTz (because BλD(θ∗) = CB =BλNTz and

µD(θ∗)i = 0 for all i ̸∈ B by KKT conditions). Therefore, similar to the proof of Lemma 3, we can

bound the first term in (EC.12) with K4Eπ[k−τ +1|A] where K4 := 3µD(θ∗)′Ae+ψ||µD(θ)||2||A||2
is independent of k≥K.

As for the second term in (EC.12), recall that λ̂t = λNTz(t) −Q
∑t−1

s=t1+1
∆̂s
k−s denotes the demand

rate that the seller believes he is inducing during period t where z(t) is the unique integer z such

that t ∈ (tz, tz+1]. Note that (EC.4) still holds. We can bound two term in (EC.4) respectively

using: v̄Eπ
[∑τ−1

t=t1+1 ||λ̂t−λt||22
∣∣∣A] = v̄

∑k−1

t=t1+1Eπ
[
ω2||θ̂t− θ∗||22 1{t<τ}

∣∣∣A] ≤ v̄ω2
∑k−1

t=t1+1 ϵ̄(t)
2 ≤

v̄ω2Φϵ (by P2), and

v̄Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)− λ̂t||22

∣∣∣∣∣A
]

≤ 2v̄Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]
+2v̄Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣Q

t−1∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2v̄Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]

+2v̄||Q||22

Eπ
 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+Eπ

 k−1∑
t=t1+1

(
t−1∑

s=t1+1

ωE(s)1{s<τ}

k− s

)2
∣∣∣∣∣∣A
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≤ 2v̄Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]
+2v̄||Q||22

 16

Pπ(A)
logk+

k−1∑
t=t1+1

 t−1∑
s=t1+1

√
Eπ
[
ω2E(s)21{s<τ}

∣∣A]
k− s

2
≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]
+2v̄||Q||22(32 logk+ω2Ψϵ)

≤ K5(Ψϵ+ logk)+ 2v̄Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]

for some constant K5 > 0 independent of k≥K (the second and the third inequalities follow by the

same argument as in (EC.5) and (EC.6) and recall that K ≥ 3), and the fourth inequality follows

since Eπ
[
E(s)21{s<τ}

∣∣A]≤ ϵ̄(s)2. We now analyze the last term of the above. Note that, on A, we

have for all t < τ∣∣∣∣λD(θ∗)−λNTz(t)
∣∣∣∣

2
≤
∣∣∣∣λD(θ∗)−xNTz(t)

∣∣∣∣
2
+
∣∣∣∣λNTz(t) −xNTz(t)

∣∣∣∣
2

≤ 2
∣∣∣∣λD(θ∗)−xNTz(t)

∣∣∣∣
2

= 2
∣∣∣∣xD(θ∗)−xNTz(t)

∣∣∣∣
2

≤ 2
∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz(t))

∣∣∣∣∣∣
2
+2
∣∣∣∣∣∣xD(θ̂tz(t))−xNTz

∣∣∣∣∣∣
2
, (EC.13)

where the second inequality follows because λD(θ∗) lies in Sz(t) where xNTz(t) is projected into (note

that on A, (1) θ̂tz(t) ∈Ball(θ∗, ϕ/(2ωκ)) for t < τ which implies that, as shown previously, λD(θ∗)∈
Λθ̂tz(t)

, and (2) the binding constraints of P(θ∗) at λD(θ∗) are correctly identified which means

that BλD(θ∗) = CB and NλD(θ∗) ≤ CN) and the equality follows because λD(θ∗) = xD(θ∗) on A
due to the strongly concavity of the objective and the fact that λD(θ∗) is an interior solution. By

Lemma EC.4

Eπ
[

τ−1∑
s=t1+1

||xD(θ∗)−xD(θ̂tz(s))||
2
2

∣∣∣∣∣A
]
=

k−1∑
s=t1+1

Eπ
[
κ̃2||θ∗ − θ̂tz(s) ||

2
21{s<τ}

∣∣∣A] ≤ κ̃2Φϵ

Furthermore, by Lemma EC.6(a) and the fact that tz+1 − tz ≤ 2tz for all z, we have

Eπ
[

τ−1∑
s=t1+1

||xD(θ̂tz(s))−xNTz(s)||22

∣∣∣∣∣A
]
=

k−1∑
s=t1+1

Eπ
[
||xD(θ̂tz(s))−xNTz(s)||221{s<τ}

∣∣∣A]
≤

Z∑
z=1

(tz+1 − tz)
Γ2

tz
≤ 2Z Γ2 ≤ 4Γ2 log2 k.

Combining the inequalities above, the second term of (EC.12) can be bounded as follows:

v̄

2
Eπ
[

τ−1∑
t=t1+1

||λD(θ∗)−λt||22

]
≤ v̄ω2Φϵ+K5(Ψϵ+ logk)+ 4v̄κ̃2Φϵ+16v̄Γ2 log2

≤ K6(1+ logk+(q− 1) log2 k)
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for K6 = (v̄ω2 + 4v̄κ̃2 +K5)K3 +K5 + 16v̄Γ2. To bound the third term in (EC.12), the following

lemma is useful.

Lemma EC.8. There exists a constant K7 > 0 independent of k ≥ K such that for all k ≥ K,

Eπ[k− τ |A]≤K7(logk+L).

Combining all the above and recalling that L= ⌈(logk)1+ϵ⌉, for all k≥K, we have:

ρπ(k) ≤ 2r̄(logk)1+ϵ+(K4 + r̄)(Eπ[k− τ |A] + 1)+K6(1+ logk+(q− 1) log2 k)+
5

2
r̄

≤
(
2r̄+K4 + r̄+K6 +

5

2
r̄

)[
1+ (logk)1+ϵ+(q− 1) log2 k

]
≤ K8[(logk)

1+ϵ+(q− 1) log2 k],

for some constant K8 independent of k ≥ K. The result of Theorem 2 follows by using M2 =

max{r̄K,K8}. �

EC.2.3. Proof of Supporting Lemmas

Proof of Lemma EC.3. Recall that D= {D ∈ {0,1}n :
∑n

j=1Dj ≤ 1}. We define the conditional

Hellinger distance as follows:

Hπ
t (θ1, θ2,Dt|D1:t−1) :=

∑
Dt∈D

(√
Pπ,θ1t (Dt|D1:t−1)−

√
Pπ,θ2t (Dt|D1:t−1)

)2

.

We state a lemma and postpone its proof to the end of this subsection.

Lemma EC.9. Fix some 0< λ̃min < λ̃max < 1. Suppose that an admissible control π satisfies ps =

πs(D1:s−1) ∈ W(λ̃min, λ̃max) for all 1 ≤ s ≤ t. Then there exists a positive constant ch such that

Hπ
t (θ1, θ2,Dt|D1:t−1)≥ ch||θ1 − θ2||22 for all θ1, θ2 ∈Θ.

For u ∈ Θ − θ∗, define Zπt (u,Dt|D1:t−1) := Pπ,θ
∗+u

t (Dt|D1:t−1)/Pπ,θ
∗

t (Dt|D1:t−1). Using

Lemma EC.9, we can derive a bound for its moment below:

Eπ
[√

Zπt (u,Dt|D1:t−1)
]
=
∑
Dt∈D

√
Pπ,θ∗+ut (Dt|D1:t−1)

Pπ,θ∗t (Dt|D1:t−1)
Pπ,θ

∗

t (Dt|D1:t−1)

=
∑
Dt∈D

√
Pπ,θ∗+ut (Dt|D1:t−1)Pπ,θ

∗
t (Dt|D1:t−1)

= 1− Hπ
t (θ

∗, θ∗ +u,Dt|D1:t−1)

2

≤ exp

(
−H

π
t (θ

∗, θ∗ +u,Dt|D1:t−1)

2

)
≤ exp

(
−ch||u||

2
2

2

)
.
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The result of Lemma EC.3 can now be proved by repeated conditioning: by definition,

Eπ
[√

Zπt (u,D1:t)
]
= Eπ

[
Eπ
[√

Zπt (u,D1:t)
∣∣∣D1:t−1

]]
= Eπ

[√
Zπt−1(u,D1:t−1) Eπ

[√
Zπk (u,Dt|D1:t−1)

]]
≤ Eπ

[√
Zπt−1(u,D1:t−1)

]
exp

(
−ch||u||

2
2

2

)
≤ exp

(
−ch||u||

2
2t

2

)
.

This completes the proof. �

Proof of Lemma EC.5. Fix θ ∈ Θ. Note that ECP(θ) is a convex optimization with linear

equality constraints. Let mB denote the number of columns of B, and define F to be an n by

n−mB matrix whose columns are linearly independent and BF = 0. (In case there are multiple

matrices that satisfy this condition, pick any one of them.) Then {x : Bx = CB/T} = {x : x =

Fz+ x̂, z ∈Rn−mB} where x̂ satisfies Bx̂=CB/T . Hence, ECP(θ) is equivalent to an unconstrained

optimization problem maxz∈Rn−mB g(z;θ) := r(Fz + x̂;θ) in the sense that there is a one-to-one

mapping between the optimizer of ECP(θ) xD(θ) and the optimizer of the unconstrained problem

zD(θ): (1) xD(θ) = FzD(θ) + x̂, and (2) zD(θ) = (F ′F )−1F ′(xD(θ) − x̂). In addition, by Section

10.2.3 in Boyd and Vandenberghe (2004), if a feasible point of ECP(θ) x(k) and a feasible point

of the unconstrained problem z(k) satisfy x(k) = Fz(k) + x̂, then the Newton steps for ECP(θ) (to

obtain a new feasible point x(k+1)) and the unconstrained problem (to obtain a new feasible point

z(k+1)) coincide in the sense that x(k+1) = Fz(k+1) + x̂. This relationship enables us to analyze the

behavior of x(k) by studying z(k) whose convergence behavior is characterized by Theorem EC.2

(see §EC.4.2).

Before applying Theorem EC.2, we first show that the conditions in Theorem EC.2 hold. Note

that since Λθ is compact, the linear transformation of it, Zθ := {z : z = (F ′F )−1F ′(x− x̂), x ∈ Λθ}

is also compact. Also note that since p(.;θ) ∈ C2(Λθ) by P3, r(.;θ) ∈ C2(Λθ) and g(.;θ) ∈ C2(Zθ).

Hence condition (i) holds: there exists some constant L such that ||∇2
zzg(z;θ) − ∇2

zzg(y;θ)||2 ≤

L||z− y||2. Denote by σmin(.), σmax(.) the smallest and the largest eigenvalues of a squared matrix.

Since ∇2
zzg(z;θ) = F ′∇2

λλr(Fz + x̂;θ)F and −MI ≼ ∇2
λλr(Fz + x̂;θ) ≼ −mI by P3, we conclude

that (ii) holds: −M̄I ≼∇2
zzg(z;θ)≼−m̄I where M̄ =Mσmax(F

′F ) and m̄=mσmin(F
′F ). Then, by

Theorem EC.2, we have that there exists a constant η=min{1,3(1−2α)}m̄2/L for some α∈ (0,0.5)

independent of θ such that if ||∇zg(z
(k);θ)||2 < η, then ||∇zg(z

(k+1);θ)||2 < L
2m̄

||∇zg(z
(k);θ)||22. Note

that by strong convexity of g(.;θ), M̄−1||∇zg(z;θ)||2 ≤ ||z−zD(θ)||2 ≤ 2m̄−1||∇zg(z;θ)||2. Also note
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that for x = Fz + x̂, ||x − xD(θ)||2 ≤ ||F ||2||z − zD(θ)||2 and ||z − zD(θ)||2 ≤ ||(F ′F )−1F ′||2||x −

xD(θ)||2. Therefore,

||x(k+1) −xD(θ)||2 ≤ ||F ||2||z(k+1) − zD(θ)||2 ≤ 2m̄−1||F ||2||∇zg(z
(k+1);θ)||2

≤ Lm̄−2||F ||2||∇zg(z
(k);θ)||22 ≤Lm̄−2M̄ ||F ||2||z(k) − zD(θ)||22

≤ Lm̄−2M̄ ||F ||2||(F ′F )−1F ′||22||x(k) −xD(θ)||22

Let γ = η and ξ = Lm̄−2M̄ ||F ||2||(F ′F )−1F ′||22. Note that they are both independent of θ. The

result follows by letting x(k+1) = xNTz and x(k) = xNTz−1. �

Proof of Lemma EC.6. Let Ω1 =maxi=1,..,4{Vi}, where Vi’s are positive constants to be defined

later. We prove the results one by one.

(a) Let κ̄ = max{κ, κ̃} where κ and κ̃ are defined in Lemma 1 and Lemma EC.1 (see §EC.2.2)

respectively. Let Γ1 =max{1,4κ̄2}. We proceed by induction. If t1 ≥ τ , there is nothing to prove,

so we consider the case when t1 < τ . Note that by DPUP algorithm, xNT1 = λD(θ̂t1) and x
D(θ∗) =

λD(θ∗) on A. Thus, when t1 < τ we have

||xD(θ̂t1)−xNT1 ||22 = ||xD(θ̂t1)−λD(θ̂t1)||
2
2

≤
(
||xD(θ̂t1)−xD(θ∗)||2 + ||λD(θ∗)−λD(θ̂t1)||2

)2

≤ 4κ̄2E(t1)
2 ≤ Γ1(log t1)

− ϵ
2

where the last inequality follows by the definition of A. This is our base case. We now do the

inductive step. Suppose that tz−1 < τ and ||xD(θ̂tz−1
)− xNTz−1||22 ≤ Γ1(log tz−1)

−ϵ/2. If tz ≥ τ there is

nothing to prove. If tz < τ , then we need to show that ||xD(θ̂tz)−xNTz ||22 ≤ Γ1(log tz)
−ϵ/2 also holds.

Let V1 > 0 be the smallest integer satisfying ⌈(logV1)
1+ϵ⌉> e2. Then, for k≥Ω1 ≥ V1, we have∣∣∣∣∣∣xD(θ̂tz)−xNTz−1

∣∣∣∣∣∣2
2
≤ 3

∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)
∣∣∣∣∣∣2

2
+3

∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz−1
)
∣∣∣∣∣∣2

2
+3

∣∣∣∣∣∣xD(θ̂tz−1
)−xNTz−1

∣∣∣∣∣∣2
2

≤ 3κ̄2

(log tz)
ϵ
2
+

3κ̄2

(log tz−1)
ϵ
2
+

3Γ1

(log tz−1)
ϵ
2

≤ 3κ̄2

(log tz)
ϵ
2
+

3κ̄2

(log
√
tz)

ϵ
2
+

3Γ1

(log
√
tz)

ϵ
2

≤ 3
[
κ̄2 +2

ϵ
2 (κ̄2 +Γ1)

] 1

(log tz)
ϵ
2
,

where the second inequality follows by definition of A and induction hypothesis, the third inequality

follows because tz−1 ≥ tz
2
≥
√
tz ≥

√
t1 =

√
⌈(logk)1+ϵ⌉> e when k ≥Ω1 ≥ V1. Let V2 ≥ V1 be such

that for all k ≥ V2 and z = 1, . . . ,Z, the following holds: (1) (log tz)
ϵ/2 ≥ 3γ−2

[
κ̄2 +2ϵ/2(κ̄2 +Γ1)

]
and (2) 9ξ2

[
κ̄2 +2ϵ/2(κ̄2 +Γ1)

]2
(log tz)

−ϵ/2 ≤ 1≤ Γ1. (Recall that γ and ξ are the constants for the
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locally quadratic convergence of Newton’s method defined in Lemma EC.5.) Inequality (1) ensures

that ||xD(θ̂tz)−xNTz−1||2 ≤ γ for all k≥Ω1 ≥ V2 and inequality (2) ensures, by the locally quadratic

convergence of the Newton’s method, that ||xD(θ̂tz)−xNTz ||22 ≤ ξ2||xD(θ̂tz)−xNTz−1||42 ≤ Γ1(log tz)
−ϵ/2.

This completes the induction.

(b) First, we claim that there exist 0< λ̃min < λ̃max < 1 such that (1) λ̃min ≤ λmin and λ̃max ≥ λmax,

and (2) if pt ∈ Ball(pD(θ∗),7ϕ/8) for t ∈ [t1 +1, τ), then pt ∈W(λ̃min, λ̃max) for all 1≤ t < τ , which

will be used to prove Lemma EC.6(c). If this is true, then Lemma 4 can be used to bound E(tz)

as long as tz < τ . We now find such λ̃min, λ̃max below.

We first consider p ∈ Ball(pD(θ∗),7ϕ/8). Define Vp := Ball(pD(θ∗),7ϕ/8) (note that by our nota-

tion, Vp is a closed ball) and Vλ(θ) := {x ∈ Λθ : x ∈ λ(p;θ), p ∈ Vp}. Also, define Op := {p ∈ P :

||p − pD(θ∗)||2 < ϕ} (note that this is an open ball) and Oλ(θ) := {x ∈ Λθ : x ∈ λ(p;θ), p ∈ Op}.

Note that Vp ⊆ Op ⊆ P by R4. This implies that Vλ(θ) ⊆ Oλ(θ) ⊆ Λθ. In addition, since p(.;θ)

is continuous in λ by P3 and Op is an open set, Oλ(θ) is an open set. Therefore, Oλ(θ) lies in

the interior of Λθ, and hence, Vλ(θ) ⊆ Oλ(θ) also lies in the interior of Λθ. This implies that

for any θ ∈ Θ, λmin(θ) := infp∈Vp min1≤j≤n λj(p;θ) > 0 and λmax(θ) := supp∈Vp
∑n

j=1 λj(p;θ) < 1.

Since Θ is compact and λmin(θ) and λmax(θ) are continuous functions, there exists some θ′, θ′′ ∈

Θ such that supθ∈Θ λmax(θ) = λmax(θ
′) < 1 and infθ∈Θ λmin(θ) = λmin(θ

′′) > 0. Hence, for all p ∈

Ball(pD(θ∗),7ϕ/8) = Vp and for all θ, 1 −
∑n

j=1 λj(p;θ) ≥ 1 − supθ∈Θ supp∈Vp
∑n

j=1 λj(p;θ) = 1 −

supθ∈Θ λmax(θ) = 1− λmax(θ
′) > 0 and λj(p;θ) ≥ infθ∈Θ infp∈Vp min1≤j≤n λj(p;θ) ≥ infθ∈Θ λmin(θ) ≥

λmin(θ
′′) > 0 for all 1 ≤ j ≤ n. Set λ̃max = max{λmax, λmax(θ

′)}, λ̃min = min{λmin, λmin(θ
′′)} where

λmax and λmin are as defined in S2. Note that by S2, for p ∈ {p̃(1), . . . , p̃(q̃)}, 1−
∑n

j=1 λj(p;θ) ≥

1 − λmax ≥ 1 − λ̃max and λj(p;θ) ≥ λmin ≥ λ̃min for all 1 ≤ j ≤ n and for all θ ∈ Θ. This com-

pletes the proof of the claim: if t≤ t1, then pt ∈ {p̃(1), . . . , p̃(n)} ⊆W(λ̃min, λ̃max); if t1 < t < τ , then

pt ∈Ball(pD(θ∗),7ϕ/8)⊆W(λ̃min, λ̃max).

Note that λ̂t ∈ Λθ̂t is equivalent to pt ∈ P which is immediately satisfied if pt ∈

Ball(pD(θ∗),7ϕ/8) ⊆ Ball(pD(θ∗), ϕ) ⊆ P (the last inequality follows by R4). This means that we

only need to show Ct ≻ 0 and pt ∈ Ball(pD(θ∗),7ϕ/8) for t1 ≤ t < τ . Let V3 ≥ V2 be such that for

all k ≥ V3 and z = 1, . . . ,Z,
(
2
√
Γ1 +3κ

)
(log tz)

−ϵ/4 < ϕ/(8ω). We now prove the result by induc-

tion. If τ ≤ t1 + 1, then there is nothing to prove. Suppose that τ > t1 + 1. Since E(t1) ≤ δ̄ on

A, by Lemma 1(a), pD(θ̂1) ∈ Ball(pD(θ∗), ϕ/2). For t = t1 + 1, we then have ||pt1+1 − pD(θ∗)||2 =

||pD(θ̂1)− pD(θ∗)||2 ≤ ϕ/2, so pt1+1 ∈P. In addition, similar to Lemma EC.1, we also have Ct1+1 =

kC −LC +LC −ASL−A(λNT1 +∆̂t1+1)≽ (k−L− 1)C +LC −ASL−A∆̂t1+1 ≻ 0 where the first

inequality follows by the fact that AλNT1 ≼C, and the second inequality follows by the same argu-

ment as in Lemma EC.1. This is the base case. Now suppose Cs ≻ 0, ps ∈ W(λ̃min, λ̃max) for all

s≤ t− 1 for some t− 1< τ with t− 1 ∈ [tz, tz+1). If t≥ τ , there is nothing to prove. So we only
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need to show that Ct ≻ 0, pt ∈W(λ̃min, λ̃max) when t < τ . Note that when t < τ , we have tz ≤ t < τ .

Hence, by definition of A, we have

||pt− pD(θ∗)||2 ≤ ||pt− p(λNTz ; θ̂tz)||2 + ||p(λNTz ; θ̂tz)− pD(θ̂tz)||2 + ||pD(θ̂tz)− pD(θ∗)||2

≤ w||Q||2

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+ ||p(λNTz ; θ̂tz)− p(λD(θ̂tz); θ̂tz)||2 +
ϕ

2

≤ ϕ

4
+ω||λNTz −λD(θ̂tz)||2 +

ϕ

2
≤ ϕ

4
+
ϕ

8
+
ϕ

2
=

7ϕ

8

where the second inequality follows by Lemma 1(a) and the fact that E(tz) < δ̄ on A, the last

inequality results from the following inequality∣∣∣∣∣∣λNTz −λD(θ̂tz)
∣∣∣∣∣∣

2
≤
∣∣∣∣λNTz −λD(θ∗)

∣∣∣∣
2
+
∣∣∣∣∣∣λD(θ∗)−λD(θ̂tz)

∣∣∣∣∣∣
2

≤ 2
∣∣∣∣∣∣xNTz −xD(θ̂tz)

∣∣∣∣∣∣
2
+2

∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)
∣∣∣∣∣∣

2
+
∣∣∣∣∣∣λD(θ∗)−λD(θ̂tz)

∣∣∣∣∣∣
2

≤ 2
√

Γ1(log tz)
− ϵ

4 +3κ̄E(tz)

≤
(
2
√

Γ1 +3κ̄
)
(log tz)

− ϵ
4 <

ϕ

8ω
,

where the second inequality follows by (EC.13) and the fourth inequality follows by the definition

of A. Hence, pt ∈ Ball(pD(θ∗),7ϕ/8). For Ct, by a similar argument to Lemma EC.1, we have

Ct = kC − tC + tC − ASL −
∑t

s=t1+1A(λ
NT
z(s) − Q

∑s−1

v=t1+1
∆̂v
k−v + ∆̂s) ≽ (k − t)C + LC − ASL −∑t

s=t1+1(A∆̂s−
∑s−1

v=t1+1
A∆̂v
k−v )≻ 0. This completes the induction.

(c) Let V4 ≥ V3 be such that 27ξ2
(
5κ̄4 [8η4 +4(q− 1)2(log tz)

2]/(η25tz)+ 2Γ1Γ2/(log tz−1)
ϵ
2

)
< 1 for

all k ≥ V4 and z = 1, . . . ,Z, where Γ2 =max{1,4κ̄2η23}, η4 and η5 are as in Lemma 4. Again, we

show by induction. For z = 1, we have:

Eπ[||xD(θ̂t1)−xNT1 ||221{t1<τ}|A] =Eπ[||xD(θ̂t1)−λD(θ̂t1)||
2
21{t1<τ}|A]

≤ 2Eπ[||xD(θ̂t1)−xD(θ∗)||221{t1<τ}|A] + 2Eπ[||λD(θ̂t1)−λD(θ∗)||221{t1<τ}|A]

≤ 4κ̄2 η
2
3

t1
≤ Γ2

t1
,

where the second to the last inequality follows by Lemma 2. This is our base case. We now do the

inductive step. Suppose that Eπ[||xD(θ̂ts)− xNTs ||221{ts<τ}|A]≤ Γ2t
−1
s holds for s= z − 1, we need

to show that same thing holds for s= z. Then, for k≥Ω1 ≥ V4, we have:

Eπ
[∣∣∣∣∣∣xD(θ̂tz)−xNTz

∣∣∣∣∣∣2
2
1{tz<τ}

∣∣∣∣A]≤ ξ2Eπ
[∣∣∣∣∣∣xD(θ̂tz)−xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]
≤ 27ξ2

{
Eπ
[∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]+Eπ
[∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz−1

)
∣∣∣∣∣∣4

2
1{tz<τ}

∣∣∣∣A]
+Eπ

[∣∣∣∣∣∣xD(θ̂tz−1
)−xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]}
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≤ 27ξ2
{
κ̄4Eπ[E(tz)

41{tz<τ}|A] + κ̄4Eπθ∗ [E(tz−1)
41{tz<τ}|A] +

Γ1

(log tz−1)
ϵ
2

Γ2

tz−1

}
≤ 27ξ2

{
8η4 +4(q− 1)2(log tz)

2

η25t
2
z

κ̄4 +
8η4 +4(q− 1)2(log tz−1)

2

η25t
2
z−1

κ̄4 +
Γ1

(log tz−1)
ϵ
2

2Γ2

tz

}
≤ 27ξ2

{
5κ̄4 [8η4 +4(q− 1)2(log tz)

2]

η25tz
+

2Γ1Γ2

(log tz−1)
ϵ
2

}
1

tz

≤ 1

tz
≤ Γ2

tz
,

where the first inequality follows by Lemma EC.6(a), the third inequality follows by Lemma EC.4,

Lemma EC.6(a) and the induction hypothesis, and the fourth inequality holds because

Lemma EC.6(b) shows that ps ∈ W(λ̃min, λ̃max) for s < τ which means that the condition for

Lemma 4 is satisfied, so

Eπ
[
E(t)41{t<τ}

∣∣A] ≤ ∫ ∞

0

Pπ
(
||θ̂t− θ∗||42 ≥ x

)
dx

≤
∫ ∞

0

min
{
1, η4t

q−1 exp
(
−η5t

√
x
)}
dx

≤
∫ (

2(q−1) log t
η5t

)2

0

dx+

∫ ∞

(
2(q−1) log t

η5t

)2

[
η4t

q−1 exp

(
−η5t

√
x

2

)]
exp

(
−η5t

√
x

2

)
dx

≤ 4(q− 1)2(log t)2

η25t
2

+ η4

∫ ∞

(
2(q−1) log t

η5t

)2
exp

(
−η5t

√
x

2

)
dx

≤ 4(q− 1)2(log t)2

η25t
2

+ η4

∫ ∞

0

exp

(
−η5t

√
x

2

)
dx

≤ 8η4 +4(q− 1)2(log t)2

η25t
2

.

This completes the induction. �

Proof of Lemma EC.7. We first derive a bound for Φϵ. By definition tz = ⌈(tz+1−L)/2⌉+L for

z > 1, so tz−L≥ (tz+1−L)/2. This implies that tz+1− tz ≤ tz for all z > 1. For z = 1, we also have

t2 − t1 = 1≤L= t1. Recall that Z ≤ ⌈log2 k⌉ ≤ 2 log2 k. Thus, we can bound Φϵ as follows:

Φϵ =
k−1∑

s=t1+1

ϵ̄(s)2 =
Z∑
z=1

(tz+1 − tz)ϵ̄(tz)
2 ≤

Z∑
z=1

(tz+1 − tz)η
2
6

(q− 1) log tz +1

tz

≤ η26Z[(q− 1) logk+1]

≤ KΦ[1+ logk+(q− 1) log2 k]

for some positive constant KΦ independent of k≥ 1.

We now derive a bound for Ψϵ. To do that, we first show that there exists a constant K > 3

such that for all k ≥K, we have (1)(logk)1+ϵ/k < 1/19, (2)Z ≥ 3 and (3)tZ−2 ≤ k/3. Note that as
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k→∞, we have (logk)1+ϵ/k→ 0, Z →∞ and tz+1 −L→∞ for z = Z − 2,Z − 1,Z. This implies

that tz − L = ⌈(tz+1 − L)/2⌉ ≤ 2(tz+1 − L)/3 for z = Z − 2,Z − 1,Z when k is large. Therefore,

there exists a constant K > 3 such that for all k ≥ K, we have (logk)1+ϵ/k < 1/19, Z ≥ 3 and

tZ−2 ≤ 8
27
(tZ+1 −L)+L= 8

27
k+ 19

27
(logk)1+ϵ < k

3
.

Since ϵ̄(tz) = η6
√
[(q− 1) log tz +1]/tz ≤ η6

√
q, we conclude that for k < K, Ψϵ ≤ k(kη6

√
q)2 ≤

K3η26q. We now focus on the case when k≥K. Note that,

Ψϵ =
k−1∑

t=t1+1

(
t−1∑

s=t1+1

ϵ̄(s)

k− s

)2

≤ 2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ϵ̄(s)

k− s

)2

+2
k−1∑

t=tZ−2+1

 t−1∑
s=tZ−2+1

ϵ̄(s)

k− s

2

.

(EC.14)

Since tZ−2 > k/4 (recall that tz+1 ≤ 2tz and tZ+1 = k), we have ϵ̄(s)< η6
√

4[(q− 1) logk+1]/k

for all s > tZ−2. So, for all k≥K, the second term in (EC.14) can be bounded by

8η26[1+ (q− 1) logk]

k

k−1∑
t=tZ−2+1

 t−1∑
s=tZ−2+1

1

k− s

2

≤ 8η26[1+ (q− 1) logk]

k
3k≤KΨ,2[1+ (q− 1) logk]

for some positive constant KΨ,2 = 24η26 independent of k≥K, where the first inequality follows by

a similar argument as in (EC.7) and k≥K > 3. As for the first term in (EC.14), for all k≥K, we

have

2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ϵ̄(s)

k− s

)2

≤ 2k

(
tZ−2∑
s=t1+1

ϵ̄(s)

k− s

)2

≤ 2k

Z−3∑
z=1

tz+1 − tz
k− tz+1

η6

√
1+ (q− 1) log tz

tz

2

≤ 4kη26

(
Z−3∑
z=1

tz+1 − tz
k− tz+1

√
1+ (q− 1) logk

tz+1

)2

≤ 4kη26[1+ (q− 1) logk]

(∫ tZ−2

1

1

k−x

√
1

x
dx

)2

≤ 4kη26[1+ (q− 1) logk]

(
2 log(

√
2√

2−1
)

√
k

)2

≤ KΨ,1[1+ (q− 1) logk]

where KΨ,1 = 16η26 log
2(

√
2√

2−1
). The second inequality follows by Lemma 4. The third inequality

follows because tz+1 ≤ 2tz. Note that the function f(x) = 1
(k−x)

√
x
is decreasing when x < k

3
. Since

tZ−2 <
k
3
, the fourth inequality holds by integral approximation. The fifth inequality follows by∫ tZ−2

1

1

k−x

√
1

x
dx=

1√
k

∫ tZ−2

1

(
1√

k−
√
x
+

1√
k+

√
x

)
d
√
x≤ 2√

k
log

( √
k− 1√

k−
√
tZ−2

)
≤

2 log(
√
2√

2−1
)

√
k

.
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Thus, we conclude that there exists some positive constant KΨ independent of k ≥ 1 such that

Ψϵ ≤max{(KΨ,1+KΨ,2)[1+(q−1) logk],K3η26q} ≤KΨ[1+(q−1) logk]. We complete the proof by

letting K3 =max{KΦ,KΨ}. �

Proof of Lemma EC.8. The proof of Lemma EC.8 is very similar to that of Lemma EC.2, with

some nontrivial twists. Per the proof of Lemma EC.2, we only need to bound Pπ(τ ≤ t|A). Note

that we have

Pπ(τ ≤ t|A) ≤ Pπ
(

max
L+1≤s≤t

{∣∣∣∣∣∣∣∣SL−LλLe

k− s

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

+
s∑

v=L+1

||λv − λ̂v||21{v≤τ}

k− v

}
≥ψ

∣∣∣∣∣A
)

≤ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣∣∣∣SL−LλLe

k− s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A)+Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

4

∣∣∣∣∣A
)

+Pπ
(

max
L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k− v
≥ ψ

4

∣∣∣∣∣A
)

≤ max

{
1,

4n(1+λL)
2L2

ψ2(k− t)2

}
+

16

ψ2Pπ(A)

[
4

(k− t)2
+

4

k− t

]
+Pπ

(
max

L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k− v
≥ ψ

4

∣∣∣∣∣A
)

(EC.15)

where the last inequality follows by the same argument in Lemma EC.2. We now bound the last

term in (EC.15):

Pπ
(

max
L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k− v
≥ ψ

4

∣∣∣∣∣A
)
≤ 16

ψ2

 t∑
s=L+1

√
Eπ[||λs− λ̂s||221{τ≤s}|A]

k− s

2

≤ 16

ψ2

 t∑
s=L+1

√
Eπ[||λs− λ̂s||221{τ<s}|A]

k− s
+

√
Eπ[||λs− λ̂s||221{τ=s}|A]

k− s

2

≤ 32

ψ2

 t∑
s=L+1

√
Eπ[||λs− λ̂s||221{τ<s}|A]

k− s

2

+
32

ψ2

 t∑
s=L+1

√
Eπ[||λs− λ̂s||221{τ=s}|A]

k− s

2

≤ 32ω2

ψ2

(
t∑

s=L+1

ϵ̄(s)

k− s

)2

+
32

ψ2

(
t∑

s=L+1

√
2
√

Eπ[1{τ=s}|A]

k− s

)2

≤ 32ω2

ψ2

(
t∑

s=L+1

ϵ̄(s)

k− s

)2

+
128

ψ2

(
1

k− t

)
where the first inequality follows the same argument as in the proof of Lemma EC.2, the fourth

inequality follows by Lemma 4 and the fact that for any two points x1, x2 ∈∆n−1 we have ||x1 −
x2||22 ≤ 2, and the last inequality follows because by Cauchy-Schwartz inequality,(

t∑
s=L+1

√
Eπ[1{τ=s}|A]

k− s

)2

≤

(
t∑

s=L+1

1

(k− s)2

)(
t∑

s=L+1

Eπ[1{τ=s}|A]

)
≤ 1

(k− t)2
+

1

k− t
≤ 2

k− t
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Finally, we have for all k≥K ≥Ω2 ≥ 3,

Eπ[k− τ |A] =
k−1∑
t=1

Pπ(τ ≤ t|A)≤ 256

ψ2

logk

1−Pπ(E(L)> δ̄)
+

(
4n(1+λL)

2

ψ2
+1

)
L

+
32ω2

ψ2

k−1∑
t=1

(
t∑

s=L+1

ϵ̄(s)

k− s

)2

+
128

ψ2

k−1∑
t=1

(
1

k− t

)
≤ 256

ψ2

logk

1−Pπ(E(L)> δ̄)
+

(
4n(1+λL)

2

ψ2
+1

)
L

+
64ω2

ψ2

k−1∑
t=1

(
t−1∑

s=L+1

ϵ̄(s)

k− s

)2

+
64ω2

ψ2

k−1∑
t=1

ϵ̄(t)2

(k− t)2
+

128

ψ2

k−1∑
t=1

(
1

k− t

)
≤ 512

ψ2
logk+

(
4n(1+λL)

2

ψ2
+1

)
L+

64K3ω
2q

ψ2
logk+

128ω2η26q

ψ2
+

128

ψ2
≤K7(logk+L)

whereK7 = 640/ψ2+64K3ω
2q/ψ2+128ω2η26q/ψ

2+(4n(1+λL)
2/ψ2+1), the first inequality follows

by a similar argument as in Lemma EC.2, and the third inequality follows by Lemma EC.7 and

the fact that ϵ̄(t)≤ η6
√
q. �

Proof of Lemma EC.9. Note that, for any θ1, θ2 ∈Θ, θ1 ̸= θ2, by Fatou’s lemma, we have

lim inf
θ′→θ1,θ′′→θ2

Hπ
t (θ

′, θ′′,Dt|D1:t−1)

||θ′ − θ′′||22
= lim inf

θ′→θ1,θ′′→θ2

∑
Dt∈D

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′ − θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ1,θ′′→θ2

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′ − θ′′||22

=
Hπ
t (θ1, θ2,Dt|D1:t−1)

||θ1 − θ2||22
> 0, (EC.16)

where the last inequality follows by W1. Let σ(.) denote the smallest eigenvalues of a real symmetric

matrix. If we now set θ1 = θ2 = θ, since
√

Pπ,θt (Dt|D1:t−1) is continuously differentiable in θ, there

exists θ̃ on the line segment connecting θ′ and θ′′ such that

lim inf
θ′→θ,θ′′→θ

Hπ
t (θ

′, θ′′,Dt|D1:t−1)

||θ′ − θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

[(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′ − θ′′

||θ′ − θ′′||2

]2
=
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

(θ′ − θ′′)′

||θ′ − θ′′||2

(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′ − θ′′

||θ′ − θ′′||2

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

σ

((
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′)
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=
∑
Dt∈D

σ

((
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)′)

=
∑
Dt∈D

σ
(
( ∂
∂θ
Pπ,θt (Dt|D1:t−1))(

∂
∂θ
Pπ,θt (Dt|D1:t−1))

′
)

4Pπ,θt (Dt|D1:t−1)

=
1

4

∑
Dt∈D

σ

((
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)(
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)′)
Pπ,θt (Dt|D1:t−1)

≥ cf
4
> 0 (EC.17)

where the first inequality follows by Fatou’s Lemma as in (EC.16) and the Mean Value Theorem,

and the third equality follows because

∂

∂θ

√
Pπ,θt (Dt|D1:t−1) =

∂
∂θ
Pπ,θt (Dt|D1:t−1)

2
√

Pπ,θt (Dt|D1:t−1)

(by chain rule) and the last two inequalities follow by the definition of Fisher information and W2.

To prove Lemma EC.9, it suffices to show that, for any θ1, θ2 ∈Θ,Hπ
t (θ1, θ2,Dt|D1:t−1)/||θ1−θ2||22 ≥

ch for some ch > 0 independent of θ1, θ2. (If θ1 = θ2, the ratio is to be understood as its limit.)

Suppose not, since the ratio is always non-negative, there exists two sequences θn1 → θ1, θ
n
2 → θ2

such that lim infn→∞Hπ
t (θ

n
1 , θ

n
2 ,Dt|D1:t−1)/||θn1 −θn2 ||22 = 0. But, this contradicts with (EC.16) when

θ1 ̸= θ2 and with (EC.17) when θ1 = θ2. This completes the proof. �

EC.3. Proof of results in Section 4

EC.3.1. Proof of Lemma 5

We first show that L is a bounded linear operator. For all f ∈ C0(P), there exists p
l
≤ x∗

l ≤ p̄l for

all l= 1, . . . , n such that

||Lf(.)||∞ = sup
x∈P

|Lf(x)|= sup
x1∈[p

1
,p̄1]

. . . sup
xn∈[p

n
,p̄n]

|L1 ◦ · · · ◦ Lnf(x1, . . . , xn)|

≤ sup
x1∈[p

1
,p̄1]

. . . sup
xn−1∈[p

n−1
,p̄n−1]

|L1 ◦ · · · ◦ Ln−1f(x1, . . . , x
∗
n)|(2s)s

≤ . . . ≤ (2s)nsf(x∗
1, . . . , x

∗
n)≤ (2s)ns||f(.)||∞,

where the inequalities follow by Theorem EC.3. We now prove that Lf = f for all f ∈

⊗n
l=1P

s−1[p
l
, p̄l]. Note that L= L1 ◦ L2 ◦ · · · ◦ Ln. Applying Theorem EC.3 iteratively n times, we

obtain that Lf =L1 ◦ · · · ◦ Lnf =L1 ◦ · · · ◦ Ln−1f = · · ·= f . �
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EC.3.2. Proof of Lemma 6

We will proceed in several steps.

Step 1

Let ∆̄l := (p̄l − p
l
)/(d + 1). Fix some s ≤ ĩ1, . . . , ĩn ≤ s + d. Define a hypercube Hĩ1,...,̃in

:= {p =

(p1; . . . ;pn) : yl,̃il ≤ pl ≤ yl,̃il+1,1≤ l≤ n}. Note that for any p∈Hĩ1,...,̃in
,

||λ∗(p)− λ̃(p)||∞ ≤ ||λ∗(p)−Lλ∗(p)||∞ + ||Lλ∗(p)− λ̃(p)||∞.

By Corollary EC.1 (see §EC.4.3), there exists f1 = (f1,1; . . . ;f1,n)∈⊗n
l=1P

(s∧s̄)−1[p
l
, p̄l] such that

||λ∗(.)− f1(.)||∞ = sup
p∈H

ĩ1,...,̃in

||λ∗(p)− f1(p)||∞ = sup
p∈H

ĩ1,...,̃in

max
1≤j≤n

|λ∗
j (p)− f1,j(p)|

≤ sup
p∈H

ĩ1,...,̃in

max
1≤j≤n

{
Cn,(s∧s̄)

n∑
i=1

∆̄
(s∧s̄)
i |(∂(s∧s̄)/∂p

(s∧s̄)
i )λ∗

j (p)|

}
≤ Cn,(s∧s̄)W

n∑
i=1

∆̄
(s∧s̄)
i ,

where Cn,(s∧s̄) is a positive constant that only depends on n, s∧ s̄ and the last inequality follows

by assumption N2. Then,

||λ∗(p)−Lλ∗(p)||∞ ≤ ||λ∗(p)− f1(p)||∞ + ||f1(p)−Lf1(p)||∞ + ||Lf1(p)−Lλ∗(p)||∞

= ||λ∗(p)− f1(p)||∞ + ||L(λ∗(p)− f1(p))||∞ ≤ [1+ (2s)ns] ||λ∗(.)− f1(.)||∞

≤ Cn,(s∧s̄)W [1+ (2s)ns]

(
n∑
i=1

∆̄
(s∧s̄)
i

)

≤ nCn,(s∧s̄)W [1+ (2s)ns]

(
max
1≤l≤n

{p̄l− p
l
}
)(s∧s̄)

1

d(s∧s̄)
,

where the first equality and the second inequality follows by Lemma 5 (note that s∧ s̄≤ s). Also,

we have that for any 1≤ i1, . . . , in ≤ s+ d, 1≤ j ≤ n,

∣∣γi1,...,inλ∗
j − cji1,...,in

∣∣ ≤ s∑
j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

(∏n

l=1 βl,il,jl
)
|λ∗
j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|∏n

l=1

∏jl
sl=1,sl ̸=rl

(τl,il,rl − τl,il,rl)

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

∏n

l=1(∆̄ls)
jl−1∏n

l=1(∆̄l/s)jl−1
|λ∗
j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

s2(
∑n

l=1 jl−n)|λ∗
j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|

≤
(
s+ s2

2

)n
s2(ns−n) ξji1,...,in ,
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where the second inequality follows by Theorem EC.5 (see §EC.4.3), and ξji1,...,in :=

max1≤r1,...,rn≤s{|λ∗
j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|}. Hence:

|Lλ∗
j (p)− λ̃j(p)| ≤

s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗
j − cji1,...,in

∣∣ · |Ni1,...,in(p)|

≤
(
s+ s2

2

)n
s2(ns−n) max

1≤i1,...,in≤s+d

{
ξji1,...,in

}
,

where the last inequality holds by Corollary EC.2 (see §EC.4.3). This implies: For all p∈Hĩ1,...,̃in
,

there exists a constant C1
n,s,s̄,P > 0 depending only on n, s, s̄,P such that ||λ∗(p) − λ̃(p)||∞ ≤

C1
n,s,s̄,P

(
Wd−(s∧s̄) +max1≤i1,...,in≤s+d,1≤j≤n

{
ξji1,...,in

})
. Note that term after the inequality does not

depend on ĩ1, . . . , ĩn; so, we have:

||λ∗(.)− λ̃(.)||∞ ≤ sup
p∈P

||λ∗(p)− λ̃(p)||∞ ≤C1
n,s,s̄,P

 W

d(s∧s̄)
+ max

1≤i1,...,in≤s+d
1≤j≤n

{
ξji1,...,in

}(EC.18)
Step 2

Following similar arguments as in Step 1, we now derive a bound for ||∇λ∗
j (.)−∇λ̃j(.)||1. Consider

the hypercube Hĩ1,...,̃in
defined in Step 1. Note that ||∇λ∗

j (p)−∇λ̃j(p)||1 ≤ ||∇λ∗
j (p)−L∇λ∗

j (p)||1+

||L∇λ∗
j (p) − ∇λ̃j(p)||1. By Corollary EC.1 (see §EC.4.3), there exists f2 = (f2,1; . . . ;f2,n) ∈

⊗n
l=1P

(s∧s̄)−1[p
l
, p̄l] such that for all p∈Hĩ1,...,̃in

, we have

||∇λ∗
j (p)−∇f2,j(p)||1 ≤ max

1≤j≤n
Cn,(s∧s̄)−1

n∑
i=1

∆̄
(s∧s̄)−1
i |(∂(s∧s̄)/∂p

(s∧s̄)
i )λ∗

j (p)| ≤Cn,(s∧s̄)−1W
n∑
i=1

∆̄
(s∧s̄)−1
i ,

where Cn,(s∧s̄)−1 is a positive constant that only depends on n and (s∧ s̄)− 1. Then, we have

||∇λ∗(p)−L∇λ∗(p)||1 ≤ nCn,(s∧s̄)−1W [1+ (2s)ns]

(
max
1≤l≤n

{p̄l− p
l
}
)(s∧s̄)−1

d−((s∧s̄)−1).

Now, by Corollary EC.3 (see §EC.4.3),

||∇Ni1,...,in(p)||1 ≤ n||∇Ni1,...,in(p)||∞ ≤ n(s− 1) max
1≤l≤n

{∆̄−1
l } ≤ 2n(s− 1) max

1≤l≤n
{(p̄l− p

l
)−1}d.

This implies:

||L∇λ∗
j (p)−∇λ̃j(p)||1 ≤

s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗
j − cji1,...,in

∣∣ · ||∇Ni1,...,in(p)||1

≤ 2n

(
s+ s2

2

)n
s2(ns−n)(s+ d)n(s− 1) max

1≤l≤n
{(p̄l− p

l
)−1}d max

1≤i1,...,in≤s+d

{
ξji1,...,in

}
.
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We conclude that there exists a constant C2
n,s,s̄,P > 0 depending only on n, s, s̄,P such that

||(∇λ∗(.)−∇λ̃(.))′||∞ ≤ max
1≤j≤n

sup
p∈P

||∇λ∗
j (p)−∇λ̃j(p)||1

≤ C2
n,s,s̄,P

 W

d(s∧s̄)−1
+ max

1≤i1,...,in≤s+d
1≤j≤n

{
ξji1,...,in

}
d

 . (EC.19)

Step 3

We now analyze max(i1,...,in)∈G,1≤j≤n
{
ξji1,...,in

}
. Let Ḡ = {p = (p1; . . . ;pn) ∈ P : pl = τl,il,rl ,1 ≤ il ≤

s+d,1≤ rl ≤ s, l= 1, . . . , n}. Then, max1≤i1,...,in≤s+d
{
ξji1,...,in

}
=maxp∈Ḡ |λ∗

j (p)− λ̃j(p)|. Note that,

for all x≥ 0, we can bound

P
(
max
p∈Ḡ

|λ∗
j (p)− λ̃j(p)| ≥ x

)
≤ P

(
max
p∈Ḡ

{λ̃j(p)−λ∗
j (p)} ≥ x

)
+P

(
max
p∈Ḡ

{λ∗
j (p)− λ̃j(p)} ≥ x

)
We now bound the terms on the right hand side of the inequality separately. For any x≥ 0, t≥ 0,

P
(
max
p∈Ḡ

{λ̃j(p)−λ∗
j (p)} ≥ x

)
≤ exp(−tx)E

[
exp

(
tmax
p∈Ḡ

{λ̃j(p)−λ∗
j (p)}

)]

≤ exp(−tx)E

exp
t∑

p∈Ḡ

(λ̃j(p)−λ∗
j (p))


≤ exp(−tx)

[
max
p∈Ḡ

{
E
[
exp

(
t(λ̃j(p)−λ∗

j (p))
)]}]sn(s+d)n

.

Note that there exists a p∗ ∈ Ḡ such that the maximum is attained. So, for all 0≤ t≤L0:

max
p∈Ḡ

{
E
[
exp

(
t(λ̃j(p)−λ∗

j (p))
)]}

= E
[
exp

(
t(λ̃j(p

∗)−λ∗
j (p

∗))
)]

= exp(−tλ∗
j (p

∗))E

[
exp

(
t

L0

L0∑
i=1

Bin(λ∗
j (p

∗))

)]

= exp(−tλ∗
j (p

∗))

{
E
[
exp

(
t

L0

Bin(λ∗
j (p

∗))

)]}L0

= exp(−tλ∗
j (p

∗))

{
1−λ∗

j (p
∗)+λ∗

j (p
∗) exp

(
t

L0

)}L0

≤ exp(−tλ∗
j (p

∗))

{
exp

(
λ∗
j (p

∗)

[
exp

(
t

L0

)
− 1

])}L0

= exp(−tλ∗
j (p

∗)) exp

(
λ∗
j (p

∗)L0

∞∑
j=1

1

j!

(
t

L0

)j)

= exp

(
λ∗
j (p

∗)L0

∞∑
j=2

1

j!

(
t

L0

)j)
≤ exp

(
λ∗
j (p

∗)t2/L0

)
≤ exp(t2/L0),
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where the last inequality follows by the fact that
∑∞

j=2(j!)
−1 (t/L0)

j ≤ (t/L0)
2∑∞

j=2[j(j − 1)]−1 ≤

(t/L0)
2
. Hence, we have that for all 0 ≤ t ≤ L0, P(maxp∈Ḡ{λ̃j(p) − λ∗

j (p)} ≥ x) ≤ exp(sn(s +

d)nt2/L0− tx). Following a similar argument, we can show that for all 0≤ t≤L0, there exists some

q∗ ∈ Ḡ such that

P
(
max
p∈Ḡ

{λ∗
j (p)− λ̃j(p)} ≥ x

)
≤ exp(−tx)

[
max
p∈Ḡ

{
E
[
exp

(
t(λ∗

j (p)− λ̃j(p))
)]}]sn(s+d)n

≤ exp(−tx)

[
exp(tλ∗

j (q
∗)) exp

(
λ∗
j (q

∗)L0

∞∑
j=1

(−1)j

j!

(
t

L0

)j)]sn(s+d)n
≤ exp(sn(s+ d)nλ∗

j (q
∗)t2/L0 − tx)≤ exp(sn(s+ d)nt2/L0 − tx).

Pick t=
√
L0s

−n/2(s+ d)−n/2 logk (note that t/L0 = (L0s
n(s+ d)n log−2 k)−1/2 = (L̃0 log

−2 k)−1/2 <

1) and x= 2L
−1/2
0 (s+ d)n/2sn/2 logk, we then have for k≥ 3:

P
(
max
p∈Ḡ

{λ̃j(p)−λ∗
j (p)} ≥

2 logk√
L0

s
n
2 (s+ d)

n
2

)
≤ 2exp

(
− log2 k

)
≤ 2exp(− logk) =

2

k
.

Note that L̃0 = L0(s+ d)nsn. Hence, L0 = L̃0s
−n(s+ d)−n. Combine with the results derive in

Step 1 and 2, we then have that there exists constant C3
n,s,s̄,P ,C

4
n,s,s̄,P depending on n, s, s̄,P only,

such that for all k≥ 3:

P

(∣∣∣∣∣∣λ∗(.)− λ̃(.)
∣∣∣∣∣∣

∞
≥C3

n,s,s̄,P

(
W

d(s∧s̄)
+

2 logk√
L̃0

dn

))

≤ P
(∣∣∣∣∣∣λ∗(.)− λ̃(.)

∣∣∣∣∣∣
∞
≥C1

n,s,s̄,P

(
W

d(s∧s̄)
+

2 logk√
L0

s
n
2 (s+ d)

n
2

))
≤ 2

k
, and

P

(∣∣∣∣∣∣∣∣(∇λ∗(.)−∇λ̃(.)
)′
∣∣∣∣∣∣∣∣

∞
≥C4

n,s,s̄,P

(
W

d(s∧s̄)−1
+

2 logk√
L̃0

dn+1

))

≤ P
(∣∣∣∣∣∣∣∣(∇λ∗(.)−∇λ̃(.)

)′
∣∣∣∣∣∣∣∣

∞
≥C2

n,s,s̄,P

(
W

d(s∧s̄)−1
+

2 logk√
L0

s
n
2 (s+ d)

n
2 d

))
≤ 2

k
.

Let d = (L̃0

−1/2
logk)−1/(s+n). We conclude that there exist constants M4,M5 independent of

k≥ 3 such that for all k≥ 3,

P

∣∣∣∣∣∣λ∗(.)− λ̃(.)
∣∣∣∣∣∣

∞
≥M4

(
logk√
L̃0

) s∧s̄
s+n

≤ 2

k
and P

∣∣∣∣∣∣∣∣(∇λ∗(.)−∇λ̃(.)
)′
∣∣∣∣∣∣∣∣

∞
≥M5

(
logk√
L̃0

) (s∧s̄)−1
s+n

≤ 2

k
.

�
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EC.3.3. Proof of Lemma 7

By assumption, Λλ∗ := {x : x= λ∗(p), p∈P} is convex. Recall that by R1, λ∗(.) is invertible and its

inverse function p∗ : Λλ∗ →P satisfies that λ∗(p∗(x)) = x,∀x ∈ Λλ∗ . Let δ(p) := λ̃(p)− λ∗(p). Note

that ||δ(p)||∞ ≤ ||λ∗(p)− λ̃(p)||∞ ≤ ||λ∗(.)− λ̃(.)||∞ for all p ∈ P. Since the optimal solution of Pλ

is stationary, i.e., λDt = λD for all t, we can formulate an equivalent “one-period” version P′
λ, and

also construct an auxiliary optimization problem Pacλ :

(P′
λ) rD := max

λ∈Λλ∗
r∗(λ) s.t. Aλ≼ C

T
and

(Pacλ ) r̄D := max
λ∈Λλ∗

r∗(λ) s.t. Aλ+Aδ(p∗(λ))≼ C

T
.

Note that λD = λ∗(pD) is the unique optimizer of P′
λ. Let λ

ac denote an optimizer of Pacλ (note

that λac may not be unique). By the strong concavity of r∗(.) as a function of λ, λac is the unique

optimizer of the following optimization problem whose optimal value remains to be r̄D:

(P̄
ac

λ ) r̄D := max
λ∈Λλ∗

r∗(λ) s.t. Aλ≼ C

T
−Aδ(p∗(λac)).

Note that if we view the term Aδ(p∗(λac)) on the right hand side of the inequality as a pertur-

bation of the term C/T in P ′
λ, optimization (P̄

ac

λ ) is equivalent to

(P′
λ(ϵ)) rD(ϵ) := max

λ∈Λλ∗
r∗(λ) s.t. Aλ≼ C

T
− ϵ,

where ϵ=−Aδ(p∗(λac)). In light of Corollary EC.4 (see §EC.4.3), there exists a constant K13 > 0

independent of ||ϵ||∞ such that ||λD − λac||∞ ≤ K13||ϵ||∞. Now, let P̃λ denote the optimization

problem: maxλ∈Λλ∗{r̃(λ) : s.t. Aλ+Aδ(p
∗(λ))≼C/T}. Let λ̄ := λ∗(p̄). (This optimization problem

is emanated from P̃. The only difference is that P̃λ optimizes over λ instead of p as in P̃.) Since p̄

is an optimizer of P̃, λ̄ is an optimizer of P̃λ. Note that the constraints of P̃λ and Pacλ are identical.

Thus, λ̄ is feasible to Pacλ and λac is feasible to P̃λ. By the optimality condition of Pacλ and the

fact that r∗(.) is strongly concave with respect to λ and the eigenvalues of the Hessian matrix of

r∗(.) are bounded from above by −v, we have r∗(λ̄)≤ r∗(λac)+∇r∗(λac) · (λ̄−λac)− v

2
||λac− λ̄||22 ≤

r∗(λac)− v

2
||λac− λ̄||2∞ (here, we use the fact that ∇r∗(λac) · (λ̄−λac)≤ 0, by the optimality of λac).

By the optimality condition of P̃λ, we have r̃(λac)≤ r̃(λ̄); so,

v

2
||λac− λ̄||2∞ ≤ r∗(λac)− r∗(λ̄)

≤ [r∗(λac)− r̃(λac)]−
[
r∗(λ̄)− r̃(λ̄)

]
≤ ||(∇λr

∗(ξ)−∇λr̃(ξ))
′||∞||λac− λ̄||∞,
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for some ξ, where the last inequality follows by Mean Value Theorem and norm inequality. This

indicates that ||λac− λ̄||∞ ≤ 2v−1||(∇λr
∗(ξ)−∇λr̃(ξ))

′||∞. Since p(.) is continuously differentiable

by R1 and Λλ∗ is compact, ||∇p∗(λ)||∞ is uniformly bounded by some constant K > 0. Note that

r∗(λ) = λ · p∗(λ) and r̃(λ) = (λ+ δ(p∗(λ))) · p∗(λ), so r∗(λ)− r̃(λ) = p∗(λ) · δ(p∗(λ)) and

||(∇λr
∗(ξ)−∇λr̃(ξ))

′||∞ = ||∇λr
∗(ξ)−∇λr̃(ξ)||1

= ||∇λp
∗(ξ) δ(p∗(ξ))+∇λp

∗(ξ)∇pδ(p
∗(ξ))p∗(ξ)||1

≤ ||∇λp
∗(ξ)||1||δ(p∗(ξ))||1 + ||∇λp

∗(ξ)||1||∇pδ(p
∗(ξ))||1||p∗(ξ)||1

≤ nK||λ∗(.)− λ̃(.)||∞ +nK

(
n∑
l=1

p̄l

)
||∇λ∗(.)−∇λ̃(.)||∞.

Finally, since p∗(.) is in C1(Λθ∗) and Λθ∗ is compact, there exists some constant K ′ such that

||pD − p̄||∞ ≤ K ′||λD − λ̄||∞. This implies ||pD − p̄||∞ ≤ K ′||λD − λ̄||∞ ≤ K ′(||λD − λac||∞ +

||λac − λ̄||∞)≤K ′[K13||ϵ||∞ + 2v−1nK||λ∗(.)− λ̃(.)||∞ + 2v−1nK(
∑n

l=1 p̄l)||(∇λ∗(.)−∇λ̃(.))′||∞]≤
M6max{||λ∗(.)− λ̃(.)||∞, ||∇λ∗(.)−∇λ̃(.)||∞} for M6 =K ′[K13+2v−1nK+2v−1nK(

∑n

l=1 p̄l)] that

is independent of ||λ∗(.)− λ̃(.)||∞ and ||(∇λ∗(.)−∇λ̃(.))′||∞. �

EC.3.4. Proof of Lemma 8

Recall that ϵ(L̃0) := (logk/
√
L̃0)

((s∧s̄)−1)/(s+n). Define θ̄= (λ∗(p̄)−∇λ∗(p̄) · p̄;∇λ∗
1(p̄); . . . ;∇λ∗

n(p̄)).

We first bound P(||θ∗ − θ̄||2 > (C1
n,P +1)ϵ(L̃0)) for some C1

n,P defined later. Let E = {||pD − p̄||2 >
√
nM6max{M4,M5}ϵ(L̃0)}. Since θ∗ = (λ∗(pD)−∇λ∗(pD) ·pD;∇λ∗

1(p
D); . . . ;∇λ∗

n(p
D)), by continu-

ity of λ∗(.) and ∇λ∗(.), there exists C1
n,P ≥ 0 depending only on n and P such that, conditioning

on Ec, we have:

||θ∗ − θ̄||22 =
∣∣∣∣λ∗(pD)−∇λ∗(pD) · pD−λ∗(p̄)+∇λ∗(p̄) · p̄

∣∣∣∣2
F
+
∣∣∣∣∇λ∗(pD)−∇λ∗(p̄)

∣∣∣∣2
F

=
n∑
i=1

(
λ∗
i (p

D)−
n∑
j=1

pDj
∂λ∗

i

∂pj
(pD)−λ∗

i (p̄)+
n∑
j=1

p̄j
∂λ∗

i

∂pj
(p̄)

)2

+
n∑
i=1

n∑
j=1

(
∂λ∗

i

∂pj
(pD)− ∂λ∗

i

∂pj
(p̄)

)2

≤ (C1
n,P ϵ(L̃0))

2. (EC.20)

where the first equality follows since for θ = (a;B′
1; . . . ;B

′
n), ||θ||22 = ||a||2F + ||B||2F . By the law of

total probability, we have:

P
(∣∣∣∣θ∗ − θ̄

∣∣∣∣
2
> (C1

n,P +1)ϵ(L̃0)
)

≤ P
(∣∣∣∣θ∗ − θ̄

∣∣∣∣
2
> (C1

n,P +1)ϵ(L̃0)
∣∣∣E)P(E)

+P
(∣∣∣∣θ∗ − θ̄

∣∣∣∣
2
> (C1

n,P +1)ϵ(L̃0)
∣∣∣Ec)P(Ec)

≤ P(E)+P
(∣∣∣∣θ∗ − θ̄

∣∣∣∣
2
> (C1

n,P +1)ϵ(L̃0)
∣∣∣Ec) ≤ 4

k
(EC.21)
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where the last inequality follows by (EC.20) and the inequality below:

P(E) ≤ P
(√

n
∣∣∣∣pD− p̄

∣∣∣∣
∞ >

√
nM6max{M4,M5}ϵ(L̃0)

)
≤ P

√
nM6max{||λ∗(.)− λ̃(.)||∞, ||(∇λ∗(.)−∇λ̃(.))′||∞}>

√
nM6max{M4,M5}

(
logk√
L̃0

) (s∧s̄)−1
s+n


≤ P

||λ∗(.)− λ̃(.)||∞ >M4

(
logk√
L̃0

) s∧s̄
s+n

+P

||(∇λ∗(.)−∇λ̃(.))′||∞ >M5

(
logk√
L̃0

) (s∧s̄)−1
s+n

≤ 4

k
,

where the second inequality follows from Lemma 7, the third inequality follows by the union bound

and the fact that
√
L̃0 ≥ log3/2 k > logk, and the last inequality follows by Lemma 6. We now

bound P(||θ̄− θ̂||>C2
n,P max{M4,M5}ϵ(L̃0)), for some C2

n,P defined below. Note that there exists

a constant C2
n,P > 0 depending only on n and P such that:

||θ̄− θ̂||22 =
∣∣∣∣∣∣λ∗(p̄)−∇λ∗(p̄) · p̄− λ̃(p̄)+∇λ̃(p̄) · p̄

∣∣∣∣∣∣2
F
+
∣∣∣∣∣∣∇λ∗(p̄)−∇λ̃(p̄)

∣∣∣∣∣∣2
F

≤ (C2
n,P max{||λ∗(.)− λ̃(.)||∞, ||∇λ∗(.)−∇λ̃(.)||∞})2.

So, we can bound:

P
(
||θ̄− θ̂||2 >C2

n,P max{M4,M5}ϵ(L̃0)
)

≤ P
(
C2
n,P max{||λ∗(.)− λ̃(.)||∞, ||(∇λ∗(.)−∇λ̃(.))′||∞}>C2

n,P max{M4,M5}ϵ(L̃0)
)

≤ P
(
||λ∗(.)− λ̃(.)||∞ >M4ϵ(L̃0)

)
+P

(
||(∇λ∗(.)−∇λ̃(.))′||∞ >M5ϵ(L̃0)

)
≤ 4

k
,(EC.22)

where the last inequality follows from Lemma 6 and the fact that
√
L̃0 ≥ log3/2 k > logk. Finally,

by combining (EC.21) and (EC.22) and letting M7 =C1
n,P +C2

n,P max{M4,M5}+1, we have

P
(
||θ∗ − θ̂||2 >M7ϵ(L̃0)

)
≤ P

(
||θ∗ − θ̃||2 > (C1

n,P +1)ϵ(L̃0)
)
+P

(
||θ̃− θ̂||2 >C2

n,P max{M4,M5}ϵ(L̃0)
)
≤ 8

k
.

�

EC.3.5. Proof of Theorem 3

Throughout this section, we fix π= NLRC and assume that T = 1 (this is without lost of generality).

Let τ be the minimum of k and the first time t≥ L̃0 + 1 such that the following condition (C1)

is violated: ψ > ||
∑t−1

s=L̃0+1
∆̃s
k−s ||2, where ψ :=

√
ϵ(L̃0) = (k−1/4 log1/2 k)((s∧s̄)−1)/(2s+n−1) and ∆̃s =

∆s + λ∗(ps) − λ(ps; θ̂). Define A := {||θ∗ − θ̂||2 ≤M7ϵ(L̃0)}, where M7 and ϵ(L̃0) are as defined

in Lemma 8. Note that, by Lemma 8, we have kP(Ac) ≤ 8; so, for all k ≥ Ω3 = 17, P(Ac) < 1/2.
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Moreover, since ϵ(L̃0) = o(1) (recall that L̃0 ≥ log3 k), there exists a constant Ω4 > 0 independent

of k such that for all k≥Ω4 and all sample paths on A, we have ||θ∗ − θ̂||2 ≤M7ϵ(L̃0)< δ̄ where δ̄

is as defined in Lemma 1. We will suppress the dependency of ϵ(L̃0) on L̃0 for notational brevity

whenever there is no confusion. Now, define λt := λ∗(pt) and λ̂t := λ(pt; θ̂). As long as pt ∈ P, we

have λ̂t = λ(pt; θ̂) = λ0(θ̂)−
∑t−1

s=1
Q∆̃s

k−s . Similar to the proof of Theorem 1, we state two lemmas.

Lemma EC.10. There exists some constant Ω5 > 0 independent of k such that for all k≥Ω5 and

for all sample paths on A, pt ∈P and Ct ≻ 0 for all t < τ .

Lemma EC.11. There exists some constant K9 independent of k≥max{Ω3,Ω4,Ω5} such that for

all k≥max{Ω3,Ω4,Ω5}, E[k− τ |A]≤K9(ϵ
2k+ ϵ−1 logk+ ϵ−2)

Let R̂π
λ∗(k) denote the revenue during exploitation stage. Since the one period revenue loss is

bounded by r̄, we have ρπ(k)≤ L̃0r̄+
∑k

t=L̃0+1 r
∗(λD)−Eπλ∗ [R̂π

λ∗(k)] = L̃0r̄+
∑k

t=L̃0+1 r
∗(λD(θ∗))−

Eπλ∗ [R̂π
λ∗(k)]. (Note that λD = argmaxλ∈Λλ∗{r

∗(λ) :Aλ≼ C} and λD(θ∗) = argmaxλ∈Λλ∗{r(λ;θ
∗) :

Aλ≼C}. Recall that by construction of θ∗, we have λD = λD(θ∗).). The following result is useful

for bounding the revenue loss later.

Lemma EC.12. There exist some constant Ω6 independent of k and some constant K10 > 0 inde-

pendent of k≥Ω6 and θ̂ such that for all k≥Ω6, ||λD(θ̂)−λ0(θ̂)||2 ≤K10ϵ(L̃0)
2

Define K := max{Ω3,Ω4,Ω5,Ω6}. For k ≤K,ρπ(k)≤ r̄K. We now consider the case when k >K.

By similar arguments as in (EC.1) and (EC.2), we have that

k∑
t=L̃0+1

r∗(λD(θ∗))−Eπλ∗
[
R̂π
λ∗(k)

]
≤ Eπλ∗

 τ−1∑
t=L̃0+1

∇r∗(λD(θ∗)) · (λD(θ∗)−λt)

∣∣∣∣∣∣A


+
v̄

2
Eπλ∗

 τ−1∑
t=L̃0+1

||λD(θ∗)−λt||22

∣∣∣∣∣∣A
+ r̄Eπλ∗ [k− τ |A] + 2 r̄ + r̄ kP(Ac) (EC.23)

Note that ∇r∗(λD) · (λD(θ∗)− λt) =∇r(λD(θ∗);θ∗) · (λD(θ∗)− λt) = µD(θ∗)′A(λD(θ∗)− λD(θ̂)+

λD(θ̂)−λ0(θ̂)+λ0(θ̂)− λ̂t+ λ̂t−λt). Therefore, for the first term of (EC.23), we have for k <K:

Eπλ∗

 τ−1∑
t=L̃0+1

∇r∗(λD(θ∗)) · (λD(θ∗)−λt)

∣∣∣∣∣∣A
=Eπλ∗

 τ−1∑
t=L̃0+1

µD(θ∗)′(AλD(θ∗)−AλD(θ̂))

∣∣∣∣∣∣A


+Eπλ∗

 τ−1∑
t=L̃0+1

µD(θ∗)′(AλD(θ̂)−Aλ0(θ̂))

∣∣∣∣∣∣A
+Eπλ∗

 τ−1∑
t=L̃0+1

µD(θ∗)′A(λ0(θ̂)− λ̂t+ λ̂t−λt)

∣∣∣∣∣∣A


≤ K10µ
D(θ∗)′Aeϵ2k+Eπλ∗

 τ−1∑
t=L̃0+1

µD(θ∗)′

 t−1∑
s=L̃0+1

A∆̃s

k− s
+A∆t−A∆̃t

∣∣∣∣∣∣A
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≤ K10µ
D(θ∗)′Ae ϵ2k+µD(θ∗)′Ae

1+ kPπλ∗(Ac)

Pπλ∗(A)
+ψ||µD(θ∗)||2||A||2(Eπλ∗ [k− τ |A] + 1)

≤ K10µ
D(θ∗)′Ae ϵ2k+18µD(θ∗)′Ae+ ||µD(θ∗)||2||A||2K9(ϵ

2k+ ϵ−1 logk+ ϵ−2)+ ||µD(θ∗)||2||A||2

≤ K11(1+ ϵ2k+ ϵ−1 logk+ ϵ−2) (EC.24)

where K11 = (18 +K10)µ
D(θ∗)′Ae + ||µD(θ∗)||2||A||2(1 +K9), the first inequality follows by the

fact that µD(θ∗)′A(λD(θ∗)− λD(θ̂)) on A (see the paragraph after (EC.3) for explanation) and

Lemma EC.12, the second inequality follows by a similar argument in the proof of Lemma 3, the

third inequality follows by Lemma EC.11 and the fact that ψ < 1.

We now bound the second term of (EC.23). A key observation is that there exists some constant

κ0 such that ||λ∗(pt)− λ(pt; θ̂)||2 = ||λ∗(pD) +∇λ∗(pD) · (pt − pD) + (pt − pD)′∇2λ∗(ξ)(pt − pD)−

λ(pD;θ∗) − ∇λ(pD;θ∗) · (pt − pD)||2 = ||(pt − pD)′∇2λ∗(ξ)(pt − pD)||2 ≤ κ0||pt − pD||22, where the

second equality follows by the construction of θ∗. So, conditioning on A, for all t < τ ,

∣∣∣∣∣∣λt− λ̂t

∣∣∣∣∣∣
2
=
∣∣∣∣∣∣λ∗(pt)−λ(pt; θ̂)

∣∣∣∣∣∣
2
≤ ||λ∗(pt)−λ(pt;θ

∗)||2 +
∣∣∣∣∣∣λ(pt;θ∗)−λ(pt; θ̂)

∣∣∣∣∣∣
2

≤ κ0||pt− pD||22 +ωM7ϵ= κ0||pt− p0(θ̂)+ p0(θ̂)− pD(θ̂)+ pD(θ̂)− pD(θ∗)||22 +ωM7ϵ

≤ 3κ0||pt− p0(θ̂)||22 +3κ0||p0(θ̂)− pD(θ̂)||22 +3κ0||pD(θ̂)− pD(θ∗)||22 +ωM7ϵ

≤ 3κ0||∇pλ(λ0(θ̂); θ̂)||22||Q||22

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+3κ0ω
2K2

10ϵ
4 +3κ0

(
n3/2M6ω||θ∗ − θ̂||2

)2

+ωM7ϵ

≤ 3κ0ω
2||Q||22ψ2 +3κ0ω

2K2
10ϵ

4 +3κ0n
3M 2

6M
2
7ω

2ϵ2 +ωM7ϵ≤ ω0ϵ (EC.25)

where ω0 = 3κ0ω
2||Q||2 + 3κ0ω

2K2
10 + 3κ0n

3M 2
6M

2
7ω

2 + ωM7, the fourth inequality follows by

Lemma EC.12 and Lemma 7, and the fifth inequality follows by the definition of τ and A. We now

bound the second term in (EC.23) below.

v̄

2
Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣λD(θ∗)−λt)
∣∣∣∣2

2
|A


≤ v̄Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λD(θ∗)−λ0(θ̂)
∣∣∣∣∣∣2

2
|A

+ v̄Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ0(θ̂)−λt

∣∣∣∣∣∣2
2
|A


≤ 2v̄k

(
Eπλ∗

[∣∣∣∣∣∣λD(θ∗)−λD(θ̂)
∣∣∣∣∣∣2

2
|A
]
+Eπλ∗

[∣∣∣∣∣∣λD(θ̂)−λ0(θ̂)
∣∣∣∣∣∣2

2
|A
])

+ v̄Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ0(θ̂)−λt

∣∣∣∣∣∣2
2
|A


≤ 2v̄k

(
κ2M 2

7 ϵ
2 +K2

10ϵ
4
)
+ v̄Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ0(θ̂)−λt

∣∣∣∣∣∣2
2
|A


≤ 2v̄K12 logk+(2v̄K12 +2v̄K2

10 +2v̄κ2M 2
7 )ϵ

2k
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where the last inequality follows because:

1

2
Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ0(θ̂)−λt

∣∣∣∣∣∣2
2
|A

≤Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ0(θ̂)− λ̂t

∣∣∣∣∣∣2
2
|A

+Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ̂t−λt

∣∣∣∣∣∣2
2
|A


≤ Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

|A

+Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ̂t−λt)
∣∣∣∣∣∣2

2
|A


≤ 2Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

|A

+2Eπλ∗

 τ−1∑
t=L̃0+1

 t−1∑
s=L̃0+1

||λs− λ̂s||2
k− s

2

|A


+Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣λ̂t−λt)
∣∣∣∣∣∣2

2
|A


≤ 2

Pπλ∗(A)
Eπλ∗

τ−1∑
t=1

∣∣∣∣∣
∣∣∣∣∣
t−1∑
s=1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2
+2Eπλ∗

τ−1∑
t=1

(
t−1∑
s=1

ω0ϵ

k− s

)2

|A

+ω2
0kϵ

2

≤ 32 logk+6ω2
0ϵ

2k+ω2
0ϵ

2k≤K12(logk+ ϵ2k) =K12(logk+ ϵ2k) (EC.26)

where K12 = 32+7ω2
0. Combine Lemma EC.11, (EC.23), (EC.24) and (EC.26), we have that there

exists some constant M8 > 0 independent of k >K such that for all k >K,

k∑
t=L̃0+1

r∗(λD(θ∗))−Eπλ∗
[
R̂π
λ∗(k)

]
≤ M8

(
ϵ(L̃0)

2k+ ϵ(L̃0)
−1 logk+ ϵ(L̃0)

−2
)

Putting things together, we then conclude that there exists some constant M9 independent of

k >K such that for all k >K:

ρπ(k) ≤ M8

k( log2 k

L̃0

) (s∧s̄)−1
s+n

+ logk

(√
L̃0

logk

) (s∧s̄)−1
s+n

+

(
k

log2 k

) (s∧s̄)−1
2s+n−1

+ r̄L̃0

≤ M8

(
k

2s−(s∧s̄)+n
2s+n−1 (logk)

2((s∧s̄)−1)
2s+n−1 + k

(s∧s̄)−1
2(2s+n−1) (logk)

2s−(s∧s̄)+n
2s+n−1 + k

(s∧s̄)−1
2s+n−1

)
+ r̄k

s+n
2s+n−1 (logk)

2(s−1)
2s+n−1

≤ M9k
2s−(s∧s̄)+n

2s+n−1 logk

where the last inequality holds by letting L̃0 = k(s+n)/(2s+n−1)(logk)2(s−1)/(2s+n−1). The result then

follows by letting M3 =M9 + r̄K. �

EC.3.6. Proof of supporting lemmas

Proof of Lemma EC.10. Let Ω5 = max{Ω4,C1,C2} where C1 and C2 are constants to be

defined later. Assume without loss of generality that T = 1. Recall that pD = argmaxp∈P{r∗(p) :

Aλ∗(p) ≼ C} = argmaxp∈P{r(p;θ∗) : Aλ(p;θ∗) ≼ C} and pD(θ̂) = argmaxp∈P{r(p; θ̂) : Aλ(p; θ̂) ≼

C}. Note that for k ≥ Ω5 ≥ Ω4, we have ||θ∗ − θ̂||2 < δ̄. Hence, by Lemma 1(a), we conclude that
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||pD − pD(θ̂)||2 <ϕ/2. Recall that p0(θ̂) = argmaxp∈P{r(p; θ̂) :Aλ(p; θ̂)≼CL̃0
/(k− L̃0)}. Since C −

CL̃0
/(k− L̃0) = (L̃0C −ASL̃0

)/(k− L̃0)→ 0 as k→∞, by a similar argument as in Lemma EC.12,

there exists C1 > 0 independent of θ̂ ∈ Ball(θ∗, δ̄) such that for all k ≥C1, ||pD(θ̂)− p0(θ̂)||2 <ϕ/8.

Since ω||Q||2ψ = ω||Q||2
√
ϵ(L̃0)→ 0 as k→∞, there exists a constant C2 > C1 such that for all

k ≥ C2, ω||Q||2ψ ≤ ϕ/4. The rest of the proof goes by induction. Fix some k ≥ Ω5. If τ ≤ L̃0 + 1,

there is nothing to prove. Suppose τ > L̃0 + 1. pL̃0+1 = p0(θ̂) ∈ Ball(pD,5ϕ/8) ⊆ P. Following the

same argument in the proof of Lemma EC.1, we have CL̃0+1 ≻ 0. This is our induction base. Sup-

pose that Cs ≻ 0, ps ∈P for all s= L̃0+1, L̃0+2, . . . , t−1 and t−1< τ . If t≥ τ , we have finished the

induction. Otherwise, ||pt − p0(θ̂))||2 = ||∇p(λ0(θ̂); θ̂) ·
∑t−1

s=L̃0+1
Q∆̃s

k−s ||2 ≤ ω||Q||2||
∑t−1

s=L̃0+1
∆̃s
k−s ||2 ≤

ω||Q||2ψ≤ ϕ/4 where the last inequality follows as k≥Ω5 ≥C2. So pt ∈Ball(pD,7ϕ/8)⊆P. Ct ≻ 0

can be show in the same way as in the proof of Lemma EC.1. This completes the induction. �

Proof of Lemma EC.11. Assume without loss of generality that T = 1 and fix k ≥

max{Ω3,Ω4,Ω5}. Similar to (EC.15) in the proof of Lemma EC.8, we have

Eπλ∗ [k− τ |A] =
k−1∑
t=1

Pπλ∗(τ ≤ t|A)≤
k−1∑
t=1

Pπλ∗

 max
L̃0+1≤s≤t

∣∣∣∣∣∣
∣∣∣∣∣∣

s∑
v=L̃0+1

∆v

k− v

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣∣∣A


+
k−1∑
t=1

Pπλ∗

 max
L̃0+1≤s≤t


s∑

v=L̃0+1

||λv − λ̂v||21{v≤τ}

k− v

≥ ψ

2

∣∣∣∣∣∣A
 . (EC.27)

By the argument in the proof of Lemma EC.8, the first term in (EC.27) can be bounded by

ψ−2C1 logk=C1ϵ(L̃0)
−1 logk for some constant C1 independent of k≥max{Ω3,Ω4,Ω5} (note that

k≥Ω3 = 17> 3). We now bound the second term in (EC.27):

Pπλ∗

 max
L̃0+1≤s≤t


s∑

v=L̃0+1

||λv − λ̂v||21{v≤τ}

k− v

≥ ψ

2

∣∣∣∣∣∣A
= Pπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s≤τ}

k− s
≥ ψ

2

∣∣∣∣∣∣A


≤ 16

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s<τ}

k− s
+

t∑
s=L̃0+1

||λs− λ̂s||21{s=τ}

k− s

4∣∣∣∣∣∣A


≤ 128

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s<τ}

k− s

4∣∣∣∣∣∣A
+

128

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s=τ}

k− s

4∣∣∣∣∣∣A


≤ 128ω4
0ϵ(L̃0)

4

ψ4
log4

(
k

k− t

)
+

128

ψ4

( √
2

k− t

)4

≤ 128ω4
0ϵ(L̃0)

4

ψ4
log4

(
k

k− t

)
+

512

ψ4

(
1

k− t

)4

= 128ω4
0ϵ(L̃0)

2 log4
(

k

k− t

)
+512ϵ(L̃0)

−2

(
1

k− t

)4

(EC.28)
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where the third inequality follows by (EC.25) and the fact that ||λt− λ̂t||22 ≤ 2, and the last equality

follows since ψ=
√
ϵ(L̃0). Note that

∑k−1

t=1 log
s( k
k−t)≤ s!k for some constant Ms only depending on

s, there exists some constant C2 independent of k≥max{Ω3,Ω4,Ω5} such that:

k−1∑
t=1

Pπλ∗

 max
L̃0+1≤s≤t


s∑

v=L̃0+1

||λv − λ̂v||21{v≤τ}

k− v

≥ ψ

2

∣∣∣∣∣∣A


≤
k−1∑
t=1

128ω4
0ϵ(L̃0)

2 log4
(

k

k− t

)
+512ϵ(L̃0)

−2

k−1∑
t=1

(
1

k− t

)4

≤C2

(
ϵ(L̃0)

2k+ ϵ(L̃0)
−2
)

Therefore, we have that for all k ≥max{Ω3,Ω4,Ω5}, E[k − τ |A] ≤ C1ϵ(L̃0)
−1 logk + C2ϵ(L̃0)

2k +

C2ϵ(L̃0)
−2 ≤ K9(ϵ(L̃0)

2k + ϵ(L̃0)
−1 logk + ϵ(L̃0)

−2) for some constant K9 independent of k ≥
max{Ω3,Ω4,Ω5}. �

Proof of Lemma EC.12. Without loss of generality, assume T = 1. Define ζ̂ =C−kCL̃0
/(k− L̃0).

Note that L̃0/k→ 0 as k→∞. Hence, there exists some constant Ω6 ≥Ω4 such that for all k≥Ω6,

||ζ̂||∞ =

∣∣∣∣∣∣∣∣C −
CL̃0

k− L̃0

∣∣∣∣∣∣∣∣
∞
=

∣∣∣∣∣
∣∣∣∣∣(kC − L̃0C)− (kC −ASL̃0

)

k− L̃0

∣∣∣∣∣
∣∣∣∣∣
∞

=

∣∣∣∣∣
∣∣∣∣∣ASL̃0

− L̃0C

k− L̃0

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 2 (||Ae||∞ + ||C||∞)
L̃0

k
= 2(||Ae||∞ + ||C||∞)

(
log2 k

k

) s−1
2s+n−1

≤ 2 (||Ae||∞ + ||C||∞) ϵ(L̃0)
2

where the first inequality follows since k − L̃0 > k/2 for large k. Note that λ0(θ̂) =

argmaxλ∈Λ
θ̂
{r(λ; θ̂) : Aλ ≼ CL̃0

/(k − L̃0)} and λD(θ̂) = argmaxλ∈Λ
θ̂
{r(λ; θ̂) : Aλ ≼ C}. Hence, by

Corollary EC.4, there exists a constantMθ̂ independent of ζ̂ but dependent on θ̂ such that ||λ0(θ̂)−
λD(θ̂)||∞ ≤Mθ̂ ||ζ̂||∞ = 2(||Ae||∞ + ||C||∞)Mθ̂ϵ(L̃0)

2. Note that, as we will show below, both λ0(θ)

and λD(θ) are continuous in θ. This indicates that Mθ can be chosen to be continuous in θ for

all θ ∈Θ. The result is then proven by letting K10 = 2(||Ae||∞ + ||C||∞) supθ∈ΘMθ <∞. We now

prove the continuity of λ0(θ) and λD(θ) below.

Recall that by Lemma 7 and the argument in Lemma 1, pD(θ) is continuous in θ. Since p0(θ) =

argmaxp∈P{r(p;θ) :Aλ(p;θ)≼C+ ζ̂}, by a similar argument we have that p0(θ) is also continuous

in θ for all ζ̂. Note that λ0(θ) = λ(p0(θ);θ) and λD(θ) = λ(pD(θ);θ) and λ(p;θ) is continuous in

both p and θ. Therefore, both λ0(θ) and λD(θ) are continuous in θ. �

EC.4. Auxiliary Results

EC.4.1. Results for Maximum Likelihood Theory

Theorem EC.1. (Tail Inequality for MLE Based on IID Samples, Theorem 36.3 in

Borovkov (1999)) Let Θ ∈ Rq be compact and convex, and let {Pθ : θ ⊆ Θ} be a family of dis-
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tributions on a discrete sample space Y. Suppose Y is a random variable taking value in Y with

distribution Pθ, and the following conditions hold:

(i) Pθ ̸= Pθ′ whenever θ ̸= θ′;

(ii) For some r > q, supθ∈ΘEθ[||∇θ logPθ(Y )||r2] = γ <∞;

(iii) The function θ→
√

Pθ(Y ) is differentiable on Θ for any Y ∈Y;
(iv) The Fisher information matrix, whose (i, j)th entry is given by Eθ

[
− ∂2

∂θi∂θj
logPθ(Y )

]
, is

positive definite.

If Y1, Y2, ... is a sequence of i.i.d. random variables taking value in Y with distribution Pθ, and

θ̂(t) = argmaxθ∈Θ

∏t

l=1 Pθ(Yl) is the maximum likelihood estimate based on t i.i.d. samples, then,

there exist constants η1 > 0 and η2 > 0 depending only on r, q, Pθ and Θ such that for all t≥ 1 and

all δ≥ 0,Pθ(||θ̂(t)− θ||2 > δ)≤ η1 exp(−tη2δ2).

EC.4.2. Results for Newton’s Method

Theorem EC.2. (Quadratic Convergence of Newton’s Method for Convex Uncon-

strained Optimization Problems, Section 9.5.3 in Boyd and Vandenberghe (2004))

Suppose g(z) is a concave function whose unconstrained optimizer is x∗. Let {x(k)}∞k=1 be a sequence

of points obtained by Newton’s method. Assume there exist positive constants m,M,L such that

(i) ||∇2g(z)−∇2g(y)||2 ≤L||z− y||2, and
(ii) −MI ≼∇2g(z)≼−mI.

Then, there exists constant η=min{1,3(1−2α)}m2/L where α∈ (0,0.5) such that if ||∇g(x(k))||2 <
η, then ||∇g(x(k+1))||2 ≤ L

2m2 ||∇g(x(k))||22.

EC.4.3. Results for Spline Approximation

Theorem EC.3. (Theorem 6.18 and Theorem 6.22 in Schumaker (2007)) Let B([p
l
, p̄l])

be the set of bounded functions on [p
l
, p̄l]. Then for l = 1, . . . , n,Ll is a linear operator mapping

B([p
l
, p̄l]) into Sl(Gl, s). Moreover, Llf = f for all f ∈ Ps−1([p

l
, p̄l]). In addition, for every g ∈

C0([p
l
, p̄l]), ||(Llg)(.)||∞ ≤ (2s)s||g(.)||∞.

Theorem EC.4. (Theorem 13.20 in Schumaker (2007)) Let Λ be a complete set of multiple-

indices and let 0< ϵ< 1. Then there exists a constant C depending only on n, ϵ,ψ,Λ such that for

all f ∈ L∂Λp (Ω),

||Dβ(f −TΛ
ψ f)||q ≤Cδ1/q−1/p

∑
α∈∂(Λ−β)

δα||DαDβf ||p
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for any β and for all 1≤ q≤ p≤∞ satisfying ϵ≤max{⌊|α|/d⌋,1/q−1/p+ |α|/d,min{1−1/p,1/q}}

for all α∈ ∂(Λ−β).

(Note: For definition of complete multiple-indices Λ and its boundary ∂Λ, see Definition 13.15

on pg. 510 of Schumaker (2007). For the Sobolev Space LΛ
p (Ω), see Definition 13.3 on pg.504 of

Schumaker (2007). See (13.34) for the definition of the tensor Taylor expansion TΛ
ψ f , and (13.48)

for the definition of δ. Finally, see (13.9) - (13.12) for definitions of |α|, δα, and Dα. )

Corollary EC.1. Let f : Rn → [0,1]n be a function that satisfies N1-N2. Then for any s ≥ 3,

there exists g ∈⊗n
l=1P

(s∧s̄)−1([p
l
, p̄l]) such that:

||(∇
x
β1
1 ,...,x

βn
n
)(f − g)(.)||∞ ≤C

n∑
i=1

∆̄
(s∧s̄)−βi
i

∣∣∣∣∣
∣∣∣∣∣ ∂(s∧s̄)

∂p
(s∧s̄)
i

f(.)

∣∣∣∣∣
∣∣∣∣∣
∞

for 0 = β1 = · · ·= βn and 1 = β1 = · · ·= βn.

Proof. This result follows by Theorem EC.4. Let Λ = {α = (α1, . . . , αn) ∈ Zn+ : 0 ≤ αi ≤ (s ∧ s̄)−

1,1≤ i≤ n} for s≥ 3 and Ω=Hĩ1,...,̃in
. Also, let p=∞, q=∞. Note that for all j, s∧ s̄−βj ≥ 1 since

s̄≥ 2 by N1 and s≥ 3 and βj ≤ 1 for all j. This ensures that there exists some ϵ∈ (0,1) such that

ϵ≤max{⌊|α|/n⌋,1/q−1/p+ |α|/n,min{−1/p,1/q}}=max1≤j≤n{((s∧ s̄)−βj)/n} for all α∈ ∂Λ=

{(s∧ s̄− βj)ej : 1≤ j ≤ n}. Since Ω is a compact set and N2 ensures that for f , all its derivatives

of order (s̄, . . . , s̄) or lower are uniformly bounded, we conclude that f ∈ L(s∧s̄,...,s∧s̄)
∞ (Hĩ1,...,̃in

). The

result follows by letting g= TΛ
ψ f ∈⊗n

l=1P
(s∧s̄)−1([p

l
, p̄l]). �

Theorem EC.5. (Lemma 6.19 in Schumaker (2007)) For {βl,i,j}n,s+d,sl=1,i=1,j=1, we have |βl,i,j| ≤

(yl,i+s− yl,i)
j−1 ≤ (s∆̄l)

j−1.

Theorem EC.6. (Theorem 12.4 in Schumaker (2007)) Let Yi1,...,in = ⊗n
l=1(yl,il , yl,il+s) for

all 1 ≤ i1, . . . , in ≤ s + d. Then, Ni1,...,id(p) > 0 for p = (p1, . . . , pn) ∈ Yi1,...,in, Ni1,...,id(p) = 0 for

p= (p1, . . . , pn) /∈ Yi1,...,in, and
∑i1

v1=i1+s−1 · · ·
∑in

vn=in+s−1Nv1,...,vn(p)≡ 1 for p∈ Yi1,...,in.

Corollary EC.2. We have that
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)|= 1 for all p∈P.

Proof. Let Yi1,...,in = ⊗n
l=1(yl,il , yl,il+s) for all 1 ≤ i1, . . . , in ≤ s + d. By Theorem EC.6,∑i1

v1=i1+1−s · · ·
∑in

vn=in+1−sNv1,...,vn(p) ≡ 1 for p ∈ Yi1,...,in . Since in addition, we also have

by the same Theorem that Ni1,...,in(p) > 0 for p = (p1, . . . , pn) ∈ Yi1,...,in , and Ni1,...,in(p) =

0 for p = (p1, . . . , pn) /∈ Yi1,...,in . We thus conclude that
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)| =∑s+d

i1=1 · · ·
∑s+d

in=1Ni1,...,in(p) =
∑i1

v1=i1+1−s · · ·
∑in

vn=in+1−sNv1,...,vn(p) ≡ 1 for p ∈ Yi1,...,in for all 1 ≤

i1, . . . , in ≤ s+ d. The result then follows. �
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Theorem EC.7. (Theorem 4.22 in Schumaker (2007)) Fix l= 1, . . . , n, and let s≥ 2. Suppose

k and pl are such that yl,k ≤ pl < yl,k+1, and define ∆il,k,j = min{(yl,v+j, yl,v) : yl,il ≤ yl,v ≤ yl,k <

yl,k+1 ≤ yl,v+j ≤ yl,il+s}, for j = 1, . . . , s. Suppose σ > 0 and that ∆il,k,s−σ+1 > 0. Then |DσN s
l,il

(pl)| ≤

Γs,σ/(
∏σ

q=1∆il,l,s−q) where Γs,σ =
(s−1)!

(s−σ−1)!

(
σ

⌊σ/2⌋

)
. 5

Corollary EC.3. ||∇Ni1,...,in(p)||∞ ≤ (s− 1)maxnl=1{∆̄−1
l } for all p∈P.

Proof. The result is a direct corollary of Theorem EC.7. Let σ = 1, and then we have that for

pl ∈ [yl,k, yl,k+1), |∇plN
s
l,il

(pl)| ≤ (s−1)/∆il,k,s−1 ≤ (s−1)/∆̄l, where the last inequality follows since

∆il,k,s−1 ≥ ∆̄l. Since (s− 1)/∆̄l does not depend on k, we conclude that |∇plN
s
l,il

(pl)| ≤ (s− 1)/∆̄l

for all pl ∈ [p
l
, p̄l]. Hence, ||∇Ni1,...,in(p)||∞ =maxnl=1 |∇ilN

s
l,il

(p)| ≤ (s− 1)maxnl=1{∆̄−1
l }. �

EC.4.4. Results for Stability Analysis of Optimization Problems

Consider a family of parameterized nonlinear programs as follows:

(Pu) minx∈Rn f(x,u)

s.t. gi(x,u) = 0, i= 1, . . . , k,

gi(x,u)≤ 0, i= k+1, . . . , p,

with u ∈ U ⊆ Rq being the parameter vector. When u = u0, the above problem Pu0 is called

the unperturbed problem. The Lagrangian function associated with Pu is L(x,µ,u) := f(x,u) +∑p

i=1 µigi(x,u), and they denote by M(x,u) the set of Lagrange multipliers at a point x for (Pu).

They denote by I(x,u) the set of inequality constraints active at x. Let d ∈Rq and define ū(t) :=

u0 + td.

Definition EC.1. (Definition 3.2 in Bonnans and Shapiro (2000)) For ϵ≥ 0, u∈ U , we say

that x̄(u) is an ϵ-optimal solution of (Pu) if x̄(u) is feasible and f(x̄, u)≤ infx∈Rn f(x,u)+ ϵ.

Definition EC.2. (Gollan’s Condition, (5.111) in Bonnans and Shapiro (2000)) We say

that Gollan’s condition holds in direction d∈Rq if the following holds:

(a) ∇xgi(x0, u0), i= 1, . . . , k, are linearly independent,

(b) ∃h∈Rn such that ∇gi(x0, u0) · (h,d) = 0, i= 1, . . . , k, and ∇gi(x0, u0) · (h,d)< 0, i∈ I(x0, u0).

The following is a stronger condition of the Strong Second Order Sufficient Optimality Condition

in (5.120) in Bonnans and Shapiro (2000). In other words, if the following holds, then Strong

Second Order Sufficient Optimality Condition holds automatically.
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Definition EC.3. We say that a stronger strong second order sufficient optimality condition

holds in a direction d if supµ∈Rq h′∇2
xxL(x0, µ,u0)h> 0,∀h∈Rn\{0}.

We now state their main sensitivity result for parameterized nonlinear programs.

Theorem EC.8. (Theorem 5.53(a) in Bonnans and Shapiro (2000)) Suppose that:

(i) the unperturbed problem (Pu0) has unique optimal solution x0,

(ii) Gollan’s condition holds in the direction d,

(iii) the set M(x0, u0) of Lagrange multipliers is nonempty,

(iv) the strong second order sufficient conditions are satisfied,

(v) for all t > 0 small enough the feasible set of (Pu(t)) is nonempty and uniformly bounded.

Then for any o(t2)-optimal solution x̄(t) of (Pu(t)), where t≥ 0, x̄(t) is Lipschitz stable at x0, i.e.,

||x̄(t)−x0||=O(t).

Corollary EC.4. Consider Pλ(ϵ): J
D :=maxλ∈Λ{r∗(λ) : s.t.,Aλ≼C/T −ϵ}. Denote by x∗(ϵ) the

optimal solution to Pλ(ϵ). Then, ||x∗(0)− x∗(ϵ)||∞ =K13||ϵ||∞ for some positive K13 independent

of ||ϵ||∞.

Proof. We now verify the conditions (i)-(v) for Pλ(ϵ). For the unperturbed problem Pλ(0), by strict

concavity assumption, we conclude that it has a unique optimal solution x∗(0) and thus (i) holds.

For (ii), note that we don’t have equality constraints, so we only need to verify the second part

of (b) in Definition EC.2, which immediately follows because the derivative of those constraints

are a subset of the rows of A which are linearly independent. Note also that the constraints do

not depend on ϵ. So what we have showed is that Gollan’s condition holds for all direction d. (ii)

holds. By duality theory of convex optimization, there exists Lagrange multipliers µ∗(0), so (iii)

holds. Note that ∇λλL(x
∗(0), µ∗(0), ϵ) =∇λλr

∗(x∗(0)) is negative definite by the strict concavity

assumption of the revenue function. Note that our problem is a maximization problem whereas

Theorem EC.8 is for minimization problems, so (iv) holds. Because the feasible set of Pλ(ϵ) is

nonempty and uniformly bounded, and the feasible set doesn’t depend on ϵ, so (v) holds. The

optimal solution of Pλ(ϵ) is definitely o(t
2)-optimal to Pλ(ϵ). Hence, Lipschitz continuity holds for

the optimal solution. �


